2010-05-14 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6 2008, 2009, 2010 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
c906108c
SS
55
56/* Prototypes for local functions */
57
96baa820 58static void signals_info (char *, int);
c906108c 59
96baa820 60static void handle_command (char *, int);
c906108c 61
96baa820 62static void sig_print_info (enum target_signal);
c906108c 63
96baa820 64static void sig_print_header (void);
c906108c 65
74b7792f 66static void resume_cleanups (void *);
c906108c 67
96baa820 68static int hook_stop_stub (void *);
c906108c 69
96baa820
JM
70static int restore_selected_frame (void *);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
4e1c45ea 77static int currently_stepping (struct thread_info *tp);
96baa820 78
b3444185
PA
79static int currently_stepping_or_nexting_callback (struct thread_info *tp,
80 void *data);
a7212384 81
96baa820
JM
82static void xdb_handle_command (char *args, int from_tty);
83
6a6b96b9 84static int prepare_to_proceed (int);
ea67f13b 85
96baa820 86void _initialize_infrun (void);
43ff13b4 87
e58b0e63
PA
88void nullify_last_target_wait_ptid (void);
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a 110
6c95b8df
PA
111/* Default behavior is to detach newly forked processes (legacy). */
112int detach_fork = 1;
113
237fc4c9
PA
114int debug_displaced = 0;
115static void
116show_debug_displaced (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
120}
121
527159b7 122static int debug_infrun = 0;
920d2a44
AC
123static void
124show_debug_infrun (struct ui_file *file, int from_tty,
125 struct cmd_list_element *c, const char *value)
126{
127 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
128}
527159b7 129
d4f3574e
SS
130/* If the program uses ELF-style shared libraries, then calls to
131 functions in shared libraries go through stubs, which live in a
132 table called the PLT (Procedure Linkage Table). The first time the
133 function is called, the stub sends control to the dynamic linker,
134 which looks up the function's real address, patches the stub so
135 that future calls will go directly to the function, and then passes
136 control to the function.
137
138 If we are stepping at the source level, we don't want to see any of
139 this --- we just want to skip over the stub and the dynamic linker.
140 The simple approach is to single-step until control leaves the
141 dynamic linker.
142
ca557f44
AC
143 However, on some systems (e.g., Red Hat's 5.2 distribution) the
144 dynamic linker calls functions in the shared C library, so you
145 can't tell from the PC alone whether the dynamic linker is still
146 running. In this case, we use a step-resume breakpoint to get us
147 past the dynamic linker, as if we were using "next" to step over a
148 function call.
d4f3574e 149
cfd8ab24 150 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
151 linker code or not. Normally, this means we single-step. However,
152 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
153 address where we can place a step-resume breakpoint to get past the
154 linker's symbol resolution function.
155
cfd8ab24 156 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
157 pretty portable way, by comparing the PC against the address ranges
158 of the dynamic linker's sections.
159
160 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
161 it depends on internal details of the dynamic linker. It's usually
162 not too hard to figure out where to put a breakpoint, but it
163 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
164 sanity checking. If it can't figure things out, returning zero and
165 getting the (possibly confusing) stepping behavior is better than
166 signalling an error, which will obscure the change in the
167 inferior's state. */
c906108c 168
c906108c
SS
169/* This function returns TRUE if pc is the address of an instruction
170 that lies within the dynamic linker (such as the event hook, or the
171 dld itself).
172
173 This function must be used only when a dynamic linker event has
174 been caught, and the inferior is being stepped out of the hook, or
175 undefined results are guaranteed. */
176
177#ifndef SOLIB_IN_DYNAMIC_LINKER
178#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
179#endif
180
c2c6d25f 181
c906108c
SS
182/* Tables of how to react to signals; the user sets them. */
183
184static unsigned char *signal_stop;
185static unsigned char *signal_print;
186static unsigned char *signal_program;
187
188#define SET_SIGS(nsigs,sigs,flags) \
189 do { \
190 int signum = (nsigs); \
191 while (signum-- > 0) \
192 if ((sigs)[signum]) \
193 (flags)[signum] = 1; \
194 } while (0)
195
196#define UNSET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 0; \
202 } while (0)
203
39f77062
KB
204/* Value to pass to target_resume() to cause all threads to resume */
205
edb3359d 206#define RESUME_ALL minus_one_ptid
c906108c
SS
207
208/* Command list pointer for the "stop" placeholder. */
209
210static struct cmd_list_element *stop_command;
211
c906108c
SS
212/* Function inferior was in as of last step command. */
213
214static struct symbol *step_start_function;
215
c906108c
SS
216/* Nonzero if we want to give control to the user when we're notified
217 of shared library events by the dynamic linker. */
218static int stop_on_solib_events;
920d2a44
AC
219static void
220show_stop_on_solib_events (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222{
223 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
224 value);
225}
c906108c 226
c906108c
SS
227/* Nonzero means expecting a trace trap
228 and should stop the inferior and return silently when it happens. */
229
230int stop_after_trap;
231
642fd101
DE
232/* Save register contents here when executing a "finish" command or are
233 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
234 Thus this contains the return value from the called function (assuming
235 values are returned in a register). */
236
72cec141 237struct regcache *stop_registers;
c906108c 238
c906108c
SS
239/* Nonzero after stop if current stack frame should be printed. */
240
241static int stop_print_frame;
242
e02bc4cc 243/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
244 returned by target_wait()/deprecated_target_wait_hook(). This
245 information is returned by get_last_target_status(). */
39f77062 246static ptid_t target_last_wait_ptid;
e02bc4cc
DS
247static struct target_waitstatus target_last_waitstatus;
248
0d1e5fa7
PA
249static void context_switch (ptid_t ptid);
250
4e1c45ea 251void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
252
253void init_infwait_state (void);
a474d7c2 254
53904c9e
AC
255static const char follow_fork_mode_child[] = "child";
256static const char follow_fork_mode_parent[] = "parent";
257
488f131b 258static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
259 follow_fork_mode_child,
260 follow_fork_mode_parent,
261 NULL
ef346e04 262};
c906108c 263
53904c9e 264static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
265static void
266show_follow_fork_mode_string (struct ui_file *file, int from_tty,
267 struct cmd_list_element *c, const char *value)
268{
269 fprintf_filtered (file, _("\
270Debugger response to a program call of fork or vfork is \"%s\".\n"),
271 value);
272}
c906108c
SS
273\f
274
e58b0e63
PA
275/* Tell the target to follow the fork we're stopped at. Returns true
276 if the inferior should be resumed; false, if the target for some
277 reason decided it's best not to resume. */
278
6604731b 279static int
4ef3f3be 280follow_fork (void)
c906108c 281{
ea1dd7bc 282 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
283 int should_resume = 1;
284 struct thread_info *tp;
285
286 /* Copy user stepping state to the new inferior thread. FIXME: the
287 followed fork child thread should have a copy of most of the
4e3990f4
DE
288 parent thread structure's run control related fields, not just these.
289 Initialized to avoid "may be used uninitialized" warnings from gcc. */
290 struct breakpoint *step_resume_breakpoint = NULL;
291 CORE_ADDR step_range_start = 0;
292 CORE_ADDR step_range_end = 0;
293 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
294
295 if (!non_stop)
296 {
297 ptid_t wait_ptid;
298 struct target_waitstatus wait_status;
299
300 /* Get the last target status returned by target_wait(). */
301 get_last_target_status (&wait_ptid, &wait_status);
302
303 /* If not stopped at a fork event, then there's nothing else to
304 do. */
305 if (wait_status.kind != TARGET_WAITKIND_FORKED
306 && wait_status.kind != TARGET_WAITKIND_VFORKED)
307 return 1;
308
309 /* Check if we switched over from WAIT_PTID, since the event was
310 reported. */
311 if (!ptid_equal (wait_ptid, minus_one_ptid)
312 && !ptid_equal (inferior_ptid, wait_ptid))
313 {
314 /* We did. Switch back to WAIT_PTID thread, to tell the
315 target to follow it (in either direction). We'll
316 afterwards refuse to resume, and inform the user what
317 happened. */
318 switch_to_thread (wait_ptid);
319 should_resume = 0;
320 }
321 }
322
323 tp = inferior_thread ();
324
325 /* If there were any forks/vforks that were caught and are now to be
326 followed, then do so now. */
327 switch (tp->pending_follow.kind)
328 {
329 case TARGET_WAITKIND_FORKED:
330 case TARGET_WAITKIND_VFORKED:
331 {
332 ptid_t parent, child;
333
334 /* If the user did a next/step, etc, over a fork call,
335 preserve the stepping state in the fork child. */
336 if (follow_child && should_resume)
337 {
338 step_resume_breakpoint
339 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
340 step_range_start = tp->step_range_start;
341 step_range_end = tp->step_range_end;
342 step_frame_id = tp->step_frame_id;
343
344 /* For now, delete the parent's sr breakpoint, otherwise,
345 parent/child sr breakpoints are considered duplicates,
346 and the child version will not be installed. Remove
347 this when the breakpoints module becomes aware of
348 inferiors and address spaces. */
349 delete_step_resume_breakpoint (tp);
350 tp->step_range_start = 0;
351 tp->step_range_end = 0;
352 tp->step_frame_id = null_frame_id;
353 }
354
355 parent = inferior_ptid;
356 child = tp->pending_follow.value.related_pid;
357
358 /* Tell the target to do whatever is necessary to follow
359 either parent or child. */
360 if (target_follow_fork (follow_child))
361 {
362 /* Target refused to follow, or there's some other reason
363 we shouldn't resume. */
364 should_resume = 0;
365 }
366 else
367 {
368 /* This pending follow fork event is now handled, one way
369 or another. The previous selected thread may be gone
370 from the lists by now, but if it is still around, need
371 to clear the pending follow request. */
e09875d4 372 tp = find_thread_ptid (parent);
e58b0e63
PA
373 if (tp)
374 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
375
376 /* This makes sure we don't try to apply the "Switched
377 over from WAIT_PID" logic above. */
378 nullify_last_target_wait_ptid ();
379
380 /* If we followed the child, switch to it... */
381 if (follow_child)
382 {
383 switch_to_thread (child);
384
385 /* ... and preserve the stepping state, in case the
386 user was stepping over the fork call. */
387 if (should_resume)
388 {
389 tp = inferior_thread ();
390 tp->step_resume_breakpoint = step_resume_breakpoint;
391 tp->step_range_start = step_range_start;
392 tp->step_range_end = step_range_end;
393 tp->step_frame_id = step_frame_id;
394 }
395 else
396 {
397 /* If we get here, it was because we're trying to
398 resume from a fork catchpoint, but, the user
399 has switched threads away from the thread that
400 forked. In that case, the resume command
401 issued is most likely not applicable to the
402 child, so just warn, and refuse to resume. */
403 warning (_("\
404Not resuming: switched threads before following fork child.\n"));
405 }
406
407 /* Reset breakpoints in the child as appropriate. */
408 follow_inferior_reset_breakpoints ();
409 }
410 else
411 switch_to_thread (parent);
412 }
413 }
414 break;
415 case TARGET_WAITKIND_SPURIOUS:
416 /* Nothing to follow. */
417 break;
418 default:
419 internal_error (__FILE__, __LINE__,
420 "Unexpected pending_follow.kind %d\n",
421 tp->pending_follow.kind);
422 break;
423 }
c906108c 424
e58b0e63 425 return should_resume;
c906108c
SS
426}
427
6604731b
DJ
428void
429follow_inferior_reset_breakpoints (void)
c906108c 430{
4e1c45ea
PA
431 struct thread_info *tp = inferior_thread ();
432
6604731b
DJ
433 /* Was there a step_resume breakpoint? (There was if the user
434 did a "next" at the fork() call.) If so, explicitly reset its
435 thread number.
436
437 step_resumes are a form of bp that are made to be per-thread.
438 Since we created the step_resume bp when the parent process
439 was being debugged, and now are switching to the child process,
440 from the breakpoint package's viewpoint, that's a switch of
441 "threads". We must update the bp's notion of which thread
442 it is for, or it'll be ignored when it triggers. */
443
4e1c45ea
PA
444 if (tp->step_resume_breakpoint)
445 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
446
447 /* Reinsert all breakpoints in the child. The user may have set
448 breakpoints after catching the fork, in which case those
449 were never set in the child, but only in the parent. This makes
450 sure the inserted breakpoints match the breakpoint list. */
451
452 breakpoint_re_set ();
453 insert_breakpoints ();
c906108c 454}
c906108c 455
6c95b8df
PA
456/* The child has exited or execed: resume threads of the parent the
457 user wanted to be executing. */
458
459static int
460proceed_after_vfork_done (struct thread_info *thread,
461 void *arg)
462{
463 int pid = * (int *) arg;
464
465 if (ptid_get_pid (thread->ptid) == pid
466 && is_running (thread->ptid)
467 && !is_executing (thread->ptid)
468 && !thread->stop_requested
469 && thread->stop_signal == TARGET_SIGNAL_0)
470 {
471 if (debug_infrun)
472 fprintf_unfiltered (gdb_stdlog,
473 "infrun: resuming vfork parent thread %s\n",
474 target_pid_to_str (thread->ptid));
475
476 switch_to_thread (thread->ptid);
477 clear_proceed_status ();
478 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
479 }
480
481 return 0;
482}
483
484/* Called whenever we notice an exec or exit event, to handle
485 detaching or resuming a vfork parent. */
486
487static void
488handle_vfork_child_exec_or_exit (int exec)
489{
490 struct inferior *inf = current_inferior ();
491
492 if (inf->vfork_parent)
493 {
494 int resume_parent = -1;
495
496 /* This exec or exit marks the end of the shared memory region
497 between the parent and the child. If the user wanted to
498 detach from the parent, now is the time. */
499
500 if (inf->vfork_parent->pending_detach)
501 {
502 struct thread_info *tp;
503 struct cleanup *old_chain;
504 struct program_space *pspace;
505 struct address_space *aspace;
506
507 /* follow-fork child, detach-on-fork on */
508
509 old_chain = make_cleanup_restore_current_thread ();
510
511 /* We're letting loose of the parent. */
512 tp = any_live_thread_of_process (inf->vfork_parent->pid);
513 switch_to_thread (tp->ptid);
514
515 /* We're about to detach from the parent, which implicitly
516 removes breakpoints from its address space. There's a
517 catch here: we want to reuse the spaces for the child,
518 but, parent/child are still sharing the pspace at this
519 point, although the exec in reality makes the kernel give
520 the child a fresh set of new pages. The problem here is
521 that the breakpoints module being unaware of this, would
522 likely chose the child process to write to the parent
523 address space. Swapping the child temporarily away from
524 the spaces has the desired effect. Yes, this is "sort
525 of" a hack. */
526
527 pspace = inf->pspace;
528 aspace = inf->aspace;
529 inf->aspace = NULL;
530 inf->pspace = NULL;
531
532 if (debug_infrun || info_verbose)
533 {
534 target_terminal_ours ();
535
536 if (exec)
537 fprintf_filtered (gdb_stdlog,
538 "Detaching vfork parent process %d after child exec.\n",
539 inf->vfork_parent->pid);
540 else
541 fprintf_filtered (gdb_stdlog,
542 "Detaching vfork parent process %d after child exit.\n",
543 inf->vfork_parent->pid);
544 }
545
546 target_detach (NULL, 0);
547
548 /* Put it back. */
549 inf->pspace = pspace;
550 inf->aspace = aspace;
551
552 do_cleanups (old_chain);
553 }
554 else if (exec)
555 {
556 /* We're staying attached to the parent, so, really give the
557 child a new address space. */
558 inf->pspace = add_program_space (maybe_new_address_space ());
559 inf->aspace = inf->pspace->aspace;
560 inf->removable = 1;
561 set_current_program_space (inf->pspace);
562
563 resume_parent = inf->vfork_parent->pid;
564
565 /* Break the bonds. */
566 inf->vfork_parent->vfork_child = NULL;
567 }
568 else
569 {
570 struct cleanup *old_chain;
571 struct program_space *pspace;
572
573 /* If this is a vfork child exiting, then the pspace and
574 aspaces were shared with the parent. Since we're
575 reporting the process exit, we'll be mourning all that is
576 found in the address space, and switching to null_ptid,
577 preparing to start a new inferior. But, since we don't
578 want to clobber the parent's address/program spaces, we
579 go ahead and create a new one for this exiting
580 inferior. */
581
582 /* Switch to null_ptid, so that clone_program_space doesn't want
583 to read the selected frame of a dead process. */
584 old_chain = save_inferior_ptid ();
585 inferior_ptid = null_ptid;
586
587 /* This inferior is dead, so avoid giving the breakpoints
588 module the option to write through to it (cloning a
589 program space resets breakpoints). */
590 inf->aspace = NULL;
591 inf->pspace = NULL;
592 pspace = add_program_space (maybe_new_address_space ());
593 set_current_program_space (pspace);
594 inf->removable = 1;
595 clone_program_space (pspace, inf->vfork_parent->pspace);
596 inf->pspace = pspace;
597 inf->aspace = pspace->aspace;
598
599 /* Put back inferior_ptid. We'll continue mourning this
600 inferior. */
601 do_cleanups (old_chain);
602
603 resume_parent = inf->vfork_parent->pid;
604 /* Break the bonds. */
605 inf->vfork_parent->vfork_child = NULL;
606 }
607
608 inf->vfork_parent = NULL;
609
610 gdb_assert (current_program_space == inf->pspace);
611
612 if (non_stop && resume_parent != -1)
613 {
614 /* If the user wanted the parent to be running, let it go
615 free now. */
616 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
617
618 if (debug_infrun)
619 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
620 resume_parent);
621
622 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
623
624 do_cleanups (old_chain);
625 }
626 }
627}
628
629/* Enum strings for "set|show displaced-stepping". */
630
631static const char follow_exec_mode_new[] = "new";
632static const char follow_exec_mode_same[] = "same";
633static const char *follow_exec_mode_names[] =
634{
635 follow_exec_mode_new,
636 follow_exec_mode_same,
637 NULL,
638};
639
640static const char *follow_exec_mode_string = follow_exec_mode_same;
641static void
642show_follow_exec_mode_string (struct ui_file *file, int from_tty,
643 struct cmd_list_element *c, const char *value)
644{
645 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
646}
647
1adeb98a
FN
648/* EXECD_PATHNAME is assumed to be non-NULL. */
649
c906108c 650static void
3a3e9ee3 651follow_exec (ptid_t pid, char *execd_pathname)
c906108c 652{
4e1c45ea 653 struct thread_info *th = inferior_thread ();
6c95b8df 654 struct inferior *inf = current_inferior ();
7a292a7a 655
c906108c
SS
656 /* This is an exec event that we actually wish to pay attention to.
657 Refresh our symbol table to the newly exec'd program, remove any
658 momentary bp's, etc.
659
660 If there are breakpoints, they aren't really inserted now,
661 since the exec() transformed our inferior into a fresh set
662 of instructions.
663
664 We want to preserve symbolic breakpoints on the list, since
665 we have hopes that they can be reset after the new a.out's
666 symbol table is read.
667
668 However, any "raw" breakpoints must be removed from the list
669 (e.g., the solib bp's), since their address is probably invalid
670 now.
671
672 And, we DON'T want to call delete_breakpoints() here, since
673 that may write the bp's "shadow contents" (the instruction
674 value that was overwritten witha TRAP instruction). Since
675 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
676
677 mark_breakpoints_out ();
678
c906108c
SS
679 update_breakpoints_after_exec ();
680
681 /* If there was one, it's gone now. We cannot truly step-to-next
682 statement through an exec(). */
4e1c45ea
PA
683 th->step_resume_breakpoint = NULL;
684 th->step_range_start = 0;
685 th->step_range_end = 0;
c906108c 686
a75724bc
PA
687 /* The target reports the exec event to the main thread, even if
688 some other thread does the exec, and even if the main thread was
689 already stopped --- if debugging in non-stop mode, it's possible
690 the user had the main thread held stopped in the previous image
691 --- release it now. This is the same behavior as step-over-exec
692 with scheduler-locking on in all-stop mode. */
693 th->stop_requested = 0;
694
c906108c 695 /* What is this a.out's name? */
6c95b8df
PA
696 printf_unfiltered (_("%s is executing new program: %s\n"),
697 target_pid_to_str (inferior_ptid),
698 execd_pathname);
c906108c
SS
699
700 /* We've followed the inferior through an exec. Therefore, the
701 inferior has essentially been killed & reborn. */
7a292a7a 702
c906108c 703 gdb_flush (gdb_stdout);
6ca15a4b
PA
704
705 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
706
707 if (gdb_sysroot && *gdb_sysroot)
708 {
709 char *name = alloca (strlen (gdb_sysroot)
710 + strlen (execd_pathname)
711 + 1);
712 strcpy (name, gdb_sysroot);
713 strcat (name, execd_pathname);
714 execd_pathname = name;
715 }
c906108c 716
cce9b6bf
PA
717 /* Reset the shared library package. This ensures that we get a
718 shlib event when the child reaches "_start", at which point the
719 dld will have had a chance to initialize the child. */
720 /* Also, loading a symbol file below may trigger symbol lookups, and
721 we don't want those to be satisfied by the libraries of the
722 previous incarnation of this process. */
723 no_shared_libraries (NULL, 0);
724
6c95b8df
PA
725 if (follow_exec_mode_string == follow_exec_mode_new)
726 {
727 struct program_space *pspace;
6c95b8df
PA
728
729 /* The user wants to keep the old inferior and program spaces
730 around. Create a new fresh one, and switch to it. */
731
732 inf = add_inferior (current_inferior ()->pid);
733 pspace = add_program_space (maybe_new_address_space ());
734 inf->pspace = pspace;
735 inf->aspace = pspace->aspace;
736
737 exit_inferior_num_silent (current_inferior ()->num);
738
739 set_current_inferior (inf);
740 set_current_program_space (pspace);
741 }
742
743 gdb_assert (current_program_space == inf->pspace);
744
745 /* That a.out is now the one to use. */
746 exec_file_attach (execd_pathname, 0);
747
cce9b6bf 748 /* Load the main file's symbols. */
1adeb98a 749 symbol_file_add_main (execd_pathname, 0);
c906108c 750
7a292a7a 751#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 752 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 753#else
268a4a75 754 solib_create_inferior_hook (0);
7a292a7a 755#endif
c906108c 756
4efc6507
DE
757 jit_inferior_created_hook ();
758
c906108c
SS
759 /* Reinsert all breakpoints. (Those which were symbolic have
760 been reset to the proper address in the new a.out, thanks
761 to symbol_file_command...) */
762 insert_breakpoints ();
763
764 /* The next resume of this inferior should bring it to the shlib
765 startup breakpoints. (If the user had also set bp's on
766 "main" from the old (parent) process, then they'll auto-
767 matically get reset there in the new process.) */
c906108c
SS
768}
769
770/* Non-zero if we just simulating a single-step. This is needed
771 because we cannot remove the breakpoints in the inferior process
772 until after the `wait' in `wait_for_inferior'. */
773static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
774
775/* The thread we inserted single-step breakpoints for. */
776static ptid_t singlestep_ptid;
777
fd48f117
DJ
778/* PC when we started this single-step. */
779static CORE_ADDR singlestep_pc;
780
9f976b41
DJ
781/* If another thread hit the singlestep breakpoint, we save the original
782 thread here so that we can resume single-stepping it later. */
783static ptid_t saved_singlestep_ptid;
784static int stepping_past_singlestep_breakpoint;
6a6b96b9 785
ca67fcb8
VP
786/* If not equal to null_ptid, this means that after stepping over breakpoint
787 is finished, we need to switch to deferred_step_ptid, and step it.
788
789 The use case is when one thread has hit a breakpoint, and then the user
790 has switched to another thread and issued 'step'. We need to step over
791 breakpoint in the thread which hit the breakpoint, but then continue
792 stepping the thread user has selected. */
793static ptid_t deferred_step_ptid;
c906108c 794\f
237fc4c9
PA
795/* Displaced stepping. */
796
797/* In non-stop debugging mode, we must take special care to manage
798 breakpoints properly; in particular, the traditional strategy for
799 stepping a thread past a breakpoint it has hit is unsuitable.
800 'Displaced stepping' is a tactic for stepping one thread past a
801 breakpoint it has hit while ensuring that other threads running
802 concurrently will hit the breakpoint as they should.
803
804 The traditional way to step a thread T off a breakpoint in a
805 multi-threaded program in all-stop mode is as follows:
806
807 a0) Initially, all threads are stopped, and breakpoints are not
808 inserted.
809 a1) We single-step T, leaving breakpoints uninserted.
810 a2) We insert breakpoints, and resume all threads.
811
812 In non-stop debugging, however, this strategy is unsuitable: we
813 don't want to have to stop all threads in the system in order to
814 continue or step T past a breakpoint. Instead, we use displaced
815 stepping:
816
817 n0) Initially, T is stopped, other threads are running, and
818 breakpoints are inserted.
819 n1) We copy the instruction "under" the breakpoint to a separate
820 location, outside the main code stream, making any adjustments
821 to the instruction, register, and memory state as directed by
822 T's architecture.
823 n2) We single-step T over the instruction at its new location.
824 n3) We adjust the resulting register and memory state as directed
825 by T's architecture. This includes resetting T's PC to point
826 back into the main instruction stream.
827 n4) We resume T.
828
829 This approach depends on the following gdbarch methods:
830
831 - gdbarch_max_insn_length and gdbarch_displaced_step_location
832 indicate where to copy the instruction, and how much space must
833 be reserved there. We use these in step n1.
834
835 - gdbarch_displaced_step_copy_insn copies a instruction to a new
836 address, and makes any necessary adjustments to the instruction,
837 register contents, and memory. We use this in step n1.
838
839 - gdbarch_displaced_step_fixup adjusts registers and memory after
840 we have successfuly single-stepped the instruction, to yield the
841 same effect the instruction would have had if we had executed it
842 at its original address. We use this in step n3.
843
844 - gdbarch_displaced_step_free_closure provides cleanup.
845
846 The gdbarch_displaced_step_copy_insn and
847 gdbarch_displaced_step_fixup functions must be written so that
848 copying an instruction with gdbarch_displaced_step_copy_insn,
849 single-stepping across the copied instruction, and then applying
850 gdbarch_displaced_insn_fixup should have the same effects on the
851 thread's memory and registers as stepping the instruction in place
852 would have. Exactly which responsibilities fall to the copy and
853 which fall to the fixup is up to the author of those functions.
854
855 See the comments in gdbarch.sh for details.
856
857 Note that displaced stepping and software single-step cannot
858 currently be used in combination, although with some care I think
859 they could be made to. Software single-step works by placing
860 breakpoints on all possible subsequent instructions; if the
861 displaced instruction is a PC-relative jump, those breakpoints
862 could fall in very strange places --- on pages that aren't
863 executable, or at addresses that are not proper instruction
864 boundaries. (We do generally let other threads run while we wait
865 to hit the software single-step breakpoint, and they might
866 encounter such a corrupted instruction.) One way to work around
867 this would be to have gdbarch_displaced_step_copy_insn fully
868 simulate the effect of PC-relative instructions (and return NULL)
869 on architectures that use software single-stepping.
