Update changelog.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
372316f1 59#include "event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
5b6d1e4f
PA
67#include "gdb_select.h"
68#include <unordered_map>
c906108c
SS
69
70/* Prototypes for local functions */
71
2ea28649 72static void sig_print_info (enum gdb_signal);
c906108c 73
96baa820 74static void sig_print_header (void);
c906108c 75
4ef3f3be 76static int follow_fork (void);
96baa820 77
d83ad864
DB
78static int follow_fork_inferior (int follow_child, int detach_fork);
79
80static void follow_inferior_reset_breakpoints (void);
81
a289b8f6
JK
82static int currently_stepping (struct thread_info *tp);
83
2c03e5be 84static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
85
86static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
2484c66b
UW
88static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
8550d3b3
YQ
90static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
aff4e175
AB
92static void resume (gdb_signal sig);
93
5b6d1e4f
PA
94static void wait_for_inferior (inferior *inf);
95
372316f1
PA
96/* Asynchronous signal handler registered as event loop source for
97 when we have pending events ready to be passed to the core. */
98static struct async_event_handler *infrun_async_inferior_event_token;
99
100/* Stores whether infrun_async was previously enabled or disabled.
101 Starts off as -1, indicating "never enabled/disabled". */
102static int infrun_is_async = -1;
103
104/* See infrun.h. */
105
106void
107infrun_async (int enable)
108{
109 if (infrun_is_async != enable)
110 {
111 infrun_is_async = enable;
112
113 if (debug_infrun)
114 fprintf_unfiltered (gdb_stdlog,
115 "infrun: infrun_async(%d)\n",
116 enable);
117
118 if (enable)
119 mark_async_event_handler (infrun_async_inferior_event_token);
120 else
121 clear_async_event_handler (infrun_async_inferior_event_token);
122 }
123}
124
0b333c5e
PA
125/* See infrun.h. */
126
127void
128mark_infrun_async_event_handler (void)
129{
130 mark_async_event_handler (infrun_async_inferior_event_token);
131}
132
5fbbeb29
CF
133/* When set, stop the 'step' command if we enter a function which has
134 no line number information. The normal behavior is that we step
135 over such function. */
491144b5 136bool step_stop_if_no_debug = false;
920d2a44
AC
137static void
138show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140{
141 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
142}
5fbbeb29 143
b9f437de
PA
144/* proceed and normal_stop use this to notify the user when the
145 inferior stopped in a different thread than it had been running
146 in. */
96baa820 147
39f77062 148static ptid_t previous_inferior_ptid;
7a292a7a 149
07107ca6
LM
150/* If set (default for legacy reasons), when following a fork, GDB
151 will detach from one of the fork branches, child or parent.
152 Exactly which branch is detached depends on 'set follow-fork-mode'
153 setting. */
154
491144b5 155static bool detach_fork = true;
6c95b8df 156
491144b5 157bool debug_displaced = false;
237fc4c9
PA
158static void
159show_debug_displaced (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161{
162 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
163}
164
ccce17b0 165unsigned int debug_infrun = 0;
920d2a44
AC
166static void
167show_debug_infrun (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
171}
527159b7 172
03583c20
UW
173
174/* Support for disabling address space randomization. */
175
491144b5 176bool disable_randomization = true;
03583c20
UW
177
178static void
179show_disable_randomization (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 if (target_supports_disable_randomization ())
183 fprintf_filtered (file,
184 _("Disabling randomization of debuggee's "
185 "virtual address space is %s.\n"),
186 value);
187 else
188 fputs_filtered (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform.\n"), file);
191}
