Fix some strip test fails on nds32 and pru
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
e2882c85 4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
4ef3f3be 77static int follow_fork (void);
96baa820 78
d83ad864
DB
79static int follow_fork_inferior (int follow_child, int detach_fork);
80
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
e58b0e63
PA
85void nullify_last_target_wait_ptid (void);
86
2c03e5be 87static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
88
89static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
2484c66b
UW
91static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
8550d3b3
YQ
93static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
372316f1
PA
95/* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97static struct async_event_handler *infrun_async_inferior_event_token;
98
99/* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101static int infrun_is_async = -1;
102
103/* See infrun.h. */
104
105void
106infrun_async (int enable)
107{
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135int step_stop_if_no_debug = 0;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154static int detach_fork = 1;
6c95b8df 155
237fc4c9
PA
156int debug_displaced = 0;
157static void
158show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162}
163
ccce17b0 164unsigned int debug_infrun = 0;
920d2a44
AC
165static void
166show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170}
527159b7 171
03583c20
UW
172
173/* Support for disabling address space randomization. */
174
175int disable_randomization = 1;
176
177static void
178show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190}
191
192static void
eb4c3f4a 193set_disable_randomization (const char *args, int from_tty,
03583c20
UW
194 struct cmd_list_element *c)
195{
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200}
201
d32dc48e
PA
202/* User interface for non-stop mode. */
203
204int non_stop = 0;
205static int non_stop_1 = 0;
206
207static void
eb4c3f4a 208set_non_stop (const char *args, int from_tty,
d32dc48e
PA
209 struct cmd_list_element *c)
210{
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218}
219
220static void
221show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223{
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227}
228
d914c394
SS
229/* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
d914c394
SS
233int observer_mode = 0;
234static int observer_mode_1 = 0;
235
236static void
eb4c3f4a 237set_observer_mode (const char *args, int from_tty,
d914c394
SS
238 struct cmd_list_element *c)
239{
d914c394
SS
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
d914c394
SS
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270}
271
272static void
273show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275{
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277}
278
279/* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285void
286update_observer_mode (void)
287{
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302}
c2c6d25f 303
c906108c
SS
304/* Tables of how to react to signals; the user sets them. */
305
306static unsigned char *signal_stop;
307static unsigned char *signal_print;
308static unsigned char *signal_program;
309
ab04a2af
TT
310/* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314static unsigned char *signal_catch;
315
2455069d
UW
316/* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319static unsigned char *signal_pass;
320
c906108c
SS
321#define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329#define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
9b224c5e
PA
337/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340void
341update_signals_program_target (void)
342{
a493e3e2 343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
344}
345
1777feb0 346/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 347
edb3359d 348#define RESUME_ALL minus_one_ptid
c906108c
SS
349
350/* Command list pointer for the "stop" placeholder. */
351
352static struct cmd_list_element *stop_command;
353
c906108c
SS
354/* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
628fe4e4 356int stop_on_solib_events;
f9e14852
GB
357
358/* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361static void
eb4c3f4a
TT
362set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
f9e14852
GB
364{
365 update_solib_breakpoints ();
366}
367
920d2a44
AC
368static void
369show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371{
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374}
c906108c 375
c906108c
SS
376/* Nonzero after stop if current stack frame should be printed. */
377
378static int stop_print_frame;
379
e02bc4cc 380/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
39f77062 383static ptid_t target_last_wait_ptid;
e02bc4cc
DS
384static struct target_waitstatus target_last_waitstatus;
385
0d1e5fa7
PA
386static void context_switch (ptid_t ptid);
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
462 }
463
464 if (info_verbose || debug_infrun)
465 {
8dd06f7a
DB
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
79639e11 471 _("Detaching after %s from child %s.\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
79639e11 481 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
d83ad864 492 add_thread (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (info_verbose || debug_infrun)
553 {
223ffa71 554 target_terminal::ours_for_output ();
6f259a23 555 fprintf_filtered (gdb_stdlog,
79639e11
PA
556 _("Attaching after %s %s to child %s.\n"),
557 target_pid_to_str (parent_ptid),
6f259a23 558 has_vforked ? "vfork" : "fork",
79639e11 559 target_pid_to_str (child_ptid));
d83ad864
DB
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
79639e11 565 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 /* If we're vforking, we want to hold on to the parent until the
576 child exits or execs. At child exec or exit time we can
577 remove the old breakpoints from the parent and detach or
578 resume debugging it. Otherwise, detach the parent now; we'll
579 want to reuse it's program/address spaces, but we can't set
580 them to the child before removing breakpoints from the
581 parent, otherwise, the breakpoints module could decide to
582 remove breakpoints from the wrong process (since they'd be
583 assigned to the same address space). */
584
585 if (has_vforked)
586 {
587 gdb_assert (child_inf->vfork_parent == NULL);
588 gdb_assert (parent_inf->vfork_child == NULL);
589 child_inf->vfork_parent = parent_inf;
590 child_inf->pending_detach = 0;
591 parent_inf->vfork_child = child_inf;
592 parent_inf->pending_detach = detach_fork;
593 parent_inf->waiting_for_vfork_done = 0;
594 }
595 else if (detach_fork)
6f259a23
DB
596 {
597 if (info_verbose || debug_infrun)
598 {
8dd06f7a
DB
599 /* Ensure that we have a process ptid. */
600 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
601
223ffa71 602 target_terminal::ours_for_output ();
6f259a23
DB
603 fprintf_filtered (gdb_stdlog,
604 _("Detaching after fork from "
79639e11 605 "child %s.\n"),
8dd06f7a 606 target_pid_to_str (process_ptid));
6f259a23
DB
607 }
608
6e1e1966 609 target_detach (parent_inf, 0);
6f259a23 610 }
d83ad864
DB
611
612 /* Note that the detach above makes PARENT_INF dangling. */
613
614 /* Add the child thread to the appropriate lists, and switch to
615 this new thread, before cloning the program space, and
616 informing the solib layer about this new process. */
617
79639e11 618 inferior_ptid = child_ptid;
d83ad864 619 add_thread (inferior_ptid);
2a00d7ce 620 set_current_inferior (child_inf);
d83ad864
DB
621
622 /* If this is a vfork child, then the address-space is shared
623 with the parent. If we detached from the parent, then we can
624 reuse the parent's program/address spaces. */
625 if (has_vforked || detach_fork)
626 {
627 child_inf->pspace = parent_pspace;
628 child_inf->aspace = child_inf->pspace->aspace;
629 }
630 else
631 {
632 child_inf->aspace = new_address_space ();
564b1e3f 633 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
634 child_inf->removable = 1;
635 child_inf->symfile_flags = SYMFILE_NO_READ;
636 set_current_program_space (child_inf->pspace);
637 clone_program_space (child_inf->pspace, parent_pspace);
638
639 /* Let the shared library layer (e.g., solib-svr4) learn
640 about this new process, relocate the cloned exec, pull in
641 shared libraries, and install the solib event breakpoint.
642 If a "cloned-VM" event was propagated better throughout
643 the core, this wouldn't be required. */
644 solib_create_inferior_hook (0);
645 }
646 }
647
648 return target_follow_fork (follow_child, detach_fork);
649}
650
e58b0e63
PA
651/* Tell the target to follow the fork we're stopped at. Returns true
652 if the inferior should be resumed; false, if the target for some
653 reason decided it's best not to resume. */
654
6604731b 655static int
4ef3f3be 656follow_fork (void)
c906108c 657{
ea1dd7bc 658 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
659 int should_resume = 1;
660 struct thread_info *tp;
661
662 /* Copy user stepping state to the new inferior thread. FIXME: the
663 followed fork child thread should have a copy of most of the
4e3990f4
DE
664 parent thread structure's run control related fields, not just these.
665 Initialized to avoid "may be used uninitialized" warnings from gcc. */
666 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 667 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
668 CORE_ADDR step_range_start = 0;
669 CORE_ADDR step_range_end = 0;
670 struct frame_id step_frame_id = { 0 };
8980e177 671 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
672
673 if (!non_stop)
674 {
675 ptid_t wait_ptid;
676 struct target_waitstatus wait_status;
677
678 /* Get the last target status returned by target_wait(). */
679 get_last_target_status (&wait_ptid, &wait_status);
680
681 /* If not stopped at a fork event, then there's nothing else to
682 do. */
683 if (wait_status.kind != TARGET_WAITKIND_FORKED
684 && wait_status.kind != TARGET_WAITKIND_VFORKED)
685 return 1;
686
687 /* Check if we switched over from WAIT_PTID, since the event was
688 reported. */
689 if (!ptid_equal (wait_ptid, minus_one_ptid)
690 && !ptid_equal (inferior_ptid, wait_ptid))
691 {
692 /* We did. Switch back to WAIT_PTID thread, to tell the
693 target to follow it (in either direction). We'll
694 afterwards refuse to resume, and inform the user what
695 happened. */
696 switch_to_thread (wait_ptid);
697 should_resume = 0;
698 }
699 }
700
701 tp = inferior_thread ();
702
703 /* If there were any forks/vforks that were caught and are now to be
704 followed, then do so now. */
705 switch (tp->pending_follow.kind)
706 {
707 case TARGET_WAITKIND_FORKED:
708 case TARGET_WAITKIND_VFORKED:
709 {
710 ptid_t parent, child;
711
712 /* If the user did a next/step, etc, over a fork call,
713 preserve the stepping state in the fork child. */
714 if (follow_child && should_resume)
715 {
8358c15c
JK
716 step_resume_breakpoint = clone_momentary_breakpoint
717 (tp->control.step_resume_breakpoint);
16c381f0
JK
718 step_range_start = tp->control.step_range_start;
719 step_range_end = tp->control.step_range_end;
720 step_frame_id = tp->control.step_frame_id;
186c406b
TT
721 exception_resume_breakpoint
722 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 723 thread_fsm = tp->thread_fsm;
e58b0e63
PA
724
725 /* For now, delete the parent's sr breakpoint, otherwise,
726 parent/child sr breakpoints are considered duplicates,
727 and the child version will not be installed. Remove
728 this when the breakpoints module becomes aware of
729 inferiors and address spaces. */
730 delete_step_resume_breakpoint (tp);
16c381f0
JK
731 tp->control.step_range_start = 0;
732 tp->control.step_range_end = 0;
733 tp->control.step_frame_id = null_frame_id;
186c406b 734 delete_exception_resume_breakpoint (tp);
8980e177 735 tp->thread_fsm = NULL;
e58b0e63
PA
736 }
737
738 parent = inferior_ptid;
739 child = tp->pending_follow.value.related_pid;
740
d83ad864
DB
741 /* Set up inferior(s) as specified by the caller, and tell the
742 target to do whatever is necessary to follow either parent
743 or child. */
744 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
745 {
746 /* Target refused to follow, or there's some other reason
747 we shouldn't resume. */
748 should_resume = 0;
749 }
750 else
751 {
752 /* This pending follow fork event is now handled, one way
753 or another. The previous selected thread may be gone
754 from the lists by now, but if it is still around, need
755 to clear the pending follow request. */
e09875d4 756 tp = find_thread_ptid (parent);
e58b0e63
PA
757 if (tp)
758 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
759
760 /* This makes sure we don't try to apply the "Switched
761 over from WAIT_PID" logic above. */
762 nullify_last_target_wait_ptid ();
763
1777feb0 764 /* If we followed the child, switch to it... */
e58b0e63
PA
765 if (follow_child)
766 {
767 switch_to_thread (child);
768
769 /* ... and preserve the stepping state, in case the
770 user was stepping over the fork call. */
771 if (should_resume)
772 {
773 tp = inferior_thread ();
8358c15c
JK
774 tp->control.step_resume_breakpoint
775 = step_resume_breakpoint;
16c381f0
JK
776 tp->control.step_range_start = step_range_start;
777 tp->control.step_range_end = step_range_end;
778 tp->control.step_frame_id = step_frame_id;
186c406b
TT
779 tp->control.exception_resume_breakpoint
780 = exception_resume_breakpoint;
8980e177 781 tp->thread_fsm = thread_fsm;
e58b0e63
PA
782 }
783 else
784 {
785 /* If we get here, it was because we're trying to
786 resume from a fork catchpoint, but, the user
787 has switched threads away from the thread that
788 forked. In that case, the resume command
789 issued is most likely not applicable to the
790 child, so just warn, and refuse to resume. */
3e43a32a 791 warning (_("Not resuming: switched threads "
fd7dcb94 792 "before following fork child."));
e58b0e63
PA
793 }
794
795 /* Reset breakpoints in the child as appropriate. */
796 follow_inferior_reset_breakpoints ();
797 }
798 else
799 switch_to_thread (parent);
800 }
801 }
802 break;
803 case TARGET_WAITKIND_SPURIOUS:
804 /* Nothing to follow. */
805 break;
806 default:
807 internal_error (__FILE__, __LINE__,
808 "Unexpected pending_follow.kind %d\n",
809 tp->pending_follow.kind);
810 break;
811 }
c906108c 812
e58b0e63 813 return should_resume;
c906108c
SS
814}
815
d83ad864 816static void
6604731b 817follow_inferior_reset_breakpoints (void)
c906108c 818{
4e1c45ea
PA
819 struct thread_info *tp = inferior_thread ();
820
6604731b
DJ
821 /* Was there a step_resume breakpoint? (There was if the user
822 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
823 thread number. Cloned step_resume breakpoints are disabled on
824 creation, so enable it here now that it is associated with the
825 correct thread.
6604731b
DJ
826
827 step_resumes are a form of bp that are made to be per-thread.
828 Since we created the step_resume bp when the parent process
829 was being debugged, and now are switching to the child process,
830 from the breakpoint package's viewpoint, that's a switch of
831 "threads". We must update the bp's notion of which thread
832 it is for, or it'll be ignored when it triggers. */
833
8358c15c 834 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
835 {
836 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
837 tp->control.step_resume_breakpoint->loc->enabled = 1;
838 }
6604731b 839
a1aa2221 840 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 841 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
842 {
843 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
844 tp->control.exception_resume_breakpoint->loc->enabled = 1;
845 }
186c406b 846
6604731b
DJ
847 /* Reinsert all breakpoints in the child. The user may have set
848 breakpoints after catching the fork, in which case those
849 were never set in the child, but only in the parent. This makes
850 sure the inserted breakpoints match the breakpoint list. */
851
852 breakpoint_re_set ();
853 insert_breakpoints ();
c906108c 854}
c906108c 855
6c95b8df
PA
856/* The child has exited or execed: resume threads of the parent the
857 user wanted to be executing. */
858
859static int
860proceed_after_vfork_done (struct thread_info *thread,
861 void *arg)
862{
863 int pid = * (int *) arg;
864
865 if (ptid_get_pid (thread->ptid) == pid
866 && is_running (thread->ptid)
867 && !is_executing (thread->ptid)
868 && !thread->stop_requested
a493e3e2 869 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
870 {
871 if (debug_infrun)
872 fprintf_unfiltered (gdb_stdlog,
873 "infrun: resuming vfork parent thread %s\n",
874 target_pid_to_str (thread->ptid));
875
876 switch_to_thread (thread->ptid);
70509625 877 clear_proceed_status (0);
64ce06e4 878 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
879 }
880
881 return 0;
882}
883
5ed8105e
PA
884/* Save/restore inferior_ptid, current program space and current
885 inferior. Only use this if the current context points at an exited
886 inferior (and therefore there's no current thread to save). */
887class scoped_restore_exited_inferior
888{
889public:
890 scoped_restore_exited_inferior ()
891 : m_saved_ptid (&inferior_ptid)
892 {}
893
894private:
895 scoped_restore_tmpl<ptid_t> m_saved_ptid;
896 scoped_restore_current_program_space m_pspace;
897 scoped_restore_current_inferior m_inferior;
898};
899
6c95b8df
PA
900/* Called whenever we notice an exec or exit event, to handle
901 detaching or resuming a vfork parent. */
902
903static void
904handle_vfork_child_exec_or_exit (int exec)
905{
906 struct inferior *inf = current_inferior ();
907
908 if (inf->vfork_parent)
909 {
910 int resume_parent = -1;
911
912 /* This exec or exit marks the end of the shared memory region
913 between the parent and the child. If the user wanted to
914 detach from the parent, now is the time. */
915
916 if (inf->vfork_parent->pending_detach)
917 {
918 struct thread_info *tp;
6c95b8df
PA
919 struct program_space *pspace;
920 struct address_space *aspace;
921
1777feb0 922 /* follow-fork child, detach-on-fork on. */
6c95b8df 923
68c9da30
PA
924 inf->vfork_parent->pending_detach = 0;
925
5ed8105e
PA
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
f50f4e56 933 if (!exec)
5ed8105e 934 maybe_restore_inferior.emplace ();
f50f4e56 935 else
5ed8105e 936 maybe_restore_thread.emplace ();
6c95b8df
PA
937
938 /* We're letting loose of the parent. */
939 tp = any_live_thread_of_process (inf->vfork_parent->pid);
940 switch_to_thread (tp->ptid);
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
959 if (debug_infrun || info_verbose)
960 {
223ffa71 961 target_terminal::ours_for_output ();
6c95b8df
PA
962
963 if (exec)
6f259a23
DB
964 {
965 fprintf_filtered (gdb_stdlog,
966 _("Detaching vfork parent process "
967 "%d after child exec.\n"),
968 inf->vfork_parent->pid);
969 }
6c95b8df 970 else
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exit.\n"),
975 inf->vfork_parent->pid);
976 }
6c95b8df
PA
977 }
978
6e1e1966 979 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
980
981 /* Put it back. */
982 inf->pspace = pspace;
983 inf->aspace = aspace;
6c95b8df
PA
984 }
985 else if (exec)
986 {
987 /* We're staying attached to the parent, so, really give the
988 child a new address space. */
564b1e3f 989 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
990 inf->aspace = inf->pspace->aspace;
991 inf->removable = 1;
992 set_current_program_space (inf->pspace);
993
994 resume_parent = inf->vfork_parent->pid;
995
996 /* Break the bonds. */
997 inf->vfork_parent->vfork_child = NULL;
998 }
999 else
1000 {
6c95b8df
PA
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
5ed8105e
PA
1012 /* Switch to null_ptid while running clone_program_space, so
1013 that clone_program_space doesn't want to read the
1014 selected frame of a dead process. */
1015 scoped_restore restore_ptid
1016 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1017
1018 /* This inferior is dead, so avoid giving the breakpoints
1019 module the option to write through to it (cloning a
1020 program space resets breakpoints). */
1021 inf->aspace = NULL;
1022 inf->pspace = NULL;
564b1e3f 1023 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1024 set_current_program_space (pspace);
1025 inf->removable = 1;
7dcd53a0 1026 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1027 clone_program_space (pspace, inf->vfork_parent->pspace);
1028 inf->pspace = pspace;
1029 inf->aspace = pspace->aspace;
1030
6c95b8df
PA
1031 resume_parent = inf->vfork_parent->pid;
1032 /* Break the bonds. */
1033 inf->vfork_parent->vfork_child = NULL;
1034 }
1035
1036 inf->vfork_parent = NULL;
1037
1038 gdb_assert (current_program_space == inf->pspace);
1039
1040 if (non_stop && resume_parent != -1)
1041 {
1042 /* If the user wanted the parent to be running, let it go
1043 free now. */
5ed8105e 1044 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1045
1046 if (debug_infrun)
3e43a32a
MS
1047 fprintf_unfiltered (gdb_stdlog,
1048 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1049 resume_parent);
1050
1051 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1052 }
1053 }
1054}
1055
eb6c553b 1056/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1057
1058static const char follow_exec_mode_new[] = "new";
1059static const char follow_exec_mode_same[] = "same";
40478521 1060static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1061{
1062 follow_exec_mode_new,
1063 follow_exec_mode_same,
1064 NULL,
1065};
1066
1067static const char *follow_exec_mode_string = follow_exec_mode_same;
1068static void
1069show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1070 struct cmd_list_element *c, const char *value)
1071{
1072 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1073}
1074
ecf45d2c 1075/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1076
c906108c 1077static void
ecf45d2c 1078follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1079{
95e50b27 1080 struct thread_info *th, *tmp;
6c95b8df 1081 struct inferior *inf = current_inferior ();
95e50b27 1082 int pid = ptid_get_pid (ptid);
94585166 1083 ptid_t process_ptid;
7a292a7a 1084
c906108c
SS
1085 /* This is an exec event that we actually wish to pay attention to.
1086 Refresh our symbol table to the newly exec'd program, remove any
1087 momentary bp's, etc.
1088
1089 If there are breakpoints, they aren't really inserted now,
1090 since the exec() transformed our inferior into a fresh set
1091 of instructions.
1092
1093 We want to preserve symbolic breakpoints on the list, since
1094 we have hopes that they can be reset after the new a.out's
1095 symbol table is read.
1096
1097 However, any "raw" breakpoints must be removed from the list
1098 (e.g., the solib bp's), since their address is probably invalid
1099 now.
1100
1101 And, we DON'T want to call delete_breakpoints() here, since
1102 that may write the bp's "shadow contents" (the instruction
1103 value that was overwritten witha TRAP instruction). Since
1777feb0 1104 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1105
1106 mark_breakpoints_out ();
1107
95e50b27
PA
1108 /* The target reports the exec event to the main thread, even if
1109 some other thread does the exec, and even if the main thread was
1110 stopped or already gone. We may still have non-leader threads of
1111 the process on our list. E.g., on targets that don't have thread
1112 exit events (like remote); or on native Linux in non-stop mode if
1113 there were only two threads in the inferior and the non-leader
1114 one is the one that execs (and nothing forces an update of the
1115 thread list up to here). When debugging remotely, it's best to
1116 avoid extra traffic, when possible, so avoid syncing the thread
1117 list with the target, and instead go ahead and delete all threads
1118 of the process but one that reported the event. Note this must
1119 be done before calling update_breakpoints_after_exec, as
1120 otherwise clearing the threads' resources would reference stale
1121 thread breakpoints -- it may have been one of these threads that
1122 stepped across the exec. We could just clear their stepping
1123 states, but as long as we're iterating, might as well delete
1124 them. Deleting them now rather than at the next user-visible
1125 stop provides a nicer sequence of events for user and MI
1126 notifications. */
8a06aea7 1127 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1128 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1129 delete_thread (th->ptid);
1130
1131 /* We also need to clear any left over stale state for the
1132 leader/event thread. E.g., if there was any step-resume
1133 breakpoint or similar, it's gone now. We cannot truly
1134 step-to-next statement through an exec(). */
1135 th = inferior_thread ();
8358c15c 1136 th->control.step_resume_breakpoint = NULL;
186c406b 1137 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1138 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1139 th->control.step_range_start = 0;
1140 th->control.step_range_end = 0;
c906108c 1141
95e50b27
PA
1142 /* The user may have had the main thread held stopped in the
1143 previous image (e.g., schedlock on, or non-stop). Release
1144 it now. */
a75724bc
PA
1145 th->stop_requested = 0;
1146
95e50b27
PA
1147 update_breakpoints_after_exec ();
1148
1777feb0 1149 /* What is this a.out's name? */
94585166 1150 process_ptid = pid_to_ptid (pid);
6c95b8df 1151 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1152 target_pid_to_str (process_ptid),
ecf45d2c 1153 exec_file_target);
c906108c
SS
1154
1155 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1156 inferior has essentially been killed & reborn. */
7a292a7a 1157
c906108c 1158 gdb_flush (gdb_stdout);
6ca15a4b
PA
1159
1160 breakpoint_init_inferior (inf_execd);
e85a822c 1161
797bc1cb
TT
1162 gdb::unique_xmalloc_ptr<char> exec_file_host
1163 = exec_file_find (exec_file_target, NULL);
ff862be4 1164
ecf45d2c
SL
1165 /* If we were unable to map the executable target pathname onto a host
1166 pathname, tell the user that. Otherwise GDB's subsequent behavior
1167 is confusing. Maybe it would even be better to stop at this point
1168 so that the user can specify a file manually before continuing. */
1169 if (exec_file_host == NULL)
1170 warning (_("Could not load symbols for executable %s.\n"
1171 "Do you need \"set sysroot\"?"),
1172 exec_file_target);
c906108c 1173
cce9b6bf
PA
1174 /* Reset the shared library package. This ensures that we get a
1175 shlib event when the child reaches "_start", at which point the
1176 dld will have had a chance to initialize the child. */
1177 /* Also, loading a symbol file below may trigger symbol lookups, and
1178 we don't want those to be satisfied by the libraries of the
1179 previous incarnation of this process. */
1180 no_shared_libraries (NULL, 0);
1181
6c95b8df
PA
1182 if (follow_exec_mode_string == follow_exec_mode_new)
1183 {
6c95b8df
PA
1184 /* The user wants to keep the old inferior and program spaces
1185 around. Create a new fresh one, and switch to it. */
1186
17d8546e
DB
1187 /* Do exit processing for the original inferior before adding
1188 the new inferior so we don't have two active inferiors with
1189 the same ptid, which can confuse find_inferior_ptid. */
1190 exit_inferior_num_silent (current_inferior ()->num);
1191
94585166
DB
1192 inf = add_inferior_with_spaces ();
1193 inf->pid = pid;
ecf45d2c 1194 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1195
1196 set_current_inferior (inf);
94585166 1197 set_current_program_space (inf->pspace);
6c95b8df 1198 }
9107fc8d
PA
1199 else
1200 {
1201 /* The old description may no longer be fit for the new image.
1202 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1203 old description; we'll read a new one below. No need to do
1204 this on "follow-exec-mode new", as the old inferior stays
1205 around (its description is later cleared/refetched on
1206 restart). */
1207 target_clear_description ();
1208 }
6c95b8df
PA
1209
1210 gdb_assert (current_program_space == inf->pspace);
1211
ecf45d2c
SL
1212 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1213 because the proper displacement for a PIE (Position Independent
1214 Executable) main symbol file will only be computed by
1215 solib_create_inferior_hook below. breakpoint_re_set would fail
1216 to insert the breakpoints with the zero displacement. */
797bc1cb 1217 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1218
9107fc8d
PA
1219 /* If the target can specify a description, read it. Must do this
1220 after flipping to the new executable (because the target supplied
1221 description must be compatible with the executable's
1222 architecture, and the old executable may e.g., be 32-bit, while
1223 the new one 64-bit), and before anything involving memory or
1224 registers. */
1225 target_find_description ();
1226
bf93d7ba
SM
1227 /* The add_thread call ends up reading registers, so do it after updating the
1228 target description. */
1229 if (follow_exec_mode_string == follow_exec_mode_new)
1230 add_thread (ptid);
1231
268a4a75 1232 solib_create_inferior_hook (0);
c906108c 1233
4efc6507
DE
1234 jit_inferior_created_hook ();
1235
c1e56572
JK
1236 breakpoint_re_set ();
1237
c906108c
SS
1238 /* Reinsert all breakpoints. (Those which were symbolic have
1239 been reset to the proper address in the new a.out, thanks
1777feb0 1240 to symbol_file_command...). */
c906108c
SS
1241 insert_breakpoints ();
1242
1243 /* The next resume of this inferior should bring it to the shlib
1244 startup breakpoints. (If the user had also set bp's on
1245 "main" from the old (parent) process, then they'll auto-
1777feb0 1246 matically get reset there in the new process.). */
c906108c
SS
1247}
1248
c2829269
PA
1249/* The queue of threads that need to do a step-over operation to get
1250 past e.g., a breakpoint. What technique is used to step over the
1251 breakpoint/watchpoint does not matter -- all threads end up in the
1252 same queue, to maintain rough temporal order of execution, in order
1253 to avoid starvation, otherwise, we could e.g., find ourselves
1254 constantly stepping the same couple threads past their breakpoints
1255 over and over, if the single-step finish fast enough. */
1256struct thread_info *step_over_queue_head;
1257
6c4cfb24
PA
1258/* Bit flags indicating what the thread needs to step over. */
1259
8d297bbf 1260enum step_over_what_flag
6c4cfb24
PA
1261 {
1262 /* Step over a breakpoint. */
1263 STEP_OVER_BREAKPOINT = 1,
1264
1265 /* Step past a non-continuable watchpoint, in order to let the
1266 instruction execute so we can evaluate the watchpoint
1267 expression. */
1268 STEP_OVER_WATCHPOINT = 2
1269 };
8d297bbf 1270DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1271
963f9c80 1272/* Info about an instruction that is being stepped over. */
31e77af2
PA
1273
1274struct step_over_info
1275{
963f9c80
PA
1276 /* If we're stepping past a breakpoint, this is the address space
1277 and address of the instruction the breakpoint is set at. We'll
1278 skip inserting all breakpoints here. Valid iff ASPACE is
1279 non-NULL. */
8b86c959 1280 const address_space *aspace;
31e77af2 1281 CORE_ADDR address;
963f9c80
PA
1282
1283 /* The instruction being stepped over triggers a nonsteppable
1284 watchpoint. If true, we'll skip inserting watchpoints. */
1285 int nonsteppable_watchpoint_p;
21edc42f
YQ
1286
1287 /* The thread's global number. */
1288 int thread;
31e77af2
PA
1289};
1290
1291/* The step-over info of the location that is being stepped over.
1292
1293 Note that with async/breakpoint always-inserted mode, a user might
1294 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1295 being stepped over. As setting a new breakpoint inserts all
1296 breakpoints, we need to make sure the breakpoint being stepped over
1297 isn't inserted then. We do that by only clearing the step-over
1298 info when the step-over is actually finished (or aborted).
1299
1300 Presently GDB can only step over one breakpoint at any given time.
1301 Given threads that can't run code in the same address space as the
1302 breakpoint's can't really miss the breakpoint, GDB could be taught
1303 to step-over at most one breakpoint per address space (so this info
1304 could move to the address space object if/when GDB is extended).
1305 The set of breakpoints being stepped over will normally be much
1306 smaller than the set of all breakpoints, so a flag in the
1307 breakpoint location structure would be wasteful. A separate list
1308 also saves complexity and run-time, as otherwise we'd have to go
1309 through all breakpoint locations clearing their flag whenever we
1310 start a new sequence. Similar considerations weigh against storing
1311 this info in the thread object. Plus, not all step overs actually
1312 have breakpoint locations -- e.g., stepping past a single-step
1313 breakpoint, or stepping to complete a non-continuable
1314 watchpoint. */
1315static struct step_over_info step_over_info;
1316
1317/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1318 stepping over.
1319 N.B. We record the aspace and address now, instead of say just the thread,
1320 because when we need the info later the thread may be running. */
31e77af2
PA
1321
1322static void
8b86c959 1323set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1324 int nonsteppable_watchpoint_p,
1325 int thread)
31e77af2
PA
1326{
1327 step_over_info.aspace = aspace;
1328 step_over_info.address = address;
963f9c80 1329 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1330 step_over_info.thread = thread;
31e77af2
PA
1331}
1332
1333/* Called when we're not longer stepping over a breakpoint / an
1334 instruction, so all breakpoints are free to be (re)inserted. */
1335
1336static void
1337clear_step_over_info (void)
1338{
372316f1
PA
1339 if (debug_infrun)
1340 fprintf_unfiltered (gdb_stdlog,
1341 "infrun: clear_step_over_info\n");
31e77af2
PA
1342 step_over_info.aspace = NULL;
1343 step_over_info.address = 0;
963f9c80 1344 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1345 step_over_info.thread = -1;
31e77af2
PA
1346}
1347
7f89fd65 1348/* See infrun.h. */
31e77af2
PA
1349
1350int
1351stepping_past_instruction_at (struct address_space *aspace,
1352 CORE_ADDR address)
1353{
1354 return (step_over_info.aspace != NULL
1355 && breakpoint_address_match (aspace, address,
1356 step_over_info.aspace,
1357 step_over_info.address));
1358}
1359
963f9c80
PA
1360/* See infrun.h. */
1361
21edc42f
YQ
1362int
1363thread_is_stepping_over_breakpoint (int thread)
1364{
1365 return (step_over_info.thread != -1
1366 && thread == step_over_info.thread);
1367}
1368
1369/* See infrun.h. */
1370
963f9c80
PA
1371int
1372stepping_past_nonsteppable_watchpoint (void)
1373{
1374 return step_over_info.nonsteppable_watchpoint_p;
1375}
1376
6cc83d2a
PA
1377/* Returns true if step-over info is valid. */
1378
1379static int
1380step_over_info_valid_p (void)
1381{
963f9c80
PA
1382 return (step_over_info.aspace != NULL
1383 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1384}
1385
c906108c 1386\f
237fc4c9
PA
1387/* Displaced stepping. */
1388
1389/* In non-stop debugging mode, we must take special care to manage
1390 breakpoints properly; in particular, the traditional strategy for
1391 stepping a thread past a breakpoint it has hit is unsuitable.
1392 'Displaced stepping' is a tactic for stepping one thread past a
1393 breakpoint it has hit while ensuring that other threads running
1394 concurrently will hit the breakpoint as they should.
1395
1396 The traditional way to step a thread T off a breakpoint in a
1397 multi-threaded program in all-stop mode is as follows:
1398
1399 a0) Initially, all threads are stopped, and breakpoints are not
1400 inserted.
1401 a1) We single-step T, leaving breakpoints uninserted.
1402 a2) We insert breakpoints, and resume all threads.
1403
1404 In non-stop debugging, however, this strategy is unsuitable: we
1405 don't want to have to stop all threads in the system in order to
1406 continue or step T past a breakpoint. Instead, we use displaced
1407 stepping:
1408
1409 n0) Initially, T is stopped, other threads are running, and
1410 breakpoints are inserted.
1411 n1) We copy the instruction "under" the breakpoint to a separate
1412 location, outside the main code stream, making any adjustments
1413 to the instruction, register, and memory state as directed by
1414 T's architecture.
1415 n2) We single-step T over the instruction at its new location.
1416 n3) We adjust the resulting register and memory state as directed
1417 by T's architecture. This includes resetting T's PC to point
1418 back into the main instruction stream.
1419 n4) We resume T.
1420
1421 This approach depends on the following gdbarch methods:
1422
1423 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1424 indicate where to copy the instruction, and how much space must
1425 be reserved there. We use these in step n1.
1426
1427 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1428 address, and makes any necessary adjustments to the instruction,
1429 register contents, and memory. We use this in step n1.
1430
1431 - gdbarch_displaced_step_fixup adjusts registers and memory after
1432 we have successfuly single-stepped the instruction, to yield the
1433 same effect the instruction would have had if we had executed it
1434 at its original address. We use this in step n3.
1435
237fc4c9
PA
1436 The gdbarch_displaced_step_copy_insn and
1437 gdbarch_displaced_step_fixup functions must be written so that
1438 copying an instruction with gdbarch_displaced_step_copy_insn,
1439 single-stepping across the copied instruction, and then applying
1440 gdbarch_displaced_insn_fixup should have the same effects on the
1441 thread's memory and registers as stepping the instruction in place
1442 would have. Exactly which responsibilities fall to the copy and
1443 which fall to the fixup is up to the author of those functions.
1444
1445 See the comments in gdbarch.sh for details.
1446
1447 Note that displaced stepping and software single-step cannot
1448 currently be used in combination, although with some care I think
1449 they could be made to. Software single-step works by placing
1450 breakpoints on all possible subsequent instructions; if the
1451 displaced instruction is a PC-relative jump, those breakpoints
1452 could fall in very strange places --- on pages that aren't
1453 executable, or at addresses that are not proper instruction
1454 boundaries. (We do generally let other threads run while we wait
1455 to hit the software single-step breakpoint, and they might
1456 encounter such a corrupted instruction.) One way to work around
1457 this would be to have gdbarch_displaced_step_copy_insn fully
1458 simulate the effect of PC-relative instructions (and return NULL)
1459 on architectures that use software single-stepping.
