infrun.c: Move non_stop_1 etc., higher up in file.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820
JM
81
82static void set_schedlock_func (char *args, int from_tty,
488f131b 83 struct cmd_list_element *c);
96baa820 84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
b3444185
PA
87static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
a7212384 89
96baa820
JM
90static void xdb_handle_command (char *args, int from_tty);
91
6a6b96b9 92static int prepare_to_proceed (int);
ea67f13b 93
33d62d64
JK
94static void print_exited_reason (int exitstatus);
95
2ea28649 96static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
97
98static void print_no_history_reason (void);
99
2ea28649 100static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
101
102static void print_end_stepping_range_reason (void);
103
96baa820 104void _initialize_infrun (void);
43ff13b4 105
e58b0e63
PA
106void nullify_last_target_wait_ptid (void);
107
2c03e5be 108static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
109
110static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
2484c66b
UW
112static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
5fbbeb29
CF
114/* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117int step_stop_if_no_debug = 0;
920d2a44
AC
118static void
119show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123}
5fbbeb29 124
1777feb0 125/* In asynchronous mode, but simulating synchronous execution. */
96baa820 126
43ff13b4
JM
127int sync_execution = 0;
128
c906108c
SS
129/* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
96baa820
JM
131 running in. */
132
39f77062 133static ptid_t previous_inferior_ptid;
7a292a7a 134
6c95b8df
PA
135/* Default behavior is to detach newly forked processes (legacy). */
136int detach_fork = 1;
137
237fc4c9
PA
138int debug_displaced = 0;
139static void
140show_debug_displaced (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
144}
145
ccce17b0 146unsigned int debug_infrun = 0;
920d2a44
AC
147static void
148show_debug_infrun (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
152}
527159b7 153
03583c20
UW
154
155/* Support for disabling address space randomization. */
156
157int disable_randomization = 1;
158
159static void
160show_disable_randomization (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 if (target_supports_disable_randomization ())
164 fprintf_filtered (file,
165 _("Disabling randomization of debuggee's "
166 "virtual address space is %s.\n"),
167 value);
168 else
169 fputs_filtered (_("Disabling randomization of debuggee's "
170 "virtual address space is unsupported on\n"
171 "this platform.\n"), file);
172}
173
174static void
175set_disable_randomization (char *args, int from_tty,
176 struct cmd_list_element *c)
177{
178 if (!target_supports_disable_randomization ())
179 error (_("Disabling randomization of debuggee's "
180 "virtual address space is unsupported on\n"
181 "this platform."));
182}
183
d32dc48e
PA
184/* User interface for non-stop mode. */
185
186int non_stop = 0;
187static int non_stop_1 = 0;
188
189static void
190set_non_stop (char *args, int from_tty,
191 struct cmd_list_element *c)
192{
193 if (target_has_execution)
194 {
195 non_stop_1 = non_stop;
196 error (_("Cannot change this setting while the inferior is running."));
197 }
198
199 non_stop = non_stop_1;
200}
201
202static void
203show_non_stop (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205{
206 fprintf_filtered (file,
207 _("Controlling the inferior in non-stop mode is %s.\n"),
208 value);
209}
210
d914c394
SS
211/* "Observer mode" is somewhat like a more extreme version of
212 non-stop, in which all GDB operations that might affect the
213 target's execution have been disabled. */
214
d914c394
SS
215int observer_mode = 0;
216static int observer_mode_1 = 0;
217
218static void
219set_observer_mode (char *args, int from_tty,
220 struct cmd_list_element *c)
221{
222 extern int pagination_enabled;
223
224 if (target_has_execution)
225 {
226 observer_mode_1 = observer_mode;
227 error (_("Cannot change this setting while the inferior is running."));
228 }
229
230 observer_mode = observer_mode_1;
231
232 may_write_registers = !observer_mode;
233 may_write_memory = !observer_mode;
234 may_insert_breakpoints = !observer_mode;
235 may_insert_tracepoints = !observer_mode;
236 /* We can insert fast tracepoints in or out of observer mode,
237 but enable them if we're going into this mode. */
238 if (observer_mode)
239 may_insert_fast_tracepoints = 1;
240 may_stop = !observer_mode;
241 update_target_permissions ();
242
243 /* Going *into* observer mode we must force non-stop, then
244 going out we leave it that way. */
245 if (observer_mode)
246 {
247 target_async_permitted = 1;
248 pagination_enabled = 0;
249 non_stop = non_stop_1 = 1;
250 }
251
252 if (from_tty)
253 printf_filtered (_("Observer mode is now %s.\n"),
254 (observer_mode ? "on" : "off"));
255}
256
257static void
258show_observer_mode (struct ui_file *file, int from_tty,
259 struct cmd_list_element *c, const char *value)
260{
261 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
262}
263
264/* This updates the value of observer mode based on changes in
265 permissions. Note that we are deliberately ignoring the values of
266 may-write-registers and may-write-memory, since the user may have
267 reason to enable these during a session, for instance to turn on a
268 debugging-related global. */
269
270void
271update_observer_mode (void)
272{
273 int newval;
274
275 newval = (!may_insert_breakpoints
276 && !may_insert_tracepoints
277 && may_insert_fast_tracepoints
278 && !may_stop
279 && non_stop);
280
281 /* Let the user know if things change. */
282 if (newval != observer_mode)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (newval ? "on" : "off"));
285
286 observer_mode = observer_mode_1 = newval;
287}
c2c6d25f 288
c906108c
SS
289/* Tables of how to react to signals; the user sets them. */
290
291static unsigned char *signal_stop;
292static unsigned char *signal_print;
293static unsigned char *signal_program;
294
ab04a2af
TT
295/* Table of signals that are registered with "catch signal". A
296 non-zero entry indicates that the signal is caught by some "catch
297 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
298 signals. */
299static unsigned char *signal_catch;
300
2455069d
UW
301/* Table of signals that the target may silently handle.
302 This is automatically determined from the flags above,
303 and simply cached here. */
304static unsigned char *signal_pass;
305
c906108c
SS
306#define SET_SIGS(nsigs,sigs,flags) \
307 do { \
308 int signum = (nsigs); \
309 while (signum-- > 0) \
310 if ((sigs)[signum]) \
311 (flags)[signum] = 1; \
312 } while (0)
313
314#define UNSET_SIGS(nsigs,sigs,flags) \
315 do { \
316 int signum = (nsigs); \
317 while (signum-- > 0) \
318 if ((sigs)[signum]) \
319 (flags)[signum] = 0; \
320 } while (0)
321
9b224c5e
PA
322/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
323 this function is to avoid exporting `signal_program'. */
324
325void
326update_signals_program_target (void)
327{
a493e3e2 328 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
329}
330
1777feb0 331/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 332
edb3359d 333#define RESUME_ALL minus_one_ptid
c906108c
SS
334
335/* Command list pointer for the "stop" placeholder. */
336
337static struct cmd_list_element *stop_command;
338
c906108c
SS
339/* Function inferior was in as of last step command. */
340
341static struct symbol *step_start_function;
342
c906108c
SS
343/* Nonzero if we want to give control to the user when we're notified
344 of shared library events by the dynamic linker. */
628fe4e4 345int stop_on_solib_events;
f9e14852
GB
346
347/* Enable or disable optional shared library event breakpoints
348 as appropriate when the above flag is changed. */
349
350static void
351set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
352{
353 update_solib_breakpoints ();
354}
355
920d2a44
AC
356static void
357show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362}
c906108c 363
c906108c
SS
364/* Nonzero means expecting a trace trap
365 and should stop the inferior and return silently when it happens. */
366
367int stop_after_trap;
368
642fd101
DE
369/* Save register contents here when executing a "finish" command or are
370 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
371 Thus this contains the return value from the called function (assuming
372 values are returned in a register). */
373
72cec141 374struct regcache *stop_registers;
c906108c 375
c906108c
SS
376/* Nonzero after stop if current stack frame should be printed. */
377
378static int stop_print_frame;
379
e02bc4cc 380/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
39f77062 383static ptid_t target_last_wait_ptid;
e02bc4cc
DS
384static struct target_waitstatus target_last_waitstatus;
385
0d1e5fa7
PA
386static void context_switch (ptid_t ptid);
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
7a76f5b8 390static void init_infwait_state (void);
a474d7c2 391
53904c9e
AC
392static const char follow_fork_mode_child[] = "child";
393static const char follow_fork_mode_parent[] = "parent";
394
40478521 395static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
396 follow_fork_mode_child,
397 follow_fork_mode_parent,
398 NULL
ef346e04 399};
c906108c 400
53904c9e 401static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
402static void
403show_follow_fork_mode_string (struct ui_file *file, int from_tty,
404 struct cmd_list_element *c, const char *value)
405{
3e43a32a
MS
406 fprintf_filtered (file,
407 _("Debugger response to a program "
408 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
409 value);
410}
c906108c
SS
411\f
412
e58b0e63
PA
413/* Tell the target to follow the fork we're stopped at. Returns true
414 if the inferior should be resumed; false, if the target for some
415 reason decided it's best not to resume. */
416
6604731b 417static int
4ef3f3be 418follow_fork (void)
c906108c 419{
ea1dd7bc 420 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
421 int should_resume = 1;
422 struct thread_info *tp;
423
424 /* Copy user stepping state to the new inferior thread. FIXME: the
425 followed fork child thread should have a copy of most of the
4e3990f4
DE
426 parent thread structure's run control related fields, not just these.
427 Initialized to avoid "may be used uninitialized" warnings from gcc. */
428 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 429 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
430 CORE_ADDR step_range_start = 0;
431 CORE_ADDR step_range_end = 0;
432 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
433
434 if (!non_stop)
435 {
436 ptid_t wait_ptid;
437 struct target_waitstatus wait_status;
438
439 /* Get the last target status returned by target_wait(). */
440 get_last_target_status (&wait_ptid, &wait_status);
441
442 /* If not stopped at a fork event, then there's nothing else to
443 do. */
444 if (wait_status.kind != TARGET_WAITKIND_FORKED
445 && wait_status.kind != TARGET_WAITKIND_VFORKED)
446 return 1;
447
448 /* Check if we switched over from WAIT_PTID, since the event was
449 reported. */
450 if (!ptid_equal (wait_ptid, minus_one_ptid)
451 && !ptid_equal (inferior_ptid, wait_ptid))
452 {
453 /* We did. Switch back to WAIT_PTID thread, to tell the
454 target to follow it (in either direction). We'll
455 afterwards refuse to resume, and inform the user what
456 happened. */
457 switch_to_thread (wait_ptid);
458 should_resume = 0;
459 }
460 }
461
462 tp = inferior_thread ();
463
464 /* If there were any forks/vforks that were caught and are now to be
465 followed, then do so now. */
466 switch (tp->pending_follow.kind)
467 {
468 case TARGET_WAITKIND_FORKED:
469 case TARGET_WAITKIND_VFORKED:
470 {
471 ptid_t parent, child;
472
473 /* If the user did a next/step, etc, over a fork call,
474 preserve the stepping state in the fork child. */
475 if (follow_child && should_resume)
476 {
8358c15c
JK
477 step_resume_breakpoint = clone_momentary_breakpoint
478 (tp->control.step_resume_breakpoint);
16c381f0
JK
479 step_range_start = tp->control.step_range_start;
480 step_range_end = tp->control.step_range_end;
481 step_frame_id = tp->control.step_frame_id;
186c406b
TT
482 exception_resume_breakpoint
483 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
484
485 /* For now, delete the parent's sr breakpoint, otherwise,
486 parent/child sr breakpoints are considered duplicates,
487 and the child version will not be installed. Remove
488 this when the breakpoints module becomes aware of
489 inferiors and address spaces. */
490 delete_step_resume_breakpoint (tp);
16c381f0
JK
491 tp->control.step_range_start = 0;
492 tp->control.step_range_end = 0;
493 tp->control.step_frame_id = null_frame_id;
186c406b 494 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
495 }
496
497 parent = inferior_ptid;
498 child = tp->pending_follow.value.related_pid;
499
500 /* Tell the target to do whatever is necessary to follow
501 either parent or child. */
502 if (target_follow_fork (follow_child))
503 {
504 /* Target refused to follow, or there's some other reason
505 we shouldn't resume. */
506 should_resume = 0;
507 }
508 else
509 {
510 /* This pending follow fork event is now handled, one way
511 or another. The previous selected thread may be gone
512 from the lists by now, but if it is still around, need
513 to clear the pending follow request. */
e09875d4 514 tp = find_thread_ptid (parent);
e58b0e63
PA
515 if (tp)
516 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
517
518 /* This makes sure we don't try to apply the "Switched
519 over from WAIT_PID" logic above. */
520 nullify_last_target_wait_ptid ();
521
1777feb0 522 /* If we followed the child, switch to it... */
e58b0e63
PA
523 if (follow_child)
524 {
525 switch_to_thread (child);
526
527 /* ... and preserve the stepping state, in case the
528 user was stepping over the fork call. */
529 if (should_resume)
530 {
531 tp = inferior_thread ();
8358c15c
JK
532 tp->control.step_resume_breakpoint
533 = step_resume_breakpoint;
16c381f0
JK
534 tp->control.step_range_start = step_range_start;
535 tp->control.step_range_end = step_range_end;
536 tp->control.step_frame_id = step_frame_id;
186c406b
TT
537 tp->control.exception_resume_breakpoint
538 = exception_resume_breakpoint;
e58b0e63
PA
539 }
540 else
541 {
542 /* If we get here, it was because we're trying to
543 resume from a fork catchpoint, but, the user
544 has switched threads away from the thread that
545 forked. In that case, the resume command
546 issued is most likely not applicable to the
547 child, so just warn, and refuse to resume. */
3e43a32a
MS
548 warning (_("Not resuming: switched threads "
549 "before following fork child.\n"));
e58b0e63
PA
550 }
551
552 /* Reset breakpoints in the child as appropriate. */
553 follow_inferior_reset_breakpoints ();
554 }
555 else
556 switch_to_thread (parent);
557 }
558 }
559 break;
560 case TARGET_WAITKIND_SPURIOUS:
561 /* Nothing to follow. */
562 break;
563 default:
564 internal_error (__FILE__, __LINE__,
565 "Unexpected pending_follow.kind %d\n",
566 tp->pending_follow.kind);
567 break;
568 }
c906108c 569
e58b0e63 570 return should_resume;
c906108c
SS
571}
572
6604731b
DJ
573void
574follow_inferior_reset_breakpoints (void)
c906108c 575{
4e1c45ea
PA
576 struct thread_info *tp = inferior_thread ();
577
6604731b
DJ
578 /* Was there a step_resume breakpoint? (There was if the user
579 did a "next" at the fork() call.) If so, explicitly reset its
580 thread number.
581
582 step_resumes are a form of bp that are made to be per-thread.
583 Since we created the step_resume bp when the parent process
584 was being debugged, and now are switching to the child process,
585 from the breakpoint package's viewpoint, that's a switch of
586 "threads". We must update the bp's notion of which thread
587 it is for, or it'll be ignored when it triggers. */
588
8358c15c
JK
589 if (tp->control.step_resume_breakpoint)
590 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 591
186c406b
TT
592 if (tp->control.exception_resume_breakpoint)
593 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
594
6604731b
DJ
595 /* Reinsert all breakpoints in the child. The user may have set
596 breakpoints after catching the fork, in which case those
597 were never set in the child, but only in the parent. This makes
598 sure the inserted breakpoints match the breakpoint list. */
599
600 breakpoint_re_set ();
601 insert_breakpoints ();
c906108c 602}
c906108c 603
6c95b8df
PA
604/* The child has exited or execed: resume threads of the parent the
605 user wanted to be executing. */
606
607static int
608proceed_after_vfork_done (struct thread_info *thread,
609 void *arg)
610{
611 int pid = * (int *) arg;
612
613 if (ptid_get_pid (thread->ptid) == pid
614 && is_running (thread->ptid)
615 && !is_executing (thread->ptid)
616 && !thread->stop_requested
a493e3e2 617 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
618 {
619 if (debug_infrun)
620 fprintf_unfiltered (gdb_stdlog,
621 "infrun: resuming vfork parent thread %s\n",
622 target_pid_to_str (thread->ptid));
623
624 switch_to_thread (thread->ptid);
625 clear_proceed_status ();
a493e3e2 626 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
627 }
628
629 return 0;
630}
631
632/* Called whenever we notice an exec or exit event, to handle
633 detaching or resuming a vfork parent. */
634
635static void
636handle_vfork_child_exec_or_exit (int exec)
637{
638 struct inferior *inf = current_inferior ();
639
640 if (inf->vfork_parent)
641 {
642 int resume_parent = -1;
643
644 /* This exec or exit marks the end of the shared memory region
645 between the parent and the child. If the user wanted to
646 detach from the parent, now is the time. */
647
648 if (inf->vfork_parent->pending_detach)
649 {
650 struct thread_info *tp;
651 struct cleanup *old_chain;
652 struct program_space *pspace;
653 struct address_space *aspace;
654
1777feb0 655 /* follow-fork child, detach-on-fork on. */
6c95b8df 656
68c9da30
PA
657 inf->vfork_parent->pending_detach = 0;
658
f50f4e56
PA
659 if (!exec)
660 {
661 /* If we're handling a child exit, then inferior_ptid
662 points at the inferior's pid, not to a thread. */
663 old_chain = save_inferior_ptid ();
664 save_current_program_space ();
665 save_current_inferior ();
666 }
667 else
668 old_chain = save_current_space_and_thread ();
6c95b8df
PA
669
670 /* We're letting loose of the parent. */
671 tp = any_live_thread_of_process (inf->vfork_parent->pid);
672 switch_to_thread (tp->ptid);
673
674 /* We're about to detach from the parent, which implicitly
675 removes breakpoints from its address space. There's a
676 catch here: we want to reuse the spaces for the child,
677 but, parent/child are still sharing the pspace at this
678 point, although the exec in reality makes the kernel give
679 the child a fresh set of new pages. The problem here is
680 that the breakpoints module being unaware of this, would
681 likely chose the child process to write to the parent
682 address space. Swapping the child temporarily away from
683 the spaces has the desired effect. Yes, this is "sort
684 of" a hack. */
685
686 pspace = inf->pspace;
687 aspace = inf->aspace;
688 inf->aspace = NULL;
689 inf->pspace = NULL;
690
691 if (debug_infrun || info_verbose)
692 {
693 target_terminal_ours ();
694
695 if (exec)
696 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
697 "Detaching vfork parent process "
698 "%d after child exec.\n",
6c95b8df
PA
699 inf->vfork_parent->pid);
700 else
701 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
702 "Detaching vfork parent process "
703 "%d after child exit.\n",
6c95b8df
PA
704 inf->vfork_parent->pid);
705 }
706
707 target_detach (NULL, 0);
708
709 /* Put it back. */
710 inf->pspace = pspace;
711 inf->aspace = aspace;
712
713 do_cleanups (old_chain);
714 }
715 else if (exec)
716 {
717 /* We're staying attached to the parent, so, really give the
718 child a new address space. */
719 inf->pspace = add_program_space (maybe_new_address_space ());
720 inf->aspace = inf->pspace->aspace;
721 inf->removable = 1;
722 set_current_program_space (inf->pspace);
723
724 resume_parent = inf->vfork_parent->pid;
725
726 /* Break the bonds. */
727 inf->vfork_parent->vfork_child = NULL;
728 }
729 else
730 {
731 struct cleanup *old_chain;
732 struct program_space *pspace;
733
734 /* If this is a vfork child exiting, then the pspace and
735 aspaces were shared with the parent. Since we're
736 reporting the process exit, we'll be mourning all that is
737 found in the address space, and switching to null_ptid,
738 preparing to start a new inferior. But, since we don't
739 want to clobber the parent's address/program spaces, we
740 go ahead and create a new one for this exiting
741 inferior. */
742
743 /* Switch to null_ptid, so that clone_program_space doesn't want
744 to read the selected frame of a dead process. */
745 old_chain = save_inferior_ptid ();
746 inferior_ptid = null_ptid;
747
748 /* This inferior is dead, so avoid giving the breakpoints
749 module the option to write through to it (cloning a
750 program space resets breakpoints). */
751 inf->aspace = NULL;
752 inf->pspace = NULL;
753 pspace = add_program_space (maybe_new_address_space ());
754 set_current_program_space (pspace);
755 inf->removable = 1;
7dcd53a0 756 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
757 clone_program_space (pspace, inf->vfork_parent->pspace);
758 inf->pspace = pspace;
759 inf->aspace = pspace->aspace;
760
761 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 762 inferior. */
6c95b8df
PA
763 do_cleanups (old_chain);
764
765 resume_parent = inf->vfork_parent->pid;
766 /* Break the bonds. */
767 inf->vfork_parent->vfork_child = NULL;
768 }
769
770 inf->vfork_parent = NULL;
771
772 gdb_assert (current_program_space == inf->pspace);
773
774 if (non_stop && resume_parent != -1)
775 {
776 /* If the user wanted the parent to be running, let it go
777 free now. */
778 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
779
780 if (debug_infrun)
3e43a32a
MS
781 fprintf_unfiltered (gdb_stdlog,
782 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
783 resume_parent);
784
785 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
786
787 do_cleanups (old_chain);
788 }
789 }
790}
791
eb6c553b 792/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
793
794static const char follow_exec_mode_new[] = "new";
795static const char follow_exec_mode_same[] = "same";
40478521 796static const char *const follow_exec_mode_names[] =
6c95b8df
PA
797{
798 follow_exec_mode_new,
799 follow_exec_mode_same,
800 NULL,
801};
802
803static const char *follow_exec_mode_string = follow_exec_mode_same;
804static void
805show_follow_exec_mode_string (struct ui_file *file, int from_tty,
806 struct cmd_list_element *c, const char *value)
807{
808 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
809}
810
1777feb0 811/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 812
c906108c 813static void
3a3e9ee3 814follow_exec (ptid_t pid, char *execd_pathname)
c906108c 815{
4e1c45ea 816 struct thread_info *th = inferior_thread ();
6c95b8df 817 struct inferior *inf = current_inferior ();
7a292a7a 818
c906108c
SS
819 /* This is an exec event that we actually wish to pay attention to.
820 Refresh our symbol table to the newly exec'd program, remove any
821 momentary bp's, etc.
822
823 If there are breakpoints, they aren't really inserted now,
824 since the exec() transformed our inferior into a fresh set
825 of instructions.
826
827 We want to preserve symbolic breakpoints on the list, since
828 we have hopes that they can be reset after the new a.out's
829 symbol table is read.
830
831 However, any "raw" breakpoints must be removed from the list
832 (e.g., the solib bp's), since their address is probably invalid
833 now.
834
835 And, we DON'T want to call delete_breakpoints() here, since
836 that may write the bp's "shadow contents" (the instruction
837 value that was overwritten witha TRAP instruction). Since
1777feb0 838 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
839
840 mark_breakpoints_out ();
841
c906108c
SS
842 update_breakpoints_after_exec ();
843
844 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 845 statement through an exec(). */
8358c15c 846 th->control.step_resume_breakpoint = NULL;
186c406b 847 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
848 th->control.step_range_start = 0;
849 th->control.step_range_end = 0;
c906108c 850
a75724bc
PA
851 /* The target reports the exec event to the main thread, even if
852 some other thread does the exec, and even if the main thread was
853 already stopped --- if debugging in non-stop mode, it's possible
854 the user had the main thread held stopped in the previous image
855 --- release it now. This is the same behavior as step-over-exec
856 with scheduler-locking on in all-stop mode. */
857 th->stop_requested = 0;
858
1777feb0 859 /* What is this a.out's name? */
6c95b8df
PA
860 printf_unfiltered (_("%s is executing new program: %s\n"),
861 target_pid_to_str (inferior_ptid),
862 execd_pathname);
c906108c
SS
863
864 /* We've followed the inferior through an exec. Therefore, the
1777feb0 865 inferior has essentially been killed & reborn. */
7a292a7a 866
c906108c 867 gdb_flush (gdb_stdout);
6ca15a4b
PA
868
869 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
870
871 if (gdb_sysroot && *gdb_sysroot)
872 {
873 char *name = alloca (strlen (gdb_sysroot)
874 + strlen (execd_pathname)
875 + 1);
abbb1732 876
e85a822c
DJ
877 strcpy (name, gdb_sysroot);
878 strcat (name, execd_pathname);
879 execd_pathname = name;
880 }
c906108c 881
cce9b6bf
PA
882 /* Reset the shared library package. This ensures that we get a
883 shlib event when the child reaches "_start", at which point the
884 dld will have had a chance to initialize the child. */
885 /* Also, loading a symbol file below may trigger symbol lookups, and
886 we don't want those to be satisfied by the libraries of the
887 previous incarnation of this process. */
888 no_shared_libraries (NULL, 0);
889
6c95b8df
PA
890 if (follow_exec_mode_string == follow_exec_mode_new)
891 {
892 struct program_space *pspace;
6c95b8df
PA
893
894 /* The user wants to keep the old inferior and program spaces
895 around. Create a new fresh one, and switch to it. */
896
897 inf = add_inferior (current_inferior ()->pid);
898 pspace = add_program_space (maybe_new_address_space ());
899 inf->pspace = pspace;
900 inf->aspace = pspace->aspace;
901
902 exit_inferior_num_silent (current_inferior ()->num);
903
904 set_current_inferior (inf);
905 set_current_program_space (pspace);
906 }
9107fc8d
PA
907 else
908 {
909 /* The old description may no longer be fit for the new image.
910 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
911 old description; we'll read a new one below. No need to do
912 this on "follow-exec-mode new", as the old inferior stays
913 around (its description is later cleared/refetched on
914 restart). */
915 target_clear_description ();
916 }
6c95b8df
PA
917
918 gdb_assert (current_program_space == inf->pspace);
919
1777feb0 920 /* That a.out is now the one to use. */
6c95b8df
PA
921 exec_file_attach (execd_pathname, 0);
922
c1e56572
JK
923 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
924 (Position Independent Executable) main symbol file will get applied by
925 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
926 the breakpoints with the zero displacement. */
927
7dcd53a0
TT
928 symbol_file_add (execd_pathname,
929 (inf->symfile_flags
930 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
931 NULL, 0);
932
7dcd53a0
TT
933 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
934 set_initial_language ();
c906108c 935
9107fc8d
PA
936 /* If the target can specify a description, read it. Must do this
937 after flipping to the new executable (because the target supplied
938 description must be compatible with the executable's
939 architecture, and the old executable may e.g., be 32-bit, while
940 the new one 64-bit), and before anything involving memory or
941 registers. */
942 target_find_description ();
943
268a4a75 944 solib_create_inferior_hook (0);
c906108c 945
4efc6507
DE
946 jit_inferior_created_hook ();
947
c1e56572
JK
948 breakpoint_re_set ();
949
c906108c
SS
950 /* Reinsert all breakpoints. (Those which were symbolic have
951 been reset to the proper address in the new a.out, thanks
1777feb0 952 to symbol_file_command...). */
c906108c
SS
953 insert_breakpoints ();
954
955 /* The next resume of this inferior should bring it to the shlib
956 startup breakpoints. (If the user had also set bp's on
957 "main" from the old (parent) process, then they'll auto-
1777feb0 958 matically get reset there in the new process.). */
c906108c
SS
959}
960
961/* Non-zero if we just simulating a single-step. This is needed
962 because we cannot remove the breakpoints in the inferior process
963 until after the `wait' in `wait_for_inferior'. */
964static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
965
966/* The thread we inserted single-step breakpoints for. */
967static ptid_t singlestep_ptid;
968
fd48f117
DJ
969/* PC when we started this single-step. */
970static CORE_ADDR singlestep_pc;
971
9f976b41
DJ
972/* If another thread hit the singlestep breakpoint, we save the original
973 thread here so that we can resume single-stepping it later. */
974static ptid_t saved_singlestep_ptid;
975static int stepping_past_singlestep_breakpoint;
6a6b96b9 976
ca67fcb8
VP
977/* If not equal to null_ptid, this means that after stepping over breakpoint
978 is finished, we need to switch to deferred_step_ptid, and step it.
979
980 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 981 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
982 breakpoint in the thread which hit the breakpoint, but then continue
983 stepping the thread user has selected. */
984static ptid_t deferred_step_ptid;
c906108c 985\f
237fc4c9
PA
986/* Displaced stepping. */
987
988/* In non-stop debugging mode, we must take special care to manage
989 breakpoints properly; in particular, the traditional strategy for
990 stepping a thread past a breakpoint it has hit is unsuitable.
991 'Displaced stepping' is a tactic for stepping one thread past a
992 breakpoint it has hit while ensuring that other threads running
993 concurrently will hit the breakpoint as they should.
994
995 The traditional way to step a thread T off a breakpoint in a
996 multi-threaded program in all-stop mode is as follows:
997
998 a0) Initially, all threads are stopped, and breakpoints are not
999 inserted.
1000 a1) We single-step T, leaving breakpoints uninserted.
1001 a2) We insert breakpoints, and resume all threads.
1002
1003 In non-stop debugging, however, this strategy is unsuitable: we
1004 don't want to have to stop all threads in the system in order to
1005 continue or step T past a breakpoint. Instead, we use displaced
1006 stepping:
1007
1008 n0) Initially, T is stopped, other threads are running, and
1009 breakpoints are inserted.
1010 n1) We copy the instruction "under" the breakpoint to a separate
1011 location, outside the main code stream, making any adjustments
1012 to the instruction, register, and memory state as directed by
1013 T's architecture.
1014 n2) We single-step T over the instruction at its new location.
1015 n3) We adjust the resulting register and memory state as directed
1016 by T's architecture. This includes resetting T's PC to point
1017 back into the main instruction stream.
1018 n4) We resume T.
1019
1020 This approach depends on the following gdbarch methods:
1021
1022 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1023 indicate where to copy the instruction, and how much space must
1024 be reserved there. We use these in step n1.
1025
1026 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1027 address, and makes any necessary adjustments to the instruction,
1028 register contents, and memory. We use this in step n1.
1029
1030 - gdbarch_displaced_step_fixup adjusts registers and memory after
1031 we have successfuly single-stepped the instruction, to yield the
1032 same effect the instruction would have had if we had executed it
1033 at its original address. We use this in step n3.
1034
1035 - gdbarch_displaced_step_free_closure provides cleanup.
1036
1037 The gdbarch_displaced_step_copy_insn and
1038 gdbarch_displaced_step_fixup functions must be written so that
1039 copying an instruction with gdbarch_displaced_step_copy_insn,
1040 single-stepping across the copied instruction, and then applying
1041 gdbarch_displaced_insn_fixup should have the same effects on the
1042 thread's memory and registers as stepping the instruction in place
1043 would have. Exactly which responsibilities fall to the copy and
1044 which fall to the fixup is up to the author of those functions.
1045
1046 See the comments in gdbarch.sh for details.
1047
1048 Note that displaced stepping and software single-step cannot
1049 currently be used in combination, although with some care I think
1050 they could be made to. Software single-step works by placing
1051 breakpoints on all possible subsequent instructions; if the
1052 displaced instruction is a PC-relative jump, those breakpoints
1053 could fall in very strange places --- on pages that aren't
1054 executable, or at addresses that are not proper instruction
1055 boundaries. (We do generally let other threads run while we wait
1056 to hit the software single-step breakpoint, and they might
1057 encounter such a corrupted instruction.) One way to work around
1058 this would be to have gdbarch_displaced_step_copy_insn fully
1059 simulate the effect of PC-relative instructions (and return NULL)
1060 on architectures that use software single-stepping.