192
193static void
eb4c3f4a 194set_disable_randomization (const char *args, int from_tty,
03583c20
UW
195 struct cmd_list_element *c)
196{
197 if (!target_supports_disable_randomization ())
198 error (_("Disabling randomization of debuggee's "
199 "virtual address space is unsupported on\n"
200 "this platform."));
201}
202
d32dc48e
PA
203/* User interface for non-stop mode. */
204
491144b5
CB
205bool non_stop = false;
206static bool non_stop_1 = false;
d32dc48e
PA
207
208static void
eb4c3f4a 209set_non_stop (const char *args, int from_tty,
d32dc48e
PA
210 struct cmd_list_element *c)
211{
212 if (target_has_execution)
213 {
214 non_stop_1 = non_stop;
215 error (_("Cannot change this setting while the inferior is running."));
216 }
217
218 non_stop = non_stop_1;
219}
220
221static void
222show_non_stop (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224{
225 fprintf_filtered (file,
226 _("Controlling the inferior in non-stop mode is %s.\n"),
227 value);
228}
229
d914c394
SS
230/* "Observer mode" is somewhat like a more extreme version of
231 non-stop, in which all GDB operations that might affect the
232 target's execution have been disabled. */
233
491144b5
CB
234bool observer_mode = false;
235static bool observer_mode_1 = false;
d914c394
SS
236
237static void
eb4c3f4a 238set_observer_mode (const char *args, int from_tty,
d914c394
SS
239 struct cmd_list_element *c)
240{
d914c394
SS
241 if (target_has_execution)
242 {
243 observer_mode_1 = observer_mode;
244 error (_("Cannot change this setting while the inferior is running."));
245 }
246
247 observer_mode = observer_mode_1;
248
249 may_write_registers = !observer_mode;
250 may_write_memory = !observer_mode;
251 may_insert_breakpoints = !observer_mode;
252 may_insert_tracepoints = !observer_mode;
253 /* We can insert fast tracepoints in or out of observer mode,
254 but enable them if we're going into this mode. */
255 if (observer_mode)
491144b5 256 may_insert_fast_tracepoints = true;
d914c394
SS
257 may_stop = !observer_mode;
258 update_target_permissions ();
259
260 /* Going *into* observer mode we must force non-stop, then
261 going out we leave it that way. */
262 if (observer_mode)
263 {
d914c394 264 pagination_enabled = 0;
491144b5 265 non_stop = non_stop_1 = true;
d914c394
SS
266 }
267
268 if (from_tty)
269 printf_filtered (_("Observer mode is now %s.\n"),
270 (observer_mode ? "on" : "off"));
271}
272
273static void
274show_observer_mode (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276{
277 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
278}
279
280/* This updates the value of observer mode based on changes in
281 permissions. Note that we are deliberately ignoring the values of
282 may-write-registers and may-write-memory, since the user may have
283 reason to enable these during a session, for instance to turn on a
284 debugging-related global. */
285
286void
287update_observer_mode (void)
288{
491144b5
CB
289 bool newval = (!may_insert_breakpoints
290 && !may_insert_tracepoints
291 && may_insert_fast_tracepoints
292 && !may_stop
293 && non_stop);
d914c394
SS
294
295 /* Let the user know if things change. */
296 if (newval != observer_mode)
297 printf_filtered (_("Observer mode is now %s.\n"),
298 (newval ? "on" : "off"));
299
300 observer_mode = observer_mode_1 = newval;
301}
c2c6d25f 302
c906108c
SS
303/* Tables of how to react to signals; the user sets them. */
304
adc6a863
PA
305static unsigned char signal_stop[GDB_SIGNAL_LAST];
306static unsigned char signal_print[GDB_SIGNAL_LAST];
307static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 308
ab04a2af
TT
309/* Table of signals that are registered with "catch signal". A
310 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
311 signal" command. */
312static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 313
2455069d
UW
314/* Table of signals that the target may silently handle.