1460
1461 In non-stop mode, we can have independent and simultaneous step
1462 requests, so more than one thread may need to simultaneously step
1463 over a breakpoint. The current implementation assumes there is
1464 only one scratch space per process. In this case, we have to
1465 serialize access to the scratch space. If thread A wants to step
1466 over a breakpoint, but we are currently waiting for some other
1467 thread to complete a displaced step, we leave thread A stopped and
1468 place it in the displaced_step_request_queue. Whenever a displaced
1469 step finishes, we pick the next thread in the queue and start a new
1470 displaced step operation on it. See displaced_step_prepare and
1471 displaced_step_fixup for details. */
1472
cfba9872
SM
1473/* Default destructor for displaced_step_closure. */
1474
1475displaced_step_closure::~displaced_step_closure () = default;
1476
fc1cf338
PA
1477/* Per-inferior displaced stepping state. */
1478struct displaced_step_inferior_state
1479{
1480 /* Pointer to next in linked list. */
1481 struct displaced_step_inferior_state *next;
1482
1483 /* The process this displaced step state refers to. */
1484 int pid;
1485
3fc8eb30
PA
1486 /* True if preparing a displaced step ever failed. If so, we won't
1487 try displaced stepping for this inferior again. */
1488 int failed_before;
1489
fc1cf338
PA
1490 /* If this is not null_ptid, this is the thread carrying out a
1491 displaced single-step in process PID. This thread's state will
1492 require fixing up once it has completed its step. */
1493 ptid_t step_ptid;
1494
1495 /* The architecture the thread had when we stepped it. */
1496 struct gdbarch *step_gdbarch;
1497
1498 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1499 for post-step cleanup. */
1500 struct displaced_step_closure *step_closure;
1501
1502 /* The address of the original instruction, and the copy we
1503 made. */
1504 CORE_ADDR step_original, step_copy;
1505
1506 /* Saved contents of copy area. */
1507 gdb_byte *step_saved_copy;
1508};
1509
1510/* The list of states of processes involved in displaced stepping
1511 presently. */
1512static struct displaced_step_inferior_state *displaced_step_inferior_states;
1513
1514/* Get the displaced stepping state of process PID. */
1515
1516static struct displaced_step_inferior_state *
1517get_displaced_stepping_state (int pid)
1518{
1519 struct displaced_step_inferior_state *state;
1520
1521 for (state = displaced_step_inferior_states;
1522 state != NULL;
1523 state = state->next)
1524 if (state->pid == pid)
1525 return state;
1526
1527 return NULL;
1528}
1529
372316f1
PA
1530/* Returns true if any inferior has a thread doing a displaced
1531 step. */
1532
1533static int
1534displaced_step_in_progress_any_inferior (void)
1535{
1536 struct displaced_step_inferior_state *state;
1537
1538 for (state = displaced_step_inferior_states;
1539 state != NULL;
1540 state = state->next)
1541 if (!ptid_equal (state->step_ptid, null_ptid))
1542 return 1;
1543
1544 return 0;
1545}
1546
c0987663
YQ
1547/* Return true if thread represented by PTID is doing a displaced
1548 step. */
1549
1550static int
1551displaced_step_in_progress_thread (ptid_t ptid)
1552{
1553 struct displaced_step_inferior_state *displaced;
1554
1555 gdb_assert (!ptid_equal (ptid, null_ptid));
1556
1557 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1558
1559 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1560}
1561
8f572e5c
PA
1562/* Return true if process PID has a thread doing a displaced step. */
1563
1564static int
1565displaced_step_in_progress (int pid)
1566{
1567 struct displaced_step_inferior_state *displaced;
1568
1569 displaced = get_displaced_stepping_state (pid);
1570 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1571 return 1;
1572
1573 return 0;
1574}
1575
fc1cf338
PA
1576/* Add a new displaced stepping state for process PID to the displaced
1577 stepping state list, or return a pointer to an already existing
1578 entry, if it already exists. Never returns NULL. */
1579
1580static struct displaced_step_inferior_state *
1581add_displaced_stepping_state (int pid)
1582{
1583 struct displaced_step_inferior_state *state;
1584
1585 for (state = displaced_step_inferior_states;
1586 state != NULL;
1587 state = state->next)
1588 if (state->pid == pid)
1589 return state;
237fc4c9 1590
8d749320 1591 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1592 state->pid = pid;
1593 state->next = displaced_step_inferior_states;
1594 displaced_step_inferior_states = state;
237fc4c9 1595
fc1cf338
PA
1596 return state;
1597}
1598
a42244db
YQ
1599/* If inferior is in displaced stepping, and ADDR equals to starting address
1600 of copy area, return corresponding displaced_step_closure. Otherwise,
1601 return NULL. */
1602
1603struct displaced_step_closure*
1604get_displaced_step_closure_by_addr (CORE_ADDR addr)
1605{
1606 struct displaced_step_inferior_state *displaced
1607 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1608
1609 /* If checking the mode of displaced instruction in copy area. */
1610 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1611 && (displaced->step_copy == addr))
1612 return displaced->step_closure;
1613
1614 return NULL;
1615}
1616
fc1cf338 1617/* Remove the displaced stepping state of process PID. */
237fc4c9 1618
fc1cf338
PA
1619static void
1620remove_displaced_stepping_state (int pid)
1621{
1622 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1623
fc1cf338
PA
1624 gdb_assert (pid != 0);
1625
1626 it = displaced_step_inferior_states;
1627 prev_next_p = &displaced_step_inferior_states;
1628 while (it)
1629 {
1630 if (it->pid == pid)
1631 {
1632 *prev_next_p = it->next;
1633 xfree (it);
1634 return;
1635 }
1636
1637 prev_next_p = &it->next;
1638 it = *prev_next_p;
1639 }
1640}
1641
1642static void
1643infrun_inferior_exit (struct inferior *inf)
1644{
1645 remove_displaced_stepping_state (inf->pid);
1646}
237fc4c9 1647
fff08868
HZ
1648/* If ON, and the architecture supports it, GDB will use displaced
1649 stepping to step over breakpoints. If OFF, or if the architecture
1650 doesn't support it, GDB will instead use the traditional
1651 hold-and-step approach. If AUTO (which is the default), GDB will
1652 decide which technique to use to step over breakpoints depending on
1653 which of all-stop or non-stop mode is active --- displaced stepping
1654 in non-stop mode; hold-and-step in all-stop mode. */
1655
72d0e2c5 1656static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1657
237fc4c9
PA
1658static void
1659show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1660 struct cmd_list_element *c,
1661 const char *value)
1662{
72d0e2c5 1663 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1664 fprintf_filtered (file,
1665 _("Debugger's willingness to use displaced stepping "
1666 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1667 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1668 else
3e43a32a
MS
1669 fprintf_filtered (file,
1670 _("Debugger's willingness to use displaced stepping "
1671 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1672}
1673
fff08868 1674/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1675 over breakpoints of thread TP. */
fff08868 1676
237fc4c9 1677static int
3fc8eb30 1678use_displaced_stepping (struct thread_info *tp)
237fc4c9 1679{
3fc8eb30 1680 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 1681 struct gdbarch *gdbarch = regcache->arch ();
3fc8eb30
PA
1682 struct displaced_step_inferior_state *displaced_state;
1683
1684 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1685
fbea99ea
PA
1686 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1687 && target_is_non_stop_p ())
72d0e2c5 1688 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1689 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1690 && find_record_target () == NULL
1691 && (displaced_state == NULL
1692 || !displaced_state->failed_before));
237fc4c9
PA
1693}
1694
1695/* Clean out any stray displaced stepping state. */
1696static void
fc1cf338 1697displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1698{
1699 /* Indicate that there is no cleanup pending. */
fc1cf338 1700 displaced->step_ptid = null_ptid;
237fc4c9 1701
cfba9872 1702 delete displaced->step_closure;
6d45d4b4 1703 displaced->step_closure = NULL;
237fc4c9
PA
1704}
1705
1706static void
fc1cf338 1707displaced_step_clear_cleanup (void *arg)
237fc4c9 1708{
9a3c8263
SM
1709 struct displaced_step_inferior_state *state
1710 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1711
1712 displaced_step_clear (state);
237fc4c9
PA
1713}
1714
1715/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1716void
1717displaced_step_dump_bytes (struct ui_file *file,
1718 const gdb_byte *buf,
1719 size_t len)
1720{
1721 int i;
1722
1723 for (i = 0; i < len; i++)
1724 fprintf_unfiltered (file, "%02x ", buf[i]);
1725 fputs_unfiltered ("\n", file);
1726}
1727
1728/* Prepare to single-step, using displaced stepping.
1729
1730 Note that we cannot use displaced stepping when we have a signal to
1731 deliver. If we have a signal to deliver and an instruction to step
1732 over, then after the step, there will be no indication from the
1733 target whether the thread entered a signal handler or ignored the
1734 signal and stepped over the instruction successfully --- both cases
1735 result in a simple SIGTRAP. In the first case we mustn't do a
1736 fixup, and in the second case we must --- but we can't tell which.
1737 Comments in the code for 'random signals' in handle_inferior_event
1738 explain how we handle this case instead.
1739
1740 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1741 stepped now; 0 if displaced stepping this thread got queued; or -1
1742 if this instruction can't be displaced stepped. */
1743
237fc4c9 1744static int
3fc8eb30 1745displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1746{
2989a365 1747 struct cleanup *ignore_cleanups;
c1e36e3e 1748 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9 1749 struct regcache *regcache = get_thread_regcache (ptid);
ac7936df 1750 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1751 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1752 CORE_ADDR original, copy;
1753 ULONGEST len;
1754 struct displaced_step_closure *closure;
fc1cf338 1755 struct displaced_step_inferior_state *displaced;
9e529e1d 1756 int status;
237fc4c9
PA
1757
1758 /* We should never reach this function if the architecture does not
1759 support displaced stepping. */
1760 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1761
c2829269
PA
1762 /* Nor if the thread isn't meant to step over a breakpoint. */
1763 gdb_assert (tp->control.trap_expected);
1764
c1e36e3e
PA
1765 /* Disable range stepping while executing in the scratch pad. We
1766 want a single-step even if executing the displaced instruction in
1767 the scratch buffer lands within the stepping range (e.g., a
1768 jump/branch). */
1769 tp->control.may_range_step = 0;
1770
fc1cf338
PA
1771 /* We have to displaced step one thread at a time, as we only have
1772 access to a single scratch space per inferior. */
237fc4c9 1773
fc1cf338
PA
1774 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1775
1776 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1777 {
1778 /* Already waiting for a displaced step to finish. Defer this
1779 request and place in queue. */
237fc4c9
PA
1780
1781 if (debug_displaced)
1782 fprintf_unfiltered (gdb_stdlog,
c2829269 1783 "displaced: deferring step of %s\n",
237fc4c9
PA
1784 target_pid_to_str (ptid));
1785
c2829269 1786 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1787 return 0;
1788 }
1789 else
1790 {
1791 if (debug_displaced)
1792 fprintf_unfiltered (gdb_stdlog,
1793 "displaced: stepping %s now\n",
1794 target_pid_to_str (ptid));
1795 }
1796
fc1cf338 1797 displaced_step_clear (displaced);
237fc4c9 1798
2989a365 1799 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
ad53cd71
PA
1800 inferior_ptid = ptid;
1801
515630c5 1802 original = regcache_read_pc (regcache);
237fc4c9
PA
1803
1804 copy = gdbarch_displaced_step_location (gdbarch);
1805 len = gdbarch_max_insn_length (gdbarch);
1806
d35ae833
PA
1807 if (breakpoint_in_range_p (aspace, copy, len))
1808 {
1809 /* There's a breakpoint set in the scratch pad location range
1810 (which is usually around the entry point). We'd either
1811 install it before resuming, which would overwrite/corrupt the
1812 scratch pad, or if it was already inserted, this displaced
1813 step would overwrite it. The latter is OK in the sense that
1814 we already assume that no thread is going to execute the code
1815 in the scratch pad range (after initial startup) anyway, but
1816 the former is unacceptable. Simply punt and fallback to
1817 stepping over this breakpoint in-line. */
1818 if (debug_displaced)
1819 {
1820 fprintf_unfiltered (gdb_stdlog,
1821 "displaced: breakpoint set in scratch pad. "
1822 "Stepping over breakpoint in-line instead.\n");
1823 }
1824
d35ae833
PA
1825 return -1;
1826 }
1827
237fc4c9 1828 /* Save the original contents of the copy area. */
224c3ddb 1829 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1830 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1831 &displaced->step_saved_copy);
9e529e1d
JK
1832 status = target_read_memory (copy, displaced->step_saved_copy, len);
1833 if (status != 0)
1834 throw_error (MEMORY_ERROR,
1835 _("Error accessing memory address %s (%s) for "
1836 "displaced-stepping scratch space."),
1837 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1838 if (debug_displaced)
1839 {
5af949e3
UW
1840 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1841 paddress (gdbarch, copy));
fc1cf338
PA
1842 displaced_step_dump_bytes (gdb_stdlog,
1843 displaced->step_saved_copy,
1844 len);
237fc4c9
PA
1845 };
1846
1847 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1848 original, copy, regcache);
7f03bd92
PA
1849 if (closure == NULL)
1850 {
1851 /* The architecture doesn't know how or want to displaced step
1852 this instruction or instruction sequence. Fallback to
1853 stepping over the breakpoint in-line. */
2989a365 1854 do_cleanups (ignore_cleanups);
7f03bd92
PA
1855 return -1;
1856 }
237fc4c9 1857
9f5a595d
UW
1858 /* Save the information we need to fix things up if the step
1859 succeeds. */
fc1cf338
PA
1860 displaced->step_ptid = ptid;
1861 displaced->step_gdbarch = gdbarch;
1862 displaced->step_closure = closure;
1863 displaced->step_original = original;
1864 displaced->step_copy = copy;
9f5a595d 1865
fc1cf338 1866 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1867
1868 /* Resume execution at the copy. */
515630c5 1869 regcache_write_pc (regcache, copy);
237fc4c9 1870
ad53cd71
PA
1871 discard_cleanups (ignore_cleanups);
1872
237fc4c9 1873 if (debug_displaced)
5af949e3
UW
1874 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1875 paddress (gdbarch, copy));
237fc4c9 1876
237fc4c9
PA
1877 return 1;
1878}
1879
3fc8eb30
PA
1880/* Wrapper for displaced_step_prepare_throw that disabled further
1881 attempts at displaced stepping if we get a memory error. */
1882
1883static int
1884displaced_step_prepare (ptid_t ptid)
1885{
1886 int prepared = -1;
1887
1888 TRY
1889 {
1890 prepared = displaced_step_prepare_throw (ptid);
1891 }
1892 CATCH (ex, RETURN_MASK_ERROR)
1893 {
1894 struct displaced_step_inferior_state *displaced_state;
1895
16b41842
PA
1896 if (ex.error != MEMORY_ERROR
1897 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1898 throw_exception (ex);
1899
1900 if (debug_infrun)
1901 {
1902 fprintf_unfiltered (gdb_stdlog,
1903 "infrun: disabling displaced stepping: %s\n",
1904 ex.message);
1905 }
1906
1907 /* Be verbose if "set displaced-stepping" is "on", silent if
1908 "auto". */
1909 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1910 {
fd7dcb94 1911 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1912 ex.message);
1913 }
1914
1915 /* Disable further displaced stepping attempts. */
1916 displaced_state
1917 = get_displaced_stepping_state (ptid_get_pid (ptid));
1918 displaced_state->failed_before = 1;
1919 }
1920 END_CATCH
1921
1922 return prepared;
1923}
1924
237fc4c9 1925static void
3e43a32a
MS
1926write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1927 const gdb_byte *myaddr, int len)
237fc4c9 1928{
2989a365 1929 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1930
237fc4c9
PA
1931 inferior_ptid = ptid;
1932 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1933}
1934
e2d96639
YQ
1935/* Restore the contents of the copy area for thread PTID. */
1936
1937static void
1938displaced_step_restore (struct displaced_step_inferior_state *displaced,
1939 ptid_t ptid)
1940{
1941 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1942
1943 write_memory_ptid (ptid, displaced->step_copy,
1944 displaced->step_saved_copy, len);
1945 if (debug_displaced)
1946 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1947 target_pid_to_str (ptid),
1948 paddress (displaced->step_gdbarch,
1949 displaced->step_copy));
1950}
1951
372316f1
PA
1952/* If we displaced stepped an instruction successfully, adjust
1953 registers and memory to yield the same effect the instruction would
1954 have had if we had executed it at its original address, and return
1955 1. If the instruction didn't complete, relocate the PC and return
1956 -1. If the thread wasn't displaced stepping, return 0. */
1957
1958static int
2ea28649 1959displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1960{
1961 struct cleanup *old_cleanups;
fc1cf338
PA
1962 struct displaced_step_inferior_state *displaced
1963 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1964 int ret;
fc1cf338
PA
1965
1966 /* Was any thread of this process doing a displaced step? */
1967 if (displaced == NULL)
372316f1 1968 return 0;
237fc4c9
PA
1969
1970 /* Was this event for the pid we displaced? */
fc1cf338
PA
1971 if (ptid_equal (displaced->step_ptid, null_ptid)
1972 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1973 return 0;
237fc4c9 1974
fc1cf338 1975 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1976
e2d96639 1977 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1978
cb71640d
PA
1979 /* Fixup may need to read memory/registers. Switch to the thread
1980 that we're fixing up. Also, target_stopped_by_watchpoint checks
1981 the current thread. */
1982 switch_to_thread (event_ptid);
1983
237fc4c9 1984 /* Did the instruction complete successfully? */
cb71640d
PA
1985 if (signal == GDB_SIGNAL_TRAP
1986 && !(target_stopped_by_watchpoint ()
1987 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1988 || target_have_steppable_watchpoint)))
237fc4c9
PA
1989 {
1990 /* Fix up the resulting state. */
fc1cf338
PA
1991 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1992 displaced->step_closure,
1993 displaced->step_original,
1994 displaced->step_copy,
1995 get_thread_regcache (displaced->step_ptid));
372316f1 1996 ret = 1;
237fc4c9
PA
1997 }
1998 else
1999 {
2000 /* Since the instruction didn't complete, all we can do is
2001 relocate the PC. */
515630c5
UW
2002 struct regcache *regcache = get_thread_regcache (event_ptid);
2003 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2004
fc1cf338 2005 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2006 regcache_write_pc (regcache, pc);
372316f1 2007 ret = -1;
237fc4c9
PA
2008 }
2009
2010 do_cleanups (old_cleanups);
2011
fc1cf338 2012 displaced->step_ptid = null_ptid;
372316f1
PA
2013
2014 return ret;
c2829269 2015}
1c5cfe86 2016
4d9d9d04
PA
2017/* Data to be passed around while handling an event. This data is
2018 discarded between events. */
2019struct execution_control_state
2020{
2021 ptid_t ptid;
2022 /* The thread that got the event, if this was a thread event; NULL
2023 otherwise. */
2024 struct thread_info *event_thread;
2025
2026 struct target_waitstatus ws;
2027 int stop_func_filled_in;
2028 CORE_ADDR stop_func_start;
2029 CORE_ADDR stop_func_end;
2030 const char *stop_func_name;
2031 int wait_some_more;
2032
2033 /* True if the event thread hit the single-step breakpoint of
2034 another thread. Thus the event doesn't cause a stop, the thread
2035 needs to be single-stepped past the single-step breakpoint before
2036 we can switch back to the original stepping thread. */
2037 int hit_singlestep_breakpoint;
2038};
2039
2040/* Clear ECS and set it to point at TP. */
c2829269
PA
2041
2042static void
4d9d9d04
PA
2043reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2044{
2045 memset (ecs, 0, sizeof (*ecs));
2046 ecs->event_thread = tp;
2047 ecs->ptid = tp->ptid;
2048}
2049
2050static void keep_going_pass_signal (struct execution_control_state *ecs);
2051static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2052static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2053static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2054
2055/* Are there any pending step-over requests? If so, run all we can
2056 now and return true. Otherwise, return false. */
2057
2058static int
c2829269
PA
2059start_step_over (void)
2060{
2061 struct thread_info *tp, *next;
2062
372316f1
PA
2063 /* Don't start a new step-over if we already have an in-line
2064 step-over operation ongoing. */
2065 if (step_over_info_valid_p ())
2066 return 0;
2067
c2829269 2068 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2069 {
4d9d9d04
PA
2070 struct execution_control_state ecss;
2071 struct execution_control_state *ecs = &ecss;
8d297bbf 2072 step_over_what step_what;
372316f1 2073 int must_be_in_line;
c2829269 2074
c65d6b55
PA
2075 gdb_assert (!tp->stop_requested);
2076
c2829269 2077 next = thread_step_over_chain_next (tp);
237fc4c9 2078
c2829269
PA
2079 /* If this inferior already has a displaced step in process,
2080 don't start a new one. */
4d9d9d04 2081 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2082 continue;
2083
372316f1
PA
2084 step_what = thread_still_needs_step_over (tp);
2085 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2086 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2087 && !use_displaced_stepping (tp)));
372316f1
PA
2088
2089 /* We currently stop all threads of all processes to step-over
2090 in-line. If we need to start a new in-line step-over, let
2091 any pending displaced steps finish first. */
2092 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2093 return 0;
2094
c2829269
PA
2095 thread_step_over_chain_remove (tp);
2096
2097 if (step_over_queue_head == NULL)
2098 {
2099 if (debug_infrun)
2100 fprintf_unfiltered (gdb_stdlog,
2101 "infrun: step-over queue now empty\n");
2102 }
2103
372316f1
PA
2104 if (tp->control.trap_expected
2105 || tp->resumed
2106 || tp->executing)
ad53cd71 2107 {
4d9d9d04
PA
2108 internal_error (__FILE__, __LINE__,
2109 "[%s] has inconsistent state: "
372316f1 2110 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2111 target_pid_to_str (tp->ptid),
2112 tp->control.trap_expected,
372316f1 2113 tp->resumed,
4d9d9d04 2114 tp->executing);
ad53cd71 2115 }
1c5cfe86 2116
4d9d9d04
PA
2117 if (debug_infrun)
2118 fprintf_unfiltered (gdb_stdlog,
2119 "infrun: resuming [%s] for step-over\n",
2120 target_pid_to_str (tp->ptid));
2121
2122 /* keep_going_pass_signal skips the step-over if the breakpoint
2123 is no longer inserted. In all-stop, we want to keep looking
2124 for a thread that needs a step-over instead of resuming TP,
2125 because we wouldn't be able to resume anything else until the
2126 target stops again. In non-stop, the resume always resumes
2127 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2128 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2129 continue;
8550d3b3 2130
4d9d9d04
PA
2131 switch_to_thread (tp->ptid);
2132 reset_ecs (ecs, tp);
2133 keep_going_pass_signal (ecs);
1c5cfe86 2134
4d9d9d04
PA
2135 if (!ecs->wait_some_more)
2136 error (_("Command aborted."));
1c5cfe86 2137
372316f1
PA
2138 gdb_assert (tp->resumed);
2139
2140 /* If we started a new in-line step-over, we're done. */
2141 if (step_over_info_valid_p ())
2142 {
2143 gdb_assert (tp->control.trap_expected);
2144 return 1;
2145 }
2146
fbea99ea 2147 if (!target_is_non_stop_p ())
4d9d9d04
PA
2148 {
2149 /* On all-stop, shouldn't have resumed unless we needed a
2150 step over. */
2151 gdb_assert (tp->control.trap_expected
2152 || tp->step_after_step_resume_breakpoint);
2153
2154 /* With remote targets (at least), in all-stop, we can't
2155 issue any further remote commands until the program stops
2156 again. */
2157 return 1;
1c5cfe86 2158 }
c2829269 2159
4d9d9d04
PA
2160 /* Either the thread no longer needed a step-over, or a new
2161 displaced stepping sequence started. Even in the latter
2162 case, continue looking. Maybe we can also start another
2163 displaced step on a thread of other process. */
237fc4c9 2164 }
4d9d9d04
PA
2165
2166 return 0;
237fc4c9
PA
2167}
2168
5231c1fd
PA
2169/* Update global variables holding ptids to hold NEW_PTID if they were
2170 holding OLD_PTID. */
2171static void
2172infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2173{
fc1cf338 2174 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2175
2176 if (ptid_equal (inferior_ptid, old_ptid))
2177 inferior_ptid = new_ptid;
2178
fc1cf338
PA
2179 for (displaced = displaced_step_inferior_states;
2180 displaced;
2181 displaced = displaced->next)
2182 {
2183 if (ptid_equal (displaced->step_ptid, old_ptid))
2184 displaced->step_ptid = new_ptid;
fc1cf338 2185 }
5231c1fd
PA
2186}
2187
237fc4c9 2188\f
c906108c 2189
53904c9e
AC
2190static const char schedlock_off[] = "off";
2191static const char schedlock_on[] = "on";
2192static const char schedlock_step[] = "step";
f2665db5 2193static const char schedlock_replay[] = "replay";
40478521 2194static const char *const scheduler_enums[] = {
ef346e04
AC
2195 schedlock_off,
2196 schedlock_on,
2197 schedlock_step,
f2665db5 2198 schedlock_replay,
ef346e04
AC
2199 NULL
2200};
f2665db5 2201static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2202static void
2203show_scheduler_mode (struct ui_file *file, int from_tty,
2204 struct cmd_list_element *c, const char *value)
2205{
3e43a32a
MS
2206 fprintf_filtered (file,
2207 _("Mode for locking scheduler "
2208 "during execution is \"%s\".\n"),
920d2a44
AC
2209 value);
2210}
c906108c
SS
2211
2212static void
eb4c3f4a 2213set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2214{
eefe576e
AC
2215 if (!target_can_lock_scheduler)
2216 {
2217 scheduler_mode = schedlock_off;
2218 error (_("Target '%s' cannot support this command."), target_shortname);
2219 }
c906108c
SS
2220}
2221
d4db2f36
PA
2222/* True if execution commands resume all threads of all processes by
2223 default; otherwise, resume only threads of the current inferior
2224 process. */
2225int sched_multi = 0;
2226
2facfe5c
DD
2227/* Try to setup for software single stepping over the specified location.
2228 Return 1 if target_resume() should use hardware single step.
2229
2230 GDBARCH the current gdbarch.
2231 PC the location to step over. */
2232
2233static int
2234maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2235{
2236 int hw_step = 1;
2237
f02253f1 2238 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2239 && gdbarch_software_single_step_p (gdbarch))
2240 hw_step = !insert_single_step_breakpoints (gdbarch);
2241
2facfe5c
DD
2242 return hw_step;
2243}
c906108c 2244
f3263aa4
PA
2245/* See infrun.h. */
2246
09cee04b
PA
2247ptid_t
2248user_visible_resume_ptid (int step)
2249{
f3263aa4 2250 ptid_t resume_ptid;
09cee04b 2251
09cee04b
PA
2252 if (non_stop)
2253 {
2254 /* With non-stop mode on, threads are always handled
2255 individually. */
2256 resume_ptid = inferior_ptid;
2257 }
2258 else if ((scheduler_mode == schedlock_on)
03d46957 2259 || (scheduler_mode == schedlock_step && step))
09cee04b 2260 {
f3263aa4
PA
2261 /* User-settable 'scheduler' mode requires solo thread
2262 resume. */
09cee04b
PA
2263 resume_ptid = inferior_ptid;
2264 }
f2665db5
MM
2265 else if ((scheduler_mode == schedlock_replay)
2266 && target_record_will_replay (minus_one_ptid, execution_direction))
2267 {
2268 /* User-settable 'scheduler' mode requires solo thread resume in replay
2269 mode. */
2270 resume_ptid = inferior_ptid;
2271 }
f3263aa4
PA
2272 else if (!sched_multi && target_supports_multi_process ())
2273 {
2274 /* Resume all threads of the current process (and none of other
2275 processes). */
2276 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2277 }
2278 else
2279 {
2280 /* Resume all threads of all processes. */
2281 resume_ptid = RESUME_ALL;
2282 }
09cee04b
PA
2283
2284 return resume_ptid;
2285}
2286
fbea99ea
PA
2287/* Return a ptid representing the set of threads that we will resume,
2288 in the perspective of the target, assuming run control handling
2289 does not require leaving some threads stopped (e.g., stepping past
2290 breakpoint). USER_STEP indicates whether we're about to start the
2291 target for a stepping command. */
2292
2293static ptid_t
2294internal_resume_ptid (int user_step)
2295{
2296 /* In non-stop, we always control threads individually. Note that
2297 the target may always work in non-stop mode even with "set
2298 non-stop off", in which case user_visible_resume_ptid could
2299 return a wildcard ptid. */
2300 if (target_is_non_stop_p ())
2301 return inferior_ptid;
2302 else
2303 return user_visible_resume_ptid (user_step);
2304}
2305
64ce06e4
PA
2306/* Wrapper for target_resume, that handles infrun-specific
2307 bookkeeping. */
2308
2309static void
2310do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2311{
2312 struct thread_info *tp = inferior_thread ();
2313
c65d6b55
PA
2314 gdb_assert (!tp->stop_requested);
2315
64ce06e4 2316 /* Install inferior's terminal modes. */
223ffa71 2317 target_terminal::inferior ();
64ce06e4
PA
2318
2319 /* Avoid confusing the next resume, if the next stop/resume
2320 happens to apply to another thread. */
2321 tp->suspend.stop_signal = GDB_SIGNAL_0;
2322
8f572e5c
PA
2323 /* Advise target which signals may be handled silently.
2324
2325 If we have removed breakpoints because we are stepping over one
2326 in-line (in any thread), we need to receive all signals to avoid
2327 accidentally skipping a breakpoint during execution of a signal
2328 handler.
2329
2330 Likewise if we're displaced stepping, otherwise a trap for a
2331 breakpoint in a signal handler might be confused with the
2332 displaced step finishing. We don't make the displaced_step_fixup
2333 step distinguish the cases instead, because:
2334
2335 - a backtrace while stopped in the signal handler would show the
2336 scratch pad as frame older than the signal handler, instead of
2337 the real mainline code.
2338
2339 - when the thread is later resumed, the signal handler would
2340 return to the scratch pad area, which would no longer be
2341 valid. */
2342 if (step_over_info_valid_p ()
2343 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2344 target_pass_signals (0, NULL);
2345 else
2346 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2347
2348 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2349
2350 target_commit_resume ();
64ce06e4
PA
2351}
2352
d930703d 2353/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2354 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2355 call 'resume', which handles exceptions. */
c906108c 2356
71d378ae
PA
2357static void
2358resume_1 (enum gdb_signal sig)
c906108c 2359{
515630c5 2360 struct regcache *regcache = get_current_regcache ();
ac7936df 2361 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2362 struct thread_info *tp = inferior_thread ();
515630c5 2363 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2364 const address_space *aspace = regcache->aspace ();
b0f16a3e 2365 ptid_t resume_ptid;
856e7dd6
PA
2366 /* This represents the user's step vs continue request. When
2367 deciding whether "set scheduler-locking step" applies, it's the
2368 user's intention that counts. */
2369 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2370 /* This represents what we'll actually request the target to do.
2371 This can decay from a step to a continue, if e.g., we need to
2372 implement single-stepping with breakpoints (software
2373 single-step). */
6b403daa 2374 int step;
c7e8a53c 2375
c65d6b55 2376 gdb_assert (!tp->stop_requested);
c2829269
PA
2377 gdb_assert (!thread_is_in_step_over_chain (tp));
2378
372316f1
PA
2379 if (tp->suspend.waitstatus_pending_p)
2380 {
2381 if (debug_infrun)
2382 {
23fdd69e
SM
2383 std::string statstr
2384 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2385
372316f1 2386 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2387 "infrun: resume: thread %s has pending wait "
2388 "status %s (currently_stepping=%d).\n",
2389 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2390 currently_stepping (tp));
372316f1
PA
2391 }
2392
2393 tp->resumed = 1;
2394
2395 /* FIXME: What should we do if we are supposed to resume this
2396 thread with a signal? Maybe we should maintain a queue of
2397 pending signals to deliver. */
2398 if (sig != GDB_SIGNAL_0)
2399 {
fd7dcb94 2400 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2401 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2402 }
2403
2404 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2405
2406 if (target_can_async_p ())
2407 target_async (1);
2408 return;
2409 }
2410
2411 tp->stepped_breakpoint = 0;
2412
6b403daa
PA
2413 /* Depends on stepped_breakpoint. */
2414 step = currently_stepping (tp);
2415
74609e71
YQ
2416 if (current_inferior ()->waiting_for_vfork_done)
2417 {
48f9886d
PA
2418 /* Don't try to single-step a vfork parent that is waiting for
2419 the child to get out of the shared memory region (by exec'ing
2420 or exiting). This is particularly important on software
2421 single-step archs, as the child process would trip on the
2422 software single step breakpoint inserted for the parent
2423 process. Since the parent will not actually execute any
2424 instruction until the child is out of the shared region (such
2425 are vfork's semantics), it is safe to simply continue it.
2426 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2427 the parent, and tell it to `keep_going', which automatically
2428 re-sets it stepping. */
74609e71
YQ
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "infrun: resume : clear step\n");
a09dd441 2432 step = 0;
74609e71
YQ
2433 }
2434
527159b7 2435 if (debug_infrun)
237fc4c9 2436 fprintf_unfiltered (gdb_stdlog,
c9737c08 2437 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2438 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2439 step, gdb_signal_to_symbol_string (sig),
2440 tp->control.trap_expected,
0d9a9a5f
PA
2441 target_pid_to_str (inferior_ptid),
2442 paddress (gdbarch, pc));
c906108c 2443
c2c6d25f
JM
2444 /* Normally, by the time we reach `resume', the breakpoints are either
2445 removed or inserted, as appropriate. The exception is if we're sitting
2446 at a permanent breakpoint; we need to step over it, but permanent
2447 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2448 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2449 {
af48d08f
PA
2450 if (sig != GDB_SIGNAL_0)
2451 {
2452 /* We have a signal to pass to the inferior. The resume
2453 may, or may not take us to the signal handler. If this
2454 is a step, we'll need to stop in the signal handler, if
2455 there's one, (if the target supports stepping into
2456 handlers), or in the next mainline instruction, if
2457 there's no handler. If this is a continue, we need to be
2458 sure to run the handler with all breakpoints inserted.
2459 In all cases, set a breakpoint at the current address
2460 (where the handler returns to), and once that breakpoint
2461 is hit, resume skipping the permanent breakpoint. If
2462 that breakpoint isn't hit, then we've stepped into the
2463 signal handler (or hit some other event). We'll delete
2464 the step-resume breakpoint then. */
2465
2466 if (debug_infrun)
2467 fprintf_unfiltered (gdb_stdlog,
2468 "infrun: resume: skipping permanent breakpoint, "
2469 "deliver signal first\n");
2470
2471 clear_step_over_info ();
2472 tp->control.trap_expected = 0;
2473
2474 if (tp->control.step_resume_breakpoint == NULL)
2475 {
2476 /* Set a "high-priority" step-resume, as we don't want
2477 user breakpoints at PC to trigger (again) when this
2478 hits. */
2479 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2480 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2481
2482 tp->step_after_step_resume_breakpoint = step;
2483 }
2484
2485 insert_breakpoints ();
2486 }
2487 else
2488 {
2489 /* There's no signal to pass, we can go ahead and skip the
2490 permanent breakpoint manually. */
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint\n");
2494 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2495 /* Update pc to reflect the new address from which we will
2496 execute instructions. */
2497 pc = regcache_read_pc (regcache);
2498
2499 if (step)
2500 {
2501 /* We've already advanced the PC, so the stepping part
2502 is done. Now we need to arrange for a trap to be
2503 reported to handle_inferior_event. Set a breakpoint
2504 at the current PC, and run to it. Don't update
2505 prev_pc, because if we end in
44a1ee51
PA
2506 switch_back_to_stepped_thread, we want the "expected
2507 thread advanced also" branch to be taken. IOW, we
2508 don't want this thread to step further from PC
af48d08f 2509 (overstep). */
1ac806b8 2510 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2511 insert_single_step_breakpoint (gdbarch, aspace, pc);
2512 insert_breakpoints ();
2513
fbea99ea 2514 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2515 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2516 tp->resumed = 1;
af48d08f
PA
2517 return;
2518 }
2519 }
6d350bb5 2520 }
c2c6d25f 2521
c1e36e3e
PA
2522 /* If we have a breakpoint to step over, make sure to do a single
2523 step only. Same if we have software watchpoints. */
2524 if (tp->control.trap_expected || bpstat_should_step ())
2525 tp->control.may_range_step = 0;
2526
237fc4c9
PA
2527 /* If enabled, step over breakpoints by executing a copy of the
2528 instruction at a different address.
2529
2530 We can't use displaced stepping when we have a signal to deliver;
2531 the comments for displaced_step_prepare explain why. The
2532 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2533 signals' explain what we do instead.
2534
2535 We can't use displaced stepping when we are waiting for vfork_done
2536 event, displaced stepping breaks the vfork child similarly as single
2537 step software breakpoint. */
3fc8eb30
PA
2538 if (tp->control.trap_expected
2539 && use_displaced_stepping (tp)
cb71640d 2540 && !step_over_info_valid_p ()
a493e3e2 2541 && sig == GDB_SIGNAL_0
74609e71 2542 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2543 {
3fc8eb30 2544 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2545
3fc8eb30 2546 if (prepared == 0)
d56b7306 2547 {
4d9d9d04
PA
2548 if (debug_infrun)
2549 fprintf_unfiltered (gdb_stdlog,
2550 "Got placed in step-over queue\n");
2551
2552 tp->control.trap_expected = 0;
d56b7306
VP
2553 return;
2554 }
3fc8eb30
PA
2555 else if (prepared < 0)
2556 {
2557 /* Fallback to stepping over the breakpoint in-line. */
2558
2559 if (target_is_non_stop_p ())
2560 stop_all_threads ();
2561
a01bda52 2562 set_step_over_info (regcache->aspace (),
21edc42f 2563 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2564
2565 step = maybe_software_singlestep (gdbarch, pc);
2566
2567 insert_breakpoints ();
2568 }
2569 else if (prepared > 0)
2570 {
2571 struct displaced_step_inferior_state *displaced;
99e40580 2572
3fc8eb30
PA
2573 /* Update pc to reflect the new address from which we will
2574 execute instructions due to displaced stepping. */
2575 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2576
3fc8eb30
PA
2577 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2578 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2579 displaced->step_closure);
2580 }
237fc4c9
PA
2581 }
2582
2facfe5c 2583 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2584 else if (step)
2facfe5c 2585 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2586
30852783
UW
2587 /* Currently, our software single-step implementation leads to different
2588 results than hardware single-stepping in one situation: when stepping
2589 into delivering a signal which has an associated signal handler,
2590 hardware single-step will stop at the first instruction of the handler,
2591 while software single-step will simply skip execution of the handler.
2592
2593 For now, this difference in behavior is accepted since there is no
2594 easy way to actually implement single-stepping into a signal handler
2595 without kernel support.
2596
2597 However, there is one scenario where this difference leads to follow-on
2598 problems: if we're stepping off a breakpoint by removing all breakpoints
2599 and then single-stepping. In this case, the software single-step
2600 behavior means that even if there is a *breakpoint* in the signal
2601 handler, GDB still would not stop.
2602
2603 Fortunately, we can at least fix this particular issue. We detect
2604 here the case where we are about to deliver a signal while software
2605 single-stepping with breakpoints removed. In this situation, we
2606 revert the decisions to remove all breakpoints and insert single-
2607 step breakpoints, and instead we install a step-resume breakpoint
2608 at the current address, deliver the signal without stepping, and
2609 once we arrive back at the step-resume breakpoint, actually step
2610 over the breakpoint we originally wanted to step over. */
34b7e8a6 2611 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2612 && sig != GDB_SIGNAL_0
2613 && step_over_info_valid_p ())
30852783
UW
2614 {
2615 /* If we have nested signals or a pending signal is delivered
2616 immediately after a handler returns, might might already have
2617 a step-resume breakpoint set on the earlier handler. We cannot
2618 set another step-resume breakpoint; just continue on until the
2619 original breakpoint is hit. */
2620 if (tp->control.step_resume_breakpoint == NULL)
2621 {
2c03e5be 2622 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2623 tp->step_after_step_resume_breakpoint = 1;
2624 }
2625
34b7e8a6 2626 delete_single_step_breakpoints (tp);
30852783 2627
31e77af2 2628 clear_step_over_info ();
30852783 2629 tp->control.trap_expected = 0;
31e77af2
PA
2630
2631 insert_breakpoints ();
30852783
UW
2632 }
2633
b0f16a3e
SM
2634 /* If STEP is set, it's a request to use hardware stepping
2635 facilities. But in that case, we should never
2636 use singlestep breakpoint. */
34b7e8a6 2637 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2638
fbea99ea 2639 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2640 if (tp->control.trap_expected)
b0f16a3e
SM
2641 {
2642 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2643 hit, either by single-stepping the thread with the breakpoint
2644 removed, or by displaced stepping, with the breakpoint inserted.
2645 In the former case, we need to single-step only this thread,
2646 and keep others stopped, as they can miss this breakpoint if
2647 allowed to run. That's not really a problem for displaced
2648 stepping, but, we still keep other threads stopped, in case
2649 another thread is also stopped for a breakpoint waiting for
2650 its turn in the displaced stepping queue. */
b0f16a3e
SM
2651 resume_ptid = inferior_ptid;
2652 }
fbea99ea
PA
2653 else
2654 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2655
7f5ef605
PA
2656 if (execution_direction != EXEC_REVERSE
2657 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2658 {
372316f1
PA
2659 /* There are two cases where we currently need to step a
2660 breakpoint instruction when we have a signal to deliver:
2661
2662 - See handle_signal_stop where we handle random signals that
2663 could take out us out of the stepping range. Normally, in
2664 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2665 signal handler with a breakpoint at PC, but there are cases
2666 where we should _always_ single-step, even if we have a
2667 step-resume breakpoint, like when a software watchpoint is
2668 set. Assuming single-stepping and delivering a signal at the
2669 same time would takes us to the signal handler, then we could
2670 have removed the breakpoint at PC to step over it. However,
2671 some hardware step targets (like e.g., Mac OS) can't step
2672 into signal handlers, and for those, we need to leave the
2673 breakpoint at PC inserted, as otherwise if the handler
2674 recurses and executes PC again, it'll miss the breakpoint.