1061
1062 In non-stop mode, we can have independent and simultaneous step
1063 requests, so more than one thread may need to simultaneously step
1064 over a breakpoint. The current implementation assumes there is
1065 only one scratch space per process. In this case, we have to
1066 serialize access to the scratch space. If thread A wants to step
1067 over a breakpoint, but we are currently waiting for some other
1068 thread to complete a displaced step, we leave thread A stopped and
1069 place it in the displaced_step_request_queue. Whenever a displaced
1070 step finishes, we pick the next thread in the queue and start a new
1071 displaced step operation on it. See displaced_step_prepare and
1072 displaced_step_fixup for details. */
1073
237fc4c9
PA
1074struct displaced_step_request
1075{
1076 ptid_t ptid;
1077 struct displaced_step_request *next;
1078};
1079
fc1cf338
PA
1080/* Per-inferior displaced stepping state. */
1081struct displaced_step_inferior_state
1082{
1083 /* Pointer to next in linked list. */
1084 struct displaced_step_inferior_state *next;
1085
1086 /* The process this displaced step state refers to. */
1087 int pid;
1088
1089 /* A queue of pending displaced stepping requests. One entry per
1090 thread that needs to do a displaced step. */
1091 struct displaced_step_request *step_request_queue;
1092
1093 /* If this is not null_ptid, this is the thread carrying out a
1094 displaced single-step in process PID. This thread's state will
1095 require fixing up once it has completed its step. */
1096 ptid_t step_ptid;
1097
1098 /* The architecture the thread had when we stepped it. */
1099 struct gdbarch *step_gdbarch;
1100
1101 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1102 for post-step cleanup. */
1103 struct displaced_step_closure *step_closure;
1104
1105 /* The address of the original instruction, and the copy we
1106 made. */
1107 CORE_ADDR step_original, step_copy;
1108
1109 /* Saved contents of copy area. */
1110 gdb_byte *step_saved_copy;
1111};
1112
1113/* The list of states of processes involved in displaced stepping
1114 presently. */
1115static struct displaced_step_inferior_state *displaced_step_inferior_states;
1116
1117/* Get the displaced stepping state of process PID. */
1118
1119static struct displaced_step_inferior_state *
1120get_displaced_stepping_state (int pid)
1121{
1122 struct displaced_step_inferior_state *state;
1123
1124 for (state = displaced_step_inferior_states;
1125 state != NULL;
1126 state = state->next)
1127 if (state->pid == pid)
1128 return state;
1129
1130 return NULL;
1131}
1132
1133/* Add a new displaced stepping state for process PID to the displaced
1134 stepping state list, or return a pointer to an already existing
1135 entry, if it already exists. Never returns NULL. */
1136
1137static struct displaced_step_inferior_state *
1138add_displaced_stepping_state (int pid)
1139{
1140 struct displaced_step_inferior_state *state;
1141
1142 for (state = displaced_step_inferior_states;
1143 state != NULL;
1144 state = state->next)
1145 if (state->pid == pid)
1146 return state;
237fc4c9 1147
fc1cf338
PA
1148 state = xcalloc (1, sizeof (*state));
1149 state->pid = pid;
1150 state->next = displaced_step_inferior_states;
1151 displaced_step_inferior_states = state;
237fc4c9 1152
fc1cf338
PA
1153 return state;
1154}
1155
a42244db
YQ
1156/* If inferior is in displaced stepping, and ADDR equals to starting address
1157 of copy area, return corresponding displaced_step_closure. Otherwise,
1158 return NULL. */
1159
1160struct displaced_step_closure*
1161get_displaced_step_closure_by_addr (CORE_ADDR addr)
1162{
1163 struct displaced_step_inferior_state *displaced
1164 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1165
1166 /* If checking the mode of displaced instruction in copy area. */
1167 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1168 && (displaced->step_copy == addr))
1169 return displaced->step_closure;
1170
1171 return NULL;
1172}
1173
fc1cf338 1174/* Remove the displaced stepping state of process PID. */
237fc4c9 1175
fc1cf338
PA
1176static void
1177remove_displaced_stepping_state (int pid)
1178{
1179 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1180
fc1cf338
PA
1181 gdb_assert (pid != 0);
1182
1183 it = displaced_step_inferior_states;
1184 prev_next_p = &displaced_step_inferior_states;
1185 while (it)
1186 {
1187 if (it->pid == pid)
1188 {
1189 *prev_next_p = it->next;
1190 xfree (it);
1191 return;
1192 }
1193
1194 prev_next_p = &it->next;
1195 it = *prev_next_p;
1196 }
1197}
1198
1199static void
1200infrun_inferior_exit (struct inferior *inf)
1201{
1202 remove_displaced_stepping_state (inf->pid);
1203}
237fc4c9 1204
fff08868
HZ
1205/* If ON, and the architecture supports it, GDB will use displaced
1206 stepping to step over breakpoints. If OFF, or if the architecture
1207 doesn't support it, GDB will instead use the traditional
1208 hold-and-step approach. If AUTO (which is the default), GDB will
1209 decide which technique to use to step over breakpoints depending on
1210 which of all-stop or non-stop mode is active --- displaced stepping
1211 in non-stop mode; hold-and-step in all-stop mode. */
1212
72d0e2c5 1213static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1214
237fc4c9
PA
1215static void
1216show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1217 struct cmd_list_element *c,
1218 const char *value)
1219{
72d0e2c5 1220 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1221 fprintf_filtered (file,
1222 _("Debugger's willingness to use displaced stepping "
1223 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1224 value, non_stop ? "on" : "off");
1225 else
3e43a32a
MS
1226 fprintf_filtered (file,
1227 _("Debugger's willingness to use displaced stepping "
1228 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1229}
1230
fff08868
HZ
1231/* Return non-zero if displaced stepping can/should be used to step
1232 over breakpoints. */
1233
237fc4c9
PA
1234static int
1235use_displaced_stepping (struct gdbarch *gdbarch)
1236{
72d0e2c5
YQ
1237 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1238 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1239 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1240 && !RECORD_IS_USED);
237fc4c9
PA
1241}
1242
1243/* Clean out any stray displaced stepping state. */
1244static void
fc1cf338 1245displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1246{
1247 /* Indicate that there is no cleanup pending. */
fc1cf338 1248 displaced->step_ptid = null_ptid;
237fc4c9 1249
fc1cf338 1250 if (displaced->step_closure)
237fc4c9 1251 {
fc1cf338
PA
1252 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1253 displaced->step_closure);
1254 displaced->step_closure = NULL;
237fc4c9
PA
1255 }
1256}
1257
1258static void
fc1cf338 1259displaced_step_clear_cleanup (void *arg)
237fc4c9 1260{
fc1cf338
PA
1261 struct displaced_step_inferior_state *state = arg;
1262
1263 displaced_step_clear (state);
237fc4c9
PA
1264}
1265
1266/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1267void
1268displaced_step_dump_bytes (struct ui_file *file,
1269 const gdb_byte *buf,
1270 size_t len)
1271{
1272 int i;
1273
1274 for (i = 0; i < len; i++)
1275 fprintf_unfiltered (file, "%02x ", buf[i]);
1276 fputs_unfiltered ("\n", file);
1277}
1278
1279/* Prepare to single-step, using displaced stepping.
1280
1281 Note that we cannot use displaced stepping when we have a signal to
1282 deliver. If we have a signal to deliver and an instruction to step
1283 over, then after the step, there will be no indication from the
1284 target whether the thread entered a signal handler or ignored the
1285 signal and stepped over the instruction successfully --- both cases
1286 result in a simple SIGTRAP. In the first case we mustn't do a
1287 fixup, and in the second case we must --- but we can't tell which.
1288 Comments in the code for 'random signals' in handle_inferior_event
1289 explain how we handle this case instead.
1290
1291 Returns 1 if preparing was successful -- this thread is going to be
1292 stepped now; or 0 if displaced stepping this thread got queued. */
1293static int
1294displaced_step_prepare (ptid_t ptid)
1295{
ad53cd71 1296 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1297 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1298 struct regcache *regcache = get_thread_regcache (ptid);
1299 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1300 CORE_ADDR original, copy;
1301 ULONGEST len;
1302 struct displaced_step_closure *closure;
fc1cf338 1303 struct displaced_step_inferior_state *displaced;
9e529e1d 1304 int status;
237fc4c9
PA
1305
1306 /* We should never reach this function if the architecture does not
1307 support displaced stepping. */
1308 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1309
c1e36e3e
PA
1310 /* Disable range stepping while executing in the scratch pad. We
1311 want a single-step even if executing the displaced instruction in
1312 the scratch buffer lands within the stepping range (e.g., a
1313 jump/branch). */
1314 tp->control.may_range_step = 0;
1315
fc1cf338
PA
1316 /* We have to displaced step one thread at a time, as we only have
1317 access to a single scratch space per inferior. */
237fc4c9 1318
fc1cf338
PA
1319 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1320
1321 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1322 {
1323 /* Already waiting for a displaced step to finish. Defer this
1324 request and place in queue. */
1325 struct displaced_step_request *req, *new_req;
1326
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: defering step of %s\n",
1330 target_pid_to_str (ptid));
1331
1332 new_req = xmalloc (sizeof (*new_req));
1333 new_req->ptid = ptid;
1334 new_req->next = NULL;
1335
fc1cf338 1336 if (displaced->step_request_queue)
237fc4c9 1337 {
fc1cf338 1338 for (req = displaced->step_request_queue;
237fc4c9
PA
1339 req && req->next;
1340 req = req->next)
1341 ;
1342 req->next = new_req;
1343 }
1344 else
fc1cf338 1345 displaced->step_request_queue = new_req;
237fc4c9
PA
1346
1347 return 0;
1348 }
1349 else
1350 {
1351 if (debug_displaced)
1352 fprintf_unfiltered (gdb_stdlog,
1353 "displaced: stepping %s now\n",
1354 target_pid_to_str (ptid));
1355 }
1356
fc1cf338 1357 displaced_step_clear (displaced);
237fc4c9 1358
ad53cd71
PA
1359 old_cleanups = save_inferior_ptid ();
1360 inferior_ptid = ptid;
1361
515630c5 1362 original = regcache_read_pc (regcache);
237fc4c9
PA
1363
1364 copy = gdbarch_displaced_step_location (gdbarch);
1365 len = gdbarch_max_insn_length (gdbarch);
1366
1367 /* Save the original contents of the copy area. */
fc1cf338 1368 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1369 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1370 &displaced->step_saved_copy);
9e529e1d
JK
1371 status = target_read_memory (copy, displaced->step_saved_copy, len);
1372 if (status != 0)
1373 throw_error (MEMORY_ERROR,
1374 _("Error accessing memory address %s (%s) for "
1375 "displaced-stepping scratch space."),
1376 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1377 if (debug_displaced)
1378 {
5af949e3
UW
1379 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1380 paddress (gdbarch, copy));
fc1cf338
PA
1381 displaced_step_dump_bytes (gdb_stdlog,
1382 displaced->step_saved_copy,
1383 len);
237fc4c9
PA
1384 };
1385
1386 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1387 original, copy, regcache);
237fc4c9
PA
1388
1389 /* We don't support the fully-simulated case at present. */
1390 gdb_assert (closure);
1391
9f5a595d
UW
1392 /* Save the information we need to fix things up if the step
1393 succeeds. */
fc1cf338
PA
1394 displaced->step_ptid = ptid;
1395 displaced->step_gdbarch = gdbarch;
1396 displaced->step_closure = closure;
1397 displaced->step_original = original;
1398 displaced->step_copy = copy;
9f5a595d 1399
fc1cf338 1400 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1401
1402 /* Resume execution at the copy. */
515630c5 1403 regcache_write_pc (regcache, copy);
237fc4c9 1404
ad53cd71
PA
1405 discard_cleanups (ignore_cleanups);
1406
1407 do_cleanups (old_cleanups);
237fc4c9
PA
1408
1409 if (debug_displaced)
5af949e3
UW
1410 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1411 paddress (gdbarch, copy));
237fc4c9 1412
237fc4c9
PA
1413 return 1;
1414}
1415
237fc4c9 1416static void
3e43a32a
MS
1417write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1418 const gdb_byte *myaddr, int len)
237fc4c9
PA
1419{
1420 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1421
237fc4c9
PA
1422 inferior_ptid = ptid;
1423 write_memory (memaddr, myaddr, len);
1424 do_cleanups (ptid_cleanup);
1425}
1426
e2d96639
YQ
1427/* Restore the contents of the copy area for thread PTID. */
1428
1429static void
1430displaced_step_restore (struct displaced_step_inferior_state *displaced,
1431 ptid_t ptid)
1432{
1433 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1434
1435 write_memory_ptid (ptid, displaced->step_copy,
1436 displaced->step_saved_copy, len);
1437 if (debug_displaced)
1438 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1439 target_pid_to_str (ptid),
1440 paddress (displaced->step_gdbarch,
1441 displaced->step_copy));
1442}
1443
237fc4c9 1444static void
2ea28649 1445displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1446{
1447 struct cleanup *old_cleanups;
fc1cf338
PA
1448 struct displaced_step_inferior_state *displaced
1449 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1450
1451 /* Was any thread of this process doing a displaced step? */
1452 if (displaced == NULL)
1453 return;
237fc4c9
PA
1454
1455 /* Was this event for the pid we displaced? */
fc1cf338
PA
1456 if (ptid_equal (displaced->step_ptid, null_ptid)
1457 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1458 return;
1459
fc1cf338 1460 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1461
e2d96639 1462 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1463
1464 /* Did the instruction complete successfully? */
a493e3e2 1465 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1466 {
1467 /* Fix up the resulting state. */
fc1cf338
PA
1468 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1469 displaced->step_closure,
1470 displaced->step_original,
1471 displaced->step_copy,
1472 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1473 }
1474 else
1475 {
1476 /* Since the instruction didn't complete, all we can do is
1477 relocate the PC. */
515630c5
UW
1478 struct regcache *regcache = get_thread_regcache (event_ptid);
1479 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1480
fc1cf338 1481 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1482 regcache_write_pc (regcache, pc);
237fc4c9
PA
1483 }
1484
1485 do_cleanups (old_cleanups);
1486
fc1cf338 1487 displaced->step_ptid = null_ptid;
1c5cfe86 1488
237fc4c9 1489 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1490 one now. Leave the state object around, since we're likely to
1491 need it again soon. */
1492 while (displaced->step_request_queue)
237fc4c9
PA
1493 {
1494 struct displaced_step_request *head;
1495 ptid_t ptid;
5af949e3 1496 struct regcache *regcache;
929dfd4f 1497 struct gdbarch *gdbarch;
1c5cfe86 1498 CORE_ADDR actual_pc;
6c95b8df 1499 struct address_space *aspace;
237fc4c9 1500
fc1cf338 1501 head = displaced->step_request_queue;
237fc4c9 1502 ptid = head->ptid;
fc1cf338 1503 displaced->step_request_queue = head->next;
237fc4c9
PA
1504 xfree (head);
1505
ad53cd71
PA
1506 context_switch (ptid);
1507
5af949e3
UW
1508 regcache = get_thread_regcache (ptid);
1509 actual_pc = regcache_read_pc (regcache);
6c95b8df 1510 aspace = get_regcache_aspace (regcache);
1c5cfe86 1511
6c95b8df 1512 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1513 {
1c5cfe86
PA
1514 if (debug_displaced)
1515 fprintf_unfiltered (gdb_stdlog,
1516 "displaced: stepping queued %s now\n",
1517 target_pid_to_str (ptid));
1518
1519 displaced_step_prepare (ptid);
1520
929dfd4f
JB
1521 gdbarch = get_regcache_arch (regcache);
1522
1c5cfe86
PA
1523 if (debug_displaced)
1524 {
929dfd4f 1525 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1526 gdb_byte buf[4];
1527
5af949e3
UW
1528 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1529 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1530 read_memory (actual_pc, buf, sizeof (buf));
1531 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1532 }
1533
fc1cf338
PA
1534 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1535 displaced->step_closure))
a493e3e2 1536 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1537 else
a493e3e2 1538 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1539
1540 /* Done, we're stepping a thread. */
1541 break;
ad53cd71 1542 }
1c5cfe86
PA
1543 else
1544 {
1545 int step;
1546 struct thread_info *tp = inferior_thread ();
1547
1548 /* The breakpoint we were sitting under has since been
1549 removed. */
16c381f0 1550 tp->control.trap_expected = 0;
1c5cfe86
PA
1551
1552 /* Go back to what we were trying to do. */
1553 step = currently_stepping (tp);
ad53cd71 1554
1c5cfe86 1555 if (debug_displaced)
3e43a32a 1556 fprintf_unfiltered (gdb_stdlog,
27d2932e 1557 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1558 target_pid_to_str (tp->ptid), step);
1559
a493e3e2
PA
1560 target_resume (ptid, step, GDB_SIGNAL_0);
1561 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1562
1563 /* This request was discarded. See if there's any other
1564 thread waiting for its turn. */
1565 }
237fc4c9
PA
1566 }
1567}
1568
5231c1fd
PA
1569/* Update global variables holding ptids to hold NEW_PTID if they were
1570 holding OLD_PTID. */
1571static void
1572infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1573{
1574 struct displaced_step_request *it;
fc1cf338 1575 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1576
1577 if (ptid_equal (inferior_ptid, old_ptid))
1578 inferior_ptid = new_ptid;
1579
1580 if (ptid_equal (singlestep_ptid, old_ptid))
1581 singlestep_ptid = new_ptid;
1582
5231c1fd
PA
1583 if (ptid_equal (deferred_step_ptid, old_ptid))
1584 deferred_step_ptid = new_ptid;
1585
fc1cf338
PA
1586 for (displaced = displaced_step_inferior_states;
1587 displaced;
1588 displaced = displaced->next)
1589 {
1590 if (ptid_equal (displaced->step_ptid, old_ptid))
1591 displaced->step_ptid = new_ptid;
1592
1593 for (it = displaced->step_request_queue; it; it = it->next)
1594 if (ptid_equal (it->ptid, old_ptid))
1595 it->ptid = new_ptid;
1596 }
5231c1fd
PA
1597}
1598
237fc4c9
PA
1599\f
1600/* Resuming. */
c906108c
SS
1601
1602/* Things to clean up if we QUIT out of resume (). */
c906108c 1603static void
74b7792f 1604resume_cleanups (void *ignore)
c906108c
SS
1605{
1606 normal_stop ();
1607}
1608
53904c9e
AC
1609static const char schedlock_off[] = "off";
1610static const char schedlock_on[] = "on";
1611static const char schedlock_step[] = "step";
40478521 1612static const char *const scheduler_enums[] = {
ef346e04
AC
1613 schedlock_off,
1614 schedlock_on,
1615 schedlock_step,
1616 NULL
1617};
920d2a44
AC
1618static const char *scheduler_mode = schedlock_off;
1619static void
1620show_scheduler_mode (struct ui_file *file, int from_tty,
1621 struct cmd_list_element *c, const char *value)
1622{
3e43a32a
MS
1623 fprintf_filtered (file,
1624 _("Mode for locking scheduler "
1625 "during execution is \"%s\".\n"),
920d2a44
AC
1626 value);
1627}
c906108c
SS
1628
1629static void
96baa820 1630set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1631{
eefe576e
AC
1632 if (!target_can_lock_scheduler)
1633 {
1634 scheduler_mode = schedlock_off;
1635 error (_("Target '%s' cannot support this command."), target_shortname);
1636 }
c906108c
SS
1637}
1638
d4db2f36
PA
1639/* True if execution commands resume all threads of all processes by
1640 default; otherwise, resume only threads of the current inferior
1641 process. */
1642int sched_multi = 0;
1643
2facfe5c
DD
1644/* Try to setup for software single stepping over the specified location.
1645 Return 1 if target_resume() should use hardware single step.
1646
1647 GDBARCH the current gdbarch.
1648 PC the location to step over. */
1649
1650static int
1651maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1652{
1653 int hw_step = 1;
1654
f02253f1
HZ
1655 if (execution_direction == EXEC_FORWARD
1656 && gdbarch_software_single_step_p (gdbarch)
99e40580 1657 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1658 {
99e40580
UW
1659 hw_step = 0;
1660 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1661 `wait_for_inferior'. */
99e40580
UW
1662 singlestep_breakpoints_inserted_p = 1;
1663 singlestep_ptid = inferior_ptid;
1664 singlestep_pc = pc;
2facfe5c
DD
1665 }
1666 return hw_step;
1667}
c906108c 1668
09cee04b
PA
1669/* Return a ptid representing the set of threads that we will proceed,
1670 in the perspective of the user/frontend. We may actually resume
1671 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1672 breakpoint that needs stepping-off, but that should not be visible
1673 to the user/frontend, and neither should the frontend/user be
1674 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1675 internal run control handling, if a previous command wanted them
1676 resumed. */
1677
1678ptid_t
1679user_visible_resume_ptid (int step)
1680{
1681 /* By default, resume all threads of all processes. */
1682 ptid_t resume_ptid = RESUME_ALL;
1683
1684 /* Maybe resume only all threads of the current process. */
1685 if (!sched_multi && target_supports_multi_process ())
1686 {
1687 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1688 }
1689
1690 /* Maybe resume a single thread after all. */
1691 if (non_stop)
1692 {
1693 /* With non-stop mode on, threads are always handled
1694 individually. */
1695 resume_ptid = inferior_ptid;
1696 }
1697 else if ((scheduler_mode == schedlock_on)
1698 || (scheduler_mode == schedlock_step
1699 && (step || singlestep_breakpoints_inserted_p)))
1700 {
1701 /* User-settable 'scheduler' mode requires solo thread resume. */
1702 resume_ptid = inferior_ptid;
1703 }
1704
1705 return resume_ptid;
1706}
1707
c906108c
SS
1708/* Resume the inferior, but allow a QUIT. This is useful if the user
1709 wants to interrupt some lengthy single-stepping operation
1710 (for child processes, the SIGINT goes to the inferior, and so
1711 we get a SIGINT random_signal, but for remote debugging and perhaps
1712 other targets, that's not true).
1713
1714 STEP nonzero if we should step (zero to continue instead).
1715 SIG is the signal to give the inferior (zero for none). */
1716void
2ea28649 1717resume (int step, enum gdb_signal sig)
c906108c
SS
1718{
1719 int should_resume = 1;
74b7792f 1720 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1721 struct regcache *regcache = get_current_regcache ();
1722 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1723 struct thread_info *tp = inferior_thread ();
515630c5 1724 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1725 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1726
c906108c
SS
1727 QUIT;
1728
74609e71
YQ
1729 if (current_inferior ()->waiting_for_vfork_done)
1730 {
48f9886d
PA
1731 /* Don't try to single-step a vfork parent that is waiting for
1732 the child to get out of the shared memory region (by exec'ing
1733 or exiting). This is particularly important on software
1734 single-step archs, as the child process would trip on the
1735 software single step breakpoint inserted for the parent
1736 process. Since the parent will not actually execute any
1737 instruction until the child is out of the shared region (such
1738 are vfork's semantics), it is safe to simply continue it.
1739 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1740 the parent, and tell it to `keep_going', which automatically
1741 re-sets it stepping. */
74609e71
YQ
1742 if (debug_infrun)
1743 fprintf_unfiltered (gdb_stdlog,
1744 "infrun: resume : clear step\n");
1745 step = 0;
1746 }
1747
527159b7 1748 if (debug_infrun)
237fc4c9
PA
1749 fprintf_unfiltered (gdb_stdlog,
1750 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1751 "trap_expected=%d, current thread [%s] at %s\n",
1752 step, sig, tp->control.trap_expected,
1753 target_pid_to_str (inferior_ptid),
1754 paddress (gdbarch, pc));
c906108c 1755
c2c6d25f
JM
1756 /* Normally, by the time we reach `resume', the breakpoints are either
1757 removed or inserted, as appropriate. The exception is if we're sitting
1758 at a permanent breakpoint; we need to step over it, but permanent
1759 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1760 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1761 {
515630c5
UW
1762 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1763 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1764 else
ac74f770
MS
1765 error (_("\
1766The program is stopped at a permanent breakpoint, but GDB does not know\n\
1767how to step past a permanent breakpoint on this architecture. Try using\n\
1768a command like `return' or `jump' to continue execution."));
6d350bb5 1769 }
c2c6d25f 1770
c1e36e3e
PA
1771 /* If we have a breakpoint to step over, make sure to do a single
1772 step only. Same if we have software watchpoints. */
1773 if (tp->control.trap_expected || bpstat_should_step ())
1774 tp->control.may_range_step = 0;
1775
237fc4c9
PA
1776 /* If enabled, step over breakpoints by executing a copy of the
1777 instruction at a different address.
1778
1779 We can't use displaced stepping when we have a signal to deliver;
1780 the comments for displaced_step_prepare explain why. The
1781 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1782 signals' explain what we do instead.
1783
1784 We can't use displaced stepping when we are waiting for vfork_done
1785 event, displaced stepping breaks the vfork child similarly as single
1786 step software breakpoint. */
515630c5 1787 if (use_displaced_stepping (gdbarch)
16c381f0 1788 && (tp->control.trap_expected
929dfd4f 1789 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1790 && sig == GDB_SIGNAL_0
74609e71 1791 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1792 {
fc1cf338
PA
1793 struct displaced_step_inferior_state *displaced;
1794
237fc4c9 1795 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1796 {
1797 /* Got placed in displaced stepping queue. Will be resumed
1798 later when all the currently queued displaced stepping
7f7efbd9
VP
1799 requests finish. The thread is not executing at this point,
1800 and the call to set_executing will be made later. But we
1801 need to call set_running here, since from frontend point of view,
1802 the thread is running. */
1803 set_running (inferior_ptid, 1);
d56b7306
VP
1804 discard_cleanups (old_cleanups);
1805 return;
1806 }
99e40580 1807
ca7781d2
LM
1808 /* Update pc to reflect the new address from which we will execute
1809 instructions due to displaced stepping. */
1810 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1811
fc1cf338
PA
1812 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1813 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1814 displaced->step_closure);
237fc4c9
PA
1815 }
1816
2facfe5c 1817 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1818 else if (step)
2facfe5c 1819 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1820
30852783
UW
1821 /* Currently, our software single-step implementation leads to different
1822 results than hardware single-stepping in one situation: when stepping
1823 into delivering a signal which has an associated signal handler,
1824 hardware single-step will stop at the first instruction of the handler,
1825 while software single-step will simply skip execution of the handler.
1826
1827 For now, this difference in behavior is accepted since there is no
1828 easy way to actually implement single-stepping into a signal handler
1829 without kernel support.
1830
1831 However, there is one scenario where this difference leads to follow-on
1832 problems: if we're stepping off a breakpoint by removing all breakpoints
1833 and then single-stepping. In this case, the software single-step
1834 behavior means that even if there is a *breakpoint* in the signal
1835 handler, GDB still would not stop.
1836
1837 Fortunately, we can at least fix this particular issue. We detect
1838 here the case where we are about to deliver a signal while software
1839 single-stepping with breakpoints removed. In this situation, we
1840 revert the decisions to remove all breakpoints and insert single-
1841 step breakpoints, and instead we install a step-resume breakpoint
1842 at the current address, deliver the signal without stepping, and
1843 once we arrive back at the step-resume breakpoint, actually step
1844 over the breakpoint we originally wanted to step over. */
1845 if (singlestep_breakpoints_inserted_p
a493e3e2 1846 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1847 {
1848 /* If we have nested signals or a pending signal is delivered
1849 immediately after a handler returns, might might already have
1850 a step-resume breakpoint set on the earlier handler. We cannot
1851 set another step-resume breakpoint; just continue on until the
1852 original breakpoint is hit. */
1853 if (tp->control.step_resume_breakpoint == NULL)
1854 {
2c03e5be 1855 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1856 tp->step_after_step_resume_breakpoint = 1;
1857 }
1858
1859 remove_single_step_breakpoints ();
1860 singlestep_breakpoints_inserted_p = 0;
1861
1862 insert_breakpoints ();
1863 tp->control.trap_expected = 0;
1864 }
1865
c906108c
SS
1866 if (should_resume)
1867 {
39f77062 1868 ptid_t resume_ptid;
dfcd3bfb 1869
cd76b0b7
VP
1870 /* If STEP is set, it's a request to use hardware stepping
1871 facilities. But in that case, we should never
1872 use singlestep breakpoint. */
1873 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1874
d4db2f36
PA
1875 /* Decide the set of threads to ask the target to resume. Start
1876 by assuming everything will be resumed, than narrow the set
1877 by applying increasingly restricting conditions. */
09cee04b 1878 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1879
1880 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1881 if (singlestep_breakpoints_inserted_p
1882 && stepping_past_singlestep_breakpoint)
c906108c 1883 {
cd76b0b7
VP
1884 /* The situation here is as follows. In thread T1 we wanted to
1885 single-step. Lacking hardware single-stepping we've
1886 set breakpoint at the PC of the next instruction -- call it
1887 P. After resuming, we've hit that breakpoint in thread T2.
1888 Now we've removed original breakpoint, inserted breakpoint
1889 at P+1, and try to step to advance T2 past breakpoint.
1890 We need to step only T2, as if T1 is allowed to freely run,
1891 it can run past P, and if other threads are allowed to run,
1892 they can hit breakpoint at P+1, and nested hits of single-step
1893 breakpoints is not something we'd want -- that's complicated
1894 to support, and has no value. */
1895 resume_ptid = inferior_ptid;
1896 }
d4db2f36 1897 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1898 && tp->control.trap_expected)
cd76b0b7 1899 {
74960c60
VP
1900 /* We're allowing a thread to run past a breakpoint it has
1901 hit, by single-stepping the thread with the breakpoint
1902 removed. In which case, we need to single-step only this
1903 thread, and keep others stopped, as they can miss this
1904 breakpoint if allowed to run.
1905
1906 The current code actually removes all breakpoints when
1907 doing this, not just the one being stepped over, so if we
1908 let other threads run, we can actually miss any
1909 breakpoint, not just the one at PC. */
ef5cf84e 1910 resume_ptid = inferior_ptid;
c906108c 1911 }
ef5cf84e 1912
515630c5 1913 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1914 {
1915 /* Most targets can step a breakpoint instruction, thus
1916 executing it normally. But if this one cannot, just
1917 continue and we will hit it anyway. */
6c95b8df 1918 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1919 step = 0;
1920 }
237fc4c9
PA
1921
1922 if (debug_displaced
515630c5 1923 && use_displaced_stepping (gdbarch)
16c381f0 1924 && tp->control.trap_expected)
237fc4c9 1925 {
515630c5 1926 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1927 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1928 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1929 gdb_byte buf[4];
1930
5af949e3
UW
1931 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1932 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1933 read_memory (actual_pc, buf, sizeof (buf));
1934 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1935 }
1936
c1e36e3e
PA
1937 if (tp->control.may_range_step)
1938 {
1939 /* If we're resuming a thread with the PC out of the step
1940 range, then we're doing some nested/finer run control
1941 operation, like stepping the thread out of the dynamic
1942 linker or the displaced stepping scratch pad. We
1943 shouldn't have allowed a range step then. */
1944 gdb_assert (pc_in_thread_step_range (pc, tp));
1945 }
1946
e58b0e63
PA
1947 /* Install inferior's terminal modes. */
1948 target_terminal_inferior ();
1949
2020b7ab
PA
1950 /* Avoid confusing the next resume, if the next stop/resume
1951 happens to apply to another thread. */
a493e3e2 1952 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1953
2455069d
UW
1954 /* Advise target which signals may be handled silently. If we have
1955 removed breakpoints because we are stepping over one (which can
1956 happen only if we are not using displaced stepping), we need to
1957 receive all signals to avoid accidentally skipping a breakpoint
1958 during execution of a signal handler. */
1959 if ((step || singlestep_breakpoints_inserted_p)
1960 && tp->control.trap_expected
1961 && !use_displaced_stepping (gdbarch))
1962 target_pass_signals (0, NULL);
1963 else
a493e3e2 1964 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1965
607cecd2 1966 target_resume (resume_ptid, step, sig);
c906108c
SS
1967 }
1968
1969 discard_cleanups (old_cleanups);
1970}
1971\f
237fc4c9 1972/* Proceeding. */
c906108c
SS
1973
1974/* Clear out all variables saying what to do when inferior is continued.