870
871 In non-stop mode, we can have independent and simultaneous step
872 requests, so more than one thread may need to simultaneously step
873 over a breakpoint. The current implementation assumes there is
874 only one scratch space per process. In this case, we have to
875 serialize access to the scratch space. If thread A wants to step
876 over a breakpoint, but we are currently waiting for some other
877 thread to complete a displaced step, we leave thread A stopped and
878 place it in the displaced_step_request_queue. Whenever a displaced
879 step finishes, we pick the next thread in the queue and start a new
880 displaced step operation on it. See displaced_step_prepare and
881 displaced_step_fixup for details. */
882
237fc4c9
PA
883struct displaced_step_request
884{
885 ptid_t ptid;
886 struct displaced_step_request *next;
887};
888
fc1cf338
PA
889/* Per-inferior displaced stepping state. */
890struct displaced_step_inferior_state
891{
892 /* Pointer to next in linked list. */
893 struct displaced_step_inferior_state *next;
894
895 /* The process this displaced step state refers to. */
896 int pid;
897
898 /* A queue of pending displaced stepping requests. One entry per
899 thread that needs to do a displaced step. */
900 struct displaced_step_request *step_request_queue;
901
902 /* If this is not null_ptid, this is the thread carrying out a
903 displaced single-step in process PID. This thread's state will
904 require fixing up once it has completed its step. */
905 ptid_t step_ptid;
906
907 /* The architecture the thread had when we stepped it. */
908 struct gdbarch *step_gdbarch;
909
910 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
911 for post-step cleanup. */
912 struct displaced_step_closure *step_closure;
913
914 /* The address of the original instruction, and the copy we
915 made. */
916 CORE_ADDR step_original, step_copy;
917
918 /* Saved contents of copy area. */
919 gdb_byte *step_saved_copy;
920};
921
922/* The list of states of processes involved in displaced stepping
923 presently. */
924static struct displaced_step_inferior_state *displaced_step_inferior_states;
925
926/* Get the displaced stepping state of process PID. */
927
928static struct displaced_step_inferior_state *
929get_displaced_stepping_state (int pid)
930{
931 struct displaced_step_inferior_state *state;
932
933 for (state = displaced_step_inferior_states;
934 state != NULL;
935 state = state->next)
936 if (state->pid == pid)
937 return state;
938
939 return NULL;
940}
941
942/* Add a new displaced stepping state for process PID to the displaced
943 stepping state list, or return a pointer to an already existing
944 entry, if it already exists. Never returns NULL. */
945
946static struct displaced_step_inferior_state *
947add_displaced_stepping_state (int pid)
948{
949 struct displaced_step_inferior_state *state;
950
951 for (state = displaced_step_inferior_states;
952 state != NULL;
953 state = state->next)
954 if (state->pid == pid)
955 return state;
237fc4c9 956
fc1cf338
PA
957 state = xcalloc (1, sizeof (*state));
958 state->pid = pid;
959 state->next = displaced_step_inferior_states;
960 displaced_step_inferior_states = state;
237fc4c9 961
fc1cf338
PA
962 return state;
963}
964
965/* Remove the displaced stepping state of process PID. */
237fc4c9 966
fc1cf338
PA
967static void
968remove_displaced_stepping_state (int pid)
969{
970 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 971
fc1cf338
PA
972 gdb_assert (pid != 0);
973
974 it = displaced_step_inferior_states;
975 prev_next_p = &displaced_step_inferior_states;
976 while (it)
977 {
978 if (it->pid == pid)
979 {
980 *prev_next_p = it->next;
981 xfree (it);
982 return;
983 }
984
985 prev_next_p = &it->next;
986 it = *prev_next_p;
987 }
988}
989
990static void
991infrun_inferior_exit (struct inferior *inf)
992{
993 remove_displaced_stepping_state (inf->pid);
994}
237fc4c9 995
fff08868
HZ
996/* Enum strings for "set|show displaced-stepping". */
997
998static const char can_use_displaced_stepping_auto[] = "auto";
999static const char can_use_displaced_stepping_on[] = "on";
1000static const char can_use_displaced_stepping_off[] = "off";
1001static const char *can_use_displaced_stepping_enum[] =
1002{
1003 can_use_displaced_stepping_auto,
1004 can_use_displaced_stepping_on,
1005 can_use_displaced_stepping_off,
1006 NULL,
1007};
1008
1009/* If ON, and the architecture supports it, GDB will use displaced
1010 stepping to step over breakpoints. If OFF, or if the architecture
1011 doesn't support it, GDB will instead use the traditional
1012 hold-and-step approach. If AUTO (which is the default), GDB will
1013 decide which technique to use to step over breakpoints depending on
1014 which of all-stop or non-stop mode is active --- displaced stepping
1015 in non-stop mode; hold-and-step in all-stop mode. */
1016
1017static const char *can_use_displaced_stepping =
1018 can_use_displaced_stepping_auto;
1019
237fc4c9
PA
1020static void
1021show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1022 struct cmd_list_element *c,
1023 const char *value)
1024{
fff08868
HZ
1025 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1026 fprintf_filtered (file, _("\
1027Debugger's willingness to use displaced stepping to step over \
1028breakpoints is %s (currently %s).\n"),
1029 value, non_stop ? "on" : "off");
1030 else
1031 fprintf_filtered (file, _("\
1032Debugger's willingness to use displaced stepping to step over \
1033breakpoints is %s.\n"), value);
237fc4c9
PA
1034}
1035
fff08868
HZ
1036/* Return non-zero if displaced stepping can/should be used to step
1037 over breakpoints. */
1038
237fc4c9
PA
1039static int
1040use_displaced_stepping (struct gdbarch *gdbarch)
1041{
fff08868
HZ
1042 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1043 && non_stop)
1044 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1045 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1046 && !RECORD_IS_USED);
237fc4c9
PA
1047}
1048
1049/* Clean out any stray displaced stepping state. */
1050static void
fc1cf338 1051displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1052{
1053 /* Indicate that there is no cleanup pending. */
fc1cf338 1054 displaced->step_ptid = null_ptid;
237fc4c9 1055
fc1cf338 1056 if (displaced->step_closure)
237fc4c9 1057 {
fc1cf338
PA
1058 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1059 displaced->step_closure);
1060 displaced->step_closure = NULL;
237fc4c9
PA
1061 }
1062}
1063
1064static void
fc1cf338 1065displaced_step_clear_cleanup (void *arg)
237fc4c9 1066{
fc1cf338
PA
1067 struct displaced_step_inferior_state *state = arg;
1068
1069 displaced_step_clear (state);
237fc4c9
PA
1070}
1071
1072/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1073void
1074displaced_step_dump_bytes (struct ui_file *file,
1075 const gdb_byte *buf,
1076 size_t len)
1077{
1078 int i;
1079
1080 for (i = 0; i < len; i++)
1081 fprintf_unfiltered (file, "%02x ", buf[i]);
1082 fputs_unfiltered ("\n", file);
1083}
1084
1085/* Prepare to single-step, using displaced stepping.
1086
1087 Note that we cannot use displaced stepping when we have a signal to
1088 deliver. If we have a signal to deliver and an instruction to step
1089 over, then after the step, there will be no indication from the
1090 target whether the thread entered a signal handler or ignored the
1091 signal and stepped over the instruction successfully --- both cases
1092 result in a simple SIGTRAP. In the first case we mustn't do a
1093 fixup, and in the second case we must --- but we can't tell which.
1094 Comments in the code for 'random signals' in handle_inferior_event
1095 explain how we handle this case instead.
1096
1097 Returns 1 if preparing was successful -- this thread is going to be
1098 stepped now; or 0 if displaced stepping this thread got queued. */
1099static int
1100displaced_step_prepare (ptid_t ptid)
1101{
ad53cd71 1102 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1103 struct regcache *regcache = get_thread_regcache (ptid);
1104 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1105 CORE_ADDR original, copy;
1106 ULONGEST len;
1107 struct displaced_step_closure *closure;
fc1cf338 1108 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1109
1110 /* We should never reach this function if the architecture does not
1111 support displaced stepping. */
1112 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1113
fc1cf338
PA
1114 /* We have to displaced step one thread at a time, as we only have
1115 access to a single scratch space per inferior. */
237fc4c9 1116
fc1cf338
PA
1117 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1118
1119 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1120 {
1121 /* Already waiting for a displaced step to finish. Defer this
1122 request and place in queue. */
1123 struct displaced_step_request *req, *new_req;
1124
1125 if (debug_displaced)
1126 fprintf_unfiltered (gdb_stdlog,
1127 "displaced: defering step of %s\n",
1128 target_pid_to_str (ptid));
1129
1130 new_req = xmalloc (sizeof (*new_req));
1131 new_req->ptid = ptid;
1132 new_req->next = NULL;
1133
fc1cf338 1134 if (displaced->step_request_queue)
237fc4c9 1135 {
fc1cf338 1136 for (req = displaced->step_request_queue;
237fc4c9
PA
1137 req && req->next;
1138 req = req->next)
1139 ;
1140 req->next = new_req;
1141 }
1142 else
fc1cf338 1143 displaced->step_request_queue = new_req;
237fc4c9
PA
1144
1145 return 0;
1146 }
1147 else
1148 {
1149 if (debug_displaced)
1150 fprintf_unfiltered (gdb_stdlog,
1151 "displaced: stepping %s now\n",
1152 target_pid_to_str (ptid));
1153 }
1154
fc1cf338 1155 displaced_step_clear (displaced);
237fc4c9 1156
ad53cd71
PA
1157 old_cleanups = save_inferior_ptid ();
1158 inferior_ptid = ptid;
1159
515630c5 1160 original = regcache_read_pc (regcache);
237fc4c9
PA
1161
1162 copy = gdbarch_displaced_step_location (gdbarch);
1163 len = gdbarch_max_insn_length (gdbarch);
1164
1165 /* Save the original contents of the copy area. */
fc1cf338 1166 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1167 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1168 &displaced->step_saved_copy);
1169 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1170 if (debug_displaced)
1171 {
5af949e3
UW
1172 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1173 paddress (gdbarch, copy));
fc1cf338
PA
1174 displaced_step_dump_bytes (gdb_stdlog,
1175 displaced->step_saved_copy,
1176 len);
237fc4c9
PA
1177 };
1178
1179 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1180 original, copy, regcache);
237fc4c9
PA
1181
1182 /* We don't support the fully-simulated case at present. */
1183 gdb_assert (closure);
1184
9f5a595d
UW
1185 /* Save the information we need to fix things up if the step
1186 succeeds. */
fc1cf338
PA
1187 displaced->step_ptid = ptid;
1188 displaced->step_gdbarch = gdbarch;
1189 displaced->step_closure = closure;
1190 displaced->step_original = original;
1191 displaced->step_copy = copy;
9f5a595d 1192
fc1cf338 1193 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1194
1195 /* Resume execution at the copy. */
515630c5 1196 regcache_write_pc (regcache, copy);
237fc4c9 1197
ad53cd71
PA
1198 discard_cleanups (ignore_cleanups);
1199
1200 do_cleanups (old_cleanups);
237fc4c9
PA
1201
1202 if (debug_displaced)
5af949e3
UW
1203 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1204 paddress (gdbarch, copy));
237fc4c9 1205
237fc4c9
PA
1206 return 1;
1207}
1208
237fc4c9
PA
1209static void
1210write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1211{
1212 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1213 inferior_ptid = ptid;
1214 write_memory (memaddr, myaddr, len);
1215 do_cleanups (ptid_cleanup);
1216}
1217
1218static void
1219displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1220{
1221 struct cleanup *old_cleanups;
fc1cf338
PA
1222 struct displaced_step_inferior_state *displaced
1223 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1224
1225 /* Was any thread of this process doing a displaced step? */
1226 if (displaced == NULL)
1227 return;
237fc4c9
PA
1228
1229 /* Was this event for the pid we displaced? */
fc1cf338
PA
1230 if (ptid_equal (displaced->step_ptid, null_ptid)
1231 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1232 return;
1233
fc1cf338 1234 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1235
1236 /* Restore the contents of the copy area. */
1237 {
fc1cf338
PA
1238 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1239 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1240 displaced->step_saved_copy, len);
237fc4c9 1241 if (debug_displaced)
5af949e3 1242 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1243 paddress (displaced->step_gdbarch,
1244 displaced->step_copy));
237fc4c9
PA
1245 }
1246
1247 /* Did the instruction complete successfully? */
1248 if (signal == TARGET_SIGNAL_TRAP)
1249 {
1250 /* Fix up the resulting state. */
fc1cf338
PA
1251 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1252 displaced->step_closure,
1253 displaced->step_original,
1254 displaced->step_copy,
1255 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1256 }
1257 else
1258 {
1259 /* Since the instruction didn't complete, all we can do is
1260 relocate the PC. */
515630c5
UW
1261 struct regcache *regcache = get_thread_regcache (event_ptid);
1262 CORE_ADDR pc = regcache_read_pc (regcache);
fc1cf338 1263 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1264 regcache_write_pc (regcache, pc);
237fc4c9
PA
1265 }
1266
1267 do_cleanups (old_cleanups);
1268
fc1cf338 1269 displaced->step_ptid = null_ptid;
1c5cfe86 1270
237fc4c9 1271 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1272 one now. Leave the state object around, since we're likely to
1273 need it again soon. */
1274 while (displaced->step_request_queue)
237fc4c9
PA
1275 {
1276 struct displaced_step_request *head;
1277 ptid_t ptid;
5af949e3 1278 struct regcache *regcache;
929dfd4f 1279 struct gdbarch *gdbarch;
1c5cfe86 1280 CORE_ADDR actual_pc;
6c95b8df 1281 struct address_space *aspace;
237fc4c9 1282
fc1cf338 1283 head = displaced->step_request_queue;
237fc4c9 1284 ptid = head->ptid;
fc1cf338 1285 displaced->step_request_queue = head->next;
237fc4c9
PA
1286 xfree (head);
1287
ad53cd71
PA
1288 context_switch (ptid);
1289
5af949e3
UW
1290 regcache = get_thread_regcache (ptid);
1291 actual_pc = regcache_read_pc (regcache);
6c95b8df 1292 aspace = get_regcache_aspace (regcache);
1c5cfe86 1293
6c95b8df 1294 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1295 {
1c5cfe86
PA
1296 if (debug_displaced)
1297 fprintf_unfiltered (gdb_stdlog,
1298 "displaced: stepping queued %s now\n",
1299 target_pid_to_str (ptid));
1300
1301 displaced_step_prepare (ptid);
1302
929dfd4f
JB
1303 gdbarch = get_regcache_arch (regcache);
1304
1c5cfe86
PA
1305 if (debug_displaced)
1306 {
929dfd4f 1307 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1308 gdb_byte buf[4];
1309
5af949e3
UW
1310 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1311 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1312 read_memory (actual_pc, buf, sizeof (buf));
1313 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1314 }
1315
fc1cf338
PA
1316 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1317 displaced->step_closure))
929dfd4f 1318 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1319 else
1320 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1321
1322 /* Done, we're stepping a thread. */
1323 break;
ad53cd71 1324 }
1c5cfe86
PA
1325 else
1326 {
1327 int step;
1328 struct thread_info *tp = inferior_thread ();
1329
1330 /* The breakpoint we were sitting under has since been
1331 removed. */
1332 tp->trap_expected = 0;
1333
1334 /* Go back to what we were trying to do. */
1335 step = currently_stepping (tp);
ad53cd71 1336
1c5cfe86
PA
1337 if (debug_displaced)
1338 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1339 target_pid_to_str (tp->ptid), step);
1340
1341 target_resume (ptid, step, TARGET_SIGNAL_0);
1342 tp->stop_signal = TARGET_SIGNAL_0;
1343
1344 /* This request was discarded. See if there's any other
1345 thread waiting for its turn. */
1346 }
237fc4c9
PA
1347 }
1348}
1349
5231c1fd
PA
1350/* Update global variables holding ptids to hold NEW_PTID if they were
1351 holding OLD_PTID. */
1352static void
1353infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1354{
1355 struct displaced_step_request *it;
fc1cf338 1356 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1357
1358 if (ptid_equal (inferior_ptid, old_ptid))
1359 inferior_ptid = new_ptid;
1360
1361 if (ptid_equal (singlestep_ptid, old_ptid))
1362 singlestep_ptid = new_ptid;
1363
5231c1fd
PA
1364 if (ptid_equal (deferred_step_ptid, old_ptid))
1365 deferred_step_ptid = new_ptid;
1366
fc1cf338
PA
1367 for (displaced = displaced_step_inferior_states;
1368 displaced;
1369 displaced = displaced->next)
1370 {
1371 if (ptid_equal (displaced->step_ptid, old_ptid))
1372 displaced->step_ptid = new_ptid;
1373
1374 for (it = displaced->step_request_queue; it; it = it->next)
1375 if (ptid_equal (it->ptid, old_ptid))
1376 it->ptid = new_ptid;
1377 }
5231c1fd
PA
1378}
1379
237fc4c9
PA
1380\f
1381/* Resuming. */
c906108c
SS
1382
1383/* Things to clean up if we QUIT out of resume (). */
c906108c 1384static void
74b7792f 1385resume_cleanups (void *ignore)
c906108c
SS
1386{
1387 normal_stop ();
1388}
1389
53904c9e
AC
1390static const char schedlock_off[] = "off";
1391static const char schedlock_on[] = "on";
1392static const char schedlock_step[] = "step";
488f131b 1393static const char *scheduler_enums[] = {
ef346e04
AC
1394 schedlock_off,
1395 schedlock_on,
1396 schedlock_step,
1397 NULL
1398};
920d2a44
AC
1399static const char *scheduler_mode = schedlock_off;
1400static void
1401show_scheduler_mode (struct ui_file *file, int from_tty,
1402 struct cmd_list_element *c, const char *value)
1403{
1404 fprintf_filtered (file, _("\
1405Mode for locking scheduler during execution is \"%s\".\n"),
1406 value);
1407}
c906108c
SS
1408
1409static void
96baa820 1410set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1411{
eefe576e
AC
1412 if (!target_can_lock_scheduler)
1413 {
1414 scheduler_mode = schedlock_off;
1415 error (_("Target '%s' cannot support this command."), target_shortname);
1416 }
c906108c
SS
1417}
1418
d4db2f36
PA
1419/* True if execution commands resume all threads of all processes by
1420 default; otherwise, resume only threads of the current inferior
1421 process. */
1422int sched_multi = 0;
1423
2facfe5c
DD
1424/* Try to setup for software single stepping over the specified location.
1425 Return 1 if target_resume() should use hardware single step.
1426
1427 GDBARCH the current gdbarch.
1428 PC the location to step over. */
1429
1430static int
1431maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1432{
1433 int hw_step = 1;
1434
99e40580
UW
1435 if (gdbarch_software_single_step_p (gdbarch)
1436 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1437 {
99e40580
UW
1438 hw_step = 0;
1439 /* Do not pull these breakpoints until after a `wait' in
1440 `wait_for_inferior' */
1441 singlestep_breakpoints_inserted_p = 1;
1442 singlestep_ptid = inferior_ptid;
1443 singlestep_pc = pc;
2facfe5c
DD
1444 }
1445 return hw_step;
1446}
c906108c
SS
1447
1448/* Resume the inferior, but allow a QUIT. This is useful if the user
1449 wants to interrupt some lengthy single-stepping operation
1450 (for child processes, the SIGINT goes to the inferior, and so
1451 we get a SIGINT random_signal, but for remote debugging and perhaps
1452 other targets, that's not true).
1453
1454 STEP nonzero if we should step (zero to continue instead).
1455 SIG is the signal to give the inferior (zero for none). */
1456void
96baa820 1457resume (int step, enum target_signal sig)
c906108c
SS
1458{
1459 int should_resume = 1;
74b7792f 1460 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1461 struct regcache *regcache = get_current_regcache ();
1462 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1463 struct thread_info *tp = inferior_thread ();
515630c5 1464 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1465 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1466
c906108c
SS
1467 QUIT;
1468
527159b7 1469 if (debug_infrun)
237fc4c9
PA
1470 fprintf_unfiltered (gdb_stdlog,
1471 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1472 "trap_expected=%d\n",
1473 step, sig, tp->trap_expected);
c906108c 1474
c2c6d25f
JM
1475 /* Normally, by the time we reach `resume', the breakpoints are either
1476 removed or inserted, as appropriate. The exception is if we're sitting
1477 at a permanent breakpoint; we need to step over it, but permanent
1478 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1479 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1480 {
515630c5
UW
1481 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1482 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1483 else
1484 error (_("\
1485The program is stopped at a permanent breakpoint, but GDB does not know\n\
1486how to step past a permanent breakpoint on this architecture. Try using\n\
1487a command like `return' or `jump' to continue execution."));
1488 }
c2c6d25f 1489
237fc4c9
PA
1490 /* If enabled, step over breakpoints by executing a copy of the
1491 instruction at a different address.
1492
1493 We can't use displaced stepping when we have a signal to deliver;
1494 the comments for displaced_step_prepare explain why. The
1495 comments in the handle_inferior event for dealing with 'random
1496 signals' explain what we do instead. */
515630c5 1497 if (use_displaced_stepping (gdbarch)
929dfd4f
JB
1498 && (tp->trap_expected
1499 || (step && gdbarch_software_single_step_p (gdbarch)))
237fc4c9
PA
1500 && sig == TARGET_SIGNAL_0)
1501 {
fc1cf338
PA
1502 struct displaced_step_inferior_state *displaced;
1503
237fc4c9 1504 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1505 {
1506 /* Got placed in displaced stepping queue. Will be resumed
1507 later when all the currently queued displaced stepping
7f7efbd9
VP
1508 requests finish. The thread is not executing at this point,
1509 and the call to set_executing will be made later. But we
1510 need to call set_running here, since from frontend point of view,
1511 the thread is running. */
1512 set_running (inferior_ptid, 1);
d56b7306
VP
1513 discard_cleanups (old_cleanups);
1514 return;
1515 }
99e40580 1516
fc1cf338
PA
1517 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1518 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1519 displaced->step_closure);
237fc4c9
PA
1520 }
1521
2facfe5c 1522 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1523 else if (step)
2facfe5c 1524 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1525
c906108c
SS
1526 if (should_resume)
1527 {
39f77062 1528 ptid_t resume_ptid;
dfcd3bfb 1529
cd76b0b7
VP
1530 /* If STEP is set, it's a request to use hardware stepping
1531 facilities. But in that case, we should never
1532 use singlestep breakpoint. */
1533 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1534
d4db2f36
PA
1535 /* Decide the set of threads to ask the target to resume. Start
1536 by assuming everything will be resumed, than narrow the set
1537 by applying increasingly restricting conditions. */
1538
1539 /* By default, resume all threads of all processes. */
1540 resume_ptid = RESUME_ALL;
1541
1542 /* Maybe resume only all threads of the current process. */
1543 if (!sched_multi && target_supports_multi_process ())
1544 {
1545 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1546 }
1547
1548 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1549 if (singlestep_breakpoints_inserted_p
1550 && stepping_past_singlestep_breakpoint)
c906108c 1551 {
cd76b0b7
VP
1552 /* The situation here is as follows. In thread T1 we wanted to
1553 single-step. Lacking hardware single-stepping we've
1554 set breakpoint at the PC of the next instruction -- call it
1555 P. After resuming, we've hit that breakpoint in thread T2.
1556 Now we've removed original breakpoint, inserted breakpoint
1557 at P+1, and try to step to advance T2 past breakpoint.
1558 We need to step only T2, as if T1 is allowed to freely run,
1559 it can run past P, and if other threads are allowed to run,
1560 they can hit breakpoint at P+1, and nested hits of single-step
1561 breakpoints is not something we'd want -- that's complicated
1562 to support, and has no value. */
1563 resume_ptid = inferior_ptid;
1564 }
d4db2f36
PA
1565 else if ((step || singlestep_breakpoints_inserted_p)
1566 && tp->trap_expected)
cd76b0b7 1567 {
74960c60
VP
1568 /* We're allowing a thread to run past a breakpoint it has
1569 hit, by single-stepping the thread with the breakpoint
1570 removed. In which case, we need to single-step only this
1571 thread, and keep others stopped, as they can miss this
1572 breakpoint if allowed to run.
1573
1574 The current code actually removes all breakpoints when
1575 doing this, not just the one being stepped over, so if we
1576 let other threads run, we can actually miss any
1577 breakpoint, not just the one at PC. */
ef5cf84e 1578 resume_ptid = inferior_ptid;
c906108c 1579 }
d4db2f36 1580 else if (non_stop)
94cc34af
PA
1581 {
1582 /* With non-stop mode on, threads are always handled
1583 individually. */
1584 resume_ptid = inferior_ptid;
1585 }
1586 else if ((scheduler_mode == schedlock_on)
1587 || (scheduler_mode == schedlock_step
1588 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1589 {
ef5cf84e 1590 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1591 resume_ptid = inferior_ptid;
c906108c 1592 }
ef5cf84e 1593
515630c5 1594 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1595 {
1596 /* Most targets can step a breakpoint instruction, thus
1597 executing it normally. But if this one cannot, just
1598 continue and we will hit it anyway. */
6c95b8df 1599 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1600 step = 0;
1601 }
237fc4c9
PA
1602
1603 if (debug_displaced
515630c5 1604 && use_displaced_stepping (gdbarch)
4e1c45ea 1605 && tp->trap_expected)
237fc4c9 1606 {
515630c5 1607 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1608 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1609 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1610 gdb_byte buf[4];
1611
5af949e3
UW
1612 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1613 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1614 read_memory (actual_pc, buf, sizeof (buf));
1615 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1616 }
1617
e58b0e63
PA
1618 /* Install inferior's terminal modes. */
1619 target_terminal_inferior ();
1620
2020b7ab
PA
1621 /* Avoid confusing the next resume, if the next stop/resume
1622 happens to apply to another thread. */
1623 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1624
1625 target_resume (resume_ptid, step, sig);
c906108c
SS
1626 }
1627
1628 discard_cleanups (old_cleanups);
1629}
1630\f
237fc4c9 1631/* Proceeding. */
c906108c
SS
1632
1633/* Clear out all variables saying what to do when inferior is continued.
1634 First do this, then set the ones you want, then call `proceed'. */
1635
a7212384
UW
1636static void
1637clear_proceed_status_thread (struct thread_info *tp)
c906108c 1638{
a7212384
UW
1639 if (debug_infrun)
1640 fprintf_unfiltered (gdb_stdlog,
1641 "infrun: clear_proceed_status_thread (%s)\n",
1642 target_pid_to_str (tp->ptid));
d6b48e9c 1643
a7212384
UW
1644 tp->trap_expected = 0;
1645 tp->step_range_start = 0;
1646 tp->step_range_end = 0;
1647 tp->step_frame_id = null_frame_id;
edb3359d 1648 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1649 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1650 tp->stop_requested = 0;
4e1c45ea 1651
a7212384 1652 tp->stop_step = 0;
32400beb 1653
a7212384 1654 tp->proceed_to_finish = 0;
414c69f7 1655
a7212384
UW
1656 /* Discard any remaining commands or status from previous stop. */
1657 bpstat_clear (&tp->stop_bpstat);
1658}
32400beb 1659
a7212384
UW
1660static int
1661clear_proceed_status_callback (struct thread_info *tp, void *data)
1662{
1663 if (is_exited (tp->ptid))
1664 return 0;
d6b48e9c 1665
a7212384
UW
1666 clear_proceed_status_thread (tp);
1667 return 0;
1668}
1669
1670void
1671clear_proceed_status (void)
1672{
6c95b8df
PA
1673 if (!non_stop)
1674 {
1675 /* In all-stop mode, delete the per-thread status of all
1676 threads, even if inferior_ptid is null_ptid, there may be
1677 threads on the list. E.g., we may be launching a new
1678 process, while selecting the executable. */
1679 iterate_over_threads (clear_proceed_status_callback, NULL);
1680 }
1681
a7212384
UW
1682 if (!ptid_equal (inferior_ptid, null_ptid))
1683 {
1684 struct inferior *inferior;
1685
1686 if (non_stop)
1687 {
6c95b8df
PA
1688 /* If in non-stop mode, only delete the per-thread status of
1689 the current thread. */
a7212384
UW
1690 clear_proceed_status_thread (inferior_thread ());
1691 }
6c95b8df 1692
d6b48e9c
PA
1693 inferior = current_inferior ();
1694 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1695 }
1696
c906108c 1697 stop_after_trap = 0;
f3b1572e
PA
1698
1699 observer_notify_about_to_proceed ();
c906108c 1700
d5c31457
UW
1701 if (stop_registers)
1702 {
1703 regcache_xfree (stop_registers);
1704 stop_registers = NULL;
1705 }
c906108c
SS
1706}
1707
5a437975
DE
1708/* Check the current thread against the thread that reported the most recent
1709 event. If a step-over is required return TRUE and set the current thread
1710 to the old thread. Otherwise return FALSE.
1711
1712 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1713
1714static int
6a6b96b9 1715prepare_to_proceed (int step)
ea67f13b
DJ
1716{
1717 ptid_t wait_ptid;
1718 struct target_waitstatus wait_status;
5a437975
DE
1719 int schedlock_enabled;
1720
1721 /* With non-stop mode on, threads are always handled individually. */
1722 gdb_assert (! non_stop);
ea67f13b
DJ
1723
1724 /* Get the last target status returned by target_wait(). */
1725 get_last_target_status (&wait_ptid, &wait_status);
1726
6a6b96b9 1727 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1728 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1729 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1730 && wait_status.value.sig != TARGET_SIGNAL_ILL
1731 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1732 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1733 {
1734 return 0;
1735 }
1736
5a437975
DE
1737 schedlock_enabled = (scheduler_mode == schedlock_on
1738 || (scheduler_mode == schedlock_step
1739 && step));
1740
d4db2f36
PA
1741 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1742 if (schedlock_enabled)
1743 return 0;
1744
1745 /* Don't switch over if we're about to resume some other process
1746 other than WAIT_PTID's, and schedule-multiple is off. */
1747 if (!sched_multi
1748 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1749 return 0;
1750
6a6b96b9 1751 /* Switched over from WAIT_PID. */
ea67f13b 1752 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1753 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1754 {
515630c5
UW
1755 struct regcache *regcache = get_thread_regcache (wait_ptid);
1756
6c95b8df
PA
1757 if (breakpoint_here_p (get_regcache_aspace (regcache),
1758 regcache_read_pc (regcache)))
ea67f13b 1759 {
515630c5
UW
1760 /* If stepping, remember current thread to switch back to. */
1761 if (step)
1762 deferred_step_ptid = inferior_ptid;
ea67f13b 1763
515630c5
UW
1764 /* Switch back to WAIT_PID thread. */
1765 switch_to_thread (wait_ptid);
6a6b96b9 1766
515630c5
UW
1767 /* We return 1 to indicate that there is a breakpoint here,
1768 so we need to step over it before continuing to avoid
1769 hitting it straight away. */
1770 return 1;
1771 }
ea67f13b
DJ
1772 }
1773
1774 return 0;
ea67f13b 1775}
e4846b08 1776
c906108c
SS
1777/* Basic routine for continuing the program in various fashions.