2675 So we leave the breakpoint inserted anyway, but we need to
2676 record that we tried to step a breakpoint instruction, so
372316f1
PA
2677 that adjust_pc_after_break doesn't end up confused.
2678
2679 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2680 in one thread after another thread that was stepping had been
2681 momentarily paused for a step-over. When we re-resume the
2682 stepping thread, it may be resumed from that address with a
2683 breakpoint that hasn't trapped yet. Seen with
2684 gdb.threads/non-stop-fair-events.exp, on targets that don't
2685 do displaced stepping. */
2686
2687 if (debug_infrun)
2688 fprintf_unfiltered (gdb_stdlog,
2689 "infrun: resume: [%s] stepped breakpoint\n",
2690 target_pid_to_str (tp->ptid));
7f5ef605
PA
2691
2692 tp->stepped_breakpoint = 1;
2693
b0f16a3e
SM
2694 /* Most targets can step a breakpoint instruction, thus
2695 executing it normally. But if this one cannot, just
2696 continue and we will hit it anyway. */
7f5ef605 2697 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2698 step = 0;
2699 }
ef5cf84e 2700
b0f16a3e 2701 if (debug_displaced
cb71640d 2702 && tp->control.trap_expected
3fc8eb30 2703 && use_displaced_stepping (tp)
cb71640d 2704 && !step_over_info_valid_p ())
b0f16a3e 2705 {
d9b67d9f 2706 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
ac7936df 2707 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2708 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2709 gdb_byte buf[4];
2710
2711 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2712 paddress (resume_gdbarch, actual_pc));
2713 read_memory (actual_pc, buf, sizeof (buf));
2714 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2715 }
237fc4c9 2716
b0f16a3e
SM
2717 if (tp->control.may_range_step)
2718 {
2719 /* If we're resuming a thread with the PC out of the step
2720 range, then we're doing some nested/finer run control
2721 operation, like stepping the thread out of the dynamic
2722 linker or the displaced stepping scratch pad. We
2723 shouldn't have allowed a range step then. */
2724 gdb_assert (pc_in_thread_step_range (pc, tp));
2725 }
c1e36e3e 2726
64ce06e4 2727 do_target_resume (resume_ptid, step, sig);
372316f1 2728 tp->resumed = 1;
c906108c 2729}
71d378ae
PA
2730
2731/* Resume the inferior. SIG is the signal to give the inferior
2732 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2733 rolls back state on error. */
2734
2735void
2736resume (gdb_signal sig)
2737{
2738 TRY
2739 {
2740 resume_1 (sig);
2741 }
2742 CATCH (ex, RETURN_MASK_ALL)
2743 {
2744 /* If resuming is being aborted for any reason, delete any
2745 single-step breakpoint resume_1 may have created, to avoid
2746 confusing the following resumption, and to avoid leaving
2747 single-step breakpoints perturbing other threads, in case
2748 we're running in non-stop mode. */
2749 if (inferior_ptid != null_ptid)
2750 delete_single_step_breakpoints (inferior_thread ());
2751 throw_exception (ex);
2752 }
2753 END_CATCH
2754}
2755
c906108c 2756\f
237fc4c9 2757/* Proceeding. */
c906108c 2758
4c2f2a79
PA
2759/* See infrun.h. */
2760
2761/* Counter that tracks number of user visible stops. This can be used
2762 to tell whether a command has proceeded the inferior past the
2763 current location. This allows e.g., inferior function calls in
2764 breakpoint commands to not interrupt the command list. When the
2765 call finishes successfully, the inferior is standing at the same
2766 breakpoint as if nothing happened (and so we don't call
2767 normal_stop). */
2768static ULONGEST current_stop_id;
2769
2770/* See infrun.h. */
2771
2772ULONGEST
2773get_stop_id (void)
2774{
2775 return current_stop_id;
2776}
2777
2778/* Called when we report a user visible stop. */
2779
2780static void
2781new_stop_id (void)
2782{
2783 current_stop_id++;
2784}
2785
c906108c
SS
2786/* Clear out all variables saying what to do when inferior is continued.
2787 First do this, then set the ones you want, then call `proceed'. */
2788
a7212384
UW
2789static void
2790clear_proceed_status_thread (struct thread_info *tp)
c906108c 2791{
a7212384
UW
2792 if (debug_infrun)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "infrun: clear_proceed_status_thread (%s)\n",
2795 target_pid_to_str (tp->ptid));
d6b48e9c 2796
372316f1
PA
2797 /* If we're starting a new sequence, then the previous finished
2798 single-step is no longer relevant. */
2799 if (tp->suspend.waitstatus_pending_p)
2800 {
2801 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2802 {
2803 if (debug_infrun)
2804 fprintf_unfiltered (gdb_stdlog,
2805 "infrun: clear_proceed_status: pending "
2806 "event of %s was a finished step. "
2807 "Discarding.\n",
2808 target_pid_to_str (tp->ptid));
2809
2810 tp->suspend.waitstatus_pending_p = 0;
2811 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2812 }
2813 else if (debug_infrun)
2814 {
23fdd69e
SM
2815 std::string statstr
2816 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2817
372316f1
PA
2818 fprintf_unfiltered (gdb_stdlog,
2819 "infrun: clear_proceed_status_thread: thread %s "
2820 "has pending wait status %s "
2821 "(currently_stepping=%d).\n",
23fdd69e 2822 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2823 currently_stepping (tp));
372316f1
PA
2824 }
2825 }
2826
70509625
PA
2827 /* If this signal should not be seen by program, give it zero.
2828 Used for debugging signals. */
2829 if (!signal_pass_state (tp->suspend.stop_signal))
2830 tp->suspend.stop_signal = GDB_SIGNAL_0;
2831
243a9253
PA
2832 thread_fsm_delete (tp->thread_fsm);
2833 tp->thread_fsm = NULL;
2834
16c381f0
JK
2835 tp->control.trap_expected = 0;
2836 tp->control.step_range_start = 0;
2837 tp->control.step_range_end = 0;
c1e36e3e 2838 tp->control.may_range_step = 0;
16c381f0
JK
2839 tp->control.step_frame_id = null_frame_id;
2840 tp->control.step_stack_frame_id = null_frame_id;
2841 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2842 tp->control.step_start_function = NULL;
a7212384 2843 tp->stop_requested = 0;
4e1c45ea 2844
16c381f0 2845 tp->control.stop_step = 0;
32400beb 2846
16c381f0 2847 tp->control.proceed_to_finish = 0;
414c69f7 2848
856e7dd6 2849 tp->control.stepping_command = 0;
17b2616c 2850
a7212384 2851 /* Discard any remaining commands or status from previous stop. */
16c381f0 2852 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2853}
32400beb 2854
a7212384 2855void
70509625 2856clear_proceed_status (int step)
a7212384 2857{
f2665db5
MM
2858 /* With scheduler-locking replay, stop replaying other threads if we're
2859 not replaying the user-visible resume ptid.
2860
2861 This is a convenience feature to not require the user to explicitly
2862 stop replaying the other threads. We're assuming that the user's
2863 intent is to resume tracing the recorded process. */
2864 if (!non_stop && scheduler_mode == schedlock_replay
2865 && target_record_is_replaying (minus_one_ptid)
2866 && !target_record_will_replay (user_visible_resume_ptid (step),
2867 execution_direction))
2868 target_record_stop_replaying ();
2869
6c95b8df
PA
2870 if (!non_stop)
2871 {
70509625
PA
2872 struct thread_info *tp;
2873 ptid_t resume_ptid;
2874
2875 resume_ptid = user_visible_resume_ptid (step);
2876
2877 /* In all-stop mode, delete the per-thread status of all threads
2878 we're about to resume, implicitly and explicitly. */
2879 ALL_NON_EXITED_THREADS (tp)
2880 {
2881 if (!ptid_match (tp->ptid, resume_ptid))
2882 continue;
2883 clear_proceed_status_thread (tp);
2884 }
6c95b8df
PA
2885 }
2886
a7212384
UW
2887 if (!ptid_equal (inferior_ptid, null_ptid))
2888 {
2889 struct inferior *inferior;
2890
2891 if (non_stop)
2892 {
6c95b8df
PA
2893 /* If in non-stop mode, only delete the per-thread status of
2894 the current thread. */
a7212384
UW
2895 clear_proceed_status_thread (inferior_thread ());
2896 }
6c95b8df 2897
d6b48e9c 2898 inferior = current_inferior ();
16c381f0 2899 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2900 }
2901
76727919 2902 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2903}
2904
99619bea
PA
2905/* Returns true if TP is still stopped at a breakpoint that needs
2906 stepping-over in order to make progress. If the breakpoint is gone
2907 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2908
2909static int
6c4cfb24 2910thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2911{
2912 if (tp->stepping_over_breakpoint)
2913 {
2914 struct regcache *regcache = get_thread_regcache (tp->ptid);
2915
a01bda52 2916 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2917 regcache_read_pc (regcache))
2918 == ordinary_breakpoint_here)
99619bea
PA
2919 return 1;
2920
2921 tp->stepping_over_breakpoint = 0;
2922 }
2923
2924 return 0;
2925}
2926
6c4cfb24
PA
2927/* Check whether thread TP still needs to start a step-over in order
2928 to make progress when resumed. Returns an bitwise or of enum
2929 step_over_what bits, indicating what needs to be stepped over. */
2930
8d297bbf 2931static step_over_what
6c4cfb24
PA
2932thread_still_needs_step_over (struct thread_info *tp)
2933{
8d297bbf 2934 step_over_what what = 0;
6c4cfb24
PA
2935
2936 if (thread_still_needs_step_over_bp (tp))
2937 what |= STEP_OVER_BREAKPOINT;
2938
2939 if (tp->stepping_over_watchpoint
2940 && !target_have_steppable_watchpoint)
2941 what |= STEP_OVER_WATCHPOINT;
2942
2943 return what;
2944}
2945
483805cf
PA
2946/* Returns true if scheduler locking applies. STEP indicates whether
2947 we're about to do a step/next-like command to a thread. */
2948
2949static int
856e7dd6 2950schedlock_applies (struct thread_info *tp)
483805cf
PA
2951{
2952 return (scheduler_mode == schedlock_on
2953 || (scheduler_mode == schedlock_step
f2665db5
MM
2954 && tp->control.stepping_command)
2955 || (scheduler_mode == schedlock_replay
2956 && target_record_will_replay (minus_one_ptid,
2957 execution_direction)));
483805cf
PA
2958}
2959
c906108c
SS
2960/* Basic routine for continuing the program in various fashions.
2961
2962 ADDR is the address to resume at, or -1 for resume where stopped.
2963 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2964 or -1 for act according to how it stopped.
c906108c 2965 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2966 -1 means return after that and print nothing.
2967 You should probably set various step_... variables
2968 before calling here, if you are stepping.
c906108c
SS
2969
2970 You should call clear_proceed_status before calling proceed. */
2971
2972void
64ce06e4 2973proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2974{
e58b0e63
PA
2975 struct regcache *regcache;
2976 struct gdbarch *gdbarch;
4e1c45ea 2977 struct thread_info *tp;
e58b0e63 2978 CORE_ADDR pc;
4d9d9d04
PA
2979 ptid_t resume_ptid;
2980 struct execution_control_state ecss;
2981 struct execution_control_state *ecs = &ecss;
2982 struct cleanup *old_chain;
2983 int started;
c906108c 2984
e58b0e63
PA
2985 /* If we're stopped at a fork/vfork, follow the branch set by the
2986 "set follow-fork-mode" command; otherwise, we'll just proceed
2987 resuming the current thread. */
2988 if (!follow_fork ())
2989 {
2990 /* The target for some reason decided not to resume. */
2991 normal_stop ();
f148b27e
PA
2992 if (target_can_async_p ())
2993 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2994 return;
2995 }
2996
842951eb
PA
2997 /* We'll update this if & when we switch to a new thread. */
2998 previous_inferior_ptid = inferior_ptid;
2999
e58b0e63 3000 regcache = get_current_regcache ();
ac7936df 3001 gdbarch = regcache->arch ();
8b86c959
YQ
3002 const address_space *aspace = regcache->aspace ();
3003
e58b0e63 3004 pc = regcache_read_pc (regcache);
2adfaa28 3005 tp = inferior_thread ();
e58b0e63 3006
99619bea
PA
3007 /* Fill in with reasonable starting values. */
3008 init_thread_stepping_state (tp);
3009
c2829269
PA
3010 gdb_assert (!thread_is_in_step_over_chain (tp));
3011
2acceee2 3012 if (addr == (CORE_ADDR) -1)
c906108c 3013 {
af48d08f
PA
3014 if (pc == stop_pc
3015 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3016 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3017 /* There is a breakpoint at the address we will resume at,
3018 step one instruction before inserting breakpoints so that
3019 we do not stop right away (and report a second hit at this
b2175913
MS
3020 breakpoint).
3021
3022 Note, we don't do this in reverse, because we won't
3023 actually be executing the breakpoint insn anyway.
3024 We'll be (un-)executing the previous instruction. */
99619bea 3025 tp->stepping_over_breakpoint = 1;
515630c5
UW
3026 else if (gdbarch_single_step_through_delay_p (gdbarch)
3027 && gdbarch_single_step_through_delay (gdbarch,
3028 get_current_frame ()))
3352ef37
AC
3029 /* We stepped onto an instruction that needs to be stepped
3030 again before re-inserting the breakpoint, do so. */
99619bea 3031 tp->stepping_over_breakpoint = 1;
c906108c
SS
3032 }
3033 else
3034 {
515630c5 3035 regcache_write_pc (regcache, addr);
c906108c
SS
3036 }
3037
70509625
PA
3038 if (siggnal != GDB_SIGNAL_DEFAULT)
3039 tp->suspend.stop_signal = siggnal;
3040
4d9d9d04
PA
3041 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3042
3043 /* If an exception is thrown from this point on, make sure to
3044 propagate GDB's knowledge of the executing state to the
3045 frontend/user running state. */
3046 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3047
3048 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3049 threads (e.g., we might need to set threads stepping over
3050 breakpoints first), from the user/frontend's point of view, all
3051 threads in RESUME_PTID are now running. Unless we're calling an
3052 inferior function, as in that case we pretend the inferior
3053 doesn't run at all. */
3054 if (!tp->control.in_infcall)
3055 set_running (resume_ptid, 1);
17b2616c 3056
527159b7 3057 if (debug_infrun)
8a9de0e4 3058 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3059 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3060 paddress (gdbarch, addr),
64ce06e4 3061 gdb_signal_to_symbol_string (siggnal));
527159b7 3062
4d9d9d04
PA
3063 annotate_starting ();
3064
3065 /* Make sure that output from GDB appears before output from the
3066 inferior. */
3067 gdb_flush (gdb_stdout);
3068
d930703d
PA
3069 /* Since we've marked the inferior running, give it the terminal. A
3070 QUIT/Ctrl-C from here on is forwarded to the target (which can
3071 still detect attempts to unblock a stuck connection with repeated
3072 Ctrl-C from within target_pass_ctrlc). */
3073 target_terminal::inferior ();
3074
4d9d9d04
PA
3075 /* In a multi-threaded task we may select another thread and
3076 then continue or step.
3077
3078 But if a thread that we're resuming had stopped at a breakpoint,
3079 it will immediately cause another breakpoint stop without any
3080 execution (i.e. it will report a breakpoint hit incorrectly). So
3081 we must step over it first.
3082
3083 Look for threads other than the current (TP) that reported a
3084 breakpoint hit and haven't been resumed yet since. */
3085
3086 /* If scheduler locking applies, we can avoid iterating over all
3087 threads. */
3088 if (!non_stop && !schedlock_applies (tp))
94cc34af 3089 {
4d9d9d04
PA
3090 struct thread_info *current = tp;
3091
3092 ALL_NON_EXITED_THREADS (tp)
3093 {
3094 /* Ignore the current thread here. It's handled
3095 afterwards. */
3096 if (tp == current)
3097 continue;
99619bea 3098
4d9d9d04
PA
3099 /* Ignore threads of processes we're not resuming. */
3100 if (!ptid_match (tp->ptid, resume_ptid))
3101 continue;
c906108c 3102
4d9d9d04
PA
3103 if (!thread_still_needs_step_over (tp))
3104 continue;
3105
3106 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3107
99619bea
PA
3108 if (debug_infrun)
3109 fprintf_unfiltered (gdb_stdlog,
3110 "infrun: need to step-over [%s] first\n",
4d9d9d04 3111 target_pid_to_str (tp->ptid));
99619bea 3112
4d9d9d04 3113 thread_step_over_chain_enqueue (tp);
2adfaa28 3114 }
31e77af2 3115
4d9d9d04 3116 tp = current;
30852783
UW
3117 }
3118
4d9d9d04
PA
3119 /* Enqueue the current thread last, so that we move all other
3120 threads over their breakpoints first. */
3121 if (tp->stepping_over_breakpoint)
3122 thread_step_over_chain_enqueue (tp);
30852783 3123
4d9d9d04
PA
3124 /* If the thread isn't started, we'll still need to set its prev_pc,
3125 so that switch_back_to_stepped_thread knows the thread hasn't
3126 advanced. Must do this before resuming any thread, as in
3127 all-stop/remote, once we resume we can't send any other packet
3128 until the target stops again. */
3129 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3130
a9bc57b9
TT
3131 {
3132 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3133
a9bc57b9 3134 started = start_step_over ();
c906108c 3135
a9bc57b9
TT
3136 if (step_over_info_valid_p ())
3137 {
3138 /* Either this thread started a new in-line step over, or some
3139 other thread was already doing one. In either case, don't
3140 resume anything else until the step-over is finished. */
3141 }
3142 else if (started && !target_is_non_stop_p ())
3143 {
3144 /* A new displaced stepping sequence was started. In all-stop,
3145 we can't talk to the target anymore until it next stops. */
3146 }
3147 else if (!non_stop && target_is_non_stop_p ())
3148 {
3149 /* In all-stop, but the target is always in non-stop mode.
3150 Start all other threads that are implicitly resumed too. */
3151 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3152 {
3153 /* Ignore threads of processes we're not resuming. */
3154 if (!ptid_match (tp->ptid, resume_ptid))
3155 continue;
3156
3157 if (tp->resumed)
3158 {
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: proceed: [%s] resumed\n",
3162 target_pid_to_str (tp->ptid));
3163 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3164 continue;
3165 }
3166
3167 if (thread_is_in_step_over_chain (tp))
3168 {
3169 if (debug_infrun)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "infrun: proceed: [%s] needs step-over\n",
3172 target_pid_to_str (tp->ptid));
3173 continue;
3174 }
3175
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog,
3178 "infrun: proceed: resuming %s\n",
3179 target_pid_to_str (tp->ptid));
3180
3181 reset_ecs (ecs, tp);
3182 switch_to_thread (tp->ptid);
3183 keep_going_pass_signal (ecs);
3184 if (!ecs->wait_some_more)
fd7dcb94 3185 error (_("Command aborted."));
fbea99ea 3186 }
a9bc57b9
TT
3187 }
3188 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3189 {
3190 /* The thread wasn't started, and isn't queued, run it now. */
3191 reset_ecs (ecs, tp);
3192 switch_to_thread (tp->ptid);
3193 keep_going_pass_signal (ecs);
3194 if (!ecs->wait_some_more)
3195 error (_("Command aborted."));
3196 }
3197 }
c906108c 3198
85ad3aaf
PA
3199 target_commit_resume ();
3200
4d9d9d04 3201 discard_cleanups (old_chain);
c906108c 3202
0b333c5e
PA
3203 /* Tell the event loop to wait for it to stop. If the target
3204 supports asynchronous execution, it'll do this from within
3205 target_resume. */
362646f5 3206 if (!target_can_async_p ())
0b333c5e 3207 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3208}
c906108c
SS
3209\f
3210
3211/* Start remote-debugging of a machine over a serial link. */
96baa820 3212
c906108c 3213void
8621d6a9 3214start_remote (int from_tty)
c906108c 3215{
d6b48e9c 3216 struct inferior *inferior;
d6b48e9c
PA
3217
3218 inferior = current_inferior ();
16c381f0 3219 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3220
1777feb0 3221 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3222 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3223 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3224 nothing is returned (instead of just blocking). Because of this,
3225 targets expecting an immediate response need to, internally, set
3226 things up so that the target_wait() is forced to eventually
1777feb0 3227 timeout. */
6426a772
JM
3228 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3229 differentiate to its caller what the state of the target is after
3230 the initial open has been performed. Here we're assuming that
3231 the target has stopped. It should be possible to eventually have
3232 target_open() return to the caller an indication that the target
3233 is currently running and GDB state should be set to the same as
1777feb0 3234 for an async run. */
e4c8541f 3235 wait_for_inferior ();
8621d6a9
DJ
3236
3237 /* Now that the inferior has stopped, do any bookkeeping like
3238 loading shared libraries. We want to do this before normal_stop,
3239 so that the displayed frame is up to date. */
3240 post_create_inferior (&current_target, from_tty);
3241
6426a772 3242 normal_stop ();
c906108c
SS
3243}
3244
3245/* Initialize static vars when a new inferior begins. */
3246
3247void
96baa820 3248init_wait_for_inferior (void)
c906108c
SS
3249{
3250 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3251
c906108c
SS
3252 breakpoint_init_inferior (inf_starting);
3253
70509625 3254 clear_proceed_status (0);
9f976b41 3255
ca005067 3256 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3257
842951eb 3258 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3259
edb3359d
DJ
3260 /* Discard any skipped inlined frames. */
3261 clear_inline_frame_state (minus_one_ptid);
c906108c 3262}
237fc4c9 3263
c906108c 3264\f
488f131b 3265
ec9499be 3266static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3267
568d6575
UW
3268static void handle_step_into_function (struct gdbarch *gdbarch,
3269 struct execution_control_state *ecs);
3270static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3271 struct execution_control_state *ecs);
4f5d7f63 3272static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3273static void check_exception_resume (struct execution_control_state *,
28106bc2 3274 struct frame_info *);
611c83ae 3275
bdc36728 3276static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3277static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3278static void keep_going (struct execution_control_state *ecs);
94c57d6a 3279static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3280static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3281
252fbfc8
PA
3282/* This function is attached as a "thread_stop_requested" observer.
3283 Cleanup local state that assumed the PTID was to be resumed, and
3284 report the stop to the frontend. */
3285
2c0b251b 3286static void
252fbfc8
PA
3287infrun_thread_stop_requested (ptid_t ptid)
3288{
c2829269 3289 struct thread_info *tp;
252fbfc8 3290
c65d6b55
PA
3291 /* PTID was requested to stop. If the thread was already stopped,
3292 but the user/frontend doesn't know about that yet (e.g., the
3293 thread had been temporarily paused for some step-over), set up
3294 for reporting the stop now. */
c2829269
PA
3295 ALL_NON_EXITED_THREADS (tp)
3296 if (ptid_match (tp->ptid, ptid))
3297 {
c65d6b55
PA
3298 if (tp->state != THREAD_RUNNING)
3299 continue;
3300 if (tp->executing)
3301 continue;
3302
3303 /* Remove matching threads from the step-over queue, so
3304 start_step_over doesn't try to resume them
3305 automatically. */
c2829269
PA
3306 if (thread_is_in_step_over_chain (tp))
3307 thread_step_over_chain_remove (tp);
252fbfc8 3308
c65d6b55
PA
3309 /* If the thread is stopped, but the user/frontend doesn't
3310 know about that yet, queue a pending event, as if the
3311 thread had just stopped now. Unless the thread already had
3312 a pending event. */
3313 if (!tp->suspend.waitstatus_pending_p)
3314 {
3315 tp->suspend.waitstatus_pending_p = 1;
3316 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3317 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3318 }
3319
3320 /* Clear the inline-frame state, since we're re-processing the
3321 stop. */
3322 clear_inline_frame_state (tp->ptid);
3323
3324 /* If this thread was paused because some other thread was
3325 doing an inline-step over, let that finish first. Once
3326 that happens, we'll restart all threads and consume pending
3327 stop events then. */
3328 if (step_over_info_valid_p ())
3329 continue;
3330
3331 /* Otherwise we can process the (new) pending event now. Set
3332 it so this pending event is considered by
3333 do_target_wait. */
3334 tp->resumed = 1;
3335 }
252fbfc8
PA
3336}
3337
a07daef3
PA
3338static void
3339infrun_thread_thread_exit (struct thread_info *tp, int silent)
3340{
3341 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3342 nullify_last_target_wait_ptid ();
3343}
3344
0cbcdb96
PA
3345/* Delete the step resume, single-step and longjmp/exception resume
3346 breakpoints of TP. */
4e1c45ea 3347
0cbcdb96
PA
3348static void
3349delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3350{
0cbcdb96
PA
3351 delete_step_resume_breakpoint (tp);
3352 delete_exception_resume_breakpoint (tp);
34b7e8a6 3353 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3354}
3355
0cbcdb96
PA
3356/* If the target still has execution, call FUNC for each thread that
3357 just stopped. In all-stop, that's all the non-exited threads; in
3358 non-stop, that's the current thread, only. */
3359
3360typedef void (*for_each_just_stopped_thread_callback_func)
3361 (struct thread_info *tp);
4e1c45ea
PA
3362
3363static void
0cbcdb96 3364for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3365{
0cbcdb96 3366 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3367 return;
3368
fbea99ea 3369 if (target_is_non_stop_p ())
4e1c45ea 3370 {
0cbcdb96
PA
3371 /* If in non-stop mode, only the current thread stopped. */
3372 func (inferior_thread ());
4e1c45ea
PA
3373 }
3374 else
0cbcdb96
PA
3375 {
3376 struct thread_info *tp;
3377
3378 /* In all-stop mode, all threads have stopped. */
3379 ALL_NON_EXITED_THREADS (tp)
3380 {
3381 func (tp);
3382 }
3383 }
3384}
3385
3386/* Delete the step resume and longjmp/exception resume breakpoints of
3387 the threads that just stopped. */
3388
3389static void
3390delete_just_stopped_threads_infrun_breakpoints (void)
3391{
3392 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3393}
3394
3395/* Delete the single-step breakpoints of the threads that just
3396 stopped. */
7c16b83e 3397
34b7e8a6
PA
3398static void
3399delete_just_stopped_threads_single_step_breakpoints (void)
3400{
3401 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3402}
3403
1777feb0 3404/* A cleanup wrapper. */
4e1c45ea
PA
3405
3406static void
0cbcdb96 3407delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3408{
0cbcdb96 3409 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3410}
3411
221e1a37 3412/* See infrun.h. */
223698f8 3413
221e1a37 3414void
223698f8
DE
3415print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3416 const struct target_waitstatus *ws)
3417{
23fdd69e 3418 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3419 string_file stb;
223698f8
DE
3420
3421 /* The text is split over several lines because it was getting too long.
3422 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3423 output as a unit; we want only one timestamp printed if debug_timestamp
3424 is set. */
3425
d7e74731
PA
3426 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3427 ptid_get_pid (waiton_ptid),
3428 ptid_get_lwp (waiton_ptid),
3429 ptid_get_tid (waiton_ptid));
dfd4cc63 3430 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3431 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3432 stb.printf (", status) =\n");
3433 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3434 ptid_get_pid (result_ptid),
3435 ptid_get_lwp (result_ptid),
3436 ptid_get_tid (result_ptid),
3437 target_pid_to_str (result_ptid));
23fdd69e 3438 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3439
3440 /* This uses %s in part to handle %'s in the text, but also to avoid
3441 a gcc error: the format attribute requires a string literal. */
d7e74731 3442 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3443}
3444
372316f1
PA
3445/* Select a thread at random, out of those which are resumed and have
3446 had events. */
3447
3448static struct thread_info *
3449random_pending_event_thread (ptid_t waiton_ptid)
3450{
3451 struct thread_info *event_tp;
3452 int num_events = 0;
3453 int random_selector;
3454
3455 /* First see how many events we have. Count only resumed threads
3456 that have an event pending. */
3457 ALL_NON_EXITED_THREADS (event_tp)
3458 if (ptid_match (event_tp->ptid, waiton_ptid)
3459 && event_tp->resumed
3460 && event_tp->suspend.waitstatus_pending_p)
3461 num_events++;
3462
3463 if (num_events == 0)
3464 return NULL;
3465
3466 /* Now randomly pick a thread out of those that have had events. */
3467 random_selector = (int)
3468 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3469
3470 if (debug_infrun && num_events > 1)
3471 fprintf_unfiltered (gdb_stdlog,
3472 "infrun: Found %d events, selecting #%d\n",
3473 num_events, random_selector);
3474
3475 /* Select the Nth thread that has had an event. */
3476 ALL_NON_EXITED_THREADS (event_tp)
3477 if (ptid_match (event_tp->ptid, waiton_ptid)
3478 && event_tp->resumed
3479 && event_tp->suspend.waitstatus_pending_p)
3480 if (random_selector-- == 0)
3481 break;
3482
3483 return event_tp;
3484}
3485
3486/* Wrapper for target_wait that first checks whether threads have
3487 pending statuses to report before actually asking the target for
3488 more events. */
3489
3490static ptid_t
3491do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3492{
3493 ptid_t event_ptid;
3494 struct thread_info *tp;
3495
3496 /* First check if there is a resumed thread with a wait status
3497 pending. */
3498 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3499 {
3500 tp = random_pending_event_thread (ptid);
3501 }
3502 else
3503 {
3504 if (debug_infrun)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "infrun: Waiting for specific thread %s.\n",
3507 target_pid_to_str (ptid));
3508
3509 /* We have a specific thread to check. */
3510 tp = find_thread_ptid (ptid);
3511 gdb_assert (tp != NULL);
3512 if (!tp->suspend.waitstatus_pending_p)
3513 tp = NULL;
3514 }
3515
3516 if (tp != NULL
3517 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3518 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3519 {
3520 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 3521 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3522 CORE_ADDR pc;
3523 int discard = 0;
3524
3525 pc = regcache_read_pc (regcache);
3526
3527 if (pc != tp->suspend.stop_pc)
3528 {
3529 if (debug_infrun)
3530 fprintf_unfiltered (gdb_stdlog,
3531 "infrun: PC of %s changed. was=%s, now=%s\n",
3532 target_pid_to_str (tp->ptid),
3533 paddress (gdbarch, tp->prev_pc),
3534 paddress (gdbarch, pc));
3535 discard = 1;
3536 }
a01bda52 3537 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3538 {
3539 if (debug_infrun)
3540 fprintf_unfiltered (gdb_stdlog,
3541 "infrun: previous breakpoint of %s, at %s gone\n",
3542 target_pid_to_str (tp->ptid),
3543 paddress (gdbarch, pc));
3544
3545 discard = 1;
3546 }
3547
3548 if (discard)
3549 {
3550 if (debug_infrun)
3551 fprintf_unfiltered (gdb_stdlog,
3552 "infrun: pending event of %s cancelled.\n",
3553 target_pid_to_str (tp->ptid));
3554
3555 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3556 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3557 }
3558 }
3559
3560 if (tp != NULL)
3561 {
3562 if (debug_infrun)
3563 {
23fdd69e
SM
3564 std::string statstr
3565 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3566
372316f1
PA
3567 fprintf_unfiltered (gdb_stdlog,
3568 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3569 statstr.c_str (),
372316f1 3570 target_pid_to_str (tp->ptid));
372316f1
PA
3571 }
3572
3573 /* Now that we've selected our final event LWP, un-adjust its PC
3574 if it was a software breakpoint (and the target doesn't
3575 always adjust the PC itself). */
3576 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3577 && !target_supports_stopped_by_sw_breakpoint ())
3578 {
3579 struct regcache *regcache;
3580 struct gdbarch *gdbarch;
3581 int decr_pc;
3582
3583 regcache = get_thread_regcache (tp->ptid);
ac7936df 3584 gdbarch = regcache->arch ();
372316f1
PA
3585
3586 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3587 if (decr_pc != 0)
3588 {
3589 CORE_ADDR pc;
3590
3591 pc = regcache_read_pc (regcache);
3592 regcache_write_pc (regcache, pc + decr_pc);
3593 }
3594 }
3595
3596 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3597 *status = tp->suspend.waitstatus;
3598 tp->suspend.waitstatus_pending_p = 0;
3599
3600 /* Wake up the event loop again, until all pending events are
3601 processed. */
3602 if (target_is_async_p ())
3603 mark_async_event_handler (infrun_async_inferior_event_token);
3604 return tp->ptid;
3605 }
3606
3607 /* But if we don't find one, we'll have to wait. */
3608
3609 if (deprecated_target_wait_hook)
3610 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3611 else
3612 event_ptid = target_wait (ptid, status, options);
3613
3614 return event_ptid;
3615}
3616
24291992
PA
3617/* Prepare and stabilize the inferior for detaching it. E.g.,
3618 detaching while a thread is displaced stepping is a recipe for
3619 crashing it, as nothing would readjust the PC out of the scratch
3620 pad. */
3621
3622void
3623prepare_for_detach (void)
3624{
3625 struct inferior *inf = current_inferior ();
3626 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3627 struct displaced_step_inferior_state *displaced;
3628
3629 displaced = get_displaced_stepping_state (inf->pid);
3630
3631 /* Is any thread of this process displaced stepping? If not,
3632 there's nothing else to do. */
3633 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3634 return;
3635
3636 if (debug_infrun)
3637 fprintf_unfiltered (gdb_stdlog,
3638 "displaced-stepping in-process while detaching");
3639
9bcb1f16 3640 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3641
3642 while (!ptid_equal (displaced->step_ptid, null_ptid))
3643 {
3644 struct cleanup *old_chain_2;
3645 struct execution_control_state ecss;
3646 struct execution_control_state *ecs;
3647
3648 ecs = &ecss;
3649 memset (ecs, 0, sizeof (*ecs));
3650
3651 overlay_cache_invalid = 1;
f15cb84a
YQ
3652 /* Flush target cache before starting to handle each event.
3653 Target was running and cache could be stale. This is just a
3654 heuristic. Running threads may modify target memory, but we
3655 don't get any event. */
3656 target_dcache_invalidate ();
24291992 3657
372316f1 3658 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3659
3660 if (debug_infrun)
3661 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3662
3663 /* If an error happens while handling the event, propagate GDB's
3664 knowledge of the executing state to the frontend/user running
3665 state. */
3e43a32a
MS
3666 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3667 &minus_one_ptid);
24291992
PA
3668
3669 /* Now figure out what to do with the result of the result. */
3670 handle_inferior_event (ecs);
3671
3672 /* No error, don't finish the state yet. */
3673 discard_cleanups (old_chain_2);
3674
3675 /* Breakpoints and watchpoints are not installed on the target
3676 at this point, and signals are passed directly to the
3677 inferior, so this must mean the process is gone. */
3678 if (!ecs->wait_some_more)
3679 {
9bcb1f16 3680 restore_detaching.release ();
24291992
PA
3681 error (_("Program exited while detaching"));
3682 }
3683 }
3684
9bcb1f16 3685 restore_detaching.release ();
24291992
PA
3686}
3687
cd0fc7c3 3688/* Wait for control to return from inferior to debugger.
ae123ec6 3689
cd0fc7c3
SS
3690 If inferior gets a signal, we may decide to start it up again
3691 instead of returning. That is why there is a loop in this function.
3692 When this function actually returns it means the inferior
3693 should be left stopped and GDB should read more commands. */
3694
3695void
e4c8541f 3696wait_for_inferior (void)
cd0fc7c3
SS
3697{
3698 struct cleanup *old_cleanups;
e6f5c25b 3699 struct cleanup *thread_state_chain;
c906108c 3700
527159b7 3701 if (debug_infrun)
ae123ec6 3702 fprintf_unfiltered
e4c8541f 3703 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3704
0cbcdb96
PA
3705 old_cleanups
3706 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3707 NULL);
cd0fc7c3 3708
e6f5c25b
PA
3709 /* If an error happens while handling the event, propagate GDB's
3710 knowledge of the executing state to the frontend/user running
3711 state. */
3712 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3713
c906108c
SS
3714 while (1)
3715 {
ae25568b
PA
3716 struct execution_control_state ecss;
3717 struct execution_control_state *ecs = &ecss;
963f9c80 3718 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3719
ae25568b
PA
3720 memset (ecs, 0, sizeof (*ecs));
3721
ec9499be 3722 overlay_cache_invalid = 1;
ec9499be 3723
f15cb84a
YQ
3724 /* Flush target cache before starting to handle each event.