1975 First do this, then set the ones you want, then call `proceed'. */
1976
a7212384
UW
1977static void
1978clear_proceed_status_thread (struct thread_info *tp)
c906108c 1979{
a7212384
UW
1980 if (debug_infrun)
1981 fprintf_unfiltered (gdb_stdlog,
1982 "infrun: clear_proceed_status_thread (%s)\n",
1983 target_pid_to_str (tp->ptid));
d6b48e9c 1984
16c381f0
JK
1985 tp->control.trap_expected = 0;
1986 tp->control.step_range_start = 0;
1987 tp->control.step_range_end = 0;
c1e36e3e 1988 tp->control.may_range_step = 0;
16c381f0
JK
1989 tp->control.step_frame_id = null_frame_id;
1990 tp->control.step_stack_frame_id = null_frame_id;
1991 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1992 tp->stop_requested = 0;
4e1c45ea 1993
16c381f0 1994 tp->control.stop_step = 0;
32400beb 1995
16c381f0 1996 tp->control.proceed_to_finish = 0;
414c69f7 1997
a7212384 1998 /* Discard any remaining commands or status from previous stop. */
16c381f0 1999 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2000}
32400beb 2001
a7212384
UW
2002static int
2003clear_proceed_status_callback (struct thread_info *tp, void *data)
2004{
2005 if (is_exited (tp->ptid))
2006 return 0;
d6b48e9c 2007
a7212384
UW
2008 clear_proceed_status_thread (tp);
2009 return 0;
2010}
2011
2012void
2013clear_proceed_status (void)
2014{
6c95b8df
PA
2015 if (!non_stop)
2016 {
2017 /* In all-stop mode, delete the per-thread status of all
2018 threads, even if inferior_ptid is null_ptid, there may be
2019 threads on the list. E.g., we may be launching a new
2020 process, while selecting the executable. */
2021 iterate_over_threads (clear_proceed_status_callback, NULL);
2022 }
2023
a7212384
UW
2024 if (!ptid_equal (inferior_ptid, null_ptid))
2025 {
2026 struct inferior *inferior;
2027
2028 if (non_stop)
2029 {
6c95b8df
PA
2030 /* If in non-stop mode, only delete the per-thread status of
2031 the current thread. */
a7212384
UW
2032 clear_proceed_status_thread (inferior_thread ());
2033 }
6c95b8df 2034
d6b48e9c 2035 inferior = current_inferior ();
16c381f0 2036 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2037 }
2038
c906108c 2039 stop_after_trap = 0;
f3b1572e
PA
2040
2041 observer_notify_about_to_proceed ();
c906108c 2042
d5c31457
UW
2043 if (stop_registers)
2044 {
2045 regcache_xfree (stop_registers);
2046 stop_registers = NULL;
2047 }
c906108c
SS
2048}
2049
5a437975
DE
2050/* Check the current thread against the thread that reported the most recent
2051 event. If a step-over is required return TRUE and set the current thread
2052 to the old thread. Otherwise return FALSE.
2053
1777feb0 2054 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2055
2056static int
6a6b96b9 2057prepare_to_proceed (int step)
ea67f13b
DJ
2058{
2059 ptid_t wait_ptid;
2060 struct target_waitstatus wait_status;
5a437975
DE
2061 int schedlock_enabled;
2062
2063 /* With non-stop mode on, threads are always handled individually. */
2064 gdb_assert (! non_stop);
ea67f13b
DJ
2065
2066 /* Get the last target status returned by target_wait(). */
2067 get_last_target_status (&wait_ptid, &wait_status);
2068
6a6b96b9 2069 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2070 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2071 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2072 && wait_status.value.sig != GDB_SIGNAL_ILL
2073 && wait_status.value.sig != GDB_SIGNAL_SEGV
2074 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2075 {
2076 return 0;
2077 }
2078
5a437975
DE
2079 schedlock_enabled = (scheduler_mode == schedlock_on
2080 || (scheduler_mode == schedlock_step
2081 && step));
2082
d4db2f36
PA
2083 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2084 if (schedlock_enabled)
2085 return 0;
2086
2087 /* Don't switch over if we're about to resume some other process
2088 other than WAIT_PTID's, and schedule-multiple is off. */
2089 if (!sched_multi
2090 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2091 return 0;
2092
6a6b96b9 2093 /* Switched over from WAIT_PID. */
ea67f13b 2094 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2095 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2096 {
515630c5
UW
2097 struct regcache *regcache = get_thread_regcache (wait_ptid);
2098
6c95b8df
PA
2099 if (breakpoint_here_p (get_regcache_aspace (regcache),
2100 regcache_read_pc (regcache)))
ea67f13b 2101 {
515630c5
UW
2102 /* If stepping, remember current thread to switch back to. */
2103 if (step)
2104 deferred_step_ptid = inferior_ptid;
ea67f13b 2105
515630c5
UW
2106 /* Switch back to WAIT_PID thread. */
2107 switch_to_thread (wait_ptid);
6a6b96b9 2108
0d9a9a5f
PA
2109 if (debug_infrun)
2110 fprintf_unfiltered (gdb_stdlog,
2111 "infrun: prepare_to_proceed (step=%d), "
2112 "switched to [%s]\n",
2113 step, target_pid_to_str (inferior_ptid));
2114
515630c5
UW
2115 /* We return 1 to indicate that there is a breakpoint here,
2116 so we need to step over it before continuing to avoid
1777feb0 2117 hitting it straight away. */
515630c5
UW
2118 return 1;
2119 }
ea67f13b
DJ
2120 }
2121
2122 return 0;
ea67f13b 2123}
e4846b08 2124
c906108c
SS
2125/* Basic routine for continuing the program in various fashions.
2126
2127 ADDR is the address to resume at, or -1 for resume where stopped.
2128 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2129 or -1 for act according to how it stopped.
c906108c 2130 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2131 -1 means return after that and print nothing.
2132 You should probably set various step_... variables
2133 before calling here, if you are stepping.
c906108c
SS
2134
2135 You should call clear_proceed_status before calling proceed. */
2136
2137void
2ea28649 2138proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2139{
e58b0e63
PA
2140 struct regcache *regcache;
2141 struct gdbarch *gdbarch;
4e1c45ea 2142 struct thread_info *tp;
e58b0e63 2143 CORE_ADDR pc;
6c95b8df 2144 struct address_space *aspace;
0de5618e
YQ
2145 /* GDB may force the inferior to step due to various reasons. */
2146 int force_step = 0;
c906108c 2147
e58b0e63
PA
2148 /* If we're stopped at a fork/vfork, follow the branch set by the
2149 "set follow-fork-mode" command; otherwise, we'll just proceed
2150 resuming the current thread. */
2151 if (!follow_fork ())
2152 {
2153 /* The target for some reason decided not to resume. */
2154 normal_stop ();
f148b27e
PA
2155 if (target_can_async_p ())
2156 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2157 return;
2158 }
2159
842951eb
PA
2160 /* We'll update this if & when we switch to a new thread. */
2161 previous_inferior_ptid = inferior_ptid;
2162
e58b0e63
PA
2163 regcache = get_current_regcache ();
2164 gdbarch = get_regcache_arch (regcache);
6c95b8df 2165 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2166 pc = regcache_read_pc (regcache);
2167
c906108c 2168 if (step > 0)
515630c5 2169 step_start_function = find_pc_function (pc);
c906108c
SS
2170 if (step < 0)
2171 stop_after_trap = 1;
2172
2acceee2 2173 if (addr == (CORE_ADDR) -1)
c906108c 2174 {
6c95b8df 2175 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2176 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2177 /* There is a breakpoint at the address we will resume at,
2178 step one instruction before inserting breakpoints so that
2179 we do not stop right away (and report a second hit at this
b2175913
MS
2180 breakpoint).
2181
2182 Note, we don't do this in reverse, because we won't
2183 actually be executing the breakpoint insn anyway.
2184 We'll be (un-)executing the previous instruction. */
2185
0de5618e 2186 force_step = 1;
515630c5
UW
2187 else if (gdbarch_single_step_through_delay_p (gdbarch)
2188 && gdbarch_single_step_through_delay (gdbarch,
2189 get_current_frame ()))
3352ef37
AC
2190 /* We stepped onto an instruction that needs to be stepped
2191 again before re-inserting the breakpoint, do so. */
0de5618e 2192 force_step = 1;
c906108c
SS
2193 }
2194 else
2195 {
515630c5 2196 regcache_write_pc (regcache, addr);
c906108c
SS
2197 }
2198
527159b7 2199 if (debug_infrun)
8a9de0e4 2200 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2201 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2202 paddress (gdbarch, addr), siggnal, step);
527159b7 2203
94cc34af
PA
2204 if (non_stop)
2205 /* In non-stop, each thread is handled individually. The context
2206 must already be set to the right thread here. */
2207 ;
2208 else
2209 {
2210 /* In a multi-threaded task we may select another thread and
2211 then continue or step.
c906108c 2212
94cc34af
PA
2213 But if the old thread was stopped at a breakpoint, it will
2214 immediately cause another breakpoint stop without any
2215 execution (i.e. it will report a breakpoint hit incorrectly).
2216 So we must step over it first.
c906108c 2217
94cc34af
PA
2218 prepare_to_proceed checks the current thread against the
2219 thread that reported the most recent event. If a step-over
2220 is required it returns TRUE and sets the current thread to
1777feb0 2221 the old thread. */
94cc34af 2222 if (prepare_to_proceed (step))
0de5618e 2223 force_step = 1;
94cc34af 2224 }
c906108c 2225
4e1c45ea
PA
2226 /* prepare_to_proceed may change the current thread. */
2227 tp = inferior_thread ();
2228
0de5618e 2229 if (force_step)
30852783
UW
2230 {
2231 tp->control.trap_expected = 1;
2232 /* If displaced stepping is enabled, we can step over the
2233 breakpoint without hitting it, so leave all breakpoints
2234 inserted. Otherwise we need to disable all breakpoints, step
2235 one instruction, and then re-add them when that step is
2236 finished. */
2237 if (!use_displaced_stepping (gdbarch))
2238 remove_breakpoints ();
2239 }
2240
2241 /* We can insert breakpoints if we're not trying to step over one,
2242 or if we are stepping over one but we're using displaced stepping
2243 to do so. */
2244 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2245 insert_breakpoints ();
2246
2020b7ab
PA
2247 if (!non_stop)
2248 {
2249 /* Pass the last stop signal to the thread we're resuming,
2250 irrespective of whether the current thread is the thread that
2251 got the last event or not. This was historically GDB's
2252 behaviour before keeping a stop_signal per thread. */
2253
2254 struct thread_info *last_thread;
2255 ptid_t last_ptid;
2256 struct target_waitstatus last_status;
2257
2258 get_last_target_status (&last_ptid, &last_status);
2259 if (!ptid_equal (inferior_ptid, last_ptid)
2260 && !ptid_equal (last_ptid, null_ptid)
2261 && !ptid_equal (last_ptid, minus_one_ptid))
2262 {
e09875d4 2263 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2264 if (last_thread)
2265 {
16c381f0 2266 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2267 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2268 }
2269 }
2270 }
2271
a493e3e2 2272 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2273 tp->suspend.stop_signal = siggnal;
c906108c
SS
2274 /* If this signal should not be seen by program,
2275 give it zero. Used for debugging signals. */
16c381f0 2276 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2277 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2278
2279 annotate_starting ();
2280
2281 /* Make sure that output from GDB appears before output from the
2282 inferior. */
2283 gdb_flush (gdb_stdout);
2284
e4846b08
JJ
2285 /* Refresh prev_pc value just prior to resuming. This used to be
2286 done in stop_stepping, however, setting prev_pc there did not handle
2287 scenarios such as inferior function calls or returning from
2288 a function via the return command. In those cases, the prev_pc
2289 value was not set properly for subsequent commands. The prev_pc value
2290 is used to initialize the starting line number in the ecs. With an
2291 invalid value, the gdb next command ends up stopping at the position
2292 represented by the next line table entry past our start position.
2293 On platforms that generate one line table entry per line, this
2294 is not a problem. However, on the ia64, the compiler generates
2295 extraneous line table entries that do not increase the line number.
2296 When we issue the gdb next command on the ia64 after an inferior call
2297 or a return command, we often end up a few instructions forward, still
2298 within the original line we started.
2299
d5cd6034
JB
2300 An attempt was made to refresh the prev_pc at the same time the
2301 execution_control_state is initialized (for instance, just before
2302 waiting for an inferior event). But this approach did not work
2303 because of platforms that use ptrace, where the pc register cannot
2304 be read unless the inferior is stopped. At that point, we are not
2305 guaranteed the inferior is stopped and so the regcache_read_pc() call
2306 can fail. Setting the prev_pc value here ensures the value is updated
2307 correctly when the inferior is stopped. */
4e1c45ea 2308 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2309
59f0d5d9 2310 /* Fill in with reasonable starting values. */
4e1c45ea 2311 init_thread_stepping_state (tp);
59f0d5d9 2312
59f0d5d9
PA
2313 /* Reset to normal state. */
2314 init_infwait_state ();
2315
c906108c 2316 /* Resume inferior. */
0de5618e
YQ
2317 resume (force_step || step || bpstat_should_step (),
2318 tp->suspend.stop_signal);
c906108c
SS
2319
2320 /* Wait for it to stop (if not standalone)
2321 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2322 /* Do this only if we are not using the event loop, or if the target
1777feb0 2323 does not support asynchronous execution. */
362646f5 2324 if (!target_can_async_p ())
43ff13b4 2325 {
e4c8541f 2326 wait_for_inferior ();
43ff13b4
JM
2327 normal_stop ();
2328 }
c906108c 2329}
c906108c
SS
2330\f
2331
2332/* Start remote-debugging of a machine over a serial link. */
96baa820 2333
c906108c 2334void
8621d6a9 2335start_remote (int from_tty)
c906108c 2336{
d6b48e9c 2337 struct inferior *inferior;
d6b48e9c
PA
2338
2339 inferior = current_inferior ();
16c381f0 2340 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2341
1777feb0 2342 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2343 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2344 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2345 nothing is returned (instead of just blocking). Because of this,
2346 targets expecting an immediate response need to, internally, set
2347 things up so that the target_wait() is forced to eventually
1777feb0 2348 timeout. */
6426a772
JM
2349 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2350 differentiate to its caller what the state of the target is after
2351 the initial open has been performed. Here we're assuming that
2352 the target has stopped. It should be possible to eventually have
2353 target_open() return to the caller an indication that the target
2354 is currently running and GDB state should be set to the same as
1777feb0 2355 for an async run. */
e4c8541f 2356 wait_for_inferior ();
8621d6a9
DJ
2357
2358 /* Now that the inferior has stopped, do any bookkeeping like
2359 loading shared libraries. We want to do this before normal_stop,
2360 so that the displayed frame is up to date. */
2361 post_create_inferior (&current_target, from_tty);
2362
6426a772 2363 normal_stop ();
c906108c
SS
2364}
2365
2366/* Initialize static vars when a new inferior begins. */
2367
2368void
96baa820 2369init_wait_for_inferior (void)
c906108c
SS
2370{
2371 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2372
c906108c
SS
2373 breakpoint_init_inferior (inf_starting);
2374
c906108c 2375 clear_proceed_status ();
9f976b41
DJ
2376
2377 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2378 deferred_step_ptid = null_ptid;
ca005067
DJ
2379
2380 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2381
842951eb 2382 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2383 init_infwait_state ();
2384
edb3359d
DJ
2385 /* Discard any skipped inlined frames. */
2386 clear_inline_frame_state (minus_one_ptid);
c906108c 2387}
237fc4c9 2388
c906108c 2389\f
b83266a0
SS
2390/* This enum encodes possible reasons for doing a target_wait, so that
2391 wfi can call target_wait in one place. (Ultimately the call will be
2392 moved out of the infinite loop entirely.) */
2393
c5aa993b
JM
2394enum infwait_states
2395{
cd0fc7c3
SS
2396 infwait_normal_state,
2397 infwait_thread_hop_state,
d983da9c 2398 infwait_step_watch_state,
cd0fc7c3 2399 infwait_nonstep_watch_state
b83266a0
SS
2400};
2401
0d1e5fa7
PA
2402/* The PTID we'll do a target_wait on.*/
2403ptid_t waiton_ptid;
2404
2405/* Current inferior wait state. */
8870954f 2406static enum infwait_states infwait_state;
cd0fc7c3 2407
0d1e5fa7
PA
2408/* Data to be passed around while handling an event. This data is
2409 discarded between events. */
c5aa993b 2410struct execution_control_state
488f131b 2411{
0d1e5fa7 2412 ptid_t ptid;
4e1c45ea
PA
2413 /* The thread that got the event, if this was a thread event; NULL
2414 otherwise. */
2415 struct thread_info *event_thread;
2416
488f131b 2417 struct target_waitstatus ws;
488f131b 2418 int random_signal;
7e324e48 2419 int stop_func_filled_in;
488f131b
JB
2420 CORE_ADDR stop_func_start;
2421 CORE_ADDR stop_func_end;
2c02bd72 2422 const char *stop_func_name;
488f131b
JB
2423 int wait_some_more;
2424};
2425
ec9499be 2426static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2427
568d6575
UW
2428static void handle_step_into_function (struct gdbarch *gdbarch,
2429 struct execution_control_state *ecs);
2430static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2431 struct execution_control_state *ecs);
186c406b 2432static void check_exception_resume (struct execution_control_state *,
28106bc2 2433 struct frame_info *);
611c83ae 2434
104c1213
JM
2435static void stop_stepping (struct execution_control_state *ecs);
2436static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2437static void keep_going (struct execution_control_state *ecs);
104c1213 2438
252fbfc8
PA
2439/* Callback for iterate over threads. If the thread is stopped, but
2440 the user/frontend doesn't know about that yet, go through
2441 normal_stop, as if the thread had just stopped now. ARG points at
2442 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2443 ptid_is_pid(PTID) is true, applies to all threads of the process
2444 pointed at by PTID. Otherwise, apply only to the thread pointed by
2445 PTID. */
2446
2447static int
2448infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2449{
2450 ptid_t ptid = * (ptid_t *) arg;
2451
2452 if ((ptid_equal (info->ptid, ptid)
2453 || ptid_equal (minus_one_ptid, ptid)
2454 || (ptid_is_pid (ptid)
2455 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2456 && is_running (info->ptid)
2457 && !is_executing (info->ptid))
2458 {
2459 struct cleanup *old_chain;
2460 struct execution_control_state ecss;
2461 struct execution_control_state *ecs = &ecss;
2462
2463 memset (ecs, 0, sizeof (*ecs));
2464
2465 old_chain = make_cleanup_restore_current_thread ();
2466
252fbfc8
PA
2467 /* Go through handle_inferior_event/normal_stop, so we always
2468 have consistent output as if the stop event had been
2469 reported. */
2470 ecs->ptid = info->ptid;
e09875d4 2471 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2472 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2473 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2474
2475 handle_inferior_event (ecs);
2476
2477 if (!ecs->wait_some_more)
2478 {
2479 struct thread_info *tp;
2480
2481 normal_stop ();
2482
fa4cd53f 2483 /* Finish off the continuations. */
252fbfc8 2484 tp = inferior_thread ();
fa4cd53f
PA
2485 do_all_intermediate_continuations_thread (tp, 1);
2486 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2487 }
2488
2489 do_cleanups (old_chain);
2490 }
2491
2492 return 0;
2493}
2494
2495/* This function is attached as a "thread_stop_requested" observer.
2496 Cleanup local state that assumed the PTID was to be resumed, and
2497 report the stop to the frontend. */
2498
2c0b251b 2499static void
252fbfc8
PA
2500infrun_thread_stop_requested (ptid_t ptid)
2501{
fc1cf338 2502 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2503
2504 /* PTID was requested to stop. Remove it from the displaced
2505 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2506
2507 for (displaced = displaced_step_inferior_states;
2508 displaced;
2509 displaced = displaced->next)
252fbfc8 2510 {
fc1cf338 2511 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2512
fc1cf338
PA
2513 it = displaced->step_request_queue;
2514 prev_next_p = &displaced->step_request_queue;
2515 while (it)
252fbfc8 2516 {
fc1cf338
PA
2517 if (ptid_match (it->ptid, ptid))
2518 {
2519 *prev_next_p = it->next;
2520 it->next = NULL;
2521 xfree (it);
2522 }
252fbfc8 2523 else
fc1cf338
PA
2524 {
2525 prev_next_p = &it->next;
2526 }
252fbfc8 2527
fc1cf338 2528 it = *prev_next_p;
252fbfc8 2529 }
252fbfc8
PA
2530 }
2531
2532 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2533}
2534
a07daef3
PA
2535static void
2536infrun_thread_thread_exit (struct thread_info *tp, int silent)
2537{
2538 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2539 nullify_last_target_wait_ptid ();
2540}
2541
4e1c45ea
PA
2542/* Callback for iterate_over_threads. */
2543
2544static int
2545delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2546{
2547 if (is_exited (info->ptid))
2548 return 0;
2549
2550 delete_step_resume_breakpoint (info);
186c406b 2551 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2552 return 0;
2553}
2554
2555/* In all-stop, delete the step resume breakpoint of any thread that
2556 had one. In non-stop, delete the step resume breakpoint of the
2557 thread that just stopped. */
2558
2559static void
2560delete_step_thread_step_resume_breakpoint (void)
2561{
2562 if (!target_has_execution
2563 || ptid_equal (inferior_ptid, null_ptid))
2564 /* If the inferior has exited, we have already deleted the step
2565 resume breakpoints out of GDB's lists. */
2566 return;
2567
2568 if (non_stop)
2569 {
2570 /* If in non-stop mode, only delete the step-resume or
2571 longjmp-resume breakpoint of the thread that just stopped
2572 stepping. */
2573 struct thread_info *tp = inferior_thread ();
abbb1732 2574
4e1c45ea 2575 delete_step_resume_breakpoint (tp);
186c406b 2576 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2577 }
2578 else
2579 /* In all-stop mode, delete all step-resume and longjmp-resume
2580 breakpoints of any thread that had them. */
2581 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2582}
2583
1777feb0 2584/* A cleanup wrapper. */
4e1c45ea
PA
2585
2586static void
2587delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2588{
2589 delete_step_thread_step_resume_breakpoint ();
2590}
2591
223698f8
DE
2592/* Pretty print the results of target_wait, for debugging purposes. */
2593
2594static void
2595print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2596 const struct target_waitstatus *ws)
2597{
2598 char *status_string = target_waitstatus_to_string (ws);
2599 struct ui_file *tmp_stream = mem_fileopen ();
2600 char *text;
223698f8
DE
2601
2602 /* The text is split over several lines because it was getting too long.
2603 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2604 output as a unit; we want only one timestamp printed if debug_timestamp
2605 is set. */
2606
2607 fprintf_unfiltered (tmp_stream,
2608 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2609 if (PIDGET (waiton_ptid) != -1)
2610 fprintf_unfiltered (tmp_stream,
2611 " [%s]", target_pid_to_str (waiton_ptid));
2612 fprintf_unfiltered (tmp_stream, ", status) =\n");
2613 fprintf_unfiltered (tmp_stream,
2614 "infrun: %d [%s],\n",
2615 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2616 fprintf_unfiltered (tmp_stream,
2617 "infrun: %s\n",
2618 status_string);
2619
759ef836 2620 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2621
2622 /* This uses %s in part to handle %'s in the text, but also to avoid
2623 a gcc error: the format attribute requires a string literal. */
2624 fprintf_unfiltered (gdb_stdlog, "%s", text);
2625
2626 xfree (status_string);
2627 xfree (text);
2628 ui_file_delete (tmp_stream);
2629}
2630
24291992
PA
2631/* Prepare and stabilize the inferior for detaching it. E.g.,
2632 detaching while a thread is displaced stepping is a recipe for
2633 crashing it, as nothing would readjust the PC out of the scratch
2634 pad. */
2635
2636void
2637prepare_for_detach (void)
2638{
2639 struct inferior *inf = current_inferior ();
2640 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2641 struct cleanup *old_chain_1;
2642 struct displaced_step_inferior_state *displaced;
2643
2644 displaced = get_displaced_stepping_state (inf->pid);
2645
2646 /* Is any thread of this process displaced stepping? If not,
2647 there's nothing else to do. */
2648 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2649 return;
2650
2651 if (debug_infrun)
2652 fprintf_unfiltered (gdb_stdlog,
2653 "displaced-stepping in-process while detaching");
2654
2655 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2656 inf->detaching = 1;
2657
2658 while (!ptid_equal (displaced->step_ptid, null_ptid))
2659 {
2660 struct cleanup *old_chain_2;
2661 struct execution_control_state ecss;
2662 struct execution_control_state *ecs;
2663
2664 ecs = &ecss;
2665 memset (ecs, 0, sizeof (*ecs));
2666
2667 overlay_cache_invalid = 1;
2668
24291992
PA
2669 if (deprecated_target_wait_hook)
2670 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2671 else
2672 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2673
2674 if (debug_infrun)
2675 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2676
2677 /* If an error happens while handling the event, propagate GDB's
2678 knowledge of the executing state to the frontend/user running
2679 state. */
3e43a32a
MS
2680 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2681 &minus_one_ptid);
24291992
PA
2682
2683 /* Now figure out what to do with the result of the result. */
2684 handle_inferior_event (ecs);
2685
2686 /* No error, don't finish the state yet. */
2687 discard_cleanups (old_chain_2);
2688
2689 /* Breakpoints and watchpoints are not installed on the target
2690 at this point, and signals are passed directly to the
2691 inferior, so this must mean the process is gone. */
2692 if (!ecs->wait_some_more)
2693 {
2694 discard_cleanups (old_chain_1);
2695 error (_("Program exited while detaching"));
2696 }
2697 }
2698
2699 discard_cleanups (old_chain_1);
2700}
2701
cd0fc7c3 2702/* Wait for control to return from inferior to debugger.
ae123ec6 2703
cd0fc7c3
SS
2704 If inferior gets a signal, we may decide to start it up again
2705 instead of returning. That is why there is a loop in this function.
2706 When this function actually returns it means the inferior
2707 should be left stopped and GDB should read more commands. */
2708
2709void
e4c8541f 2710wait_for_inferior (void)
cd0fc7c3
SS
2711{
2712 struct cleanup *old_cleanups;
c906108c 2713
527159b7 2714 if (debug_infrun)
ae123ec6 2715 fprintf_unfiltered
e4c8541f 2716 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2717
4e1c45ea
PA
2718 old_cleanups =
2719 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2720
c906108c
SS
2721 while (1)
2722 {
ae25568b
PA
2723 struct execution_control_state ecss;
2724 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2725 struct cleanup *old_chain;
2726
ae25568b
PA
2727 memset (ecs, 0, sizeof (*ecs));
2728
ec9499be 2729 overlay_cache_invalid = 1;
ec9499be 2730
9a4105ab 2731 if (deprecated_target_wait_hook)
47608cb1 2732 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2733 else
47608cb1 2734 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2735
f00150c9 2736 if (debug_infrun)
223698f8 2737 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2738
29f49a6a
PA
2739 /* If an error happens while handling the event, propagate GDB's
2740 knowledge of the executing state to the frontend/user running
2741 state. */
2742 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2743
cd0fc7c3
SS
2744 /* Now figure out what to do with the result of the result. */
2745 handle_inferior_event (ecs);
c906108c 2746
29f49a6a
PA
2747 /* No error, don't finish the state yet. */
2748 discard_cleanups (old_chain);
2749
cd0fc7c3
SS
2750 if (!ecs->wait_some_more)
2751 break;
2752 }
4e1c45ea 2753
cd0fc7c3
SS
2754 do_cleanups (old_cleanups);
2755}
c906108c 2756
1777feb0 2757/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2758 event loop whenever a change of state is detected on the file
1777feb0
MS
2759 descriptor corresponding to the target. It can be called more than
2760 once to complete a single execution command. In such cases we need
2761 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2762 that this function is called for a single execution command, then
2763 report to the user that the inferior has stopped, and do the
1777feb0 2764 necessary cleanups. */
43ff13b4
JM
2765
2766void
fba45db2 2767fetch_inferior_event (void *client_data)
43ff13b4 2768{
0d1e5fa7 2769 struct execution_control_state ecss;
a474d7c2 2770 struct execution_control_state *ecs = &ecss;
4f8d22e3 2771 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2772 struct cleanup *ts_old_chain;
4f8d22e3 2773 int was_sync = sync_execution;
0f641c01 2774 int cmd_done = 0;
43ff13b4 2775
0d1e5fa7
PA
2776 memset (ecs, 0, sizeof (*ecs));
2777
c5187ac6
PA
2778 /* We're handling a live event, so make sure we're doing live
2779 debugging. If we're looking at traceframes while the target is
2780 running, we're going to need to get back to that mode after
2781 handling the event. */
2782 if (non_stop)
2783 {
2784 make_cleanup_restore_current_traceframe ();
e6e4e701 2785 set_current_traceframe (-1);
c5187ac6
PA
2786 }
2787
4f8d22e3
PA
2788 if (non_stop)
2789 /* In non-stop mode, the user/frontend should not notice a thread
2790 switch due to internal events. Make sure we reverse to the
2791 user selected thread and frame after handling the event and
2792 running any breakpoint commands. */
2793 make_cleanup_restore_current_thread ();
2794
ec9499be 2795 overlay_cache_invalid = 1;
3dd5b83d 2796
32231432
PA
2797 make_cleanup_restore_integer (&execution_direction);
2798 execution_direction = target_execution_direction ();
2799
9a4105ab 2800 if (deprecated_target_wait_hook)
a474d7c2 2801 ecs->ptid =
47608cb1 2802 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2803 else
47608cb1 2804 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2805
f00150c9 2806 if (debug_infrun)
223698f8 2807 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2808
29f49a6a
PA
2809 /* If an error happens while handling the event, propagate GDB's
2810 knowledge of the executing state to the frontend/user running
2811 state. */
2812 if (!non_stop)
2813 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2814 else
2815 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2816
353d1d73
JK
2817 /* Get executed before make_cleanup_restore_current_thread above to apply
2818 still for the thread which has thrown the exception. */
2819 make_bpstat_clear_actions_cleanup ();
2820
43ff13b4 2821 /* Now figure out what to do with the result of the result. */
a474d7c2 2822 handle_inferior_event (ecs);
43ff13b4 2823
a474d7c2 2824 if (!ecs->wait_some_more)
43ff13b4 2825 {
d6b48e9c
PA
2826 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2827
4e1c45ea 2828 delete_step_thread_step_resume_breakpoint ();
f107f563 2829
d6b48e9c 2830 /* We may not find an inferior if this was a process exit. */
16c381f0 2831 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2832 normal_stop ();
2833
af679fd0 2834 if (target_has_execution
0e5bf2a8 2835 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2836 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2837 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2838 && ecs->event_thread->step_multi
16c381f0 2839 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2840 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2841 else
0f641c01
PA
2842 {
2843 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2844 cmd_done = 1;
2845 }
43ff13b4 2846 }
4f8d22e3 2847
29f49a6a
PA
2848 /* No error, don't finish the thread states yet. */
2849 discard_cleanups (ts_old_chain);
2850
4f8d22e3
PA
2851 /* Revert thread and frame. */
2852 do_cleanups (old_chain);
2853
2854 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2855 restore the prompt (a synchronous execution command has finished,
2856 and we're ready for input). */
b4a14fd0 2857 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2858 display_gdb_prompt (0);
0f641c01
PA
2859
2860 if (cmd_done
2861 && !was_sync
2862 && exec_done_display_p
2863 && (ptid_equal (inferior_ptid, null_ptid)
2864 || !is_running (inferior_ptid)))
2865 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2866}
2867
edb3359d
DJ
2868/* Record the frame and location we're currently stepping through. */
2869void
2870set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2871{
2872 struct thread_info *tp = inferior_thread ();
2873
16c381f0
JK
2874 tp->control.step_frame_id = get_frame_id (frame);
2875 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2876
2877 tp->current_symtab = sal.symtab;
2878 tp->current_line = sal.line;
2879}
2880
0d1e5fa7
PA
2881/* Clear context switchable stepping state. */
2882
2883void
4e1c45ea 2884init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2885{
2886 tss->stepping_over_breakpoint = 0;
2887 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2888}
2889
e02bc4cc 2890/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2891 target_wait()/deprecated_target_wait_hook(). The data is actually
2892 cached by handle_inferior_event(), which gets called immediately
2893 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2894
2895void
488f131b 2896get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2897{
39f77062 2898 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2899 *status = target_last_waitstatus;
2900}
2901
ac264b3b
MS
2902void
2903nullify_last_target_wait_ptid (void)
2904{
2905 target_last_wait_ptid = minus_one_ptid;
2906}
2907
dcf4fbde 2908/* Switch thread contexts. */
dd80620e
MS
2909
2910static void
0d1e5fa7 2911context_switch (ptid_t ptid)
dd80620e 2912{
4b51d87b 2913 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2914 {
2915 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2916 target_pid_to_str (inferior_ptid));
2917 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2918 target_pid_to_str (ptid));
fd48f117
DJ
2919 }
2920
0d1e5fa7 2921 switch_to_thread (ptid);
dd80620e
MS
2922}
2923
4fa8626c
DJ
2924static void
2925adjust_pc_after_break (struct execution_control_state *ecs)
2926{
24a73cce
UW
2927 struct regcache *regcache;
2928 struct gdbarch *gdbarch;
6c95b8df 2929 struct address_space *aspace;
8aad930b 2930 CORE_ADDR breakpoint_pc;
4fa8626c 2931
4fa8626c
DJ
2932 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2933 we aren't, just return.