1778
1779 ADDR is the address to resume at, or -1 for resume where stopped.
1780 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1781 or -1 for act according to how it stopped.
c906108c 1782 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1783 -1 means return after that and print nothing.
1784 You should probably set various step_... variables
1785 before calling here, if you are stepping.
c906108c
SS
1786
1787 You should call clear_proceed_status before calling proceed. */
1788
1789void
96baa820 1790proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1791{
e58b0e63
PA
1792 struct regcache *regcache;
1793 struct gdbarch *gdbarch;
4e1c45ea 1794 struct thread_info *tp;
e58b0e63 1795 CORE_ADDR pc;
6c95b8df 1796 struct address_space *aspace;
c906108c
SS
1797 int oneproc = 0;
1798
e58b0e63
PA
1799 /* If we're stopped at a fork/vfork, follow the branch set by the
1800 "set follow-fork-mode" command; otherwise, we'll just proceed
1801 resuming the current thread. */
1802 if (!follow_fork ())
1803 {
1804 /* The target for some reason decided not to resume. */
1805 normal_stop ();
1806 return;
1807 }
1808
1809 regcache = get_current_regcache ();
1810 gdbarch = get_regcache_arch (regcache);
6c95b8df 1811 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
1812 pc = regcache_read_pc (regcache);
1813
c906108c 1814 if (step > 0)
515630c5 1815 step_start_function = find_pc_function (pc);
c906108c
SS
1816 if (step < 0)
1817 stop_after_trap = 1;
1818
2acceee2 1819 if (addr == (CORE_ADDR) -1)
c906108c 1820 {
6c95b8df 1821 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 1822 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1823 /* There is a breakpoint at the address we will resume at,
1824 step one instruction before inserting breakpoints so that
1825 we do not stop right away (and report a second hit at this
b2175913
MS
1826 breakpoint).
1827
1828 Note, we don't do this in reverse, because we won't
1829 actually be executing the breakpoint insn anyway.
1830 We'll be (un-)executing the previous instruction. */
1831
c906108c 1832 oneproc = 1;
515630c5
UW
1833 else if (gdbarch_single_step_through_delay_p (gdbarch)
1834 && gdbarch_single_step_through_delay (gdbarch,
1835 get_current_frame ()))
3352ef37
AC
1836 /* We stepped onto an instruction that needs to be stepped
1837 again before re-inserting the breakpoint, do so. */
c906108c
SS
1838 oneproc = 1;
1839 }
1840 else
1841 {
515630c5 1842 regcache_write_pc (regcache, addr);
c906108c
SS
1843 }
1844
527159b7 1845 if (debug_infrun)
8a9de0e4 1846 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1847 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1848 paddress (gdbarch, addr), siggnal, step);
527159b7 1849
06cd862c
PA
1850 /* We're handling a live event, so make sure we're doing live
1851 debugging. If we're looking at traceframes while the target is
1852 running, we're going to need to get back to that mode after
1853 handling the event. */
1854 if (non_stop)
1855 {
1856 make_cleanup_restore_current_traceframe ();
1857 set_traceframe_number (-1);
1858 }
1859
94cc34af
PA
1860 if (non_stop)
1861 /* In non-stop, each thread is handled individually. The context
1862 must already be set to the right thread here. */
1863 ;
1864 else
1865 {
1866 /* In a multi-threaded task we may select another thread and
1867 then continue or step.
c906108c 1868
94cc34af
PA
1869 But if the old thread was stopped at a breakpoint, it will
1870 immediately cause another breakpoint stop without any
1871 execution (i.e. it will report a breakpoint hit incorrectly).
1872 So we must step over it first.
c906108c 1873
94cc34af
PA
1874 prepare_to_proceed checks the current thread against the
1875 thread that reported the most recent event. If a step-over
1876 is required it returns TRUE and sets the current thread to
1877 the old thread. */
1878 if (prepare_to_proceed (step))
1879 oneproc = 1;
1880 }
c906108c 1881
4e1c45ea
PA
1882 /* prepare_to_proceed may change the current thread. */
1883 tp = inferior_thread ();
1884
c906108c 1885 if (oneproc)
74960c60 1886 {
4e1c45ea 1887 tp->trap_expected = 1;
237fc4c9
PA
1888 /* If displaced stepping is enabled, we can step over the
1889 breakpoint without hitting it, so leave all breakpoints
1890 inserted. Otherwise we need to disable all breakpoints, step
1891 one instruction, and then re-add them when that step is
1892 finished. */
515630c5 1893 if (!use_displaced_stepping (gdbarch))
237fc4c9 1894 remove_breakpoints ();
74960c60 1895 }
237fc4c9
PA
1896
1897 /* We can insert breakpoints if we're not trying to step over one,
1898 or if we are stepping over one but we're using displaced stepping
1899 to do so. */
4e1c45ea 1900 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1901 insert_breakpoints ();
c906108c 1902
2020b7ab
PA
1903 if (!non_stop)
1904 {
1905 /* Pass the last stop signal to the thread we're resuming,
1906 irrespective of whether the current thread is the thread that
1907 got the last event or not. This was historically GDB's
1908 behaviour before keeping a stop_signal per thread. */
1909
1910 struct thread_info *last_thread;
1911 ptid_t last_ptid;
1912 struct target_waitstatus last_status;
1913
1914 get_last_target_status (&last_ptid, &last_status);
1915 if (!ptid_equal (inferior_ptid, last_ptid)
1916 && !ptid_equal (last_ptid, null_ptid)
1917 && !ptid_equal (last_ptid, minus_one_ptid))
1918 {
e09875d4 1919 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1920 if (last_thread)
1921 {
1922 tp->stop_signal = last_thread->stop_signal;
1923 last_thread->stop_signal = TARGET_SIGNAL_0;
1924 }
1925 }
1926 }
1927
c906108c 1928 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1929 tp->stop_signal = siggnal;
c906108c
SS
1930 /* If this signal should not be seen by program,
1931 give it zero. Used for debugging signals. */
2020b7ab
PA
1932 else if (!signal_program[tp->stop_signal])
1933 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1934
1935 annotate_starting ();
1936
1937 /* Make sure that output from GDB appears before output from the
1938 inferior. */
1939 gdb_flush (gdb_stdout);
1940
e4846b08
JJ
1941 /* Refresh prev_pc value just prior to resuming. This used to be
1942 done in stop_stepping, however, setting prev_pc there did not handle
1943 scenarios such as inferior function calls or returning from
1944 a function via the return command. In those cases, the prev_pc
1945 value was not set properly for subsequent commands. The prev_pc value
1946 is used to initialize the starting line number in the ecs. With an
1947 invalid value, the gdb next command ends up stopping at the position
1948 represented by the next line table entry past our start position.
1949 On platforms that generate one line table entry per line, this
1950 is not a problem. However, on the ia64, the compiler generates
1951 extraneous line table entries that do not increase the line number.
1952 When we issue the gdb next command on the ia64 after an inferior call
1953 or a return command, we often end up a few instructions forward, still
1954 within the original line we started.
1955
d5cd6034
JB
1956 An attempt was made to refresh the prev_pc at the same time the
1957 execution_control_state is initialized (for instance, just before
1958 waiting for an inferior event). But this approach did not work
1959 because of platforms that use ptrace, where the pc register cannot
1960 be read unless the inferior is stopped. At that point, we are not
1961 guaranteed the inferior is stopped and so the regcache_read_pc() call
1962 can fail. Setting the prev_pc value here ensures the value is updated
1963 correctly when the inferior is stopped. */
4e1c45ea 1964 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1965
59f0d5d9 1966 /* Fill in with reasonable starting values. */
4e1c45ea 1967 init_thread_stepping_state (tp);
59f0d5d9 1968
59f0d5d9
PA
1969 /* Reset to normal state. */
1970 init_infwait_state ();
1971
c906108c 1972 /* Resume inferior. */
2020b7ab 1973 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1974
1975 /* Wait for it to stop (if not standalone)
1976 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1977 /* Do this only if we are not using the event loop, or if the target
1978 does not support asynchronous execution. */
362646f5 1979 if (!target_can_async_p ())
43ff13b4 1980 {
ae123ec6 1981 wait_for_inferior (0);
43ff13b4
JM
1982 normal_stop ();
1983 }
c906108c 1984}
c906108c
SS
1985\f
1986
1987/* Start remote-debugging of a machine over a serial link. */
96baa820 1988
c906108c 1989void
8621d6a9 1990start_remote (int from_tty)
c906108c 1991{
d6b48e9c 1992 struct inferior *inferior;
c906108c 1993 init_wait_for_inferior ();
d6b48e9c
PA
1994
1995 inferior = current_inferior ();
1996 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1997
6426a772
JM
1998 /* Always go on waiting for the target, regardless of the mode. */
1999 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2000 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2001 nothing is returned (instead of just blocking). Because of this,
2002 targets expecting an immediate response need to, internally, set
2003 things up so that the target_wait() is forced to eventually
2004 timeout. */
2005 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2006 differentiate to its caller what the state of the target is after
2007 the initial open has been performed. Here we're assuming that
2008 the target has stopped. It should be possible to eventually have
2009 target_open() return to the caller an indication that the target
2010 is currently running and GDB state should be set to the same as
2011 for an async run. */
ae123ec6 2012 wait_for_inferior (0);
8621d6a9
DJ
2013
2014 /* Now that the inferior has stopped, do any bookkeeping like
2015 loading shared libraries. We want to do this before normal_stop,
2016 so that the displayed frame is up to date. */
2017 post_create_inferior (&current_target, from_tty);
2018
6426a772 2019 normal_stop ();
c906108c
SS
2020}
2021
2022/* Initialize static vars when a new inferior begins. */
2023
2024void
96baa820 2025init_wait_for_inferior (void)
c906108c
SS
2026{
2027 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2028
c906108c
SS
2029 breakpoint_init_inferior (inf_starting);
2030
c906108c 2031 clear_proceed_status ();
9f976b41
DJ
2032
2033 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2034 deferred_step_ptid = null_ptid;
ca005067
DJ
2035
2036 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2037
0d1e5fa7
PA
2038 previous_inferior_ptid = null_ptid;
2039 init_infwait_state ();
2040
edb3359d
DJ
2041 /* Discard any skipped inlined frames. */
2042 clear_inline_frame_state (minus_one_ptid);
c906108c 2043}
237fc4c9 2044
c906108c 2045\f
b83266a0
SS
2046/* This enum encodes possible reasons for doing a target_wait, so that
2047 wfi can call target_wait in one place. (Ultimately the call will be
2048 moved out of the infinite loop entirely.) */
2049
c5aa993b
JM
2050enum infwait_states
2051{
cd0fc7c3
SS
2052 infwait_normal_state,
2053 infwait_thread_hop_state,
d983da9c 2054 infwait_step_watch_state,
cd0fc7c3 2055 infwait_nonstep_watch_state
b83266a0
SS
2056};
2057
11cf8741
JM
2058/* Why did the inferior stop? Used to print the appropriate messages
2059 to the interface from within handle_inferior_event(). */
2060enum inferior_stop_reason
2061{
11cf8741
JM
2062 /* Step, next, nexti, stepi finished. */
2063 END_STEPPING_RANGE,
11cf8741
JM
2064 /* Inferior terminated by signal. */
2065 SIGNAL_EXITED,
2066 /* Inferior exited. */
2067 EXITED,
2068 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
2069 SIGNAL_RECEIVED,
2070 /* Reverse execution -- target ran out of history info. */
2071 NO_HISTORY
11cf8741
JM
2072};
2073
0d1e5fa7
PA
2074/* The PTID we'll do a target_wait on.*/
2075ptid_t waiton_ptid;
2076
2077/* Current inferior wait state. */
2078enum infwait_states infwait_state;
cd0fc7c3 2079
0d1e5fa7
PA
2080/* Data to be passed around while handling an event. This data is
2081 discarded between events. */
c5aa993b 2082struct execution_control_state
488f131b 2083{
0d1e5fa7 2084 ptid_t ptid;
4e1c45ea
PA
2085 /* The thread that got the event, if this was a thread event; NULL
2086 otherwise. */
2087 struct thread_info *event_thread;
2088
488f131b 2089 struct target_waitstatus ws;
488f131b
JB
2090 int random_signal;
2091 CORE_ADDR stop_func_start;
2092 CORE_ADDR stop_func_end;
2093 char *stop_func_name;
488f131b 2094 int new_thread_event;
488f131b
JB
2095 int wait_some_more;
2096};
2097
ec9499be 2098static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2099
568d6575
UW
2100static void handle_step_into_function (struct gdbarch *gdbarch,
2101 struct execution_control_state *ecs);
2102static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2103 struct execution_control_state *ecs);
44cbf7b5 2104static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 2105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
2106static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2107 struct symtab_and_line sr_sal,
44cbf7b5 2108 struct frame_id sr_id);
a6d9a66e 2109static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 2110
104c1213
JM
2111static void stop_stepping (struct execution_control_state *ecs);
2112static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2113static void keep_going (struct execution_control_state *ecs);
488f131b
JB
2114static void print_stop_reason (enum inferior_stop_reason stop_reason,
2115 int stop_info);
104c1213 2116
252fbfc8
PA
2117/* Callback for iterate over threads. If the thread is stopped, but
2118 the user/frontend doesn't know about that yet, go through
2119 normal_stop, as if the thread had just stopped now. ARG points at
2120 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2121 ptid_is_pid(PTID) is true, applies to all threads of the process
2122 pointed at by PTID. Otherwise, apply only to the thread pointed by
2123 PTID. */
2124
2125static int
2126infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2127{
2128 ptid_t ptid = * (ptid_t *) arg;
2129
2130 if ((ptid_equal (info->ptid, ptid)
2131 || ptid_equal (minus_one_ptid, ptid)
2132 || (ptid_is_pid (ptid)
2133 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2134 && is_running (info->ptid)
2135 && !is_executing (info->ptid))
2136 {
2137 struct cleanup *old_chain;
2138 struct execution_control_state ecss;
2139 struct execution_control_state *ecs = &ecss;
2140
2141 memset (ecs, 0, sizeof (*ecs));
2142
2143 old_chain = make_cleanup_restore_current_thread ();
2144
2145 switch_to_thread (info->ptid);
2146
2147 /* Go through handle_inferior_event/normal_stop, so we always
2148 have consistent output as if the stop event had been
2149 reported. */
2150 ecs->ptid = info->ptid;
e09875d4 2151 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2152 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2153 ecs->ws.value.sig = TARGET_SIGNAL_0;
2154
2155 handle_inferior_event (ecs);
2156
2157 if (!ecs->wait_some_more)
2158 {
2159 struct thread_info *tp;
2160
2161 normal_stop ();
2162
2163 /* Finish off the continuations. The continations
2164 themselves are responsible for realising the thread
2165 didn't finish what it was supposed to do. */
2166 tp = inferior_thread ();
2167 do_all_intermediate_continuations_thread (tp);
2168 do_all_continuations_thread (tp);
2169 }
2170
2171 do_cleanups (old_chain);
2172 }
2173
2174 return 0;
2175}
2176
2177/* This function is attached as a "thread_stop_requested" observer.
2178 Cleanup local state that assumed the PTID was to be resumed, and
2179 report the stop to the frontend. */
2180
2c0b251b 2181static void
252fbfc8
PA
2182infrun_thread_stop_requested (ptid_t ptid)
2183{
fc1cf338 2184 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2185
2186 /* PTID was requested to stop. Remove it from the displaced
2187 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2188
2189 for (displaced = displaced_step_inferior_states;
2190 displaced;
2191 displaced = displaced->next)
252fbfc8 2192 {
fc1cf338 2193 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2194
fc1cf338
PA
2195 it = displaced->step_request_queue;
2196 prev_next_p = &displaced->step_request_queue;
2197 while (it)
252fbfc8 2198 {
fc1cf338
PA
2199 if (ptid_match (it->ptid, ptid))
2200 {
2201 *prev_next_p = it->next;
2202 it->next = NULL;
2203 xfree (it);
2204 }
252fbfc8 2205 else
fc1cf338
PA
2206 {
2207 prev_next_p = &it->next;
2208 }
252fbfc8 2209
fc1cf338 2210 it = *prev_next_p;
252fbfc8 2211 }
252fbfc8
PA
2212 }
2213
2214 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2215}
2216
a07daef3
PA
2217static void
2218infrun_thread_thread_exit (struct thread_info *tp, int silent)
2219{
2220 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2221 nullify_last_target_wait_ptid ();
2222}
2223
4e1c45ea
PA
2224/* Callback for iterate_over_threads. */
2225
2226static int
2227delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2228{
2229 if (is_exited (info->ptid))
2230 return 0;
2231
2232 delete_step_resume_breakpoint (info);
2233 return 0;
2234}
2235
2236/* In all-stop, delete the step resume breakpoint of any thread that
2237 had one. In non-stop, delete the step resume breakpoint of the
2238 thread that just stopped. */
2239
2240static void
2241delete_step_thread_step_resume_breakpoint (void)
2242{
2243 if (!target_has_execution
2244 || ptid_equal (inferior_ptid, null_ptid))
2245 /* If the inferior has exited, we have already deleted the step
2246 resume breakpoints out of GDB's lists. */
2247 return;
2248
2249 if (non_stop)
2250 {
2251 /* If in non-stop mode, only delete the step-resume or
2252 longjmp-resume breakpoint of the thread that just stopped
2253 stepping. */
2254 struct thread_info *tp = inferior_thread ();
2255 delete_step_resume_breakpoint (tp);
2256 }
2257 else
2258 /* In all-stop mode, delete all step-resume and longjmp-resume
2259 breakpoints of any thread that had them. */
2260 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2261}
2262
2263/* A cleanup wrapper. */
2264
2265static void
2266delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2267{
2268 delete_step_thread_step_resume_breakpoint ();
2269}
2270
223698f8
DE
2271/* Pretty print the results of target_wait, for debugging purposes. */
2272
2273static void
2274print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2275 const struct target_waitstatus *ws)
2276{
2277 char *status_string = target_waitstatus_to_string (ws);
2278 struct ui_file *tmp_stream = mem_fileopen ();
2279 char *text;
223698f8
DE
2280
2281 /* The text is split over several lines because it was getting too long.
2282 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2283 output as a unit; we want only one timestamp printed if debug_timestamp
2284 is set. */
2285
2286 fprintf_unfiltered (tmp_stream,
2287 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2288 if (PIDGET (waiton_ptid) != -1)
2289 fprintf_unfiltered (tmp_stream,
2290 " [%s]", target_pid_to_str (waiton_ptid));
2291 fprintf_unfiltered (tmp_stream, ", status) =\n");
2292 fprintf_unfiltered (tmp_stream,
2293 "infrun: %d [%s],\n",
2294 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2295 fprintf_unfiltered (tmp_stream,
2296 "infrun: %s\n",
2297 status_string);
2298
759ef836 2299 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2300
2301 /* This uses %s in part to handle %'s in the text, but also to avoid
2302 a gcc error: the format attribute requires a string literal. */
2303 fprintf_unfiltered (gdb_stdlog, "%s", text);
2304
2305 xfree (status_string);
2306 xfree (text);
2307 ui_file_delete (tmp_stream);
2308}
2309
24291992
PA
2310/* Prepare and stabilize the inferior for detaching it. E.g.,
2311 detaching while a thread is displaced stepping is a recipe for
2312 crashing it, as nothing would readjust the PC out of the scratch
2313 pad. */
2314
2315void
2316prepare_for_detach (void)
2317{
2318 struct inferior *inf = current_inferior ();
2319 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2320 struct cleanup *old_chain_1;
2321 struct displaced_step_inferior_state *displaced;
2322
2323 displaced = get_displaced_stepping_state (inf->pid);
2324
2325 /* Is any thread of this process displaced stepping? If not,
2326 there's nothing else to do. */
2327 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2328 return;
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "displaced-stepping in-process while detaching");
2333
2334 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2335 inf->detaching = 1;
2336
2337 while (!ptid_equal (displaced->step_ptid, null_ptid))
2338 {
2339 struct cleanup *old_chain_2;
2340 struct execution_control_state ecss;
2341 struct execution_control_state *ecs;
2342
2343 ecs = &ecss;
2344 memset (ecs, 0, sizeof (*ecs));
2345
2346 overlay_cache_invalid = 1;
2347
2348 /* We have to invalidate the registers BEFORE calling
2349 target_wait because they can be loaded from the target while
2350 in target_wait. This makes remote debugging a bit more
2351 efficient for those targets that provide critical registers
2352 as part of their normal status mechanism. */
2353
2354 registers_changed ();
2355
2356 if (deprecated_target_wait_hook)
2357 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2358 else
2359 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2360
2361 if (debug_infrun)
2362 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2363
2364 /* If an error happens while handling the event, propagate GDB's
2365 knowledge of the executing state to the frontend/user running
2366 state. */
2367 old_chain_2 = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2368
4d533103
PA
2369 /* In non-stop mode, each thread is handled individually.
2370 Switch early, so the global state is set correctly for this
2371 thread. */
2372 if (non_stop
2373 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2374 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2375 context_switch (ecs->ptid);
2376
24291992
PA
2377 /* Now figure out what to do with the result of the result. */
2378 handle_inferior_event (ecs);
2379
2380 /* No error, don't finish the state yet. */
2381 discard_cleanups (old_chain_2);
2382
2383 /* Breakpoints and watchpoints are not installed on the target
2384 at this point, and signals are passed directly to the
2385 inferior, so this must mean the process is gone. */
2386 if (!ecs->wait_some_more)
2387 {
2388 discard_cleanups (old_chain_1);
2389 error (_("Program exited while detaching"));
2390 }
2391 }
2392
2393 discard_cleanups (old_chain_1);
2394}
2395
cd0fc7c3 2396/* Wait for control to return from inferior to debugger.
ae123ec6
JB
2397
2398 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2399 as if they were SIGTRAP signals. This can be useful during
2400 the startup sequence on some targets such as HP/UX, where
2401 we receive an EXEC event instead of the expected SIGTRAP.
2402
cd0fc7c3
SS
2403 If inferior gets a signal, we may decide to start it up again
2404 instead of returning. That is why there is a loop in this function.
2405 When this function actually returns it means the inferior
2406 should be left stopped and GDB should read more commands. */
2407
2408void
ae123ec6 2409wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
2410{
2411 struct cleanup *old_cleanups;
0d1e5fa7 2412 struct execution_control_state ecss;
cd0fc7c3 2413 struct execution_control_state *ecs;
c906108c 2414
527159b7 2415 if (debug_infrun)
ae123ec6
JB
2416 fprintf_unfiltered
2417 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2418 treat_exec_as_sigtrap);
527159b7 2419
4e1c45ea
PA
2420 old_cleanups =
2421 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2422
cd0fc7c3 2423 ecs = &ecss;
0d1e5fa7
PA
2424 memset (ecs, 0, sizeof (*ecs));
2425
e0bb1c1c
PA
2426 /* We'll update this if & when we switch to a new thread. */
2427 previous_inferior_ptid = inferior_ptid;
2428
c906108c
SS
2429 while (1)
2430 {
29f49a6a
PA
2431 struct cleanup *old_chain;
2432
ec9499be
UW
2433 /* We have to invalidate the registers BEFORE calling target_wait
2434 because they can be loaded from the target while in target_wait.
2435 This makes remote debugging a bit more efficient for those
2436 targets that provide critical registers as part of their normal
2437 status mechanism. */
2438
2439 overlay_cache_invalid = 1;
2440 registers_changed ();
2441
9a4105ab 2442 if (deprecated_target_wait_hook)
47608cb1 2443 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2444 else
47608cb1 2445 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2446
f00150c9 2447 if (debug_infrun)
223698f8 2448 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2449
ae123ec6
JB
2450 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2451 {
2452 xfree (ecs->ws.value.execd_pathname);
2453 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2454 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2455 }
2456
29f49a6a
PA
2457 /* If an error happens while handling the event, propagate GDB's
2458 knowledge of the executing state to the frontend/user running
2459 state. */
2460 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2461
a96d9b2e
SDJ
2462 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2463 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2464 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2465
cd0fc7c3
SS
2466 /* Now figure out what to do with the result of the result. */
2467 handle_inferior_event (ecs);
c906108c 2468
29f49a6a
PA
2469 /* No error, don't finish the state yet. */
2470 discard_cleanups (old_chain);
2471
cd0fc7c3
SS
2472 if (!ecs->wait_some_more)
2473 break;
2474 }
4e1c45ea 2475
cd0fc7c3
SS
2476 do_cleanups (old_cleanups);
2477}
c906108c 2478
43ff13b4
JM
2479/* Asynchronous version of wait_for_inferior. It is called by the
2480 event loop whenever a change of state is detected on the file
2481 descriptor corresponding to the target. It can be called more than
2482 once to complete a single execution command. In such cases we need
a474d7c2
PA
2483 to keep the state in a global variable ECSS. If it is the last time
2484 that this function is called for a single execution command, then
2485 report to the user that the inferior has stopped, and do the
2486 necessary cleanups. */
43ff13b4
JM
2487
2488void
fba45db2 2489fetch_inferior_event (void *client_data)
43ff13b4 2490{
0d1e5fa7 2491 struct execution_control_state ecss;
a474d7c2 2492 struct execution_control_state *ecs = &ecss;
4f8d22e3 2493 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2494 struct cleanup *ts_old_chain;
4f8d22e3 2495 int was_sync = sync_execution;
43ff13b4 2496
0d1e5fa7
PA
2497 memset (ecs, 0, sizeof (*ecs));
2498
ec9499be
UW
2499 /* We'll update this if & when we switch to a new thread. */
2500 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2501
4f8d22e3
PA
2502 if (non_stop)
2503 /* In non-stop mode, the user/frontend should not notice a thread
2504 switch due to internal events. Make sure we reverse to the
2505 user selected thread and frame after handling the event and
2506 running any breakpoint commands. */
2507 make_cleanup_restore_current_thread ();
2508
59f0d5d9
PA
2509 /* We have to invalidate the registers BEFORE calling target_wait
2510 because they can be loaded from the target while in target_wait.