315 This is automatically determined from the flags above,
316 and simply cached here. */
adc6a863 317static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 318
c906108c
SS
319#define SET_SIGS(nsigs,sigs,flags) \
320 do { \
321 int signum = (nsigs); \
322 while (signum-- > 0) \
323 if ((sigs)[signum]) \
324 (flags)[signum] = 1; \
325 } while (0)
326
327#define UNSET_SIGS(nsigs,sigs,flags) \
328 do { \
329 int signum = (nsigs); \
330 while (signum-- > 0) \
331 if ((sigs)[signum]) \
332 (flags)[signum] = 0; \
333 } while (0)
334
9b224c5e
PA
335/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
336 this function is to avoid exporting `signal_program'. */
337
338void
339update_signals_program_target (void)
340{
adc6a863 341 target_program_signals (signal_program);
9b224c5e
PA
342}
343
1777feb0 344/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 345
edb3359d 346#define RESUME_ALL minus_one_ptid
c906108c
SS
347
348/* Command list pointer for the "stop" placeholder. */
349
350static struct cmd_list_element *stop_command;
351
c906108c
SS
352/* Nonzero if we want to give control to the user when we're notified
353 of shared library events by the dynamic linker. */
628fe4e4 354int stop_on_solib_events;
f9e14852
GB
355
356/* Enable or disable optional shared library event breakpoints
357 as appropriate when the above flag is changed. */
358
359static void
eb4c3f4a
TT
360set_stop_on_solib_events (const char *args,
361 int from_tty, struct cmd_list_element *c)
f9e14852
GB
362{
363 update_solib_breakpoints ();
364}
365
920d2a44
AC
366static void
367show_stop_on_solib_events (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369{
370 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
371 value);
372}
c906108c 373
c906108c
SS
374/* Nonzero after stop if current stack frame should be printed. */
375
376static int stop_print_frame;
377
5b6d1e4f
PA
378/* This is a cached copy of the target/ptid/waitstatus of the last
379 event returned by target_wait()/deprecated_target_wait_hook().
380 This information is returned by get_last_target_status(). */
381static process_stratum_target *target_last_proc_target;
39f77062 382static ptid_t target_last_wait_ptid;
e02bc4cc
DS
383static struct target_waitstatus target_last_waitstatus;
384
4e1c45ea 385void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 386
53904c9e
AC
387static const char follow_fork_mode_child[] = "child";
388static const char follow_fork_mode_parent[] = "parent";
389
40478521 390static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
391 follow_fork_mode_child,
392 follow_fork_mode_parent,
393 NULL
ef346e04 394};
c906108c 395
53904c9e 396static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
397static void
398show_follow_fork_mode_string (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c, const char *value)
400{
3e43a32a
MS
401 fprintf_filtered (file,
402 _("Debugger response to a program "
403 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
404 value);
405}
c906108c
SS
406\f
407
d83ad864
DB
408/* Handle changes to the inferior list based on the type of fork,
409 which process is being followed, and whether the other process
410 should be detached. On entry inferior_ptid must be the ptid of
411 the fork parent. At return inferior_ptid is the ptid of the
412 followed inferior. */
413
414static int
415follow_fork_inferior (int follow_child, int detach_fork)
416{
417 int has_vforked;
79639e11 418 ptid_t parent_ptid, child_ptid;
d83ad864
DB
419
420 has_vforked = (inferior_thread ()->pending_follow.kind
421 == TARGET_WAITKIND_VFORKED);
79639e11
PA
422 parent_ptid = inferior_ptid;
423 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
424
425 if (has_vforked
426 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 427 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
428 && !(follow_child || detach_fork || sched_multi))
429 {
430 /* The parent stays blocked inside the vfork syscall until the
431 child execs or exits. If we don't let the child run, then
432 the parent stays blocked. If we're telling the parent to run
433 in the foreground, the user will not be able to ctrl-c to get
434 back the terminal, effectively hanging the debug session. */
435 fprintf_filtered (gdb_stderr, _("\
436Can not resume the parent process over vfork in the foreground while\n\
437holding the child stopped. Try \"set detach-on-fork\" or \
438\"set schedule-multiple\".\n"));
d83ad864
DB
439 return 1;
440 }
441
442 if (!follow_child)
443 {
444 /* Detach new forked process? */
445 if (detach_fork)
446 {
d83ad864
DB
447 /* Before detaching from the child, remove all breakpoints
448 from it. If we forked, then this has already been taken
449 care of by infrun.c. If we vforked however, any
450 breakpoint inserted in the parent is visible in the
451 child, even those added while stopped in a vfork
452 catchpoint. This will remove the breakpoints from the
453 parent also, but they'll be reinserted below. */
454 if (has_vforked)
455 {
456 /* Keep breakpoints list in sync. */