9709f61c
DJ
2934
2935 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2936 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2937 implemented by software breakpoints should be handled through the normal
2938 breakpoint layer.
8fb3e588 2939
4fa8626c
DJ
2940 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2941 different signals (SIGILL or SIGEMT for instance), but it is less
2942 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2943 gdbarch_decr_pc_after_break. I don't know any specific target that
2944 generates these signals at breakpoints (the code has been in GDB since at
2945 least 1992) so I can not guess how to handle them here.
8fb3e588 2946
e6cf7916
UW
2947 In earlier versions of GDB, a target with
2948 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2949 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2950 target with both of these set in GDB history, and it seems unlikely to be
2951 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2952
2953 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2954 return;
2955
a493e3e2 2956 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2957 return;
2958
4058b839
PA
2959 /* In reverse execution, when a breakpoint is hit, the instruction
2960 under it has already been de-executed. The reported PC always
2961 points at the breakpoint address, so adjusting it further would
2962 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2963 architecture:
2964
2965 B1 0x08000000 : INSN1
2966 B2 0x08000001 : INSN2
2967 0x08000002 : INSN3
2968 PC -> 0x08000003 : INSN4
2969
2970 Say you're stopped at 0x08000003 as above. Reverse continuing
2971 from that point should hit B2 as below. Reading the PC when the
2972 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2973 been de-executed already.
2974
2975 B1 0x08000000 : INSN1
2976 B2 PC -> 0x08000001 : INSN2
2977 0x08000002 : INSN3
2978 0x08000003 : INSN4
2979
2980 We can't apply the same logic as for forward execution, because
2981 we would wrongly adjust the PC to 0x08000000, since there's a
2982 breakpoint at PC - 1. We'd then report a hit on B1, although
2983 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2984 behaviour. */
2985 if (execution_direction == EXEC_REVERSE)
2986 return;
2987
24a73cce
UW
2988 /* If this target does not decrement the PC after breakpoints, then
2989 we have nothing to do. */
2990 regcache = get_thread_regcache (ecs->ptid);
2991 gdbarch = get_regcache_arch (regcache);
2992 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2993 return;
2994
6c95b8df
PA
2995 aspace = get_regcache_aspace (regcache);
2996
8aad930b
AC
2997 /* Find the location where (if we've hit a breakpoint) the
2998 breakpoint would be. */
515630c5
UW
2999 breakpoint_pc = regcache_read_pc (regcache)
3000 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 3001
1c5cfe86
PA
3002 /* Check whether there actually is a software breakpoint inserted at
3003 that location.
3004
3005 If in non-stop mode, a race condition is possible where we've
3006 removed a breakpoint, but stop events for that breakpoint were
3007 already queued and arrive later. To suppress those spurious
3008 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3009 and retire them after a number of stop events are reported. */
6c95b8df
PA
3010 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3011 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3012 {
77f9e713 3013 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3014
96429cc8 3015 if (RECORD_IS_USED)
77f9e713 3016 record_full_gdb_operation_disable_set ();
96429cc8 3017
1c0fdd0e
UW
3018 /* When using hardware single-step, a SIGTRAP is reported for both
3019 a completed single-step and a software breakpoint. Need to
3020 differentiate between the two, as the latter needs adjusting
3021 but the former does not.
3022
3023 The SIGTRAP can be due to a completed hardware single-step only if
3024 - we didn't insert software single-step breakpoints
3025 - the thread to be examined is still the current thread
3026 - this thread is currently being stepped
3027
3028 If any of these events did not occur, we must have stopped due
3029 to hitting a software breakpoint, and have to back up to the
3030 breakpoint address.
3031
3032 As a special case, we could have hardware single-stepped a
3033 software breakpoint. In this case (prev_pc == breakpoint_pc),
3034 we also need to back up to the breakpoint address. */
3035
3036 if (singlestep_breakpoints_inserted_p
3037 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3038 || !currently_stepping (ecs->event_thread)
3039 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3040 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3041
77f9e713 3042 do_cleanups (old_cleanups);
8aad930b 3043 }
4fa8626c
DJ
3044}
3045
7a76f5b8 3046static void
0d1e5fa7
PA
3047init_infwait_state (void)
3048{
3049 waiton_ptid = pid_to_ptid (-1);
3050 infwait_state = infwait_normal_state;
3051}
3052
edb3359d
DJ
3053static int
3054stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3055{
3056 for (frame = get_prev_frame (frame);
3057 frame != NULL;
3058 frame = get_prev_frame (frame))
3059 {
3060 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3061 return 1;
3062 if (get_frame_type (frame) != INLINE_FRAME)
3063 break;
3064 }
3065
3066 return 0;
3067}
3068
a96d9b2e
SDJ
3069/* Auxiliary function that handles syscall entry/return events.
3070 It returns 1 if the inferior should keep going (and GDB
3071 should ignore the event), or 0 if the event deserves to be
3072 processed. */
ca2163eb 3073
a96d9b2e 3074static int
ca2163eb 3075handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3076{
ca2163eb 3077 struct regcache *regcache;
ca2163eb
PA
3078 int syscall_number;
3079
3080 if (!ptid_equal (ecs->ptid, inferior_ptid))
3081 context_switch (ecs->ptid);
3082
3083 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3084 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3085 stop_pc = regcache_read_pc (regcache);
3086
a96d9b2e
SDJ
3087 if (catch_syscall_enabled () > 0
3088 && catching_syscall_number (syscall_number) > 0)
3089 {
ab04a2af
TT
3090 enum bpstat_signal_value sval;
3091
a96d9b2e
SDJ
3092 if (debug_infrun)
3093 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3094 syscall_number);
a96d9b2e 3095
16c381f0 3096 ecs->event_thread->control.stop_bpstat
6c95b8df 3097 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3098 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3099
427cd150
TT
3100 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3101 GDB_SIGNAL_TRAP);
ab04a2af 3102 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
a96d9b2e 3103
ca2163eb
PA
3104 if (!ecs->random_signal)
3105 {
3106 /* Catchpoint hit. */
a493e3e2 3107 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3108 return 0;
3109 }
a96d9b2e 3110 }
ca2163eb
PA
3111
3112 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3113 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3114 keep_going (ecs);
3115 return 1;
a96d9b2e
SDJ
3116}
3117
7e324e48
GB
3118/* Clear the supplied execution_control_state's stop_func_* fields. */
3119
3120static void
3121clear_stop_func (struct execution_control_state *ecs)
3122{
3123 ecs->stop_func_filled_in = 0;
3124 ecs->stop_func_start = 0;
3125 ecs->stop_func_end = 0;
3126 ecs->stop_func_name = NULL;
3127}
3128
3129/* Lazily fill in the execution_control_state's stop_func_* fields. */
3130
3131static void
3132fill_in_stop_func (struct gdbarch *gdbarch,
3133 struct execution_control_state *ecs)
3134{
3135 if (!ecs->stop_func_filled_in)
3136 {
3137 /* Don't care about return value; stop_func_start and stop_func_name
3138 will both be 0 if it doesn't work. */
3139 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3140 &ecs->stop_func_start, &ecs->stop_func_end);
3141 ecs->stop_func_start
3142 += gdbarch_deprecated_function_start_offset (gdbarch);
3143
3144 ecs->stop_func_filled_in = 1;
3145 }
3146}
3147
cd0fc7c3
SS
3148/* Given an execution control state that has been freshly filled in
3149 by an event from the inferior, figure out what it means and take
3150 appropriate action. */
c906108c 3151
ec9499be 3152static void
96baa820 3153handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3154{
568d6575
UW
3155 struct frame_info *frame;
3156 struct gdbarch *gdbarch;
d983da9c
DJ
3157 int stopped_by_watchpoint;
3158 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3159 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3160 enum stop_kind stop_soon;
3161
28736962
PA
3162 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3163 {
3164 /* We had an event in the inferior, but we are not interested in
3165 handling it at this level. The lower layers have already
3166 done what needs to be done, if anything.
3167
3168 One of the possible circumstances for this is when the
3169 inferior produces output for the console. The inferior has
3170 not stopped, and we are ignoring the event. Another possible
3171 circumstance is any event which the lower level knows will be
3172 reported multiple times without an intervening resume. */
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3175 prepare_to_wait (ecs);
3176 return;
3177 }
3178
0e5bf2a8
PA
3179 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3180 && target_can_async_p () && !sync_execution)
3181 {
3182 /* There were no unwaited-for children left in the target, but,
3183 we're not synchronously waiting for events either. Just
3184 ignore. Otherwise, if we were running a synchronous
3185 execution command, we need to cancel it and give the user
3186 back the terminal. */
3187 if (debug_infrun)
3188 fprintf_unfiltered (gdb_stdlog,
3189 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3190 prepare_to_wait (ecs);
3191 return;
3192 }
3193
d6b48e9c 3194 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3195 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3196 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3197 {
3198 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3199
d6b48e9c 3200 gdb_assert (inf);
16c381f0 3201 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3202 }
3203 else
3204 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3205
1777feb0 3206 /* Cache the last pid/waitstatus. */
39f77062 3207 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3208 target_last_waitstatus = ecs->ws;
e02bc4cc 3209
ca005067 3210 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3211 stop_stack_dummy = STOP_NONE;
ca005067 3212
0e5bf2a8
PA
3213 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3214 {
3215 /* No unwaited-for children left. IOW, all resumed children
3216 have exited. */
3217 if (debug_infrun)
3218 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3219
3220 stop_print_frame = 0;
3221 stop_stepping (ecs);
3222 return;
3223 }
3224
8c90c137 3225 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3226 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3227 {
3228 ecs->event_thread = find_thread_ptid (ecs->ptid);
3229 /* If it's a new thread, add it to the thread database. */
3230 if (ecs->event_thread == NULL)
3231 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3232
3233 /* Disable range stepping. If the next step request could use a
3234 range, this will be end up re-enabled then. */
3235 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3236 }
88ed393a
JK
3237
3238 /* Dependent on valid ECS->EVENT_THREAD. */
3239 adjust_pc_after_break (ecs);
3240
3241 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3242 reinit_frame_cache ();
3243
28736962
PA
3244 breakpoint_retire_moribund ();
3245
2b009048
DJ
3246 /* First, distinguish signals caused by the debugger from signals
3247 that have to do with the program's own actions. Note that
3248 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3249 on the operating system version. Here we detect when a SIGILL or
3250 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3251 something similar for SIGSEGV, since a SIGSEGV will be generated
3252 when we're trying to execute a breakpoint instruction on a
3253 non-executable stack. This happens for call dummy breakpoints
3254 for architectures like SPARC that place call dummies on the
3255 stack. */
2b009048 3256 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3257 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3258 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3259 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3260 {
de0a0249
UW
3261 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3262
3263 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3264 regcache_read_pc (regcache)))
3265 {
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3269 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3270 }
2b009048
DJ
3271 }
3272
28736962
PA
3273 /* Mark the non-executing threads accordingly. In all-stop, all
3274 threads of all processes are stopped when we get any event
3275 reported. In non-stop mode, only the event thread stops. If
3276 we're handling a process exit in non-stop mode, there's nothing
3277 to do, as threads of the dead process are gone, and threads of
3278 any other process were left running. */
3279 if (!non_stop)
3280 set_executing (minus_one_ptid, 0);
3281 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3282 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3283 set_executing (ecs->ptid, 0);
8c90c137 3284
0d1e5fa7 3285 switch (infwait_state)
488f131b
JB
3286 {
3287 case infwait_thread_hop_state:
527159b7 3288 if (debug_infrun)
8a9de0e4 3289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3290 break;
b83266a0 3291
488f131b 3292 case infwait_normal_state:
527159b7 3293 if (debug_infrun)
8a9de0e4 3294 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3295 break;
3296
3297 case infwait_step_watch_state:
3298 if (debug_infrun)
3299 fprintf_unfiltered (gdb_stdlog,
3300 "infrun: infwait_step_watch_state\n");
3301
3302 stepped_after_stopped_by_watchpoint = 1;
488f131b 3303 break;
b83266a0 3304
488f131b 3305 case infwait_nonstep_watch_state:
527159b7 3306 if (debug_infrun)
8a9de0e4
AC
3307 fprintf_unfiltered (gdb_stdlog,
3308 "infrun: infwait_nonstep_watch_state\n");
488f131b 3309 insert_breakpoints ();
c906108c 3310
488f131b
JB
3311 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3312 handle things like signals arriving and other things happening
3313 in combination correctly? */
3314 stepped_after_stopped_by_watchpoint = 1;
3315 break;
65e82032
AC
3316
3317 default:
e2e0b3e5 3318 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3319 }
ec9499be 3320
0d1e5fa7 3321 infwait_state = infwait_normal_state;
ec9499be 3322 waiton_ptid = pid_to_ptid (-1);
c906108c 3323
488f131b
JB
3324 switch (ecs->ws.kind)
3325 {
3326 case TARGET_WAITKIND_LOADED:
527159b7 3327 if (debug_infrun)
8a9de0e4 3328 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3329 /* Ignore gracefully during startup of the inferior, as it might
3330 be the shell which has just loaded some objects, otherwise
3331 add the symbols for the newly loaded objects. Also ignore at
3332 the beginning of an attach or remote session; we will query
3333 the full list of libraries once the connection is
3334 established. */
c0236d92 3335 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3336 {
edcc5120 3337 struct regcache *regcache;
ab04a2af 3338 enum bpstat_signal_value sval;
edcc5120
TT
3339
3340 if (!ptid_equal (ecs->ptid, inferior_ptid))
3341 context_switch (ecs->ptid);
3342 regcache = get_thread_regcache (ecs->ptid);
3343
3344 handle_solib_event ();
3345
3346 ecs->event_thread->control.stop_bpstat
3347 = bpstat_stop_status (get_regcache_aspace (regcache),
3348 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3349
3350 sval
427cd150
TT
3351 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3352 GDB_SIGNAL_TRAP);
ab04a2af 3353 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
edcc5120
TT
3354
3355 if (!ecs->random_signal)
3356 {
3357 /* A catchpoint triggered. */
a493e3e2 3358 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3359 goto process_event_stop_test;
3360 }
488f131b 3361
b0f4b84b
DJ
3362 /* If requested, stop when the dynamic linker notifies
3363 gdb of events. This allows the user to get control
3364 and place breakpoints in initializer routines for
3365 dynamically loaded objects (among other things). */
a493e3e2 3366 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3367 if (stop_on_solib_events)
3368 {
55409f9d
DJ
3369 /* Make sure we print "Stopped due to solib-event" in
3370 normal_stop. */
3371 stop_print_frame = 1;
3372
b0f4b84b
DJ
3373 stop_stepping (ecs);
3374 return;
3375 }
488f131b 3376 }
b0f4b84b
DJ
3377
3378 /* If we are skipping through a shell, or through shared library
3379 loading that we aren't interested in, resume the program. If
3380 we're running the program normally, also resume. But stop if
3381 we're attaching or setting up a remote connection. */
3382 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3383 {
8b3ee56d
PA
3384 if (!ptid_equal (ecs->ptid, inferior_ptid))
3385 context_switch (ecs->ptid);
3386
74960c60
VP
3387 /* Loading of shared libraries might have changed breakpoint
3388 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3389 if (stop_soon == NO_STOP_QUIETLY
3390 && !breakpoints_always_inserted_mode ())
74960c60 3391 insert_breakpoints ();
a493e3e2 3392 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3393 prepare_to_wait (ecs);
3394 return;
3395 }
3396
3397 break;
c5aa993b 3398
488f131b 3399 case TARGET_WAITKIND_SPURIOUS:
527159b7 3400 if (debug_infrun)
8a9de0e4 3401 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3402 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3403 context_switch (ecs->ptid);
a493e3e2 3404 resume (0, GDB_SIGNAL_0);
488f131b
JB
3405 prepare_to_wait (ecs);
3406 return;
c5aa993b 3407
488f131b 3408 case TARGET_WAITKIND_EXITED:
940c3c06 3409 case TARGET_WAITKIND_SIGNALLED:
527159b7 3410 if (debug_infrun)
940c3c06
PA
3411 {
3412 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3413 fprintf_unfiltered (gdb_stdlog,
3414 "infrun: TARGET_WAITKIND_EXITED\n");
3415 else
3416 fprintf_unfiltered (gdb_stdlog,
3417 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3418 }
3419
fb66883a 3420 inferior_ptid = ecs->ptid;
6c95b8df
PA
3421 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3422 set_current_program_space (current_inferior ()->pspace);
3423 handle_vfork_child_exec_or_exit (0);
1777feb0 3424 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3425
940c3c06
PA
3426 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3427 {
3428 /* Record the exit code in the convenience variable $_exitcode, so
3429 that the user can inspect this again later. */
3430 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3431 (LONGEST) ecs->ws.value.integer);
3432
3433 /* Also record this in the inferior itself. */
3434 current_inferior ()->has_exit_code = 1;
3435 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3436
940c3c06
PA
3437 print_exited_reason (ecs->ws.value.integer);
3438 }
3439 else
3440 print_signal_exited_reason (ecs->ws.value.sig);
8cf64490 3441
488f131b
JB
3442 gdb_flush (gdb_stdout);
3443 target_mourn_inferior ();
1c0fdd0e 3444 singlestep_breakpoints_inserted_p = 0;
d03285ec 3445 cancel_single_step_breakpoints ();
488f131b
JB
3446 stop_print_frame = 0;
3447 stop_stepping (ecs);
3448 return;
c5aa993b 3449
488f131b 3450 /* The following are the only cases in which we keep going;
1777feb0 3451 the above cases end in a continue or goto. */
488f131b 3452 case TARGET_WAITKIND_FORKED:
deb3b17b 3453 case TARGET_WAITKIND_VFORKED:
527159b7 3454 if (debug_infrun)
fed708ed
PA
3455 {
3456 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3457 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3458 else
3459 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3460 }
c906108c 3461
e2d96639
YQ
3462 /* Check whether the inferior is displaced stepping. */
3463 {
3464 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3465 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3466 struct displaced_step_inferior_state *displaced
3467 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3468
3469 /* If checking displaced stepping is supported, and thread
3470 ecs->ptid is displaced stepping. */
3471 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3472 {
3473 struct inferior *parent_inf
3474 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3475 struct regcache *child_regcache;
3476 CORE_ADDR parent_pc;
3477
3478 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3479 indicating that the displaced stepping of syscall instruction
3480 has been done. Perform cleanup for parent process here. Note
3481 that this operation also cleans up the child process for vfork,
3482 because their pages are shared. */
a493e3e2 3483 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3484
3485 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3486 {
3487 /* Restore scratch pad for child process. */
3488 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3489 }
3490
3491 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3492 the child's PC is also within the scratchpad. Set the child's PC
3493 to the parent's PC value, which has already been fixed up.
3494 FIXME: we use the parent's aspace here, although we're touching
3495 the child, because the child hasn't been added to the inferior
3496 list yet at this point. */
3497
3498 child_regcache
3499 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3500 gdbarch,
3501 parent_inf->aspace);
3502 /* Read PC value of parent process. */
3503 parent_pc = regcache_read_pc (regcache);
3504
3505 if (debug_displaced)
3506 fprintf_unfiltered (gdb_stdlog,
3507 "displaced: write child pc from %s to %s\n",
3508 paddress (gdbarch,
3509 regcache_read_pc (child_regcache)),
3510 paddress (gdbarch, parent_pc));
3511
3512 regcache_write_pc (child_regcache, parent_pc);
3513 }
3514 }
3515
5a2901d9 3516 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3517 context_switch (ecs->ptid);
5a2901d9 3518
b242c3c2
PA
3519 /* Immediately detach breakpoints from the child before there's
3520 any chance of letting the user delete breakpoints from the
3521 breakpoint lists. If we don't do this early, it's easy to
3522 leave left over traps in the child, vis: "break foo; catch
3523 fork; c; <fork>; del; c; <child calls foo>". We only follow
3524 the fork on the last `continue', and by that time the
3525 breakpoint at "foo" is long gone from the breakpoint table.
3526 If we vforked, then we don't need to unpatch here, since both
3527 parent and child are sharing the same memory pages; we'll
3528 need to unpatch at follow/detach time instead to be certain
3529 that new breakpoints added between catchpoint hit time and
3530 vfork follow are detached. */
3531 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3532 {
b242c3c2
PA
3533 /* This won't actually modify the breakpoint list, but will
3534 physically remove the breakpoints from the child. */
d80ee84f 3535 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3536 }
3537
d03285ec
UW
3538 if (singlestep_breakpoints_inserted_p)
3539 {
1777feb0 3540 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3541 remove_single_step_breakpoints ();
3542 singlestep_breakpoints_inserted_p = 0;
3543 }
3544
e58b0e63
PA
3545 /* In case the event is caught by a catchpoint, remember that
3546 the event is to be followed at the next resume of the thread,
3547 and not immediately. */
3548 ecs->event_thread->pending_follow = ecs->ws;
3549
fb14de7b 3550 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3551
16c381f0 3552 ecs->event_thread->control.stop_bpstat
6c95b8df 3553 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3554 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3555
67822962
PA
3556 /* Note that we're interested in knowing the bpstat actually
3557 causes a stop, not just if it may explain the signal.
3558 Software watchpoints, for example, always appear in the
3559 bpstat. */
16c381f0
JK
3560 ecs->random_signal
3561 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3562
3563 /* If no catchpoint triggered for this, then keep going. */
3564 if (ecs->random_signal)
3565 {
6c95b8df
PA
3566 ptid_t parent;
3567 ptid_t child;
e58b0e63 3568 int should_resume;
3e43a32a
MS
3569 int follow_child
3570 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3571
a493e3e2 3572 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3573
3574 should_resume = follow_fork ();
3575
6c95b8df
PA
3576 parent = ecs->ptid;
3577 child = ecs->ws.value.related_pid;
3578
3579 /* In non-stop mode, also resume the other branch. */
3580 if (non_stop && !detach_fork)
3581 {
3582 if (follow_child)
3583 switch_to_thread (parent);
3584 else
3585 switch_to_thread (child);
3586
3587 ecs->event_thread = inferior_thread ();
3588 ecs->ptid = inferior_ptid;
3589 keep_going (ecs);
3590 }
3591
3592 if (follow_child)
3593 switch_to_thread (child);
3594 else
3595 switch_to_thread (parent);
3596
e58b0e63
PA
3597 ecs->event_thread = inferior_thread ();
3598 ecs->ptid = inferior_ptid;
3599
3600 if (should_resume)
3601 keep_going (ecs);
3602 else
3603 stop_stepping (ecs);
04e68871
DJ
3604 return;
3605 }
a493e3e2 3606 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3607 goto process_event_stop_test;
3608
6c95b8df
PA
3609 case TARGET_WAITKIND_VFORK_DONE:
3610 /* Done with the shared memory region. Re-insert breakpoints in
3611 the parent, and keep going. */
3612
3613 if (debug_infrun)
3e43a32a
MS
3614 fprintf_unfiltered (gdb_stdlog,
3615 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3616
3617 if (!ptid_equal (ecs->ptid, inferior_ptid))
3618 context_switch (ecs->ptid);
3619
3620 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3621 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3622 /* This also takes care of reinserting breakpoints in the
3623 previously locked inferior. */
3624 keep_going (ecs);
3625 return;
3626
488f131b 3627 case TARGET_WAITKIND_EXECD:
527159b7 3628 if (debug_infrun)
fc5261f2 3629 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3630
5a2901d9 3631 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3632 context_switch (ecs->ptid);
5a2901d9 3633
d03285ec
UW
3634 singlestep_breakpoints_inserted_p = 0;
3635 cancel_single_step_breakpoints ();
3636
fb14de7b 3637 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3638
6c95b8df
PA
3639 /* Do whatever is necessary to the parent branch of the vfork. */
3640 handle_vfork_child_exec_or_exit (1);
3641
795e548f
PA
3642 /* This causes the eventpoints and symbol table to be reset.
3643 Must do this now, before trying to determine whether to
3644 stop. */
71b43ef8 3645 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3646
16c381f0 3647 ecs->event_thread->control.stop_bpstat
6c95b8df 3648 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3649 stop_pc, ecs->ptid, &ecs->ws);
16c381f0 3650 ecs->random_signal
427cd150
TT
3651 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3652 GDB_SIGNAL_TRAP)
ab04a2af 3653 == BPSTAT_SIGNAL_NO);
795e548f 3654
71b43ef8
PA
3655 /* Note that this may be referenced from inside
3656 bpstat_stop_status above, through inferior_has_execd. */
3657 xfree (ecs->ws.value.execd_pathname);
3658 ecs->ws.value.execd_pathname = NULL;
3659
04e68871
DJ
3660 /* If no catchpoint triggered for this, then keep going. */
3661 if (ecs->random_signal)
3662 {
a493e3e2 3663 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3664 keep_going (ecs);
3665 return;
3666 }
a493e3e2 3667 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3668 goto process_event_stop_test;
3669
b4dc5ffa
MK
3670 /* Be careful not to try to gather much state about a thread
3671 that's in a syscall. It's frequently a losing proposition. */
488f131b 3672 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3673 if (debug_infrun)
3e43a32a
MS
3674 fprintf_unfiltered (gdb_stdlog,
3675 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3676 /* Getting the current syscall number. */
ca2163eb 3677 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3678 return;
3679 goto process_event_stop_test;
c906108c 3680
488f131b
JB
3681 /* Before examining the threads further, step this thread to
3682 get it entirely out of the syscall. (We get notice of the
3683 event when the thread is just on the verge of exiting a
3684 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3685 into user code.) */
488f131b 3686 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3687 if (debug_infrun)
3e43a32a
MS
3688 fprintf_unfiltered (gdb_stdlog,
3689 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3690 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3691 return;
3692 goto process_event_stop_test;
c906108c 3693
488f131b 3694 case TARGET_WAITKIND_STOPPED:
527159b7 3695 if (debug_infrun)
8a9de0e4 3696 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3697 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3698 break;
c906108c 3699
b2175913 3700 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3701 if (debug_infrun)
3702 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3703 /* Reverse execution: target ran out of history info. */
eab402df
PA
3704
3705 /* Pull the single step breakpoints out of the target. */
3706 if (singlestep_breakpoints_inserted_p)
3707 {
3708 if (!ptid_equal (ecs->ptid, inferior_ptid))
3709 context_switch (ecs->ptid);
3710 remove_single_step_breakpoints ();
3711 singlestep_breakpoints_inserted_p = 0;
3712 }
fb14de7b 3713 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3714 print_no_history_reason ();
b2175913
MS
3715 stop_stepping (ecs);
3716 return;
488f131b 3717 }
c906108c 3718
2020b7ab 3719 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3720 {
3721 /* Do we need to clean up the state of a thread that has
3722 completed a displaced single-step? (Doing so usually affects
3723 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3724 displaced_step_fixup (ecs->ptid,
3725 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3726
3727 /* If we either finished a single-step or hit a breakpoint, but
3728 the user wanted this thread to be stopped, pretend we got a
3729 SIG0 (generic unsignaled stop). */
3730
3731 if (ecs->event_thread->stop_requested
a493e3e2
PA
3732 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3733 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3734 }
237fc4c9 3735
515630c5 3736 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3737
527159b7 3738 if (debug_infrun)
237fc4c9 3739 {
5af949e3
UW
3740 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3741 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3742 struct cleanup *old_chain = save_inferior_ptid ();
3743
3744 inferior_ptid = ecs->ptid;
5af949e3
UW
3745
3746 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3747 paddress (gdbarch, stop_pc));
d92524f1 3748 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3749 {
3750 CORE_ADDR addr;
abbb1732 3751
237fc4c9
PA
3752 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3753
3754 if (target_stopped_data_address (&current_target, &addr))
3755 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3756 "infrun: stopped data address = %s\n",
3757 paddress (gdbarch, addr));
237fc4c9
PA
3758 else
3759 fprintf_unfiltered (gdb_stdlog,
3760 "infrun: (no data address available)\n");
3761 }
7f82dfc7
JK
3762
3763 do_cleanups (old_chain);
237fc4c9 3764 }
527159b7 3765
9f976b41
DJ
3766 if (stepping_past_singlestep_breakpoint)
3767 {
1c0fdd0e 3768 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3769 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3770 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3771
3772 stepping_past_singlestep_breakpoint = 0;
3773
3774 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3775 breakpoint, or stopped for some other reason. It would be nice if
3776 we could tell, but we can't reliably. */
a493e3e2 3777 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3778 {
527159b7 3779 if (debug_infrun)
3e43a32a
MS
3780 fprintf_unfiltered (gdb_stdlog,
3781 "infrun: stepping_past_"
3782 "singlestep_breakpoint\n");
9f976b41 3783 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3784 if (!ptid_equal (ecs->ptid, inferior_ptid))
3785 context_switch (ecs->ptid);
e0cd558a 3786 remove_single_step_breakpoints ();
9f976b41
DJ
3787 singlestep_breakpoints_inserted_p = 0;
3788
3789 ecs->random_signal = 0;
16c381f0 3790 ecs->event_thread->control.trap_expected = 0;
9f976b41 3791
0d1e5fa7 3792 context_switch (saved_singlestep_ptid);
9a4105ab 3793 if (deprecated_context_hook)
de9f1b68 3794 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3795
a493e3e2 3796 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3797 prepare_to_wait (ecs);
3798 return;
3799 }
3800 }
3801
ca67fcb8 3802 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3803 {
94cc34af
PA
3804 /* In non-stop mode, there's never a deferred_step_ptid set. */
3805 gdb_assert (!non_stop);
3806
6a6b96b9
UW
3807 /* If we stopped for some other reason than single-stepping, ignore
3808 the fact that we were supposed to switch back. */
a493e3e2 3809 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3810 {
3811 if (debug_infrun)
3812 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3813 "infrun: handling deferred step\n");
6a6b96b9
UW
3814
3815 /* Pull the single step breakpoints out of the target. */
3816 if (singlestep_breakpoints_inserted_p)
3817 {
8b3ee56d
PA
3818 if (!ptid_equal (ecs->ptid, inferior_ptid))
3819 context_switch (ecs->ptid);
6a6b96b9
UW
3820 remove_single_step_breakpoints ();
3821 singlestep_breakpoints_inserted_p = 0;
3822 }
3823
cd3da28e
PA
3824 ecs->event_thread->control.trap_expected = 0;
3825
d25f45d9 3826 context_switch (deferred_step_ptid);
ca67fcb8 3827 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3828 /* Suppress spurious "Switching to ..." message. */
3829 previous_inferior_ptid = inferior_ptid;
3830
a493e3e2 3831 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3832 prepare_to_wait (ecs);
3833 return;
3834 }
ca67fcb8
VP
3835
3836 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3837 }
3838
488f131b
JB
3839 /* See if a thread hit a thread-specific breakpoint that was meant for
3840 another thread. If so, then step that thread past the breakpoint,
3841 and continue it. */
3842
a493e3e2 3843 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3844 {
9f976b41 3845 int thread_hop_needed = 0;
cf00dfa7
VP
3846 struct address_space *aspace =
3847 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3848
f8d40ec8 3849 /* Check if a regular breakpoint has been hit before checking
1777feb0 3850 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3851 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3852 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3853 {
c5aa993b 3854 ecs->random_signal = 0;
6c95b8df 3855 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3856 thread_hop_needed = 1;
3857 }
1c0fdd0e 3858 else if (singlestep_breakpoints_inserted_p)
9f976b41 3859 {
fd48f117
DJ
3860 /* We have not context switched yet, so this should be true
3861 no matter which thread hit the singlestep breakpoint. */
3862 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3863 if (debug_infrun)
3864 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3865 "trap for %s\n",
3866 target_pid_to_str (ecs->ptid));
3867
9f976b41
DJ
3868 ecs->random_signal = 0;
3869 /* The call to in_thread_list is necessary because PTIDs sometimes
3870 change when we go from single-threaded to multi-threaded. If
3871 the singlestep_ptid is still in the list, assume that it is
3872 really different from ecs->ptid. */
3873 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3874 && in_thread_list (singlestep_ptid))
3875 {
fd48f117
DJ
3876 /* If the PC of the thread we were trying to single-step
3877 has changed, discard this event (which we were going
3878 to ignore anyway), and pretend we saw that thread
3879 trap. This prevents us continuously moving the
3880 single-step breakpoint forward, one instruction at a
3881 time. If the PC has changed, then the thread we were
3882 trying to single-step has trapped or been signalled,
3883 but the event has not been reported to GDB yet.