3725 Target was running and cache could be stale. This is just a
3726 heuristic. Running threads may modify target memory, but we
3727 don't get any event. */
3728 target_dcache_invalidate ();
3729
372316f1 3730 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3731
f00150c9 3732 if (debug_infrun)
223698f8 3733 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3734
cd0fc7c3
SS
3735 /* Now figure out what to do with the result of the result. */
3736 handle_inferior_event (ecs);
c906108c 3737
cd0fc7c3
SS
3738 if (!ecs->wait_some_more)
3739 break;
3740 }
4e1c45ea 3741
e6f5c25b
PA
3742 /* No error, don't finish the state yet. */
3743 discard_cleanups (thread_state_chain);
3744
cd0fc7c3
SS
3745 do_cleanups (old_cleanups);
3746}
c906108c 3747
d3d4baed
PA
3748/* Cleanup that reinstalls the readline callback handler, if the
3749 target is running in the background. If while handling the target
3750 event something triggered a secondary prompt, like e.g., a
3751 pagination prompt, we'll have removed the callback handler (see
3752 gdb_readline_wrapper_line). Need to do this as we go back to the
3753 event loop, ready to process further input. Note this has no
3754 effect if the handler hasn't actually been removed, because calling
3755 rl_callback_handler_install resets the line buffer, thus losing
3756 input. */
3757
3758static void
3759reinstall_readline_callback_handler_cleanup (void *arg)
3760{
3b12939d
PA
3761 struct ui *ui = current_ui;
3762
3763 if (!ui->async)
6c400b59
PA
3764 {
3765 /* We're not going back to the top level event loop yet. Don't
3766 install the readline callback, as it'd prep the terminal,
3767 readline-style (raw, noecho) (e.g., --batch). We'll install
3768 it the next time the prompt is displayed, when we're ready
3769 for input. */
3770 return;
3771 }
3772
3b12939d 3773 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3774 gdb_rl_callback_handler_reinstall ();
3775}
3776
243a9253
PA
3777/* Clean up the FSMs of threads that are now stopped. In non-stop,
3778 that's just the event thread. In all-stop, that's all threads. */
3779
3780static void
3781clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3782{
3783 struct thread_info *thr = ecs->event_thread;
3784
3785 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3786 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3787
3788 if (!non_stop)
3789 {
3790 ALL_NON_EXITED_THREADS (thr)
3791 {
3792 if (thr->thread_fsm == NULL)
3793 continue;
3794 if (thr == ecs->event_thread)
3795 continue;
3796
3797 switch_to_thread (thr->ptid);
8980e177 3798 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3799 }
3800
3801 if (ecs->event_thread != NULL)
3802 switch_to_thread (ecs->event_thread->ptid);
3803 }
3804}
3805
3b12939d
PA
3806/* Helper for all_uis_check_sync_execution_done that works on the
3807 current UI. */
3808
3809static void
3810check_curr_ui_sync_execution_done (void)
3811{
3812 struct ui *ui = current_ui;
3813
3814 if (ui->prompt_state == PROMPT_NEEDED
3815 && ui->async
3816 && !gdb_in_secondary_prompt_p (ui))
3817 {
223ffa71 3818 target_terminal::ours ();
76727919 3819 gdb::observers::sync_execution_done.notify ();
3eb7562a 3820 ui_register_input_event_handler (ui);
3b12939d
PA
3821 }
3822}
3823
3824/* See infrun.h. */
3825
3826void
3827all_uis_check_sync_execution_done (void)
3828{
0e454242 3829 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3830 {
3831 check_curr_ui_sync_execution_done ();
3832 }
3833}
3834
a8836c93
PA
3835/* See infrun.h. */
3836
3837void
3838all_uis_on_sync_execution_starting (void)
3839{
0e454242 3840 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3841 {
3842 if (current_ui->prompt_state == PROMPT_NEEDED)
3843 async_disable_stdin ();
3844 }
3845}
3846
1777feb0 3847/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3848 event loop whenever a change of state is detected on the file
1777feb0
MS
3849 descriptor corresponding to the target. It can be called more than
3850 once to complete a single execution command. In such cases we need
3851 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3852 that this function is called for a single execution command, then
3853 report to the user that the inferior has stopped, and do the
1777feb0 3854 necessary cleanups. */
43ff13b4
JM
3855
3856void
fba45db2 3857fetch_inferior_event (void *client_data)
43ff13b4 3858{
0d1e5fa7 3859 struct execution_control_state ecss;
a474d7c2 3860 struct execution_control_state *ecs = &ecss;
4f8d22e3 3861 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3862 struct cleanup *ts_old_chain;
0f641c01 3863 int cmd_done = 0;
963f9c80 3864 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3865
0d1e5fa7
PA
3866 memset (ecs, 0, sizeof (*ecs));
3867
c61db772
PA
3868 /* Events are always processed with the main UI as current UI. This
3869 way, warnings, debug output, etc. are always consistently sent to
3870 the main console. */
4b6749b9 3871 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3872
d3d4baed
PA
3873 /* End up with readline processing input, if necessary. */
3874 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3875
c5187ac6
PA
3876 /* We're handling a live event, so make sure we're doing live
3877 debugging. If we're looking at traceframes while the target is
3878 running, we're going to need to get back to that mode after
3879 handling the event. */
6f14adc5 3880 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
c5187ac6
PA
3881 if (non_stop)
3882 {
6f14adc5 3883 maybe_restore_traceframe.emplace ();
e6e4e701 3884 set_current_traceframe (-1);
c5187ac6
PA
3885 }
3886
5ed8105e
PA
3887 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3888
4f8d22e3
PA
3889 if (non_stop)
3890 /* In non-stop mode, the user/frontend should not notice a thread
3891 switch due to internal events. Make sure we reverse to the
3892 user selected thread and frame after handling the event and
3893 running any breakpoint commands. */
5ed8105e 3894 maybe_restore_thread.emplace ();
4f8d22e3 3895
ec9499be 3896 overlay_cache_invalid = 1;
f15cb84a
YQ
3897 /* Flush target cache before starting to handle each event. Target
3898 was running and cache could be stale. This is just a heuristic.
3899 Running threads may modify target memory, but we don't get any
3900 event. */
3901 target_dcache_invalidate ();
3dd5b83d 3902
b7b633e9
TT
3903 scoped_restore save_exec_dir
3904 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3905
0b333c5e
PA
3906 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3907 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3908
f00150c9 3909 if (debug_infrun)
223698f8 3910 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3911
29f49a6a
PA
3912 /* If an error happens while handling the event, propagate GDB's
3913 knowledge of the executing state to the frontend/user running
3914 state. */
fbea99ea 3915 if (!target_is_non_stop_p ())
29f49a6a
PA
3916 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3917 else
3918 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3919
353d1d73
JK
3920 /* Get executed before make_cleanup_restore_current_thread above to apply
3921 still for the thread which has thrown the exception. */
3922 make_bpstat_clear_actions_cleanup ();
3923
7c16b83e
PA
3924 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3925
43ff13b4 3926 /* Now figure out what to do with the result of the result. */
a474d7c2 3927 handle_inferior_event (ecs);
43ff13b4 3928
a474d7c2 3929 if (!ecs->wait_some_more)
43ff13b4 3930 {
c9657e70 3931 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3932 int should_stop = 1;
3933 struct thread_info *thr = ecs->event_thread;
388a7084 3934 int should_notify_stop = 1;
d6b48e9c 3935
0cbcdb96 3936 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3937
243a9253
PA
3938 if (thr != NULL)
3939 {
3940 struct thread_fsm *thread_fsm = thr->thread_fsm;
3941
3942 if (thread_fsm != NULL)
8980e177 3943 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3944 }
3945
3946 if (!should_stop)
3947 {
3948 keep_going (ecs);
3949 }
c2d11a7d 3950 else
0f641c01 3951 {
243a9253
PA
3952 clean_up_just_stopped_threads_fsms (ecs);
3953
388a7084
PA
3954 if (thr != NULL && thr->thread_fsm != NULL)
3955 {
3956 should_notify_stop
3957 = thread_fsm_should_notify_stop (thr->thread_fsm);
3958 }
3959
3960 if (should_notify_stop)
3961 {
4c2f2a79
PA
3962 int proceeded = 0;
3963
388a7084
PA
3964 /* We may not find an inferior if this was a process exit. */
3965 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3966 proceeded = normal_stop ();
243a9253 3967
4c2f2a79
PA
3968 if (!proceeded)
3969 {
3970 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3971 cmd_done = 1;
3972 }
388a7084 3973 }
0f641c01 3974 }
43ff13b4 3975 }
4f8d22e3 3976
29f49a6a
PA
3977 /* No error, don't finish the thread states yet. */
3978 discard_cleanups (ts_old_chain);
3979
4f8d22e3
PA
3980 /* Revert thread and frame. */
3981 do_cleanups (old_chain);
3982
3b12939d
PA
3983 /* If a UI was in sync execution mode, and now isn't, restore its
3984 prompt (a synchronous execution command has finished, and we're
3985 ready for input). */
3986 all_uis_check_sync_execution_done ();
0f641c01
PA
3987
3988 if (cmd_done
0f641c01
PA
3989 && exec_done_display_p
3990 && (ptid_equal (inferior_ptid, null_ptid)
3991 || !is_running (inferior_ptid)))
3992 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3993}
3994
edb3359d
DJ
3995/* Record the frame and location we're currently stepping through. */
3996void
3997set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3998{
3999 struct thread_info *tp = inferior_thread ();
4000
16c381f0
JK
4001 tp->control.step_frame_id = get_frame_id (frame);
4002 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4003
4004 tp->current_symtab = sal.symtab;
4005 tp->current_line = sal.line;
4006}
4007
0d1e5fa7
PA
4008/* Clear context switchable stepping state. */
4009
4010void
4e1c45ea 4011init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4012{
7f5ef605 4013 tss->stepped_breakpoint = 0;
0d1e5fa7 4014 tss->stepping_over_breakpoint = 0;
963f9c80 4015 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4016 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4017}
4018
c32c64b7
DE
4019/* Set the cached copy of the last ptid/waitstatus. */
4020
6efcd9a8 4021void
c32c64b7
DE
4022set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4023{
4024 target_last_wait_ptid = ptid;
4025 target_last_waitstatus = status;
4026}
4027
e02bc4cc 4028/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4029 target_wait()/deprecated_target_wait_hook(). The data is actually
4030 cached by handle_inferior_event(), which gets called immediately
4031 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4032
4033void
488f131b 4034get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4035{
39f77062 4036 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4037 *status = target_last_waitstatus;
4038}
4039
ac264b3b
MS
4040void
4041nullify_last_target_wait_ptid (void)
4042{
4043 target_last_wait_ptid = minus_one_ptid;
4044}
4045
dcf4fbde 4046/* Switch thread contexts. */
dd80620e
MS
4047
4048static void
0d1e5fa7 4049context_switch (ptid_t ptid)
dd80620e 4050{
4b51d87b 4051 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4052 {
4053 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4054 target_pid_to_str (inferior_ptid));
4055 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4056 target_pid_to_str (ptid));
fd48f117
DJ
4057 }
4058
0d1e5fa7 4059 switch_to_thread (ptid);
dd80620e
MS
4060}
4061
d8dd4d5f
PA
4062/* If the target can't tell whether we've hit breakpoints
4063 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4064 check whether that could have been caused by a breakpoint. If so,
4065 adjust the PC, per gdbarch_decr_pc_after_break. */
4066
4fa8626c 4067static void
d8dd4d5f
PA
4068adjust_pc_after_break (struct thread_info *thread,
4069 struct target_waitstatus *ws)
4fa8626c 4070{
24a73cce
UW
4071 struct regcache *regcache;
4072 struct gdbarch *gdbarch;
118e6252 4073 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4074
4fa8626c
DJ
4075 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4076 we aren't, just return.
9709f61c
DJ
4077
4078 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4079 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4080 implemented by software breakpoints should be handled through the normal
4081 breakpoint layer.
8fb3e588 4082
4fa8626c
DJ
4083 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4084 different signals (SIGILL or SIGEMT for instance), but it is less
4085 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4086 gdbarch_decr_pc_after_break. I don't know any specific target that
4087 generates these signals at breakpoints (the code has been in GDB since at
4088 least 1992) so I can not guess how to handle them here.
8fb3e588 4089
e6cf7916
UW
4090 In earlier versions of GDB, a target with
4091 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4092 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4093 target with both of these set in GDB history, and it seems unlikely to be
4094 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4095
d8dd4d5f 4096 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4097 return;
4098
d8dd4d5f 4099 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4100 return;
4101
4058b839
PA
4102 /* In reverse execution, when a breakpoint is hit, the instruction
4103 under it has already been de-executed. The reported PC always
4104 points at the breakpoint address, so adjusting it further would
4105 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4106 architecture:
4107
4108 B1 0x08000000 : INSN1
4109 B2 0x08000001 : INSN2
4110 0x08000002 : INSN3
4111 PC -> 0x08000003 : INSN4
4112
4113 Say you're stopped at 0x08000003 as above. Reverse continuing
4114 from that point should hit B2 as below. Reading the PC when the
4115 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4116 been de-executed already.
4117
4118 B1 0x08000000 : INSN1
4119 B2 PC -> 0x08000001 : INSN2
4120 0x08000002 : INSN3
4121 0x08000003 : INSN4
4122
4123 We can't apply the same logic as for forward execution, because
4124 we would wrongly adjust the PC to 0x08000000, since there's a
4125 breakpoint at PC - 1. We'd then report a hit on B1, although
4126 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4127 behaviour. */
4128 if (execution_direction == EXEC_REVERSE)
4129 return;
4130
1cf4d951
PA
4131 /* If the target can tell whether the thread hit a SW breakpoint,
4132 trust it. Targets that can tell also adjust the PC
4133 themselves. */
4134 if (target_supports_stopped_by_sw_breakpoint ())
4135 return;
4136
4137 /* Note that relying on whether a breakpoint is planted in memory to
4138 determine this can fail. E.g,. the breakpoint could have been
4139 removed since. Or the thread could have been told to step an
4140 instruction the size of a breakpoint instruction, and only
4141 _after_ was a breakpoint inserted at its address. */
4142
24a73cce
UW
4143 /* If this target does not decrement the PC after breakpoints, then
4144 we have nothing to do. */
d8dd4d5f 4145 regcache = get_thread_regcache (thread->ptid);
ac7936df 4146 gdbarch = regcache->arch ();
118e6252 4147
527a273a 4148 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4149 if (decr_pc == 0)
24a73cce
UW
4150 return;
4151
8b86c959 4152 const address_space *aspace = regcache->aspace ();
6c95b8df 4153
8aad930b
AC
4154 /* Find the location where (if we've hit a breakpoint) the
4155 breakpoint would be. */
118e6252 4156 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4157
1cf4d951
PA
4158 /* If the target can't tell whether a software breakpoint triggered,
4159 fallback to figuring it out based on breakpoints we think were
4160 inserted in the target, and on whether the thread was stepped or
4161 continued. */
4162
1c5cfe86
PA
4163 /* Check whether there actually is a software breakpoint inserted at
4164 that location.
4165
4166 If in non-stop mode, a race condition is possible where we've
4167 removed a breakpoint, but stop events for that breakpoint were
4168 already queued and arrive later. To suppress those spurious
4169 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4170 and retire them after a number of stop events are reported. Note
4171 this is an heuristic and can thus get confused. The real fix is
4172 to get the "stopped by SW BP and needs adjustment" info out of
4173 the target/kernel (and thus never reach here; see above). */
6c95b8df 4174 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4175 || (target_is_non_stop_p ()
4176 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4177 {
07036511 4178 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4179
8213266a 4180 if (record_full_is_used ())
07036511
TT
4181 restore_operation_disable.emplace
4182 (record_full_gdb_operation_disable_set ());
96429cc8 4183
1c0fdd0e
UW
4184 /* When using hardware single-step, a SIGTRAP is reported for both
4185 a completed single-step and a software breakpoint. Need to
4186 differentiate between the two, as the latter needs adjusting
4187 but the former does not.
4188
4189 The SIGTRAP can be due to a completed hardware single-step only if
4190 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4191 - this thread is currently being stepped
4192
4193 If any of these events did not occur, we must have stopped due
4194 to hitting a software breakpoint, and have to back up to the
4195 breakpoint address.
4196
4197 As a special case, we could have hardware single-stepped a
4198 software breakpoint. In this case (prev_pc == breakpoint_pc),
4199 we also need to back up to the breakpoint address. */
4200
d8dd4d5f
PA
4201 if (thread_has_single_step_breakpoints_set (thread)
4202 || !currently_stepping (thread)
4203 || (thread->stepped_breakpoint
4204 && thread->prev_pc == breakpoint_pc))
515630c5 4205 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4206 }
4fa8626c
DJ
4207}
4208
edb3359d
DJ
4209static int
4210stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4211{
4212 for (frame = get_prev_frame (frame);
4213 frame != NULL;
4214 frame = get_prev_frame (frame))
4215 {
4216 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4217 return 1;
4218 if (get_frame_type (frame) != INLINE_FRAME)
4219 break;
4220 }
4221
4222 return 0;
4223}
4224
c65d6b55
PA
4225/* If the event thread has the stop requested flag set, pretend it
4226 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4227 target_stop). */
4228
4229static bool
4230handle_stop_requested (struct execution_control_state *ecs)
4231{
4232 if (ecs->event_thread->stop_requested)
4233 {
4234 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4235 ecs->ws.value.sig = GDB_SIGNAL_0;
4236 handle_signal_stop (ecs);
4237 return true;
4238 }
4239 return false;
4240}
4241
a96d9b2e
SDJ
4242/* Auxiliary function that handles syscall entry/return events.
4243 It returns 1 if the inferior should keep going (and GDB
4244 should ignore the event), or 0 if the event deserves to be
4245 processed. */
ca2163eb 4246
a96d9b2e 4247static int
ca2163eb 4248handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4249{
ca2163eb 4250 struct regcache *regcache;
ca2163eb
PA
4251 int syscall_number;
4252
4253 if (!ptid_equal (ecs->ptid, inferior_ptid))
4254 context_switch (ecs->ptid);
4255
4256 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4257 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4258 stop_pc = regcache_read_pc (regcache);
4259
a96d9b2e
SDJ
4260 if (catch_syscall_enabled () > 0
4261 && catching_syscall_number (syscall_number) > 0)
4262 {
4263 if (debug_infrun)
4264 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4265 syscall_number);
a96d9b2e 4266
16c381f0 4267 ecs->event_thread->control.stop_bpstat
a01bda52 4268 = bpstat_stop_status (regcache->aspace (),
09ac7c10 4269 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4270
c65d6b55
PA
4271 if (handle_stop_requested (ecs))
4272 return 0;
4273
ce12b012 4274 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4275 {
4276 /* Catchpoint hit. */
ca2163eb
PA
4277 return 0;
4278 }
a96d9b2e 4279 }
ca2163eb 4280
c65d6b55
PA
4281 if (handle_stop_requested (ecs))
4282 return 0;
4283
ca2163eb 4284 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4285 keep_going (ecs);
4286 return 1;
a96d9b2e
SDJ
4287}
4288
7e324e48
GB
4289/* Lazily fill in the execution_control_state's stop_func_* fields. */
4290
4291static void
4292fill_in_stop_func (struct gdbarch *gdbarch,
4293 struct execution_control_state *ecs)
4294{
4295 if (!ecs->stop_func_filled_in)
4296 {
4297 /* Don't care about return value; stop_func_start and stop_func_name
4298 will both be 0 if it doesn't work. */
4299 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4300 &ecs->stop_func_start, &ecs->stop_func_end);
4301 ecs->stop_func_start
4302 += gdbarch_deprecated_function_start_offset (gdbarch);
4303
591a12a1
UW
4304 if (gdbarch_skip_entrypoint_p (gdbarch))
4305 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4306 ecs->stop_func_start);
4307
7e324e48
GB
4308 ecs->stop_func_filled_in = 1;
4309 }
4310}
4311
4f5d7f63
PA
4312
4313/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4314
4315static enum stop_kind
4316get_inferior_stop_soon (ptid_t ptid)
4317{
c9657e70 4318 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4319
4320 gdb_assert (inf != NULL);
4321 return inf->control.stop_soon;
4322}
4323
372316f1
PA
4324/* Wait for one event. Store the resulting waitstatus in WS, and
4325 return the event ptid. */
4326
4327static ptid_t
4328wait_one (struct target_waitstatus *ws)
4329{
4330 ptid_t event_ptid;
4331 ptid_t wait_ptid = minus_one_ptid;
4332
4333 overlay_cache_invalid = 1;
4334
4335 /* Flush target cache before starting to handle each event.
4336 Target was running and cache could be stale. This is just a
4337 heuristic. Running threads may modify target memory, but we
4338 don't get any event. */
4339 target_dcache_invalidate ();
4340
4341 if (deprecated_target_wait_hook)
4342 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4343 else
4344 event_ptid = target_wait (wait_ptid, ws, 0);
4345
4346 if (debug_infrun)
4347 print_target_wait_results (wait_ptid, event_ptid, ws);
4348
4349 return event_ptid;
4350}
4351
4352/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4353 instead of the current thread. */
4354#define THREAD_STOPPED_BY(REASON) \
4355static int \
4356thread_stopped_by_ ## REASON (ptid_t ptid) \
4357{ \
2989a365 4358 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4359 inferior_ptid = ptid; \
4360 \
2989a365 4361 return target_stopped_by_ ## REASON (); \
372316f1
PA
4362}
4363
4364/* Generate thread_stopped_by_watchpoint. */
4365THREAD_STOPPED_BY (watchpoint)
4366/* Generate thread_stopped_by_sw_breakpoint. */
4367THREAD_STOPPED_BY (sw_breakpoint)
4368/* Generate thread_stopped_by_hw_breakpoint. */
4369THREAD_STOPPED_BY (hw_breakpoint)
4370
4371/* Cleanups that switches to the PTID pointed at by PTID_P. */
4372
4373static void
4374switch_to_thread_cleanup (void *ptid_p)
4375{
4376 ptid_t ptid = *(ptid_t *) ptid_p;
4377
4378 switch_to_thread (ptid);
4379}
4380
4381/* Save the thread's event and stop reason to process it later. */
4382
4383static void
4384save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4385{
4386 struct regcache *regcache;
372316f1
PA
4387
4388 if (debug_infrun)
4389 {
23fdd69e 4390 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4391
372316f1
PA
4392 fprintf_unfiltered (gdb_stdlog,
4393 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4394 statstr.c_str (),
372316f1
PA
4395 ptid_get_pid (tp->ptid),
4396 ptid_get_lwp (tp->ptid),
4397 ptid_get_tid (tp->ptid));
372316f1
PA
4398 }
4399
4400 /* Record for later. */
4401 tp->suspend.waitstatus = *ws;
4402 tp->suspend.waitstatus_pending_p = 1;
4403
4404 regcache = get_thread_regcache (tp->ptid);
8b86c959 4405 const address_space *aspace = regcache->aspace ();
372316f1
PA
4406
4407 if (ws->kind == TARGET_WAITKIND_STOPPED
4408 && ws->value.sig == GDB_SIGNAL_TRAP)
4409 {
4410 CORE_ADDR pc = regcache_read_pc (regcache);
4411
4412 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4413
4414 if (thread_stopped_by_watchpoint (tp->ptid))
4415 {
4416 tp->suspend.stop_reason
4417 = TARGET_STOPPED_BY_WATCHPOINT;
4418 }
4419 else if (target_supports_stopped_by_sw_breakpoint ()
4420 && thread_stopped_by_sw_breakpoint (tp->ptid))
4421 {
4422 tp->suspend.stop_reason
4423 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4424 }
4425 else if (target_supports_stopped_by_hw_breakpoint ()
4426 && thread_stopped_by_hw_breakpoint (tp->ptid))
4427 {
4428 tp->suspend.stop_reason
4429 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4430 }
4431 else if (!target_supports_stopped_by_hw_breakpoint ()
4432 && hardware_breakpoint_inserted_here_p (aspace,
4433 pc))
4434 {
4435 tp->suspend.stop_reason
4436 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4437 }
4438 else if (!target_supports_stopped_by_sw_breakpoint ()
4439 && software_breakpoint_inserted_here_p (aspace,
4440 pc))
4441 {
4442 tp->suspend.stop_reason
4443 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4444 }
4445 else if (!thread_has_single_step_breakpoints_set (tp)
4446 && currently_stepping (tp))
4447 {
4448 tp->suspend.stop_reason
4449 = TARGET_STOPPED_BY_SINGLE_STEP;
4450 }
4451 }
4452}
4453
65706a29
PA
4454/* A cleanup that disables thread create/exit events. */
4455
4456static void
4457disable_thread_events (void *arg)
4458{
4459 target_thread_events (0);
4460}
4461
6efcd9a8 4462/* See infrun.h. */
372316f1 4463
6efcd9a8 4464void
372316f1
PA
4465stop_all_threads (void)
4466{
4467 /* We may need multiple passes to discover all threads. */
4468 int pass;
4469 int iterations = 0;
4470 ptid_t entry_ptid;
4471 struct cleanup *old_chain;
4472
fbea99ea 4473 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4474
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4477
4478 entry_ptid = inferior_ptid;
4479 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4480
65706a29
PA
4481 target_thread_events (1);
4482 make_cleanup (disable_thread_events, NULL);
4483
372316f1
PA
4484 /* Request threads to stop, and then wait for the stops. Because
4485 threads we already know about can spawn more threads while we're
4486 trying to stop them, and we only learn about new threads when we
4487 update the thread list, do this in a loop, and keep iterating
4488 until two passes find no threads that need to be stopped. */
4489 for (pass = 0; pass < 2; pass++, iterations++)
4490 {
4491 if (debug_infrun)
4492 fprintf_unfiltered (gdb_stdlog,
4493 "infrun: stop_all_threads, pass=%d, "
4494 "iterations=%d\n", pass, iterations);
4495 while (1)
4496 {
4497 ptid_t event_ptid;
4498 struct target_waitstatus ws;
4499 int need_wait = 0;
4500 struct thread_info *t;
4501
4502 update_thread_list ();
4503
4504 /* Go through all threads looking for threads that we need
4505 to tell the target to stop. */
4506 ALL_NON_EXITED_THREADS (t)
4507 {
4508 if (t->executing)
4509 {
4510 /* If already stopping, don't request a stop again.
4511 We just haven't seen the notification yet. */
4512 if (!t->stop_requested)
4513 {
4514 if (debug_infrun)
4515 fprintf_unfiltered (gdb_stdlog,
4516 "infrun: %s executing, "
4517 "need stop\n",
4518 target_pid_to_str (t->ptid));
4519 target_stop (t->ptid);
4520 t->stop_requested = 1;
4521 }
4522 else
4523 {
4524 if (debug_infrun)
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: %s executing, "
4527 "already stopping\n",
4528 target_pid_to_str (t->ptid));
4529 }
4530
4531 if (t->stop_requested)
4532 need_wait = 1;
4533 }
4534 else
4535 {
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog,
4538 "infrun: %s not executing\n",
4539 target_pid_to_str (t->ptid));
4540
4541 /* The thread may be not executing, but still be
4542 resumed with a pending status to process. */
4543 t->resumed = 0;
4544 }
4545 }
4546
4547 if (!need_wait)
4548 break;
4549
4550 /* If we find new threads on the second iteration, restart
4551 over. We want to see two iterations in a row with all
4552 threads stopped. */
4553 if (pass > 0)
4554 pass = -1;
4555
4556 event_ptid = wait_one (&ws);
4557 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4558 {
4559 /* All resumed threads exited. */
4560 }
65706a29
PA
4561 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4562 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4563 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4564 {
4565 if (debug_infrun)
4566 {
4567 ptid_t ptid = pid_to_ptid (ws.value.integer);
4568
4569 fprintf_unfiltered (gdb_stdlog,
4570 "infrun: %s exited while "
4571 "stopping threads\n",
4572 target_pid_to_str (ptid));
4573 }
4574 }
4575 else
4576 {
6efcd9a8
PA
4577 struct inferior *inf;
4578
372316f1
PA
4579 t = find_thread_ptid (event_ptid);
4580 if (t == NULL)
4581 t = add_thread (event_ptid);
4582
4583 t->stop_requested = 0;
4584 t->executing = 0;
4585 t->resumed = 0;
4586 t->control.may_range_step = 0;
4587
6efcd9a8
PA
4588 /* This may be the first time we see the inferior report
4589 a stop. */
4590 inf = find_inferior_ptid (event_ptid);
4591 if (inf->needs_setup)
4592 {
4593 switch_to_thread_no_regs (t);
4594 setup_inferior (0);
4595 }
4596
372316f1
PA
4597 if (ws.kind == TARGET_WAITKIND_STOPPED
4598 && ws.value.sig == GDB_SIGNAL_0)
4599 {
4600 /* We caught the event that we intended to catch, so
4601 there's no event pending. */
4602 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4603 t->suspend.waitstatus_pending_p = 0;
4604
4605 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4606 {
4607 /* Add it back to the step-over queue. */
4608 if (debug_infrun)
4609 {
4610 fprintf_unfiltered (gdb_stdlog,
4611 "infrun: displaced-step of %s "
4612 "canceled: adding back to the "
4613 "step-over queue\n",
4614 target_pid_to_str (t->ptid));
4615 }
4616 t->control.trap_expected = 0;
4617 thread_step_over_chain_enqueue (t);
4618 }
4619 }
4620 else
4621 {
4622 enum gdb_signal sig;
4623 struct regcache *regcache;
372316f1
PA
4624
4625 if (debug_infrun)
4626 {
23fdd69e 4627 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4628
372316f1
PA
4629 fprintf_unfiltered (gdb_stdlog,
4630 "infrun: target_wait %s, saving "
4631 "status for %d.%ld.%ld\n",
23fdd69e 4632 statstr.c_str (),
372316f1
PA
4633 ptid_get_pid (t->ptid),
4634 ptid_get_lwp (t->ptid),
4635 ptid_get_tid (t->ptid));
372316f1
PA
4636 }
4637
4638 /* Record for later. */
4639 save_waitstatus (t, &ws);
4640
4641 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4642 ? ws.value.sig : GDB_SIGNAL_0);
4643
4644 if (displaced_step_fixup (t->ptid, sig) < 0)
4645 {
4646 /* Add it back to the step-over queue. */
4647 t->control.trap_expected = 0;
4648 thread_step_over_chain_enqueue (t);
4649 }
4650
4651 regcache = get_thread_regcache (t->ptid);
4652 t->suspend.stop_pc = regcache_read_pc (regcache);
4653
4654 if (debug_infrun)
4655 {
4656 fprintf_unfiltered (gdb_stdlog,
4657 "infrun: saved stop_pc=%s for %s "
4658 "(currently_stepping=%d)\n",
4659 paddress (target_gdbarch (),
4660 t->suspend.stop_pc),
4661 target_pid_to_str (t->ptid),
4662 currently_stepping (t));
4663 }
4664 }
4665 }
4666 }
4667 }
4668
4669 do_cleanups (old_chain);
4670
4671 if (debug_infrun)
4672 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4673}
4674
f4836ba9
PA
4675/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4676
4677static int
4678handle_no_resumed (struct execution_control_state *ecs)
4679{
4680 struct inferior *inf;
4681 struct thread_info *thread;
4682
3b12939d 4683 if (target_can_async_p ())
f4836ba9 4684 {
3b12939d
PA
4685 struct ui *ui;
4686 int any_sync = 0;
f4836ba9 4687
3b12939d
PA
4688 ALL_UIS (ui)
4689 {
4690 if (ui->prompt_state == PROMPT_BLOCKED)
4691 {
4692 any_sync = 1;
4693 break;
4694 }
4695 }
4696 if (!any_sync)
4697 {
4698 /* There were no unwaited-for children left in the target, but,
4699 we're not synchronously waiting for events either. Just
4700 ignore. */
4701
4702 if (debug_infrun)
4703 fprintf_unfiltered (gdb_stdlog,
4704 "infrun: TARGET_WAITKIND_NO_RESUMED "
4705 "(ignoring: bg)\n");
4706 prepare_to_wait (ecs);
4707 return 1;
4708 }
f4836ba9
PA
4709 }
4710
4711 /* Otherwise, if we were running a synchronous execution command, we
4712 may need to cancel it and give the user back the terminal.
4713
4714 In non-stop mode, the target can't tell whether we've already
4715 consumed previous stop events, so it can end up sending us a
4716 no-resumed event like so:
4717
4718 #0 - thread 1 is left stopped
4719
4720 #1 - thread 2 is resumed and hits breakpoint
4721 -> TARGET_WAITKIND_STOPPED
4722
4723 #2 - thread 3 is resumed and exits
4724 this is the last resumed thread, so
4725 -> TARGET_WAITKIND_NO_RESUMED
4726
4727 #3 - gdb processes stop for thread 2 and decides to re-resume
4728 it.
4729
4730 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4731 thread 2 is now resumed, so the event should be ignored.
4732
4733 IOW, if the stop for thread 2 doesn't end a foreground command,
4734 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4735 event. But it could be that the event meant that thread 2 itself
4736 (or whatever other thread was the last resumed thread) exited.
4737
4738 To address this we refresh the thread list and check whether we
4739 have resumed threads _now_. In the example above, this removes
4740 thread 3 from the thread list. If thread 2 was re-resumed, we
4741 ignore this event. If we find no thread resumed, then we cancel
4742 the synchronous command show "no unwaited-for " to the user. */
4743 update_thread_list ();
4744
4745 ALL_NON_EXITED_THREADS (thread)
4746 {
4747 if (thread->executing
4748 || thread->suspend.waitstatus_pending_p)
4749 {
4750 /* There were no unwaited-for children left in the target at
4751 some point, but there are now. Just ignore. */
4752 if (debug_infrun)
4753 fprintf_unfiltered (gdb_stdlog,
4754 "infrun: TARGET_WAITKIND_NO_RESUMED "
4755 "(ignoring: found resumed)\n");
4756 prepare_to_wait (ecs);
4757 return 1;
4758 }
4759 }
4760
4761 /* Note however that we may find no resumed thread because the whole
4762 process exited meanwhile (thus updating the thread list results
4763 in an empty thread list). In this case we know we'll be getting
4764 a process exit event shortly. */
4765 ALL_INFERIORS (inf)
4766 {
4767 if (inf->pid == 0)
4768 continue;
4769
4770 thread = any_live_thread_of_process (inf->pid);
4771 if (thread == NULL)
4772 {
4773 if (debug_infrun)
4774 fprintf_unfiltered (gdb_stdlog,
4775 "infrun: TARGET_WAITKIND_NO_RESUMED "
4776 "(expect process exit)\n");
4777 prepare_to_wait (ecs);
4778 return 1;
4779 }
4780 }
4781
4782 /* Go ahead and report the event. */
4783 return 0;
4784}
4785
05ba8510
PA
4786/* Given an execution control state that has been freshly filled in by
4787 an event from the inferior, figure out what it means and take
4788 appropriate action.
4789
4790 The alternatives are:
4791
22bcd14b 4792 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4793 debugger.
4794
4795 2) keep_going and return; to wait for the next event (set
4796 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4797 once). */
c906108c 4798
ec9499be 4799static void
0b6e5e10 4800handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4801{
d6b48e9c
PA
4802 enum stop_kind stop_soon;
4803
28736962
PA
4804 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4805 {
4806 /* We had an event in the inferior, but we are not interested in
4807 handling it at this level. The lower layers have already
4808 done what needs to be done, if anything.
4809
4810 One of the possible circumstances for this is when the
4811 inferior produces output for the console. The inferior has
4812 not stopped, and we are ignoring the event. Another possible
4813 circumstance is any event which the lower level knows will be
4814 reported multiple times without an intervening resume. */
4815 if (debug_infrun)
4816 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4817 prepare_to_wait (ecs);
4818 return;
4819 }
4820
65706a29
PA
4821 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4825 prepare_to_wait (ecs);
4826 return;
4827 }
4828
0e5bf2a8 4829 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4830 && handle_no_resumed (ecs))
4831 return;
0e5bf2a8 4832
1777feb0 4833 /* Cache the last pid/waitstatus. */
c32c64b7 4834 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4835
ca005067 4836 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4837 stop_stack_dummy = STOP_NONE;
ca005067 4838
0e5bf2a8
PA
4839 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4840 {
4841 /* No unwaited-for children left. IOW, all resumed children
4842 have exited. */
4843 if (debug_infrun)
4844 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4845
4846 stop_print_frame = 0;
22bcd14b 4847 stop_waiting (ecs);
0e5bf2a8
PA
4848 return;
4849 }
4850
8c90c137 4851 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4852 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4853 {
4854 ecs->event_thread = find_thread_ptid (ecs->ptid);
4855 /* If it's a new thread, add it to the thread database. */
4856 if (ecs->event_thread == NULL)
4857 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4858
4859 /* Disable range stepping. If the next step request could use a
4860 range, this will be end up re-enabled then. */
4861 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4862 }
88ed393a
JK
4863
4864 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4865 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4866
4867 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4868 reinit_frame_cache ();
4869
28736962
PA
4870 breakpoint_retire_moribund ();
4871
2b009048
DJ
4872 /* First, distinguish signals caused by the debugger from signals
4873 that have to do with the program's own actions. Note that
4874 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4875 on the operating system version. Here we detect when a SIGILL or
4876 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4877 something similar for SIGSEGV, since a SIGSEGV will be generated
4878 when we're trying to execute a breakpoint instruction on a
4879 non-executable stack. This happens for call dummy breakpoints
4880 for architectures like SPARC that place call dummies on the
4881 stack. */
2b009048 4882 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4883 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4884 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4885 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4886 {
de0a0249
UW
4887 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4888
a01bda52 4889 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4890 regcache_read_pc (regcache)))
4891 {
4892 if (debug_infrun)
4893 fprintf_unfiltered (gdb_stdlog,
4894 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4895 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4896 }
2b009048
DJ
4897 }
4898
28736962
PA
4899 /* Mark the non-executing threads accordingly. In all-stop, all
4900 threads of all processes are stopped when we get any event
e1316e60 4901 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4902 {
4903 ptid_t mark_ptid;
4904
fbea99ea 4905 if (!target_is_non_stop_p ())
372316f1
PA
4906 mark_ptid = minus_one_ptid;
4907 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4908 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4909 {
4910 /* If we're handling a process exit in non-stop mode, even
4911 though threads haven't been deleted yet, one would think
4912 that there is nothing to do, as threads of the dead process
4913 will be soon deleted, and threads of any other process were
4914 left running. However, on some targets, threads survive a
4915 process exit event. E.g., for the "checkpoint" command,
4916 when the current checkpoint/fork exits, linux-fork.c
4917 automatically switches to another fork from within
4918 target_mourn_inferior, by associating the same
4919 inferior/thread to another fork. We haven't mourned yet at
4920 this point, but we must mark any threads left in the
4921 process as not-executing so that finish_thread_state marks
4922 them stopped (in the user's perspective) if/when we present
4923 the stop to the user. */
4924 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4925 }
4926 else
4927 mark_ptid = ecs->ptid;
4928
4929 set_executing (mark_ptid, 0);
4930
4931 /* Likewise the resumed flag. */
4932 set_resumed (mark_ptid, 0);
4933 }
8c90c137 4934
488f131b
JB
4935 switch (ecs->ws.kind)
4936 {
4937 case TARGET_WAITKIND_LOADED:
527159b7 4938 if (debug_infrun)
8a9de0e4 4939 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4940 if (!ptid_equal (ecs->ptid, inferior_ptid))
4941 context_switch (ecs->ptid);
b0f4b84b
DJ
4942 /* Ignore gracefully during startup of the inferior, as it might
4943 be the shell which has just loaded some objects, otherwise
4944 add the symbols for the newly loaded objects. Also ignore at
4945 the beginning of an attach or remote session; we will query
4946 the full list of libraries once the connection is
4947 established. */
4f5d7f63
PA
4948
4949 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4950 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4951 {
edcc5120
TT
4952 struct regcache *regcache;
4953
edcc5120
TT
4954 regcache = get_thread_regcache (ecs->ptid);
4955
4956 handle_solib_event ();
4957
4958 ecs->event_thread->control.stop_bpstat
a01bda52 4959 = bpstat_stop_status (regcache->aspace (),
edcc5120 4960 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4961
c65d6b55
PA
4962 if (handle_stop_requested (ecs))
4963 return;
4964
ce12b012 4965 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4966 {
4967 /* A catchpoint triggered. */
94c57d6a
PA
4968 process_event_stop_test (ecs);
4969 return;
edcc5120 4970 }
488f131b 4971
b0f4b84b
DJ
4972 /* If requested, stop when the dynamic linker notifies
4973 gdb of events. This allows the user to get control
4974 and place breakpoints in initializer routines for
4975 dynamically loaded objects (among other things). */
a493e3e2 4976 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4977 if (stop_on_solib_events)
4978 {
55409f9d
DJ
4979 /* Make sure we print "Stopped due to solib-event" in
4980 normal_stop. */
4981 stop_print_frame = 1;
4982
22bcd14b 4983 stop_waiting (ecs);
b0f4b84b
DJ
4984 return;
4985 }
488f131b 4986 }
b0f4b84b
DJ
4987
4988 /* If we are skipping through a shell, or through shared library
4989 loading that we aren't interested in, resume the program. If
5c09a2c5 4990 we're running the program normally, also resume. */
b0f4b84b
DJ
4991 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4992 {
74960c60
VP
4993 /* Loading of shared libraries might have changed breakpoint
4994 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4995 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4996 insert_breakpoints ();
64ce06e4 4997 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4998 prepare_to_wait (ecs);
4999 return;
5000 }
5001
5c09a2c5
PA
5002 /* But stop if we're attaching or setting up a remote
5003 connection. */
5004 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5005 || stop_soon == STOP_QUIETLY_REMOTE)
5006 {
5007 if (debug_infrun)
5008 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5009 stop_waiting (ecs);
5c09a2c5
PA
5010 return;
5011 }
5012
5013 internal_error (__FILE__, __LINE__,
5014 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5015
488f131b 5016 case TARGET_WAITKIND_SPURIOUS:
527159b7 5017 if (debug_infrun)
8a9de0e4 5018 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5019 if (handle_stop_requested (ecs))
5020 return;
64776a0b 5021 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5022 context_switch (ecs->ptid);
64ce06e4 5023 resume (GDB_SIGNAL_0);
488f131b
JB
5024 prepare_to_wait (ecs);
5025 return;
c5aa993b 5026
65706a29
PA
5027 case TARGET_WAITKIND_THREAD_CREATED:
5028 if (debug_infrun)
5029 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5030 if (handle_stop_requested (ecs))
5031 return;
65706a29
PA
5032 if (!ptid_equal (ecs->ptid, inferior_ptid))
5033 context_switch (ecs->ptid);
5034 if (!switch_back_to_stepped_thread (ecs))
5035 keep_going (ecs);
5036 return;
5037
488f131b 5038 case TARGET_WAITKIND_EXITED:
940c3c06 5039 case TARGET_WAITKIND_SIGNALLED:
527159b7 5040 if (debug_infrun)
940c3c06
PA
5041 {
5042 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5043 fprintf_unfiltered (gdb_stdlog,
5044 "infrun: TARGET_WAITKIND_EXITED\n");
5045 else
5046 fprintf_unfiltered (gdb_stdlog,
5047 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5048 }
5049
fb66883a 5050 inferior_ptid = ecs->ptid;
c9657e70 5051 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5052 set_current_program_space (current_inferior ()->pspace);
5053 handle_vfork_child_exec_or_exit (0);
223ffa71 5054 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5055
0c557179
SDJ
5056 /* Clearing any previous state of convenience variables. */
5057 clear_exit_convenience_vars ();
5058
940c3c06
PA
5059 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5060 {
5061 /* Record the exit code in the convenience variable $_exitcode, so
5062 that the user can inspect this again later. */
5063 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5064 (LONGEST) ecs->ws.value.integer);
5065
5066 /* Also record this in the inferior itself. */
5067 current_inferior ()->has_exit_code = 1;
5068 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5069
98eb56a4
PA
5070 /* Support the --return-child-result option. */
5071 return_child_result_value = ecs->ws.value.integer;
5072
76727919 5073 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5074 }
5075 else
0c557179
SDJ
5076 {
5077 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5078 struct gdbarch *gdbarch = regcache->arch ();
0c557179
SDJ
5079
5080 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5081 {
5082 /* Set the value of the internal variable $_exitsignal,
5083 which holds the signal uncaught by the inferior. */
5084 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5085 gdbarch_gdb_signal_to_target (gdbarch,
5086 ecs->ws.value.sig));
5087 }
5088 else
5089 {
5090 /* We don't have access to the target's method used for
5091 converting between signal numbers (GDB's internal
5092 representation <-> target's representation).