00431a78 457 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
458 }
459
f67c0c91 460 if (print_inferior_events)
d83ad864 461 {
8dd06f7a 462 /* Ensure that we have a process ptid. */
e99b03dc 463 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 464
223ffa71 465 target_terminal::ours_for_output ();
d83ad864 466 fprintf_filtered (gdb_stdlog,
f67c0c91 467 _("[Detaching after %s from child %s]\n"),
6f259a23 468 has_vforked ? "vfork" : "fork",
a068643d 469 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
470 }
471 }
472 else
473 {
474 struct inferior *parent_inf, *child_inf;
d83ad864
DB
475
476 /* Add process to GDB's tables. */
e99b03dc 477 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
478
479 parent_inf = current_inferior ();
480 child_inf->attach_flag = parent_inf->attach_flag;
481 copy_terminal_info (child_inf, parent_inf);
482 child_inf->gdbarch = parent_inf->gdbarch;
483 copy_inferior_target_desc_info (child_inf, parent_inf);
484
5ed8105e 485 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 486
2a00d7ce 487 set_current_inferior (child_inf);
5b6d1e4f 488 switch_to_no_thread ();
d83ad864 489 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f
PA
490 push_target (parent_inf->process_target ());
491 add_thread_silent (child_inf->process_target (), child_ptid);
492 inferior_ptid = child_ptid;
d83ad864
DB
493
494 /* If this is a vfork child, then the address-space is
495 shared with the parent. */
496 if (has_vforked)
497 {
498 child_inf->pspace = parent_inf->pspace;
499 child_inf->aspace = parent_inf->aspace;
500
5b6d1e4f
PA
501 exec_on_vfork ();
502
d83ad864
DB
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
f67c0c91 552 if (print_inferior_events)
d83ad864 553 {
f67c0c91
SDJ
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
223ffa71 557 target_terminal::ours_for_output ();
6f259a23 558 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
6f259a23 561 has_vforked ? "vfork" : "fork",
f67c0c91 562 child_pid.c_str ());
d83ad864
DB
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
e99b03dc 568 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
5b6d1e4f 578 process_stratum_target *target = parent_inf->process_target ();
d83ad864 579
5b6d1e4f
PA
580 {
581 /* Hold a strong reference to the target while (maybe)
582 detaching the parent. Otherwise detaching could close the
583 target. */
584 auto target_ref = target_ops_ref::new_reference (target);
585
586 /* If we're vforking, we want to hold on to the parent until
587 the child exits or execs. At child exec or exit time we
588 can remove the old breakpoints from the parent and detach
589 or resume debugging it. Otherwise, detach the parent now;
590 we'll want to reuse it's program/address spaces, but we
591 can't set them to the child before removing breakpoints
592 from the parent, otherwise, the breakpoints module could
593 decide to remove breakpoints from the wrong process (since
594 they'd be assigned to the same address space). */
595
596 if (has_vforked)
597 {
598 gdb_assert (child_inf->vfork_parent == NULL);
599 gdb_assert (parent_inf->vfork_child == NULL);
600 child_inf->vfork_parent = parent_inf;
601 child_inf->pending_detach = 0;
602 parent_inf->vfork_child = child_inf;
603 parent_inf->pending_detach = detach_fork;
604 parent_inf->waiting_for_vfork_done = 0;
605 }
606 else if (detach_fork)
607 {
608 if (print_inferior_events)
609 {
610 /* Ensure that we have a process ptid. */
611 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
612
613 target_terminal::ours_for_output ();
614 fprintf_filtered (gdb_stdlog,
615 _("[Detaching after fork from "
616 "parent %s]\n"),
617 target_pid_to_str (process_ptid).c_str ());
618 }
8dd06f7a 619
5b6d1e4f
PA
620 target_detach (parent_inf, 0);
621 parent_inf = NULL;
622 }
6f259a23 623
5b6d1e4f 624 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 625
5b6d1e4f
PA
626 /* Add the child thread to the appropriate lists, and switch
627 to this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
d83ad864 629
5b6d1e4f
PA
630 set_current_inferior (child_inf);
631 push_target (target);
632 }
d83ad864 633
5b6d1e4f 634 add_thread_silent (target, child_ptid);
79639e11 635 inferior_ptid = child_ptid;
d83ad864
DB
636
637 /* If this is a vfork child, then the address-space is shared
638 with the parent. If we detached from the parent, then we can
639 reuse the parent's program/address spaces. */
640 if (has_vforked || detach_fork)
641 {
642 child_inf->pspace = parent_pspace;
643 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
644
645 exec_on_vfork ();
d83ad864
DB
646 }
647 else
648 {
649 child_inf->aspace = new_address_space ();
564b1e3f 650 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
651 child_inf->removable = 1;
652 child_inf->symfile_flags = SYMFILE_NO_READ;
653 set_current_program_space (child_inf->pspace);
654 clone_program_space (child_inf->pspace, parent_pspace);
655
656 /* Let the shared library layer (e.g., solib-svr4) learn
657 about this new process, relocate the cloned exec, pull in
658 shared libraries, and install the solib event breakpoint.