3884
3885 There might be some cases where this loses signal
3886 information, if a signal has arrived at exactly the
3887 same time that the PC changed, but this is the best
3888 we can do with the information available. Perhaps we
3889 should arrange to report all events for all threads
3890 when they stop, or to re-poll the remote looking for
3891 this particular thread (i.e. temporarily enable
3892 schedlock). */
515630c5
UW
3893
3894 CORE_ADDR new_singlestep_pc
3895 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3896
3897 if (new_singlestep_pc != singlestep_pc)
fd48f117 3898 {
2ea28649 3899 enum gdb_signal stop_signal;
2020b7ab 3900
fd48f117
DJ
3901 if (debug_infrun)
3902 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3903 " but expected thread advanced also\n");
3904
3905 /* The current context still belongs to
3906 singlestep_ptid. Don't swap here, since that's
3907 the context we want to use. Just fudge our
3908 state and continue. */
16c381f0 3909 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3910 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3911 ecs->ptid = singlestep_ptid;
e09875d4 3912 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3913 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3914 stop_pc = new_singlestep_pc;
fd48f117
DJ
3915 }
3916 else
3917 {
3918 if (debug_infrun)
3919 fprintf_unfiltered (gdb_stdlog,
3920 "infrun: unexpected thread\n");
3921
3922 thread_hop_needed = 1;
3923 stepping_past_singlestep_breakpoint = 1;
3924 saved_singlestep_ptid = singlestep_ptid;
3925 }
9f976b41
DJ
3926 }
3927 }
3928
3929 if (thread_hop_needed)
8fb3e588 3930 {
9f5a595d 3931 struct regcache *thread_regcache;
237fc4c9 3932 int remove_status = 0;
8fb3e588 3933
527159b7 3934 if (debug_infrun)
8a9de0e4 3935 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3936
b3444185
PA
3937 /* Switch context before touching inferior memory, the
3938 previous thread may have exited. */
3939 if (!ptid_equal (inferior_ptid, ecs->ptid))
3940 context_switch (ecs->ptid);
3941
8fb3e588 3942 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3943 Just continue. */
8fb3e588 3944
1c0fdd0e 3945 if (singlestep_breakpoints_inserted_p)
488f131b 3946 {
1777feb0 3947 /* Pull the single step breakpoints out of the target. */
e0cd558a 3948 remove_single_step_breakpoints ();
8fb3e588
AC
3949 singlestep_breakpoints_inserted_p = 0;
3950 }
3951
237fc4c9
PA
3952 /* If the arch can displace step, don't remove the
3953 breakpoints. */
9f5a595d
UW
3954 thread_regcache = get_thread_regcache (ecs->ptid);
3955 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3956 remove_status = remove_breakpoints ();
3957
8fb3e588
AC
3958 /* Did we fail to remove breakpoints? If so, try
3959 to set the PC past the bp. (There's at least
3960 one situation in which we can fail to remove
3961 the bp's: On HP-UX's that use ttrace, we can't
3962 change the address space of a vforking child
3963 process until the child exits (well, okay, not
1777feb0 3964 then either :-) or execs. */
8fb3e588 3965 if (remove_status != 0)
9d9cd7ac 3966 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3967 else
3968 { /* Single step */
94cc34af
PA
3969 if (!non_stop)
3970 {
3971 /* Only need to require the next event from this
3972 thread in all-stop mode. */
3973 waiton_ptid = ecs->ptid;
3974 infwait_state = infwait_thread_hop_state;
3975 }
8fb3e588 3976
4e1c45ea 3977 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3978 keep_going (ecs);
8fb3e588
AC
3979 return;
3980 }
488f131b 3981 }
1c0fdd0e 3982 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3983 {
8fb3e588
AC
3984 ecs->random_signal = 0;
3985 }
488f131b
JB
3986 }
3987 else
3988 ecs->random_signal = 1;
c906108c 3989
488f131b 3990 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3991 so, then switch to that thread. */
3992 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3993 {
527159b7 3994 if (debug_infrun)
8a9de0e4 3995 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3996
0d1e5fa7 3997 context_switch (ecs->ptid);
c5aa993b 3998
9a4105ab
AC
3999 if (deprecated_context_hook)
4000 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4001 }
c906108c 4002
568d6575
UW
4003 /* At this point, get hold of the now-current thread's frame. */
4004 frame = get_current_frame ();
4005 gdbarch = get_frame_arch (frame);
4006
1c0fdd0e 4007 if (singlestep_breakpoints_inserted_p)
488f131b 4008 {
1777feb0 4009 /* Pull the single step breakpoints out of the target. */
e0cd558a 4010 remove_single_step_breakpoints ();
488f131b
JB
4011 singlestep_breakpoints_inserted_p = 0;
4012 }
c906108c 4013
d983da9c
DJ
4014 if (stepped_after_stopped_by_watchpoint)
4015 stopped_by_watchpoint = 0;
4016 else
4017 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4018
4019 /* If necessary, step over this watchpoint. We'll be back to display
4020 it in a moment. */
4021 if (stopped_by_watchpoint
d92524f1 4022 && (target_have_steppable_watchpoint
568d6575 4023 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4024 {
488f131b
JB
4025 /* At this point, we are stopped at an instruction which has
4026 attempted to write to a piece of memory under control of
4027 a watchpoint. The instruction hasn't actually executed
4028 yet. If we were to evaluate the watchpoint expression
4029 now, we would get the old value, and therefore no change
4030 would seem to have occurred.
4031
4032 In order to make watchpoints work `right', we really need
4033 to complete the memory write, and then evaluate the
d983da9c
DJ
4034 watchpoint expression. We do this by single-stepping the
4035 target.
4036
4037 It may not be necessary to disable the watchpoint to stop over
4038 it. For example, the PA can (with some kernel cooperation)
4039 single step over a watchpoint without disabling the watchpoint.
4040
4041 It is far more common to need to disable a watchpoint to step
4042 the inferior over it. If we have non-steppable watchpoints,
4043 we must disable the current watchpoint; it's simplest to
4044 disable all watchpoints and breakpoints. */
2facfe5c
DD
4045 int hw_step = 1;
4046
d92524f1 4047 if (!target_have_steppable_watchpoint)
2455069d
UW
4048 {
4049 remove_breakpoints ();
4050 /* See comment in resume why we need to stop bypassing signals
4051 while breakpoints have been removed. */
4052 target_pass_signals (0, NULL);
4053 }
2facfe5c 4054 /* Single step */
568d6575 4055 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4056 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4057 waiton_ptid = ecs->ptid;
d92524f1 4058 if (target_have_steppable_watchpoint)
0d1e5fa7 4059 infwait_state = infwait_step_watch_state;
d983da9c 4060 else
0d1e5fa7 4061 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4062 prepare_to_wait (ecs);
4063 return;
4064 }
4065
7e324e48 4066 clear_stop_func (ecs);
4e1c45ea 4067 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4068 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4069 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4070 stop_print_frame = 1;
4071 ecs->random_signal = 0;
4072 stopped_by_random_signal = 0;
488f131b 4073
edb3359d
DJ
4074 /* Hide inlined functions starting here, unless we just performed stepi or
4075 nexti. After stepi and nexti, always show the innermost frame (not any
4076 inline function call sites). */
16c381f0 4077 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4078 {
4079 struct address_space *aspace =
4080 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4081
4082 /* skip_inline_frames is expensive, so we avoid it if we can
4083 determine that the address is one where functions cannot have
4084 been inlined. This improves performance with inferiors that
4085 load a lot of shared libraries, because the solib event
4086 breakpoint is defined as the address of a function (i.e. not
4087 inline). Note that we have to check the previous PC as well
4088 as the current one to catch cases when we have just
4089 single-stepped off a breakpoint prior to reinstating it.
4090 Note that we're assuming that the code we single-step to is
4091 not inline, but that's not definitive: there's nothing
4092 preventing the event breakpoint function from containing
4093 inlined code, and the single-step ending up there. If the
4094 user had set a breakpoint on that inlined code, the missing
4095 skip_inline_frames call would break things. Fortunately
4096 that's an extremely unlikely scenario. */
09ac7c10 4097 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4098 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4099 && ecs->event_thread->control.trap_expected
4100 && pc_at_non_inline_function (aspace,
4101 ecs->event_thread->prev_pc,
09ac7c10 4102 &ecs->ws)))
1c5a993e
MR
4103 {
4104 skip_inline_frames (ecs->ptid);
4105
4106 /* Re-fetch current thread's frame in case that invalidated
4107 the frame cache. */
4108 frame = get_current_frame ();
4109 gdbarch = get_frame_arch (frame);
4110 }
0574c78f 4111 }
edb3359d 4112
a493e3e2 4113 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4114 && ecs->event_thread->control.trap_expected
568d6575 4115 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4116 && currently_stepping (ecs->event_thread))
3352ef37 4117 {
b50d7442 4118 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4119 also on an instruction that needs to be stepped multiple
1777feb0 4120 times before it's been fully executing. E.g., architectures
3352ef37
AC
4121 with a delay slot. It needs to be stepped twice, once for
4122 the instruction and once for the delay slot. */
4123 int step_through_delay
568d6575 4124 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4125
527159b7 4126 if (debug_infrun && step_through_delay)
8a9de0e4 4127 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4128 if (ecs->event_thread->control.step_range_end == 0
4129 && step_through_delay)
3352ef37
AC
4130 {
4131 /* The user issued a continue when stopped at a breakpoint.
4132 Set up for another trap and get out of here. */
4e1c45ea 4133 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4134 keep_going (ecs);
4135 return;
4136 }
4137 else if (step_through_delay)
4138 {
4139 /* The user issued a step when stopped at a breakpoint.
4140 Maybe we should stop, maybe we should not - the delay
4141 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4142 case, don't decide that here, just set
4143 ecs->stepping_over_breakpoint, making sure we
4144 single-step again before breakpoints are re-inserted. */
4e1c45ea 4145 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4146 }
4147 }
4148
488f131b
JB
4149 /* Look at the cause of the stop, and decide what to do.
4150 The alternatives are:
0d1e5fa7
PA
4151 1) stop_stepping and return; to really stop and return to the debugger,
4152 2) keep_going and return to start up again
4e1c45ea 4153 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4154 3) set ecs->random_signal to 1, and the decision between 1 and 2
4155 will be made according to the signal handling tables. */
4156
a493e3e2 4157 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4158 && stop_after_trap)
488f131b 4159 {
ab04a2af
TT
4160 if (debug_infrun)
4161 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4162 stop_print_frame = 0;
4163 stop_stepping (ecs);
4164 return;
4165 }
488f131b 4166
ab04a2af
TT
4167 /* This is originated from start_remote(), start_inferior() and
4168 shared libraries hook functions. */
4169 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4170 {
4171 if (debug_infrun)
4172 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4173 stop_stepping (ecs);
4174 return;
4175 }
c54cfec8 4176
ab04a2af
TT
4177 /* This originates from attach_command(). We need to overwrite
4178 the stop_signal here, because some kernels don't ignore a
4179 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4180 See more comments in inferior.h. On the other hand, if we
4181 get a non-SIGSTOP, report it to the user - assume the backend
4182 will handle the SIGSTOP if it should show up later.
4183
4184 Also consider that the attach is complete when we see a
4185 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4186 target extended-remote report it instead of a SIGSTOP
4187 (e.g. gdbserver). We already rely on SIGTRAP being our
4188 signal, so this is no exception.
4189
4190 Also consider that the attach is complete when we see a
4191 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4192 the target to stop all threads of the inferior, in case the
4193 low level attach operation doesn't stop them implicitly. If
4194 they weren't stopped implicitly, then the stub will report a
4195 GDB_SIGNAL_0, meaning: stopped for no particular reason
4196 other than GDB's request. */
4197 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4198 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4199 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4200 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4201 {
4202 stop_stepping (ecs);
4203 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4204 return;
4205 }
6c95b8df 4206
ab04a2af
TT
4207 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4208 handles this event. */
4209 ecs->event_thread->control.stop_bpstat
4210 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4211 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4212
ab04a2af
TT
4213 /* Following in case break condition called a
4214 function. */
4215 stop_print_frame = 1;
73dd234f 4216
ab04a2af
TT
4217 /* This is where we handle "moribund" watchpoints. Unlike
4218 software breakpoints traps, hardware watchpoint traps are
4219 always distinguishable from random traps. If no high-level
4220 watchpoint is associated with the reported stop data address
4221 anymore, then the bpstat does not explain the signal ---
4222 simply make sure to ignore it if `stopped_by_watchpoint' is
4223 set. */
4224
4225 if (debug_infrun
4226 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
427cd150
TT
4227 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4228 GDB_SIGNAL_TRAP)
ab04a2af
TT
4229 == BPSTAT_SIGNAL_NO)
4230 && stopped_by_watchpoint)
4231 fprintf_unfiltered (gdb_stdlog,
4232 "infrun: no user watchpoint explains "
4233 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4234
ab04a2af
TT
4235 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4236 at one stage in the past included checks for an inferior
4237 function call's call dummy's return breakpoint. The original
4238 comment, that went with the test, read:
03cebad2 4239
ab04a2af
TT
4240 ``End of a stack dummy. Some systems (e.g. Sony news) give
4241 another signal besides SIGTRAP, so check here as well as
4242 above.''
73dd234f 4243
ab04a2af
TT
4244 If someone ever tries to get call dummys on a
4245 non-executable stack to work (where the target would stop
4246 with something like a SIGSEGV), then those tests might need
4247 to be re-instated. Given, however, that the tests were only
4248 enabled when momentary breakpoints were not being used, I
4249 suspect that it won't be the case.
488f131b 4250
ab04a2af
TT
4251 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4252 be necessary for call dummies on a non-executable stack on
4253 SPARC. */
488f131b 4254
ab04a2af
TT
4255 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4256 ecs->random_signal
427cd150
TT
4257 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4258 GDB_SIGNAL_TRAP)
ab04a2af
TT
4259 != BPSTAT_SIGNAL_NO)
4260 || stopped_by_watchpoint
4261 || ecs->event_thread->control.trap_expected
4262 || (ecs->event_thread->control.step_range_end
4263 && (ecs->event_thread->control.step_resume_breakpoint
4264 == NULL)));
488f131b 4265 else
ab04a2af
TT
4266 {
4267 enum bpstat_signal_value sval;
4268
427cd150
TT
4269 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4270 ecs->event_thread->suspend.stop_signal);
ab04a2af
TT
4271 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4272
4273 if (sval == BPSTAT_SIGNAL_HIDE)
4274 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4275 }
488f131b 4276
04e68871 4277process_event_stop_test:
568d6575
UW
4278
4279 /* Re-fetch current thread's frame in case we did a
4280 "goto process_event_stop_test" above. */
4281 frame = get_current_frame ();
4282 gdbarch = get_frame_arch (frame);
4283
488f131b
JB
4284 /* For the program's own signals, act according to
4285 the signal handling tables. */
4286
4287 if (ecs->random_signal)
4288 {
4289 /* Signal not for debugging purposes. */
4290 int printed = 0;
24291992 4291 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4292
527159b7 4293 if (debug_infrun)
2020b7ab 4294 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4295 ecs->event_thread->suspend.stop_signal);
527159b7 4296
488f131b
JB
4297 stopped_by_random_signal = 1;
4298
16c381f0 4299 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4300 {
4301 printed = 1;
4302 target_terminal_ours_for_output ();
16c381f0
JK
4303 print_signal_received_reason
4304 (ecs->event_thread->suspend.stop_signal);
488f131b 4305 }
252fbfc8
PA
4306 /* Always stop on signals if we're either just gaining control
4307 of the program, or the user explicitly requested this thread
4308 to remain stopped. */
d6b48e9c 4309 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4310 || ecs->event_thread->stop_requested
24291992 4311 || (!inf->detaching
16c381f0 4312 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4313 {
4314 stop_stepping (ecs);
4315 return;
4316 }
4317 /* If not going to stop, give terminal back
4318 if we took it away. */
4319 else if (printed)
4320 target_terminal_inferior ();
4321
4322 /* Clear the signal if it should not be passed. */
16c381f0 4323 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4324 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4325
fb14de7b 4326 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4327 && ecs->event_thread->control.trap_expected
8358c15c 4328 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4329 {
4330 /* We were just starting a new sequence, attempting to
4331 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4332 Instead this signal arrives. This signal will take us out
68f53502
AC
4333 of the stepping range so GDB needs to remember to, when
4334 the signal handler returns, resume stepping off that
4335 breakpoint. */
4336 /* To simplify things, "continue" is forced to use the same
4337 code paths as single-step - set a breakpoint at the
4338 signal return address and then, once hit, step off that
4339 breakpoint. */
237fc4c9
PA
4340 if (debug_infrun)
4341 fprintf_unfiltered (gdb_stdlog,
4342 "infrun: signal arrived while stepping over "
4343 "breakpoint\n");
d3169d93 4344
2c03e5be 4345 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4346 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4347 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4348 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4349 keep_going (ecs);
4350 return;
68f53502 4351 }
9d799f85 4352
16c381f0 4353 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4354 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4355 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4356 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4357 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4358 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4359 {
4360 /* The inferior is about to take a signal that will take it
4361 out of the single step range. Set a breakpoint at the
4362 current PC (which is presumably where the signal handler
4363 will eventually return) and then allow the inferior to
4364 run free.
4365
4366 Note that this is only needed for a signal delivered
4367 while in the single-step range. Nested signals aren't a
4368 problem as they eventually all return. */
237fc4c9
PA
4369 if (debug_infrun)
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: signal may take us out of "
4372 "single-step range\n");
4373
2c03e5be 4374 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4375 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4376 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4377 keep_going (ecs);
4378 return;
d303a6c7 4379 }
9d799f85
AC
4380
4381 /* Note: step_resume_breakpoint may be non-NULL. This occures
4382 when either there's a nested signal, or when there's a
4383 pending signal enabled just as the signal handler returns
4384 (leaving the inferior at the step-resume-breakpoint without
4385 actually executing it). Either way continue until the
4386 breakpoint is really hit. */
488f131b 4387 }
e5ef252a
PA
4388 else
4389 {
4390 /* Handle cases caused by hitting a breakpoint. */
488f131b 4391
e5ef252a
PA
4392 CORE_ADDR jmp_buf_pc;
4393 struct bpstat_what what;
611c83ae 4394
e5ef252a 4395 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4396
e5ef252a 4397 if (what.call_dummy)
e81a37f7 4398 {
e5ef252a
PA
4399 stop_stack_dummy = what.call_dummy;
4400 }
186c406b 4401
e5ef252a
PA
4402 /* If we hit an internal event that triggers symbol changes, the
4403 current frame will be invalidated within bpstat_what (e.g.,
4404 if we hit an internal solib event). Re-fetch it. */
4405 frame = get_current_frame ();
4406 gdbarch = get_frame_arch (frame);
e2e4d78b 4407
e5ef252a
PA
4408 switch (what.main_action)
4409 {
4410 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4411 /* If we hit the breakpoint at longjmp while stepping, we
4412 install a momentary breakpoint at the target of the
4413 jmp_buf. */
186c406b 4414
e81a37f7
TT
4415 if (debug_infrun)
4416 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4417 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4418
e5ef252a 4419 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4420
e2e4d78b
JK
4421 if (what.is_longjmp)
4422 {
e5ef252a
PA
4423 struct value *arg_value;
4424
4425 /* If we set the longjmp breakpoint via a SystemTap
4426 probe, then use it to extract the arguments. The
4427 destination PC is the third argument to the
4428 probe. */
4429 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4430 if (arg_value)
4431 jmp_buf_pc = value_as_address (arg_value);
4432 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4433 || !gdbarch_get_longjmp_target (gdbarch,
4434 frame, &jmp_buf_pc))
e2e4d78b 4435 {
e5ef252a
PA
4436 if (debug_infrun)
4437 fprintf_unfiltered (gdb_stdlog,
4438 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4439 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4440 keep_going (ecs);
4441 return;
4442 }
e5ef252a
PA
4443
4444 /* Insert a breakpoint at resume address. */
4445 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4446 }
e5ef252a
PA
4447 else
4448 check_exception_resume (ecs, frame);
4449 keep_going (ecs);
4450 return;
e2e4d78b 4451
e5ef252a
PA
4452 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4453 {
4454 struct frame_info *init_frame;
e2e4d78b 4455
e5ef252a 4456 /* There are several cases to consider.
e81a37f7 4457
e5ef252a
PA
4458 1. The initiating frame no longer exists. In this case
4459 we must stop, because the exception or longjmp has gone
4460 too far.
e81a37f7 4461
e5ef252a
PA
4462 2. The initiating frame exists, and is the same as the
4463 current frame. We stop, because the exception or
4464 longjmp has been caught.
c906108c 4465
e5ef252a
PA
4466 3. The initiating frame exists and is different from
4467 the current frame. This means the exception or longjmp
4468 has been caught beneath the initiating frame, so keep
4469 going.
2c03e5be 4470
e5ef252a
PA
4471 4. longjmp breakpoint has been placed just to protect
4472 against stale dummy frames and user is not interested
4473 in stopping around longjmps. */
2c03e5be 4474
e5ef252a
PA
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4478
e5ef252a
PA
4479 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4480 != NULL);
4481 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4482
e5ef252a
PA
4483 if (what.is_longjmp)
4484 {
4485 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4486
e5ef252a
PA
4487 if (!frame_id_p (ecs->event_thread->initiating_frame))
4488 {
4489 /* Case 4. */
4490 keep_going (ecs);
4491 return;
4492 }
4493 }
c5aa993b 4494
e5ef252a 4495 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4496
e5ef252a
PA
4497 if (init_frame)
4498 {
4499 struct frame_id current_id
4500 = get_frame_id (get_current_frame ());
4501 if (frame_id_eq (current_id,
4502 ecs->event_thread->initiating_frame))
4503 {
4504 /* Case 2. Fall through. */
4505 }
4506 else
4507 {
4508 /* Case 3. */
4509 keep_going (ecs);
4510 return;
4511 }
4512 }
c5aa993b 4513
e5ef252a
PA
4514 /* For Cases 1 and 2, remove the step-resume breakpoint,
4515 if it exists. */
4516 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4517
e5ef252a
PA
4518 ecs->event_thread->control.stop_step = 1;
4519 print_end_stepping_range_reason ();
4520 stop_stepping (ecs);
68f53502 4521 }
e5ef252a 4522 return;
488f131b 4523
e5ef252a
PA
4524 case BPSTAT_WHAT_SINGLE:
4525 if (debug_infrun)
4526 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4527 ecs->event_thread->stepping_over_breakpoint = 1;
4528 /* Still need to check other stuff, at least the case where
4529 we are stepping and step out of the right range. */
4530 break;
4531
4532 case BPSTAT_WHAT_STEP_RESUME:
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4535
4536 delete_step_resume_breakpoint (ecs->event_thread);
4537 if (ecs->event_thread->control.proceed_to_finish
4538 && execution_direction == EXEC_REVERSE)
4539 {
4540 struct thread_info *tp = ecs->event_thread;
4541
4542 /* We are finishing a function in reverse, and just hit
4543 the step-resume breakpoint at the start address of
4544 the function, and we're almost there -- just need to
4545 back up by one more single-step, which should take us
4546 back to the function call. */
4547 tp->control.step_range_start = tp->control.step_range_end = 1;
4548 keep_going (ecs);
4549 return;
4550 }
4551 fill_in_stop_func (gdbarch, ecs);
4552 if (stop_pc == ecs->stop_func_start
4553 && execution_direction == EXEC_REVERSE)
4554 {
4555 /* We are stepping over a function call in reverse, and
4556 just hit the step-resume breakpoint at the start
4557 address of the function. Go back to single-stepping,
4558 which should take us back to the function call. */
4559 ecs->event_thread->stepping_over_breakpoint = 1;
4560 keep_going (ecs);
4561 return;
4562 }
4563 break;
4564
4565 case BPSTAT_WHAT_STOP_NOISY:
4566 if (debug_infrun)
4567 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4568 stop_print_frame = 1;
4569
4570 /* We are about to nuke the step_resume_breakpointt via the
4571 cleanup chain, so no need to worry about it here. */
4572
4573 stop_stepping (ecs);
4574 return;
4575
4576 case BPSTAT_WHAT_STOP_SILENT:
4577 if (debug_infrun)
4578 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4579 stop_print_frame = 0;
4580
4581 /* We are about to nuke the step_resume_breakpoin via the
4582 cleanup chain, so no need to worry about it here. */
4583
4584 stop_stepping (ecs);
4585 return;
4586
4587 case BPSTAT_WHAT_HP_STEP_RESUME:
4588 if (debug_infrun)
4589 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4590
4591 delete_step_resume_breakpoint (ecs->event_thread);
4592 if (ecs->event_thread->step_after_step_resume_breakpoint)
4593 {
4594 /* Back when the step-resume breakpoint was inserted, we
4595 were trying to single-step off a breakpoint. Go back
4596 to doing that. */
4597 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4598 ecs->event_thread->stepping_over_breakpoint = 1;
4599 keep_going (ecs);
4600 return;
4601 }
4602 break;
4603
4604 case BPSTAT_WHAT_KEEP_CHECKING:
4605 break;
4606 }
4607 }
c906108c 4608
488f131b
JB
4609 /* We come here if we hit a breakpoint but should not
4610 stop for it. Possibly we also were stepping
4611 and should stop for that. So fall through and
4612 test for stepping. But, if not stepping,
4613 do not stop. */
c906108c 4614
a7212384
UW
4615 /* In all-stop mode, if we're currently stepping but have stopped in
4616 some other thread, we need to switch back to the stepped thread. */
4617 if (!non_stop)
4618 {
4619 struct thread_info *tp;
abbb1732 4620
b3444185 4621 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4622 ecs->event_thread);
4623 if (tp)
4624 {
4625 /* However, if the current thread is blocked on some internal
4626 breakpoint, and we simply need to step over that breakpoint
4627 to get it going again, do that first. */
16c381f0 4628 if ((ecs->event_thread->control.trap_expected
a493e3e2 4629 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4630 || ecs->event_thread->stepping_over_breakpoint)
4631 {
4632 keep_going (ecs);
4633 return;
4634 }
4635
66852e9c
PA
4636 /* If the stepping thread exited, then don't try to switch
4637 back and resume it, which could fail in several different
4638 ways depending on the target. Instead, just keep going.
4639
4640 We can find a stepping dead thread in the thread list in
4641 two cases:
4642
4643 - The target supports thread exit events, and when the
4644 target tries to delete the thread from the thread list,
4645 inferior_ptid pointed at the exiting thread. In such
4646 case, calling delete_thread does not really remove the
4647 thread from the list; instead, the thread is left listed,
4648 with 'exited' state.
4649
4650 - The target's debug interface does not support thread
4651 exit events, and so we have no idea whatsoever if the
4652 previously stepping thread is still alive. For that
4653 reason, we need to synchronously query the target
4654 now. */
b3444185
PA
4655 if (is_exited (tp->ptid)
4656 || !target_thread_alive (tp->ptid))
4657 {
4658 if (debug_infrun)
3e43a32a
MS
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: not switching back to "
4661 "stepped thread, it has vanished\n");
b3444185
PA
4662
4663 delete_thread (tp->ptid);
4664 keep_going (ecs);
4665 return;
4666 }
4667
a7212384
UW
4668 /* Otherwise, we no longer expect a trap in the current thread.
4669 Clear the trap_expected flag before switching back -- this is
4670 what keep_going would do as well, if we called it. */
16c381f0 4671 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4672
4673 if (debug_infrun)
4674 fprintf_unfiltered (gdb_stdlog,
4675 "infrun: switching back to stepped thread\n");
4676
4677 ecs->event_thread = tp;
4678 ecs->ptid = tp->ptid;
4679 context_switch (ecs->ptid);
4680 keep_going (ecs);
4681 return;
4682 }
4683 }
4684
8358c15c 4685 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4686 {
527159b7 4687 if (debug_infrun)
d3169d93
DJ
4688 fprintf_unfiltered (gdb_stdlog,
4689 "infrun: step-resume breakpoint is inserted\n");
527159b7 4690
488f131b
JB
4691 /* Having a step-resume breakpoint overrides anything
4692 else having to do with stepping commands until
4693 that breakpoint is reached. */
488f131b
JB
4694 keep_going (ecs);
4695 return;
4696 }
c5aa993b 4697
16c381f0 4698 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4699 {
527159b7 4700 if (debug_infrun)
8a9de0e4 4701 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4702 /* Likewise if we aren't even stepping. */
488f131b
JB
4703 keep_going (ecs);
4704 return;
4705 }
c5aa993b 4706
4b7703ad
JB
4707 /* Re-fetch current thread's frame in case the code above caused
4708 the frame cache to be re-initialized, making our FRAME variable
4709 a dangling pointer. */
4710 frame = get_current_frame ();
628fe4e4 4711 gdbarch = get_frame_arch (frame);
7e324e48 4712 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4713
488f131b 4714 /* If stepping through a line, keep going if still within it.
c906108c 4715
488f131b
JB
4716 Note that step_range_end is the address of the first instruction
4717 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4718 within it!