5093 Therefore, we cannot do a good job at displaying this
5094 information to the user. It's better to just warn
5095 her about it (if infrun debugging is enabled), and
5096 give up. */
5097 if (debug_infrun)
5098 fprintf_filtered (gdb_stdlog, _("\
5099Cannot fill $_exitsignal with the correct signal number.\n"));
5100 }
5101
76727919 5102 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5103 }
8cf64490 5104
488f131b 5105 gdb_flush (gdb_stdout);
bc1e6c81 5106 target_mourn_inferior (inferior_ptid);
488f131b 5107 stop_print_frame = 0;
22bcd14b 5108 stop_waiting (ecs);
488f131b 5109 return;
c5aa993b 5110
488f131b 5111 /* The following are the only cases in which we keep going;
1777feb0 5112 the above cases end in a continue or goto. */
488f131b 5113 case TARGET_WAITKIND_FORKED:
deb3b17b 5114 case TARGET_WAITKIND_VFORKED:
527159b7 5115 if (debug_infrun)
fed708ed
PA
5116 {
5117 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5118 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5119 else
5120 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5121 }
c906108c 5122
e2d96639
YQ
5123 /* Check whether the inferior is displaced stepping. */
5124 {
5125 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5126 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5127
5128 /* If checking displaced stepping is supported, and thread
5129 ecs->ptid is displaced stepping. */
c0987663 5130 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5131 {
5132 struct inferior *parent_inf
c9657e70 5133 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5134 struct regcache *child_regcache;
5135 CORE_ADDR parent_pc;
5136
5137 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5138 indicating that the displaced stepping of syscall instruction
5139 has been done. Perform cleanup for parent process here. Note
5140 that this operation also cleans up the child process for vfork,
5141 because their pages are shared. */
a493e3e2 5142 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5143 /* Start a new step-over in another thread if there's one
5144 that needs it. */
5145 start_step_over ();
e2d96639
YQ
5146
5147 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5148 {
c0987663
YQ
5149 struct displaced_step_inferior_state *displaced
5150 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5151
e2d96639
YQ
5152 /* Restore scratch pad for child process. */
5153 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5154 }
5155
5156 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5157 the child's PC is also within the scratchpad. Set the child's PC
5158 to the parent's PC value, which has already been fixed up.
5159 FIXME: we use the parent's aspace here, although we're touching
5160 the child, because the child hasn't been added to the inferior
5161 list yet at this point. */
5162
5163 child_regcache
5164 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5165 gdbarch,
5166 parent_inf->aspace);
5167 /* Read PC value of parent process. */
5168 parent_pc = regcache_read_pc (regcache);
5169
5170 if (debug_displaced)
5171 fprintf_unfiltered (gdb_stdlog,
5172 "displaced: write child pc from %s to %s\n",
5173 paddress (gdbarch,
5174 regcache_read_pc (child_regcache)),
5175 paddress (gdbarch, parent_pc));
5176
5177 regcache_write_pc (child_regcache, parent_pc);
5178 }
5179 }
5180
5a2901d9 5181 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5182 context_switch (ecs->ptid);
5a2901d9 5183
b242c3c2
PA
5184 /* Immediately detach breakpoints from the child before there's
5185 any chance of letting the user delete breakpoints from the
5186 breakpoint lists. If we don't do this early, it's easy to
5187 leave left over traps in the child, vis: "break foo; catch
5188 fork; c; <fork>; del; c; <child calls foo>". We only follow
5189 the fork on the last `continue', and by that time the
5190 breakpoint at "foo" is long gone from the breakpoint table.
5191 If we vforked, then we don't need to unpatch here, since both
5192 parent and child are sharing the same memory pages; we'll
5193 need to unpatch at follow/detach time instead to be certain
5194 that new breakpoints added between catchpoint hit time and
5195 vfork follow are detached. */
5196 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5197 {
b242c3c2
PA
5198 /* This won't actually modify the breakpoint list, but will
5199 physically remove the breakpoints from the child. */
d80ee84f 5200 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5201 }
5202
34b7e8a6 5203 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5204
e58b0e63
PA
5205 /* In case the event is caught by a catchpoint, remember that
5206 the event is to be followed at the next resume of the thread,
5207 and not immediately. */
5208 ecs->event_thread->pending_follow = ecs->ws;
5209
fb14de7b 5210 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5211
16c381f0 5212 ecs->event_thread->control.stop_bpstat
a01bda52 5213 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5214 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5215
c65d6b55
PA
5216 if (handle_stop_requested (ecs))
5217 return;
5218
ce12b012
PA
5219 /* If no catchpoint triggered for this, then keep going. Note
5220 that we're interested in knowing the bpstat actually causes a
5221 stop, not just if it may explain the signal. Software
5222 watchpoints, for example, always appear in the bpstat. */
5223 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5224 {
6c95b8df
PA
5225 ptid_t parent;
5226 ptid_t child;
e58b0e63 5227 int should_resume;
3e43a32a
MS
5228 int follow_child
5229 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5230
a493e3e2 5231 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5232
5233 should_resume = follow_fork ();
5234
6c95b8df
PA
5235 parent = ecs->ptid;
5236 child = ecs->ws.value.related_pid;
5237
a2077e25
PA
5238 /* At this point, the parent is marked running, and the
5239 child is marked stopped. */
5240
5241 /* If not resuming the parent, mark it stopped. */
5242 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5243 set_running (parent, 0);
5244
5245 /* If resuming the child, mark it running. */
5246 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5247 set_running (child, 1);
5248
6c95b8df 5249 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5250 if (!detach_fork && (non_stop
5251 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5252 {
5253 if (follow_child)
5254 switch_to_thread (parent);
5255 else
5256 switch_to_thread (child);
5257
5258 ecs->event_thread = inferior_thread ();
5259 ecs->ptid = inferior_ptid;
5260 keep_going (ecs);
5261 }
5262
5263 if (follow_child)
5264 switch_to_thread (child);
5265 else
5266 switch_to_thread (parent);
5267
e58b0e63
PA
5268 ecs->event_thread = inferior_thread ();
5269 ecs->ptid = inferior_ptid;
5270
5271 if (should_resume)
5272 keep_going (ecs);
5273 else
22bcd14b 5274 stop_waiting (ecs);
04e68871
DJ
5275 return;
5276 }
94c57d6a
PA
5277 process_event_stop_test (ecs);
5278 return;
488f131b 5279
6c95b8df
PA
5280 case TARGET_WAITKIND_VFORK_DONE:
5281 /* Done with the shared memory region. Re-insert breakpoints in
5282 the parent, and keep going. */
5283
5284 if (debug_infrun)
3e43a32a
MS
5285 fprintf_unfiltered (gdb_stdlog,
5286 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5287
5288 if (!ptid_equal (ecs->ptid, inferior_ptid))
5289 context_switch (ecs->ptid);
5290
5291 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5292 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5293
5294 if (handle_stop_requested (ecs))
5295 return;
5296
6c95b8df
PA
5297 /* This also takes care of reinserting breakpoints in the
5298 previously locked inferior. */
5299 keep_going (ecs);
5300 return;
5301
488f131b 5302 case TARGET_WAITKIND_EXECD:
527159b7 5303 if (debug_infrun)
fc5261f2 5304 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5305
cbd2b4e3
PA
5306 /* Note we can't read registers yet (the stop_pc), because we
5307 don't yet know the inferior's post-exec architecture.
5308 'stop_pc' is explicitly read below instead. */
5a2901d9 5309 if (!ptid_equal (ecs->ptid, inferior_ptid))
cbd2b4e3 5310 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5311
6c95b8df
PA
5312 /* Do whatever is necessary to the parent branch of the vfork. */
5313 handle_vfork_child_exec_or_exit (1);
5314
795e548f
PA
5315 /* This causes the eventpoints and symbol table to be reset.
5316 Must do this now, before trying to determine whether to
5317 stop. */
71b43ef8 5318 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5319
1bb7c059
SM
5320 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5321
17d8546e
DB
5322 /* In follow_exec we may have deleted the original thread and
5323 created a new one. Make sure that the event thread is the
5324 execd thread for that case (this is a nop otherwise). */
5325 ecs->event_thread = inferior_thread ();
5326
16c381f0 5327 ecs->event_thread->control.stop_bpstat
a01bda52 5328 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5329 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5330
71b43ef8
PA
5331 /* Note that this may be referenced from inside
5332 bpstat_stop_status above, through inferior_has_execd. */
5333 xfree (ecs->ws.value.execd_pathname);
5334 ecs->ws.value.execd_pathname = NULL;
5335
c65d6b55
PA
5336 if (handle_stop_requested (ecs))
5337 return;
5338
04e68871 5339 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5340 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5341 {
a493e3e2 5342 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5343 keep_going (ecs);
5344 return;
5345 }
94c57d6a
PA
5346 process_event_stop_test (ecs);
5347 return;
488f131b 5348
b4dc5ffa
MK
5349 /* Be careful not to try to gather much state about a thread
5350 that's in a syscall. It's frequently a losing proposition. */
488f131b 5351 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5352 if (debug_infrun)
3e43a32a
MS
5353 fprintf_unfiltered (gdb_stdlog,
5354 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5355 /* Getting the current syscall number. */
94c57d6a
PA
5356 if (handle_syscall_event (ecs) == 0)
5357 process_event_stop_test (ecs);
5358 return;
c906108c 5359
488f131b
JB
5360 /* Before examining the threads further, step this thread to
5361 get it entirely out of the syscall. (We get notice of the
5362 event when the thread is just on the verge of exiting a
5363 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5364 into user code.) */
488f131b 5365 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5366 if (debug_infrun)
3e43a32a
MS
5367 fprintf_unfiltered (gdb_stdlog,
5368 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5369 if (handle_syscall_event (ecs) == 0)
5370 process_event_stop_test (ecs);
5371 return;
c906108c 5372
488f131b 5373 case TARGET_WAITKIND_STOPPED:
527159b7 5374 if (debug_infrun)
8a9de0e4 5375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5376 handle_signal_stop (ecs);
5377 return;
c906108c 5378
b2175913 5379 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5380 if (debug_infrun)
5381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5382 /* Reverse execution: target ran out of history info. */
eab402df 5383
d1988021
MM
5384 /* Switch to the stopped thread. */
5385 if (!ptid_equal (ecs->ptid, inferior_ptid))
5386 context_switch (ecs->ptid);
5387 if (debug_infrun)
5388 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5389
34b7e8a6 5390 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5391 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5392
5393 if (handle_stop_requested (ecs))
5394 return;
5395
76727919 5396 gdb::observers::no_history.notify ();
22bcd14b 5397 stop_waiting (ecs);
b2175913 5398 return;
488f131b 5399 }
4f5d7f63
PA
5400}
5401
0b6e5e10
JB
5402/* A wrapper around handle_inferior_event_1, which also makes sure
5403 that all temporary struct value objects that were created during
5404 the handling of the event get deleted at the end. */
5405
5406static void
5407handle_inferior_event (struct execution_control_state *ecs)
5408{
5409 struct value *mark = value_mark ();
5410
5411 handle_inferior_event_1 (ecs);
5412 /* Purge all temporary values created during the event handling,
5413 as it could be a long time before we return to the command level
5414 where such values would otherwise be purged. */
5415 value_free_to_mark (mark);
5416}
5417
372316f1
PA
5418/* Restart threads back to what they were trying to do back when we
5419 paused them for an in-line step-over. The EVENT_THREAD thread is
5420 ignored. */
4d9d9d04
PA
5421
5422static void
372316f1
PA
5423restart_threads (struct thread_info *event_thread)
5424{
5425 struct thread_info *tp;
372316f1
PA
5426
5427 /* In case the instruction just stepped spawned a new thread. */
5428 update_thread_list ();
5429
5430 ALL_NON_EXITED_THREADS (tp)
5431 {
5432 if (tp == event_thread)
5433 {
5434 if (debug_infrun)
5435 fprintf_unfiltered (gdb_stdlog,
5436 "infrun: restart threads: "
5437 "[%s] is event thread\n",
5438 target_pid_to_str (tp->ptid));
5439 continue;
5440 }
5441
5442 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5443 {
5444 if (debug_infrun)
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: restart threads: "
5447 "[%s] not meant to be running\n",
5448 target_pid_to_str (tp->ptid));
5449 continue;
5450 }
5451
5452 if (tp->resumed)
5453 {
5454 if (debug_infrun)
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: restart threads: [%s] resumed\n",
5457 target_pid_to_str (tp->ptid));
5458 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5459 continue;
5460 }
5461
5462 if (thread_is_in_step_over_chain (tp))
5463 {
5464 if (debug_infrun)
5465 fprintf_unfiltered (gdb_stdlog,
5466 "infrun: restart threads: "
5467 "[%s] needs step-over\n",
5468 target_pid_to_str (tp->ptid));
5469 gdb_assert (!tp->resumed);
5470 continue;
5471 }
5472
5473
5474 if (tp->suspend.waitstatus_pending_p)
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: "
5479 "[%s] has pending status\n",
5480 target_pid_to_str (tp->ptid));
5481 tp->resumed = 1;
5482 continue;
5483 }
5484
c65d6b55
PA
5485 gdb_assert (!tp->stop_requested);
5486
372316f1
PA
5487 /* If some thread needs to start a step-over at this point, it
5488 should still be in the step-over queue, and thus skipped
5489 above. */
5490 if (thread_still_needs_step_over (tp))
5491 {
5492 internal_error (__FILE__, __LINE__,
5493 "thread [%s] needs a step-over, but not in "
5494 "step-over queue\n",
5495 target_pid_to_str (tp->ptid));
5496 }
5497
5498 if (currently_stepping (tp))
5499 {
5500 if (debug_infrun)
5501 fprintf_unfiltered (gdb_stdlog,
5502 "infrun: restart threads: [%s] was stepping\n",
5503 target_pid_to_str (tp->ptid));
5504 keep_going_stepped_thread (tp);
5505 }
5506 else
5507 {
5508 struct execution_control_state ecss;
5509 struct execution_control_state *ecs = &ecss;
5510
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: restart threads: [%s] continuing\n",
5514 target_pid_to_str (tp->ptid));
5515 reset_ecs (ecs, tp);
5516 switch_to_thread (tp->ptid);
5517 keep_going_pass_signal (ecs);
5518 }
5519 }
5520}
5521
5522/* Callback for iterate_over_threads. Find a resumed thread that has
5523 a pending waitstatus. */
5524
5525static int
5526resumed_thread_with_pending_status (struct thread_info *tp,
5527 void *arg)
5528{
5529 return (tp->resumed
5530 && tp->suspend.waitstatus_pending_p);
5531}
5532
5533/* Called when we get an event that may finish an in-line or
5534 out-of-line (displaced stepping) step-over started previously.
5535 Return true if the event is processed and we should go back to the
5536 event loop; false if the caller should continue processing the
5537 event. */
5538
5539static int
4d9d9d04
PA
5540finish_step_over (struct execution_control_state *ecs)
5541{
372316f1
PA
5542 int had_step_over_info;
5543
4d9d9d04
PA
5544 displaced_step_fixup (ecs->ptid,
5545 ecs->event_thread->suspend.stop_signal);
5546
372316f1
PA
5547 had_step_over_info = step_over_info_valid_p ();
5548
5549 if (had_step_over_info)
4d9d9d04
PA
5550 {
5551 /* If we're stepping over a breakpoint with all threads locked,
5552 then only the thread that was stepped should be reporting
5553 back an event. */
5554 gdb_assert (ecs->event_thread->control.trap_expected);
5555
c65d6b55 5556 clear_step_over_info ();
4d9d9d04
PA
5557 }
5558
fbea99ea 5559 if (!target_is_non_stop_p ())
372316f1 5560 return 0;
4d9d9d04
PA
5561
5562 /* Start a new step-over in another thread if there's one that
5563 needs it. */
5564 start_step_over ();
372316f1
PA
5565
5566 /* If we were stepping over a breakpoint before, and haven't started
5567 a new in-line step-over sequence, then restart all other threads
5568 (except the event thread). We can't do this in all-stop, as then
5569 e.g., we wouldn't be able to issue any other remote packet until
5570 these other threads stop. */
5571 if (had_step_over_info && !step_over_info_valid_p ())
5572 {
5573 struct thread_info *pending;
5574
5575 /* If we only have threads with pending statuses, the restart
5576 below won't restart any thread and so nothing re-inserts the
5577 breakpoint we just stepped over. But we need it inserted
5578 when we later process the pending events, otherwise if
5579 another thread has a pending event for this breakpoint too,
5580 we'd discard its event (because the breakpoint that
5581 originally caused the event was no longer inserted). */
5582 context_switch (ecs->ptid);
5583 insert_breakpoints ();
5584
5585 restart_threads (ecs->event_thread);
5586
5587 /* If we have events pending, go through handle_inferior_event
5588 again, picking up a pending event at random. This avoids
5589 thread starvation. */
5590
5591 /* But not if we just stepped over a watchpoint in order to let
5592 the instruction execute so we can evaluate its expression.
5593 The set of watchpoints that triggered is recorded in the
5594 breakpoint objects themselves (see bp->watchpoint_triggered).
5595 If we processed another event first, that other event could
5596 clobber this info. */
5597 if (ecs->event_thread->stepping_over_watchpoint)
5598 return 0;
5599
5600 pending = iterate_over_threads (resumed_thread_with_pending_status,
5601 NULL);
5602 if (pending != NULL)
5603 {
5604 struct thread_info *tp = ecs->event_thread;
5605 struct regcache *regcache;
5606
5607 if (debug_infrun)
5608 {
5609 fprintf_unfiltered (gdb_stdlog,
5610 "infrun: found resumed threads with "
5611 "pending events, saving status\n");
5612 }
5613
5614 gdb_assert (pending != tp);
5615
5616 /* Record the event thread's event for later. */
5617 save_waitstatus (tp, &ecs->ws);
5618 /* This was cleared early, by handle_inferior_event. Set it
5619 so this pending event is considered by
5620 do_target_wait. */
5621 tp->resumed = 1;
5622
5623 gdb_assert (!tp->executing);
5624
5625 regcache = get_thread_regcache (tp->ptid);
5626 tp->suspend.stop_pc = regcache_read_pc (regcache);
5627
5628 if (debug_infrun)
5629 {
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: saved stop_pc=%s for %s "
5632 "(currently_stepping=%d)\n",
5633 paddress (target_gdbarch (),
5634 tp->suspend.stop_pc),
5635 target_pid_to_str (tp->ptid),
5636 currently_stepping (tp));
5637 }
5638
5639 /* This in-line step-over finished; clear this so we won't
5640 start a new one. This is what handle_signal_stop would
5641 do, if we returned false. */
5642 tp->stepping_over_breakpoint = 0;
5643
5644 /* Wake up the event loop again. */
5645 mark_async_event_handler (infrun_async_inferior_event_token);
5646
5647 prepare_to_wait (ecs);
5648 return 1;
5649 }
5650 }
5651
5652 return 0;
4d9d9d04
PA
5653}
5654
4f5d7f63
PA
5655/* Come here when the program has stopped with a signal. */
5656
5657static void
5658handle_signal_stop (struct execution_control_state *ecs)
5659{
5660 struct frame_info *frame;
5661 struct gdbarch *gdbarch;
5662 int stopped_by_watchpoint;
5663 enum stop_kind stop_soon;
5664 int random_signal;
c906108c 5665
f0407826
DE
5666 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5667
c65d6b55
PA
5668 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5669
f0407826
DE
5670 /* Do we need to clean up the state of a thread that has
5671 completed a displaced single-step? (Doing so usually affects
5672 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5673 if (finish_step_over (ecs))
5674 return;
f0407826
DE
5675
5676 /* If we either finished a single-step or hit a breakpoint, but
5677 the user wanted this thread to be stopped, pretend we got a
5678 SIG0 (generic unsignaled stop). */
5679 if (ecs->event_thread->stop_requested
5680 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5681 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5682
515630c5 5683 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5684
527159b7 5685 if (debug_infrun)
237fc4c9 5686 {
5af949e3 5687 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5688 struct gdbarch *gdbarch = regcache->arch ();
2989a365 5689 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5690
5691 inferior_ptid = ecs->ptid;
5af949e3
UW
5692
5693 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5694 paddress (gdbarch, stop_pc));
d92524f1 5695 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5696 {
5697 CORE_ADDR addr;
abbb1732 5698
237fc4c9
PA
5699 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5700
5701 if (target_stopped_data_address (&current_target, &addr))
5702 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5703 "infrun: stopped data address = %s\n",
5704 paddress (gdbarch, addr));
237fc4c9
PA
5705 else
5706 fprintf_unfiltered (gdb_stdlog,
5707 "infrun: (no data address available)\n");
5708 }
5709 }
527159b7 5710
36fa8042
PA
5711 /* This is originated from start_remote(), start_inferior() and
5712 shared libraries hook functions. */
5713 stop_soon = get_inferior_stop_soon (ecs->ptid);
5714 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5715 {
5716 if (!ptid_equal (ecs->ptid, inferior_ptid))
5717 context_switch (ecs->ptid);
5718 if (debug_infrun)
5719 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5720 stop_print_frame = 1;
22bcd14b 5721 stop_waiting (ecs);
36fa8042
PA
5722 return;
5723 }
5724
36fa8042
PA
5725 /* This originates from attach_command(). We need to overwrite
5726 the stop_signal here, because some kernels don't ignore a
5727 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5728 See more comments in inferior.h. On the other hand, if we
5729 get a non-SIGSTOP, report it to the user - assume the backend
5730 will handle the SIGSTOP if it should show up later.
5731
5732 Also consider that the attach is complete when we see a
5733 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5734 target extended-remote report it instead of a SIGSTOP
5735 (e.g. gdbserver). We already rely on SIGTRAP being our
5736 signal, so this is no exception.
5737
5738 Also consider that the attach is complete when we see a
5739 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5740 the target to stop all threads of the inferior, in case the
5741 low level attach operation doesn't stop them implicitly. If
5742 they weren't stopped implicitly, then the stub will report a
5743 GDB_SIGNAL_0, meaning: stopped for no particular reason
5744 other than GDB's request. */
5745 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5746 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5748 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5749 {
5750 stop_print_frame = 1;
22bcd14b 5751 stop_waiting (ecs);
36fa8042
PA
5752 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5753 return;
5754 }
5755
488f131b 5756 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5757 so, then switch to that thread. */
5758 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5759 {
527159b7 5760 if (debug_infrun)
8a9de0e4 5761 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5762
0d1e5fa7 5763 context_switch (ecs->ptid);
c5aa993b 5764
9a4105ab 5765 if (deprecated_context_hook)
5d5658a1 5766 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5767 }
c906108c 5768
568d6575
UW
5769 /* At this point, get hold of the now-current thread's frame. */
5770 frame = get_current_frame ();
5771 gdbarch = get_frame_arch (frame);
5772
2adfaa28 5773 /* Pull the single step breakpoints out of the target. */
af48d08f 5774 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5775 {
af48d08f 5776 struct regcache *regcache;
af48d08f 5777 CORE_ADDR pc;
2adfaa28 5778
af48d08f 5779 regcache = get_thread_regcache (ecs->ptid);
8b86c959
YQ
5780 const address_space *aspace = regcache->aspace ();
5781
af48d08f 5782 pc = regcache_read_pc (regcache);
34b7e8a6 5783
af48d08f
PA
5784 /* However, before doing so, if this single-step breakpoint was
5785 actually for another thread, set this thread up for moving
5786 past it. */
5787 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5788 aspace, pc))
5789 {
5790 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5791 {
5792 if (debug_infrun)
5793 {
5794 fprintf_unfiltered (gdb_stdlog,
af48d08f 5795 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5796 "single-step breakpoint\n",
5797 target_pid_to_str (ecs->ptid));
2adfaa28 5798 }
af48d08f
PA
5799 ecs->hit_singlestep_breakpoint = 1;
5800 }
5801 }
5802 else
5803 {
5804 if (debug_infrun)
5805 {
5806 fprintf_unfiltered (gdb_stdlog,
5807 "infrun: [%s] hit its "
5808 "single-step breakpoint\n",
5809 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5810 }
5811 }
488f131b 5812 }
af48d08f 5813 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5814
963f9c80
PA
5815 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5816 && ecs->event_thread->control.trap_expected
5817 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5818 stopped_by_watchpoint = 0;
5819 else
5820 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5821
5822 /* If necessary, step over this watchpoint. We'll be back to display
5823 it in a moment. */
5824 if (stopped_by_watchpoint
d92524f1 5825 && (target_have_steppable_watchpoint
568d6575 5826 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5827 {
488f131b
JB
5828 /* At this point, we are stopped at an instruction which has
5829 attempted to write to a piece of memory under control of
5830 a watchpoint. The instruction hasn't actually executed
5831 yet. If we were to evaluate the watchpoint expression
5832 now, we would get the old value, and therefore no change
5833 would seem to have occurred.
5834
5835 In order to make watchpoints work `right', we really need
5836 to complete the memory write, and then evaluate the
d983da9c
DJ
5837 watchpoint expression. We do this by single-stepping the
5838 target.
5839
7f89fd65 5840 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5841 it. For example, the PA can (with some kernel cooperation)
5842 single step over a watchpoint without disabling the watchpoint.
5843
5844 It is far more common to need to disable a watchpoint to step
5845 the inferior over it. If we have non-steppable watchpoints,
5846 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5847 disable all watchpoints.
5848
5849 Any breakpoint at PC must also be stepped over -- if there's
5850 one, it will have already triggered before the watchpoint
5851 triggered, and we either already reported it to the user, or
5852 it didn't cause a stop and we called keep_going. In either
5853 case, if there was a breakpoint at PC, we must be trying to
5854 step past it. */
5855 ecs->event_thread->stepping_over_watchpoint = 1;
5856 keep_going (ecs);
488f131b
JB
5857 return;
5858 }
5859
4e1c45ea 5860 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5861 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5862 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5863 ecs->event_thread->control.stop_step = 0;
488f131b 5864 stop_print_frame = 1;
488f131b 5865 stopped_by_random_signal = 0;
488f131b 5866
edb3359d
DJ
5867 /* Hide inlined functions starting here, unless we just performed stepi or
5868 nexti. After stepi and nexti, always show the innermost frame (not any
5869 inline function call sites). */
16c381f0 5870 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5871 {
8b86c959 5872 const address_space *aspace =
a01bda52 5873 get_thread_regcache (ecs->ptid)->aspace ();
0574c78f
GB
5874
5875 /* skip_inline_frames is expensive, so we avoid it if we can
5876 determine that the address is one where functions cannot have
5877 been inlined. This improves performance with inferiors that
5878 load a lot of shared libraries, because the solib event
5879 breakpoint is defined as the address of a function (i.e. not
5880 inline). Note that we have to check the previous PC as well
5881 as the current one to catch cases when we have just
5882 single-stepped off a breakpoint prior to reinstating it.
5883 Note that we're assuming that the code we single-step to is
5884 not inline, but that's not definitive: there's nothing
5885 preventing the event breakpoint function from containing
5886 inlined code, and the single-step ending up there. If the
5887 user had set a breakpoint on that inlined code, the missing
5888 skip_inline_frames call would break things. Fortunately
5889 that's an extremely unlikely scenario. */
09ac7c10 5890 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5891 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5892 && ecs->event_thread->control.trap_expected
5893 && pc_at_non_inline_function (aspace,
5894 ecs->event_thread->prev_pc,
09ac7c10 5895 &ecs->ws)))
1c5a993e
MR
5896 {
5897 skip_inline_frames (ecs->ptid);
5898
5899 /* Re-fetch current thread's frame in case that invalidated
5900 the frame cache. */
5901 frame = get_current_frame ();
5902 gdbarch = get_frame_arch (frame);
5903 }
0574c78f 5904 }
edb3359d 5905
a493e3e2 5906 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5907 && ecs->event_thread->control.trap_expected
568d6575 5908 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5909 && currently_stepping (ecs->event_thread))
3352ef37 5910 {
b50d7442 5911 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5912 also on an instruction that needs to be stepped multiple
1777feb0 5913 times before it's been fully executing. E.g., architectures
3352ef37
AC
5914 with a delay slot. It needs to be stepped twice, once for
5915 the instruction and once for the delay slot. */
5916 int step_through_delay
568d6575 5917 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5918
527159b7 5919 if (debug_infrun && step_through_delay)
8a9de0e4 5920 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5921 if (ecs->event_thread->control.step_range_end == 0
5922 && step_through_delay)
3352ef37
AC
5923 {
5924 /* The user issued a continue when stopped at a breakpoint.
5925 Set up for another trap and get out of here. */
4e1c45ea 5926 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5927 keep_going (ecs);
5928 return;
5929 }
5930 else if (step_through_delay)
5931 {
5932 /* The user issued a step when stopped at a breakpoint.
5933 Maybe we should stop, maybe we should not - the delay
5934 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5935 case, don't decide that here, just set
5936 ecs->stepping_over_breakpoint, making sure we
5937 single-step again before breakpoints are re-inserted. */
4e1c45ea 5938 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5939 }
5940 }
5941
ab04a2af
TT
5942 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5943 handles this event. */
5944 ecs->event_thread->control.stop_bpstat
a01bda52 5945 = bpstat_stop_status (get_current_regcache ()->aspace (),
ab04a2af 5946 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5947
ab04a2af
TT
5948 /* Following in case break condition called a
5949 function. */
5950 stop_print_frame = 1;
73dd234f 5951
ab04a2af
TT
5952 /* This is where we handle "moribund" watchpoints. Unlike
5953 software breakpoints traps, hardware watchpoint traps are
5954 always distinguishable from random traps. If no high-level
5955 watchpoint is associated with the reported stop data address
5956 anymore, then the bpstat does not explain the signal ---
5957 simply make sure to ignore it if `stopped_by_watchpoint' is
5958 set. */
5959
5960 if (debug_infrun
5961 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5962 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5963 GDB_SIGNAL_TRAP)
ab04a2af
TT
5964 && stopped_by_watchpoint)
5965 fprintf_unfiltered (gdb_stdlog,
5966 "infrun: no user watchpoint explains "
5967 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5968
bac7d97b 5969 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5970 at one stage in the past included checks for an inferior
5971 function call's call dummy's return breakpoint. The original
5972 comment, that went with the test, read:
03cebad2 5973
ab04a2af
TT
5974 ``End of a stack dummy. Some systems (e.g. Sony news) give
5975 another signal besides SIGTRAP, so check here as well as
5976 above.''
73dd234f 5977
ab04a2af
TT
5978 If someone ever tries to get call dummys on a
5979 non-executable stack to work (where the target would stop
5980 with something like a SIGSEGV), then those tests might need
5981 to be re-instated. Given, however, that the tests were only
5982 enabled when momentary breakpoints were not being used, I
5983 suspect that it won't be the case.
488f131b 5984
ab04a2af
TT
5985 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5986 be necessary for call dummies on a non-executable stack on
5987 SPARC. */
488f131b 5988
bac7d97b 5989 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5990 random_signal
5991 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5992 ecs->event_thread->suspend.stop_signal);
bac7d97b 5993
1cf4d951
PA
5994 /* Maybe this was a trap for a software breakpoint that has since
5995 been removed. */
5996 if (random_signal && target_stopped_by_sw_breakpoint ())
5997 {
5998 if (program_breakpoint_here_p (gdbarch, stop_pc))
5999 {
6000 struct regcache *regcache;
6001 int decr_pc;
6002
6003 /* Re-adjust PC to what the program would see if GDB was not
6004 debugging it. */
6005 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6006 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6007 if (decr_pc != 0)
6008 {
07036511
TT
6009 gdb::optional<scoped_restore_tmpl<int>>
6010 restore_operation_disable;
1cf4d951
PA
6011
6012 if (record_full_is_used ())
07036511
TT
6013 restore_operation_disable.emplace
6014 (record_full_gdb_operation_disable_set ());
1cf4d951
PA
6015
6016 regcache_write_pc (regcache, stop_pc + decr_pc);
1cf4d951
PA
6017 }
6018 }
6019 else
6020 {
6021 /* A delayed software breakpoint event. Ignore the trap. */
6022 if (debug_infrun)
6023 fprintf_unfiltered (gdb_stdlog,
6024 "infrun: delayed software breakpoint "
6025 "trap, ignoring\n");
6026 random_signal = 0;
6027 }
6028 }
6029
6030 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6031 has since been removed. */
6032 if (random_signal && target_stopped_by_hw_breakpoint ())
6033 {
6034 /* A delayed hardware breakpoint event. Ignore the trap. */
6035 if (debug_infrun)
6036 fprintf_unfiltered (gdb_stdlog,
6037 "infrun: delayed hardware breakpoint/watchpoint "
6038 "trap, ignoring\n");
6039 random_signal = 0;
6040 }
6041
bac7d97b
PA
6042 /* If not, perhaps stepping/nexting can. */
6043 if (random_signal)
6044 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6045 && currently_stepping (ecs->event_thread));
ab04a2af 6046
2adfaa28
PA
6047 /* Perhaps the thread hit a single-step breakpoint of _another_
6048 thread. Single-step breakpoints are transparent to the
6049 breakpoints module. */
6050 if (random_signal)
6051 random_signal = !ecs->hit_singlestep_breakpoint;
6052
bac7d97b
PA
6053 /* No? Perhaps we got a moribund watchpoint. */
6054 if (random_signal)
6055 random_signal = !stopped_by_watchpoint;
ab04a2af 6056
c65d6b55
PA
6057 /* Always stop if the user explicitly requested this thread to
6058 remain stopped. */
6059 if (ecs->event_thread->stop_requested)
6060 {
6061 random_signal = 1;
6062 if (debug_infrun)
6063 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6064 }
6065
488f131b
JB
6066 /* For the program's own signals, act according to
6067 the signal handling tables. */
6068
ce12b012 6069 if (random_signal)
488f131b
JB
6070 {
6071 /* Signal not for debugging purposes. */
c9657e70 6072 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6073 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6074
527159b7 6075 if (debug_infrun)
c9737c08
PA
6076 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6077 gdb_signal_to_symbol_string (stop_signal));
527159b7 6078
488f131b
JB
6079 stopped_by_random_signal = 1;
6080
252fbfc8
PA
6081 /* Always stop on signals if we're either just gaining control
6082 of the program, or the user explicitly requested this thread
6083 to remain stopped. */
d6b48e9c 6084 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6085 || ecs->event_thread->stop_requested
24291992 6086 || (!inf->detaching
16c381f0 6087 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6088 {
22bcd14b 6089 stop_waiting (ecs);
488f131b
JB
6090 return;
6091 }
b57bacec
PA
6092
6093 /* Notify observers the signal has "handle print" set. Note we
6094 returned early above if stopping; normal_stop handles the
6095 printing in that case. */
6096 if (signal_print[ecs->event_thread->suspend.stop_signal])
6097 {
6098 /* The signal table tells us to print about this signal. */
223ffa71 6099 target_terminal::ours_for_output ();
76727919 6100 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6101 target_terminal::inferior ();
b57bacec 6102 }
488f131b
JB
6103
6104 /* Clear the signal if it should not be passed. */
16c381f0 6105 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6106 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6107
fb14de7b 6108 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6109 && ecs->event_thread->control.trap_expected
8358c15c 6110 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6111 {
6112 /* We were just starting a new sequence, attempting to
6113 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6114 Instead this signal arrives. This signal will take us out
68f53502
AC
6115 of the stepping range so GDB needs to remember to, when
6116 the signal handler returns, resume stepping off that
6117 breakpoint. */
6118 /* To simplify things, "continue" is forced to use the same
6119 code paths as single-step - set a breakpoint at the
6120 signal return address and then, once hit, step off that
6121 breakpoint. */
237fc4c9
PA
6122 if (debug_infrun)
6123 fprintf_unfiltered (gdb_stdlog,
6124 "infrun: signal arrived while stepping over "
6125 "breakpoint\n");
d3169d93 6126
2c03e5be 6127 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6128 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6129 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6130 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6131
6132 /* If we were nexting/stepping some other thread, switch to
6133 it, so that we don't continue it, losing control. */
6134 if (!switch_back_to_stepped_thread (ecs))
6135 keep_going (ecs);
9d799f85 6136 return;
68f53502 6137 }
9d799f85 6138
e5f8a7cc
PA
6139 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6140 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6141 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6142 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6143 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6144 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6145 {
6146 /* The inferior is about to take a signal that will take it
6147 out of the single step range. Set a breakpoint at the
6148 current PC (which is presumably where the signal handler
6149 will eventually return) and then allow the inferior to
6150 run free.