2511 This makes remote debugging a bit more efficient for those
2512 targets that provide critical registers as part of their normal
2513 status mechanism. */
43ff13b4 2514
ec9499be 2515 overlay_cache_invalid = 1;
59f0d5d9 2516 registers_changed ();
43ff13b4 2517
9a4105ab 2518 if (deprecated_target_wait_hook)
a474d7c2 2519 ecs->ptid =
47608cb1 2520 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2521 else
47608cb1 2522 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2523
f00150c9 2524 if (debug_infrun)
223698f8 2525 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2526
94cc34af
PA
2527 if (non_stop
2528 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2529 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2530 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2531 /* In non-stop mode, each thread is handled individually. Switch
2532 early, so the global state is set correctly for this
2533 thread. */
2534 context_switch (ecs->ptid);
2535
29f49a6a
PA
2536 /* If an error happens while handling the event, propagate GDB's
2537 knowledge of the executing state to the frontend/user running
2538 state. */
2539 if (!non_stop)
2540 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2541 else
2542 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2543
43ff13b4 2544 /* Now figure out what to do with the result of the result. */
a474d7c2 2545 handle_inferior_event (ecs);
43ff13b4 2546
a474d7c2 2547 if (!ecs->wait_some_more)
43ff13b4 2548 {
d6b48e9c
PA
2549 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2550
4e1c45ea 2551 delete_step_thread_step_resume_breakpoint ();
f107f563 2552
d6b48e9c
PA
2553 /* We may not find an inferior if this was a process exit. */
2554 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2555 normal_stop ();
2556
af679fd0
PA
2557 if (target_has_execution
2558 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2559 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2560 && ecs->event_thread->step_multi
414c69f7 2561 && ecs->event_thread->stop_step)
c2d11a7d
JM
2562 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2563 else
2564 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2565 }
4f8d22e3 2566
29f49a6a
PA
2567 /* No error, don't finish the thread states yet. */
2568 discard_cleanups (ts_old_chain);
2569
4f8d22e3
PA
2570 /* Revert thread and frame. */
2571 do_cleanups (old_chain);
2572
2573 /* If the inferior was in sync execution mode, and now isn't,
2574 restore the prompt. */
2575 if (was_sync && !sync_execution)
2576 display_gdb_prompt (0);
43ff13b4
JM
2577}
2578
edb3359d
DJ
2579/* Record the frame and location we're currently stepping through. */
2580void
2581set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2582{
2583 struct thread_info *tp = inferior_thread ();
2584
2585 tp->step_frame_id = get_frame_id (frame);
2586 tp->step_stack_frame_id = get_stack_frame_id (frame);
2587
2588 tp->current_symtab = sal.symtab;
2589 tp->current_line = sal.line;
2590}
2591
0d1e5fa7
PA
2592/* Clear context switchable stepping state. */
2593
2594void
4e1c45ea 2595init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2596{
2597 tss->stepping_over_breakpoint = 0;
2598 tss->step_after_step_resume_breakpoint = 0;
2599 tss->stepping_through_solib_after_catch = 0;
2600 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2601}
2602
e02bc4cc 2603/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2604 target_wait()/deprecated_target_wait_hook(). The data is actually
2605 cached by handle_inferior_event(), which gets called immediately
2606 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2607
2608void
488f131b 2609get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2610{
39f77062 2611 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2612 *status = target_last_waitstatus;
2613}
2614
ac264b3b
MS
2615void
2616nullify_last_target_wait_ptid (void)
2617{
2618 target_last_wait_ptid = minus_one_ptid;
2619}
2620
dcf4fbde 2621/* Switch thread contexts. */
dd80620e
MS
2622
2623static void
0d1e5fa7 2624context_switch (ptid_t ptid)
dd80620e 2625{
fd48f117
DJ
2626 if (debug_infrun)
2627 {
2628 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2629 target_pid_to_str (inferior_ptid));
2630 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2631 target_pid_to_str (ptid));
fd48f117
DJ
2632 }
2633
0d1e5fa7 2634 switch_to_thread (ptid);
dd80620e
MS
2635}
2636
4fa8626c
DJ
2637static void
2638adjust_pc_after_break (struct execution_control_state *ecs)
2639{
24a73cce
UW
2640 struct regcache *regcache;
2641 struct gdbarch *gdbarch;
6c95b8df 2642 struct address_space *aspace;
8aad930b 2643 CORE_ADDR breakpoint_pc;
4fa8626c 2644
4fa8626c
DJ
2645 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2646 we aren't, just return.
9709f61c
DJ
2647
2648 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2649 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2650 implemented by software breakpoints should be handled through the normal
2651 breakpoint layer.
8fb3e588 2652
4fa8626c
DJ
2653 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2654 different signals (SIGILL or SIGEMT for instance), but it is less
2655 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2656 gdbarch_decr_pc_after_break. I don't know any specific target that
2657 generates these signals at breakpoints (the code has been in GDB since at
2658 least 1992) so I can not guess how to handle them here.
8fb3e588 2659
e6cf7916
UW
2660 In earlier versions of GDB, a target with
2661 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2662 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2663 target with both of these set in GDB history, and it seems unlikely to be
2664 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2665
2666 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2667 return;
2668
2669 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2670 return;
2671
4058b839
PA
2672 /* In reverse execution, when a breakpoint is hit, the instruction
2673 under it has already been de-executed. The reported PC always
2674 points at the breakpoint address, so adjusting it further would
2675 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2676 architecture:
2677
2678 B1 0x08000000 : INSN1
2679 B2 0x08000001 : INSN2
2680 0x08000002 : INSN3
2681 PC -> 0x08000003 : INSN4
2682
2683 Say you're stopped at 0x08000003 as above. Reverse continuing
2684 from that point should hit B2 as below. Reading the PC when the
2685 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2686 been de-executed already.
2687
2688 B1 0x08000000 : INSN1
2689 B2 PC -> 0x08000001 : INSN2
2690 0x08000002 : INSN3
2691 0x08000003 : INSN4
2692
2693 We can't apply the same logic as for forward execution, because
2694 we would wrongly adjust the PC to 0x08000000, since there's a
2695 breakpoint at PC - 1. We'd then report a hit on B1, although
2696 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2697 behaviour. */
2698 if (execution_direction == EXEC_REVERSE)
2699 return;
2700
24a73cce
UW
2701 /* If this target does not decrement the PC after breakpoints, then
2702 we have nothing to do. */
2703 regcache = get_thread_regcache (ecs->ptid);
2704 gdbarch = get_regcache_arch (regcache);
2705 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2706 return;
2707
6c95b8df
PA
2708 aspace = get_regcache_aspace (regcache);
2709
8aad930b
AC
2710 /* Find the location where (if we've hit a breakpoint) the
2711 breakpoint would be. */
515630c5
UW
2712 breakpoint_pc = regcache_read_pc (regcache)
2713 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2714
1c5cfe86
PA
2715 /* Check whether there actually is a software breakpoint inserted at
2716 that location.
2717
2718 If in non-stop mode, a race condition is possible where we've
2719 removed a breakpoint, but stop events for that breakpoint were
2720 already queued and arrive later. To suppress those spurious
2721 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2722 and retire them after a number of stop events are reported. */
6c95b8df
PA
2723 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2724 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2725 {
96429cc8
HZ
2726 struct cleanup *old_cleanups = NULL;
2727 if (RECORD_IS_USED)
2728 old_cleanups = record_gdb_operation_disable_set ();
2729
1c0fdd0e
UW
2730 /* When using hardware single-step, a SIGTRAP is reported for both
2731 a completed single-step and a software breakpoint. Need to
2732 differentiate between the two, as the latter needs adjusting
2733 but the former does not.
2734
2735 The SIGTRAP can be due to a completed hardware single-step only if
2736 - we didn't insert software single-step breakpoints
2737 - the thread to be examined is still the current thread
2738 - this thread is currently being stepped
2739
2740 If any of these events did not occur, we must have stopped due
2741 to hitting a software breakpoint, and have to back up to the
2742 breakpoint address.
2743
2744 As a special case, we could have hardware single-stepped a
2745 software breakpoint. In this case (prev_pc == breakpoint_pc),
2746 we also need to back up to the breakpoint address. */
2747
2748 if (singlestep_breakpoints_inserted_p
2749 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2750 || !currently_stepping (ecs->event_thread)
2751 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2752 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2753
2754 if (RECORD_IS_USED)
2755 do_cleanups (old_cleanups);
8aad930b 2756 }
4fa8626c
DJ
2757}
2758
0d1e5fa7
PA
2759void
2760init_infwait_state (void)
2761{
2762 waiton_ptid = pid_to_ptid (-1);
2763 infwait_state = infwait_normal_state;
2764}
2765
94cc34af
PA
2766void
2767error_is_running (void)
2768{
2769 error (_("\
2770Cannot execute this command while the selected thread is running."));
2771}
2772
2773void
2774ensure_not_running (void)
2775{
2776 if (is_running (inferior_ptid))
2777 error_is_running ();
2778}
2779
edb3359d
DJ
2780static int
2781stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2782{
2783 for (frame = get_prev_frame (frame);
2784 frame != NULL;
2785 frame = get_prev_frame (frame))
2786 {
2787 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2788 return 1;
2789 if (get_frame_type (frame) != INLINE_FRAME)
2790 break;
2791 }
2792
2793 return 0;
2794}
2795
a96d9b2e
SDJ
2796/* Auxiliary function that handles syscall entry/return events.
2797 It returns 1 if the inferior should keep going (and GDB
2798 should ignore the event), or 0 if the event deserves to be
2799 processed. */
ca2163eb 2800
a96d9b2e 2801static int
ca2163eb 2802handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 2803{
ca2163eb
PA
2804 struct regcache *regcache;
2805 struct gdbarch *gdbarch;
2806 int syscall_number;
2807
2808 if (!ptid_equal (ecs->ptid, inferior_ptid))
2809 context_switch (ecs->ptid);
2810
2811 regcache = get_thread_regcache (ecs->ptid);
2812 gdbarch = get_regcache_arch (regcache);
2813 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2814 stop_pc = regcache_read_pc (regcache);
2815
a96d9b2e
SDJ
2816 target_last_waitstatus.value.syscall_number = syscall_number;
2817
2818 if (catch_syscall_enabled () > 0
2819 && catching_syscall_number (syscall_number) > 0)
2820 {
2821 if (debug_infrun)
2822 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2823 syscall_number);
a96d9b2e 2824
6c95b8df
PA
2825 ecs->event_thread->stop_bpstat
2826 = bpstat_stop_status (get_regcache_aspace (regcache),
2827 stop_pc, ecs->ptid);
a96d9b2e
SDJ
2828 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2829
ca2163eb
PA
2830 if (!ecs->random_signal)
2831 {
2832 /* Catchpoint hit. */
2833 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2834 return 0;
2835 }
a96d9b2e 2836 }
ca2163eb
PA
2837
2838 /* If no catchpoint triggered for this, then keep going. */
2839 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2840 keep_going (ecs);
2841 return 1;
a96d9b2e
SDJ
2842}
2843
cd0fc7c3
SS
2844/* Given an execution control state that has been freshly filled in
2845 by an event from the inferior, figure out what it means and take
2846 appropriate action. */
c906108c 2847
ec9499be 2848static void
96baa820 2849handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2850{
568d6575
UW
2851 struct frame_info *frame;
2852 struct gdbarch *gdbarch;
c8edd8b4 2853 int sw_single_step_trap_p = 0;
d983da9c
DJ
2854 int stopped_by_watchpoint;
2855 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2856 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2857 enum stop_kind stop_soon;
2858
28736962
PA
2859 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2860 {
2861 /* We had an event in the inferior, but we are not interested in
2862 handling it at this level. The lower layers have already
2863 done what needs to be done, if anything.
2864
2865 One of the possible circumstances for this is when the
2866 inferior produces output for the console. The inferior has
2867 not stopped, and we are ignoring the event. Another possible
2868 circumstance is any event which the lower level knows will be
2869 reported multiple times without an intervening resume. */
2870 if (debug_infrun)
2871 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2872 prepare_to_wait (ecs);
2873 return;
2874 }
2875
d6b48e9c 2876 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 2877 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
2878 {
2879 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2880 gdb_assert (inf);
2881 stop_soon = inf->stop_soon;
2882 }
2883 else
2884 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2885
e02bc4cc 2886 /* Cache the last pid/waitstatus. */
39f77062 2887 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2888 target_last_waitstatus = ecs->ws;
e02bc4cc 2889
ca005067 2890 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 2891 stop_stack_dummy = STOP_NONE;
ca005067 2892
8c90c137
LM
2893 /* If it's a new process, add it to the thread database */
2894
2895 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2896 && !ptid_equal (ecs->ptid, minus_one_ptid)
2897 && !in_thread_list (ecs->ptid));
2898
2899 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2900 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2901 add_thread (ecs->ptid);
2902
e09875d4 2903 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2904
2905 /* Dependent on valid ECS->EVENT_THREAD. */
2906 adjust_pc_after_break (ecs);
2907
2908 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2909 reinit_frame_cache ();
2910
28736962
PA
2911 breakpoint_retire_moribund ();
2912
2b009048
DJ
2913 /* First, distinguish signals caused by the debugger from signals
2914 that have to do with the program's own actions. Note that
2915 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2916 on the operating system version. Here we detect when a SIGILL or
2917 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2918 something similar for SIGSEGV, since a SIGSEGV will be generated
2919 when we're trying to execute a breakpoint instruction on a
2920 non-executable stack. This happens for call dummy breakpoints
2921 for architectures like SPARC that place call dummies on the
2922 stack. */
2b009048
DJ
2923 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
2924 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
2925 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 2926 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 2927 {
de0a0249
UW
2928 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2929
2930 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2931 regcache_read_pc (regcache)))
2932 {
2933 if (debug_infrun)
2934 fprintf_unfiltered (gdb_stdlog,
2935 "infrun: Treating signal as SIGTRAP\n");
2936 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2937 }
2b009048
DJ
2938 }
2939
28736962
PA
2940 /* Mark the non-executing threads accordingly. In all-stop, all
2941 threads of all processes are stopped when we get any event
2942 reported. In non-stop mode, only the event thread stops. If
2943 we're handling a process exit in non-stop mode, there's nothing
2944 to do, as threads of the dead process are gone, and threads of
2945 any other process were left running. */
2946 if (!non_stop)
2947 set_executing (minus_one_ptid, 0);
2948 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2949 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2950 set_executing (inferior_ptid, 0);
8c90c137 2951
0d1e5fa7 2952 switch (infwait_state)
488f131b
JB
2953 {
2954 case infwait_thread_hop_state:
527159b7 2955 if (debug_infrun)
8a9de0e4 2956 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 2957 break;
b83266a0 2958
488f131b 2959 case infwait_normal_state:
527159b7 2960 if (debug_infrun)
8a9de0e4 2961 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2962 break;
2963
2964 case infwait_step_watch_state:
2965 if (debug_infrun)
2966 fprintf_unfiltered (gdb_stdlog,
2967 "infrun: infwait_step_watch_state\n");
2968
2969 stepped_after_stopped_by_watchpoint = 1;
488f131b 2970 break;
b83266a0 2971
488f131b 2972 case infwait_nonstep_watch_state:
527159b7 2973 if (debug_infrun)
8a9de0e4
AC
2974 fprintf_unfiltered (gdb_stdlog,
2975 "infrun: infwait_nonstep_watch_state\n");
488f131b 2976 insert_breakpoints ();
c906108c 2977
488f131b
JB
2978 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2979 handle things like signals arriving and other things happening
2980 in combination correctly? */
2981 stepped_after_stopped_by_watchpoint = 1;
2982 break;
65e82032
AC
2983
2984 default:
e2e0b3e5 2985 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2986 }
ec9499be 2987
0d1e5fa7 2988 infwait_state = infwait_normal_state;
ec9499be 2989 waiton_ptid = pid_to_ptid (-1);
c906108c 2990
488f131b
JB
2991 switch (ecs->ws.kind)
2992 {
2993 case TARGET_WAITKIND_LOADED:
527159b7 2994 if (debug_infrun)
8a9de0e4 2995 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2996 /* Ignore gracefully during startup of the inferior, as it might
2997 be the shell which has just loaded some objects, otherwise
2998 add the symbols for the newly loaded objects. Also ignore at
2999 the beginning of an attach or remote session; we will query
3000 the full list of libraries once the connection is
3001 established. */
c0236d92 3002 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3003 {
488f131b
JB
3004 /* Check for any newly added shared libraries if we're
3005 supposed to be adding them automatically. Switch
3006 terminal for any messages produced by
3007 breakpoint_re_set. */
3008 target_terminal_ours_for_output ();
aff6338a 3009 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3010 stack's section table is kept up-to-date. Architectures,
3011 (e.g., PPC64), use the section table to perform
3012 operations such as address => section name and hence
3013 require the table to contain all sections (including
3014 those found in shared libraries). */
b0f4b84b 3015#ifdef SOLIB_ADD
aff6338a 3016 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3017#else
3018 solib_add (NULL, 0, &current_target, auto_solib_add);
3019#endif
488f131b
JB
3020 target_terminal_inferior ();
3021
b0f4b84b
DJ
3022 /* If requested, stop when the dynamic linker notifies
3023 gdb of events. This allows the user to get control
3024 and place breakpoints in initializer routines for
3025 dynamically loaded objects (among other things). */
3026 if (stop_on_solib_events)
3027 {
55409f9d
DJ
3028 /* Make sure we print "Stopped due to solib-event" in
3029 normal_stop. */
3030 stop_print_frame = 1;
3031
b0f4b84b
DJ
3032 stop_stepping (ecs);
3033 return;
3034 }
3035
3036 /* NOTE drow/2007-05-11: This might be a good place to check
3037 for "catch load". */
488f131b 3038 }
b0f4b84b
DJ
3039
3040 /* If we are skipping through a shell, or through shared library
3041 loading that we aren't interested in, resume the program. If
3042 we're running the program normally, also resume. But stop if
3043 we're attaching or setting up a remote connection. */
3044 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3045 {
74960c60
VP
3046 /* Loading of shared libraries might have changed breakpoint
3047 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3048 if (stop_soon == NO_STOP_QUIETLY
3049 && !breakpoints_always_inserted_mode ())
74960c60 3050 insert_breakpoints ();
b0f4b84b
DJ
3051 resume (0, TARGET_SIGNAL_0);
3052 prepare_to_wait (ecs);
3053 return;
3054 }
3055
3056 break;
c5aa993b 3057
488f131b 3058 case TARGET_WAITKIND_SPURIOUS:
527159b7 3059 if (debug_infrun)
8a9de0e4 3060 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3061 resume (0, TARGET_SIGNAL_0);
3062 prepare_to_wait (ecs);
3063 return;
c5aa993b 3064
488f131b 3065 case TARGET_WAITKIND_EXITED:
527159b7 3066 if (debug_infrun)
8a9de0e4 3067 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3068 inferior_ptid = ecs->ptid;
6c95b8df
PA
3069 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3070 set_current_program_space (current_inferior ()->pspace);
3071 handle_vfork_child_exec_or_exit (0);
488f131b
JB
3072 target_terminal_ours (); /* Must do this before mourn anyway */
3073 print_stop_reason (EXITED, ecs->ws.value.integer);
3074
3075 /* Record the exit code in the convenience variable $_exitcode, so
3076 that the user can inspect this again later. */
4fa62494
UW
3077 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3078 (LONGEST) ecs->ws.value.integer);
488f131b
JB
3079 gdb_flush (gdb_stdout);
3080 target_mourn_inferior ();
1c0fdd0e 3081 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
3082 stop_print_frame = 0;
3083 stop_stepping (ecs);
3084 return;
c5aa993b 3085
488f131b 3086 case TARGET_WAITKIND_SIGNALLED:
527159b7 3087 if (debug_infrun)
8a9de0e4 3088 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3089 inferior_ptid = ecs->ptid;
6c95b8df
PA
3090 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3091 set_current_program_space (current_inferior ()->pspace);
3092 handle_vfork_child_exec_or_exit (0);
488f131b 3093 stop_print_frame = 0;
488f131b 3094 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 3095
488f131b
JB
3096 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3097 reach here unless the inferior is dead. However, for years
3098 target_kill() was called here, which hints that fatal signals aren't
3099 really fatal on some systems. If that's true, then some changes
3100 may be needed. */
3101 target_mourn_inferior ();
c906108c 3102
2020b7ab 3103 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 3104 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
3105 stop_stepping (ecs);
3106 return;
c906108c 3107
488f131b
JB
3108 /* The following are the only cases in which we keep going;
3109 the above cases end in a continue or goto. */
3110 case TARGET_WAITKIND_FORKED:
deb3b17b 3111 case TARGET_WAITKIND_VFORKED:
527159b7 3112 if (debug_infrun)
8a9de0e4 3113 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3114
5a2901d9
DJ
3115 if (!ptid_equal (ecs->ptid, inferior_ptid))
3116 {
0d1e5fa7 3117 context_switch (ecs->ptid);
35f196d9 3118 reinit_frame_cache ();
5a2901d9
DJ
3119 }
3120
b242c3c2
PA
3121 /* Immediately detach breakpoints from the child before there's
3122 any chance of letting the user delete breakpoints from the
3123 breakpoint lists. If we don't do this early, it's easy to
3124 leave left over traps in the child, vis: "break foo; catch
3125 fork; c; <fork>; del; c; <child calls foo>". We only follow
3126 the fork on the last `continue', and by that time the
3127 breakpoint at "foo" is long gone from the breakpoint table.
3128 If we vforked, then we don't need to unpatch here, since both
3129 parent and child are sharing the same memory pages; we'll
3130 need to unpatch at follow/detach time instead to be certain
3131 that new breakpoints added between catchpoint hit time and
3132 vfork follow are detached. */
3133 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3134 {
3135 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3136
3137 /* This won't actually modify the breakpoint list, but will
3138 physically remove the breakpoints from the child. */
3139 detach_breakpoints (child_pid);
3140 }
3141
e58b0e63
PA
3142 /* In case the event is caught by a catchpoint, remember that
3143 the event is to be followed at the next resume of the thread,
3144 and not immediately. */
3145 ecs->event_thread->pending_follow = ecs->ws;
3146
fb14de7b 3147 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3148
6c95b8df
PA
3149 ecs->event_thread->stop_bpstat
3150 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3151 stop_pc, ecs->ptid);
675bf4cb 3152
67822962
PA
3153 /* Note that we're interested in knowing the bpstat actually
3154 causes a stop, not just if it may explain the signal.
3155 Software watchpoints, for example, always appear in the
3156 bpstat. */
3157 ecs->random_signal = !bpstat_causes_stop (ecs->event_thread->stop_bpstat);
04e68871
DJ
3158
3159 /* If no catchpoint triggered for this, then keep going. */
3160 if (ecs->random_signal)
3161 {
6c95b8df
PA
3162 ptid_t parent;
3163 ptid_t child;
e58b0e63 3164 int should_resume;
6c95b8df 3165 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3166
2020b7ab 3167 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3168
3169 should_resume = follow_fork ();
3170
6c95b8df
PA
3171 parent = ecs->ptid;
3172 child = ecs->ws.value.related_pid;
3173
3174 /* In non-stop mode, also resume the other branch. */
3175 if (non_stop && !detach_fork)
3176 {
3177 if (follow_child)
3178 switch_to_thread (parent);
3179 else
3180 switch_to_thread (child);
3181
3182 ecs->event_thread = inferior_thread ();
3183 ecs->ptid = inferior_ptid;
3184 keep_going (ecs);
3185 }
3186
3187 if (follow_child)
3188 switch_to_thread (child);
3189 else
3190 switch_to_thread (parent);
3191
e58b0e63
PA
3192 ecs->event_thread = inferior_thread ();
3193 ecs->ptid = inferior_ptid;
3194
3195 if (should_resume)
3196 keep_going (ecs);
3197 else
3198 stop_stepping (ecs);
04e68871
DJ
3199 return;
3200 }
2020b7ab 3201 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3202 goto process_event_stop_test;
3203
6c95b8df
PA
3204 case TARGET_WAITKIND_VFORK_DONE:
3205 /* Done with the shared memory region. Re-insert breakpoints in
3206 the parent, and keep going. */
3207
3208 if (debug_infrun)
3209 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3210
3211 if (!ptid_equal (ecs->ptid, inferior_ptid))
3212 context_switch (ecs->ptid);
3213
3214 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3215 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3216 /* This also takes care of reinserting breakpoints in the
3217 previously locked inferior. */
3218 keep_going (ecs);
3219 return;
3220
488f131b 3221 case TARGET_WAITKIND_EXECD:
527159b7 3222 if (debug_infrun)
fc5261f2 3223 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3224
5a2901d9
DJ
3225 if (!ptid_equal (ecs->ptid, inferior_ptid))
3226 {
0d1e5fa7 3227 context_switch (ecs->ptid);
35f196d9 3228 reinit_frame_cache ();
5a2901d9
DJ
3229 }
3230
fb14de7b 3231 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3232
6c95b8df
PA
3233 /* Do whatever is necessary to the parent branch of the vfork. */
3234 handle_vfork_child_exec_or_exit (1);
3235
795e548f
PA
3236 /* This causes the eventpoints and symbol table to be reset.
3237 Must do this now, before trying to determine whether to
3238 stop. */
71b43ef8 3239 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3240
6c95b8df
PA
3241 ecs->event_thread->stop_bpstat
3242 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3243 stop_pc, ecs->ptid);
795e548f
PA
3244 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3245
71b43ef8
PA
3246 /* Note that this may be referenced from inside
3247 bpstat_stop_status above, through inferior_has_execd. */
3248 xfree (ecs->ws.value.execd_pathname);
3249 ecs->ws.value.execd_pathname = NULL;
3250
04e68871
DJ
3251 /* If no catchpoint triggered for this, then keep going. */
3252 if (ecs->random_signal)
3253 {
2020b7ab 3254 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3255 keep_going (ecs);
3256 return;
3257 }
2020b7ab 3258 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3259 goto process_event_stop_test;
3260
b4dc5ffa
MK
3261 /* Be careful not to try to gather much state about a thread
3262 that's in a syscall. It's frequently a losing proposition. */
488f131b 3263 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3264 if (debug_infrun)
8a9de0e4 3265 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
a96d9b2e 3266 /* Getting the current syscall number */
ca2163eb 3267 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3268 return;
3269 goto process_event_stop_test;
c906108c 3270
488f131b
JB
3271 /* Before examining the threads further, step this thread to
3272 get it entirely out of the syscall. (We get notice of the
3273 event when the thread is just on the verge of exiting a
3274 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3275 into user code.) */
488f131b 3276 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3277 if (debug_infrun)
8a9de0e4 3278 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3279 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3280 return;
3281 goto process_event_stop_test;
c906108c 3282
488f131b 3283 case TARGET_WAITKIND_STOPPED:
527159b7 3284 if (debug_infrun)
8a9de0e4 3285 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 3286 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 3287 break;
c906108c 3288
b2175913
MS
3289 case TARGET_WAITKIND_NO_HISTORY:
3290 /* Reverse execution: target ran out of history info. */
fb14de7b 3291 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
3292 print_stop_reason (NO_HISTORY, 0);
3293 stop_stepping (ecs);
3294 return;
488f131b 3295 }
c906108c 3296
488f131b
JB
3297 if (ecs->new_thread_event)
3298 {
94cc34af
PA
3299 if (non_stop)
3300 /* Non-stop assumes that the target handles adding new threads
3301 to the thread list. */
3302 internal_error (__FILE__, __LINE__, "\
3303targets should add new threads to the thread list themselves in non-stop mode.");
3304
3305 /* We may want to consider not doing a resume here in order to
3306 give the user a chance to play with the new thread. It might
3307 be good to make that a user-settable option. */
3308
3309 /* At this point, all threads are stopped (happens automatically
3310 in either the OS or the native code). Therefore we need to
3311 continue all threads in order to make progress. */
3312
173853dc
PA
3313 if (!ptid_equal (ecs->ptid, inferior_ptid))
3314 context_switch (ecs->ptid);
488f131b
JB
3315 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3316 prepare_to_wait (ecs);
3317 return;
3318 }
c906108c 3319
2020b7ab 3320 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3321 {
3322 /* Do we need to clean up the state of a thread that has
3323 completed a displaced single-step? (Doing so usually affects
3324 the PC, so do it here, before we set stop_pc.) */
3325 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
3326
3327 /* If we either finished a single-step or hit a breakpoint, but
3328 the user wanted this thread to be stopped, pretend we got a
3329 SIG0 (generic unsignaled stop). */
3330
3331 if (ecs->event_thread->stop_requested
3332 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3333 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3334 }
237fc4c9 3335
515630c5 3336 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3337
527159b7 3338 if (debug_infrun)
237fc4c9 3339 {
5af949e3
UW
3340 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3341 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3342 struct cleanup *old_chain = save_inferior_ptid ();
3343
3344 inferior_ptid = ecs->ptid;
5af949e3
UW
3345
3346 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3347 paddress (gdbarch, stop_pc));
d92524f1 3348 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3349 {
3350 CORE_ADDR addr;
3351 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3352
3353 if (target_stopped_data_address (&current_target, &addr))
3354 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3355 "infrun: stopped data address = %s\n",
3356 paddress (gdbarch, addr));
237fc4c9
PA
3357 else
3358 fprintf_unfiltered (gdb_stdlog,
3359 "infrun: (no data address available)\n");
3360 }
7f82dfc7
JK
3361
3362 do_cleanups (old_chain);
237fc4c9 3363 }
527159b7 3364
9f976b41
DJ
3365 if (stepping_past_singlestep_breakpoint)
3366 {
1c0fdd0e 3367 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3368 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3369 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3370
3371 stepping_past_singlestep_breakpoint = 0;
3372
3373 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3374 breakpoint, or stopped for some other reason. It would be nice if
3375 we could tell, but we can't reliably. */
2020b7ab 3376 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3377 {
527159b7 3378 if (debug_infrun)
8a9de0e4 3379 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 3380 /* Pull the single step breakpoints out of the target. */
e0cd558a 3381 remove_single_step_breakpoints ();
9f976b41
DJ
3382 singlestep_breakpoints_inserted_p = 0;
3383
3384 ecs->random_signal = 0;
79626f8a 3385 ecs->event_thread->trap_expected = 0;
9f976b41 3386
0d1e5fa7 3387 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3388 if (deprecated_context_hook)
3389 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3390
3391 resume (1, TARGET_SIGNAL_0);
3392 prepare_to_wait (ecs);
3393 return;
3394 }
3395 }
3396
ca67fcb8 3397 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3398 {
94cc34af
PA
3399 /* In non-stop mode, there's never a deferred_step_ptid set. */
3400 gdb_assert (!non_stop);
3401
6a6b96b9
UW
3402 /* If we stopped for some other reason than single-stepping, ignore
3403 the fact that we were supposed to switch back. */
2020b7ab 3404 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3405 {
3406 if (debug_infrun)
3407 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3408 "infrun: handling deferred step\n");
6a6b96b9
UW
3409
3410 /* Pull the single step breakpoints out of the target. */
3411 if (singlestep_breakpoints_inserted_p)
3412 {
3413 remove_single_step_breakpoints ();
3414 singlestep_breakpoints_inserted_p = 0;
3415 }
3416
3417 /* Note: We do not call context_switch at this point, as the
3418 context is already set up for stepping the original thread. */
ca67fcb8
VP
3419 switch_to_thread (deferred_step_ptid);
3420 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3421 /* Suppress spurious "Switching to ..." message. */
3422 previous_inferior_ptid = inferior_ptid;
3423
3424 resume (1, TARGET_SIGNAL_0);
3425 prepare_to_wait (ecs);
3426 return;
3427 }
ca67fcb8
VP
3428
3429 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3430 }
3431
488f131b
JB
3432 /* See if a thread hit a thread-specific breakpoint that was meant for
3433 another thread. If so, then step that thread past the breakpoint,
3434 and continue it. */
3435
2020b7ab 3436 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3437 {
9f976b41 3438 int thread_hop_needed = 0;
cf00dfa7
VP
3439 struct address_space *aspace =
3440 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3441
f8d40ec8
JB
3442 /* Check if a regular breakpoint has been hit before checking
3443 for a potential single step breakpoint. Otherwise, GDB will
3444 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3445 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3446 {
c5aa993b 3447 ecs->random_signal = 0;
6c95b8df 3448 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3449 thread_hop_needed = 1;
3450 }
1c0fdd0e 3451 else if (singlestep_breakpoints_inserted_p)
9f976b41 3452 {
fd48f117
DJ
3453 /* We have not context switched yet, so this should be true
3454 no matter which thread hit the singlestep breakpoint. */
3455 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3456 if (debug_infrun)
3457 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3458 "trap for %s\n",
3459 target_pid_to_str (ecs->ptid));
3460
9f976b41
DJ
3461 ecs->random_signal = 0;
3462 /* The call to in_thread_list is necessary because PTIDs sometimes
3463 change when we go from single-threaded to multi-threaded. If
3464 the singlestep_ptid is still in the list, assume that it is
3465 really different from ecs->ptid. */
3466 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3467 && in_thread_list (singlestep_ptid))
3468 {
fd48f117
DJ
3469 /* If the PC of the thread we were trying to single-step
3470 has changed, discard this event (which we were going
3471 to ignore anyway), and pretend we saw that thread
3472 trap. This prevents us continuously moving the
3473 single-step breakpoint forward, one instruction at a
3474 time. If the PC has changed, then the thread we were
3475 trying to single-step has trapped or been signalled,
3476 but the event has not been reported to GDB yet.