4719
4720 Note also that during reverse execution, we may be stepping
4721 through a function epilogue and therefore must detect when
4722 the current-frame changes in the middle of a line. */
4723
ce4c476a 4724 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4725 && (execution_direction != EXEC_REVERSE
388a8562 4726 || frame_id_eq (get_frame_id (frame),
16c381f0 4727 ecs->event_thread->control.step_frame_id)))
488f131b 4728 {
527159b7 4729 if (debug_infrun)
5af949e3
UW
4730 fprintf_unfiltered
4731 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4732 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4733 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4734
c1e36e3e
PA
4735 /* Tentatively re-enable range stepping; `resume' disables it if
4736 necessary (e.g., if we're stepping over a breakpoint or we
4737 have software watchpoints). */
4738 ecs->event_thread->control.may_range_step = 1;
4739
b2175913
MS
4740 /* When stepping backward, stop at beginning of line range
4741 (unless it's the function entry point, in which case
4742 keep going back to the call point). */
16c381f0 4743 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4744 && stop_pc != ecs->stop_func_start
4745 && execution_direction == EXEC_REVERSE)
4746 {
16c381f0 4747 ecs->event_thread->control.stop_step = 1;
33d62d64 4748 print_end_stepping_range_reason ();
b2175913
MS
4749 stop_stepping (ecs);
4750 }
4751 else
4752 keep_going (ecs);
4753
488f131b
JB
4754 return;
4755 }
c5aa993b 4756
488f131b 4757 /* We stepped out of the stepping range. */
c906108c 4758
488f131b 4759 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4760 loader dynamic symbol resolution code...
4761
4762 EXEC_FORWARD: we keep on single stepping until we exit the run
4763 time loader code and reach the callee's address.
4764
4765 EXEC_REVERSE: we've already executed the callee (backward), and
4766 the runtime loader code is handled just like any other
4767 undebuggable function call. Now we need only keep stepping
4768 backward through the trampoline code, and that's handled further
4769 down, so there is nothing for us to do here. */
4770
4771 if (execution_direction != EXEC_REVERSE
16c381f0 4772 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4773 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4774 {
4c8c40e6 4775 CORE_ADDR pc_after_resolver =
568d6575 4776 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4777
527159b7 4778 if (debug_infrun)
3e43a32a
MS
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: stepped into dynsym resolve code\n");
527159b7 4781
488f131b
JB
4782 if (pc_after_resolver)
4783 {
4784 /* Set up a step-resume breakpoint at the address
4785 indicated by SKIP_SOLIB_RESOLVER. */
4786 struct symtab_and_line sr_sal;
abbb1732 4787
fe39c653 4788 init_sal (&sr_sal);
488f131b 4789 sr_sal.pc = pc_after_resolver;
6c95b8df 4790 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4791
a6d9a66e
UW
4792 insert_step_resume_breakpoint_at_sal (gdbarch,
4793 sr_sal, null_frame_id);
c5aa993b 4794 }
c906108c 4795
488f131b
JB
4796 keep_going (ecs);
4797 return;
4798 }
c906108c 4799
16c381f0
JK
4800 if (ecs->event_thread->control.step_range_end != 1
4801 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4802 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4803 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4804 {
527159b7 4805 if (debug_infrun)
3e43a32a
MS
4806 fprintf_unfiltered (gdb_stdlog,
4807 "infrun: stepped into signal trampoline\n");
42edda50 4808 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4809 a signal trampoline (either by a signal being delivered or by
4810 the signal handler returning). Just single-step until the
4811 inferior leaves the trampoline (either by calling the handler
4812 or returning). */
488f131b
JB
4813 keep_going (ecs);
4814 return;
4815 }
c906108c 4816
14132e89
MR
4817 /* If we're in the return path from a shared library trampoline,
4818 we want to proceed through the trampoline when stepping. */
4819 /* macro/2012-04-25: This needs to come before the subroutine
4820 call check below as on some targets return trampolines look
4821 like subroutine calls (MIPS16 return thunks). */
4822 if (gdbarch_in_solib_return_trampoline (gdbarch,
4823 stop_pc, ecs->stop_func_name)
4824 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4825 {
4826 /* Determine where this trampoline returns. */
4827 CORE_ADDR real_stop_pc;
4828
4829 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4830
4831 if (debug_infrun)
4832 fprintf_unfiltered (gdb_stdlog,
4833 "infrun: stepped into solib return tramp\n");
4834
4835 /* Only proceed through if we know where it's going. */
4836 if (real_stop_pc)
4837 {
4838 /* And put the step-breakpoint there and go until there. */
4839 struct symtab_and_line sr_sal;
4840
4841 init_sal (&sr_sal); /* initialize to zeroes */
4842 sr_sal.pc = real_stop_pc;
4843 sr_sal.section = find_pc_overlay (sr_sal.pc);
4844 sr_sal.pspace = get_frame_program_space (frame);
4845
4846 /* Do not specify what the fp should be when we stop since
4847 on some machines the prologue is where the new fp value
4848 is established. */
4849 insert_step_resume_breakpoint_at_sal (gdbarch,
4850 sr_sal, null_frame_id);
4851
4852 /* Restart without fiddling with the step ranges or
4853 other state. */
4854 keep_going (ecs);
4855 return;
4856 }
4857 }
4858
c17eaafe
DJ
4859 /* Check for subroutine calls. The check for the current frame
4860 equalling the step ID is not necessary - the check of the
4861 previous frame's ID is sufficient - but it is a common case and
4862 cheaper than checking the previous frame's ID.
14e60db5
DJ
4863
4864 NOTE: frame_id_eq will never report two invalid frame IDs as
4865 being equal, so to get into this block, both the current and
4866 previous frame must have valid frame IDs. */
005ca36a
JB
4867 /* The outer_frame_id check is a heuristic to detect stepping
4868 through startup code. If we step over an instruction which
4869 sets the stack pointer from an invalid value to a valid value,
4870 we may detect that as a subroutine call from the mythical
4871 "outermost" function. This could be fixed by marking
4872 outermost frames as !stack_p,code_p,special_p. Then the
4873 initial outermost frame, before sp was valid, would
ce6cca6d 4874 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4875 for more. */
edb3359d 4876 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4877 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4878 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4879 ecs->event_thread->control.step_stack_frame_id)
4880 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4881 outer_frame_id)
4882 || step_start_function != find_pc_function (stop_pc))))
488f131b 4883 {
95918acb 4884 CORE_ADDR real_stop_pc;
8fb3e588 4885
527159b7 4886 if (debug_infrun)
8a9de0e4 4887 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4888
16c381f0
JK
4889 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4890 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4891 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4892 ecs->stop_func_start)))
95918acb
AC
4893 {
4894 /* I presume that step_over_calls is only 0 when we're
4895 supposed to be stepping at the assembly language level
4896 ("stepi"). Just stop. */
4897 /* Also, maybe we just did a "nexti" inside a prolog, so we
4898 thought it was a subroutine call but it was not. Stop as
4899 well. FENN */
388a8562 4900 /* And this works the same backward as frontward. MVS */
16c381f0 4901 ecs->event_thread->control.stop_step = 1;
33d62d64 4902 print_end_stepping_range_reason ();
95918acb
AC
4903 stop_stepping (ecs);
4904 return;
4905 }
8fb3e588 4906
388a8562
MS
4907 /* Reverse stepping through solib trampolines. */
4908
4909 if (execution_direction == EXEC_REVERSE
16c381f0 4910 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4911 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4912 || (ecs->stop_func_start == 0
4913 && in_solib_dynsym_resolve_code (stop_pc))))
4914 {
4915 /* Any solib trampoline code can be handled in reverse
4916 by simply continuing to single-step. We have already
4917 executed the solib function (backwards), and a few
4918 steps will take us back through the trampoline to the
4919 caller. */
4920 keep_going (ecs);
4921 return;
4922 }
4923
16c381f0 4924 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4925 {
b2175913
MS
4926 /* We're doing a "next".
4927
4928 Normal (forward) execution: set a breakpoint at the
4929 callee's return address (the address at which the caller
4930 will resume).
4931
4932 Reverse (backward) execution. set the step-resume
4933 breakpoint at the start of the function that we just
4934 stepped into (backwards), and continue to there. When we
6130d0b7 4935 get there, we'll need to single-step back to the caller. */
b2175913
MS
4936
4937 if (execution_direction == EXEC_REVERSE)
4938 {
acf9414f
JK
4939 /* If we're already at the start of the function, we've either
4940 just stepped backward into a single instruction function,
4941 or stepped back out of a signal handler to the first instruction
4942 of the function. Just keep going, which will single-step back
4943 to the caller. */
4944 if (ecs->stop_func_start != stop_pc)
4945 {
4946 struct symtab_and_line sr_sal;
4947
4948 /* Normal function call return (static or dynamic). */
4949 init_sal (&sr_sal);
4950 sr_sal.pc = ecs->stop_func_start;
4951 sr_sal.pspace = get_frame_program_space (frame);
4952 insert_step_resume_breakpoint_at_sal (gdbarch,
4953 sr_sal, null_frame_id);
4954 }
b2175913
MS
4955 }
4956 else
568d6575 4957 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4958
8567c30f
AC
4959 keep_going (ecs);
4960 return;
4961 }
a53c66de 4962
95918acb 4963 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4964 calling routine and the real function), locate the real
4965 function. That's what tells us (a) whether we want to step
4966 into it at all, and (b) what prologue we want to run to the
4967 end of, if we do step into it. */
568d6575 4968 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4969 if (real_stop_pc == 0)
568d6575 4970 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4971 if (real_stop_pc != 0)
4972 ecs->stop_func_start = real_stop_pc;
8fb3e588 4973
db5f024e 4974 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4975 {
4976 struct symtab_and_line sr_sal;
abbb1732 4977
1b2bfbb9
RC
4978 init_sal (&sr_sal);
4979 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4980 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4981
a6d9a66e
UW
4982 insert_step_resume_breakpoint_at_sal (gdbarch,
4983 sr_sal, null_frame_id);
8fb3e588
AC
4984 keep_going (ecs);
4985 return;
1b2bfbb9
RC
4986 }
4987
95918acb 4988 /* If we have line number information for the function we are
1bfeeb0f
JL
4989 thinking of stepping into and the function isn't on the skip
4990 list, step into it.
95918acb 4991
8fb3e588
AC
4992 If there are several symtabs at that PC (e.g. with include
4993 files), just want to know whether *any* of them have line
4994 numbers. find_pc_line handles this. */
95918acb
AC
4995 {
4996 struct symtab_and_line tmp_sal;
8fb3e588 4997
95918acb 4998 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4999 if (tmp_sal.line != 0
85817405
JK
5000 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5001 &tmp_sal))
95918acb 5002 {
b2175913 5003 if (execution_direction == EXEC_REVERSE)
568d6575 5004 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5005 else
568d6575 5006 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5007 return;
5008 }
5009 }
5010
5011 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5012 set, we stop the step so that the user has a chance to switch
5013 in assembly mode. */
16c381f0 5014 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5015 && step_stop_if_no_debug)
95918acb 5016 {
16c381f0 5017 ecs->event_thread->control.stop_step = 1;
33d62d64 5018 print_end_stepping_range_reason ();
95918acb
AC
5019 stop_stepping (ecs);
5020 return;
5021 }
5022
b2175913
MS
5023 if (execution_direction == EXEC_REVERSE)
5024 {
acf9414f
JK
5025 /* If we're already at the start of the function, we've either just
5026 stepped backward into a single instruction function without line
5027 number info, or stepped back out of a signal handler to the first
5028 instruction of the function without line number info. Just keep
5029 going, which will single-step back to the caller. */
5030 if (ecs->stop_func_start != stop_pc)
5031 {
5032 /* Set a breakpoint at callee's start address.
5033 From there we can step once and be back in the caller. */
5034 struct symtab_and_line sr_sal;
abbb1732 5035
acf9414f
JK
5036 init_sal (&sr_sal);
5037 sr_sal.pc = ecs->stop_func_start;
5038 sr_sal.pspace = get_frame_program_space (frame);
5039 insert_step_resume_breakpoint_at_sal (gdbarch,
5040 sr_sal, null_frame_id);
5041 }
b2175913
MS
5042 }
5043 else
5044 /* Set a breakpoint at callee's return address (the address
5045 at which the caller will resume). */
568d6575 5046 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5047
95918acb 5048 keep_going (ecs);
488f131b 5049 return;
488f131b 5050 }
c906108c 5051
fdd654f3
MS
5052 /* Reverse stepping through solib trampolines. */
5053
5054 if (execution_direction == EXEC_REVERSE
16c381f0 5055 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5056 {
5057 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5058 || (ecs->stop_func_start == 0
5059 && in_solib_dynsym_resolve_code (stop_pc)))
5060 {
5061 /* Any solib trampoline code can be handled in reverse
5062 by simply continuing to single-step. We have already
5063 executed the solib function (backwards), and a few
5064 steps will take us back through the trampoline to the
5065 caller. */
5066 keep_going (ecs);
5067 return;
5068 }
5069 else if (in_solib_dynsym_resolve_code (stop_pc))
5070 {
5071 /* Stepped backward into the solib dynsym resolver.
5072 Set a breakpoint at its start and continue, then
5073 one more step will take us out. */
5074 struct symtab_and_line sr_sal;
abbb1732 5075
fdd654f3
MS
5076 init_sal (&sr_sal);
5077 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5078 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5079 insert_step_resume_breakpoint_at_sal (gdbarch,
5080 sr_sal, null_frame_id);
5081 keep_going (ecs);
5082 return;
5083 }
5084 }
5085
2afb61aa 5086 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5087
1b2bfbb9
RC
5088 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5089 the trampoline processing logic, however, there are some trampolines
5090 that have no names, so we should do trampoline handling first. */
16c381f0 5091 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5092 && ecs->stop_func_name == NULL
2afb61aa 5093 && stop_pc_sal.line == 0)
1b2bfbb9 5094 {
527159b7 5095 if (debug_infrun)
3e43a32a
MS
5096 fprintf_unfiltered (gdb_stdlog,
5097 "infrun: stepped into undebuggable function\n");
527159b7 5098
1b2bfbb9 5099 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5100 undebuggable function (where there is no debugging information
5101 and no line number corresponding to the address where the
1b2bfbb9
RC
5102 inferior stopped). Since we want to skip this kind of code,
5103 we keep going until the inferior returns from this
14e60db5
DJ
5104 function - unless the user has asked us not to (via
5105 set step-mode) or we no longer know how to get back
5106 to the call site. */
5107 if (step_stop_if_no_debug
c7ce8faa 5108 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5109 {
5110 /* If we have no line number and the step-stop-if-no-debug
5111 is set, we stop the step so that the user has a chance to
5112 switch in assembly mode. */
16c381f0 5113 ecs->event_thread->control.stop_step = 1;
33d62d64 5114 print_end_stepping_range_reason ();
1b2bfbb9
RC
5115 stop_stepping (ecs);
5116 return;
5117 }
5118 else
5119 {
5120 /* Set a breakpoint at callee's return address (the address
5121 at which the caller will resume). */
568d6575 5122 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5123 keep_going (ecs);
5124 return;
5125 }
5126 }
5127
16c381f0 5128 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5129 {
5130 /* It is stepi or nexti. We always want to stop stepping after
5131 one instruction. */
527159b7 5132 if (debug_infrun)
8a9de0e4 5133 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5134 ecs->event_thread->control.stop_step = 1;
33d62d64 5135 print_end_stepping_range_reason ();
1b2bfbb9
RC
5136 stop_stepping (ecs);
5137 return;
5138 }
5139
2afb61aa 5140 if (stop_pc_sal.line == 0)
488f131b
JB
5141 {
5142 /* We have no line number information. That means to stop
5143 stepping (does this always happen right after one instruction,
5144 when we do "s" in a function with no line numbers,
5145 or can this happen as a result of a return or longjmp?). */
527159b7 5146 if (debug_infrun)
8a9de0e4 5147 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5148 ecs->event_thread->control.stop_step = 1;
33d62d64 5149 print_end_stepping_range_reason ();
488f131b
JB
5150 stop_stepping (ecs);
5151 return;
5152 }
c906108c 5153
edb3359d
DJ
5154 /* Look for "calls" to inlined functions, part one. If the inline
5155 frame machinery detected some skipped call sites, we have entered
5156 a new inline function. */
5157
5158 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5159 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5160 && inline_skipped_frames (ecs->ptid))
5161 {
5162 struct symtab_and_line call_sal;
5163
5164 if (debug_infrun)
5165 fprintf_unfiltered (gdb_stdlog,
5166 "infrun: stepped into inlined function\n");
5167
5168 find_frame_sal (get_current_frame (), &call_sal);
5169
16c381f0 5170 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5171 {
5172 /* For "step", we're going to stop. But if the call site
5173 for this inlined function is on the same source line as
5174 we were previously stepping, go down into the function
5175 first. Otherwise stop at the call site. */
5176
5177 if (call_sal.line == ecs->event_thread->current_line
5178 && call_sal.symtab == ecs->event_thread->current_symtab)
5179 step_into_inline_frame (ecs->ptid);
5180
16c381f0 5181 ecs->event_thread->control.stop_step = 1;
33d62d64 5182 print_end_stepping_range_reason ();
edb3359d
DJ
5183 stop_stepping (ecs);
5184 return;
5185 }
5186 else
5187 {
5188 /* For "next", we should stop at the call site if it is on a
5189 different source line. Otherwise continue through the
5190 inlined function. */
5191 if (call_sal.line == ecs->event_thread->current_line
5192 && call_sal.symtab == ecs->event_thread->current_symtab)
5193 keep_going (ecs);
5194 else
5195 {
16c381f0 5196 ecs->event_thread->control.stop_step = 1;
33d62d64 5197 print_end_stepping_range_reason ();
edb3359d
DJ
5198 stop_stepping (ecs);
5199 }
5200 return;
5201 }
5202 }
5203
5204 /* Look for "calls" to inlined functions, part two. If we are still
5205 in the same real function we were stepping through, but we have
5206 to go further up to find the exact frame ID, we are stepping
5207 through a more inlined call beyond its call site. */
5208
5209 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5210 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5211 ecs->event_thread->control.step_frame_id)
edb3359d 5212 && stepped_in_from (get_current_frame (),
16c381f0 5213 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5214 {
5215 if (debug_infrun)
5216 fprintf_unfiltered (gdb_stdlog,
5217 "infrun: stepping through inlined function\n");
5218
16c381f0 5219 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5220 keep_going (ecs);
5221 else
5222 {
16c381f0 5223 ecs->event_thread->control.stop_step = 1;
33d62d64 5224 print_end_stepping_range_reason ();
edb3359d
DJ
5225 stop_stepping (ecs);
5226 }
5227 return;
5228 }
5229
2afb61aa 5230 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5231 && (ecs->event_thread->current_line != stop_pc_sal.line
5232 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5233 {
5234 /* We are at the start of a different line. So stop. Note that
5235 we don't stop if we step into the middle of a different line.
5236 That is said to make things like for (;;) statements work
5237 better. */
527159b7 5238 if (debug_infrun)
3e43a32a
MS
5239 fprintf_unfiltered (gdb_stdlog,
5240 "infrun: stepped to a different line\n");
16c381f0 5241 ecs->event_thread->control.stop_step = 1;
33d62d64 5242 print_end_stepping_range_reason ();
488f131b
JB
5243 stop_stepping (ecs);
5244 return;
5245 }
c906108c 5246
488f131b 5247 /* We aren't done stepping.
c906108c 5248
488f131b
JB
5249 Optimize by setting the stepping range to the line.
5250 (We might not be in the original line, but if we entered a
5251 new line in mid-statement, we continue stepping. This makes
5252 things like for(;;) statements work better.) */
c906108c 5253
16c381f0
JK
5254 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5255 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5256 ecs->event_thread->control.may_range_step = 1;
edb3359d 5257 set_step_info (frame, stop_pc_sal);
488f131b 5258
527159b7 5259 if (debug_infrun)
8a9de0e4 5260 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5261 keep_going (ecs);
104c1213
JM
5262}
5263
b3444185 5264/* Is thread TP in the middle of single-stepping? */
104c1213 5265
a289b8f6 5266static int
b3444185 5267currently_stepping (struct thread_info *tp)
a7212384 5268{
8358c15c
JK
5269 return ((tp->control.step_range_end
5270 && tp->control.step_resume_breakpoint == NULL)
5271 || tp->control.trap_expected
8358c15c 5272 || bpstat_should_step ());
a7212384
UW
5273}
5274
b3444185
PA
5275/* Returns true if any thread *but* the one passed in "data" is in the
5276 middle of stepping or of handling a "next". */
a7212384 5277
104c1213 5278static int
b3444185 5279currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5280{
b3444185
PA
5281 if (tp == data)
5282 return 0;
5283
16c381f0 5284 return (tp->control.step_range_end
ede1849f 5285 || tp->control.trap_expected);
104c1213 5286}
c906108c 5287
b2175913
MS
5288/* Inferior has stepped into a subroutine call with source code that
5289 we should not step over. Do step to the first line of code in
5290 it. */
c2c6d25f
JM
5291
5292static void
568d6575
UW
5293handle_step_into_function (struct gdbarch *gdbarch,
5294 struct execution_control_state *ecs)
c2c6d25f
JM
5295{
5296 struct symtab *s;
2afb61aa 5297 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5298
7e324e48
GB
5299 fill_in_stop_func (gdbarch, ecs);
5300
c2c6d25f
JM
5301 s = find_pc_symtab (stop_pc);
5302 if (s && s->language != language_asm)
568d6575 5303 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5304 ecs->stop_func_start);
c2c6d25f 5305
2afb61aa 5306 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5307 /* Use the step_resume_break to step until the end of the prologue,
5308 even if that involves jumps (as it seems to on the vax under
5309 4.2). */
5310 /* If the prologue ends in the middle of a source line, continue to
5311 the end of that source line (if it is still within the function).
5312 Otherwise, just go to end of prologue. */
2afb61aa
PA
5313 if (stop_func_sal.end
5314 && stop_func_sal.pc != ecs->stop_func_start
5315 && stop_func_sal.end < ecs->stop_func_end)
5316 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5317
2dbd5e30
KB
5318 /* Architectures which require breakpoint adjustment might not be able
5319 to place a breakpoint at the computed address. If so, the test
5320 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5321 ecs->stop_func_start to an address at which a breakpoint may be
5322 legitimately placed.
8fb3e588 5323
2dbd5e30
KB
5324 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5325 made, GDB will enter an infinite loop when stepping through
5326 optimized code consisting of VLIW instructions which contain
5327 subinstructions corresponding to different source lines. On
5328 FR-V, it's not permitted to place a breakpoint on any but the
5329 first subinstruction of a VLIW instruction. When a breakpoint is
5330 set, GDB will adjust the breakpoint address to the beginning of
5331 the VLIW instruction. Thus, we need to make the corresponding
5332 adjustment here when computing the stop address. */
8fb3e588 5333
568d6575 5334 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5335 {
5336 ecs->stop_func_start
568d6575 5337 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5338 ecs->stop_func_start);
2dbd5e30
KB
5339 }
5340
c2c6d25f
JM
5341 if (ecs->stop_func_start == stop_pc)
5342 {
5343 /* We are already there: stop now. */
16c381f0 5344 ecs->event_thread->control.stop_step = 1;
33d62d64 5345 print_end_stepping_range_reason ();
c2c6d25f
JM
5346 stop_stepping (ecs);
5347 return;
5348 }
5349 else
5350 {
5351 /* Put the step-breakpoint there and go until there. */
fe39c653 5352 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5353 sr_sal.pc = ecs->stop_func_start;
5354 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5355 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5356
c2c6d25f 5357 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5358 some machines the prologue is where the new fp value is
5359 established. */
a6d9a66e 5360 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5361
5362 /* And make sure stepping stops right away then. */
16c381f0
JK
5363 ecs->event_thread->control.step_range_end
5364 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5365 }
5366 keep_going (ecs);
5367}
d4f3574e 5368
b2175913
MS
5369/* Inferior has stepped backward into a subroutine call with source
5370 code that we should not step over. Do step to the beginning of the
5371 last line of code in it. */
5372
5373static void
568d6575
UW
5374handle_step_into_function_backward (struct gdbarch *gdbarch,
5375 struct execution_control_state *ecs)
b2175913
MS
5376{
5377 struct symtab *s;
167e4384 5378 struct symtab_and_line stop_func_sal;
b2175913 5379
7e324e48
GB
5380 fill_in_stop_func (gdbarch, ecs);
5381
b2175913
MS
5382 s = find_pc_symtab (stop_pc);
5383 if (s && s->language != language_asm)
568d6575 5384 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5385 ecs->stop_func_start);
5386
5387 stop_func_sal = find_pc_line (stop_pc, 0);
5388
5389 /* OK, we're just going to keep stepping here. */
5390 if (stop_func_sal.pc == stop_pc)
5391 {
5392 /* We're there already. Just stop stepping now. */
16c381f0 5393 ecs->event_thread->control.stop_step = 1;
33d62d64 5394 print_end_stepping_range_reason ();
b2175913
MS
5395 stop_stepping (ecs);
5396 }
5397 else
5398 {
5399 /* Else just reset the step range and keep going.
5400 No step-resume breakpoint, they don't work for
5401 epilogues, which can have multiple entry paths. */
16c381f0
JK
5402 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5403 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5404 keep_going (ecs);
5405 }
5406 return;
5407}
5408
d3169d93 5409/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5410 This is used to both functions and to skip over code. */
5411
5412static void
2c03e5be
PA
5413insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5414 struct symtab_and_line sr_sal,
5415 struct frame_id sr_id,
5416 enum bptype sr_type)
44cbf7b5 5417{
611c83ae
PA
5418 /* There should never be more than one step-resume or longjmp-resume
5419 breakpoint per thread, so we should never be setting a new
44cbf7b5 5420 step_resume_breakpoint when one is already active. */
8358c15c 5421 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5422 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5423
5424 if (debug_infrun)
5425 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5426 "infrun: inserting step-resume breakpoint at %s\n",
5427 paddress (gdbarch, sr_sal.pc));
d3169d93 5428
8358c15c 5429 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5430 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5431}
5432
9da8c2a0 5433void
2c03e5be
PA
5434insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5435 struct symtab_and_line sr_sal,
5436 struct frame_id sr_id)
5437{
5438 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5439 sr_sal, sr_id,
5440 bp_step_resume);
44cbf7b5 5441}
7ce450bd 5442
2c03e5be
PA
5443/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5444 This is used to skip a potential signal handler.
7ce450bd 5445
14e60db5
DJ
5446 This is called with the interrupted function's frame. The signal
5447 handler, when it returns, will resume the interrupted function at
5448 RETURN_FRAME.pc. */
d303a6c7
AC
5449
5450static void
2c03e5be 5451insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5452{
5453 struct symtab_and_line sr_sal;
a6d9a66e 5454 struct gdbarch *gdbarch;
d303a6c7 5455
f4c1edd8 5456 gdb_assert (return_frame != NULL);
d303a6c7
AC
5457 init_sal (&sr_sal); /* initialize to zeros */
5458
a6d9a66e 5459 gdbarch = get_frame_arch (return_frame);
568d6575 5460 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5461 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5462 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5463
2c03e5be
PA
5464 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5465 get_stack_frame_id (return_frame),
5466 bp_hp_step_resume);
d303a6c7
AC
5467}
5468
2c03e5be
PA
5469/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5470 is used to skip a function after stepping into it (for "next" or if
5471 the called function has no debugging information).
14e60db5
DJ
5472
5473 The current function has almost always been reached by single
5474 stepping a call or return instruction. NEXT_FRAME belongs to the
5475 current function, and the breakpoint will be set at the caller's
5476 resume address.
5477
5478 This is a separate function rather than reusing
2c03e5be 5479 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5480 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5481 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5482
5483static void
5484insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5485{
5486 struct symtab_and_line sr_sal;
a6d9a66e 5487 struct gdbarch *gdbarch;
14e60db5
DJ
5488
5489 /* We shouldn't have gotten here if we don't know where the call site
5490 is. */
c7ce8faa 5491 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5492
5493 init_sal (&sr_sal); /* initialize to zeros */
5494
a6d9a66e 5495 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5496 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5497 frame_unwind_caller_pc (next_frame));
14e60db5 5498 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5499 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5500
a6d9a66e 5501 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5502 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5503}
5504
611c83ae
PA
5505/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5506 new breakpoint at the target of a jmp_buf. The handling of
5507 longjmp-resume uses the same mechanisms used for handling
5508 "step-resume" breakpoints. */
5509
5510static void
a6d9a66e 5511insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5512{
e81a37f7
TT
5513 /* There should never be more than one longjmp-resume breakpoint per
5514 thread, so we should never be setting a new
611c83ae 5515 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5516 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5517
5518 if (debug_infrun)
5519 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5520 "infrun: inserting longjmp-resume breakpoint at %s\n",
5521 paddress (gdbarch, pc));
611c83ae 5522
e81a37f7 5523 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5524 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5525}
5526
186c406b
TT
5527/* Insert an exception resume breakpoint. TP is the thread throwing
5528 the exception. The block B is the block of the unwinder debug hook
5529 function. FRAME is the frame corresponding to the call to this
5530 function. SYM is the symbol of the function argument holding the
5531 target PC of the exception. */
5532
5533static void
5534insert_exception_resume_breakpoint (struct thread_info *tp,
5535 struct block *b,
5536 struct frame_info *frame,
5537 struct symbol *sym)
5538{
bfd189b1 5539 volatile struct gdb_exception e;
186c406b
TT
5540
5541 /* We want to ignore errors here. */
5542 TRY_CATCH (e, RETURN_MASK_ERROR)
5543 {
5544 struct symbol *vsym;
5545 struct value *value;
5546 CORE_ADDR handler;
5547 struct breakpoint *bp;
5548
5549 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5550 value = read_var_value (vsym, frame);
5551 /* If the value was optimized out, revert to the old behavior. */
5552 if (! value_optimized_out (value))
5553 {
5554 handler = value_as_address (value);
5555
5556 if (debug_infrun)
5557 fprintf_unfiltered (gdb_stdlog,
5558 "infrun: exception resume at %lx\n",
5559 (unsigned long) handler);
5560
5561 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5562 handler, bp_exception_resume);
c70a6932
JK
5563
5564 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5565 frame = NULL;
5566
186c406b
TT
5567 bp->thread = tp->num;
5568 inferior_thread ()->control.exception_resume_breakpoint = bp;
5569 }
5570 }
5571}
5572
28106bc2
SDJ
5573/* A helper for check_exception_resume that sets an
5574 exception-breakpoint based on a SystemTap probe. */
5575
5576static void
5577insert_exception_resume_from_probe (struct thread_info *tp,
5578 const struct probe *probe,
28106bc2
SDJ
5579 struct frame_info *frame)
5580{
5581 struct value *arg_value;
5582 CORE_ADDR handler;
5583 struct breakpoint *bp;
5584
5585 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5586 if (!arg_value)
5587 return;
5588
5589 handler = value_as_address (arg_value);
5590
5591 if (debug_infrun)
5592 fprintf_unfiltered (gdb_stdlog,
5593 "infrun: exception resume at %s\n",
6bac7473 5594 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5595 handler));
5596
5597 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5598 handler, bp_exception_resume);
5599 bp->thread = tp->num;
5600 inferior_thread ()->control.exception_resume_breakpoint = bp;
5601}
5602
186c406b
TT
5603/* This is called when an exception has been intercepted. Check to
5604 see whether the exception's destination is of interest, and if so,
5605 set an exception resume breakpoint there. */
5606
5607static void
5608check_exception_resume (struct execution_control_state *ecs,
28106bc2 5609 struct frame_info *frame)
186c406b 5610{
bfd189b1 5611 volatile struct gdb_exception e;
28106bc2
SDJ
5612 const struct probe *probe;
5613 struct symbol *func;
5614
5615 /* First see if this exception unwinding breakpoint was set via a
5616 SystemTap probe point. If so, the probe has two arguments: the
5617 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5618 set a breakpoint there. */
6bac7473 5619 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5620 if (probe)
5621 {
6bac7473 5622 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5623 return;
5624 }
5625
5626 func = get_frame_function (frame);
5627 if (!func)
5628 return;
186c406b
TT
5629
5630 TRY_CATCH (e, RETURN_MASK_ERROR)
5631 {
5632 struct block *b;
8157b174 5633 struct block_iterator iter;
186c406b
TT
5634 struct symbol *sym;
5635 int argno = 0;
5636
5637 /* The exception breakpoint is a thread-specific breakpoint on
5638 the unwinder's debug hook, declared as:
5639
5640 void _Unwind_DebugHook (void *cfa, void *handler);
5641
5642 The CFA argument indicates the frame to which control is
5643 about to be transferred. HANDLER is the destination PC.