6151
6152 Note that this is only needed for a signal delivered
6153 while in the single-step range. Nested signals aren't a
6154 problem as they eventually all return. */
237fc4c9
PA
6155 if (debug_infrun)
6156 fprintf_unfiltered (gdb_stdlog,
6157 "infrun: signal may take us out of "
6158 "single-step range\n");
6159
372316f1 6160 clear_step_over_info ();
2c03e5be 6161 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6162 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6163 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6164 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6165 keep_going (ecs);
6166 return;
d303a6c7 6167 }
9d799f85
AC
6168
6169 /* Note: step_resume_breakpoint may be non-NULL. This occures
6170 when either there's a nested signal, or when there's a
6171 pending signal enabled just as the signal handler returns
6172 (leaving the inferior at the step-resume-breakpoint without
6173 actually executing it). Either way continue until the
6174 breakpoint is really hit. */
c447ac0b
PA
6175
6176 if (!switch_back_to_stepped_thread (ecs))
6177 {
6178 if (debug_infrun)
6179 fprintf_unfiltered (gdb_stdlog,
6180 "infrun: random signal, keep going\n");
6181
6182 keep_going (ecs);
6183 }
6184 return;
488f131b 6185 }
94c57d6a
PA
6186
6187 process_event_stop_test (ecs);
6188}
6189
6190/* Come here when we've got some debug event / signal we can explain
6191 (IOW, not a random signal), and test whether it should cause a
6192 stop, or whether we should resume the inferior (transparently).
6193 E.g., could be a breakpoint whose condition evaluates false; we
6194 could be still stepping within the line; etc. */
6195
6196static void
6197process_event_stop_test (struct execution_control_state *ecs)
6198{
6199 struct symtab_and_line stop_pc_sal;
6200 struct frame_info *frame;
6201 struct gdbarch *gdbarch;
cdaa5b73
PA
6202 CORE_ADDR jmp_buf_pc;
6203 struct bpstat_what what;
94c57d6a 6204
cdaa5b73 6205 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6206
cdaa5b73
PA
6207 frame = get_current_frame ();
6208 gdbarch = get_frame_arch (frame);
fcf3daef 6209
cdaa5b73 6210 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6211
cdaa5b73
PA
6212 if (what.call_dummy)
6213 {
6214 stop_stack_dummy = what.call_dummy;
6215 }
186c406b 6216
243a9253
PA
6217 /* A few breakpoint types have callbacks associated (e.g.,
6218 bp_jit_event). Run them now. */
6219 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6220
cdaa5b73
PA
6221 /* If we hit an internal event that triggers symbol changes, the
6222 current frame will be invalidated within bpstat_what (e.g., if we
6223 hit an internal solib event). Re-fetch it. */
6224 frame = get_current_frame ();
6225 gdbarch = get_frame_arch (frame);
e2e4d78b 6226
cdaa5b73
PA
6227 switch (what.main_action)
6228 {
6229 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6230 /* If we hit the breakpoint at longjmp while stepping, we
6231 install a momentary breakpoint at the target of the
6232 jmp_buf. */
186c406b 6233
cdaa5b73
PA
6234 if (debug_infrun)
6235 fprintf_unfiltered (gdb_stdlog,
6236 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6237
cdaa5b73 6238 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6239
cdaa5b73
PA
6240 if (what.is_longjmp)
6241 {
6242 struct value *arg_value;
6243
6244 /* If we set the longjmp breakpoint via a SystemTap probe,
6245 then use it to extract the arguments. The destination PC
6246 is the third argument to the probe. */
6247 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6248 if (arg_value)
8fa0c4f8
AA
6249 {
6250 jmp_buf_pc = value_as_address (arg_value);
6251 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6252 }
cdaa5b73
PA
6253 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6254 || !gdbarch_get_longjmp_target (gdbarch,
6255 frame, &jmp_buf_pc))
e2e4d78b 6256 {
cdaa5b73
PA
6257 if (debug_infrun)
6258 fprintf_unfiltered (gdb_stdlog,
6259 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6260 "(!gdbarch_get_longjmp_target)\n");
6261 keep_going (ecs);
6262 return;
e2e4d78b 6263 }
e2e4d78b 6264
cdaa5b73
PA
6265 /* Insert a breakpoint at resume address. */
6266 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6267 }
6268 else
6269 check_exception_resume (ecs, frame);
6270 keep_going (ecs);
6271 return;
e81a37f7 6272
cdaa5b73
PA
6273 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6274 {
6275 struct frame_info *init_frame;
e81a37f7 6276
cdaa5b73 6277 /* There are several cases to consider.
c906108c 6278
cdaa5b73
PA
6279 1. The initiating frame no longer exists. In this case we
6280 must stop, because the exception or longjmp has gone too
6281 far.
2c03e5be 6282
cdaa5b73
PA
6283 2. The initiating frame exists, and is the same as the
6284 current frame. We stop, because the exception or longjmp
6285 has been caught.
2c03e5be 6286
cdaa5b73
PA
6287 3. The initiating frame exists and is different from the
6288 current frame. This means the exception or longjmp has
6289 been caught beneath the initiating frame, so keep going.
c906108c 6290
cdaa5b73
PA
6291 4. longjmp breakpoint has been placed just to protect
6292 against stale dummy frames and user is not interested in
6293 stopping around longjmps. */
c5aa993b 6294
cdaa5b73
PA
6295 if (debug_infrun)
6296 fprintf_unfiltered (gdb_stdlog,
6297 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6298
cdaa5b73
PA
6299 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6300 != NULL);
6301 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6302
cdaa5b73
PA
6303 if (what.is_longjmp)
6304 {
b67a2c6f 6305 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6306
cdaa5b73 6307 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6308 {
cdaa5b73
PA
6309 /* Case 4. */
6310 keep_going (ecs);
6311 return;
e5ef252a 6312 }
cdaa5b73 6313 }
c5aa993b 6314
cdaa5b73 6315 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6316
cdaa5b73
PA
6317 if (init_frame)
6318 {
6319 struct frame_id current_id
6320 = get_frame_id (get_current_frame ());
6321 if (frame_id_eq (current_id,
6322 ecs->event_thread->initiating_frame))
6323 {
6324 /* Case 2. Fall through. */
6325 }
6326 else
6327 {
6328 /* Case 3. */
6329 keep_going (ecs);
6330 return;
6331 }
68f53502 6332 }
488f131b 6333
cdaa5b73
PA
6334 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6335 exists. */
6336 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6337
bdc36728 6338 end_stepping_range (ecs);
cdaa5b73
PA
6339 }
6340 return;
e5ef252a 6341
cdaa5b73
PA
6342 case BPSTAT_WHAT_SINGLE:
6343 if (debug_infrun)
6344 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6345 ecs->event_thread->stepping_over_breakpoint = 1;
6346 /* Still need to check other stuff, at least the case where we
6347 are stepping and step out of the right range. */
6348 break;
e5ef252a 6349
cdaa5b73
PA
6350 case BPSTAT_WHAT_STEP_RESUME:
6351 if (debug_infrun)
6352 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6353
cdaa5b73
PA
6354 delete_step_resume_breakpoint (ecs->event_thread);
6355 if (ecs->event_thread->control.proceed_to_finish
6356 && execution_direction == EXEC_REVERSE)
6357 {
6358 struct thread_info *tp = ecs->event_thread;
6359
6360 /* We are finishing a function in reverse, and just hit the
6361 step-resume breakpoint at the start address of the
6362 function, and we're almost there -- just need to back up
6363 by one more single-step, which should take us back to the
6364 function call. */
6365 tp->control.step_range_start = tp->control.step_range_end = 1;
6366 keep_going (ecs);
e5ef252a 6367 return;
cdaa5b73
PA
6368 }
6369 fill_in_stop_func (gdbarch, ecs);
6370 if (stop_pc == ecs->stop_func_start
6371 && execution_direction == EXEC_REVERSE)
6372 {
6373 /* We are stepping over a function call in reverse, and just
6374 hit the step-resume breakpoint at the start address of
6375 the function. Go back to single-stepping, which should
6376 take us back to the function call. */
6377 ecs->event_thread->stepping_over_breakpoint = 1;
6378 keep_going (ecs);
6379 return;
6380 }
6381 break;
e5ef252a 6382
cdaa5b73
PA
6383 case BPSTAT_WHAT_STOP_NOISY:
6384 if (debug_infrun)
6385 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6386 stop_print_frame = 1;
e5ef252a 6387
99619bea
PA
6388 /* Assume the thread stopped for a breapoint. We'll still check
6389 whether a/the breakpoint is there when the thread is next
6390 resumed. */
6391 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6392
22bcd14b 6393 stop_waiting (ecs);
cdaa5b73 6394 return;
e5ef252a 6395
cdaa5b73
PA
6396 case BPSTAT_WHAT_STOP_SILENT:
6397 if (debug_infrun)
6398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6399 stop_print_frame = 0;
e5ef252a 6400
99619bea
PA
6401 /* Assume the thread stopped for a breapoint. We'll still check
6402 whether a/the breakpoint is there when the thread is next
6403 resumed. */
6404 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6405 stop_waiting (ecs);
cdaa5b73
PA
6406 return;
6407
6408 case BPSTAT_WHAT_HP_STEP_RESUME:
6409 if (debug_infrun)
6410 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6411
6412 delete_step_resume_breakpoint (ecs->event_thread);
6413 if (ecs->event_thread->step_after_step_resume_breakpoint)
6414 {
6415 /* Back when the step-resume breakpoint was inserted, we
6416 were trying to single-step off a breakpoint. Go back to
6417 doing that. */
6418 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6419 ecs->event_thread->stepping_over_breakpoint = 1;
6420 keep_going (ecs);
6421 return;
e5ef252a 6422 }
cdaa5b73
PA
6423 break;
6424
6425 case BPSTAT_WHAT_KEEP_CHECKING:
6426 break;
e5ef252a 6427 }
c906108c 6428
af48d08f
PA
6429 /* If we stepped a permanent breakpoint and we had a high priority
6430 step-resume breakpoint for the address we stepped, but we didn't
6431 hit it, then we must have stepped into the signal handler. The
6432 step-resume was only necessary to catch the case of _not_
6433 stepping into the handler, so delete it, and fall through to
6434 checking whether the step finished. */
6435 if (ecs->event_thread->stepped_breakpoint)
6436 {
6437 struct breakpoint *sr_bp
6438 = ecs->event_thread->control.step_resume_breakpoint;
6439
8d707a12
PA
6440 if (sr_bp != NULL
6441 && sr_bp->loc->permanent
af48d08f
PA
6442 && sr_bp->type == bp_hp_step_resume
6443 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6444 {
6445 if (debug_infrun)
6446 fprintf_unfiltered (gdb_stdlog,
6447 "infrun: stepped permanent breakpoint, stopped in "
6448 "handler\n");
6449 delete_step_resume_breakpoint (ecs->event_thread);
6450 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6451 }
6452 }
6453
cdaa5b73
PA
6454 /* We come here if we hit a breakpoint but should not stop for it.
6455 Possibly we also were stepping and should stop for that. So fall
6456 through and test for stepping. But, if not stepping, do not
6457 stop. */
c906108c 6458
a7212384
UW
6459 /* In all-stop mode, if we're currently stepping but have stopped in
6460 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6461 if (switch_back_to_stepped_thread (ecs))
6462 return;
776f04fa 6463
8358c15c 6464 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6465 {
527159b7 6466 if (debug_infrun)
d3169d93
DJ
6467 fprintf_unfiltered (gdb_stdlog,
6468 "infrun: step-resume breakpoint is inserted\n");
527159b7 6469
488f131b
JB
6470 /* Having a step-resume breakpoint overrides anything
6471 else having to do with stepping commands until
6472 that breakpoint is reached. */
488f131b
JB
6473 keep_going (ecs);
6474 return;
6475 }
c5aa993b 6476
16c381f0 6477 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6478 {
527159b7 6479 if (debug_infrun)
8a9de0e4 6480 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6481 /* Likewise if we aren't even stepping. */
488f131b
JB
6482 keep_going (ecs);
6483 return;
6484 }
c5aa993b 6485
4b7703ad
JB
6486 /* Re-fetch current thread's frame in case the code above caused
6487 the frame cache to be re-initialized, making our FRAME variable
6488 a dangling pointer. */
6489 frame = get_current_frame ();
628fe4e4 6490 gdbarch = get_frame_arch (frame);
7e324e48 6491 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6492
488f131b 6493 /* If stepping through a line, keep going if still within it.
c906108c 6494
488f131b
JB
6495 Note that step_range_end is the address of the first instruction
6496 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6497 within it!
6498
6499 Note also that during reverse execution, we may be stepping
6500 through a function epilogue and therefore must detect when
6501 the current-frame changes in the middle of a line. */
6502
ce4c476a 6503 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6504 && (execution_direction != EXEC_REVERSE
388a8562 6505 || frame_id_eq (get_frame_id (frame),
16c381f0 6506 ecs->event_thread->control.step_frame_id)))
488f131b 6507 {
527159b7 6508 if (debug_infrun)
5af949e3
UW
6509 fprintf_unfiltered
6510 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6511 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6512 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6513
c1e36e3e
PA
6514 /* Tentatively re-enable range stepping; `resume' disables it if
6515 necessary (e.g., if we're stepping over a breakpoint or we
6516 have software watchpoints). */
6517 ecs->event_thread->control.may_range_step = 1;
6518
b2175913
MS
6519 /* When stepping backward, stop at beginning of line range
6520 (unless it's the function entry point, in which case
6521 keep going back to the call point). */
16c381f0 6522 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6523 && stop_pc != ecs->stop_func_start
6524 && execution_direction == EXEC_REVERSE)
bdc36728 6525 end_stepping_range (ecs);
b2175913
MS
6526 else
6527 keep_going (ecs);
6528
488f131b
JB
6529 return;
6530 }
c5aa993b 6531
488f131b 6532 /* We stepped out of the stepping range. */
c906108c 6533
488f131b 6534 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6535 loader dynamic symbol resolution code...
6536
6537 EXEC_FORWARD: we keep on single stepping until we exit the run
6538 time loader code and reach the callee's address.
6539
6540 EXEC_REVERSE: we've already executed the callee (backward), and
6541 the runtime loader code is handled just like any other
6542 undebuggable function call. Now we need only keep stepping
6543 backward through the trampoline code, and that's handled further
6544 down, so there is nothing for us to do here. */
6545
6546 if (execution_direction != EXEC_REVERSE
16c381f0 6547 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6548 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6549 {
4c8c40e6 6550 CORE_ADDR pc_after_resolver =
568d6575 6551 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6552
527159b7 6553 if (debug_infrun)
3e43a32a
MS
6554 fprintf_unfiltered (gdb_stdlog,
6555 "infrun: stepped into dynsym resolve code\n");
527159b7 6556
488f131b
JB
6557 if (pc_after_resolver)
6558 {
6559 /* Set up a step-resume breakpoint at the address
6560 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6561 symtab_and_line sr_sal;
488f131b 6562 sr_sal.pc = pc_after_resolver;
6c95b8df 6563 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6564
a6d9a66e
UW
6565 insert_step_resume_breakpoint_at_sal (gdbarch,
6566 sr_sal, null_frame_id);
c5aa993b 6567 }
c906108c 6568
488f131b
JB
6569 keep_going (ecs);
6570 return;
6571 }
c906108c 6572
16c381f0
JK
6573 if (ecs->event_thread->control.step_range_end != 1
6574 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6575 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6576 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6577 {
527159b7 6578 if (debug_infrun)
3e43a32a
MS
6579 fprintf_unfiltered (gdb_stdlog,
6580 "infrun: stepped into signal trampoline\n");
42edda50 6581 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6582 a signal trampoline (either by a signal being delivered or by
6583 the signal handler returning). Just single-step until the
6584 inferior leaves the trampoline (either by calling the handler
6585 or returning). */
488f131b
JB
6586 keep_going (ecs);
6587 return;
6588 }
c906108c 6589
14132e89
MR
6590 /* If we're in the return path from a shared library trampoline,
6591 we want to proceed through the trampoline when stepping. */
6592 /* macro/2012-04-25: This needs to come before the subroutine
6593 call check below as on some targets return trampolines look
6594 like subroutine calls (MIPS16 return thunks). */
6595 if (gdbarch_in_solib_return_trampoline (gdbarch,
6596 stop_pc, ecs->stop_func_name)
6597 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6598 {
6599 /* Determine where this trampoline returns. */
6600 CORE_ADDR real_stop_pc;
6601
6602 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6603
6604 if (debug_infrun)
6605 fprintf_unfiltered (gdb_stdlog,
6606 "infrun: stepped into solib return tramp\n");
6607
6608 /* Only proceed through if we know where it's going. */
6609 if (real_stop_pc)
6610 {
6611 /* And put the step-breakpoint there and go until there. */
51abb421 6612 symtab_and_line sr_sal;
14132e89
MR
6613 sr_sal.pc = real_stop_pc;
6614 sr_sal.section = find_pc_overlay (sr_sal.pc);
6615 sr_sal.pspace = get_frame_program_space (frame);
6616
6617 /* Do not specify what the fp should be when we stop since
6618 on some machines the prologue is where the new fp value
6619 is established. */
6620 insert_step_resume_breakpoint_at_sal (gdbarch,
6621 sr_sal, null_frame_id);
6622
6623 /* Restart without fiddling with the step ranges or
6624 other state. */
6625 keep_going (ecs);
6626 return;
6627 }
6628 }
6629
c17eaafe
DJ
6630 /* Check for subroutine calls. The check for the current frame
6631 equalling the step ID is not necessary - the check of the
6632 previous frame's ID is sufficient - but it is a common case and
6633 cheaper than checking the previous frame's ID.
14e60db5
DJ
6634
6635 NOTE: frame_id_eq will never report two invalid frame IDs as
6636 being equal, so to get into this block, both the current and
6637 previous frame must have valid frame IDs. */
005ca36a
JB
6638 /* The outer_frame_id check is a heuristic to detect stepping
6639 through startup code. If we step over an instruction which
6640 sets the stack pointer from an invalid value to a valid value,
6641 we may detect that as a subroutine call from the mythical
6642 "outermost" function. This could be fixed by marking
6643 outermost frames as !stack_p,code_p,special_p. Then the
6644 initial outermost frame, before sp was valid, would
ce6cca6d 6645 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6646 for more. */
edb3359d 6647 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6648 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6649 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6650 ecs->event_thread->control.step_stack_frame_id)
6651 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6652 outer_frame_id)
885eeb5b
PA
6653 || (ecs->event_thread->control.step_start_function
6654 != find_pc_function (stop_pc)))))
488f131b 6655 {
95918acb 6656 CORE_ADDR real_stop_pc;
8fb3e588 6657
527159b7 6658 if (debug_infrun)
8a9de0e4 6659 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6660
b7a084be 6661 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6662 {
6663 /* I presume that step_over_calls is only 0 when we're
6664 supposed to be stepping at the assembly language level
6665 ("stepi"). Just stop. */
388a8562 6666 /* And this works the same backward as frontward. MVS */
bdc36728 6667 end_stepping_range (ecs);
95918acb
AC
6668 return;
6669 }
8fb3e588 6670
388a8562
MS
6671 /* Reverse stepping through solib trampolines. */
6672
6673 if (execution_direction == EXEC_REVERSE
16c381f0 6674 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6675 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6676 || (ecs->stop_func_start == 0
6677 && in_solib_dynsym_resolve_code (stop_pc))))
6678 {
6679 /* Any solib trampoline code can be handled in reverse
6680 by simply continuing to single-step. We have already
6681 executed the solib function (backwards), and a few
6682 steps will take us back through the trampoline to the
6683 caller. */
6684 keep_going (ecs);
6685 return;
6686 }
6687
16c381f0 6688 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6689 {
b2175913
MS
6690 /* We're doing a "next".
6691
6692 Normal (forward) execution: set a breakpoint at the
6693 callee's return address (the address at which the caller
6694 will resume).
6695
6696 Reverse (backward) execution. set the step-resume
6697 breakpoint at the start of the function that we just
6698 stepped into (backwards), and continue to there. When we
6130d0b7 6699 get there, we'll need to single-step back to the caller. */
b2175913
MS
6700
6701 if (execution_direction == EXEC_REVERSE)
6702 {
acf9414f
JK
6703 /* If we're already at the start of the function, we've either
6704 just stepped backward into a single instruction function,
6705 or stepped back out of a signal handler to the first instruction
6706 of the function. Just keep going, which will single-step back
6707 to the caller. */
58c48e72 6708 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6709 {
acf9414f 6710 /* Normal function call return (static or dynamic). */
51abb421 6711 symtab_and_line sr_sal;
acf9414f
JK
6712 sr_sal.pc = ecs->stop_func_start;
6713 sr_sal.pspace = get_frame_program_space (frame);
6714 insert_step_resume_breakpoint_at_sal (gdbarch,
6715 sr_sal, null_frame_id);
6716 }
b2175913
MS
6717 }
6718 else
568d6575 6719 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6720
8567c30f
AC
6721 keep_going (ecs);
6722 return;
6723 }
a53c66de 6724
95918acb 6725 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6726 calling routine and the real function), locate the real
6727 function. That's what tells us (a) whether we want to step
6728 into it at all, and (b) what prologue we want to run to the
6729 end of, if we do step into it. */
568d6575 6730 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6731 if (real_stop_pc == 0)
568d6575 6732 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6733 if (real_stop_pc != 0)
6734 ecs->stop_func_start = real_stop_pc;
8fb3e588 6735
db5f024e 6736 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6737 {
51abb421 6738 symtab_and_line sr_sal;
1b2bfbb9 6739 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6740 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6741
a6d9a66e
UW
6742 insert_step_resume_breakpoint_at_sal (gdbarch,
6743 sr_sal, null_frame_id);
8fb3e588
AC
6744 keep_going (ecs);
6745 return;
1b2bfbb9
RC
6746 }
6747
95918acb 6748 /* If we have line number information for the function we are
1bfeeb0f
JL
6749 thinking of stepping into and the function isn't on the skip
6750 list, step into it.
95918acb 6751
8fb3e588
AC
6752 If there are several symtabs at that PC (e.g. with include
6753 files), just want to know whether *any* of them have line
6754 numbers. find_pc_line handles this. */
95918acb
AC
6755 {
6756 struct symtab_and_line tmp_sal;
8fb3e588 6757
95918acb 6758 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6759 if (tmp_sal.line != 0
85817405 6760 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6761 tmp_sal))
95918acb 6762 {
b2175913 6763 if (execution_direction == EXEC_REVERSE)
568d6575 6764 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6765 else
568d6575 6766 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6767 return;
6768 }
6769 }
6770
6771 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6772 set, we stop the step so that the user has a chance to switch
6773 in assembly mode. */
16c381f0 6774 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6775 && step_stop_if_no_debug)
95918acb 6776 {
bdc36728 6777 end_stepping_range (ecs);
95918acb
AC
6778 return;
6779 }
6780
b2175913
MS
6781 if (execution_direction == EXEC_REVERSE)
6782 {
acf9414f
JK
6783 /* If we're already at the start of the function, we've either just
6784 stepped backward into a single instruction function without line
6785 number info, or stepped back out of a signal handler to the first
6786 instruction of the function without line number info. Just keep
6787 going, which will single-step back to the caller. */
6788 if (ecs->stop_func_start != stop_pc)
6789 {
6790 /* Set a breakpoint at callee's start address.
6791 From there we can step once and be back in the caller. */
51abb421 6792 symtab_and_line sr_sal;
acf9414f
JK
6793 sr_sal.pc = ecs->stop_func_start;
6794 sr_sal.pspace = get_frame_program_space (frame);
6795 insert_step_resume_breakpoint_at_sal (gdbarch,
6796 sr_sal, null_frame_id);
6797 }
b2175913
MS
6798 }
6799 else
6800 /* Set a breakpoint at callee's return address (the address
6801 at which the caller will resume). */
568d6575 6802 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6803
95918acb 6804 keep_going (ecs);
488f131b 6805 return;
488f131b 6806 }
c906108c 6807
fdd654f3
MS
6808 /* Reverse stepping through solib trampolines. */
6809
6810 if (execution_direction == EXEC_REVERSE
16c381f0 6811 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6812 {
6813 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6814 || (ecs->stop_func_start == 0
6815 && in_solib_dynsym_resolve_code (stop_pc)))
6816 {
6817 /* Any solib trampoline code can be handled in reverse
6818 by simply continuing to single-step. We have already
6819 executed the solib function (backwards), and a few
6820 steps will take us back through the trampoline to the
6821 caller. */
6822 keep_going (ecs);
6823 return;
6824 }
6825 else if (in_solib_dynsym_resolve_code (stop_pc))
6826 {
6827 /* Stepped backward into the solib dynsym resolver.
6828 Set a breakpoint at its start and continue, then
6829 one more step will take us out. */
51abb421 6830 symtab_and_line sr_sal;
fdd654f3 6831 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6832 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6833 insert_step_resume_breakpoint_at_sal (gdbarch,
6834 sr_sal, null_frame_id);
6835 keep_going (ecs);
6836 return;
6837 }
6838 }
6839
2afb61aa 6840 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6841
1b2bfbb9
RC
6842 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6843 the trampoline processing logic, however, there are some trampolines
6844 that have no names, so we should do trampoline handling first. */
16c381f0 6845 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6846 && ecs->stop_func_name == NULL
2afb61aa 6847 && stop_pc_sal.line == 0)
1b2bfbb9 6848 {
527159b7 6849 if (debug_infrun)
3e43a32a
MS
6850 fprintf_unfiltered (gdb_stdlog,
6851 "infrun: stepped into undebuggable function\n");
527159b7 6852
1b2bfbb9 6853 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6854 undebuggable function (where there is no debugging information
6855 and no line number corresponding to the address where the
1b2bfbb9
RC
6856 inferior stopped). Since we want to skip this kind of code,
6857 we keep going until the inferior returns from this
14e60db5
DJ
6858 function - unless the user has asked us not to (via
6859 set step-mode) or we no longer know how to get back
6860 to the call site. */
6861 if (step_stop_if_no_debug
c7ce8faa 6862 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6863 {
6864 /* If we have no line number and the step-stop-if-no-debug
6865 is set, we stop the step so that the user has a chance to
6866 switch in assembly mode. */
bdc36728 6867 end_stepping_range (ecs);
1b2bfbb9
RC
6868 return;
6869 }
6870 else
6871 {
6872 /* Set a breakpoint at callee's return address (the address
6873 at which the caller will resume). */
568d6575 6874 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6875 keep_going (ecs);
6876 return;
6877 }
6878 }
6879
16c381f0 6880 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6881 {
6882 /* It is stepi or nexti. We always want to stop stepping after
6883 one instruction. */
527159b7 6884 if (debug_infrun)
8a9de0e4 6885 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6886 end_stepping_range (ecs);
1b2bfbb9
RC
6887 return;
6888 }
6889
2afb61aa 6890 if (stop_pc_sal.line == 0)
488f131b
JB
6891 {
6892 /* We have no line number information. That means to stop
6893 stepping (does this always happen right after one instruction,
6894 when we do "s" in a function with no line numbers,
6895 or can this happen as a result of a return or longjmp?). */
527159b7 6896 if (debug_infrun)
8a9de0e4 6897 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6898 end_stepping_range (ecs);
488f131b
JB
6899 return;
6900 }
c906108c 6901
edb3359d
DJ
6902 /* Look for "calls" to inlined functions, part one. If the inline
6903 frame machinery detected some skipped call sites, we have entered
6904 a new inline function. */
6905
6906 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6907 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6908 && inline_skipped_frames (ecs->ptid))
6909 {
edb3359d
DJ
6910 if (debug_infrun)
6911 fprintf_unfiltered (gdb_stdlog,
6912 "infrun: stepped into inlined function\n");
6913
51abb421 6914 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6915
16c381f0 6916 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6917 {
6918 /* For "step", we're going to stop. But if the call site
6919 for this inlined function is on the same source line as
6920 we were previously stepping, go down into the function
6921 first. Otherwise stop at the call site. */
6922
6923 if (call_sal.line == ecs->event_thread->current_line
6924 && call_sal.symtab == ecs->event_thread->current_symtab)
6925 step_into_inline_frame (ecs->ptid);
6926
bdc36728 6927 end_stepping_range (ecs);
edb3359d
DJ
6928 return;
6929 }
6930 else
6931 {
6932 /* For "next", we should stop at the call site if it is on a
6933 different source line. Otherwise continue through the
6934 inlined function. */
6935 if (call_sal.line == ecs->event_thread->current_line
6936 && call_sal.symtab == ecs->event_thread->current_symtab)
6937 keep_going (ecs);
6938 else
bdc36728 6939 end_stepping_range (ecs);
edb3359d
DJ
6940 return;
6941 }
6942 }
6943
6944 /* Look for "calls" to inlined functions, part two. If we are still
6945 in the same real function we were stepping through, but we have
6946 to go further up to find the exact frame ID, we are stepping
6947 through a more inlined call beyond its call site. */
6948
6949 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6950 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6951 ecs->event_thread->control.step_frame_id)
edb3359d 6952 && stepped_in_from (get_current_frame (),
16c381f0 6953 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6954 {
6955 if (debug_infrun)
6956 fprintf_unfiltered (gdb_stdlog,
6957 "infrun: stepping through inlined function\n");
6958
16c381f0 6959 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6960 keep_going (ecs);
6961 else
bdc36728 6962 end_stepping_range (ecs);
edb3359d
DJ
6963 return;
6964 }
6965
2afb61aa 6966 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6967 && (ecs->event_thread->current_line != stop_pc_sal.line
6968 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6969 {
6970 /* We are at the start of a different line. So stop. Note that
6971 we don't stop if we step into the middle of a different line.
6972 That is said to make things like for (;;) statements work
6973 better. */
527159b7 6974 if (debug_infrun)
3e43a32a
MS
6975 fprintf_unfiltered (gdb_stdlog,
6976 "infrun: stepped to a different line\n");
bdc36728 6977 end_stepping_range (ecs);
488f131b
JB
6978 return;
6979 }
c906108c 6980
488f131b 6981 /* We aren't done stepping.
c906108c 6982
488f131b
JB
6983 Optimize by setting the stepping range to the line.
6984 (We might not be in the original line, but if we entered a
6985 new line in mid-statement, we continue stepping. This makes
6986 things like for(;;) statements work better.) */
c906108c 6987
16c381f0
JK
6988 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6989 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6990 ecs->event_thread->control.may_range_step = 1;
edb3359d 6991 set_step_info (frame, stop_pc_sal);
488f131b 6992
527159b7 6993 if (debug_infrun)
8a9de0e4 6994 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6995 keep_going (ecs);
104c1213
JM
6996}
6997
c447ac0b
PA
6998/* In all-stop mode, if we're currently stepping but have stopped in
6999 some other thread, we may need to switch back to the stepped
7000 thread. Returns true we set the inferior running, false if we left
7001 it stopped (and the event needs further processing). */
7002
7003static int
7004switch_back_to_stepped_thread (struct execution_control_state *ecs)
7005{
fbea99ea 7006 if (!target_is_non_stop_p ())
c447ac0b
PA
7007 {
7008 struct thread_info *tp;
99619bea
PA
7009 struct thread_info *stepping_thread;
7010
7011 /* If any thread is blocked on some internal breakpoint, and we
7012 simply need to step over that breakpoint to get it going
7013 again, do that first. */
7014
7015 /* However, if we see an event for the stepping thread, then we
7016 know all other threads have been moved past their breakpoints
7017 already. Let the caller check whether the step is finished,
7018 etc., before deciding to move it past a breakpoint. */
7019 if (ecs->event_thread->control.step_range_end != 0)
7020 return 0;
7021
7022 /* Check if the current thread is blocked on an incomplete
7023 step-over, interrupted by a random signal. */
7024 if (ecs->event_thread->control.trap_expected
7025 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7026 {
99619bea
PA
7027 if (debug_infrun)
7028 {
7029 fprintf_unfiltered (gdb_stdlog,
7030 "infrun: need to finish step-over of [%s]\n",
7031 target_pid_to_str (ecs->event_thread->ptid));
7032 }
7033 keep_going (ecs);
7034 return 1;
7035 }
2adfaa28 7036
99619bea
PA
7037 /* Check if the current thread is blocked by a single-step
7038 breakpoint of another thread. */
7039 if (ecs->hit_singlestep_breakpoint)
7040 {
7041 if (debug_infrun)
7042 {
7043 fprintf_unfiltered (gdb_stdlog,
7044 "infrun: need to step [%s] over single-step "
7045 "breakpoint\n",
7046 target_pid_to_str (ecs->ptid));
7047 }
7048 keep_going (ecs);
7049 return 1;
7050 }
7051
4d9d9d04
PA
7052 /* If this thread needs yet another step-over (e.g., stepping
7053 through a delay slot), do it first before moving on to
7054 another thread. */
7055 if (thread_still_needs_step_over (ecs->event_thread))
7056 {
7057 if (debug_infrun)
7058 {
7059 fprintf_unfiltered (gdb_stdlog,
7060 "infrun: thread [%s] still needs step-over\n",
7061 target_pid_to_str (ecs->event_thread->ptid));
7062 }
7063 keep_going (ecs);
7064 return 1;
7065 }
70509625 7066
483805cf
PA
7067 /* If scheduler locking applies even if not stepping, there's no
7068 need to walk over threads. Above we've checked whether the
7069 current thread is stepping. If some other thread not the
7070 event thread is stepping, then it must be that scheduler
7071 locking is not in effect. */
856e7dd6 7072 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7073 return 0;
7074
4d9d9d04
PA
7075 /* Otherwise, we no longer expect a trap in the current thread.
7076 Clear the trap_expected flag before switching back -- this is
7077 what keep_going does as well, if we call it. */
7078 ecs->event_thread->control.trap_expected = 0;
7079
7080 /* Likewise, clear the signal if it should not be passed. */
7081 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7082 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7083
7084 /* Do all pending step-overs before actually proceeding with
483805cf 7085 step/next/etc. */
4d9d9d04
PA
7086 if (start_step_over ())
7087 {
7088 prepare_to_wait (ecs);
7089 return 1;
7090 }
7091
7092 /* Look for the stepping/nexting thread. */
483805cf 7093 stepping_thread = NULL;
4d9d9d04 7094
034f788c 7095 ALL_NON_EXITED_THREADS (tp)
483805cf 7096 {
fbea99ea
PA
7097 /* Ignore threads of processes the caller is not
7098 resuming. */
483805cf 7099 if (!sched_multi
1afd5965 7100 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7101 continue;
7102
7103 /* When stepping over a breakpoint, we lock all threads
7104 except the one that needs to move past the breakpoint.
7105 If a non-event thread has this set, the "incomplete
7106 step-over" check above should have caught it earlier. */
372316f1
PA
7107 if (tp->control.trap_expected)
7108 {
7109 internal_error (__FILE__, __LINE__,
7110 "[%s] has inconsistent state: "
7111 "trap_expected=%d\n",
7112 target_pid_to_str (tp->ptid),
7113 tp->control.trap_expected);
7114 }
483805cf
PA
7115
7116 /* Did we find the stepping thread? */
7117 if (tp->control.step_range_end)
7118 {
7119 /* Yep. There should only one though. */
7120 gdb_assert (stepping_thread == NULL);
7121
7122 /* The event thread is handled at the top, before we
7123 enter this loop. */
7124 gdb_assert (tp != ecs->event_thread);
7125
7126 /* If some thread other than the event thread is
7127 stepping, then scheduler locking can't be in effect,
7128 otherwise we wouldn't have resumed the current event
7129 thread in the first place. */
856e7dd6 7130 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7131
7132 stepping_thread = tp;
7133 }
99619bea
PA
7134 }
7135
483805cf 7136 if (stepping_thread != NULL)
99619bea 7137 {
c447ac0b
PA
7138 if (debug_infrun)
7139 fprintf_unfiltered (gdb_stdlog,
7140 "infrun: switching back to stepped thread\n");
7141
2ac7589c
PA
7142 if (keep_going_stepped_thread (stepping_thread))
7143 {
7144 prepare_to_wait (ecs);
7145 return 1;
7146 }
7147 }
7148 }
2adfaa28 7149
2ac7589c
PA
7150 return 0;
7151}
2adfaa28 7152
2ac7589c
PA
7153/* Set a previously stepped thread back to stepping. Returns true on
7154 success, false if the resume is not possible (e.g., the thread
7155 vanished). */
7156
7157static int
7158keep_going_stepped_thread (struct thread_info *tp)
7159{
7160 struct frame_info *frame;
2ac7589c
PA
7161 struct execution_control_state ecss;
7162 struct execution_control_state *ecs = &ecss;
2adfaa28 7163
2ac7589c
PA
7164 /* If the stepping thread exited, then don't try to switch back and
7165 resume it, which could fail in several different ways depending
7166 on the target. Instead, just keep going.
2adfaa28 7167
2ac7589c
PA
7168 We can find a stepping dead thread in the thread list in two
7169 cases:
2adfaa28 7170
2ac7589c
PA
7171 - The target supports thread exit events, and when the target
7172 tries to delete the thread from the thread list, inferior_ptid
7173 pointed at the exiting thread. In such case, calling
7174 delete_thread does not really remove the thread from the list;
7175 instead, the thread is left listed, with 'exited' state.