3477
3478 There might be some cases where this loses signal
3479 information, if a signal has arrived at exactly the
3480 same time that the PC changed, but this is the best
3481 we can do with the information available. Perhaps we
3482 should arrange to report all events for all threads
3483 when they stop, or to re-poll the remote looking for
3484 this particular thread (i.e. temporarily enable
3485 schedlock). */
515630c5
UW
3486
3487 CORE_ADDR new_singlestep_pc
3488 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3489
3490 if (new_singlestep_pc != singlestep_pc)
fd48f117 3491 {
2020b7ab
PA
3492 enum target_signal stop_signal;
3493
fd48f117
DJ
3494 if (debug_infrun)
3495 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3496 " but expected thread advanced also\n");
3497
3498 /* The current context still belongs to
3499 singlestep_ptid. Don't swap here, since that's
3500 the context we want to use. Just fudge our
3501 state and continue. */
2020b7ab
PA
3502 stop_signal = ecs->event_thread->stop_signal;
3503 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 3504 ecs->ptid = singlestep_ptid;
e09875d4 3505 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 3506 ecs->event_thread->stop_signal = stop_signal;
515630c5 3507 stop_pc = new_singlestep_pc;
fd48f117
DJ
3508 }
3509 else
3510 {
3511 if (debug_infrun)
3512 fprintf_unfiltered (gdb_stdlog,
3513 "infrun: unexpected thread\n");
3514
3515 thread_hop_needed = 1;
3516 stepping_past_singlestep_breakpoint = 1;
3517 saved_singlestep_ptid = singlestep_ptid;
3518 }
9f976b41
DJ
3519 }
3520 }
3521
3522 if (thread_hop_needed)
8fb3e588 3523 {
9f5a595d 3524 struct regcache *thread_regcache;
237fc4c9 3525 int remove_status = 0;
8fb3e588 3526
527159b7 3527 if (debug_infrun)
8a9de0e4 3528 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3529
b3444185
PA
3530 /* Switch context before touching inferior memory, the
3531 previous thread may have exited. */
3532 if (!ptid_equal (inferior_ptid, ecs->ptid))
3533 context_switch (ecs->ptid);
3534
8fb3e588
AC
3535 /* Saw a breakpoint, but it was hit by the wrong thread.
3536 Just continue. */
3537
1c0fdd0e 3538 if (singlestep_breakpoints_inserted_p)
488f131b 3539 {
8fb3e588 3540 /* Pull the single step breakpoints out of the target. */
e0cd558a 3541 remove_single_step_breakpoints ();
8fb3e588
AC
3542 singlestep_breakpoints_inserted_p = 0;
3543 }
3544
237fc4c9
PA
3545 /* If the arch can displace step, don't remove the
3546 breakpoints. */
9f5a595d
UW
3547 thread_regcache = get_thread_regcache (ecs->ptid);
3548 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3549 remove_status = remove_breakpoints ();
3550
8fb3e588
AC
3551 /* Did we fail to remove breakpoints? If so, try
3552 to set the PC past the bp. (There's at least
3553 one situation in which we can fail to remove
3554 the bp's: On HP-UX's that use ttrace, we can't
3555 change the address space of a vforking child
3556 process until the child exits (well, okay, not
3557 then either :-) or execs. */
3558 if (remove_status != 0)
9d9cd7ac 3559 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3560 else
3561 { /* Single step */
94cc34af
PA
3562 if (!non_stop)
3563 {
3564 /* Only need to require the next event from this
3565 thread in all-stop mode. */
3566 waiton_ptid = ecs->ptid;
3567 infwait_state = infwait_thread_hop_state;
3568 }
8fb3e588 3569
4e1c45ea 3570 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3571 keep_going (ecs);
8fb3e588
AC
3572 return;
3573 }
488f131b 3574 }
1c0fdd0e 3575 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3576 {
3577 sw_single_step_trap_p = 1;
3578 ecs->random_signal = 0;
3579 }
488f131b
JB
3580 }
3581 else
3582 ecs->random_signal = 1;
c906108c 3583
488f131b 3584 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3585 so, then switch to that thread. */
3586 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3587 {
527159b7 3588 if (debug_infrun)
8a9de0e4 3589 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3590
0d1e5fa7 3591 context_switch (ecs->ptid);
c5aa993b 3592
9a4105ab
AC
3593 if (deprecated_context_hook)
3594 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3595 }
c906108c 3596
568d6575
UW
3597 /* At this point, get hold of the now-current thread's frame. */
3598 frame = get_current_frame ();
3599 gdbarch = get_frame_arch (frame);
3600
1c0fdd0e 3601 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3602 {
3603 /* Pull the single step breakpoints out of the target. */
e0cd558a 3604 remove_single_step_breakpoints ();
488f131b
JB
3605 singlestep_breakpoints_inserted_p = 0;
3606 }
c906108c 3607
d983da9c
DJ
3608 if (stepped_after_stopped_by_watchpoint)
3609 stopped_by_watchpoint = 0;
3610 else
3611 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3612
3613 /* If necessary, step over this watchpoint. We'll be back to display
3614 it in a moment. */
3615 if (stopped_by_watchpoint
d92524f1 3616 && (target_have_steppable_watchpoint
568d6575 3617 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3618 {
488f131b
JB
3619 /* At this point, we are stopped at an instruction which has
3620 attempted to write to a piece of memory under control of
3621 a watchpoint. The instruction hasn't actually executed
3622 yet. If we were to evaluate the watchpoint expression
3623 now, we would get the old value, and therefore no change
3624 would seem to have occurred.
3625
3626 In order to make watchpoints work `right', we really need
3627 to complete the memory write, and then evaluate the
d983da9c
DJ
3628 watchpoint expression. We do this by single-stepping the
3629 target.
3630
3631 It may not be necessary to disable the watchpoint to stop over
3632 it. For example, the PA can (with some kernel cooperation)
3633 single step over a watchpoint without disabling the watchpoint.
3634
3635 It is far more common to need to disable a watchpoint to step
3636 the inferior over it. If we have non-steppable watchpoints,
3637 we must disable the current watchpoint; it's simplest to
3638 disable all watchpoints and breakpoints. */
2facfe5c
DD
3639 int hw_step = 1;
3640
d92524f1 3641 if (!target_have_steppable_watchpoint)
d983da9c 3642 remove_breakpoints ();
2facfe5c 3643 /* Single step */
568d6575 3644 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3645 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3646 waiton_ptid = ecs->ptid;
d92524f1 3647 if (target_have_steppable_watchpoint)
0d1e5fa7 3648 infwait_state = infwait_step_watch_state;
d983da9c 3649 else
0d1e5fa7 3650 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3651 prepare_to_wait (ecs);
3652 return;
3653 }
3654
488f131b
JB
3655 ecs->stop_func_start = 0;
3656 ecs->stop_func_end = 0;
3657 ecs->stop_func_name = 0;
3658 /* Don't care about return value; stop_func_start and stop_func_name
3659 will both be 0 if it doesn't work. */
3660 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3661 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3662 ecs->stop_func_start
568d6575 3663 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3664 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3665 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3666 ecs->event_thread->stop_step = 0;
488f131b
JB
3667 stop_print_frame = 1;
3668 ecs->random_signal = 0;
3669 stopped_by_random_signal = 0;
488f131b 3670
edb3359d
DJ
3671 /* Hide inlined functions starting here, unless we just performed stepi or
3672 nexti. After stepi and nexti, always show the innermost frame (not any
3673 inline function call sites). */
3674 if (ecs->event_thread->step_range_end != 1)
3675 skip_inline_frames (ecs->ptid);
3676
2020b7ab 3677 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3678 && ecs->event_thread->trap_expected
568d6575 3679 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3680 && currently_stepping (ecs->event_thread))
3352ef37 3681 {
b50d7442 3682 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3683 also on an instruction that needs to be stepped multiple
3684 times before it's been fully executing. E.g., architectures
3685 with a delay slot. It needs to be stepped twice, once for
3686 the instruction and once for the delay slot. */
3687 int step_through_delay
568d6575 3688 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3689 if (debug_infrun && step_through_delay)
8a9de0e4 3690 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3691 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3692 {
3693 /* The user issued a continue when stopped at a breakpoint.
3694 Set up for another trap and get out of here. */
4e1c45ea 3695 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3696 keep_going (ecs);
3697 return;
3698 }
3699 else if (step_through_delay)
3700 {
3701 /* The user issued a step when stopped at a breakpoint.
3702 Maybe we should stop, maybe we should not - the delay
3703 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3704 case, don't decide that here, just set
3705 ecs->stepping_over_breakpoint, making sure we
3706 single-step again before breakpoints are re-inserted. */
4e1c45ea 3707 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3708 }
3709 }
3710
488f131b
JB
3711 /* Look at the cause of the stop, and decide what to do.
3712 The alternatives are:
0d1e5fa7
PA
3713 1) stop_stepping and return; to really stop and return to the debugger,
3714 2) keep_going and return to start up again
4e1c45ea 3715 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3716 3) set ecs->random_signal to 1, and the decision between 1 and 2
3717 will be made according to the signal handling tables. */
3718
2020b7ab 3719 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
3720 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3721 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3722 {
2020b7ab 3723 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3724 {
527159b7 3725 if (debug_infrun)
8a9de0e4 3726 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3727 stop_print_frame = 0;
3728 stop_stepping (ecs);
3729 return;
3730 }
c54cfec8
EZ
3731
3732 /* This is originated from start_remote(), start_inferior() and
3733 shared libraries hook functions. */
b0f4b84b 3734 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3735 {
527159b7 3736 if (debug_infrun)
8a9de0e4 3737 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3738 stop_stepping (ecs);
3739 return;
3740 }
3741
c54cfec8 3742 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3743 the stop_signal here, because some kernels don't ignore a
3744 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3745 See more comments in inferior.h. On the other hand, if we
a0ef4274 3746 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3747 will handle the SIGSTOP if it should show up later.
3748
3749 Also consider that the attach is complete when we see a
3750 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3751 target extended-remote report it instead of a SIGSTOP
3752 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3753 signal, so this is no exception.
3754
3755 Also consider that the attach is complete when we see a
3756 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3757 the target to stop all threads of the inferior, in case the
3758 low level attach operation doesn't stop them implicitly. If
3759 they weren't stopped implicitly, then the stub will report a
3760 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3761 other than GDB's request. */
a0ef4274 3762 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3763 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3764 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3765 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3766 {
3767 stop_stepping (ecs);
2020b7ab 3768 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3769 return;
3770 }
3771
fba57f8f 3772 /* See if there is a breakpoint at the current PC. */
6c95b8df
PA
3773 ecs->event_thread->stop_bpstat
3774 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3775 stop_pc, ecs->ptid);
3776
fba57f8f
VP
3777 /* Following in case break condition called a
3778 function. */
3779 stop_print_frame = 1;
488f131b 3780
db82e815
PA
3781 /* This is where we handle "moribund" watchpoints. Unlike
3782 software breakpoints traps, hardware watchpoint traps are
3783 always distinguishable from random traps. If no high-level
3784 watchpoint is associated with the reported stop data address
3785 anymore, then the bpstat does not explain the signal ---
3786 simply make sure to ignore it if `stopped_by_watchpoint' is
3787 set. */
3788
3789 if (debug_infrun
3790 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3791 && !bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3792 && stopped_by_watchpoint)
3793 fprintf_unfiltered (gdb_stdlog, "\
3794infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
3795
73dd234f 3796 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3797 at one stage in the past included checks for an inferior
3798 function call's call dummy's return breakpoint. The original
3799 comment, that went with the test, read:
73dd234f 3800
8fb3e588
AC
3801 ``End of a stack dummy. Some systems (e.g. Sony news) give
3802 another signal besides SIGTRAP, so check here as well as
3803 above.''
73dd234f 3804
8002d778 3805 If someone ever tries to get call dummys on a
73dd234f 3806 non-executable stack to work (where the target would stop
03cebad2
MK
3807 with something like a SIGSEGV), then those tests might need
3808 to be re-instated. Given, however, that the tests were only
73dd234f 3809 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3810 suspect that it won't be the case.
3811
8fb3e588
AC
3812 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3813 be necessary for call dummies on a non-executable stack on
3814 SPARC. */
73dd234f 3815
2020b7ab 3816 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3817 ecs->random_signal
347bddb7 3818 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
db82e815 3819 || stopped_by_watchpoint
4e1c45ea
PA
3820 || ecs->event_thread->trap_expected
3821 || (ecs->event_thread->step_range_end
3822 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3823 else
3824 {
347bddb7 3825 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3826 if (!ecs->random_signal)
2020b7ab 3827 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3828 }
3829 }
3830
3831 /* When we reach this point, we've pretty much decided
3832 that the reason for stopping must've been a random
3833 (unexpected) signal. */
3834
3835 else
3836 ecs->random_signal = 1;
488f131b 3837
04e68871 3838process_event_stop_test:
568d6575
UW
3839
3840 /* Re-fetch current thread's frame in case we did a
3841 "goto process_event_stop_test" above. */
3842 frame = get_current_frame ();
3843 gdbarch = get_frame_arch (frame);
3844
488f131b
JB
3845 /* For the program's own signals, act according to
3846 the signal handling tables. */
3847
3848 if (ecs->random_signal)
3849 {
3850 /* Signal not for debugging purposes. */
3851 int printed = 0;
24291992 3852 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 3853
527159b7 3854 if (debug_infrun)
2020b7ab
PA
3855 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3856 ecs->event_thread->stop_signal);
527159b7 3857
488f131b
JB
3858 stopped_by_random_signal = 1;
3859
2020b7ab 3860 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3861 {
3862 printed = 1;
3863 target_terminal_ours_for_output ();
2020b7ab 3864 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3865 }
252fbfc8
PA
3866 /* Always stop on signals if we're either just gaining control
3867 of the program, or the user explicitly requested this thread
3868 to remain stopped. */
d6b48e9c 3869 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3870 || ecs->event_thread->stop_requested
24291992
PA
3871 || (!inf->detaching
3872 && signal_stop_state (ecs->event_thread->stop_signal)))
488f131b
JB
3873 {
3874 stop_stepping (ecs);
3875 return;
3876 }
3877 /* If not going to stop, give terminal back
3878 if we took it away. */
3879 else if (printed)
3880 target_terminal_inferior ();
3881
3882 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3883 if (signal_program[ecs->event_thread->stop_signal] == 0)
3884 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3885
fb14de7b 3886 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3887 && ecs->event_thread->trap_expected
3888 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3889 {
3890 /* We were just starting a new sequence, attempting to
3891 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3892 Instead this signal arrives. This signal will take us out
68f53502
AC
3893 of the stepping range so GDB needs to remember to, when
3894 the signal handler returns, resume stepping off that
3895 breakpoint. */
3896 /* To simplify things, "continue" is forced to use the same
3897 code paths as single-step - set a breakpoint at the
3898 signal return address and then, once hit, step off that
3899 breakpoint. */
237fc4c9
PA
3900 if (debug_infrun)
3901 fprintf_unfiltered (gdb_stdlog,
3902 "infrun: signal arrived while stepping over "
3903 "breakpoint\n");
d3169d93 3904
568d6575 3905 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3906 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3907 keep_going (ecs);
3908 return;
68f53502 3909 }
9d799f85 3910
4e1c45ea 3911 if (ecs->event_thread->step_range_end != 0
2020b7ab 3912 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3913 && (ecs->event_thread->step_range_start <= stop_pc
3914 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
3915 && frame_id_eq (get_stack_frame_id (frame),
3916 ecs->event_thread->step_stack_frame_id)
4e1c45ea 3917 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3918 {
3919 /* The inferior is about to take a signal that will take it
3920 out of the single step range. Set a breakpoint at the
3921 current PC (which is presumably where the signal handler
3922 will eventually return) and then allow the inferior to
3923 run free.
3924
3925 Note that this is only needed for a signal delivered
3926 while in the single-step range. Nested signals aren't a
3927 problem as they eventually all return. */
237fc4c9
PA
3928 if (debug_infrun)
3929 fprintf_unfiltered (gdb_stdlog,
3930 "infrun: signal may take us out of "
3931 "single-step range\n");
3932
568d6575 3933 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3934 keep_going (ecs);
3935 return;
d303a6c7 3936 }
9d799f85
AC
3937
3938 /* Note: step_resume_breakpoint may be non-NULL. This occures
3939 when either there's a nested signal, or when there's a
3940 pending signal enabled just as the signal handler returns
3941 (leaving the inferior at the step-resume-breakpoint without
3942 actually executing it). Either way continue until the
3943 breakpoint is really hit. */
488f131b
JB
3944 keep_going (ecs);
3945 return;
3946 }
3947
3948 /* Handle cases caused by hitting a breakpoint. */
3949 {
3950 CORE_ADDR jmp_buf_pc;
3951 struct bpstat_what what;
3952
347bddb7 3953 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3954
3955 if (what.call_dummy)
3956 {
aa7d318d 3957 stop_stack_dummy = what.call_dummy;
c5aa993b 3958 }
c906108c 3959
488f131b 3960 switch (what.main_action)
c5aa993b 3961 {
488f131b 3962 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3963 /* If we hit the breakpoint at longjmp while stepping, we
3964 install a momentary breakpoint at the target of the
3965 jmp_buf. */
3966
3967 if (debug_infrun)
3968 fprintf_unfiltered (gdb_stdlog,
3969 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3970
4e1c45ea 3971 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3972
568d6575
UW
3973 if (!gdbarch_get_longjmp_target_p (gdbarch)
3974 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3975 {
611c83ae
PA
3976 if (debug_infrun)
3977 fprintf_unfiltered (gdb_stdlog, "\
3978infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3979 keep_going (ecs);
104c1213 3980 return;
c5aa993b 3981 }
488f131b 3982
611c83ae
PA
3983 /* We're going to replace the current step-resume breakpoint
3984 with a longjmp-resume breakpoint. */
4e1c45ea 3985 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3986
3987 /* Insert a breakpoint at resume address. */
a6d9a66e 3988 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 3989
488f131b
JB
3990 keep_going (ecs);
3991 return;
c906108c 3992
488f131b 3993 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3994 if (debug_infrun)
611c83ae
PA
3995 fprintf_unfiltered (gdb_stdlog,
3996 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3997
4e1c45ea
PA
3998 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3999 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4000
414c69f7 4001 ecs->event_thread->stop_step = 1;
611c83ae
PA
4002 print_stop_reason (END_STEPPING_RANGE, 0);
4003 stop_stepping (ecs);
4004 return;
488f131b
JB
4005
4006 case BPSTAT_WHAT_SINGLE:
527159b7 4007 if (debug_infrun)
8802d8ed 4008 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4009 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4010 /* Still need to check other stuff, at least the case
4011 where we are stepping and step out of the right range. */
4012 break;
c906108c 4013
488f131b 4014 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4015 if (debug_infrun)
8802d8ed 4016 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4017 stop_print_frame = 1;
c906108c 4018
d303a6c7
AC
4019 /* We are about to nuke the step_resume_breakpointt via the
4020 cleanup chain, so no need to worry about it here. */
c5aa993b 4021
488f131b
JB
4022 stop_stepping (ecs);
4023 return;
c5aa993b 4024
488f131b 4025 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4026 if (debug_infrun)
8802d8ed 4027 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4028 stop_print_frame = 0;
c5aa993b 4029
d303a6c7
AC
4030 /* We are about to nuke the step_resume_breakpoin via the
4031 cleanup chain, so no need to worry about it here. */
c5aa993b 4032
488f131b 4033 stop_stepping (ecs);
e441088d 4034 return;
c5aa993b 4035
488f131b 4036 case BPSTAT_WHAT_STEP_RESUME:
527159b7 4037 if (debug_infrun)
8802d8ed 4038 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 4039
4e1c45ea
PA
4040 delete_step_resume_breakpoint (ecs->event_thread);
4041 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4042 {
4043 /* Back when the step-resume breakpoint was inserted, we
4044 were trying to single-step off a breakpoint. Go back
4045 to doing that. */
4e1c45ea
PA
4046 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4047 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4048 keep_going (ecs);
4049 return;
4050 }
b2175913
MS
4051 if (stop_pc == ecs->stop_func_start
4052 && execution_direction == EXEC_REVERSE)
4053 {
4054 /* We are stepping over a function call in reverse, and
4055 just hit the step-resume breakpoint at the start
4056 address of the function. Go back to single-stepping,
4057 which should take us back to the function call. */
4058 ecs->event_thread->stepping_over_breakpoint = 1;
4059 keep_going (ecs);
4060 return;
4061 }
488f131b
JB
4062 break;
4063
488f131b 4064 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 4065 {
527159b7 4066 if (debug_infrun)
8802d8ed 4067 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
4068
4069 /* Check for any newly added shared libraries if we're
4070 supposed to be adding them automatically. Switch
4071 terminal for any messages produced by
4072 breakpoint_re_set. */
4073 target_terminal_ours_for_output ();
aff6338a 4074 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
4075 stack's section table is kept up-to-date. Architectures,
4076 (e.g., PPC64), use the section table to perform
4077 operations such as address => section name and hence
4078 require the table to contain all sections (including
4079 those found in shared libraries). */
a77053c2 4080#ifdef SOLIB_ADD
aff6338a 4081 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
4082#else
4083 solib_add (NULL, 0, &current_target, auto_solib_add);
4084#endif
488f131b
JB
4085 target_terminal_inferior ();
4086
488f131b
JB
4087 /* If requested, stop when the dynamic linker notifies
4088 gdb of events. This allows the user to get control
4089 and place breakpoints in initializer routines for
4090 dynamically loaded objects (among other things). */
877522db 4091 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 4092 {
488f131b 4093 stop_stepping (ecs);
d4f3574e
SS
4094 return;
4095 }
c5aa993b 4096 else
c5aa993b 4097 {
488f131b 4098 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 4099 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4100 break;
c5aa993b 4101 }
488f131b 4102 }
488f131b 4103 break;
4efc6507
DE
4104
4105 case BPSTAT_WHAT_CHECK_JIT:
4106 if (debug_infrun)
4107 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
4108
4109 /* Switch terminal for any messages produced by breakpoint_re_set. */
4110 target_terminal_ours_for_output ();
4111
0756c555 4112 jit_event_handler (gdbarch);
4efc6507
DE
4113
4114 target_terminal_inferior ();
4115
4116 /* We want to step over this breakpoint, then keep going. */
4117 ecs->event_thread->stepping_over_breakpoint = 1;
4118
4119 break;
c906108c 4120
488f131b
JB
4121 case BPSTAT_WHAT_LAST:
4122 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 4123
488f131b
JB
4124 case BPSTAT_WHAT_KEEP_CHECKING:
4125 break;
4126 }
4127 }
c906108c 4128
488f131b
JB
4129 /* We come here if we hit a breakpoint but should not
4130 stop for it. Possibly we also were stepping
4131 and should stop for that. So fall through and
4132 test for stepping. But, if not stepping,
4133 do not stop. */
c906108c 4134
a7212384
UW
4135 /* In all-stop mode, if we're currently stepping but have stopped in
4136 some other thread, we need to switch back to the stepped thread. */
4137 if (!non_stop)
4138 {
4139 struct thread_info *tp;
b3444185 4140 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4141 ecs->event_thread);
4142 if (tp)
4143 {
4144 /* However, if the current thread is blocked on some internal
4145 breakpoint, and we simply need to step over that breakpoint
4146 to get it going again, do that first. */
4147 if ((ecs->event_thread->trap_expected
4148 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4149 || ecs->event_thread->stepping_over_breakpoint)
4150 {
4151 keep_going (ecs);
4152 return;
4153 }
4154
66852e9c
PA
4155 /* If the stepping thread exited, then don't try to switch
4156 back and resume it, which could fail in several different
4157 ways depending on the target. Instead, just keep going.
4158
4159 We can find a stepping dead thread in the thread list in
4160 two cases:
4161
4162 - The target supports thread exit events, and when the
4163 target tries to delete the thread from the thread list,
4164 inferior_ptid pointed at the exiting thread. In such
4165 case, calling delete_thread does not really remove the
4166 thread from the list; instead, the thread is left listed,
4167 with 'exited' state.
4168
4169 - The target's debug interface does not support thread
4170 exit events, and so we have no idea whatsoever if the
4171 previously stepping thread is still alive. For that
4172 reason, we need to synchronously query the target
4173 now. */
b3444185
PA
4174 if (is_exited (tp->ptid)
4175 || !target_thread_alive (tp->ptid))
4176 {
4177 if (debug_infrun)
4178 fprintf_unfiltered (gdb_stdlog, "\
4179infrun: not switching back to stepped thread, it has vanished\n");
4180
4181 delete_thread (tp->ptid);
4182 keep_going (ecs);
4183 return;
4184 }
4185
a7212384
UW
4186 /* Otherwise, we no longer expect a trap in the current thread.