5644
5645 We ignore the CFA and set a temporary breakpoint at HANDLER.
5646 This is not extremely efficient but it avoids issues in gdb
5647 with computing the DWARF CFA, and it also works even in weird
5648 cases such as throwing an exception from inside a signal
5649 handler. */
5650
5651 b = SYMBOL_BLOCK_VALUE (func);
5652 ALL_BLOCK_SYMBOLS (b, iter, sym)
5653 {
5654 if (!SYMBOL_IS_ARGUMENT (sym))
5655 continue;
5656
5657 if (argno == 0)
5658 ++argno;
5659 else
5660 {
5661 insert_exception_resume_breakpoint (ecs->event_thread,
5662 b, frame, sym);
5663 break;
5664 }
5665 }
5666 }
5667}
5668
104c1213
JM
5669static void
5670stop_stepping (struct execution_control_state *ecs)
5671{
527159b7 5672 if (debug_infrun)
8a9de0e4 5673 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5674
cd0fc7c3
SS
5675 /* Let callers know we don't want to wait for the inferior anymore. */
5676 ecs->wait_some_more = 0;
5677}
5678
d4f3574e
SS
5679/* This function handles various cases where we need to continue
5680 waiting for the inferior. */
1777feb0 5681/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5682
5683static void
5684keep_going (struct execution_control_state *ecs)
5685{
c4dbc9af
PA
5686 /* Make sure normal_stop is called if we get a QUIT handled before
5687 reaching resume. */
5688 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5689
d4f3574e 5690 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5691 ecs->event_thread->prev_pc
5692 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5693
d4f3574e
SS
5694 /* If we did not do break;, it means we should keep running the
5695 inferior and not return to debugger. */
5696
16c381f0 5697 if (ecs->event_thread->control.trap_expected
a493e3e2 5698 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e
SS
5699 {
5700 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5701 the inferior, else we'd not get here) and we haven't yet
5702 gotten our trap. Simply continue. */
c4dbc9af
PA
5703
5704 discard_cleanups (old_cleanups);
2020b7ab 5705 resume (currently_stepping (ecs->event_thread),
16c381f0 5706 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5707 }
5708 else
5709 {
5710 /* Either the trap was not expected, but we are continuing
488f131b
JB
5711 anyway (the user asked that this signal be passed to the
5712 child)
5713 -- or --
5714 The signal was SIGTRAP, e.g. it was our signal, but we
5715 decided we should resume from it.
d4f3574e 5716
c36b740a 5717 We're going to run this baby now!
d4f3574e 5718
c36b740a
VP
5719 Note that insert_breakpoints won't try to re-insert
5720 already inserted breakpoints. Therefore, we don't
5721 care if breakpoints were already inserted, or not. */
5722
4e1c45ea 5723 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5724 {
9f5a595d 5725 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5726
9f5a595d 5727 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5728 /* Since we can't do a displaced step, we have to remove
5729 the breakpoint while we step it. To keep things
5730 simple, we remove them all. */
5731 remove_breakpoints ();
45e8c884
VP
5732 }
5733 else
d4f3574e 5734 {
bfd189b1 5735 volatile struct gdb_exception e;
abbb1732 5736
569631c6
UW
5737 /* Stop stepping when inserting breakpoints
5738 has failed. */
e236ba44
VP
5739 TRY_CATCH (e, RETURN_MASK_ERROR)
5740 {
5741 insert_breakpoints ();
5742 }
5743 if (e.reason < 0)
d4f3574e 5744 {
97bd5475 5745 exception_print (gdb_stderr, e);
d4f3574e
SS
5746 stop_stepping (ecs);
5747 return;
5748 }
d4f3574e
SS
5749 }
5750
16c381f0
JK
5751 ecs->event_thread->control.trap_expected
5752 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5753
5754 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5755 specifies that such a signal should be delivered to the
5756 target program).
5757
5758 Typically, this would occure when a user is debugging a
5759 target monitor on a simulator: the target monitor sets a
5760 breakpoint; the simulator encounters this break-point and
5761 halts the simulation handing control to GDB; GDB, noteing
5762 that the break-point isn't valid, returns control back to the
5763 simulator; the simulator then delivers the hardware
1777feb0 5764 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5765
a493e3e2 5766 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5767 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5768 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5769
c4dbc9af 5770 discard_cleanups (old_cleanups);
2020b7ab 5771 resume (currently_stepping (ecs->event_thread),
16c381f0 5772 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5773 }
5774
488f131b 5775 prepare_to_wait (ecs);
d4f3574e
SS
5776}
5777
104c1213
JM
5778/* This function normally comes after a resume, before
5779 handle_inferior_event exits. It takes care of any last bits of
5780 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5781
104c1213
JM
5782static void
5783prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5784{
527159b7 5785 if (debug_infrun)
8a9de0e4 5786 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5787
104c1213
JM
5788 /* This is the old end of the while loop. Let everybody know we
5789 want to wait for the inferior some more and get called again
5790 soon. */
5791 ecs->wait_some_more = 1;
c906108c 5792}
11cf8741 5793
33d62d64
JK
5794/* Several print_*_reason functions to print why the inferior has stopped.
5795 We always print something when the inferior exits, or receives a signal.
5796 The rest of the cases are dealt with later on in normal_stop and
5797 print_it_typical. Ideally there should be a call to one of these
5798 print_*_reason functions functions from handle_inferior_event each time
5799 stop_stepping is called. */
5800
5801/* Print why the inferior has stopped.
5802 We are done with a step/next/si/ni command, print why the inferior has
5803 stopped. For now print nothing. Print a message only if not in the middle
5804 of doing a "step n" operation for n > 1. */
5805
5806static void
5807print_end_stepping_range_reason (void)
5808{
16c381f0
JK
5809 if ((!inferior_thread ()->step_multi
5810 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5811 && ui_out_is_mi_like_p (current_uiout))
5812 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5813 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5814}
5815
5816/* The inferior was terminated by a signal, print why it stopped. */
5817
11cf8741 5818static void
2ea28649 5819print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5820{
79a45e25
PA
5821 struct ui_out *uiout = current_uiout;
5822
33d62d64
JK
5823 annotate_signalled ();
5824 if (ui_out_is_mi_like_p (uiout))
5825 ui_out_field_string
5826 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5827 ui_out_text (uiout, "\nProgram terminated with signal ");
5828 annotate_signal_name ();
5829 ui_out_field_string (uiout, "signal-name",
2ea28649 5830 gdb_signal_to_name (siggnal));
33d62d64
JK
5831 annotate_signal_name_end ();
5832 ui_out_text (uiout, ", ");
5833 annotate_signal_string ();
5834 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5835 gdb_signal_to_string (siggnal));
33d62d64
JK
5836 annotate_signal_string_end ();
5837 ui_out_text (uiout, ".\n");
5838 ui_out_text (uiout, "The program no longer exists.\n");
5839}
5840
5841/* The inferior program is finished, print why it stopped. */
5842
5843static void
5844print_exited_reason (int exitstatus)
5845{
fda326dd
TT
5846 struct inferior *inf = current_inferior ();
5847 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5848 struct ui_out *uiout = current_uiout;
fda326dd 5849
33d62d64
JK
5850 annotate_exited (exitstatus);
5851 if (exitstatus)
5852 {
5853 if (ui_out_is_mi_like_p (uiout))
5854 ui_out_field_string (uiout, "reason",
5855 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5856 ui_out_text (uiout, "[Inferior ");
5857 ui_out_text (uiout, plongest (inf->num));
5858 ui_out_text (uiout, " (");
5859 ui_out_text (uiout, pidstr);
5860 ui_out_text (uiout, ") exited with code ");
33d62d64 5861 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5862 ui_out_text (uiout, "]\n");
33d62d64
JK
5863 }
5864 else
11cf8741 5865 {
9dc5e2a9 5866 if (ui_out_is_mi_like_p (uiout))
034dad6f 5867 ui_out_field_string
33d62d64 5868 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5869 ui_out_text (uiout, "[Inferior ");
5870 ui_out_text (uiout, plongest (inf->num));
5871 ui_out_text (uiout, " (");
5872 ui_out_text (uiout, pidstr);
5873 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5874 }
5875 /* Support the --return-child-result option. */
5876 return_child_result_value = exitstatus;
5877}
5878
5879/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5880 tells us to print about it. */
33d62d64
JK
5881
5882static void
2ea28649 5883print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5884{
79a45e25
PA
5885 struct ui_out *uiout = current_uiout;
5886
33d62d64
JK
5887 annotate_signal ();
5888
a493e3e2 5889 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5890 {
5891 struct thread_info *t = inferior_thread ();
5892
5893 ui_out_text (uiout, "\n[");
5894 ui_out_field_string (uiout, "thread-name",
5895 target_pid_to_str (t->ptid));
5896 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5897 ui_out_text (uiout, " stopped");
5898 }
5899 else
5900 {
5901 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5902 annotate_signal_name ();
33d62d64
JK
5903 if (ui_out_is_mi_like_p (uiout))
5904 ui_out_field_string
5905 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5906 ui_out_field_string (uiout, "signal-name",
2ea28649 5907 gdb_signal_to_name (siggnal));
8b93c638
JM
5908 annotate_signal_name_end ();
5909 ui_out_text (uiout, ", ");
5910 annotate_signal_string ();
488f131b 5911 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5912 gdb_signal_to_string (siggnal));
8b93c638 5913 annotate_signal_string_end ();
33d62d64
JK
5914 }
5915 ui_out_text (uiout, ".\n");
5916}
252fbfc8 5917
33d62d64
JK
5918/* Reverse execution: target ran out of history info, print why the inferior
5919 has stopped. */
252fbfc8 5920
33d62d64
JK
5921static void
5922print_no_history_reason (void)
5923{
79a45e25 5924 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5925}
43ff13b4 5926
c906108c
SS
5927/* Here to return control to GDB when the inferior stops for real.
5928 Print appropriate messages, remove breakpoints, give terminal our modes.
5929
5930 STOP_PRINT_FRAME nonzero means print the executing frame
5931 (pc, function, args, file, line number and line text).
5932 BREAKPOINTS_FAILED nonzero means stop was due to error
5933 attempting to insert breakpoints. */
5934
5935void
96baa820 5936normal_stop (void)
c906108c 5937{
73b65bb0
DJ
5938 struct target_waitstatus last;
5939 ptid_t last_ptid;
29f49a6a 5940 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5941
5942 get_last_target_status (&last_ptid, &last);
5943
29f49a6a
PA
5944 /* If an exception is thrown from this point on, make sure to
5945 propagate GDB's knowledge of the executing state to the
5946 frontend/user running state. A QUIT is an easy exception to see
5947 here, so do this before any filtered output. */
c35b1492
PA
5948 if (!non_stop)
5949 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5950 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5951 && last.kind != TARGET_WAITKIND_EXITED
5952 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5953 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5954
4f8d22e3
PA
5955 /* In non-stop mode, we don't want GDB to switch threads behind the
5956 user's back, to avoid races where the user is typing a command to
5957 apply to thread x, but GDB switches to thread y before the user
5958 finishes entering the command. */
5959
c906108c
SS
5960 /* As with the notification of thread events, we want to delay
5961 notifying the user that we've switched thread context until
5962 the inferior actually stops.
5963
73b65bb0
DJ
5964 There's no point in saying anything if the inferior has exited.
5965 Note that SIGNALLED here means "exited with a signal", not
5966 "received a signal". */
4f8d22e3
PA
5967 if (!non_stop
5968 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5969 && target_has_execution
5970 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5971 && last.kind != TARGET_WAITKIND_EXITED
5972 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5973 {
5974 target_terminal_ours_for_output ();
a3f17187 5975 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5976 target_pid_to_str (inferior_ptid));
b8fa951a 5977 annotate_thread_changed ();
39f77062 5978 previous_inferior_ptid = inferior_ptid;
c906108c 5979 }
c906108c 5980
0e5bf2a8
PA
5981 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5982 {
5983 gdb_assert (sync_execution || !target_can_async_p ());
5984
5985 target_terminal_ours_for_output ();
5986 printf_filtered (_("No unwaited-for children left.\n"));
5987 }
5988
74960c60 5989 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5990 {
5991 if (remove_breakpoints ())
5992 {
5993 target_terminal_ours_for_output ();
3e43a32a
MS
5994 printf_filtered (_("Cannot remove breakpoints because "
5995 "program is no longer writable.\nFurther "
5996 "execution is probably impossible.\n"));
c906108c
SS
5997 }
5998 }
c906108c 5999
c906108c
SS
6000 /* If an auto-display called a function and that got a signal,
6001 delete that auto-display to avoid an infinite recursion. */
6002
6003 if (stopped_by_random_signal)
6004 disable_current_display ();
6005
6006 /* Don't print a message if in the middle of doing a "step n"
6007 operation for n > 1 */
af679fd0
PA
6008 if (target_has_execution
6009 && last.kind != TARGET_WAITKIND_SIGNALLED
6010 && last.kind != TARGET_WAITKIND_EXITED
6011 && inferior_thread ()->step_multi
16c381f0 6012 && inferior_thread ()->control.stop_step)
c906108c
SS
6013 goto done;
6014
6015 target_terminal_ours ();
0f641c01 6016 async_enable_stdin ();
c906108c 6017
7abfe014
DJ
6018 /* Set the current source location. This will also happen if we
6019 display the frame below, but the current SAL will be incorrect
6020 during a user hook-stop function. */
d729566a 6021 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6022 set_current_sal_from_frame (get_current_frame (), 1);
6023
dd7e2d2b
PA
6024 /* Let the user/frontend see the threads as stopped. */
6025 do_cleanups (old_chain);
6026
6027 /* Look up the hook_stop and run it (CLI internally handles problem
6028 of stop_command's pre-hook not existing). */
6029 if (stop_command)
6030 catch_errors (hook_stop_stub, stop_command,
6031 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6032
d729566a 6033 if (!has_stack_frames ())
d51fd4c8 6034 goto done;
c906108c 6035
32400beb
PA
6036 if (last.kind == TARGET_WAITKIND_SIGNALLED
6037 || last.kind == TARGET_WAITKIND_EXITED)
6038 goto done;
6039
c906108c
SS
6040 /* Select innermost stack frame - i.e., current frame is frame 0,
6041 and current location is based on that.
6042 Don't do this on return from a stack dummy routine,
1777feb0 6043 or if the program has exited. */
c906108c
SS
6044
6045 if (!stop_stack_dummy)
6046 {
0f7d239c 6047 select_frame (get_current_frame ());
c906108c
SS
6048
6049 /* Print current location without a level number, if
c5aa993b
JM
6050 we have changed functions or hit a breakpoint.
6051 Print source line if we have one.
6052 bpstat_print() contains the logic deciding in detail
1777feb0 6053 what to print, based on the event(s) that just occurred. */
c906108c 6054
d01a8610
AS
6055 /* If --batch-silent is enabled then there's no need to print the current
6056 source location, and to try risks causing an error message about
6057 missing source files. */
6058 if (stop_print_frame && !batch_silent)
c906108c
SS
6059 {
6060 int bpstat_ret;
6061 int source_flag;
917317f4 6062 int do_frame_printing = 1;
347bddb7 6063 struct thread_info *tp = inferior_thread ();
c906108c 6064
36dfb11c 6065 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6066 switch (bpstat_ret)
6067 {
6068 case PRINT_UNKNOWN:
aa0cd9c1 6069 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6070 (or should) carry around the function and does (or
6071 should) use that when doing a frame comparison. */
16c381f0
JK
6072 if (tp->control.stop_step
6073 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6074 get_frame_id (get_current_frame ()))
917317f4 6075 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6076 source_flag = SRC_LINE; /* Finished step, just
6077 print source line. */
917317f4 6078 else
1777feb0
MS
6079 source_flag = SRC_AND_LOC; /* Print location and
6080 source line. */
917317f4
JM
6081 break;
6082 case PRINT_SRC_AND_LOC:
1777feb0
MS
6083 source_flag = SRC_AND_LOC; /* Print location and
6084 source line. */
917317f4
JM
6085 break;
6086 case PRINT_SRC_ONLY:
c5394b80 6087 source_flag = SRC_LINE;
917317f4
JM
6088 break;
6089 case PRINT_NOTHING:
488f131b 6090 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6091 do_frame_printing = 0;
6092 break;
6093 default:
e2e0b3e5 6094 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6095 }
c906108c
SS
6096
6097 /* The behavior of this routine with respect to the source
6098 flag is:
c5394b80
JM
6099 SRC_LINE: Print only source line
6100 LOCATION: Print only location
1777feb0 6101 SRC_AND_LOC: Print location and source line. */
917317f4 6102 if (do_frame_printing)
b04f3ab4 6103 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6104
6105 /* Display the auto-display expressions. */
6106 do_displays ();
6107 }
6108 }
6109
6110 /* Save the function value return registers, if we care.
6111 We might be about to restore their previous contents. */
9da8c2a0
PA
6112 if (inferior_thread ()->control.proceed_to_finish
6113 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6114 {
6115 /* This should not be necessary. */
6116 if (stop_registers)
6117 regcache_xfree (stop_registers);
6118
6119 /* NB: The copy goes through to the target picking up the value of
6120 all the registers. */
6121 stop_registers = regcache_dup (get_current_regcache ());
6122 }
c906108c 6123
aa7d318d 6124 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6125 {
b89667eb
DE
6126 /* Pop the empty frame that contains the stack dummy.
6127 This also restores inferior state prior to the call
16c381f0 6128 (struct infcall_suspend_state). */
b89667eb 6129 struct frame_info *frame = get_current_frame ();
abbb1732 6130
b89667eb
DE
6131 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6132 frame_pop (frame);
3e43a32a
MS
6133 /* frame_pop() calls reinit_frame_cache as the last thing it
6134 does which means there's currently no selected frame. We
6135 don't need to re-establish a selected frame if the dummy call
6136 returns normally, that will be done by
6137 restore_infcall_control_state. However, we do have to handle
6138 the case where the dummy call is returning after being
6139 stopped (e.g. the dummy call previously hit a breakpoint).
6140 We can't know which case we have so just always re-establish
6141 a selected frame here. */
0f7d239c 6142 select_frame (get_current_frame ());
c906108c
SS
6143 }
6144
c906108c
SS
6145done:
6146 annotate_stopped ();
41d2bdb4
PA
6147
6148 /* Suppress the stop observer if we're in the middle of:
6149
6150 - a step n (n > 1), as there still more steps to be done.
6151
6152 - a "finish" command, as the observer will be called in
6153 finish_command_continuation, so it can include the inferior
6154 function's return value.
6155
6156 - calling an inferior function, as we pretend we inferior didn't
6157 run at all. The return value of the call is handled by the
6158 expression evaluator, through call_function_by_hand. */
6159
6160 if (!target_has_execution
6161 || last.kind == TARGET_WAITKIND_SIGNALLED
6162 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6163 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6164 || (!(inferior_thread ()->step_multi
6165 && inferior_thread ()->control.stop_step)
16c381f0
JK
6166 && !(inferior_thread ()->control.stop_bpstat
6167 && inferior_thread ()->control.proceed_to_finish)
6168 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6169 {
6170 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6171 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6172 stop_print_frame);
347bddb7 6173 else
1d33d6ba 6174 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6175 }
347bddb7 6176
48844aa6
PA
6177 if (target_has_execution)
6178 {
6179 if (last.kind != TARGET_WAITKIND_SIGNALLED
6180 && last.kind != TARGET_WAITKIND_EXITED)
6181 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6182 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6183 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6184 }
6c95b8df
PA
6185
6186 /* Try to get rid of automatically added inferiors that are no
6187 longer needed. Keeping those around slows down things linearly.
6188 Note that this never removes the current inferior. */
6189 prune_inferiors ();
c906108c
SS
6190}
6191
6192static int
96baa820 6193hook_stop_stub (void *cmd)
c906108c 6194{
5913bcb0 6195 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6196 return (0);
6197}
6198\f
c5aa993b 6199int
96baa820 6200signal_stop_state (int signo)
c906108c 6201{
d6b48e9c 6202 return signal_stop[signo];
c906108c
SS
6203}
6204
c5aa993b 6205int
96baa820 6206signal_print_state (int signo)
c906108c
SS
6207{
6208 return signal_print[signo];
6209}
6210
c5aa993b 6211int
96baa820 6212signal_pass_state (int signo)
c906108c
SS
6213{
6214 return signal_program[signo];
6215}
6216
2455069d
UW
6217static void
6218signal_cache_update (int signo)
6219{
6220 if (signo == -1)
6221 {
a493e3e2 6222 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6223 signal_cache_update (signo);
6224
6225 return;
6226 }
6227
6228 signal_pass[signo] = (signal_stop[signo] == 0
6229 && signal_print[signo] == 0
ab04a2af
TT
6230 && signal_program[signo] == 1
6231 && signal_catch[signo] == 0);
2455069d
UW
6232}
6233
488f131b 6234int
7bda5e4a 6235signal_stop_update (int signo, int state)
d4f3574e
SS
6236{
6237 int ret = signal_stop[signo];
abbb1732 6238
d4f3574e 6239 signal_stop[signo] = state;
2455069d 6240 signal_cache_update (signo);
d4f3574e
SS
6241 return ret;
6242}
6243
488f131b 6244int
7bda5e4a 6245signal_print_update (int signo, int state)
d4f3574e
SS
6246{
6247 int ret = signal_print[signo];
abbb1732 6248
d4f3574e 6249 signal_print[signo] = state;
2455069d 6250 signal_cache_update (signo);
d4f3574e
SS
6251 return ret;
6252}
6253
488f131b 6254int
7bda5e4a 6255signal_pass_update (int signo, int state)
d4f3574e
SS
6256{
6257 int ret = signal_program[signo];
abbb1732 6258
d4f3574e 6259 signal_program[signo] = state;
2455069d 6260 signal_cache_update (signo);
d4f3574e
SS
6261 return ret;
6262}
6263
ab04a2af
TT
6264/* Update the global 'signal_catch' from INFO and notify the
6265 target. */
6266
6267void
6268signal_catch_update (const unsigned int *info)
6269{
6270 int i;
6271
6272 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6273 signal_catch[i] = info[i] > 0;
6274 signal_cache_update (-1);
6275 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6276}
6277
c906108c 6278static void
96baa820 6279sig_print_header (void)
c906108c 6280{
3e43a32a
MS
6281 printf_filtered (_("Signal Stop\tPrint\tPass "
6282 "to program\tDescription\n"));
c906108c
SS
6283}
6284
6285static void
2ea28649 6286sig_print_info (enum gdb_signal oursig)
c906108c 6287{
2ea28649 6288 const char *name = gdb_signal_to_name (oursig);
c906108c 6289 int name_padding = 13 - strlen (name);
96baa820 6290
c906108c
SS
6291 if (name_padding <= 0)
6292 name_padding = 0;
6293
6294 printf_filtered ("%s", name);
488f131b 6295 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6296 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6297 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6298 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6299 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6300}
6301
6302/* Specify how various signals in the inferior should be handled. */
6303
6304static void
96baa820 6305handle_command (char *args, int from_tty)
c906108c
SS
6306{
6307 char **argv;
6308 int digits, wordlen;
6309 int sigfirst, signum, siglast;
2ea28649 6310 enum gdb_signal oursig;
c906108c
SS
6311 int allsigs;
6312 int nsigs;
6313 unsigned char *sigs;
6314 struct cleanup *old_chain;
6315
6316 if (args == NULL)
6317 {
e2e0b3e5 6318 error_no_arg (_("signal to handle"));
c906108c
SS
6319 }
6320
1777feb0 6321 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6322
a493e3e2 6323 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6324 sigs = (unsigned char *) alloca (nsigs);
6325 memset (sigs, 0, nsigs);
6326
1777feb0 6327 /* Break the command line up into args. */
c906108c 6328
d1a41061 6329 argv = gdb_buildargv (args);
7a292a7a 6330 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6331
6332 /* Walk through the args, looking for signal oursigs, signal names, and
6333 actions. Signal numbers and signal names may be interspersed with
6334 actions, with the actions being performed for all signals cumulatively
1777feb0 6335 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6336
6337 while (*argv != NULL)
6338 {
6339 wordlen = strlen (*argv);
6340 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6341 {;
6342 }
6343 allsigs = 0;
6344 sigfirst = siglast = -1;
6345
6346 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6347 {
6348 /* Apply action to all signals except those used by the
1777feb0 6349 debugger. Silently skip those. */
c906108c
SS
6350 allsigs = 1;
6351 sigfirst = 0;
6352 siglast = nsigs - 1;
6353 }
6354 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6355 {
6356 SET_SIGS (nsigs, sigs, signal_stop);
6357 SET_SIGS (nsigs, sigs, signal_print);
6358 }
6359 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6360 {
6361 UNSET_SIGS (nsigs, sigs, signal_program);
6362 }
6363 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6364 {
6365 SET_SIGS (nsigs, sigs, signal_print);
6366 }
6367 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6368 {
6369 SET_SIGS (nsigs, sigs, signal_program);
6370 }
6371 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6372 {
6373 UNSET_SIGS (nsigs, sigs, signal_stop);
6374 }
6375 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6376 {
6377 SET_SIGS (nsigs, sigs, signal_program);
6378 }
6379 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6380 {
6381 UNSET_SIGS (nsigs, sigs, signal_print);
6382 UNSET_SIGS (nsigs, sigs, signal_stop);
6383 }
6384 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6385 {
6386 UNSET_SIGS (nsigs, sigs, signal_program);
6387 }
6388 else if (digits > 0)
6389 {
6390 /* It is numeric. The numeric signal refers to our own
6391 internal signal numbering from target.h, not to host/target
6392 signal number. This is a feature; users really should be
6393 using symbolic names anyway, and the common ones like
6394 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6395
6396 sigfirst = siglast = (int)
2ea28649 6397 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6398 if ((*argv)[digits] == '-')
6399 {
6400 siglast = (int)
2ea28649 6401 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6402 }
6403 if (sigfirst > siglast)
6404 {
1777feb0 6405 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6406 signum = sigfirst;
6407 sigfirst = siglast;
6408 siglast = signum;
6409 }
6410 }
6411 else
6412 {
2ea28649 6413 oursig = gdb_signal_from_name (*argv);
a493e3e2 6414 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6415 {
6416 sigfirst = siglast = (int) oursig;
6417 }
6418 else
6419 {
6420 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6421 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6422 }
6423 }
6424
6425 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6426 which signals to apply actions to. */
c906108c
SS
6427
6428 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6429 {
2ea28649 6430 switch ((enum gdb_signal) signum)
c906108c 6431 {
a493e3e2
PA
6432 case GDB_SIGNAL_TRAP:
6433 case GDB_SIGNAL_INT:
c906108c
SS
6434 if (!allsigs && !sigs[signum])
6435 {
9e2f0ad4 6436 if (query (_("%s is used by the debugger.\n\
3e43a32a 6437Are you sure you want to change it? "),
2ea28649 6438 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6439 {
6440 sigs[signum] = 1;
6441 }
6442 else
6443 {
a3f17187 6444 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6445 gdb_flush (gdb_stdout);
6446 }
6447 }
6448 break;
a493e3e2
PA
6449 case GDB_SIGNAL_0:
6450 case GDB_SIGNAL_DEFAULT:
6451 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6452 /* Make sure that "all" doesn't print these. */
6453 break;
6454 default:
6455 sigs[signum] = 1;
6456 break;
6457 }
6458 }
6459
6460 argv++;
6461 }
6462
3a031f65
PA
6463 for (signum = 0; signum < nsigs; signum++)
6464 if (sigs[signum])
6465 {
2455069d 6466 signal_cache_update (-1);
a493e3e2
PA
6467 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6468 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6469
3a031f65
PA
6470 if (from_tty)
6471 {
6472 /* Show the results. */
6473 sig_print_header ();
6474 for (; signum < nsigs; signum++)
6475 if (sigs[signum])
6476 sig_print_info (signum);
6477 }
6478
6479 break;
6480 }
c906108c
SS
6481
6482 do_cleanups (old_chain);
6483}
6484
de0bea00
MF
6485/* Complete the "handle" command. */
6486
6487static VEC (char_ptr) *
6488handle_completer (struct cmd_list_element *ignore,
6f937416 6489 const char *text, const char *word)
de0bea00
MF
6490{
6491 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6492 static const char * const keywords[] =
6493 {
6494 "all",
6495 "stop",
6496 "ignore",
6497 "print",
6498 "pass",
6499 "nostop",
6500 "noignore",
6501 "noprint",
6502 "nopass",
6503 NULL,
6504 };
6505
6506 vec_signals = signal_completer (ignore, text, word);
6507 vec_keywords = complete_on_enum (keywords, word, word);
6508
6509 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6510 VEC_free (char_ptr, vec_signals);
6511 VEC_free (char_ptr, vec_keywords);
6512 return return_val;
6513}
6514
c906108c 6515static void
96baa820 6516xdb_handle_command (char *args, int from_tty)
c906108c
SS
6517{
6518 char **argv;
6519 struct cleanup *old_chain;
6520
d1a41061
PP
6521 if (args == NULL)
6522 error_no_arg (_("xdb command"));
6523
1777feb0 6524 /* Break the command line up into args. */
c906108c 6525
d1a41061 6526 argv = gdb_buildargv (args);
7a292a7a 6527 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6528 if (argv[1] != (char *) NULL)
6529 {
6530 char *argBuf;
6531 int bufLen;
6532
6533 bufLen = strlen (argv[0]) + 20;
6534 argBuf = (char *) xmalloc (bufLen);
6535 if (argBuf)
6536 {
6537 int validFlag = 1;
2ea28649 6538 enum gdb_signal oursig;
c906108c 6539
2ea28649 6540 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6541 memset (argBuf, 0, bufLen);
6542 if (strcmp (argv[1], "Q") == 0)
6543 sprintf (argBuf, "%s %s", argv[0], "noprint");
6544 else
6545 {
6546 if (strcmp (argv[1], "s") == 0)
6547 {
6548 if (!signal_stop[oursig])
6549 sprintf (argBuf, "%s %s", argv[0], "stop");
6550 else
6551 sprintf (argBuf, "%s %s", argv[0], "nostop");
6552 }
6553 else if (strcmp (argv[1], "i") == 0)
6554 {
6555 if (!signal_program[oursig])
6556 sprintf (argBuf, "%s %s", argv[0], "pass");
6557 else
6558 sprintf (argBuf, "%s %s", argv[0], "nopass");
6559 }
6560 else if (strcmp (argv[1], "r") == 0)
6561 {
6562 if (!signal_print[oursig])
6563 sprintf (argBuf, "%s %s", argv[0], "print");
6564 else
6565 sprintf (argBuf, "%s %s", argv[0], "noprint");
6566 }
6567 else
6568 validFlag = 0;
6569 }
6570 if (validFlag)
6571 handle_command (argBuf, from_tty);
6572 else
a3f17187 6573 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6574 if (argBuf)
b8c9b27d 6575 xfree (argBuf);
c906108c
SS
6576 }
6577 }
6578 do_cleanups (old_chain);
6579}
6580
2ea28649
PA
6581enum gdb_signal
6582gdb_signal_from_command (int num)
ed01b82c
PA
6583{
6584 if (num >= 1 && num <= 15)
2ea28649 6585 return (enum gdb_signal) num;
ed01b82c
PA
6586 error (_("Only signals 1-15 are valid as numeric signals.\n\
6587Use \"info signals\" for a list of symbolic signals."));
6588}
6589
c906108c
SS
6590/* Print current contents of the tables set by the handle command.