64ce06e4 7176
2ac7589c
PA
7177 - The target's debug interface does not support thread exit
7178 events, and so we have no idea whatsoever if the previously
7179 stepping thread is still alive. For that reason, we need to
7180 synchronously query the target now. */
2adfaa28 7181
2ac7589c
PA
7182 if (is_exited (tp->ptid)
7183 || !target_thread_alive (tp->ptid))
7184 {
7185 if (debug_infrun)
7186 fprintf_unfiltered (gdb_stdlog,
7187 "infrun: not resuming previously "
7188 "stepped thread, it has vanished\n");
7189
7190 delete_thread (tp->ptid);
7191 return 0;
c447ac0b 7192 }
2ac7589c
PA
7193
7194 if (debug_infrun)
7195 fprintf_unfiltered (gdb_stdlog,
7196 "infrun: resuming previously stepped thread\n");
7197
7198 reset_ecs (ecs, tp);
7199 switch_to_thread (tp->ptid);
7200
7201 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7202 frame = get_current_frame ();
2ac7589c
PA
7203
7204 /* If the PC of the thread we were trying to single-step has
7205 changed, then that thread has trapped or been signaled, but the
7206 event has not been reported to GDB yet. Re-poll the target
7207 looking for this particular thread's event (i.e. temporarily
7208 enable schedlock) by:
7209
7210 - setting a break at the current PC
7211 - resuming that particular thread, only (by setting trap
7212 expected)
7213
7214 This prevents us continuously moving the single-step breakpoint
7215 forward, one instruction at a time, overstepping. */
7216
7217 if (stop_pc != tp->prev_pc)
7218 {
7219 ptid_t resume_ptid;
7220
7221 if (debug_infrun)
7222 fprintf_unfiltered (gdb_stdlog,
7223 "infrun: expected thread advanced also (%s -> %s)\n",
7224 paddress (target_gdbarch (), tp->prev_pc),
7225 paddress (target_gdbarch (), stop_pc));
7226
7227 /* Clear the info of the previous step-over, as it's no longer
7228 valid (if the thread was trying to step over a breakpoint, it
7229 has already succeeded). It's what keep_going would do too,
7230 if we called it. Do this before trying to insert the sss
7231 breakpoint, otherwise if we were previously trying to step
7232 over this exact address in another thread, the breakpoint is
7233 skipped. */
7234 clear_step_over_info ();
7235 tp->control.trap_expected = 0;
7236
7237 insert_single_step_breakpoint (get_frame_arch (frame),
7238 get_frame_address_space (frame),
7239 stop_pc);
7240
372316f1 7241 tp->resumed = 1;
fbea99ea 7242 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7243 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7244 }
7245 else
7246 {
7247 if (debug_infrun)
7248 fprintf_unfiltered (gdb_stdlog,
7249 "infrun: expected thread still hasn't advanced\n");
7250
7251 keep_going_pass_signal (ecs);
7252 }
7253 return 1;
c447ac0b
PA
7254}
7255
8b061563
PA
7256/* Is thread TP in the middle of (software or hardware)
7257 single-stepping? (Note the result of this function must never be
7258 passed directly as target_resume's STEP parameter.) */
104c1213 7259
a289b8f6 7260static int
b3444185 7261currently_stepping (struct thread_info *tp)
a7212384 7262{
8358c15c
JK
7263 return ((tp->control.step_range_end
7264 && tp->control.step_resume_breakpoint == NULL)
7265 || tp->control.trap_expected
af48d08f 7266 || tp->stepped_breakpoint
8358c15c 7267 || bpstat_should_step ());
a7212384
UW
7268}
7269
b2175913
MS
7270/* Inferior has stepped into a subroutine call with source code that
7271 we should not step over. Do step to the first line of code in
7272 it. */
c2c6d25f
JM
7273
7274static void
568d6575
UW
7275handle_step_into_function (struct gdbarch *gdbarch,
7276 struct execution_control_state *ecs)
c2c6d25f 7277{
7e324e48
GB
7278 fill_in_stop_func (gdbarch, ecs);
7279
51abb421 7280 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
43f3e411 7281 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7282 ecs->stop_func_start
7283 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7284
51abb421 7285 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7286 /* Use the step_resume_break to step until the end of the prologue,
7287 even if that involves jumps (as it seems to on the vax under
7288 4.2). */
7289 /* If the prologue ends in the middle of a source line, continue to
7290 the end of that source line (if it is still within the function).
7291 Otherwise, just go to end of prologue. */
2afb61aa
PA
7292 if (stop_func_sal.end
7293 && stop_func_sal.pc != ecs->stop_func_start
7294 && stop_func_sal.end < ecs->stop_func_end)
7295 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7296
2dbd5e30
KB
7297 /* Architectures which require breakpoint adjustment might not be able
7298 to place a breakpoint at the computed address. If so, the test
7299 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7300 ecs->stop_func_start to an address at which a breakpoint may be
7301 legitimately placed.
8fb3e588 7302
2dbd5e30
KB
7303 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7304 made, GDB will enter an infinite loop when stepping through
7305 optimized code consisting of VLIW instructions which contain
7306 subinstructions corresponding to different source lines. On
7307 FR-V, it's not permitted to place a breakpoint on any but the
7308 first subinstruction of a VLIW instruction. When a breakpoint is
7309 set, GDB will adjust the breakpoint address to the beginning of
7310 the VLIW instruction. Thus, we need to make the corresponding
7311 adjustment here when computing the stop address. */
8fb3e588 7312
568d6575 7313 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7314 {
7315 ecs->stop_func_start
568d6575 7316 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7317 ecs->stop_func_start);
2dbd5e30
KB
7318 }
7319
c2c6d25f
JM
7320 if (ecs->stop_func_start == stop_pc)
7321 {
7322 /* We are already there: stop now. */
bdc36728 7323 end_stepping_range (ecs);
c2c6d25f
JM
7324 return;
7325 }
7326 else
7327 {
7328 /* Put the step-breakpoint there and go until there. */
51abb421 7329 symtab_and_line sr_sal;
c2c6d25f
JM
7330 sr_sal.pc = ecs->stop_func_start;
7331 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7332 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7333
c2c6d25f 7334 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7335 some machines the prologue is where the new fp value is
7336 established. */
a6d9a66e 7337 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7338
7339 /* And make sure stepping stops right away then. */
16c381f0
JK
7340 ecs->event_thread->control.step_range_end
7341 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7342 }
7343 keep_going (ecs);
7344}
d4f3574e 7345
b2175913
MS
7346/* Inferior has stepped backward into a subroutine call with source
7347 code that we should not step over. Do step to the beginning of the
7348 last line of code in it. */
7349
7350static void
568d6575
UW
7351handle_step_into_function_backward (struct gdbarch *gdbarch,
7352 struct execution_control_state *ecs)
b2175913 7353{
43f3e411 7354 struct compunit_symtab *cust;
167e4384 7355 struct symtab_and_line stop_func_sal;
b2175913 7356
7e324e48
GB
7357 fill_in_stop_func (gdbarch, ecs);
7358
43f3e411
DE
7359 cust = find_pc_compunit_symtab (stop_pc);
7360 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7361 ecs->stop_func_start
7362 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913
MS
7363
7364 stop_func_sal = find_pc_line (stop_pc, 0);
7365
7366 /* OK, we're just going to keep stepping here. */
7367 if (stop_func_sal.pc == stop_pc)
7368 {
7369 /* We're there already. Just stop stepping now. */
bdc36728 7370 end_stepping_range (ecs);
b2175913
MS
7371 }
7372 else
7373 {
7374 /* Else just reset the step range and keep going.
7375 No step-resume breakpoint, they don't work for
7376 epilogues, which can have multiple entry paths. */
16c381f0
JK
7377 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7378 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7379 keep_going (ecs);
7380 }
7381 return;
7382}
7383
d3169d93 7384/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7385 This is used to both functions and to skip over code. */
7386
7387static void
2c03e5be
PA
7388insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7389 struct symtab_and_line sr_sal,
7390 struct frame_id sr_id,
7391 enum bptype sr_type)
44cbf7b5 7392{
611c83ae
PA
7393 /* There should never be more than one step-resume or longjmp-resume
7394 breakpoint per thread, so we should never be setting a new
44cbf7b5 7395 step_resume_breakpoint when one is already active. */
8358c15c 7396 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7397 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7398
7399 if (debug_infrun)
7400 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7401 "infrun: inserting step-resume breakpoint at %s\n",
7402 paddress (gdbarch, sr_sal.pc));
d3169d93 7403
8358c15c 7404 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7405 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7406}
7407
9da8c2a0 7408void
2c03e5be
PA
7409insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7410 struct symtab_and_line sr_sal,
7411 struct frame_id sr_id)
7412{
7413 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7414 sr_sal, sr_id,
7415 bp_step_resume);
44cbf7b5 7416}
7ce450bd 7417
2c03e5be
PA
7418/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7419 This is used to skip a potential signal handler.
7ce450bd 7420
14e60db5
DJ
7421 This is called with the interrupted function's frame. The signal
7422 handler, when it returns, will resume the interrupted function at
7423 RETURN_FRAME.pc. */
d303a6c7
AC
7424
7425static void
2c03e5be 7426insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7427{
f4c1edd8 7428 gdb_assert (return_frame != NULL);
d303a6c7 7429
51abb421
PA
7430 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7431
7432 symtab_and_line sr_sal;
568d6575 7433 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7434 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7435 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7436
2c03e5be
PA
7437 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7438 get_stack_frame_id (return_frame),
7439 bp_hp_step_resume);
d303a6c7
AC
7440}
7441
2c03e5be
PA
7442/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7443 is used to skip a function after stepping into it (for "next" or if
7444 the called function has no debugging information).
14e60db5
DJ
7445
7446 The current function has almost always been reached by single
7447 stepping a call or return instruction. NEXT_FRAME belongs to the
7448 current function, and the breakpoint will be set at the caller's
7449 resume address.
7450
7451 This is a separate function rather than reusing
2c03e5be 7452 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7453 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7454 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7455
7456static void
7457insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7458{
14e60db5
DJ
7459 /* We shouldn't have gotten here if we don't know where the call site
7460 is. */
c7ce8faa 7461 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7462
51abb421 7463 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7464
51abb421 7465 symtab_and_line sr_sal;
c7ce8faa
DJ
7466 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7467 frame_unwind_caller_pc (next_frame));
14e60db5 7468 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7469 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7470
a6d9a66e 7471 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7472 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7473}
7474
611c83ae
PA
7475/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7476 new breakpoint at the target of a jmp_buf. The handling of
7477 longjmp-resume uses the same mechanisms used for handling
7478 "step-resume" breakpoints. */
7479
7480static void
a6d9a66e 7481insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7482{
e81a37f7
TT
7483 /* There should never be more than one longjmp-resume breakpoint per
7484 thread, so we should never be setting a new
611c83ae 7485 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7486 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7487
7488 if (debug_infrun)
7489 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7490 "infrun: inserting longjmp-resume breakpoint at %s\n",
7491 paddress (gdbarch, pc));
611c83ae 7492
e81a37f7 7493 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7494 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7495}
7496
186c406b
TT
7497/* Insert an exception resume breakpoint. TP is the thread throwing
7498 the exception. The block B is the block of the unwinder debug hook
7499 function. FRAME is the frame corresponding to the call to this
7500 function. SYM is the symbol of the function argument holding the
7501 target PC of the exception. */
7502
7503static void
7504insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7505 const struct block *b,
186c406b
TT
7506 struct frame_info *frame,
7507 struct symbol *sym)
7508{
492d29ea 7509 TRY
186c406b 7510 {
63e43d3a 7511 struct block_symbol vsym;
186c406b
TT
7512 struct value *value;
7513 CORE_ADDR handler;
7514 struct breakpoint *bp;
7515
de63c46b
PA
7516 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7517 b, VAR_DOMAIN);
63e43d3a 7518 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7519 /* If the value was optimized out, revert to the old behavior. */
7520 if (! value_optimized_out (value))
7521 {
7522 handler = value_as_address (value);
7523
7524 if (debug_infrun)
7525 fprintf_unfiltered (gdb_stdlog,
7526 "infrun: exception resume at %lx\n",
7527 (unsigned long) handler);
7528
7529 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7530 handler,
7531 bp_exception_resume).release ();
c70a6932
JK
7532
7533 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7534 frame = NULL;
7535
5d5658a1 7536 bp->thread = tp->global_num;
186c406b
TT
7537 inferior_thread ()->control.exception_resume_breakpoint = bp;
7538 }
7539 }
492d29ea
PA
7540 CATCH (e, RETURN_MASK_ERROR)
7541 {
7542 /* We want to ignore errors here. */
7543 }
7544 END_CATCH
186c406b
TT
7545}
7546
28106bc2
SDJ
7547/* A helper for check_exception_resume that sets an
7548 exception-breakpoint based on a SystemTap probe. */
7549
7550static void
7551insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7552 const struct bound_probe *probe,
28106bc2
SDJ
7553 struct frame_info *frame)
7554{
7555 struct value *arg_value;
7556 CORE_ADDR handler;
7557 struct breakpoint *bp;
7558
7559 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7560 if (!arg_value)
7561 return;
7562
7563 handler = value_as_address (arg_value);
7564
7565 if (debug_infrun)
7566 fprintf_unfiltered (gdb_stdlog,
7567 "infrun: exception resume at %s\n",
6bac7473 7568 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7569 handler));
7570
7571 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7572 handler, bp_exception_resume).release ();
5d5658a1 7573 bp->thread = tp->global_num;
28106bc2
SDJ
7574 inferior_thread ()->control.exception_resume_breakpoint = bp;
7575}
7576
186c406b
TT
7577/* This is called when an exception has been intercepted. Check to
7578 see whether the exception's destination is of interest, and if so,
7579 set an exception resume breakpoint there. */
7580
7581static void
7582check_exception_resume (struct execution_control_state *ecs,
28106bc2 7583 struct frame_info *frame)
186c406b 7584{
729662a5 7585 struct bound_probe probe;
28106bc2
SDJ
7586 struct symbol *func;
7587
7588 /* First see if this exception unwinding breakpoint was set via a
7589 SystemTap probe point. If so, the probe has two arguments: the
7590 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7591 set a breakpoint there. */
6bac7473 7592 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7593 if (probe.prob)
28106bc2 7594 {
729662a5 7595 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7596 return;
7597 }
7598
7599 func = get_frame_function (frame);
7600 if (!func)
7601 return;
186c406b 7602
492d29ea 7603 TRY
186c406b 7604 {
3977b71f 7605 const struct block *b;
8157b174 7606 struct block_iterator iter;
186c406b
TT
7607 struct symbol *sym;
7608 int argno = 0;
7609
7610 /* The exception breakpoint is a thread-specific breakpoint on
7611 the unwinder's debug hook, declared as:
7612
7613 void _Unwind_DebugHook (void *cfa, void *handler);
7614
7615 The CFA argument indicates the frame to which control is
7616 about to be transferred. HANDLER is the destination PC.
7617
7618 We ignore the CFA and set a temporary breakpoint at HANDLER.
7619 This is not extremely efficient but it avoids issues in gdb
7620 with computing the DWARF CFA, and it also works even in weird
7621 cases such as throwing an exception from inside a signal
7622 handler. */
7623
7624 b = SYMBOL_BLOCK_VALUE (func);
7625 ALL_BLOCK_SYMBOLS (b, iter, sym)
7626 {
7627 if (!SYMBOL_IS_ARGUMENT (sym))
7628 continue;
7629
7630 if (argno == 0)
7631 ++argno;
7632 else
7633 {
7634 insert_exception_resume_breakpoint (ecs->event_thread,
7635 b, frame, sym);
7636 break;
7637 }
7638 }
7639 }
492d29ea
PA
7640 CATCH (e, RETURN_MASK_ERROR)
7641 {
7642 }
7643 END_CATCH
186c406b
TT
7644}
7645
104c1213 7646static void
22bcd14b 7647stop_waiting (struct execution_control_state *ecs)
104c1213 7648{
527159b7 7649 if (debug_infrun)
22bcd14b 7650 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7651
cd0fc7c3
SS
7652 /* Let callers know we don't want to wait for the inferior anymore. */
7653 ecs->wait_some_more = 0;
fbea99ea
PA
7654
7655 /* If all-stop, but the target is always in non-stop mode, stop all
7656 threads now that we're presenting the stop to the user. */
7657 if (!non_stop && target_is_non_stop_p ())
7658 stop_all_threads ();
cd0fc7c3
SS
7659}
7660
4d9d9d04
PA
7661/* Like keep_going, but passes the signal to the inferior, even if the
7662 signal is set to nopass. */
d4f3574e
SS
7663
7664static void
4d9d9d04 7665keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7666{
4d9d9d04 7667 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7668 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7669
d4f3574e 7670 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7671 ecs->event_thread->prev_pc
7672 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7673
4d9d9d04 7674 if (ecs->event_thread->control.trap_expected)
d4f3574e 7675 {
4d9d9d04
PA
7676 struct thread_info *tp = ecs->event_thread;
7677
7678 if (debug_infrun)
7679 fprintf_unfiltered (gdb_stdlog,
7680 "infrun: %s has trap_expected set, "
7681 "resuming to collect trap\n",
7682 target_pid_to_str (tp->ptid));
7683
a9ba6bae
PA
7684 /* We haven't yet gotten our trap, and either: intercepted a
7685 non-signal event (e.g., a fork); or took a signal which we
7686 are supposed to pass through to the inferior. Simply
7687 continue. */
64ce06e4 7688 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7689 }
372316f1
PA
7690 else if (step_over_info_valid_p ())
7691 {
7692 /* Another thread is stepping over a breakpoint in-line. If
7693 this thread needs a step-over too, queue the request. In
7694 either case, this resume must be deferred for later. */
7695 struct thread_info *tp = ecs->event_thread;
7696
7697 if (ecs->hit_singlestep_breakpoint
7698 || thread_still_needs_step_over (tp))
7699 {
7700 if (debug_infrun)
7701 fprintf_unfiltered (gdb_stdlog,
7702 "infrun: step-over already in progress: "
7703 "step-over for %s deferred\n",
7704 target_pid_to_str (tp->ptid));
7705 thread_step_over_chain_enqueue (tp);
7706 }
7707 else
7708 {
7709 if (debug_infrun)
7710 fprintf_unfiltered (gdb_stdlog,
7711 "infrun: step-over in progress: "
7712 "resume of %s deferred\n",
7713 target_pid_to_str (tp->ptid));
7714 }
372316f1 7715 }
d4f3574e
SS
7716 else
7717 {
31e77af2 7718 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7719 int remove_bp;
7720 int remove_wps;
8d297bbf 7721 step_over_what step_what;
31e77af2 7722
d4f3574e 7723 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7724 anyway (if we got a signal, the user asked it be passed to
7725 the child)
7726 -- or --
7727 We got our expected trap, but decided we should resume from
7728 it.
d4f3574e 7729
a9ba6bae 7730 We're going to run this baby now!
d4f3574e 7731
c36b740a
VP
7732 Note that insert_breakpoints won't try to re-insert
7733 already inserted breakpoints. Therefore, we don't
7734 care if breakpoints were already inserted, or not. */
a9ba6bae 7735
31e77af2
PA
7736 /* If we need to step over a breakpoint, and we're not using
7737 displaced stepping to do so, insert all breakpoints
7738 (watchpoints, etc.) but the one we're stepping over, step one
7739 instruction, and then re-insert the breakpoint when that step
7740 is finished. */
963f9c80 7741
6c4cfb24
PA
7742 step_what = thread_still_needs_step_over (ecs->event_thread);
7743
963f9c80 7744 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7745 || (step_what & STEP_OVER_BREAKPOINT));
7746 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7747
cb71640d
PA
7748 /* We can't use displaced stepping if we need to step past a
7749 watchpoint. The instruction copied to the scratch pad would
7750 still trigger the watchpoint. */
7751 if (remove_bp
3fc8eb30 7752 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7753 {
a01bda52 7754 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7755 regcache_read_pc (regcache), remove_wps,
7756 ecs->event_thread->global_num);
45e8c884 7757 }
963f9c80 7758 else if (remove_wps)
21edc42f 7759 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7760
7761 /* If we now need to do an in-line step-over, we need to stop
7762 all other threads. Note this must be done before
7763 insert_breakpoints below, because that removes the breakpoint
7764 we're about to step over, otherwise other threads could miss
7765 it. */
fbea99ea 7766 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7767 stop_all_threads ();
abbb1732 7768
31e77af2 7769 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7770 TRY
31e77af2
PA
7771 {
7772 insert_breakpoints ();
7773 }
492d29ea 7774 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7775 {
7776 exception_print (gdb_stderr, e);
22bcd14b 7777 stop_waiting (ecs);
bdf2a94a 7778 clear_step_over_info ();
31e77af2 7779 return;
d4f3574e 7780 }
492d29ea 7781 END_CATCH
d4f3574e 7782
963f9c80 7783 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7784
64ce06e4 7785 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7786 }
7787
488f131b 7788 prepare_to_wait (ecs);
d4f3574e
SS
7789}
7790
4d9d9d04
PA
7791/* Called when we should continue running the inferior, because the
7792 current event doesn't cause a user visible stop. This does the
7793 resuming part; waiting for the next event is done elsewhere. */
7794
7795static void
7796keep_going (struct execution_control_state *ecs)
7797{
7798 if (ecs->event_thread->control.trap_expected
7799 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7800 ecs->event_thread->control.trap_expected = 0;
7801
7802 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7803 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7804 keep_going_pass_signal (ecs);
7805}
7806
104c1213
JM
7807/* This function normally comes after a resume, before
7808 handle_inferior_event exits. It takes care of any last bits of
7809 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7810
104c1213
JM
7811static void
7812prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7813{
527159b7 7814 if (debug_infrun)
8a9de0e4 7815 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7816
104c1213 7817 ecs->wait_some_more = 1;
0b333c5e
PA
7818
7819 if (!target_is_async_p ())
7820 mark_infrun_async_event_handler ();
c906108c 7821}
11cf8741 7822
fd664c91 7823/* We are done with the step range of a step/next/si/ni command.
b57bacec 7824 Called once for each n of a "step n" operation. */
fd664c91
PA
7825
7826static void
bdc36728 7827end_stepping_range (struct execution_control_state *ecs)
fd664c91 7828{
bdc36728 7829 ecs->event_thread->control.stop_step = 1;
bdc36728 7830 stop_waiting (ecs);
fd664c91
PA
7831}
7832
33d62d64
JK
7833/* Several print_*_reason functions to print why the inferior has stopped.
7834 We always print something when the inferior exits, or receives a signal.
7835 The rest of the cases are dealt with later on in normal_stop and
7836 print_it_typical. Ideally there should be a call to one of these
7837 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7838 stop_waiting is called.
33d62d64 7839
fd664c91
PA
7840 Note that we don't call these directly, instead we delegate that to
7841 the interpreters, through observers. Interpreters then call these
7842 with whatever uiout is right. */
33d62d64 7843
fd664c91
PA
7844void
7845print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7846{
fd664c91 7847 /* For CLI-like interpreters, print nothing. */
33d62d64 7848
112e8700 7849 if (uiout->is_mi_like_p ())
fd664c91 7850 {
112e8700 7851 uiout->field_string ("reason",
fd664c91
PA
7852 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7853 }
7854}
33d62d64 7855
fd664c91
PA
7856void
7857print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7858{
33d62d64 7859 annotate_signalled ();
112e8700
SM
7860 if (uiout->is_mi_like_p ())
7861 uiout->field_string
7862 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7863 uiout->text ("\nProgram terminated with signal ");
33d62d64 7864 annotate_signal_name ();
112e8700 7865 uiout->field_string ("signal-name",
2ea28649 7866 gdb_signal_to_name (siggnal));
33d62d64 7867 annotate_signal_name_end ();
112e8700 7868 uiout->text (", ");
33d62d64 7869 annotate_signal_string ();
112e8700 7870 uiout->field_string ("signal-meaning",
2ea28649 7871 gdb_signal_to_string (siggnal));
33d62d64 7872 annotate_signal_string_end ();
112e8700
SM
7873 uiout->text (".\n");
7874 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7875}
7876
fd664c91
PA
7877void
7878print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7879{
fda326dd
TT
7880 struct inferior *inf = current_inferior ();
7881 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7882
33d62d64
JK
7883 annotate_exited (exitstatus);
7884 if (exitstatus)
7885 {
112e8700
SM
7886 if (uiout->is_mi_like_p ())
7887 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7888 uiout->text ("[Inferior ");
7889 uiout->text (plongest (inf->num));
7890 uiout->text (" (");
7891 uiout->text (pidstr);
7892 uiout->text (") exited with code ");
7893 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7894 uiout->text ("]\n");
33d62d64
JK
7895 }
7896 else
11cf8741 7897 {
112e8700
SM
7898 if (uiout->is_mi_like_p ())
7899 uiout->field_string
7900 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7901 uiout->text ("[Inferior ");
7902 uiout->text (plongest (inf->num));
7903 uiout->text (" (");
7904 uiout->text (pidstr);
7905 uiout->text (") exited normally]\n");
33d62d64 7906 }
33d62d64
JK
7907}
7908
012b3a21
WT
7909/* Some targets/architectures can do extra processing/display of
7910 segmentation faults. E.g., Intel MPX boundary faults.
7911 Call the architecture dependent function to handle the fault. */
7912
7913static void
7914handle_segmentation_fault (struct ui_out *uiout)
7915{
7916 struct regcache *regcache = get_current_regcache ();
ac7936df 7917 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7918
7919 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7920 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7921}
7922
fd664c91
PA
7923void
7924print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7925{
f303dbd6
PA
7926 struct thread_info *thr = inferior_thread ();
7927
33d62d64
JK
7928 annotate_signal ();
7929
112e8700 7930 if (uiout->is_mi_like_p ())
f303dbd6
PA
7931 ;
7932 else if (show_thread_that_caused_stop ())
33d62d64 7933 {
f303dbd6 7934 const char *name;
33d62d64 7935
112e8700
SM
7936 uiout->text ("\nThread ");
7937 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7938
7939 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7940 if (name != NULL)
7941 {
112e8700
SM
7942 uiout->text (" \"");
7943 uiout->field_fmt ("name", "%s", name);
7944 uiout->text ("\"");
f303dbd6 7945 }
33d62d64 7946 }
f303dbd6 7947 else
112e8700 7948 uiout->text ("\nProgram");
f303dbd6 7949
112e8700
SM
7950 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7951 uiout->text (" stopped");
33d62d64
JK
7952 else
7953 {
112e8700 7954 uiout->text (" received signal ");
8b93c638 7955 annotate_signal_name ();
112e8700
SM
7956 if (uiout->is_mi_like_p ())
7957 uiout->field_string
7958 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7959 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7960 annotate_signal_name_end ();
112e8700 7961 uiout->text (", ");
8b93c638 7962 annotate_signal_string ();
112e8700 7963 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7964
7965 if (siggnal == GDB_SIGNAL_SEGV)
7966 handle_segmentation_fault (uiout);
7967
8b93c638 7968 annotate_signal_string_end ();
33d62d64 7969 }
112e8700 7970 uiout->text (".\n");
33d62d64 7971}
252fbfc8 7972
fd664c91
PA
7973void
7974print_no_history_reason (struct ui_out *uiout)
33d62d64 7975{
112e8700 7976 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7977}
43ff13b4 7978
0c7e1a46
PA
7979/* Print current location without a level number, if we have changed
7980 functions or hit a breakpoint. Print source line if we have one.
7981 bpstat_print contains the logic deciding in detail what to print,
7982 based on the event(s) that just occurred. */
7983
243a9253
PA
7984static void
7985print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7986{
7987 int bpstat_ret;
f486487f 7988 enum print_what source_flag;
0c7e1a46
PA
7989 int do_frame_printing = 1;
7990 struct thread_info *tp = inferior_thread ();
7991
7992 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7993 switch (bpstat_ret)
7994 {
7995 case PRINT_UNKNOWN:
7996 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7997 should) carry around the function and does (or should) use
7998 that when doing a frame comparison. */
7999 if (tp->control.stop_step
8000 && frame_id_eq (tp->control.step_frame_id,
8001 get_frame_id (get_current_frame ()))
885eeb5b 8002 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8003 {
8004 /* Finished step, just print source line. */
8005 source_flag = SRC_LINE;
8006 }
8007 else
8008 {
8009 /* Print location and source line. */
8010 source_flag = SRC_AND_LOC;
8011 }
8012 break;
8013 case PRINT_SRC_AND_LOC:
8014 /* Print location and source line. */
8015 source_flag = SRC_AND_LOC;
8016 break;
8017 case PRINT_SRC_ONLY:
8018 source_flag = SRC_LINE;
8019 break;
8020 case PRINT_NOTHING:
8021 /* Something bogus. */
8022 source_flag = SRC_LINE;
8023 do_frame_printing = 0;
8024 break;
8025 default:
8026 internal_error (__FILE__, __LINE__, _("Unknown value."));
8027 }
8028
8029 /* The behavior of this routine with respect to the source
8030 flag is:
8031 SRC_LINE: Print only source line
8032 LOCATION: Print only location
8033 SRC_AND_LOC: Print location and source line. */
8034 if (do_frame_printing)
8035 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8036}
8037
243a9253
PA
8038/* See infrun.h. */
8039
8040void
8041print_stop_event (struct ui_out *uiout)
8042{
243a9253
PA
8043 struct target_waitstatus last;
8044 ptid_t last_ptid;
8045 struct thread_info *tp;
8046
8047 get_last_target_status (&last_ptid, &last);
8048
67ad9399
TT
8049 {
8050 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8051
67ad9399 8052 print_stop_location (&last);
243a9253 8053
67ad9399
TT
8054 /* Display the auto-display expressions. */
8055 do_displays ();
8056 }
243a9253
PA
8057
8058 tp = inferior_thread ();
8059 if (tp->thread_fsm != NULL
8060 && thread_fsm_finished_p (tp->thread_fsm))
8061 {
8062 struct return_value_info *rv;
8063
8064 rv = thread_fsm_return_value (tp->thread_fsm);
8065 if (rv != NULL)
8066 print_return_value (uiout, rv);
8067 }
0c7e1a46
PA
8068}
8069
388a7084
PA
8070/* See infrun.h. */
8071
8072void
8073maybe_remove_breakpoints (void)
8074{
8075 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8076 {
8077 if (remove_breakpoints ())
8078 {
223ffa71 8079 target_terminal::ours_for_output ();
388a7084
PA
8080 printf_filtered (_("Cannot remove breakpoints because "
8081 "program is no longer writable.\nFurther "
8082 "execution is probably impossible.\n"));
8083 }
8084 }
8085}
8086
4c2f2a79
PA
8087/* The execution context that just caused a normal stop. */
8088
8089struct stop_context
8090{
8091 /* The stop ID. */
8092 ULONGEST stop_id;
c906108c 8093
4c2f2a79 8094 /* The event PTID. */
c906108c 8095
4c2f2a79
PA
8096 ptid_t ptid;
8097
8098 /* If stopp for a thread event, this is the thread that caused the
8099 stop. */
8100 struct thread_info *thread;
8101
8102 /* The inferior that caused the stop. */
8103 int inf_num;
8104};
8105
8106/* Returns a new stop context. If stopped for a thread event, this
8107 takes a strong reference to the thread. */
8108
8109static struct stop_context *
8110save_stop_context (void)
8111{
224c3ddb 8112 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8113
8114 sc->stop_id = get_stop_id ();
8115 sc->ptid = inferior_ptid;
8116 sc->inf_num = current_inferior ()->num;
8117
8118 if (!ptid_equal (inferior_ptid, null_ptid))
8119 {
8120 /* Take a strong reference so that the thread can't be deleted
8121 yet. */
8122 sc->thread = inferior_thread ();
803bdfe4 8123 sc->thread->incref ();
4c2f2a79
PA
8124 }
8125 else
8126 sc->thread = NULL;
8127
8128 return sc;
8129}
8130
8131/* Release a stop context previously created with save_stop_context.
8132 Releases the strong reference to the thread as well. */
8133
8134static void
8135release_stop_context_cleanup (void *arg)
8136{
9a3c8263 8137 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8138
8139 if (sc->thread != NULL)
803bdfe4 8140 sc->thread->decref ();
4c2f2a79
PA
8141 xfree (sc);
8142}
8143
8144/* Return true if the current context no longer matches the saved stop
8145 context. */
8146
8147static int
8148stop_context_changed (struct stop_context *prev)
8149{
8150 if (!ptid_equal (prev->ptid, inferior_ptid))
8151 return 1;
8152 if (prev->inf_num != current_inferior ()->num)
8153 return 1;
8154 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8155 return 1;
8156 if (get_stop_id () != prev->stop_id)
8157 return 1;
8158 return 0;
8159}
8160
8161/* See infrun.h. */
8162
8163int
96baa820 8164normal_stop (void)
c906108c 8165{
73b65bb0
DJ
8166 struct target_waitstatus last;
8167 ptid_t last_ptid;
29f49a6a 8168 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8169 ptid_t pid_ptid;
73b65bb0
DJ
8170
8171 get_last_target_status (&last_ptid, &last);
8172
4c2f2a79
PA
8173 new_stop_id ();
8174
29f49a6a
PA
8175 /* If an exception is thrown from this point on, make sure to
8176 propagate GDB's knowledge of the executing state to the
8177 frontend/user running state. A QUIT is an easy exception to see
8178 here, so do this before any filtered output. */
c35b1492
PA
8179 if (!non_stop)
8180 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8181 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8182 || last.kind == TARGET_WAITKIND_EXITED)
8183 {
8184 /* On some targets, we may still have live threads in the
8185 inferior when we get a process exit event. E.g., for
8186 "checkpoint", when the current checkpoint/fork exits,
8187 linux-fork.c automatically switches to another fork from
8188 within target_mourn_inferior. */
8189 if (!ptid_equal (inferior_ptid, null_ptid))
8190 {
8191 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8192 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8193 }
8194 }
8195 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8196 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8197
b57bacec
PA
8198 /* As we're presenting a stop, and potentially removing breakpoints,
8199 update the thread list so we can tell whether there are threads
8200 running on the target. With target remote, for example, we can
8201 only learn about new threads when we explicitly update the thread
8202 list. Do this before notifying the interpreters about signal
8203 stops, end of stepping ranges, etc., so that the "new thread"
8204 output is emitted before e.g., "Program received signal FOO",
8205 instead of after. */
8206 update_thread_list ();
8207
8208 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8209 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8210
c906108c
SS
8211 /* As with the notification of thread events, we want to delay
8212 notifying the user that we've switched thread context until
8213 the inferior actually stops.
8214
73b65bb0
DJ
8215 There's no point in saying anything if the inferior has exited.
8216 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8217 "received a signal".
8218
8219 Also skip saying anything in non-stop mode. In that mode, as we
8220 don't want GDB to switch threads behind the user's back, to avoid
8221 races where the user is typing a command to apply to thread x,
8222 but GDB switches to thread y before the user finishes entering
8223 the command, fetch_inferior_event installs a cleanup to restore
8224 the current thread back to the thread the user had selected right
8225 after this event is handled, so we're not really switching, only
8226 informing of a stop. */
4f8d22e3
PA
8227 if (!non_stop
8228 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8229 && target_has_execution
8230 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8231 && last.kind != TARGET_WAITKIND_EXITED
8232 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8233 {
0e454242 8234 SWITCH_THRU_ALL_UIS ()
3b12939d 8235 {
223ffa71 8236 target_terminal::ours_for_output ();
3b12939d
PA
8237 printf_filtered (_("[Switching to %s]\n"),
8238 target_pid_to_str (inferior_ptid));
8239 annotate_thread_changed ();
8240 }
39f77062 8241 previous_inferior_ptid = inferior_ptid;
c906108c 8242 }
c906108c 8243
0e5bf2a8
PA
8244 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8245 {
0e454242 8246 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8247 if (current_ui->prompt_state == PROMPT_BLOCKED)
8248 {
223ffa71 8249 target_terminal::ours_for_output ();
3b12939d
PA
8250 printf_filtered (_("No unwaited-for children left.\n"));
8251 }
0e5bf2a8
PA
8252 }
8253
b57bacec 8254 /* Note: this depends on the update_thread_list call above. */
388a7084 8255 maybe_remove_breakpoints ();
c906108c 8256
c906108c
SS
8257 /* If an auto-display called a function and that got a signal,
8258 delete that auto-display to avoid an infinite recursion. */
8259
8260 if (stopped_by_random_signal)
8261 disable_current_display ();
8262
0e454242 8263 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8264 {
8265 async_enable_stdin ();
8266 }
c906108c 8267
388a7084
PA
8268 /* Let the user/frontend see the threads as stopped. */
8269 do_cleanups (old_chain);
8270
8271 /* Select innermost stack frame - i.e., current frame is frame 0,
8272 and current location is based on that. Handle the case where the
8273 dummy call is returning after being stopped. E.g. the dummy call
8274 previously hit a breakpoint. (If the dummy call returns
8275 normally, we won't reach here.) Do this before the stop hook is
8276 run, so that it doesn't get to see the temporary dummy frame,
8277 which is not where we'll present the stop. */
8278 if (has_stack_frames ())
8279 {
8280 if (stop_stack_dummy == STOP_STACK_DUMMY)
8281 {
8282 /* Pop the empty frame that contains the stack dummy. This
8283 also restores inferior state prior to the call (struct
8284 infcall_suspend_state). */
8285 struct frame_info *frame = get_current_frame ();
8286
8287 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8288 frame_pop (frame);
8289 /* frame_pop calls reinit_frame_cache as the last thing it
8290 does which means there's now no selected frame. */
8291 }
8292
8293 select_frame (get_current_frame ());
8294
8295 /* Set the current source location. */
8296 set_current_sal_from_frame (get_current_frame ());
8297 }
dd7e2d2b
PA
8298
8299 /* Look up the hook_stop and run it (CLI internally handles problem
8300 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8301 if (stop_command != NULL)
8302 {
8303 struct stop_context *saved_context = save_stop_context ();
8304 struct cleanup *old_chain
8305 = make_cleanup (release_stop_context_cleanup, saved_context);
8306
bf469271
PA
8307 TRY
8308 {
8309 execute_cmd_pre_hook (stop_command);
8310 }
8311 CATCH (ex, RETURN_MASK_ALL)
8312 {
8313 exception_fprintf (gdb_stderr, ex,
8314 "Error while running hook_stop:\n");
8315 }
8316 END_CATCH
4c2f2a79
PA
8317
8318 /* If the stop hook resumes the target, then there's no point in
8319 trying to notify about the previous stop; its context is
8320 gone. Likewise if the command switches thread or inferior --
8321 the observers would print a stop for the wrong
8322 thread/inferior. */
8323 if (stop_context_changed (saved_context))
8324 {
8325 do_cleanups (old_chain);
8326 return 1;
8327 }
8328 do_cleanups (old_chain);
8329 }
dd7e2d2b 8330
388a7084
PA
8331 /* Notify observers about the stop. This is where the interpreters
8332 print the stop event. */
8333 if (!ptid_equal (inferior_ptid, null_ptid))
76727919 8334 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8335 stop_print_frame);
8336 else
76727919 8337 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8338
243a9253
PA
8339 annotate_stopped ();
8340
48844aa6
PA
8341 if (target_has_execution)
8342 {
8343 if (last.kind != TARGET_WAITKIND_SIGNALLED
8344 && last.kind != TARGET_WAITKIND_EXITED)
8345 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8346 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8347 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8348 }
6c95b8df
PA
8349
8350 /* Try to get rid of automatically added inferiors that are no
8351 longer needed. Keeping those around slows down things linearly.