4187 Clear the trap_expected flag before switching back -- this is
4188 what keep_going would do as well, if we called it. */
4189 ecs->event_thread->trap_expected = 0;
4190
4191 if (debug_infrun)
4192 fprintf_unfiltered (gdb_stdlog,
4193 "infrun: switching back to stepped thread\n");
4194
4195 ecs->event_thread = tp;
4196 ecs->ptid = tp->ptid;
4197 context_switch (ecs->ptid);
4198 keep_going (ecs);
4199 return;
4200 }
4201 }
4202
9d1ff73f
MS
4203 /* Are we stepping to get the inferior out of the dynamic linker's
4204 hook (and possibly the dld itself) after catching a shlib
4205 event? */
4e1c45ea 4206 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4207 {
4208#if defined(SOLIB_ADD)
4209 /* Have we reached our destination? If not, keep going. */
4210 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4211 {
527159b7 4212 if (debug_infrun)
8a9de0e4 4213 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 4214 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4215 keep_going (ecs);
104c1213 4216 return;
488f131b
JB
4217 }
4218#endif
527159b7 4219 if (debug_infrun)
8a9de0e4 4220 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
4221 /* Else, stop and report the catchpoint(s) whose triggering
4222 caused us to begin stepping. */
4e1c45ea 4223 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
4224 bpstat_clear (&ecs->event_thread->stop_bpstat);
4225 ecs->event_thread->stop_bpstat
4226 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4227 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4228 stop_print_frame = 1;
4229 stop_stepping (ecs);
4230 return;
4231 }
c906108c 4232
4e1c45ea 4233 if (ecs->event_thread->step_resume_breakpoint)
488f131b 4234 {
527159b7 4235 if (debug_infrun)
d3169d93
DJ
4236 fprintf_unfiltered (gdb_stdlog,
4237 "infrun: step-resume breakpoint is inserted\n");
527159b7 4238
488f131b
JB
4239 /* Having a step-resume breakpoint overrides anything
4240 else having to do with stepping commands until
4241 that breakpoint is reached. */
488f131b
JB
4242 keep_going (ecs);
4243 return;
4244 }
c5aa993b 4245
4e1c45ea 4246 if (ecs->event_thread->step_range_end == 0)
488f131b 4247 {
527159b7 4248 if (debug_infrun)
8a9de0e4 4249 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4250 /* Likewise if we aren't even stepping. */
488f131b
JB
4251 keep_going (ecs);
4252 return;
4253 }
c5aa993b 4254
4b7703ad
JB
4255 /* Re-fetch current thread's frame in case the code above caused
4256 the frame cache to be re-initialized, making our FRAME variable
4257 a dangling pointer. */
4258 frame = get_current_frame ();
4259
488f131b 4260 /* If stepping through a line, keep going if still within it.
c906108c 4261
488f131b
JB
4262 Note that step_range_end is the address of the first instruction
4263 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4264 within it!
4265
4266 Note also that during reverse execution, we may be stepping
4267 through a function epilogue and therefore must detect when
4268 the current-frame changes in the middle of a line. */
4269
4e1c45ea 4270 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
4271 && stop_pc < ecs->event_thread->step_range_end
4272 && (execution_direction != EXEC_REVERSE
388a8562 4273 || frame_id_eq (get_frame_id (frame),
31410e84 4274 ecs->event_thread->step_frame_id)))
488f131b 4275 {
527159b7 4276 if (debug_infrun)
5af949e3
UW
4277 fprintf_unfiltered
4278 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4279 paddress (gdbarch, ecs->event_thread->step_range_start),
4280 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
4281
4282 /* When stepping backward, stop at beginning of line range
4283 (unless it's the function entry point, in which case
4284 keep going back to the call point). */
4285 if (stop_pc == ecs->event_thread->step_range_start
4286 && stop_pc != ecs->stop_func_start
4287 && execution_direction == EXEC_REVERSE)
4288 {
4289 ecs->event_thread->stop_step = 1;
4290 print_stop_reason (END_STEPPING_RANGE, 0);
4291 stop_stepping (ecs);
4292 }
4293 else
4294 keep_going (ecs);
4295
488f131b
JB
4296 return;
4297 }
c5aa993b 4298
488f131b 4299 /* We stepped out of the stepping range. */
c906108c 4300
488f131b 4301 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4302 loader dynamic symbol resolution code...
4303
4304 EXEC_FORWARD: we keep on single stepping until we exit the run
4305 time loader code and reach the callee's address.
4306
4307 EXEC_REVERSE: we've already executed the callee (backward), and
4308 the runtime loader code is handled just like any other
4309 undebuggable function call. Now we need only keep stepping
4310 backward through the trampoline code, and that's handled further
4311 down, so there is nothing for us to do here. */
4312
4313 if (execution_direction != EXEC_REVERSE
4314 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4315 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4316 {
4c8c40e6 4317 CORE_ADDR pc_after_resolver =
568d6575 4318 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4319
527159b7 4320 if (debug_infrun)
8a9de0e4 4321 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 4322
488f131b
JB
4323 if (pc_after_resolver)
4324 {
4325 /* Set up a step-resume breakpoint at the address
4326 indicated by SKIP_SOLIB_RESOLVER. */
4327 struct symtab_and_line sr_sal;
fe39c653 4328 init_sal (&sr_sal);
488f131b 4329 sr_sal.pc = pc_after_resolver;
6c95b8df 4330 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4331
a6d9a66e
UW
4332 insert_step_resume_breakpoint_at_sal (gdbarch,
4333 sr_sal, null_frame_id);
c5aa993b 4334 }
c906108c 4335
488f131b
JB
4336 keep_going (ecs);
4337 return;
4338 }
c906108c 4339
4e1c45ea 4340 if (ecs->event_thread->step_range_end != 1
078130d0
PA
4341 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4342 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 4343 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4344 {
527159b7 4345 if (debug_infrun)
8a9de0e4 4346 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 4347 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4348 a signal trampoline (either by a signal being delivered or by
4349 the signal handler returning). Just single-step until the
4350 inferior leaves the trampoline (either by calling the handler
4351 or returning). */
488f131b
JB
4352 keep_going (ecs);
4353 return;
4354 }
c906108c 4355
c17eaafe
DJ
4356 /* Check for subroutine calls. The check for the current frame
4357 equalling the step ID is not necessary - the check of the
4358 previous frame's ID is sufficient - but it is a common case and
4359 cheaper than checking the previous frame's ID.
14e60db5
DJ
4360
4361 NOTE: frame_id_eq will never report two invalid frame IDs as
4362 being equal, so to get into this block, both the current and
4363 previous frame must have valid frame IDs. */
005ca36a
JB
4364 /* The outer_frame_id check is a heuristic to detect stepping
4365 through startup code. If we step over an instruction which
4366 sets the stack pointer from an invalid value to a valid value,
4367 we may detect that as a subroutine call from the mythical
4368 "outermost" function. This could be fixed by marking
4369 outermost frames as !stack_p,code_p,special_p. Then the
4370 initial outermost frame, before sp was valid, would
ce6cca6d 4371 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4372 for more. */
edb3359d
DJ
4373 if (!frame_id_eq (get_stack_frame_id (frame),
4374 ecs->event_thread->step_stack_frame_id)
005ca36a
JB
4375 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4376 ecs->event_thread->step_stack_frame_id)
4377 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
4378 outer_frame_id)
4379 || step_start_function != find_pc_function (stop_pc))))
488f131b 4380 {
95918acb 4381 CORE_ADDR real_stop_pc;
8fb3e588 4382
527159b7 4383 if (debug_infrun)
8a9de0e4 4384 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4385
078130d0 4386 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 4387 || ((ecs->event_thread->step_range_end == 1)
d80b854b 4388 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4389 ecs->stop_func_start)))
95918acb
AC
4390 {
4391 /* I presume that step_over_calls is only 0 when we're
4392 supposed to be stepping at the assembly language level
4393 ("stepi"). Just stop. */
4394 /* Also, maybe we just did a "nexti" inside a prolog, so we
4395 thought it was a subroutine call but it was not. Stop as
4396 well. FENN */
388a8562 4397 /* And this works the same backward as frontward. MVS */
414c69f7 4398 ecs->event_thread->stop_step = 1;
95918acb
AC
4399 print_stop_reason (END_STEPPING_RANGE, 0);
4400 stop_stepping (ecs);
4401 return;
4402 }
8fb3e588 4403
388a8562
MS
4404 /* Reverse stepping through solib trampolines. */
4405
4406 if (execution_direction == EXEC_REVERSE
fdd654f3 4407 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
388a8562
MS
4408 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4409 || (ecs->stop_func_start == 0
4410 && in_solib_dynsym_resolve_code (stop_pc))))
4411 {
4412 /* Any solib trampoline code can be handled in reverse
4413 by simply continuing to single-step. We have already
4414 executed the solib function (backwards), and a few
4415 steps will take us back through the trampoline to the
4416 caller. */
4417 keep_going (ecs);
4418 return;
4419 }
4420
078130d0 4421 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 4422 {
b2175913
MS
4423 /* We're doing a "next".
4424
4425 Normal (forward) execution: set a breakpoint at the
4426 callee's return address (the address at which the caller
4427 will resume).
4428
4429 Reverse (backward) execution. set the step-resume
4430 breakpoint at the start of the function that we just
4431 stepped into (backwards), and continue to there. When we
6130d0b7 4432 get there, we'll need to single-step back to the caller. */
b2175913
MS
4433
4434 if (execution_direction == EXEC_REVERSE)
4435 {
4436 struct symtab_and_line sr_sal;
3067f6e5 4437
388a8562
MS
4438 /* Normal function call return (static or dynamic). */
4439 init_sal (&sr_sal);
4440 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4441 sr_sal.pspace = get_frame_program_space (frame);
4442 insert_step_resume_breakpoint_at_sal (gdbarch,
4443 sr_sal, null_frame_id);
b2175913
MS
4444 }
4445 else
568d6575 4446 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4447
8567c30f
AC
4448 keep_going (ecs);
4449 return;
4450 }
a53c66de 4451
95918acb 4452 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4453 calling routine and the real function), locate the real
4454 function. That's what tells us (a) whether we want to step
4455 into it at all, and (b) what prologue we want to run to the
4456 end of, if we do step into it. */
568d6575 4457 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4458 if (real_stop_pc == 0)
568d6575 4459 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4460 if (real_stop_pc != 0)
4461 ecs->stop_func_start = real_stop_pc;
8fb3e588 4462
db5f024e 4463 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4464 {
4465 struct symtab_and_line sr_sal;
4466 init_sal (&sr_sal);
4467 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4468 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4469
a6d9a66e
UW
4470 insert_step_resume_breakpoint_at_sal (gdbarch,
4471 sr_sal, null_frame_id);
8fb3e588
AC
4472 keep_going (ecs);
4473 return;
1b2bfbb9
RC
4474 }
4475
95918acb 4476 /* If we have line number information for the function we are
8fb3e588 4477 thinking of stepping into, step into it.
95918acb 4478
8fb3e588
AC
4479 If there are several symtabs at that PC (e.g. with include
4480 files), just want to know whether *any* of them have line
4481 numbers. find_pc_line handles this. */
95918acb
AC
4482 {
4483 struct symtab_and_line tmp_sal;
8fb3e588 4484
95918acb 4485 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
9d1807c3 4486 tmp_sal.pspace = get_frame_program_space (frame);
95918acb
AC
4487 if (tmp_sal.line != 0)
4488 {
b2175913 4489 if (execution_direction == EXEC_REVERSE)
568d6575 4490 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4491 else
568d6575 4492 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4493 return;
4494 }
4495 }
4496
4497 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4498 set, we stop the step so that the user has a chance to switch
4499 in assembly mode. */
078130d0
PA
4500 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4501 && step_stop_if_no_debug)
95918acb 4502 {
414c69f7 4503 ecs->event_thread->stop_step = 1;
95918acb
AC
4504 print_stop_reason (END_STEPPING_RANGE, 0);
4505 stop_stepping (ecs);
4506 return;
4507 }
4508
b2175913
MS
4509 if (execution_direction == EXEC_REVERSE)
4510 {
4511 /* Set a breakpoint at callee's start address.
4512 From there we can step once and be back in the caller. */
4513 struct symtab_and_line sr_sal;
4514 init_sal (&sr_sal);
4515 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4516 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4517 insert_step_resume_breakpoint_at_sal (gdbarch,
4518 sr_sal, null_frame_id);
b2175913
MS
4519 }
4520 else
4521 /* Set a breakpoint at callee's return address (the address
4522 at which the caller will resume). */
568d6575 4523 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4524
95918acb 4525 keep_going (ecs);
488f131b 4526 return;
488f131b 4527 }
c906108c 4528
fdd654f3
MS
4529 /* Reverse stepping through solib trampolines. */
4530
4531 if (execution_direction == EXEC_REVERSE
4532 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4533 {
4534 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4535 || (ecs->stop_func_start == 0
4536 && in_solib_dynsym_resolve_code (stop_pc)))
4537 {
4538 /* Any solib trampoline code can be handled in reverse
4539 by simply continuing to single-step. We have already
4540 executed the solib function (backwards), and a few
4541 steps will take us back through the trampoline to the
4542 caller. */
4543 keep_going (ecs);
4544 return;
4545 }
4546 else if (in_solib_dynsym_resolve_code (stop_pc))
4547 {
4548 /* Stepped backward into the solib dynsym resolver.
4549 Set a breakpoint at its start and continue, then
4550 one more step will take us out. */
4551 struct symtab_and_line sr_sal;
4552 init_sal (&sr_sal);
4553 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4554 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4555 insert_step_resume_breakpoint_at_sal (gdbarch,
4556 sr_sal, null_frame_id);
4557 keep_going (ecs);
4558 return;
4559 }
4560 }
4561
488f131b
JB
4562 /* If we're in the return path from a shared library trampoline,
4563 we want to proceed through the trampoline when stepping. */
568d6575 4564 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4565 stop_pc, ecs->stop_func_name))
488f131b 4566 {
488f131b 4567 /* Determine where this trampoline returns. */
52f729a7 4568 CORE_ADDR real_stop_pc;
568d6575 4569 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4570
527159b7 4571 if (debug_infrun)
8a9de0e4 4572 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 4573
488f131b 4574 /* Only proceed through if we know where it's going. */
d764a824 4575 if (real_stop_pc)
488f131b
JB
4576 {
4577 /* And put the step-breakpoint there and go until there. */
4578 struct symtab_and_line sr_sal;
4579
fe39c653 4580 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4581 sr_sal.pc = real_stop_pc;
488f131b 4582 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4583 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4584
4585 /* Do not specify what the fp should be when we stop since
4586 on some machines the prologue is where the new fp value
4587 is established. */
a6d9a66e
UW
4588 insert_step_resume_breakpoint_at_sal (gdbarch,
4589 sr_sal, null_frame_id);
c906108c 4590
488f131b
JB
4591 /* Restart without fiddling with the step ranges or
4592 other state. */
4593 keep_going (ecs);
4594 return;
4595 }
4596 }
c906108c 4597
2afb61aa 4598 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4599
1b2bfbb9
RC
4600 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4601 the trampoline processing logic, however, there are some trampolines
4602 that have no names, so we should do trampoline handling first. */
078130d0 4603 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4604 && ecs->stop_func_name == NULL
2afb61aa 4605 && stop_pc_sal.line == 0)
1b2bfbb9 4606 {
527159b7 4607 if (debug_infrun)
8a9de0e4 4608 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4609
1b2bfbb9 4610 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4611 undebuggable function (where there is no debugging information
4612 and no line number corresponding to the address where the
1b2bfbb9
RC
4613 inferior stopped). Since we want to skip this kind of code,
4614 we keep going until the inferior returns from this
14e60db5
DJ
4615 function - unless the user has asked us not to (via
4616 set step-mode) or we no longer know how to get back
4617 to the call site. */
4618 if (step_stop_if_no_debug
c7ce8faa 4619 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4620 {
4621 /* If we have no line number and the step-stop-if-no-debug
4622 is set, we stop the step so that the user has a chance to
4623 switch in assembly mode. */
414c69f7 4624 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4625 print_stop_reason (END_STEPPING_RANGE, 0);
4626 stop_stepping (ecs);
4627 return;
4628 }
4629 else
4630 {
4631 /* Set a breakpoint at callee's return address (the address
4632 at which the caller will resume). */
568d6575 4633 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4634 keep_going (ecs);
4635 return;
4636 }
4637 }
4638
4e1c45ea 4639 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4640 {
4641 /* It is stepi or nexti. We always want to stop stepping after
4642 one instruction. */
527159b7 4643 if (debug_infrun)
8a9de0e4 4644 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4645 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4646 print_stop_reason (END_STEPPING_RANGE, 0);
4647 stop_stepping (ecs);
4648 return;
4649 }
4650
2afb61aa 4651 if (stop_pc_sal.line == 0)
488f131b
JB
4652 {
4653 /* We have no line number information. That means to stop
4654 stepping (does this always happen right after one instruction,
4655 when we do "s" in a function with no line numbers,
4656 or can this happen as a result of a return or longjmp?). */
527159b7 4657 if (debug_infrun)
8a9de0e4 4658 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4659 ecs->event_thread->stop_step = 1;
488f131b
JB
4660 print_stop_reason (END_STEPPING_RANGE, 0);
4661 stop_stepping (ecs);
4662 return;
4663 }
c906108c 4664
edb3359d
DJ
4665 /* Look for "calls" to inlined functions, part one. If the inline
4666 frame machinery detected some skipped call sites, we have entered
4667 a new inline function. */
4668
4669 if (frame_id_eq (get_frame_id (get_current_frame ()),
4670 ecs->event_thread->step_frame_id)
4671 && inline_skipped_frames (ecs->ptid))
4672 {
4673 struct symtab_and_line call_sal;
4674
4675 if (debug_infrun)
4676 fprintf_unfiltered (gdb_stdlog,
4677 "infrun: stepped into inlined function\n");
4678
4679 find_frame_sal (get_current_frame (), &call_sal);
4680
4681 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4682 {
4683 /* For "step", we're going to stop. But if the call site
4684 for this inlined function is on the same source line as
4685 we were previously stepping, go down into the function
4686 first. Otherwise stop at the call site. */
4687
4688 if (call_sal.line == ecs->event_thread->current_line
4689 && call_sal.symtab == ecs->event_thread->current_symtab)
4690 step_into_inline_frame (ecs->ptid);
4691
4692 ecs->event_thread->stop_step = 1;
4693 print_stop_reason (END_STEPPING_RANGE, 0);
4694 stop_stepping (ecs);
4695 return;
4696 }
4697 else
4698 {
4699 /* For "next", we should stop at the call site if it is on a
4700 different source line. Otherwise continue through the
4701 inlined function. */
4702 if (call_sal.line == ecs->event_thread->current_line
4703 && call_sal.symtab == ecs->event_thread->current_symtab)
4704 keep_going (ecs);
4705 else
4706 {
4707 ecs->event_thread->stop_step = 1;
4708 print_stop_reason (END_STEPPING_RANGE, 0);
4709 stop_stepping (ecs);
4710 }
4711 return;
4712 }
4713 }
4714
4715 /* Look for "calls" to inlined functions, part two. If we are still
4716 in the same real function we were stepping through, but we have
4717 to go further up to find the exact frame ID, we are stepping
4718 through a more inlined call beyond its call site. */
4719
4720 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4721 && !frame_id_eq (get_frame_id (get_current_frame ()),
4722 ecs->event_thread->step_frame_id)
4723 && stepped_in_from (get_current_frame (),
4724 ecs->event_thread->step_frame_id))
4725 {
4726 if (debug_infrun)
4727 fprintf_unfiltered (gdb_stdlog,
4728 "infrun: stepping through inlined function\n");
4729
4730 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4731 keep_going (ecs);
4732 else
4733 {
4734 ecs->event_thread->stop_step = 1;
4735 print_stop_reason (END_STEPPING_RANGE, 0);
4736 stop_stepping (ecs);
4737 }
4738 return;
4739 }
4740
2afb61aa 4741 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4742 && (ecs->event_thread->current_line != stop_pc_sal.line
4743 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4744 {
4745 /* We are at the start of a different line. So stop. Note that
4746 we don't stop if we step into the middle of a different line.
4747 That is said to make things like for (;;) statements work
4748 better. */
527159b7 4749 if (debug_infrun)
8a9de0e4 4750 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4751 ecs->event_thread->stop_step = 1;
488f131b
JB
4752 print_stop_reason (END_STEPPING_RANGE, 0);
4753 stop_stepping (ecs);
4754 return;
4755 }
c906108c 4756
488f131b 4757 /* We aren't done stepping.
c906108c 4758
488f131b
JB
4759 Optimize by setting the stepping range to the line.
4760 (We might not be in the original line, but if we entered a
4761 new line in mid-statement, we continue stepping. This makes
4762 things like for(;;) statements work better.) */
c906108c 4763
4e1c45ea
PA
4764 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4765 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4766 set_step_info (frame, stop_pc_sal);
488f131b 4767
527159b7 4768 if (debug_infrun)
8a9de0e4 4769 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4770 keep_going (ecs);
104c1213
JM
4771}
4772
b3444185 4773/* Is thread TP in the middle of single-stepping? */
104c1213 4774
a7212384 4775static int
b3444185 4776currently_stepping (struct thread_info *tp)
a7212384 4777{
b3444185
PA
4778 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4779 || tp->trap_expected
4780 || tp->stepping_through_solib_after_catch
4781 || bpstat_should_step ());
a7212384
UW
4782}
4783
b3444185
PA
4784/* Returns true if any thread *but* the one passed in "data" is in the
4785 middle of stepping or of handling a "next". */
a7212384 4786
104c1213 4787static int
b3444185 4788currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4789{
b3444185
PA
4790 if (tp == data)
4791 return 0;
4792
4793 return (tp->step_range_end
4794 || tp->trap_expected
4795 || tp->stepping_through_solib_after_catch);
104c1213 4796}
c906108c 4797
b2175913
MS
4798/* Inferior has stepped into a subroutine call with source code that
4799 we should not step over. Do step to the first line of code in
4800 it. */
c2c6d25f
JM
4801
4802static void
568d6575
UW
4803handle_step_into_function (struct gdbarch *gdbarch,
4804 struct execution_control_state *ecs)
c2c6d25f
JM
4805{
4806 struct symtab *s;
2afb61aa 4807 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4808
4809 s = find_pc_symtab (stop_pc);
4810 if (s && s->language != language_asm)
568d6575 4811 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4812 ecs->stop_func_start);
c2c6d25f 4813
2afb61aa 4814 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4815 /* Use the step_resume_break to step until the end of the prologue,
4816 even if that involves jumps (as it seems to on the vax under
4817 4.2). */
4818 /* If the prologue ends in the middle of a source line, continue to
4819 the end of that source line (if it is still within the function).
4820 Otherwise, just go to end of prologue. */
2afb61aa
PA
4821 if (stop_func_sal.end
4822 && stop_func_sal.pc != ecs->stop_func_start
4823 && stop_func_sal.end < ecs->stop_func_end)
4824 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4825
2dbd5e30
KB
4826 /* Architectures which require breakpoint adjustment might not be able
4827 to place a breakpoint at the computed address. If so, the test
4828 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4829 ecs->stop_func_start to an address at which a breakpoint may be
4830 legitimately placed.
8fb3e588 4831
2dbd5e30
KB
4832 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4833 made, GDB will enter an infinite loop when stepping through
4834 optimized code consisting of VLIW instructions which contain
4835 subinstructions corresponding to different source lines. On
4836 FR-V, it's not permitted to place a breakpoint on any but the
4837 first subinstruction of a VLIW instruction. When a breakpoint is
4838 set, GDB will adjust the breakpoint address to the beginning of
4839 the VLIW instruction. Thus, we need to make the corresponding
4840 adjustment here when computing the stop address. */
8fb3e588 4841
568d6575 4842 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4843 {
4844 ecs->stop_func_start
568d6575 4845 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4846 ecs->stop_func_start);
2dbd5e30
KB
4847 }
4848
c2c6d25f
JM
4849 if (ecs->stop_func_start == stop_pc)
4850 {
4851 /* We are already there: stop now. */
414c69f7 4852 ecs->event_thread->stop_step = 1;
488f131b 4853 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4854 stop_stepping (ecs);
4855 return;
4856 }
4857 else
4858 {
4859 /* Put the step-breakpoint there and go until there. */
fe39c653 4860 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4861 sr_sal.pc = ecs->stop_func_start;
4862 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 4863 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 4864
c2c6d25f 4865 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4866 some machines the prologue is where the new fp value is
4867 established. */
a6d9a66e 4868 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4869
4870 /* And make sure stepping stops right away then. */
4e1c45ea 4871 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4872 }
4873 keep_going (ecs);
4874}
d4f3574e 4875
b2175913
MS
4876/* Inferior has stepped backward into a subroutine call with source
4877 code that we should not step over. Do step to the beginning of the
4878 last line of code in it. */
4879
4880static void
568d6575
UW
4881handle_step_into_function_backward (struct gdbarch *gdbarch,
4882 struct execution_control_state *ecs)
b2175913
MS
4883{
4884 struct symtab *s;
167e4384 4885 struct symtab_and_line stop_func_sal;
b2175913
MS
4886
4887 s = find_pc_symtab (stop_pc);
4888 if (s && s->language != language_asm)
568d6575 4889 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4890 ecs->stop_func_start);
4891
4892 stop_func_sal = find_pc_line (stop_pc, 0);
4893
4894 /* OK, we're just going to keep stepping here. */
4895 if (stop_func_sal.pc == stop_pc)
4896 {
4897 /* We're there already. Just stop stepping now. */
4898 ecs->event_thread->stop_step = 1;
4899 print_stop_reason (END_STEPPING_RANGE, 0);
4900 stop_stepping (ecs);
4901 }
4902 else
4903 {
4904 /* Else just reset the step range and keep going.
4905 No step-resume breakpoint, they don't work for
4906 epilogues, which can have multiple entry paths. */
4907 ecs->event_thread->step_range_start = stop_func_sal.pc;
4908 ecs->event_thread->step_range_end = stop_func_sal.end;
4909 keep_going (ecs);
4910 }
4911 return;
4912}
4913
d3169d93 4914/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4915 This is used to both functions and to skip over code. */
4916
4917static void
a6d9a66e
UW
4918insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4919 struct symtab_and_line sr_sal,
44cbf7b5
AC
4920 struct frame_id sr_id)
4921{
611c83ae
PA
4922 /* There should never be more than one step-resume or longjmp-resume
4923 breakpoint per thread, so we should never be setting a new
44cbf7b5 4924 step_resume_breakpoint when one is already active. */
4e1c45ea 4925 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4926
4927 if (debug_infrun)
4928 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4929 "infrun: inserting step-resume breakpoint at %s\n",
4930 paddress (gdbarch, sr_sal.pc));
d3169d93 4931
4e1c45ea 4932 inferior_thread ()->step_resume_breakpoint
a6d9a66e 4933 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 4934}
7ce450bd 4935
d3169d93 4936/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4937 to skip a potential signal handler.
7ce450bd 4938
14e60db5
DJ
4939 This is called with the interrupted function's frame. The signal
4940 handler, when it returns, will resume the interrupted function at
4941 RETURN_FRAME.pc. */
d303a6c7
AC
4942
4943static void
44cbf7b5 4944insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4945{
4946 struct symtab_and_line sr_sal;
a6d9a66e 4947 struct gdbarch *gdbarch;
d303a6c7 4948
f4c1edd8 4949 gdb_assert (return_frame != NULL);
d303a6c7
AC
4950 init_sal (&sr_sal); /* initialize to zeros */
4951
a6d9a66e 4952 gdbarch = get_frame_arch (return_frame);
568d6575 4953 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 4954 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4955 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 4956
a6d9a66e
UW
4957 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4958 get_stack_frame_id (return_frame));
d303a6c7
AC
4959}
4960
14e60db5
DJ
4961/* Similar to insert_step_resume_breakpoint_at_frame, except
4962 but a breakpoint at the previous frame's PC. This is used to
4963 skip a function after stepping into it (for "next" or if the called
4964 function has no debugging information).
4965
4966 The current function has almost always been reached by single
4967 stepping a call or return instruction. NEXT_FRAME belongs to the
4968 current function, and the breakpoint will be set at the caller's
4969 resume address.