6591 It is possible we should just be printing signals actually used
6592 by the current target (but for things to work right when switching
6593 targets, all signals should be in the signal tables). */
6594
6595static void
96baa820 6596signals_info (char *signum_exp, int from_tty)
c906108c 6597{
2ea28649 6598 enum gdb_signal oursig;
abbb1732 6599
c906108c
SS
6600 sig_print_header ();
6601
6602 if (signum_exp)
6603 {
6604 /* First see if this is a symbol name. */
2ea28649 6605 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6606 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6607 {
6608 /* No, try numeric. */
6609 oursig =
2ea28649 6610 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6611 }
6612 sig_print_info (oursig);
6613 return;
6614 }
6615
6616 printf_filtered ("\n");
6617 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6618 for (oursig = GDB_SIGNAL_FIRST;
6619 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6620 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6621 {
6622 QUIT;
6623
a493e3e2
PA
6624 if (oursig != GDB_SIGNAL_UNKNOWN
6625 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6626 sig_print_info (oursig);
6627 }
6628
3e43a32a
MS
6629 printf_filtered (_("\nUse the \"handle\" command "
6630 "to change these tables.\n"));
c906108c 6631}
4aa995e1 6632
c709acd1
PA
6633/* Check if it makes sense to read $_siginfo from the current thread
6634 at this point. If not, throw an error. */
6635
6636static void
6637validate_siginfo_access (void)
6638{
6639 /* No current inferior, no siginfo. */
6640 if (ptid_equal (inferior_ptid, null_ptid))
6641 error (_("No thread selected."));
6642
6643 /* Don't try to read from a dead thread. */
6644 if (is_exited (inferior_ptid))
6645 error (_("The current thread has terminated"));
6646
6647 /* ... or from a spinning thread. */
6648 if (is_running (inferior_ptid))
6649 error (_("Selected thread is running."));
6650}
6651
4aa995e1
PA
6652/* The $_siginfo convenience variable is a bit special. We don't know
6653 for sure the type of the value until we actually have a chance to
7a9dd1b2 6654 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6655 also dependent on which thread you have selected.
6656
6657 1. making $_siginfo be an internalvar that creates a new value on
6658 access.
6659
6660 2. making the value of $_siginfo be an lval_computed value. */
6661
6662/* This function implements the lval_computed support for reading a
6663 $_siginfo value. */
6664
6665static void
6666siginfo_value_read (struct value *v)
6667{
6668 LONGEST transferred;
6669
c709acd1
PA
6670 validate_siginfo_access ();
6671
4aa995e1
PA
6672 transferred =
6673 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6674 NULL,
6675 value_contents_all_raw (v),
6676 value_offset (v),
6677 TYPE_LENGTH (value_type (v)));
6678
6679 if (transferred != TYPE_LENGTH (value_type (v)))
6680 error (_("Unable to read siginfo"));
6681}
6682
6683/* This function implements the lval_computed support for writing a
6684 $_siginfo value. */
6685
6686static void
6687siginfo_value_write (struct value *v, struct value *fromval)
6688{
6689 LONGEST transferred;
6690
c709acd1
PA
6691 validate_siginfo_access ();
6692
4aa995e1
PA
6693 transferred = target_write (&current_target,
6694 TARGET_OBJECT_SIGNAL_INFO,
6695 NULL,
6696 value_contents_all_raw (fromval),
6697 value_offset (v),
6698 TYPE_LENGTH (value_type (fromval)));
6699
6700 if (transferred != TYPE_LENGTH (value_type (fromval)))
6701 error (_("Unable to write siginfo"));
6702}
6703
c8f2448a 6704static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6705 {
6706 siginfo_value_read,
6707 siginfo_value_write
6708 };
6709
6710/* Return a new value with the correct type for the siginfo object of
78267919
UW
6711 the current thread using architecture GDBARCH. Return a void value
6712 if there's no object available. */
4aa995e1 6713
2c0b251b 6714static struct value *
22d2b532
SDJ
6715siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6716 void *ignore)
4aa995e1 6717{
4aa995e1 6718 if (target_has_stack
78267919
UW
6719 && !ptid_equal (inferior_ptid, null_ptid)
6720 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6721 {
78267919 6722 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6723
78267919 6724 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6725 }
6726
78267919 6727 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6728}
6729
c906108c 6730\f
16c381f0
JK
6731/* infcall_suspend_state contains state about the program itself like its
6732 registers and any signal it received when it last stopped.
6733 This state must be restored regardless of how the inferior function call
6734 ends (either successfully, or after it hits a breakpoint or signal)
6735 if the program is to properly continue where it left off. */
6736
6737struct infcall_suspend_state
7a292a7a 6738{
16c381f0 6739 struct thread_suspend_state thread_suspend;
dd80ea3c 6740#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6741 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6742#endif
16c381f0
JK
6743
6744 /* Other fields: */
7a292a7a 6745 CORE_ADDR stop_pc;
b89667eb 6746 struct regcache *registers;
1736ad11 6747
35515841 6748 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6749 struct gdbarch *siginfo_gdbarch;
6750
6751 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6752 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6753 content would be invalid. */
6754 gdb_byte *siginfo_data;
b89667eb
DE
6755};
6756
16c381f0
JK
6757struct infcall_suspend_state *
6758save_infcall_suspend_state (void)
b89667eb 6759{
16c381f0 6760 struct infcall_suspend_state *inf_state;
b89667eb 6761 struct thread_info *tp = inferior_thread ();
974a734b 6762#if 0
16c381f0 6763 struct inferior *inf = current_inferior ();
974a734b 6764#endif
1736ad11
JK
6765 struct regcache *regcache = get_current_regcache ();
6766 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6767 gdb_byte *siginfo_data = NULL;
6768
6769 if (gdbarch_get_siginfo_type_p (gdbarch))
6770 {
6771 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6772 size_t len = TYPE_LENGTH (type);
6773 struct cleanup *back_to;
6774
6775 siginfo_data = xmalloc (len);
6776 back_to = make_cleanup (xfree, siginfo_data);
6777
6778 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6779 siginfo_data, 0, len) == len)
6780 discard_cleanups (back_to);
6781 else
6782 {
6783 /* Errors ignored. */
6784 do_cleanups (back_to);
6785 siginfo_data = NULL;
6786 }
6787 }
6788
16c381f0 6789 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6790
6791 if (siginfo_data)
6792 {
6793 inf_state->siginfo_gdbarch = gdbarch;
6794 inf_state->siginfo_data = siginfo_data;
6795 }
b89667eb 6796
16c381f0 6797 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6798#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6799 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6800#endif
16c381f0 6801
35515841 6802 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6803 GDB_SIGNAL_0 anyway. */
6804 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6805
b89667eb
DE
6806 inf_state->stop_pc = stop_pc;
6807
1736ad11 6808 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6809
6810 return inf_state;
6811}
6812
6813/* Restore inferior session state to INF_STATE. */
6814
6815void
16c381f0 6816restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6817{
6818 struct thread_info *tp = inferior_thread ();
974a734b 6819#if 0
16c381f0 6820 struct inferior *inf = current_inferior ();
974a734b 6821#endif
1736ad11
JK
6822 struct regcache *regcache = get_current_regcache ();
6823 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6824
16c381f0 6825 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6826#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6827 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6828#endif
16c381f0 6829
b89667eb
DE
6830 stop_pc = inf_state->stop_pc;
6831
1736ad11
JK
6832 if (inf_state->siginfo_gdbarch == gdbarch)
6833 {
6834 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6835
6836 /* Errors ignored. */
6837 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6838 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6839 }
6840
b89667eb
DE
6841 /* The inferior can be gone if the user types "print exit(0)"
6842 (and perhaps other times). */
6843 if (target_has_execution)
6844 /* NB: The register write goes through to the target. */
1736ad11 6845 regcache_cpy (regcache, inf_state->registers);
803b5f95 6846
16c381f0 6847 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6848}
6849
6850static void
16c381f0 6851do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6852{
16c381f0 6853 restore_infcall_suspend_state (state);
b89667eb
DE
6854}
6855
6856struct cleanup *
16c381f0
JK
6857make_cleanup_restore_infcall_suspend_state
6858 (struct infcall_suspend_state *inf_state)
b89667eb 6859{
16c381f0 6860 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6861}
6862
6863void
16c381f0 6864discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6865{
6866 regcache_xfree (inf_state->registers);
803b5f95 6867 xfree (inf_state->siginfo_data);
b89667eb
DE
6868 xfree (inf_state);
6869}
6870
6871struct regcache *
16c381f0 6872get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6873{
6874 return inf_state->registers;
6875}
6876
16c381f0
JK
6877/* infcall_control_state contains state regarding gdb's control of the
6878 inferior itself like stepping control. It also contains session state like
6879 the user's currently selected frame. */
b89667eb 6880
16c381f0 6881struct infcall_control_state
b89667eb 6882{
16c381f0
JK
6883 struct thread_control_state thread_control;
6884 struct inferior_control_state inferior_control;
d82142e2
JK
6885
6886 /* Other fields: */
6887 enum stop_stack_kind stop_stack_dummy;
6888 int stopped_by_random_signal;
7a292a7a 6889 int stop_after_trap;
7a292a7a 6890
b89667eb 6891 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6892 struct frame_id selected_frame_id;
7a292a7a
SS
6893};
6894
c906108c 6895/* Save all of the information associated with the inferior<==>gdb
b89667eb 6896 connection. */
c906108c 6897
16c381f0
JK
6898struct infcall_control_state *
6899save_infcall_control_state (void)
c906108c 6900{
16c381f0 6901 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6902 struct thread_info *tp = inferior_thread ();
d6b48e9c 6903 struct inferior *inf = current_inferior ();
7a292a7a 6904
16c381f0
JK
6905 inf_status->thread_control = tp->control;
6906 inf_status->inferior_control = inf->control;
d82142e2 6907
8358c15c 6908 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6909 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6910
16c381f0
JK
6911 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6912 chain. If caller's caller is walking the chain, they'll be happier if we
6913 hand them back the original chain when restore_infcall_control_state is
6914 called. */
6915 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6916
6917 /* Other fields: */
6918 inf_status->stop_stack_dummy = stop_stack_dummy;
6919 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6920 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6921
206415a3 6922 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6923
7a292a7a 6924 return inf_status;
c906108c
SS
6925}
6926
c906108c 6927static int
96baa820 6928restore_selected_frame (void *args)
c906108c 6929{
488f131b 6930 struct frame_id *fid = (struct frame_id *) args;
c906108c 6931 struct frame_info *frame;
c906108c 6932
101dcfbe 6933 frame = frame_find_by_id (*fid);
c906108c 6934
aa0cd9c1
AC
6935 /* If inf_status->selected_frame_id is NULL, there was no previously
6936 selected frame. */
101dcfbe 6937 if (frame == NULL)
c906108c 6938 {
8a3fe4f8 6939 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6940 return 0;
6941 }
6942
0f7d239c 6943 select_frame (frame);
c906108c
SS
6944
6945 return (1);
6946}
6947
b89667eb
DE
6948/* Restore inferior session state to INF_STATUS. */
6949
c906108c 6950void
16c381f0 6951restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6952{
4e1c45ea 6953 struct thread_info *tp = inferior_thread ();
d6b48e9c 6954 struct inferior *inf = current_inferior ();
4e1c45ea 6955
8358c15c
JK
6956 if (tp->control.step_resume_breakpoint)
6957 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6958
5b79abe7
TT
6959 if (tp->control.exception_resume_breakpoint)
6960 tp->control.exception_resume_breakpoint->disposition
6961 = disp_del_at_next_stop;
6962
d82142e2 6963 /* Handle the bpstat_copy of the chain. */
16c381f0 6964 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6965
16c381f0
JK
6966 tp->control = inf_status->thread_control;
6967 inf->control = inf_status->inferior_control;
d82142e2
JK
6968
6969 /* Other fields: */
6970 stop_stack_dummy = inf_status->stop_stack_dummy;
6971 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6972 stop_after_trap = inf_status->stop_after_trap;
c906108c 6973
b89667eb 6974 if (target_has_stack)
c906108c 6975 {
c906108c 6976 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6977 walking the stack might encounter a garbage pointer and
6978 error() trying to dereference it. */
488f131b
JB
6979 if (catch_errors
6980 (restore_selected_frame, &inf_status->selected_frame_id,
6981 "Unable to restore previously selected frame:\n",
6982 RETURN_MASK_ERROR) == 0)
c906108c
SS
6983 /* Error in restoring the selected frame. Select the innermost
6984 frame. */
0f7d239c 6985 select_frame (get_current_frame ());
c906108c 6986 }
c906108c 6987
72cec141 6988 xfree (inf_status);
7a292a7a 6989}
c906108c 6990
74b7792f 6991static void
16c381f0 6992do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6993{
16c381f0 6994 restore_infcall_control_state (sts);
74b7792f
AC
6995}
6996
6997struct cleanup *
16c381f0
JK
6998make_cleanup_restore_infcall_control_state
6999 (struct infcall_control_state *inf_status)
74b7792f 7000{
16c381f0 7001 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7002}
7003
c906108c 7004void
16c381f0 7005discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7006{
8358c15c
JK
7007 if (inf_status->thread_control.step_resume_breakpoint)
7008 inf_status->thread_control.step_resume_breakpoint->disposition
7009 = disp_del_at_next_stop;
7010
5b79abe7
TT
7011 if (inf_status->thread_control.exception_resume_breakpoint)
7012 inf_status->thread_control.exception_resume_breakpoint->disposition
7013 = disp_del_at_next_stop;
7014
1777feb0 7015 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7016 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7017
72cec141 7018 xfree (inf_status);
7a292a7a 7019}
b89667eb 7020\f
0723dbf5
PA
7021int
7022ptid_match (ptid_t ptid, ptid_t filter)
7023{
0723dbf5
PA
7024 if (ptid_equal (filter, minus_one_ptid))
7025 return 1;
7026 if (ptid_is_pid (filter)
7027 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7028 return 1;
7029 else if (ptid_equal (ptid, filter))
7030 return 1;
7031
7032 return 0;
7033}
7034
ca6724c1
KB
7035/* restore_inferior_ptid() will be used by the cleanup machinery
7036 to restore the inferior_ptid value saved in a call to
7037 save_inferior_ptid(). */
ce696e05
KB
7038
7039static void
7040restore_inferior_ptid (void *arg)
7041{
7042 ptid_t *saved_ptid_ptr = arg;
abbb1732 7043
ce696e05
KB
7044 inferior_ptid = *saved_ptid_ptr;
7045 xfree (arg);
7046}
7047
7048/* Save the value of inferior_ptid so that it may be restored by a
7049 later call to do_cleanups(). Returns the struct cleanup pointer
7050 needed for later doing the cleanup. */
7051
7052struct cleanup *
7053save_inferior_ptid (void)
7054{
7055 ptid_t *saved_ptid_ptr;
7056
7057 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7058 *saved_ptid_ptr = inferior_ptid;
7059 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7060}
c5aa993b 7061\f
488f131b 7062
b2175913
MS
7063/* User interface for reverse debugging:
7064 Set exec-direction / show exec-direction commands
7065 (returns error unless target implements to_set_exec_direction method). */
7066
32231432 7067int execution_direction = EXEC_FORWARD;
b2175913
MS
7068static const char exec_forward[] = "forward";
7069static const char exec_reverse[] = "reverse";
7070static const char *exec_direction = exec_forward;
40478521 7071static const char *const exec_direction_names[] = {
b2175913
MS
7072 exec_forward,
7073 exec_reverse,
7074 NULL
7075};
7076
7077static void
7078set_exec_direction_func (char *args, int from_tty,
7079 struct cmd_list_element *cmd)
7080{
7081 if (target_can_execute_reverse)
7082 {
7083 if (!strcmp (exec_direction, exec_forward))
7084 execution_direction = EXEC_FORWARD;
7085 else if (!strcmp (exec_direction, exec_reverse))
7086 execution_direction = EXEC_REVERSE;
7087 }
8bbed405
MS
7088 else
7089 {
7090 exec_direction = exec_forward;
7091 error (_("Target does not support this operation."));
7092 }
b2175913
MS
7093}
7094
7095static void
7096show_exec_direction_func (struct ui_file *out, int from_tty,
7097 struct cmd_list_element *cmd, const char *value)
7098{
7099 switch (execution_direction) {
7100 case EXEC_FORWARD:
7101 fprintf_filtered (out, _("Forward.\n"));
7102 break;
7103 case EXEC_REVERSE:
7104 fprintf_filtered (out, _("Reverse.\n"));
7105 break;
b2175913 7106 default:
d8b34453
PA
7107 internal_error (__FILE__, __LINE__,
7108 _("bogus execution_direction value: %d"),
7109 (int) execution_direction);
b2175913
MS
7110 }
7111}
7112
d4db2f36
PA
7113static void
7114show_schedule_multiple (struct ui_file *file, int from_tty,
7115 struct cmd_list_element *c, const char *value)
7116{
3e43a32a
MS
7117 fprintf_filtered (file, _("Resuming the execution of threads "
7118 "of all processes is %s.\n"), value);
d4db2f36 7119}
ad52ddc6 7120
22d2b532
SDJ
7121/* Implementation of `siginfo' variable. */
7122
7123static const struct internalvar_funcs siginfo_funcs =
7124{
7125 siginfo_make_value,
7126 NULL,
7127 NULL
7128};
7129
c906108c 7130void
96baa820 7131_initialize_infrun (void)
c906108c 7132{
52f0bd74
AC
7133 int i;
7134 int numsigs;
de0bea00 7135 struct cmd_list_element *c;
c906108c 7136
1bedd215
AC
7137 add_info ("signals", signals_info, _("\
7138What debugger does when program gets various signals.\n\
7139Specify a signal as argument to print info on that signal only."));
c906108c
SS
7140 add_info_alias ("handle", "signals", 0);
7141
de0bea00 7142 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7143Specify how to handle signals.\n\
486c7739 7144Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7145Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7146If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7147will be displayed instead.\n\
7148\n\
c906108c
SS
7149Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7150from 1-15 are allowed for compatibility with old versions of GDB.\n\
7151Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7152The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7153used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7154\n\
1bedd215 7155Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7156\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7157Stop means reenter debugger if this signal happens (implies print).\n\
7158Print means print a message if this signal happens.\n\
7159Pass means let program see this signal; otherwise program doesn't know.\n\
7160Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7161Pass and Stop may be combined.\n\
7162\n\
7163Multiple signals may be specified. Signal numbers and signal names\n\
7164may be interspersed with actions, with the actions being performed for\n\
7165all signals cumulatively specified."));
de0bea00 7166 set_cmd_completer (c, handle_completer);
486c7739 7167
c906108c
SS
7168 if (xdb_commands)
7169 {
1bedd215
AC
7170 add_com ("lz", class_info, signals_info, _("\
7171What debugger does when program gets various signals.\n\
7172Specify a signal as argument to print info on that signal only."));
7173 add_com ("z", class_run, xdb_handle_command, _("\
7174Specify how to handle a signal.\n\
c906108c
SS
7175Args are signals and actions to apply to those signals.\n\
7176Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7177from 1-15 are allowed for compatibility with old versions of GDB.\n\
7178Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7179The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7180used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7181Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7182\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7183nopass), \"Q\" (noprint)\n\
7184Stop means reenter debugger if this signal happens (implies print).\n\
7185Print means print a message if this signal happens.\n\
7186Pass means let program see this signal; otherwise program doesn't know.\n\
7187Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7188Pass and Stop may be combined."));
c906108c
SS
7189 }
7190
7191 if (!dbx_commands)
1a966eab
AC
7192 stop_command = add_cmd ("stop", class_obscure,
7193 not_just_help_class_command, _("\
7194There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7195This allows you to set a list of commands to be run each time execution\n\
1a966eab 7196of the program stops."), &cmdlist);
c906108c 7197
ccce17b0 7198 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7199Set inferior debugging."), _("\
7200Show inferior debugging."), _("\
7201When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7202 NULL,
7203 show_debug_infrun,
7204 &setdebuglist, &showdebuglist);
527159b7 7205
3e43a32a
MS
7206 add_setshow_boolean_cmd ("displaced", class_maintenance,
7207 &debug_displaced, _("\
237fc4c9
PA
7208Set displaced stepping debugging."), _("\
7209Show displaced stepping debugging."), _("\
7210When non-zero, displaced stepping specific debugging is enabled."),
7211 NULL,
7212 show_debug_displaced,
7213 &setdebuglist, &showdebuglist);
7214
ad52ddc6
PA
7215 add_setshow_boolean_cmd ("non-stop", no_class,
7216 &non_stop_1, _("\
7217Set whether gdb controls the inferior in non-stop mode."), _("\
7218Show whether gdb controls the inferior in non-stop mode."), _("\
7219When debugging a multi-threaded program and this setting is\n\
7220off (the default, also called all-stop mode), when one thread stops\n\
7221(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7222all other threads in the program while you interact with the thread of\n\
7223interest. When you continue or step a thread, you can allow the other\n\
7224threads to run, or have them remain stopped, but while you inspect any\n\
7225thread's state, all threads stop.\n\
7226\n\
7227In non-stop mode, when one thread stops, other threads can continue\n\
7228to run freely. You'll be able to step each thread independently,\n\
7229leave it stopped or free to run as needed."),
7230 set_non_stop,
7231 show_non_stop,
7232 &setlist,
7233 &showlist);
7234
a493e3e2 7235 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7236 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7237 signal_print = (unsigned char *)
7238 xmalloc (sizeof (signal_print[0]) * numsigs);
7239 signal_program = (unsigned char *)
7240 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7241 signal_catch = (unsigned char *)
7242 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7243 signal_pass = (unsigned char *)
7244 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7245 for (i = 0; i < numsigs; i++)
7246 {
7247 signal_stop[i] = 1;
7248 signal_print[i] = 1;
7249 signal_program[i] = 1;
ab04a2af 7250 signal_catch[i] = 0;
c906108c
SS
7251 }
7252
7253 /* Signals caused by debugger's own actions
7254 should not be given to the program afterwards. */
a493e3e2
PA
7255 signal_program[GDB_SIGNAL_TRAP] = 0;
7256 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7257
7258 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7259 signal_stop[GDB_SIGNAL_ALRM] = 0;
7260 signal_print[GDB_SIGNAL_ALRM] = 0;
7261 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7262 signal_print[GDB_SIGNAL_VTALRM] = 0;
7263 signal_stop[GDB_SIGNAL_PROF] = 0;
7264 signal_print[GDB_SIGNAL_PROF] = 0;
7265 signal_stop[GDB_SIGNAL_CHLD] = 0;
7266 signal_print[GDB_SIGNAL_CHLD] = 0;
7267 signal_stop[GDB_SIGNAL_IO] = 0;
7268 signal_print[GDB_SIGNAL_IO] = 0;
7269 signal_stop[GDB_SIGNAL_POLL] = 0;
7270 signal_print[GDB_SIGNAL_POLL] = 0;
7271 signal_stop[GDB_SIGNAL_URG] = 0;
7272 signal_print[GDB_SIGNAL_URG] = 0;
7273 signal_stop[GDB_SIGNAL_WINCH] = 0;
7274 signal_print[GDB_SIGNAL_WINCH] = 0;
7275 signal_stop[GDB_SIGNAL_PRIO] = 0;
7276 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7277
cd0fc7c3
SS
7278 /* These signals are used internally by user-level thread
7279 implementations. (See signal(5) on Solaris.) Like the above
7280 signals, a healthy program receives and handles them as part of
7281 its normal operation. */
a493e3e2
PA
7282 signal_stop[GDB_SIGNAL_LWP] = 0;
7283 signal_print[GDB_SIGNAL_LWP] = 0;
7284 signal_stop[GDB_SIGNAL_WAITING] = 0;
7285 signal_print[GDB_SIGNAL_WAITING] = 0;
7286 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7287 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7288
2455069d
UW
7289 /* Update cached state. */
7290 signal_cache_update (-1);
7291
85c07804
AC
7292 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7293 &stop_on_solib_events, _("\
7294Set stopping for shared library events."), _("\
7295Show stopping for shared library events."), _("\
c906108c
SS
7296If nonzero, gdb will give control to the user when the dynamic linker\n\
7297notifies gdb of shared library events. The most common event of interest\n\
85c07804 7298to the user would be loading/unloading of a new library."),
f9e14852 7299 set_stop_on_solib_events,
920d2a44 7300 show_stop_on_solib_events,
85c07804 7301 &setlist, &showlist);
c906108c 7302
7ab04401
AC
7303 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7304 follow_fork_mode_kind_names,
7305 &follow_fork_mode_string, _("\
7306Set debugger response to a program call of fork or vfork."), _("\
7307Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7308A fork or vfork creates a new process. follow-fork-mode can be:\n\
7309 parent - the original process is debugged after a fork\n\
7310 child - the new process is debugged after a fork\n\
ea1dd7bc 7311The unfollowed process will continue to run.\n\
7ab04401
AC
7312By default, the debugger will follow the parent process."),
7313 NULL,
920d2a44 7314 show_follow_fork_mode_string,
7ab04401
AC
7315 &setlist, &showlist);
7316
6c95b8df
PA
7317 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7318 follow_exec_mode_names,
7319 &follow_exec_mode_string, _("\
7320Set debugger response to a program call of exec."), _("\
7321Show debugger response to a program call of exec."), _("\
7322An exec call replaces the program image of a process.\n\
7323\n\
7324follow-exec-mode can be:\n\
7325\n\
cce7e648 7326 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7327to this new inferior. The program the process was running before\n\
7328the exec call can be restarted afterwards by restarting the original\n\
7329inferior.\n\
7330\n\
7331 same - the debugger keeps the process bound to the same inferior.\n\
7332The new executable image replaces the previous executable loaded in\n\
7333the inferior. Restarting the inferior after the exec call restarts\n\
7334the executable the process was running after the exec call.\n\
7335\n\
7336By default, the debugger will use the same inferior."),
7337 NULL,
7338 show_follow_exec_mode_string,
7339 &setlist, &showlist);
7340
7ab04401
AC
7341 add_setshow_enum_cmd ("scheduler-locking", class_run,
7342 scheduler_enums, &scheduler_mode, _("\
7343Set mode for locking scheduler during execution."), _("\
7344Show mode for locking scheduler during execution."), _("\
c906108c
SS
7345off == no locking (threads may preempt at any time)\n\
7346on == full locking (no thread except the current thread may run)\n\
7347step == scheduler locked during every single-step operation.\n\
7348 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7349 Other threads may run while stepping over a function call ('next')."),
7350 set_schedlock_func, /* traps on target vector */
920d2a44 7351 show_scheduler_mode,
7ab04401 7352 &setlist, &showlist);
5fbbeb29 7353
d4db2f36
PA
7354 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7355Set mode for resuming threads of all processes."), _("\
7356Show mode for resuming threads of all processes."), _("\
7357When on, execution commands (such as 'continue' or 'next') resume all\n\
7358threads of all processes. When off (which is the default), execution\n\
7359commands only resume the threads of the current process. The set of\n\
7360threads that are resumed is further refined by the scheduler-locking\n\
7361mode (see help set scheduler-locking)."),
7362 NULL,
7363 show_schedule_multiple,
7364 &setlist, &showlist);
7365
5bf193a2
AC
7366 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7367Set mode of the step operation."), _("\
7368Show mode of the step operation."), _("\
7369When set, doing a step over a function without debug line information\n\
7370will stop at the first instruction of that function. Otherwise, the\n\
7371function is skipped and the step command stops at a different source line."),
7372 NULL,
920d2a44 7373 show_step_stop_if_no_debug,
5bf193a2 7374 &setlist, &showlist);
ca6724c1 7375
72d0e2c5
YQ
7376 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7377 &can_use_displaced_stepping, _("\
237fc4c9
PA
7378Set debugger's willingness to use displaced stepping."), _("\
7379Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7380If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7381supported by the target architecture. If off, gdb will not use displaced\n\
7382stepping to step over breakpoints, even if such is supported by the target\n\
7383architecture. If auto (which is the default), gdb will use displaced stepping\n\
7384if the target architecture supports it and non-stop mode is active, but will not\n\
7385use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7386 NULL,
7387 show_can_use_displaced_stepping,
7388 &setlist, &showlist);
237fc4c9 7389
b2175913
MS
7390 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7391 &exec_direction, _("Set direction of execution.\n\
7392Options are 'forward' or 'reverse'."),
7393 _("Show direction of execution (forward/reverse)."),
7394 _("Tells gdb whether to execute forward or backward."),
7395 set_exec_direction_func, show_exec_direction_func,
7396 &setlist, &showlist);
7397
6c95b8df
PA
7398 /* Set/show detach-on-fork: user-settable mode. */
7399
7400 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7401Set whether gdb will detach the child of a fork."), _("\
7402Show whether gdb will detach the child of a fork."), _("\
7403Tells gdb whether to detach the child of a fork."),
7404 NULL, NULL, &setlist, &showlist);
7405
03583c20
UW
7406 /* Set/show disable address space randomization mode. */
7407
7408 add_setshow_boolean_cmd ("disable-randomization", class_support,
7409 &disable_randomization, _("\
7410Set disabling of debuggee's virtual address space randomization."), _("\
7411Show disabling of debuggee's virtual address space randomization."), _("\
7412When this mode is on (which is the default), randomization of the virtual\n\
7413address space is disabled. Standalone programs run with the randomization\n\
7414enabled by default on some platforms."),
7415 &set_disable_randomization,
7416 &show_disable_randomization,
7417 &setlist, &showlist);
7418
ca6724c1 7419 /* ptid initializations */
ca6724c1
KB
7420 inferior_ptid = null_ptid;
7421 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7422
7423 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7424 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7425 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7426 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7427
7428 /* Explicitly create without lookup, since that tries to create a
7429 value with a void typed value, and when we get here, gdbarch
7430 isn't initialized yet. At this point, we're quite sure there
7431 isn't another convenience variable of the same name. */
22d2b532 7432 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7433
7434 add_setshow_boolean_cmd ("observer", no_class,
7435 &observer_mode_1, _("\
7436Set whether gdb controls the inferior in observer mode."), _("\
7437Show whether gdb controls the inferior in observer mode."), _("\
7438In observer mode, GDB can get data from the inferior, but not\n\
7439affect its execution. Registers and memory may not be changed,\n\
7440breakpoints may not be set, and the program cannot be interrupted\n\
7441or signalled."),
7442 set_observer_mode,
7443 show_observer_mode,
7444 &setlist,
7445 &showlist);
c906108c 7446}
This page took 1.857964 seconds and 4 git commands to generate.