8352 Note that this never removes the current inferior. */
8353 prune_inferiors ();
4c2f2a79
PA
8354
8355 return 0;
c906108c 8356}
c906108c 8357\f
c5aa993b 8358int
96baa820 8359signal_stop_state (int signo)
c906108c 8360{
d6b48e9c 8361 return signal_stop[signo];
c906108c
SS
8362}
8363
c5aa993b 8364int
96baa820 8365signal_print_state (int signo)
c906108c
SS
8366{
8367 return signal_print[signo];
8368}
8369
c5aa993b 8370int
96baa820 8371signal_pass_state (int signo)
c906108c
SS
8372{
8373 return signal_program[signo];
8374}
8375
2455069d
UW
8376static void
8377signal_cache_update (int signo)
8378{
8379 if (signo == -1)
8380 {
a493e3e2 8381 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8382 signal_cache_update (signo);
8383
8384 return;
8385 }
8386
8387 signal_pass[signo] = (signal_stop[signo] == 0
8388 && signal_print[signo] == 0
ab04a2af
TT
8389 && signal_program[signo] == 1
8390 && signal_catch[signo] == 0);
2455069d
UW
8391}
8392
488f131b 8393int
7bda5e4a 8394signal_stop_update (int signo, int state)
d4f3574e
SS
8395{
8396 int ret = signal_stop[signo];
abbb1732 8397
d4f3574e 8398 signal_stop[signo] = state;
2455069d 8399 signal_cache_update (signo);
d4f3574e
SS
8400 return ret;
8401}
8402
488f131b 8403int
7bda5e4a 8404signal_print_update (int signo, int state)
d4f3574e
SS
8405{
8406 int ret = signal_print[signo];
abbb1732 8407
d4f3574e 8408 signal_print[signo] = state;
2455069d 8409 signal_cache_update (signo);
d4f3574e
SS
8410 return ret;
8411}
8412
488f131b 8413int
7bda5e4a 8414signal_pass_update (int signo, int state)
d4f3574e
SS
8415{
8416 int ret = signal_program[signo];
abbb1732 8417
d4f3574e 8418 signal_program[signo] = state;
2455069d 8419 signal_cache_update (signo);
d4f3574e
SS
8420 return ret;
8421}
8422
ab04a2af
TT
8423/* Update the global 'signal_catch' from INFO and notify the
8424 target. */
8425
8426void
8427signal_catch_update (const unsigned int *info)
8428{
8429 int i;
8430
8431 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8432 signal_catch[i] = info[i] > 0;
8433 signal_cache_update (-1);
8434 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8435}
8436
c906108c 8437static void
96baa820 8438sig_print_header (void)
c906108c 8439{
3e43a32a
MS
8440 printf_filtered (_("Signal Stop\tPrint\tPass "
8441 "to program\tDescription\n"));
c906108c
SS
8442}
8443
8444static void
2ea28649 8445sig_print_info (enum gdb_signal oursig)
c906108c 8446{
2ea28649 8447 const char *name = gdb_signal_to_name (oursig);
c906108c 8448 int name_padding = 13 - strlen (name);
96baa820 8449
c906108c
SS
8450 if (name_padding <= 0)
8451 name_padding = 0;
8452
8453 printf_filtered ("%s", name);
488f131b 8454 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8455 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8456 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8457 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8458 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8459}
8460
8461/* Specify how various signals in the inferior should be handled. */
8462
8463static void
0b39b52e 8464handle_command (const char *args, int from_tty)
c906108c 8465{
c906108c
SS
8466 int digits, wordlen;
8467 int sigfirst, signum, siglast;
2ea28649 8468 enum gdb_signal oursig;
c906108c
SS
8469 int allsigs;
8470 int nsigs;
8471 unsigned char *sigs;
c906108c
SS
8472
8473 if (args == NULL)
8474 {
e2e0b3e5 8475 error_no_arg (_("signal to handle"));
c906108c
SS
8476 }
8477
1777feb0 8478 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8479
a493e3e2 8480 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8481 sigs = (unsigned char *) alloca (nsigs);
8482 memset (sigs, 0, nsigs);
8483
1777feb0 8484 /* Break the command line up into args. */
c906108c 8485
773a1edc 8486 gdb_argv built_argv (args);
c906108c
SS
8487
8488 /* Walk through the args, looking for signal oursigs, signal names, and
8489 actions. Signal numbers and signal names may be interspersed with
8490 actions, with the actions being performed for all signals cumulatively
1777feb0 8491 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8492
773a1edc 8493 for (char *arg : built_argv)
c906108c 8494 {
773a1edc
TT
8495 wordlen = strlen (arg);
8496 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8497 {;
8498 }
8499 allsigs = 0;
8500 sigfirst = siglast = -1;
8501
773a1edc 8502 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8503 {
8504 /* Apply action to all signals except those used by the
1777feb0 8505 debugger. Silently skip those. */
c906108c
SS
8506 allsigs = 1;
8507 sigfirst = 0;
8508 siglast = nsigs - 1;
8509 }
773a1edc 8510 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8511 {
8512 SET_SIGS (nsigs, sigs, signal_stop);
8513 SET_SIGS (nsigs, sigs, signal_print);
8514 }
773a1edc 8515 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8516 {
8517 UNSET_SIGS (nsigs, sigs, signal_program);
8518 }
773a1edc 8519 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8520 {
8521 SET_SIGS (nsigs, sigs, signal_print);
8522 }
773a1edc 8523 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8524 {
8525 SET_SIGS (nsigs, sigs, signal_program);
8526 }
773a1edc 8527 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8528 {
8529 UNSET_SIGS (nsigs, sigs, signal_stop);
8530 }
773a1edc 8531 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8532 {
8533 SET_SIGS (nsigs, sigs, signal_program);
8534 }
773a1edc 8535 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8536 {
8537 UNSET_SIGS (nsigs, sigs, signal_print);
8538 UNSET_SIGS (nsigs, sigs, signal_stop);
8539 }
773a1edc 8540 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8541 {
8542 UNSET_SIGS (nsigs, sigs, signal_program);
8543 }
8544 else if (digits > 0)
8545 {
8546 /* It is numeric. The numeric signal refers to our own
8547 internal signal numbering from target.h, not to host/target
8548 signal number. This is a feature; users really should be
8549 using symbolic names anyway, and the common ones like
8550 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8551
8552 sigfirst = siglast = (int)
773a1edc
TT
8553 gdb_signal_from_command (atoi (arg));
8554 if (arg[digits] == '-')
c906108c
SS
8555 {
8556 siglast = (int)
773a1edc 8557 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8558 }
8559 if (sigfirst > siglast)
8560 {
1777feb0 8561 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8562 signum = sigfirst;
8563 sigfirst = siglast;
8564 siglast = signum;
8565 }
8566 }
8567 else
8568 {
773a1edc 8569 oursig = gdb_signal_from_name (arg);
a493e3e2 8570 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8571 {
8572 sigfirst = siglast = (int) oursig;
8573 }
8574 else
8575 {
8576 /* Not a number and not a recognized flag word => complain. */
773a1edc 8577 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8578 }
8579 }
8580
8581 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8582 which signals to apply actions to. */
c906108c
SS
8583
8584 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8585 {
2ea28649 8586 switch ((enum gdb_signal) signum)
c906108c 8587 {
a493e3e2
PA
8588 case GDB_SIGNAL_TRAP:
8589 case GDB_SIGNAL_INT:
c906108c
SS
8590 if (!allsigs && !sigs[signum])
8591 {
9e2f0ad4 8592 if (query (_("%s is used by the debugger.\n\
3e43a32a 8593Are you sure you want to change it? "),
2ea28649 8594 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8595 {
8596 sigs[signum] = 1;
8597 }
8598 else
8599 {
a3f17187 8600 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8601 gdb_flush (gdb_stdout);
8602 }
8603 }
8604 break;
a493e3e2
PA
8605 case GDB_SIGNAL_0:
8606 case GDB_SIGNAL_DEFAULT:
8607 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8608 /* Make sure that "all" doesn't print these. */
8609 break;
8610 default:
8611 sigs[signum] = 1;
8612 break;
8613 }
8614 }
c906108c
SS
8615 }
8616
3a031f65
PA
8617 for (signum = 0; signum < nsigs; signum++)
8618 if (sigs[signum])
8619 {
2455069d 8620 signal_cache_update (-1);
a493e3e2
PA
8621 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8622 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8623
3a031f65
PA
8624 if (from_tty)
8625 {
8626 /* Show the results. */
8627 sig_print_header ();
8628 for (; signum < nsigs; signum++)
8629 if (sigs[signum])
aead7601 8630 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8631 }
8632
8633 break;
8634 }
c906108c
SS
8635}
8636
de0bea00
MF
8637/* Complete the "handle" command. */
8638
eb3ff9a5 8639static void
de0bea00 8640handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8641 completion_tracker &tracker,
6f937416 8642 const char *text, const char *word)
de0bea00 8643{
de0bea00
MF
8644 static const char * const keywords[] =
8645 {
8646 "all",
8647 "stop",
8648 "ignore",
8649 "print",
8650 "pass",
8651 "nostop",
8652 "noignore",
8653 "noprint",
8654 "nopass",
8655 NULL,
8656 };
8657
eb3ff9a5
PA
8658 signal_completer (ignore, tracker, text, word);
8659 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8660}
8661
2ea28649
PA
8662enum gdb_signal
8663gdb_signal_from_command (int num)
ed01b82c
PA
8664{
8665 if (num >= 1 && num <= 15)
2ea28649 8666 return (enum gdb_signal) num;
ed01b82c
PA
8667 error (_("Only signals 1-15 are valid as numeric signals.\n\
8668Use \"info signals\" for a list of symbolic signals."));
8669}
8670
c906108c
SS
8671/* Print current contents of the tables set by the handle command.
8672 It is possible we should just be printing signals actually used
8673 by the current target (but for things to work right when switching
8674 targets, all signals should be in the signal tables). */
8675
8676static void
1d12d88f 8677info_signals_command (const char *signum_exp, int from_tty)
c906108c 8678{
2ea28649 8679 enum gdb_signal oursig;
abbb1732 8680
c906108c
SS
8681 sig_print_header ();
8682
8683 if (signum_exp)
8684 {
8685 /* First see if this is a symbol name. */
2ea28649 8686 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8687 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8688 {
8689 /* No, try numeric. */
8690 oursig =
2ea28649 8691 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8692 }
8693 sig_print_info (oursig);
8694 return;
8695 }
8696
8697 printf_filtered ("\n");
8698 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8699 for (oursig = GDB_SIGNAL_FIRST;
8700 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8701 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8702 {
8703 QUIT;
8704
a493e3e2
PA
8705 if (oursig != GDB_SIGNAL_UNKNOWN
8706 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8707 sig_print_info (oursig);
8708 }
8709
3e43a32a
MS
8710 printf_filtered (_("\nUse the \"handle\" command "
8711 "to change these tables.\n"));
c906108c 8712}
4aa995e1
PA
8713
8714/* The $_siginfo convenience variable is a bit special. We don't know
8715 for sure the type of the value until we actually have a chance to
7a9dd1b2 8716 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8717 also dependent on which thread you have selected.
8718
8719 1. making $_siginfo be an internalvar that creates a new value on
8720 access.
8721
8722 2. making the value of $_siginfo be an lval_computed value. */
8723
8724/* This function implements the lval_computed support for reading a
8725 $_siginfo value. */
8726
8727static void
8728siginfo_value_read (struct value *v)
8729{
8730 LONGEST transferred;
8731
a911d87a
PA
8732 /* If we can access registers, so can we access $_siginfo. Likewise
8733 vice versa. */
8734 validate_registers_access ();
c709acd1 8735
4aa995e1
PA
8736 transferred =
8737 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8738 NULL,
8739 value_contents_all_raw (v),
8740 value_offset (v),
8741 TYPE_LENGTH (value_type (v)));
8742
8743 if (transferred != TYPE_LENGTH (value_type (v)))
8744 error (_("Unable to read siginfo"));
8745}
8746
8747/* This function implements the lval_computed support for writing a
8748 $_siginfo value. */
8749
8750static void
8751siginfo_value_write (struct value *v, struct value *fromval)
8752{
8753 LONGEST transferred;
8754
a911d87a
PA
8755 /* If we can access registers, so can we access $_siginfo. Likewise
8756 vice versa. */
8757 validate_registers_access ();
c709acd1 8758
4aa995e1
PA
8759 transferred = target_write (&current_target,
8760 TARGET_OBJECT_SIGNAL_INFO,
8761 NULL,
8762 value_contents_all_raw (fromval),
8763 value_offset (v),
8764 TYPE_LENGTH (value_type (fromval)));
8765
8766 if (transferred != TYPE_LENGTH (value_type (fromval)))
8767 error (_("Unable to write siginfo"));
8768}
8769
c8f2448a 8770static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8771 {
8772 siginfo_value_read,
8773 siginfo_value_write
8774 };
8775
8776/* Return a new value with the correct type for the siginfo object of
78267919
UW
8777 the current thread using architecture GDBARCH. Return a void value
8778 if there's no object available. */
4aa995e1 8779
2c0b251b 8780static struct value *
22d2b532
SDJ
8781siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8782 void *ignore)
4aa995e1 8783{
4aa995e1 8784 if (target_has_stack
78267919
UW
8785 && !ptid_equal (inferior_ptid, null_ptid)
8786 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8787 {
78267919 8788 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8789
78267919 8790 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8791 }
8792
78267919 8793 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8794}
8795
c906108c 8796\f
16c381f0
JK
8797/* infcall_suspend_state contains state about the program itself like its
8798 registers and any signal it received when it last stopped.
8799 This state must be restored regardless of how the inferior function call
8800 ends (either successfully, or after it hits a breakpoint or signal)
8801 if the program is to properly continue where it left off. */
8802
8803struct infcall_suspend_state
7a292a7a 8804{
16c381f0 8805 struct thread_suspend_state thread_suspend;
16c381f0
JK
8806
8807 /* Other fields: */
7a292a7a 8808 CORE_ADDR stop_pc;
daf6667d 8809 readonly_detached_regcache *registers;
1736ad11 8810
35515841 8811 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8812 struct gdbarch *siginfo_gdbarch;
8813
8814 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8815 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8816 content would be invalid. */
8817 gdb_byte *siginfo_data;
b89667eb
DE
8818};
8819
16c381f0
JK
8820struct infcall_suspend_state *
8821save_infcall_suspend_state (void)
b89667eb 8822{
16c381f0 8823 struct infcall_suspend_state *inf_state;
b89667eb 8824 struct thread_info *tp = inferior_thread ();
1736ad11 8825 struct regcache *regcache = get_current_regcache ();
ac7936df 8826 struct gdbarch *gdbarch = regcache->arch ();
1736ad11
JK
8827 gdb_byte *siginfo_data = NULL;
8828
8829 if (gdbarch_get_siginfo_type_p (gdbarch))
8830 {
8831 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8832 size_t len = TYPE_LENGTH (type);
8833 struct cleanup *back_to;
8834
224c3ddb 8835 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8836 back_to = make_cleanup (xfree, siginfo_data);
8837
8838 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8839 siginfo_data, 0, len) == len)
8840 discard_cleanups (back_to);
8841 else
8842 {
8843 /* Errors ignored. */
8844 do_cleanups (back_to);
8845 siginfo_data = NULL;
8846 }
8847 }
8848
41bf6aca 8849 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8850
8851 if (siginfo_data)
8852 {
8853 inf_state->siginfo_gdbarch = gdbarch;
8854 inf_state->siginfo_data = siginfo_data;
8855 }
b89667eb 8856
16c381f0 8857 inf_state->thread_suspend = tp->suspend;
16c381f0 8858
35515841 8859 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8860 GDB_SIGNAL_0 anyway. */
8861 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8862
b89667eb
DE
8863 inf_state->stop_pc = stop_pc;
8864
daf6667d 8865 inf_state->registers = new readonly_detached_regcache (*regcache);
b89667eb
DE
8866
8867 return inf_state;
8868}
8869
8870/* Restore inferior session state to INF_STATE. */
8871
8872void
16c381f0 8873restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8874{
8875 struct thread_info *tp = inferior_thread ();
1736ad11 8876 struct regcache *regcache = get_current_regcache ();
ac7936df 8877 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8878
16c381f0 8879 tp->suspend = inf_state->thread_suspend;
16c381f0 8880
b89667eb
DE
8881 stop_pc = inf_state->stop_pc;
8882
1736ad11
JK
8883 if (inf_state->siginfo_gdbarch == gdbarch)
8884 {
8885 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8886
8887 /* Errors ignored. */
8888 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8889 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8890 }
8891
b89667eb
DE
8892 /* The inferior can be gone if the user types "print exit(0)"
8893 (and perhaps other times). */
8894 if (target_has_execution)
8895 /* NB: The register write goes through to the target. */
fc5b8736 8896 regcache->restore (inf_state->registers);
803b5f95 8897
16c381f0 8898 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8899}
8900
8901static void
16c381f0 8902do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8903{
9a3c8263 8904 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8905}
8906
8907struct cleanup *
16c381f0
JK
8908make_cleanup_restore_infcall_suspend_state
8909 (struct infcall_suspend_state *inf_state)
b89667eb 8910{
16c381f0 8911 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8912}
8913
8914void
16c381f0 8915discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8916{
c0e383c6 8917 delete inf_state->registers;
803b5f95 8918 xfree (inf_state->siginfo_data);
b89667eb
DE
8919 xfree (inf_state);
8920}
8921
daf6667d 8922readonly_detached_regcache *
16c381f0 8923get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8924{
8925 return inf_state->registers;
8926}
8927
16c381f0
JK
8928/* infcall_control_state contains state regarding gdb's control of the
8929 inferior itself like stepping control. It also contains session state like
8930 the user's currently selected frame. */
b89667eb 8931
16c381f0 8932struct infcall_control_state
b89667eb 8933{
16c381f0
JK
8934 struct thread_control_state thread_control;
8935 struct inferior_control_state inferior_control;
d82142e2
JK
8936
8937 /* Other fields: */
8938 enum stop_stack_kind stop_stack_dummy;
8939 int stopped_by_random_signal;
7a292a7a 8940
b89667eb 8941 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8942 struct frame_id selected_frame_id;
7a292a7a
SS
8943};
8944
c906108c 8945/* Save all of the information associated with the inferior<==>gdb
b89667eb 8946 connection. */
c906108c 8947
16c381f0
JK
8948struct infcall_control_state *
8949save_infcall_control_state (void)
c906108c 8950{
8d749320
SM
8951 struct infcall_control_state *inf_status =
8952 XNEW (struct infcall_control_state);
4e1c45ea 8953 struct thread_info *tp = inferior_thread ();
d6b48e9c 8954 struct inferior *inf = current_inferior ();
7a292a7a 8955
16c381f0
JK
8956 inf_status->thread_control = tp->control;
8957 inf_status->inferior_control = inf->control;
d82142e2 8958
8358c15c 8959 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8960 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8961
16c381f0
JK
8962 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8963 chain. If caller's caller is walking the chain, they'll be happier if we
8964 hand them back the original chain when restore_infcall_control_state is
8965 called. */
8966 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8967
8968 /* Other fields: */
8969 inf_status->stop_stack_dummy = stop_stack_dummy;
8970 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8971
206415a3 8972 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8973
7a292a7a 8974 return inf_status;
c906108c
SS
8975}
8976
bf469271
PA
8977static void
8978restore_selected_frame (const frame_id &fid)
c906108c 8979{
bf469271 8980 frame_info *frame = frame_find_by_id (fid);
c906108c 8981
aa0cd9c1
AC
8982 /* If inf_status->selected_frame_id is NULL, there was no previously
8983 selected frame. */
101dcfbe 8984 if (frame == NULL)
c906108c 8985 {
8a3fe4f8 8986 warning (_("Unable to restore previously selected frame."));
bf469271 8987 return;
c906108c
SS
8988 }
8989
0f7d239c 8990 select_frame (frame);
c906108c
SS
8991}
8992
b89667eb
DE
8993/* Restore inferior session state to INF_STATUS. */
8994
c906108c 8995void
16c381f0 8996restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8997{
4e1c45ea 8998 struct thread_info *tp = inferior_thread ();
d6b48e9c 8999 struct inferior *inf = current_inferior ();
4e1c45ea 9000
8358c15c
JK
9001 if (tp->control.step_resume_breakpoint)
9002 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9003
5b79abe7
TT
9004 if (tp->control.exception_resume_breakpoint)
9005 tp->control.exception_resume_breakpoint->disposition
9006 = disp_del_at_next_stop;
9007
d82142e2 9008 /* Handle the bpstat_copy of the chain. */
16c381f0 9009 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9010
16c381f0
JK
9011 tp->control = inf_status->thread_control;
9012 inf->control = inf_status->inferior_control;
d82142e2
JK
9013
9014 /* Other fields: */
9015 stop_stack_dummy = inf_status->stop_stack_dummy;
9016 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9017
b89667eb 9018 if (target_has_stack)
c906108c 9019 {
bf469271 9020 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9021 walking the stack might encounter a garbage pointer and
9022 error() trying to dereference it. */
bf469271
PA
9023 TRY
9024 {
9025 restore_selected_frame (inf_status->selected_frame_id);
9026 }
9027 CATCH (ex, RETURN_MASK_ERROR)
9028 {
9029 exception_fprintf (gdb_stderr, ex,
9030 "Unable to restore previously selected frame:\n");
9031 /* Error in restoring the selected frame. Select the
9032 innermost frame. */
9033 select_frame (get_current_frame ());
9034 }
9035 END_CATCH
c906108c 9036 }
c906108c 9037
72cec141 9038 xfree (inf_status);
7a292a7a 9039}
c906108c 9040
74b7792f 9041static void
16c381f0 9042do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9043{
9a3c8263 9044 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9045}
9046
9047struct cleanup *
16c381f0
JK
9048make_cleanup_restore_infcall_control_state
9049 (struct infcall_control_state *inf_status)
74b7792f 9050{
16c381f0 9051 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9052}
9053
c906108c 9054void
16c381f0 9055discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9056{
8358c15c
JK
9057 if (inf_status->thread_control.step_resume_breakpoint)
9058 inf_status->thread_control.step_resume_breakpoint->disposition
9059 = disp_del_at_next_stop;
9060
5b79abe7
TT
9061 if (inf_status->thread_control.exception_resume_breakpoint)
9062 inf_status->thread_control.exception_resume_breakpoint->disposition
9063 = disp_del_at_next_stop;
9064
1777feb0 9065 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9066 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9067
72cec141 9068 xfree (inf_status);
7a292a7a 9069}
b89667eb 9070\f
7f89fd65 9071/* See infrun.h. */
0c557179
SDJ
9072
9073void
9074clear_exit_convenience_vars (void)
9075{
9076 clear_internalvar (lookup_internalvar ("_exitsignal"));
9077 clear_internalvar (lookup_internalvar ("_exitcode"));
9078}
c5aa993b 9079\f
488f131b 9080
b2175913
MS
9081/* User interface for reverse debugging:
9082 Set exec-direction / show exec-direction commands
9083 (returns error unless target implements to_set_exec_direction method). */
9084
170742de 9085enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9086static const char exec_forward[] = "forward";
9087static const char exec_reverse[] = "reverse";
9088static const char *exec_direction = exec_forward;
40478521 9089static const char *const exec_direction_names[] = {
b2175913
MS
9090 exec_forward,
9091 exec_reverse,
9092 NULL
9093};
9094
9095static void
eb4c3f4a 9096set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9097 struct cmd_list_element *cmd)
9098{
9099 if (target_can_execute_reverse)
9100 {
9101 if (!strcmp (exec_direction, exec_forward))
9102 execution_direction = EXEC_FORWARD;
9103 else if (!strcmp (exec_direction, exec_reverse))
9104 execution_direction = EXEC_REVERSE;
9105 }
8bbed405
MS
9106 else
9107 {
9108 exec_direction = exec_forward;
9109 error (_("Target does not support this operation."));
9110 }
b2175913
MS
9111}
9112
9113static void
9114show_exec_direction_func (struct ui_file *out, int from_tty,
9115 struct cmd_list_element *cmd, const char *value)
9116{
9117 switch (execution_direction) {
9118 case EXEC_FORWARD:
9119 fprintf_filtered (out, _("Forward.\n"));
9120 break;
9121 case EXEC_REVERSE:
9122 fprintf_filtered (out, _("Reverse.\n"));
9123 break;
b2175913 9124 default:
d8b34453
PA
9125 internal_error (__FILE__, __LINE__,
9126 _("bogus execution_direction value: %d"),
9127 (int) execution_direction);
b2175913
MS
9128 }
9129}
9130
d4db2f36
PA
9131static void
9132show_schedule_multiple (struct ui_file *file, int from_tty,
9133 struct cmd_list_element *c, const char *value)
9134{
3e43a32a
MS
9135 fprintf_filtered (file, _("Resuming the execution of threads "
9136 "of all processes is %s.\n"), value);
d4db2f36 9137}
ad52ddc6 9138
22d2b532
SDJ
9139/* Implementation of `siginfo' variable. */
9140
9141static const struct internalvar_funcs siginfo_funcs =
9142{
9143 siginfo_make_value,
9144 NULL,
9145 NULL
9146};
9147
372316f1
PA
9148/* Callback for infrun's target events source. This is marked when a
9149 thread has a pending status to process. */
9150
9151static void
9152infrun_async_inferior_event_handler (gdb_client_data data)
9153{
372316f1
PA
9154 inferior_event_handler (INF_REG_EVENT, NULL);
9155}
9156
c906108c 9157void
96baa820 9158_initialize_infrun (void)
c906108c 9159{
52f0bd74
AC
9160 int i;
9161 int numsigs;
de0bea00 9162 struct cmd_list_element *c;
c906108c 9163
372316f1
PA
9164 /* Register extra event sources in the event loop. */
9165 infrun_async_inferior_event_token
9166 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9167
11db9430 9168 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9169What debugger does when program gets various signals.\n\
9170Specify a signal as argument to print info on that signal only."));
c906108c
SS
9171 add_info_alias ("handle", "signals", 0);
9172
de0bea00 9173 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9174Specify how to handle signals.\n\
486c7739 9175Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9176Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9177If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9178will be displayed instead.\n\
9179\n\
c906108c
SS
9180Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9181from 1-15 are allowed for compatibility with old versions of GDB.\n\
9182Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9183The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9184used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9185\n\
1bedd215 9186Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9187\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9188Stop means reenter debugger if this signal happens (implies print).\n\
9189Print means print a message if this signal happens.\n\
9190Pass means let program see this signal; otherwise program doesn't know.\n\
9191Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9192Pass and Stop may be combined.\n\
9193\n\
9194Multiple signals may be specified. Signal numbers and signal names\n\
9195may be interspersed with actions, with the actions being performed for\n\
9196all signals cumulatively specified."));
de0bea00 9197 set_cmd_completer (c, handle_completer);
486c7739 9198
c906108c 9199 if (!dbx_commands)
1a966eab
AC
9200 stop_command = add_cmd ("stop", class_obscure,
9201 not_just_help_class_command, _("\
9202There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9203This allows you to set a list of commands to be run each time execution\n\
1a966eab 9204of the program stops."), &cmdlist);
c906108c 9205
ccce17b0 9206 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9207Set inferior debugging."), _("\
9208Show inferior debugging."), _("\
9209When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9210 NULL,
9211 show_debug_infrun,
9212 &setdebuglist, &showdebuglist);
527159b7 9213
3e43a32a
MS
9214 add_setshow_boolean_cmd ("displaced", class_maintenance,
9215 &debug_displaced, _("\
237fc4c9
PA
9216Set displaced stepping debugging."), _("\
9217Show displaced stepping debugging."), _("\
9218When non-zero, displaced stepping specific debugging is enabled."),
9219 NULL,
9220 show_debug_displaced,
9221 &setdebuglist, &showdebuglist);
9222
ad52ddc6
PA
9223 add_setshow_boolean_cmd ("non-stop", no_class,
9224 &non_stop_1, _("\
9225Set whether gdb controls the inferior in non-stop mode."), _("\
9226Show whether gdb controls the inferior in non-stop mode."), _("\
9227When debugging a multi-threaded program and this setting is\n\
9228off (the default, also called all-stop mode), when one thread stops\n\
9229(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9230all other threads in the program while you interact with the thread of\n\
9231interest. When you continue or step a thread, you can allow the other\n\
9232threads to run, or have them remain stopped, but while you inspect any\n\
9233thread's state, all threads stop.\n\
9234\n\
9235In non-stop mode, when one thread stops, other threads can continue\n\
9236to run freely. You'll be able to step each thread independently,\n\
9237leave it stopped or free to run as needed."),
9238 set_non_stop,
9239 show_non_stop,
9240 &setlist,
9241 &showlist);
9242
a493e3e2 9243 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9244 signal_stop = XNEWVEC (unsigned char, numsigs);
9245 signal_print = XNEWVEC (unsigned char, numsigs);
9246 signal_program = XNEWVEC (unsigned char, numsigs);
9247 signal_catch = XNEWVEC (unsigned char, numsigs);
9248 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9249 for (i = 0; i < numsigs; i++)
9250 {
9251 signal_stop[i] = 1;
9252 signal_print[i] = 1;
9253 signal_program[i] = 1;
ab04a2af 9254 signal_catch[i] = 0;
c906108c
SS
9255 }
9256
4d9d9d04
PA
9257 /* Signals caused by debugger's own actions should not be given to
9258 the program afterwards.
9259
9260 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9261 explicitly specifies that it should be delivered to the target
9262 program. Typically, that would occur when a user is debugging a
9263 target monitor on a simulator: the target monitor sets a
9264 breakpoint; the simulator encounters this breakpoint and halts
9265 the simulation handing control to GDB; GDB, noting that the stop
9266 address doesn't map to any known breakpoint, returns control back
9267 to the simulator; the simulator then delivers the hardware
9268 equivalent of a GDB_SIGNAL_TRAP to the program being
9269 debugged. */
a493e3e2
PA
9270 signal_program[GDB_SIGNAL_TRAP] = 0;
9271 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9272
9273 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9274 signal_stop[GDB_SIGNAL_ALRM] = 0;
9275 signal_print[GDB_SIGNAL_ALRM] = 0;
9276 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9277 signal_print[GDB_SIGNAL_VTALRM] = 0;
9278 signal_stop[GDB_SIGNAL_PROF] = 0;
9279 signal_print[GDB_SIGNAL_PROF] = 0;
9280 signal_stop[GDB_SIGNAL_CHLD] = 0;
9281 signal_print[GDB_SIGNAL_CHLD] = 0;
9282 signal_stop[GDB_SIGNAL_IO] = 0;
9283 signal_print[GDB_SIGNAL_IO] = 0;
9284 signal_stop[GDB_SIGNAL_POLL] = 0;
9285 signal_print[GDB_SIGNAL_POLL] = 0;
9286 signal_stop[GDB_SIGNAL_URG] = 0;
9287 signal_print[GDB_SIGNAL_URG] = 0;
9288 signal_stop[GDB_SIGNAL_WINCH] = 0;
9289 signal_print[GDB_SIGNAL_WINCH] = 0;
9290 signal_stop[GDB_SIGNAL_PRIO] = 0;
9291 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9292
cd0fc7c3
SS
9293 /* These signals are used internally by user-level thread
9294 implementations. (See signal(5) on Solaris.) Like the above
9295 signals, a healthy program receives and handles them as part of
9296 its normal operation. */
a493e3e2
PA
9297 signal_stop[GDB_SIGNAL_LWP] = 0;
9298 signal_print[GDB_SIGNAL_LWP] = 0;
9299 signal_stop[GDB_SIGNAL_WAITING] = 0;
9300 signal_print[GDB_SIGNAL_WAITING] = 0;
9301 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9302 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9303 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9304 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9305
2455069d
UW
9306 /* Update cached state. */
9307 signal_cache_update (-1);
9308
85c07804
AC
9309 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9310 &stop_on_solib_events, _("\
9311Set stopping for shared library events."), _("\
9312Show stopping for shared library events."), _("\
c906108c
SS
9313If nonzero, gdb will give control to the user when the dynamic linker\n\
9314notifies gdb of shared library events. The most common event of interest\n\
85c07804 9315to the user would be loading/unloading of a new library."),
f9e14852 9316 set_stop_on_solib_events,
920d2a44 9317 show_stop_on_solib_events,
85c07804 9318 &setlist, &showlist);
c906108c 9319
7ab04401
AC
9320 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9321 follow_fork_mode_kind_names,
9322 &follow_fork_mode_string, _("\
9323Set debugger response to a program call of fork or vfork."), _("\
9324Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9325A fork or vfork creates a new process. follow-fork-mode can be:\n\
9326 parent - the original process is debugged after a fork\n\
9327 child - the new process is debugged after a fork\n\
ea1dd7bc 9328The unfollowed process will continue to run.\n\
7ab04401
AC
9329By default, the debugger will follow the parent process."),
9330 NULL,
920d2a44 9331 show_follow_fork_mode_string,
7ab04401
AC
9332 &setlist, &showlist);
9333
6c95b8df
PA
9334 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9335 follow_exec_mode_names,
9336 &follow_exec_mode_string, _("\
9337Set debugger response to a program call of exec."), _("\
9338Show debugger response to a program call of exec."), _("\
9339An exec call replaces the program image of a process.\n\
9340\n\
9341follow-exec-mode can be:\n\
9342\n\
cce7e648 9343 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9344to this new inferior. The program the process was running before\n\
9345the exec call can be restarted afterwards by restarting the original\n\
9346inferior.\n\
9347\n\
9348 same - the debugger keeps the process bound to the same inferior.\n\
9349The new executable image replaces the previous executable loaded in\n\
9350the inferior. Restarting the inferior after the exec call restarts\n\
9351the executable the process was running after the exec call.\n\
9352\n\
9353By default, the debugger will use the same inferior."),
9354 NULL,
9355 show_follow_exec_mode_string,
9356 &setlist, &showlist);
9357
7ab04401
AC
9358 add_setshow_enum_cmd ("scheduler-locking", class_run,
9359 scheduler_enums, &scheduler_mode, _("\
9360Set mode for locking scheduler during execution."), _("\
9361Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9362off == no locking (threads may preempt at any time)\n\
9363on == full locking (no thread except the current thread may run)\n\
9364 This applies to both normal execution and replay mode.\n\
9365step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9366 In this mode, other threads may run during other commands.\n\
9367 This applies to both normal execution and replay mode.\n\
9368replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9369 set_schedlock_func, /* traps on target vector */
920d2a44 9370 show_scheduler_mode,
7ab04401 9371 &setlist, &showlist);
5fbbeb29 9372
d4db2f36
PA
9373 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9374Set mode for resuming threads of all processes."), _("\
9375Show mode for resuming threads of all processes."), _("\
9376When on, execution commands (such as 'continue' or 'next') resume all\n\
9377threads of all processes. When off (which is the default), execution\n\
9378commands only resume the threads of the current process. The set of\n\
9379threads that are resumed is further refined by the scheduler-locking\n\
9380mode (see help set scheduler-locking)."),
9381 NULL,
9382 show_schedule_multiple,
9383 &setlist, &showlist);
9384
5bf193a2
AC
9385 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9386Set mode of the step operation."), _("\
9387Show mode of the step operation."), _("\
9388When set, doing a step over a function without debug line information\n\
9389will stop at the first instruction of that function. Otherwise, the\n\
9390function is skipped and the step command stops at a different source line."),
9391 NULL,
920d2a44 9392 show_step_stop_if_no_debug,
5bf193a2 9393 &setlist, &showlist);
ca6724c1 9394
72d0e2c5
YQ
9395 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9396 &can_use_displaced_stepping, _("\
237fc4c9
PA
9397Set debugger's willingness to use displaced stepping."), _("\
9398Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9399If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9400supported by the target architecture. If off, gdb will not use displaced\n\
9401stepping to step over breakpoints, even if such is supported by the target\n\
9402architecture. If auto (which is the default), gdb will use displaced stepping\n\
9403if the target architecture supports it and non-stop mode is active, but will not\n\
9404use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9405 NULL,
9406 show_can_use_displaced_stepping,
9407 &setlist, &showlist);
237fc4c9 9408
b2175913
MS
9409 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9410 &exec_direction, _("Set direction of execution.\n\
9411Options are 'forward' or 'reverse'."),
9412 _("Show direction of execution (forward/reverse)."),
9413 _("Tells gdb whether to execute forward or backward."),
9414 set_exec_direction_func, show_exec_direction_func,
9415 &setlist, &showlist);
9416
6c95b8df
PA
9417 /* Set/show detach-on-fork: user-settable mode. */
9418
9419 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9420Set whether gdb will detach the child of a fork."), _("\
9421Show whether gdb will detach the child of a fork."), _("\
9422Tells gdb whether to detach the child of a fork."),
9423 NULL, NULL, &setlist, &showlist);
9424
03583c20
UW
9425 /* Set/show disable address space randomization mode. */
9426
9427 add_setshow_boolean_cmd ("disable-randomization", class_support,
9428 &disable_randomization, _("\
9429Set disabling of debuggee's virtual address space randomization."), _("\
9430Show disabling of debuggee's virtual address space randomization."), _("\
9431When this mode is on (which is the default), randomization of the virtual\n\
9432address space is disabled. Standalone programs run with the randomization\n\
9433enabled by default on some platforms."),
9434 &set_disable_randomization,
9435 &show_disable_randomization,
9436 &setlist, &showlist);
9437
ca6724c1 9438 /* ptid initializations */
ca6724c1
KB
9439 inferior_ptid = null_ptid;
9440 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9441
76727919
TT
9442 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9443 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9444 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9445 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9446
9447 /* Explicitly create without lookup, since that tries to create a
9448 value with a void typed value, and when we get here, gdbarch
9449 isn't initialized yet. At this point, we're quite sure there
9450 isn't another convenience variable of the same name. */
22d2b532 9451 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9452
9453 add_setshow_boolean_cmd ("observer", no_class,
9454 &observer_mode_1, _("\
9455Set whether gdb controls the inferior in observer mode."), _("\
9456Show whether gdb controls the inferior in observer mode."), _("\
9457In observer mode, GDB can get data from the inferior, but not\n\
9458affect its execution. Registers and memory may not be changed,\n\
9459breakpoints may not be set, and the program cannot be interrupted\n\
9460or signalled."),
9461 set_observer_mode,
9462 show_observer_mode,
9463 &setlist,
9464 &showlist);
c906108c 9465}
This page took 3.842023 seconds and 4 git commands to generate.