4970
4971 This is a separate function rather than reusing
4972 insert_step_resume_breakpoint_at_frame in order to avoid
4973 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 4974 of frame_unwind_caller_id for an example). */
14e60db5
DJ
4975
4976static void
4977insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4978{
4979 struct symtab_and_line sr_sal;
a6d9a66e 4980 struct gdbarch *gdbarch;
14e60db5
DJ
4981
4982 /* We shouldn't have gotten here if we don't know where the call site
4983 is. */
c7ce8faa 4984 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
4985
4986 init_sal (&sr_sal); /* initialize to zeros */
4987
a6d9a66e 4988 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
4989 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4990 frame_unwind_caller_pc (next_frame));
14e60db5 4991 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4992 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 4993
a6d9a66e 4994 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 4995 frame_unwind_caller_id (next_frame));
14e60db5
DJ
4996}
4997
611c83ae
PA
4998/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4999 new breakpoint at the target of a jmp_buf. The handling of
5000 longjmp-resume uses the same mechanisms used for handling
5001 "step-resume" breakpoints. */
5002
5003static void
a6d9a66e 5004insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5005{
5006 /* There should never be more than one step-resume or longjmp-resume
5007 breakpoint per thread, so we should never be setting a new
5008 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 5009 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
5010
5011 if (debug_infrun)
5012 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5013 "infrun: inserting longjmp-resume breakpoint at %s\n",
5014 paddress (gdbarch, pc));
611c83ae 5015
4e1c45ea 5016 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 5017 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5018}
5019
104c1213
JM
5020static void
5021stop_stepping (struct execution_control_state *ecs)
5022{
527159b7 5023 if (debug_infrun)
8a9de0e4 5024 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5025
cd0fc7c3
SS
5026 /* Let callers know we don't want to wait for the inferior anymore. */
5027 ecs->wait_some_more = 0;
5028}
5029
d4f3574e
SS
5030/* This function handles various cases where we need to continue
5031 waiting for the inferior. */
5032/* (Used to be the keep_going: label in the old wait_for_inferior) */
5033
5034static void
5035keep_going (struct execution_control_state *ecs)
5036{
c4dbc9af
PA
5037 /* Make sure normal_stop is called if we get a QUIT handled before
5038 reaching resume. */
5039 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5040
d4f3574e 5041 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5042 ecs->event_thread->prev_pc
5043 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5044
d4f3574e
SS
5045 /* If we did not do break;, it means we should keep running the
5046 inferior and not return to debugger. */
5047
2020b7ab
PA
5048 if (ecs->event_thread->trap_expected
5049 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5050 {
5051 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5052 the inferior, else we'd not get here) and we haven't yet
5053 gotten our trap. Simply continue. */
c4dbc9af
PA
5054
5055 discard_cleanups (old_cleanups);
2020b7ab
PA
5056 resume (currently_stepping (ecs->event_thread),
5057 ecs->event_thread->stop_signal);
d4f3574e
SS
5058 }
5059 else
5060 {
5061 /* Either the trap was not expected, but we are continuing
488f131b
JB
5062 anyway (the user asked that this signal be passed to the
5063 child)
5064 -- or --
5065 The signal was SIGTRAP, e.g. it was our signal, but we
5066 decided we should resume from it.
d4f3574e 5067
c36b740a 5068 We're going to run this baby now!
d4f3574e 5069
c36b740a
VP
5070 Note that insert_breakpoints won't try to re-insert
5071 already inserted breakpoints. Therefore, we don't
5072 care if breakpoints were already inserted, or not. */
5073
4e1c45ea 5074 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5075 {
9f5a595d
UW
5076 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5077 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5078 /* Since we can't do a displaced step, we have to remove
5079 the breakpoint while we step it. To keep things
5080 simple, we remove them all. */
5081 remove_breakpoints ();
45e8c884
VP
5082 }
5083 else
d4f3574e 5084 {
e236ba44 5085 struct gdb_exception e;
569631c6
UW
5086 /* Stop stepping when inserting breakpoints
5087 has failed. */
e236ba44
VP
5088 TRY_CATCH (e, RETURN_MASK_ERROR)
5089 {
5090 insert_breakpoints ();
5091 }
5092 if (e.reason < 0)
d4f3574e 5093 {
97bd5475 5094 exception_print (gdb_stderr, e);
d4f3574e
SS
5095 stop_stepping (ecs);
5096 return;
5097 }
d4f3574e
SS
5098 }
5099
4e1c45ea 5100 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5101
5102 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5103 specifies that such a signal should be delivered to the
5104 target program).
5105
5106 Typically, this would occure when a user is debugging a
5107 target monitor on a simulator: the target monitor sets a
5108 breakpoint; the simulator encounters this break-point and
5109 halts the simulation handing control to GDB; GDB, noteing
5110 that the break-point isn't valid, returns control back to the
5111 simulator; the simulator then delivers the hardware
5112 equivalent of a SIGNAL_TRAP to the program being debugged. */
5113
2020b7ab
PA
5114 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
5115 && !signal_program[ecs->event_thread->stop_signal])
5116 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 5117
c4dbc9af 5118 discard_cleanups (old_cleanups);
2020b7ab
PA
5119 resume (currently_stepping (ecs->event_thread),
5120 ecs->event_thread->stop_signal);
d4f3574e
SS
5121 }
5122
488f131b 5123 prepare_to_wait (ecs);
d4f3574e
SS
5124}
5125
104c1213
JM
5126/* This function normally comes after a resume, before
5127 handle_inferior_event exits. It takes care of any last bits of
5128 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5129
104c1213
JM
5130static void
5131prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5132{
527159b7 5133 if (debug_infrun)
8a9de0e4 5134 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5135
104c1213
JM
5136 /* This is the old end of the while loop. Let everybody know we
5137 want to wait for the inferior some more and get called again
5138 soon. */
5139 ecs->wait_some_more = 1;
c906108c 5140}
11cf8741
JM
5141
5142/* Print why the inferior has stopped. We always print something when
5143 the inferior exits, or receives a signal. The rest of the cases are
5144 dealt with later on in normal_stop() and print_it_typical(). Ideally
5145 there should be a call to this function from handle_inferior_event()
5146 each time stop_stepping() is called.*/
5147static void
5148print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
5149{
5150 switch (stop_reason)
5151 {
11cf8741
JM
5152 case END_STEPPING_RANGE:
5153 /* We are done with a step/next/si/ni command. */
5154 /* For now print nothing. */
fb40c209 5155 /* Print a message only if not in the middle of doing a "step n"
488f131b 5156 operation for n > 1 */
414c69f7
PA
5157 if (!inferior_thread ()->step_multi
5158 || !inferior_thread ()->stop_step)
9dc5e2a9 5159 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5160 ui_out_field_string
5161 (uiout, "reason",
5162 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 5163 break;
11cf8741
JM
5164 case SIGNAL_EXITED:
5165 /* The inferior was terminated by a signal. */
8b93c638 5166 annotate_signalled ();
9dc5e2a9 5167 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5168 ui_out_field_string
5169 (uiout, "reason",
5170 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
5171 ui_out_text (uiout, "\nProgram terminated with signal ");
5172 annotate_signal_name ();
488f131b
JB
5173 ui_out_field_string (uiout, "signal-name",
5174 target_signal_to_name (stop_info));
8b93c638
JM
5175 annotate_signal_name_end ();
5176 ui_out_text (uiout, ", ");
5177 annotate_signal_string ();
488f131b
JB
5178 ui_out_field_string (uiout, "signal-meaning",
5179 target_signal_to_string (stop_info));
8b93c638
JM
5180 annotate_signal_string_end ();
5181 ui_out_text (uiout, ".\n");
5182 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
5183 break;
5184 case EXITED:
5185 /* The inferior program is finished. */
8b93c638
JM
5186 annotate_exited (stop_info);
5187 if (stop_info)
5188 {
9dc5e2a9 5189 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5190 ui_out_field_string (uiout, "reason",
5191 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 5192 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
5193 ui_out_field_fmt (uiout, "exit-code", "0%o",
5194 (unsigned int) stop_info);
8b93c638
JM
5195 ui_out_text (uiout, ".\n");
5196 }
5197 else
5198 {
9dc5e2a9 5199 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5200 ui_out_field_string
5201 (uiout, "reason",
5202 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
5203 ui_out_text (uiout, "\nProgram exited normally.\n");
5204 }
f17517ea
AS
5205 /* Support the --return-child-result option. */
5206 return_child_result_value = stop_info;
11cf8741
JM
5207 break;
5208 case SIGNAL_RECEIVED:
252fbfc8
PA
5209 /* Signal received. The signal table tells us to print about
5210 it. */
8b93c638 5211 annotate_signal ();
252fbfc8
PA
5212
5213 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5214 {
5215 struct thread_info *t = inferior_thread ();
5216
5217 ui_out_text (uiout, "\n[");
5218 ui_out_field_string (uiout, "thread-name",
5219 target_pid_to_str (t->ptid));
5220 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5221 ui_out_text (uiout, " stopped");
5222 }
5223 else
5224 {
5225 ui_out_text (uiout, "\nProgram received signal ");
5226 annotate_signal_name ();
5227 if (ui_out_is_mi_like_p (uiout))
5228 ui_out_field_string
5229 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5230 ui_out_field_string (uiout, "signal-name",
5231 target_signal_to_name (stop_info));
5232 annotate_signal_name_end ();
5233 ui_out_text (uiout, ", ");
5234 annotate_signal_string ();
5235 ui_out_field_string (uiout, "signal-meaning",
5236 target_signal_to_string (stop_info));
5237 annotate_signal_string_end ();
5238 }
8b93c638 5239 ui_out_text (uiout, ".\n");
11cf8741 5240 break;
b2175913
MS
5241 case NO_HISTORY:
5242 /* Reverse execution: target ran out of history info. */
5243 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5244 break;
11cf8741 5245 default:
8e65ff28 5246 internal_error (__FILE__, __LINE__,
e2e0b3e5 5247 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
5248 break;
5249 }
5250}
c906108c 5251\f
43ff13b4 5252
c906108c
SS
5253/* Here to return control to GDB when the inferior stops for real.
5254 Print appropriate messages, remove breakpoints, give terminal our modes.
5255
5256 STOP_PRINT_FRAME nonzero means print the executing frame
5257 (pc, function, args, file, line number and line text).
5258 BREAKPOINTS_FAILED nonzero means stop was due to error
5259 attempting to insert breakpoints. */
5260
5261void
96baa820 5262normal_stop (void)
c906108c 5263{
73b65bb0
DJ
5264 struct target_waitstatus last;
5265 ptid_t last_ptid;
29f49a6a 5266 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5267
5268 get_last_target_status (&last_ptid, &last);
5269
29f49a6a
PA
5270 /* If an exception is thrown from this point on, make sure to
5271 propagate GDB's knowledge of the executing state to the
5272 frontend/user running state. A QUIT is an easy exception to see
5273 here, so do this before any filtered output. */
c35b1492
PA
5274 if (!non_stop)
5275 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5276 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5277 && last.kind != TARGET_WAITKIND_EXITED)
5278 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5279
4f8d22e3
PA
5280 /* In non-stop mode, we don't want GDB to switch threads behind the
5281 user's back, to avoid races where the user is typing a command to
5282 apply to thread x, but GDB switches to thread y before the user
5283 finishes entering the command. */
5284
c906108c
SS
5285 /* As with the notification of thread events, we want to delay
5286 notifying the user that we've switched thread context until
5287 the inferior actually stops.
5288
73b65bb0
DJ
5289 There's no point in saying anything if the inferior has exited.
5290 Note that SIGNALLED here means "exited with a signal", not
5291 "received a signal". */
4f8d22e3
PA
5292 if (!non_stop
5293 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5294 && target_has_execution
5295 && last.kind != TARGET_WAITKIND_SIGNALLED
5296 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5297 {
5298 target_terminal_ours_for_output ();
a3f17187 5299 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5300 target_pid_to_str (inferior_ptid));
b8fa951a 5301 annotate_thread_changed ();
39f77062 5302 previous_inferior_ptid = inferior_ptid;
c906108c 5303 }
c906108c 5304
74960c60 5305 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5306 {
5307 if (remove_breakpoints ())
5308 {
5309 target_terminal_ours_for_output ();
a3f17187
AC
5310 printf_filtered (_("\
5311Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 5312Further execution is probably impossible.\n"));
c906108c
SS
5313 }
5314 }
c906108c 5315
c906108c
SS
5316 /* If an auto-display called a function and that got a signal,
5317 delete that auto-display to avoid an infinite recursion. */
5318
5319 if (stopped_by_random_signal)
5320 disable_current_display ();
5321
5322 /* Don't print a message if in the middle of doing a "step n"
5323 operation for n > 1 */
af679fd0
PA
5324 if (target_has_execution
5325 && last.kind != TARGET_WAITKIND_SIGNALLED
5326 && last.kind != TARGET_WAITKIND_EXITED
5327 && inferior_thread ()->step_multi
414c69f7 5328 && inferior_thread ()->stop_step)
c906108c
SS
5329 goto done;
5330
5331 target_terminal_ours ();
5332
7abfe014
DJ
5333 /* Set the current source location. This will also happen if we
5334 display the frame below, but the current SAL will be incorrect
5335 during a user hook-stop function. */
d729566a 5336 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5337 set_current_sal_from_frame (get_current_frame (), 1);
5338
dd7e2d2b
PA
5339 /* Let the user/frontend see the threads as stopped. */
5340 do_cleanups (old_chain);
5341
5342 /* Look up the hook_stop and run it (CLI internally handles problem
5343 of stop_command's pre-hook not existing). */
5344 if (stop_command)
5345 catch_errors (hook_stop_stub, stop_command,
5346 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5347
d729566a 5348 if (!has_stack_frames ())
d51fd4c8 5349 goto done;
c906108c 5350
32400beb
PA
5351 if (last.kind == TARGET_WAITKIND_SIGNALLED
5352 || last.kind == TARGET_WAITKIND_EXITED)
5353 goto done;
5354
c906108c
SS
5355 /* Select innermost stack frame - i.e., current frame is frame 0,
5356 and current location is based on that.
5357 Don't do this on return from a stack dummy routine,
5358 or if the program has exited. */
5359
5360 if (!stop_stack_dummy)
5361 {
0f7d239c 5362 select_frame (get_current_frame ());
c906108c
SS
5363
5364 /* Print current location without a level number, if
c5aa993b
JM
5365 we have changed functions or hit a breakpoint.
5366 Print source line if we have one.
5367 bpstat_print() contains the logic deciding in detail
5368 what to print, based on the event(s) that just occurred. */
c906108c 5369
d01a8610
AS
5370 /* If --batch-silent is enabled then there's no need to print the current
5371 source location, and to try risks causing an error message about
5372 missing source files. */
5373 if (stop_print_frame && !batch_silent)
c906108c
SS
5374 {
5375 int bpstat_ret;
5376 int source_flag;
917317f4 5377 int do_frame_printing = 1;
347bddb7 5378 struct thread_info *tp = inferior_thread ();
c906108c 5379
347bddb7 5380 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
5381 switch (bpstat_ret)
5382 {
5383 case PRINT_UNKNOWN:
b0f4b84b
DJ
5384 /* If we had hit a shared library event breakpoint,
5385 bpstat_print would print out this message. If we hit
5386 an OS-level shared library event, do the same
5387 thing. */
5388 if (last.kind == TARGET_WAITKIND_LOADED)
5389 {
5390 printf_filtered (_("Stopped due to shared library event\n"));
5391 source_flag = SRC_LINE; /* something bogus */
5392 do_frame_printing = 0;
5393 break;
5394 }
5395
aa0cd9c1 5396 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5397 (or should) carry around the function and does (or
5398 should) use that when doing a frame comparison. */
414c69f7 5399 if (tp->stop_step
347bddb7 5400 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 5401 get_frame_id (get_current_frame ()))
917317f4 5402 && step_start_function == find_pc_function (stop_pc))
488f131b 5403 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 5404 else
488f131b 5405 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5406 break;
5407 case PRINT_SRC_AND_LOC:
488f131b 5408 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5409 break;
5410 case PRINT_SRC_ONLY:
c5394b80 5411 source_flag = SRC_LINE;
917317f4
JM
5412 break;
5413 case PRINT_NOTHING:
488f131b 5414 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5415 do_frame_printing = 0;
5416 break;
5417 default:
e2e0b3e5 5418 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5419 }
c906108c
SS
5420
5421 /* The behavior of this routine with respect to the source
5422 flag is:
c5394b80
JM
5423 SRC_LINE: Print only source line
5424 LOCATION: Print only location
5425 SRC_AND_LOC: Print location and source line */
917317f4 5426 if (do_frame_printing)
b04f3ab4 5427 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5428
5429 /* Display the auto-display expressions. */
5430 do_displays ();
5431 }
5432 }
5433
5434 /* Save the function value return registers, if we care.
5435 We might be about to restore their previous contents. */
32400beb 5436 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
5437 {
5438 /* This should not be necessary. */
5439 if (stop_registers)
5440 regcache_xfree (stop_registers);
5441
5442 /* NB: The copy goes through to the target picking up the value of
5443 all the registers. */
5444 stop_registers = regcache_dup (get_current_regcache ());
5445 }
c906108c 5446
aa7d318d 5447 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5448 {
b89667eb
DE
5449 /* Pop the empty frame that contains the stack dummy.
5450 This also restores inferior state prior to the call
5451 (struct inferior_thread_state). */
5452 struct frame_info *frame = get_current_frame ();
5453 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5454 frame_pop (frame);
5455 /* frame_pop() calls reinit_frame_cache as the last thing it does
5456 which means there's currently no selected frame. We don't need
5457 to re-establish a selected frame if the dummy call returns normally,
5458 that will be done by restore_inferior_status. However, we do have
5459 to handle the case where the dummy call is returning after being
5460 stopped (e.g. the dummy call previously hit a breakpoint). We
5461 can't know which case we have so just always re-establish a
5462 selected frame here. */
0f7d239c 5463 select_frame (get_current_frame ());
c906108c
SS
5464 }
5465
c906108c
SS
5466done:
5467 annotate_stopped ();
41d2bdb4
PA
5468
5469 /* Suppress the stop observer if we're in the middle of:
5470
5471 - a step n (n > 1), as there still more steps to be done.
5472
5473 - a "finish" command, as the observer will be called in
5474 finish_command_continuation, so it can include the inferior
5475 function's return value.
5476
5477 - calling an inferior function, as we pretend we inferior didn't
5478 run at all. The return value of the call is handled by the
5479 expression evaluator, through call_function_by_hand. */
5480
5481 if (!target_has_execution
5482 || last.kind == TARGET_WAITKIND_SIGNALLED
5483 || last.kind == TARGET_WAITKIND_EXITED
5484 || (!inferior_thread ()->step_multi
5485 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
5486 && inferior_thread ()->proceed_to_finish)
5487 && !inferior_thread ()->in_infcall))
347bddb7
PA
5488 {
5489 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
5490 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
5491 stop_print_frame);
347bddb7 5492 else
1d33d6ba 5493 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5494 }
347bddb7 5495
48844aa6
PA
5496 if (target_has_execution)
5497 {
5498 if (last.kind != TARGET_WAITKIND_SIGNALLED
5499 && last.kind != TARGET_WAITKIND_EXITED)
5500 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5501 Delete any breakpoint that is to be deleted at the next stop. */
5502 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 5503 }
6c95b8df
PA
5504
5505 /* Try to get rid of automatically added inferiors that are no
5506 longer needed. Keeping those around slows down things linearly.
5507 Note that this never removes the current inferior. */
5508 prune_inferiors ();
c906108c
SS
5509}
5510
5511static int
96baa820 5512hook_stop_stub (void *cmd)
c906108c 5513{
5913bcb0 5514 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5515 return (0);
5516}
5517\f
c5aa993b 5518int
96baa820 5519signal_stop_state (int signo)
c906108c 5520{
d6b48e9c 5521 return signal_stop[signo];
c906108c
SS
5522}
5523
c5aa993b 5524int
96baa820 5525signal_print_state (int signo)
c906108c
SS
5526{
5527 return signal_print[signo];
5528}
5529
c5aa993b 5530int
96baa820 5531signal_pass_state (int signo)
c906108c
SS
5532{
5533 return signal_program[signo];
5534}
5535
488f131b 5536int
7bda5e4a 5537signal_stop_update (int signo, int state)
d4f3574e
SS
5538{
5539 int ret = signal_stop[signo];
5540 signal_stop[signo] = state;
5541 return ret;
5542}
5543
488f131b 5544int
7bda5e4a 5545signal_print_update (int signo, int state)
d4f3574e
SS
5546{
5547 int ret = signal_print[signo];
5548 signal_print[signo] = state;
5549 return ret;
5550}
5551
488f131b 5552int
7bda5e4a 5553signal_pass_update (int signo, int state)
d4f3574e
SS
5554{
5555 int ret = signal_program[signo];
5556 signal_program[signo] = state;
5557 return ret;
5558}
5559
c906108c 5560static void
96baa820 5561sig_print_header (void)
c906108c 5562{
a3f17187
AC
5563 printf_filtered (_("\
5564Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
5565}
5566
5567static void
96baa820 5568sig_print_info (enum target_signal oursig)
c906108c 5569{
54363045 5570 const char *name = target_signal_to_name (oursig);
c906108c 5571 int name_padding = 13 - strlen (name);
96baa820 5572
c906108c
SS
5573 if (name_padding <= 0)
5574 name_padding = 0;
5575
5576 printf_filtered ("%s", name);
488f131b 5577 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5578 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5579 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5580 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5581 printf_filtered ("%s\n", target_signal_to_string (oursig));
5582}
5583
5584/* Specify how various signals in the inferior should be handled. */
5585
5586static void
96baa820 5587handle_command (char *args, int from_tty)
c906108c
SS
5588{
5589 char **argv;
5590 int digits, wordlen;
5591 int sigfirst, signum, siglast;
5592 enum target_signal oursig;
5593 int allsigs;
5594 int nsigs;
5595 unsigned char *sigs;
5596 struct cleanup *old_chain;
5597
5598 if (args == NULL)
5599 {
e2e0b3e5 5600 error_no_arg (_("signal to handle"));
c906108c
SS
5601 }
5602
5603 /* Allocate and zero an array of flags for which signals to handle. */
5604
5605 nsigs = (int) TARGET_SIGNAL_LAST;
5606 sigs = (unsigned char *) alloca (nsigs);
5607 memset (sigs, 0, nsigs);
5608
5609 /* Break the command line up into args. */
5610
d1a41061 5611 argv = gdb_buildargv (args);
7a292a7a 5612 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5613
5614 /* Walk through the args, looking for signal oursigs, signal names, and
5615 actions. Signal numbers and signal names may be interspersed with
5616 actions, with the actions being performed for all signals cumulatively
5617 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5618
5619 while (*argv != NULL)
5620 {
5621 wordlen = strlen (*argv);
5622 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5623 {;
5624 }
5625 allsigs = 0;
5626 sigfirst = siglast = -1;
5627
5628 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5629 {
5630 /* Apply action to all signals except those used by the
5631 debugger. Silently skip those. */
5632 allsigs = 1;
5633 sigfirst = 0;
5634 siglast = nsigs - 1;
5635 }
5636 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5637 {
5638 SET_SIGS (nsigs, sigs, signal_stop);
5639 SET_SIGS (nsigs, sigs, signal_print);
5640 }
5641 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5642 {
5643 UNSET_SIGS (nsigs, sigs, signal_program);
5644 }
5645 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5646 {
5647 SET_SIGS (nsigs, sigs, signal_print);
5648 }
5649 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5650 {
5651 SET_SIGS (nsigs, sigs, signal_program);
5652 }
5653 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5654 {
5655 UNSET_SIGS (nsigs, sigs, signal_stop);
5656 }
5657 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5658 {
5659 SET_SIGS (nsigs, sigs, signal_program);
5660 }
5661 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5662 {
5663 UNSET_SIGS (nsigs, sigs, signal_print);
5664 UNSET_SIGS (nsigs, sigs, signal_stop);
5665 }
5666 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5667 {
5668 UNSET_SIGS (nsigs, sigs, signal_program);
5669 }
5670 else if (digits > 0)
5671 {
5672 /* It is numeric. The numeric signal refers to our own
5673 internal signal numbering from target.h, not to host/target
5674 signal number. This is a feature; users really should be
5675 using symbolic names anyway, and the common ones like
5676 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5677
5678 sigfirst = siglast = (int)
5679 target_signal_from_command (atoi (*argv));
5680 if ((*argv)[digits] == '-')
5681 {
5682 siglast = (int)
5683 target_signal_from_command (atoi ((*argv) + digits + 1));
5684 }
5685 if (sigfirst > siglast)
5686 {
5687 /* Bet he didn't figure we'd think of this case... */
5688 signum = sigfirst;
5689 sigfirst = siglast;
5690 siglast = signum;
5691 }
5692 }
5693 else
5694 {
5695 oursig = target_signal_from_name (*argv);
5696 if (oursig != TARGET_SIGNAL_UNKNOWN)
5697 {
5698 sigfirst = siglast = (int) oursig;
5699 }
5700 else
5701 {
5702 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5703 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5704 }
5705 }
5706
5707 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5708 which signals to apply actions to. */
c906108c
SS
5709
5710 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5711 {
5712 switch ((enum target_signal) signum)
5713 {
5714 case TARGET_SIGNAL_TRAP:
5715 case TARGET_SIGNAL_INT:
5716 if (!allsigs && !sigs[signum])
5717 {
9e2f0ad4
HZ
5718 if (query (_("%s is used by the debugger.\n\
5719Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5720 {
5721 sigs[signum] = 1;
5722 }
5723 else
5724 {
a3f17187 5725 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5726 gdb_flush (gdb_stdout);
5727 }
5728 }
5729 break;
5730 case TARGET_SIGNAL_0:
5731 case TARGET_SIGNAL_DEFAULT:
5732 case TARGET_SIGNAL_UNKNOWN:
5733 /* Make sure that "all" doesn't print these. */
5734 break;
5735 default:
5736 sigs[signum] = 1;
5737 break;
5738 }
5739 }
5740
5741 argv++;
5742 }
5743
3a031f65
PA
5744 for (signum = 0; signum < nsigs; signum++)
5745 if (sigs[signum])
5746 {
5747 target_notice_signals (inferior_ptid);
c906108c 5748
3a031f65
PA
5749 if (from_tty)
5750 {
5751 /* Show the results. */
5752 sig_print_header ();
5753 for (; signum < nsigs; signum++)
5754 if (sigs[signum])
5755 sig_print_info (signum);
5756 }
5757
5758 break;
5759 }
c906108c
SS
5760
5761 do_cleanups (old_chain);
5762}
5763
5764static void
96baa820 5765xdb_handle_command (char *args, int from_tty)
c906108c
SS
5766{
5767 char **argv;
5768 struct cleanup *old_chain;
5769
d1a41061
PP
5770 if (args == NULL)
5771 error_no_arg (_("xdb command"));
5772
c906108c
SS
5773 /* Break the command line up into args. */
5774
d1a41061 5775 argv = gdb_buildargv (args);
7a292a7a 5776 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5777 if (argv[1] != (char *) NULL)
5778 {
5779 char *argBuf;
5780 int bufLen;
5781
5782 bufLen = strlen (argv[0]) + 20;
5783 argBuf = (char *) xmalloc (bufLen);
5784 if (argBuf)
5785 {
5786 int validFlag = 1;
5787 enum target_signal oursig;
5788
5789 oursig = target_signal_from_name (argv[0]);
5790 memset (argBuf, 0, bufLen);
5791 if (strcmp (argv[1], "Q") == 0)
5792 sprintf (argBuf, "%s %s", argv[0], "noprint");
5793 else
5794 {
5795 if (strcmp (argv[1], "s") == 0)
5796 {
5797 if (!signal_stop[oursig])
5798 sprintf (argBuf, "%s %s", argv[0], "stop");
5799 else
5800 sprintf (argBuf, "%s %s", argv[0], "nostop");
5801 }
5802 else if (strcmp (argv[1], "i") == 0)
5803 {
5804 if (!signal_program[oursig])
5805 sprintf (argBuf, "%s %s", argv[0], "pass");
5806 else
5807 sprintf (argBuf, "%s %s", argv[0], "nopass");
5808 }
5809 else if (strcmp (argv[1], "r") == 0)
5810 {
5811 if (!signal_print[oursig])
5812 sprintf (argBuf, "%s %s", argv[0], "print");
5813 else
5814 sprintf (argBuf, "%s %s", argv[0], "noprint");
5815 }
5816 else
5817 validFlag = 0;
5818 }
5819 if (validFlag)
5820 handle_command (argBuf, from_tty);
5821 else
a3f17187 5822 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5823 if (argBuf)
b8c9b27d 5824 xfree (argBuf);
c906108c
SS
5825 }
5826 }
5827 do_cleanups (old_chain);
5828}
5829
5830/* Print current contents of the tables set by the handle command.
5831 It is possible we should just be printing signals actually used
5832 by the current target (but for things to work right when switching
5833 targets, all signals should be in the signal tables). */
5834
5835static void
96baa820 5836signals_info (char *signum_exp, int from_tty)
c906108c
SS
5837{
5838 enum target_signal oursig;
5839 sig_print_header ();
5840
5841 if (signum_exp)
5842 {
5843 /* First see if this is a symbol name. */
5844 oursig = target_signal_from_name (signum_exp);
5845 if (oursig == TARGET_SIGNAL_UNKNOWN)
5846 {
5847 /* No, try numeric. */
5848 oursig =
bb518678 5849 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5850 }
5851 sig_print_info (oursig);
5852 return;
5853 }
5854
5855 printf_filtered ("\n");
5856 /* These ugly casts brought to you by the native VAX compiler. */
5857 for (oursig = TARGET_SIGNAL_FIRST;
5858 (int) oursig < (int) TARGET_SIGNAL_LAST;
5859 oursig = (enum target_signal) ((int) oursig + 1))
5860 {
5861 QUIT;
5862
5863 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5864 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5865 sig_print_info (oursig);
5866 }
5867
a3f17187 5868 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5869}
4aa995e1
PA
5870
5871/* The $_siginfo convenience variable is a bit special. We don't know
5872 for sure the type of the value until we actually have a chance to
5873 fetch the data. The type can change depending on gdbarch, so it it
5874 also dependent on which thread you have selected.
5875
5876 1. making $_siginfo be an internalvar that creates a new value on
5877 access.
5878
5879 2. making the value of $_siginfo be an lval_computed value. */
5880
5881/* This function implements the lval_computed support for reading a
5882 $_siginfo value. */
5883
5884static void
5885siginfo_value_read (struct value *v)
5886{
5887 LONGEST transferred;
5888
5889 transferred =
5890 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5891 NULL,
5892 value_contents_all_raw (v),
5893 value_offset (v),
5894 TYPE_LENGTH (value_type (v)));
5895
5896 if (transferred != TYPE_LENGTH (value_type (v)))
5897 error (_("Unable to read siginfo"));
5898}
5899
5900/* This function implements the lval_computed support for writing a
5901 $_siginfo value. */
5902
5903static void
5904siginfo_value_write (struct value *v, struct value *fromval)
5905{
5906 LONGEST transferred;
5907
5908 transferred = target_write (&current_target,
5909 TARGET_OBJECT_SIGNAL_INFO,
5910 NULL,
5911 value_contents_all_raw (fromval),
5912 value_offset (v),
5913 TYPE_LENGTH (value_type (fromval)));
5914
5915 if (transferred != TYPE_LENGTH (value_type (fromval)))
5916 error (_("Unable to write siginfo"));
5917}
5918
5919static struct lval_funcs siginfo_value_funcs =
5920 {
5921 siginfo_value_read,
5922 siginfo_value_write
5923 };
5924
5925/* Return a new value with the correct type for the siginfo object of
78267919
UW
5926 the current thread using architecture GDBARCH. Return a void value
5927 if there's no object available. */
4aa995e1 5928
2c0b251b 5929static struct value *
78267919 5930siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 5931{
4aa995e1 5932 if (target_has_stack
78267919
UW
5933 && !ptid_equal (inferior_ptid, null_ptid)
5934 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 5935 {
78267919
UW
5936 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5937 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
5938 }
5939
78267919 5940 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
5941}
5942
c906108c 5943\f
b89667eb
DE
5944/* Inferior thread state.
5945 These are details related to the inferior itself, and don't include
5946 things like what frame the user had selected or what gdb was doing
5947 with the target at the time.
5948 For inferior function calls these are things we want to restore
5949 regardless of whether the function call successfully completes
5950 or the dummy frame has to be manually popped. */
5951
5952struct inferior_thread_state
7a292a7a
SS
5953{
5954 enum target_signal stop_signal;
5955 CORE_ADDR stop_pc;
b89667eb
DE
5956 struct regcache *registers;
5957};
5958
5959struct inferior_thread_state *
5960save_inferior_thread_state (void)
5961{
5962 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5963 struct thread_info *tp = inferior_thread ();
5964
5965 inf_state->stop_signal = tp->stop_signal;
5966 inf_state->stop_pc = stop_pc;
5967
5968 inf_state->registers = regcache_dup (get_current_regcache ());
5969
5970 return inf_state;
5971}
5972
5973/* Restore inferior session state to INF_STATE. */
5974
5975void
5976restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5977{
5978 struct thread_info *tp = inferior_thread ();
5979
5980 tp->stop_signal = inf_state->stop_signal;
5981 stop_pc = inf_state->stop_pc;
5982
5983 /* The inferior can be gone if the user types "print exit(0)"
5984 (and perhaps other times). */
5985 if (target_has_execution)
5986 /* NB: The register write goes through to the target. */
5987 regcache_cpy (get_current_regcache (), inf_state->registers);
5988 regcache_xfree (inf_state->registers);
5989 xfree (inf_state);
5990}
5991
5992static void
5993do_restore_inferior_thread_state_cleanup (void *state)
5994{
5995 restore_inferior_thread_state (state);
5996}
5997
5998struct cleanup *
5999make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
6000{
6001 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
6002}
6003
6004void
6005discard_inferior_thread_state (struct inferior_thread_state *inf_state)
6006{
6007 regcache_xfree (inf_state->registers);
6008 xfree (inf_state);
6009}
6010
6011struct regcache *
6012get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
6013{
6014 return inf_state->registers;
6015}
6016
6017/* Session related state for inferior function calls.
6018 These are the additional bits of state that need to be restored
6019 when an inferior function call successfully completes. */
6020
6021struct inferior_status
6022{
7a292a7a
SS
6023 bpstat stop_bpstat;
6024 int stop_step;
aa7d318d 6025 enum stop_stack_kind stop_stack_dummy;
7a292a7a 6026 int stopped_by_random_signal;
ca67fcb8 6027 int stepping_over_breakpoint;
7a292a7a
SS
6028 CORE_ADDR step_range_start;
6029 CORE_ADDR step_range_end;
aa0cd9c1 6030 struct frame_id step_frame_id;
edb3359d 6031 struct frame_id step_stack_frame_id;
5fbbeb29 6032 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
6033 CORE_ADDR step_resume_break_address;
6034 int stop_after_trap;
c0236d92 6035 int stop_soon;
7a292a7a 6036
b89667eb 6037 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
6038 struct frame_id selected_frame_id;
6039
7a292a7a 6040 int proceed_to_finish;
c5a4d20b 6041 int in_infcall;
7a292a7a
SS
6042};
6043
c906108c 6044/* Save all of the information associated with the inferior<==>gdb
b89667eb 6045 connection. */
c906108c 6046
7a292a7a 6047struct inferior_status *
b89667eb 6048save_inferior_status (void)
c906108c 6049{
72cec141 6050 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 6051 struct thread_info *tp = inferior_thread ();
d6b48e9c 6052 struct inferior *inf = current_inferior ();
7a292a7a 6053
414c69f7 6054 inf_status->stop_step = tp->stop_step;
c906108c
SS
6055 inf_status->stop_stack_dummy = stop_stack_dummy;
6056 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
6057 inf_status->stepping_over_breakpoint = tp->trap_expected;
6058 inf_status->step_range_start = tp->step_range_start;
6059 inf_status->step_range_end = tp->step_range_end;
6060 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 6061 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 6062 inf_status->step_over_calls = tp->step_over_calls;
c906108c 6063 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 6064 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
6065 /* Save original bpstat chain here; replace it with copy of chain.
6066 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
6067 hand them back the original chain when restore_inferior_status is
6068 called. */
347bddb7
PA
6069 inf_status->stop_bpstat = tp->stop_bpstat;
6070 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 6071 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 6072 inf_status->in_infcall = tp->in_infcall;
c5aa993b 6073
206415a3 6074 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6075
7a292a7a 6076 return inf_status;
c906108c
SS
6077}
6078
c906108c 6079static int
96baa820 6080restore_selected_frame (void *args)
c906108c 6081{
488f131b 6082 struct frame_id *fid = (struct frame_id *) args;
c906108c 6083 struct frame_info *frame;
c906108c 6084
101dcfbe 6085 frame = frame_find_by_id (*fid);
c906108c 6086
aa0cd9c1
AC
6087 /* If inf_status->selected_frame_id is NULL, there was no previously
6088 selected frame. */
101dcfbe 6089 if (frame == NULL)
c906108c 6090 {
8a3fe4f8 6091 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6092 return 0;
6093 }
6094
0f7d239c 6095 select_frame (frame);
c906108c
SS
6096
6097 return (1);
6098}
6099
b89667eb
DE
6100/* Restore inferior session state to INF_STATUS. */
6101
c906108c 6102void
96baa820 6103restore_inferior_status (struct inferior_status *inf_status)
c906108c 6104{
4e1c45ea 6105 struct thread_info *tp = inferior_thread ();
d6b48e9c 6106 struct inferior *inf = current_inferior ();
4e1c45ea 6107
414c69f7 6108 tp->stop_step = inf_status->stop_step;
c906108c
SS
6109 stop_stack_dummy = inf_status->stop_stack_dummy;
6110 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
6111 tp->trap_expected = inf_status->stepping_over_breakpoint;
6112 tp->step_range_start = inf_status->step_range_start;
6113 tp->step_range_end = inf_status->step_range_end;
6114 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 6115 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 6116 tp->step_over_calls = inf_status->step_over_calls;
c906108c 6117 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 6118 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
6119 bpstat_clear (&tp->stop_bpstat);
6120 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 6121 inf_status->stop_bpstat = NULL;
32400beb 6122 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 6123 tp->in_infcall = inf_status->in_infcall;
c906108c 6124
b89667eb 6125 if (target_has_stack)
c906108c 6126 {
c906108c 6127 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6128 walking the stack might encounter a garbage pointer and
6129 error() trying to dereference it. */
488f131b
JB
6130 if (catch_errors
6131 (restore_selected_frame, &inf_status->selected_frame_id,
6132 "Unable to restore previously selected frame:\n",
6133 RETURN_MASK_ERROR) == 0)
c906108c
SS
6134 /* Error in restoring the selected frame. Select the innermost
6135 frame. */
0f7d239c 6136 select_frame (get_current_frame ());
c906108c 6137 }
c906108c 6138
72cec141 6139 xfree (inf_status);
7a292a7a 6140}
c906108c 6141
74b7792f
AC
6142static void
6143do_restore_inferior_status_cleanup (void *sts)
6144{
6145 restore_inferior_status (sts);
6146}
6147
6148struct cleanup *
6149make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
6150{
6151 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
6152}
6153
c906108c 6154void
96baa820 6155discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
6156{
6157 /* See save_inferior_status for info on stop_bpstat. */
6158 bpstat_clear (&inf_status->stop_bpstat);
72cec141 6159 xfree (inf_status);
7a292a7a 6160}
b89667eb 6161\f
47932f85 6162int
3a3e9ee3 6163inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6164{
6165 struct target_waitstatus last;
6166 ptid_t last_ptid;
6167
6168 get_last_target_status (&last_ptid, &last);
6169
6170 if (last.kind != TARGET_WAITKIND_FORKED)
6171 return 0;
6172
3a3e9ee3 6173 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6174 return 0;
6175
6176 *child_pid = last.value.related_pid;
6177 return 1;
6178}
6179
6180int
3a3e9ee3 6181inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6182{
6183 struct target_waitstatus last;
6184 ptid_t last_ptid;
6185
6186 get_last_target_status (&last_ptid, &last);
6187
6188 if (last.kind != TARGET_WAITKIND_VFORKED)
6189 return 0;
6190
3a3e9ee3 6191 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6192 return 0;
6193
6194 *child_pid = last.value.related_pid;
6195 return 1;
6196}
6197
6198int
3a3e9ee3 6199inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6200{
6201 struct target_waitstatus last;
6202 ptid_t last_ptid;
6203
6204 get_last_target_status (&last_ptid, &last);
6205
6206 if (last.kind != TARGET_WAITKIND_EXECD)
6207 return 0;
6208
3a3e9ee3 6209 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6210 return 0;
6211
6212 *execd_pathname = xstrdup (last.value.execd_pathname);
6213 return 1;
6214}
6215
a96d9b2e
SDJ
6216int
6217inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6218{
6219 struct target_waitstatus last;
6220 ptid_t last_ptid;
6221
6222 get_last_target_status (&last_ptid, &last);
6223
6224 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6225 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6226 return 0;
6227
6228 if (!ptid_equal (last_ptid, pid))
6229 return 0;
6230
6231 *syscall_number = last.value.syscall_number;
6232 return 1;
6233}
6234
ca6724c1
KB
6235/* Oft used ptids */
6236ptid_t null_ptid;
6237ptid_t minus_one_ptid;
6238
6239/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6240
ca6724c1
KB
6241ptid_t
6242ptid_build (int pid, long lwp, long tid)
6243{
6244 ptid_t ptid;
6245
6246 ptid.pid = pid;
6247 ptid.lwp = lwp;
6248 ptid.tid = tid;
6249 return ptid;
6250}
6251
6252/* Create a ptid from just a pid. */
6253
6254ptid_t
6255pid_to_ptid (int pid)
6256{
6257 return ptid_build (pid, 0, 0);
6258}
6259
6260/* Fetch the pid (process id) component from a ptid. */
6261
6262int
6263ptid_get_pid (ptid_t ptid)
6264{
6265 return ptid.pid;
6266}
6267
6268/* Fetch the lwp (lightweight process) component from a ptid. */
6269
6270long
6271ptid_get_lwp (ptid_t ptid)
6272{
6273 return ptid.lwp;
6274}
6275
6276/* Fetch the tid (thread id) component from a ptid. */
6277
6278long
6279ptid_get_tid (ptid_t ptid)
6280{
6281 return ptid.tid;
6282}
6283
6284/* ptid_equal() is used to test equality of two ptids. */
6285
6286int
6287ptid_equal (ptid_t ptid1, ptid_t ptid2)
6288{
6289 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6290 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6291}
6292
252fbfc8
PA
6293/* Returns true if PTID represents a process. */
6294
6295int
6296ptid_is_pid (ptid_t ptid)
6297{
6298 if (ptid_equal (minus_one_ptid, ptid))
6299 return 0;
6300 if (ptid_equal (null_ptid, ptid))
6301 return 0;
6302
6303 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6304}
6305
0723dbf5
PA
6306int
6307ptid_match (ptid_t ptid, ptid_t filter)
6308{
6309 /* Since both parameters have the same type, prevent easy mistakes
6310 from happening. */
6311 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
5f25d77d 6312 && !ptid_equal (ptid, null_ptid));
0723dbf5
PA
6313
6314 if (ptid_equal (filter, minus_one_ptid))
6315 return 1;
6316 if (ptid_is_pid (filter)
6317 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6318 return 1;
6319 else if (ptid_equal (ptid, filter))
6320 return 1;
6321
6322 return 0;
6323}
6324
ca6724c1
KB
6325/* restore_inferior_ptid() will be used by the cleanup machinery
6326 to restore the inferior_ptid value saved in a call to
6327 save_inferior_ptid(). */
ce696e05
KB
6328
6329static void
6330restore_inferior_ptid (void *arg)
6331{
6332 ptid_t *saved_ptid_ptr = arg;
6333 inferior_ptid = *saved_ptid_ptr;
6334 xfree (arg);
6335}
6336
6337/* Save the value of inferior_ptid so that it may be restored by a
6338 later call to do_cleanups(). Returns the struct cleanup pointer
6339 needed for later doing the cleanup. */
6340
6341struct cleanup *
6342save_inferior_ptid (void)
6343{
6344 ptid_t *saved_ptid_ptr;
6345
6346 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6347 *saved_ptid_ptr = inferior_ptid;
6348 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6349}
c5aa993b 6350\f
488f131b 6351
b2175913
MS
6352/* User interface for reverse debugging:
6353 Set exec-direction / show exec-direction commands
6354 (returns error unless target implements to_set_exec_direction method). */
6355
6356enum exec_direction_kind execution_direction = EXEC_FORWARD;
6357static const char exec_forward[] = "forward";
6358static const char exec_reverse[] = "reverse";
6359static const char *exec_direction = exec_forward;
6360static const char *exec_direction_names[] = {
6361 exec_forward,
6362 exec_reverse,
6363 NULL
6364};
6365
6366static void
6367set_exec_direction_func (char *args, int from_tty,
6368 struct cmd_list_element *cmd)
6369{
6370 if (target_can_execute_reverse)
6371 {
6372 if (!strcmp (exec_direction, exec_forward))
6373 execution_direction = EXEC_FORWARD;
6374 else if (!strcmp (exec_direction, exec_reverse))
6375 execution_direction = EXEC_REVERSE;
6376 }
6377}
6378
6379static void
6380show_exec_direction_func (struct ui_file *out, int from_tty,
6381 struct cmd_list_element *cmd, const char *value)
6382{
6383 switch (execution_direction) {
6384 case EXEC_FORWARD:
6385 fprintf_filtered (out, _("Forward.\n"));
6386 break;
6387 case EXEC_REVERSE:
6388 fprintf_filtered (out, _("Reverse.\n"));
6389 break;
6390 case EXEC_ERROR:
6391 default:
6392 fprintf_filtered (out,
6393 _("Forward (target `%s' does not support exec-direction).\n"),
6394 target_shortname);
6395 break;
6396 }
6397}
6398
6399/* User interface for non-stop mode. */
6400
ad52ddc6
PA
6401int non_stop = 0;
6402static int non_stop_1 = 0;
6403
6404static void
6405set_non_stop (char *args, int from_tty,
6406 struct cmd_list_element *c)
6407{
6408 if (target_has_execution)
6409 {
6410 non_stop_1 = non_stop;
6411 error (_("Cannot change this setting while the inferior is running."));
6412 }
6413
6414 non_stop = non_stop_1;
6415}
6416
6417static void
6418show_non_stop (struct ui_file *file, int from_tty,
6419 struct cmd_list_element *c, const char *value)
6420{
6421 fprintf_filtered (file,
6422 _("Controlling the inferior in non-stop mode is %s.\n"),
6423 value);
6424}
6425
d4db2f36
PA
6426static void
6427show_schedule_multiple (struct ui_file *file, int from_tty,
6428 struct cmd_list_element *c, const char *value)
6429{
6430 fprintf_filtered (file, _("\
6431Resuming the execution of threads of all processes is %s.\n"), value);
6432}
ad52ddc6 6433
c906108c 6434void
96baa820 6435_initialize_infrun (void)
c906108c 6436{
52f0bd74
AC
6437 int i;
6438 int numsigs;
c906108c 6439
1bedd215
AC
6440 add_info ("signals", signals_info, _("\
6441What debugger does when program gets various signals.\n\
6442Specify a signal as argument to print info on that signal only."));
c906108c
SS
6443 add_info_alias ("handle", "signals", 0);
6444
1bedd215
AC
6445 add_com ("handle", class_run, handle_command, _("\
6446Specify how to handle a signal.\n\
c906108c
SS
6447Args are signals and actions to apply to those signals.\n\
6448Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6449from 1-15 are allowed for compatibility with old versions of GDB.\n\
6450Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6451The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6452used by the debugger, typically SIGTRAP and SIGINT.\n\
6453Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6454\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6455Stop means reenter debugger if this signal happens (implies print).\n\
6456Print means print a message if this signal happens.\n\
6457Pass means let program see this signal; otherwise program doesn't know.\n\
6458Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6459Pass and Stop may be combined."));
c906108c
SS
6460 if (xdb_commands)
6461 {
1bedd215
AC
6462 add_com ("lz", class_info, signals_info, _("\
6463What debugger does when program gets various signals.\n\
6464Specify a signal as argument to print info on that signal only."));
6465 add_com ("z", class_run, xdb_handle_command, _("\
6466Specify how to handle a signal.\n\
c906108c
SS
6467Args are signals and actions to apply to those signals.\n\
6468Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6469from 1-15 are allowed for compatibility with old versions of GDB.\n\
6470Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6471The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6472used by the debugger, typically SIGTRAP and SIGINT.\n\
6473Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
6474\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6475nopass), \"Q\" (noprint)\n\
6476Stop means reenter debugger if this signal happens (implies print).\n\
6477Print means print a message if this signal happens.\n\
6478Pass means let program see this signal; otherwise program doesn't know.\n\
6479Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6480Pass and Stop may be combined."));
c906108c
SS
6481 }
6482
6483 if (!dbx_commands)
1a966eab
AC
6484 stop_command = add_cmd ("stop", class_obscure,
6485 not_just_help_class_command, _("\
6486There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6487This allows you to set a list of commands to be run each time execution\n\
1a966eab 6488of the program stops."), &cmdlist);
c906108c 6489
85c07804
AC
6490 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6491Set inferior debugging."), _("\
6492Show inferior debugging."), _("\
6493When non-zero, inferior specific debugging is enabled."),
6494 NULL,
920d2a44 6495 show_debug_infrun,
85c07804 6496 &setdebuglist, &showdebuglist);
527159b7 6497
237fc4c9
PA
6498 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6499Set displaced stepping debugging."), _("\
6500Show displaced stepping debugging."), _("\
6501When non-zero, displaced stepping specific debugging is enabled."),
6502 NULL,
6503 show_debug_displaced,
6504 &setdebuglist, &showdebuglist);
6505
ad52ddc6
PA
6506 add_setshow_boolean_cmd ("non-stop", no_class,
6507 &non_stop_1, _("\
6508Set whether gdb controls the inferior in non-stop mode."), _("\
6509Show whether gdb controls the inferior in non-stop mode."), _("\
6510When debugging a multi-threaded program and this setting is\n\
6511off (the default, also called all-stop mode), when one thread stops\n\
6512(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6513all other threads in the program while you interact with the thread of\n\
6514interest. When you continue or step a thread, you can allow the other\n\
6515threads to run, or have them remain stopped, but while you inspect any\n\
6516thread's state, all threads stop.\n\
6517\n\
6518In non-stop mode, when one thread stops, other threads can continue\n\
6519to run freely. You'll be able to step each thread independently,\n\
6520leave it stopped or free to run as needed."),
6521 set_non_stop,
6522 show_non_stop,
6523 &setlist,
6524 &showlist);
6525
c906108c 6526 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 6527 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
6528 signal_print = (unsigned char *)
6529 xmalloc (sizeof (signal_print[0]) * numsigs);
6530 signal_program = (unsigned char *)
6531 xmalloc (sizeof (signal_program[0]) * numsigs);
6532 for (i = 0; i < numsigs; i++)
6533 {
6534 signal_stop[i] = 1;
6535 signal_print[i] = 1;
6536 signal_program[i] = 1;
6537 }
6538
6539 /* Signals caused by debugger's own actions
6540 should not be given to the program afterwards. */
6541 signal_program[TARGET_SIGNAL_TRAP] = 0;
6542 signal_program[TARGET_SIGNAL_INT] = 0;
6543
6544 /* Signals that are not errors should not normally enter the debugger. */
6545 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6546 signal_print[TARGET_SIGNAL_ALRM] = 0;
6547 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6548 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6549 signal_stop[TARGET_SIGNAL_PROF] = 0;
6550 signal_print[TARGET_SIGNAL_PROF] = 0;
6551 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6552 signal_print[TARGET_SIGNAL_CHLD] = 0;
6553 signal_stop[TARGET_SIGNAL_IO] = 0;
6554 signal_print[TARGET_SIGNAL_IO] = 0;
6555 signal_stop[TARGET_SIGNAL_POLL] = 0;
6556 signal_print[TARGET_SIGNAL_POLL] = 0;
6557 signal_stop[TARGET_SIGNAL_URG] = 0;
6558 signal_print[TARGET_SIGNAL_URG] = 0;
6559 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6560 signal_print[TARGET_SIGNAL_WINCH] = 0;
6561
cd0fc7c3
SS
6562 /* These signals are used internally by user-level thread
6563 implementations. (See signal(5) on Solaris.) Like the above
6564 signals, a healthy program receives and handles them as part of
6565 its normal operation. */
6566 signal_stop[TARGET_SIGNAL_LWP] = 0;
6567 signal_print[TARGET_SIGNAL_LWP] = 0;
6568 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6569 signal_print[TARGET_SIGNAL_WAITING] = 0;
6570 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6571 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6572
85c07804
AC
6573 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6574 &stop_on_solib_events, _("\
6575Set stopping for shared library events."), _("\
6576Show stopping for shared library events."), _("\
c906108c
SS
6577If nonzero, gdb will give control to the user when the dynamic linker\n\
6578notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
6579to the user would be loading/unloading of a new library."),
6580 NULL,
920d2a44 6581 show_stop_on_solib_events,
85c07804 6582 &setlist, &showlist);
c906108c 6583
7ab04401
AC
6584 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6585 follow_fork_mode_kind_names,
6586 &follow_fork_mode_string, _("\
6587Set debugger response to a program call of fork or vfork."), _("\
6588Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
6589A fork or vfork creates a new process. follow-fork-mode can be:\n\
6590 parent - the original process is debugged after a fork\n\
6591 child - the new process is debugged after a fork\n\
ea1dd7bc 6592The unfollowed process will continue to run.\n\
7ab04401
AC
6593By default, the debugger will follow the parent process."),
6594 NULL,
920d2a44 6595 show_follow_fork_mode_string,
7ab04401
AC
6596 &setlist, &showlist);
6597
6c95b8df
PA
6598 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6599 follow_exec_mode_names,
6600 &follow_exec_mode_string, _("\
6601Set debugger response to a program call of exec."), _("\
6602Show debugger response to a program call of exec."), _("\
6603An exec call replaces the program image of a process.\n\
6604\n\
6605follow-exec-mode can be:\n\
6606\n\
6607 new - the debugger creates a new inferior and rebinds the process \n\
6608to this new inferior. The program the process was running before\n\
6609the exec call can be restarted afterwards by restarting the original\n\
6610inferior.\n\
6611\n\
6612 same - the debugger keeps the process bound to the same inferior.\n\
6613The new executable image replaces the previous executable loaded in\n\
6614the inferior. Restarting the inferior after the exec call restarts\n\
6615the executable the process was running after the exec call.\n\
6616\n\
6617By default, the debugger will use the same inferior."),
6618 NULL,
6619 show_follow_exec_mode_string,
6620 &setlist, &showlist);
6621
7ab04401
AC
6622 add_setshow_enum_cmd ("scheduler-locking", class_run,
6623 scheduler_enums, &scheduler_mode, _("\
6624Set mode for locking scheduler during execution."), _("\
6625Show mode for locking scheduler during execution."), _("\
c906108c
SS
6626off == no locking (threads may preempt at any time)\n\
6627on == full locking (no thread except the current thread may run)\n\
6628step == scheduler locked during every single-step operation.\n\
6629 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
6630 Other threads may run while stepping over a function call ('next')."),
6631 set_schedlock_func, /* traps on target vector */
920d2a44 6632 show_scheduler_mode,
7ab04401 6633 &setlist, &showlist);
5fbbeb29 6634
d4db2f36
PA
6635 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6636Set mode for resuming threads of all processes."), _("\
6637Show mode for resuming threads of all processes."), _("\
6638When on, execution commands (such as 'continue' or 'next') resume all\n\
6639threads of all processes. When off (which is the default), execution\n\
6640commands only resume the threads of the current process. The set of\n\
6641threads that are resumed is further refined by the scheduler-locking\n\
6642mode (see help set scheduler-locking)."),
6643 NULL,
6644 show_schedule_multiple,
6645 &setlist, &showlist);
6646
5bf193a2
AC
6647 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6648Set mode of the step operation."), _("\
6649Show mode of the step operation."), _("\
6650When set, doing a step over a function without debug line information\n\
6651will stop at the first instruction of that function. Otherwise, the\n\
6652function is skipped and the step command stops at a different source line."),
6653 NULL,
920d2a44 6654 show_step_stop_if_no_debug,
5bf193a2 6655 &setlist, &showlist);
ca6724c1 6656
fff08868
HZ
6657 add_setshow_enum_cmd ("displaced-stepping", class_run,
6658 can_use_displaced_stepping_enum,
6659 &can_use_displaced_stepping, _("\
237fc4c9
PA
6660Set debugger's willingness to use displaced stepping."), _("\
6661Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
6662If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6663supported by the target architecture. If off, gdb will not use displaced\n\
6664stepping to step over breakpoints, even if such is supported by the target\n\
6665architecture. If auto (which is the default), gdb will use displaced stepping\n\
6666if the target architecture supports it and non-stop mode is active, but will not\n\
6667use it in all-stop mode (see help set non-stop)."),
6668 NULL,
6669 show_can_use_displaced_stepping,
6670 &setlist, &showlist);
237fc4c9 6671
b2175913
MS
6672 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6673 &exec_direction, _("Set direction of execution.\n\
6674Options are 'forward' or 'reverse'."),
6675 _("Show direction of execution (forward/reverse)."),
6676 _("Tells gdb whether to execute forward or backward."),
6677 set_exec_direction_func, show_exec_direction_func,
6678 &setlist, &showlist);
6679
6c95b8df
PA
6680 /* Set/show detach-on-fork: user-settable mode. */
6681
6682 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
6683Set whether gdb will detach the child of a fork."), _("\
6684Show whether gdb will detach the child of a fork."), _("\
6685Tells gdb whether to detach the child of a fork."),
6686 NULL, NULL, &setlist, &showlist);
6687
ca6724c1
KB
6688 /* ptid initializations */
6689 null_ptid = ptid_build (0, 0, 0);
6690 minus_one_ptid = ptid_build (-1, 0, 0);
6691 inferior_ptid = null_ptid;
6692 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
6693
6694 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 6695 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 6696 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 6697 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
6698
6699 /* Explicitly create without lookup, since that tries to create a
6700 value with a void typed value, and when we get here, gdbarch
6701 isn't initialized yet. At this point, we're quite sure there
6702 isn't another convenience variable of the same name. */
6703 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 6704}
This page took 1.621266 seconds and 4 git commands to generate.