659 If a "cloned-VM" event was propagated better throughout
660 the core, this wouldn't be required. */
661 solib_create_inferior_hook (0);
662 }
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666}
667
e58b0e63
PA
668/* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
6604731b 672static int
4ef3f3be 673follow_fork (void)
c906108c 674{
ea1dd7bc 675 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
676 int should_resume = 1;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
4e3990f4
DE
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 684 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 struct frame_id step_frame_id = { 0 };
8980e177 688 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
689
690 if (!non_stop)
691 {
5b6d1e4f 692 process_stratum_target *wait_target;
e58b0e63
PA
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
5b6d1e4f 697 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
00431a78 707 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
708 && (current_inferior ()->process_target () != wait_target
709 || inferior_ptid != wait_ptid))
e58b0e63
PA
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
5b6d1e4f 715 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 716 switch_to_thread (wait_thread);
e58b0e63
PA
717 should_resume = 0;
718 }
719 }
720
721 tp = inferior_thread ();
722
723 /* If there were any forks/vforks that were caught and are now to be
724 followed, then do so now. */
725 switch (tp->pending_follow.kind)
726 {
727 case TARGET_WAITKIND_FORKED:
728 case TARGET_WAITKIND_VFORKED:
729 {
730 ptid_t parent, child;
731
732 /* If the user did a next/step, etc, over a fork call,
733 preserve the stepping state in the fork child. */
734 if (follow_child && should_resume)
735 {
8358c15c
JK
736 step_resume_breakpoint = clone_momentary_breakpoint
737 (tp->control.step_resume_breakpoint);
16c381f0
JK
738 step_range_start = tp->control.step_range_start;
739 step_range_end = tp->control.step_range_end;
740 step_frame_id = tp->control.step_frame_id;
186c406b
TT
741 exception_resume_breakpoint
742 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 743 thread_fsm = tp->thread_fsm;
e58b0e63
PA
744
745 /* For now, delete the parent's sr breakpoint, otherwise,
746 parent/child sr breakpoints are considered duplicates,
747 and the child version will not be installed. Remove
748 this when the breakpoints module becomes aware of
749 inferiors and address spaces. */
750 delete_step_resume_breakpoint (tp);
16c381f0
JK
751 tp->control.step_range_start = 0;
752 tp->control.step_range_end = 0;
753 tp->control.step_frame_id = null_frame_id;
186c406b 754 delete_exception_resume_breakpoint (tp);
8980e177 755 tp->thread_fsm = NULL;
e58b0e63
PA
756 }
757
758 parent = inferior_ptid;
759 child = tp->pending_follow.value.related_pid;
760
5b6d1e4f 761 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
762 /* Set up inferior(s) as specified by the caller, and tell the
763 target to do whatever is necessary to follow either parent
764 or child. */
765 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
766 {
767 /* Target refused to follow, or there's some other reason
768 we shouldn't resume. */
769 should_resume = 0;
770 }
771 else
772 {
773 /* This pending follow fork event is now handled, one way
774 or another. The previous selected thread may be gone
775 from the lists by now, but if it is still around, need
776 to clear the pending follow request. */
5b6d1e4f 777 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
778 if (tp)
779 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
780
781 /* This makes sure we don't try to apply the "Switched
782 over from WAIT_PID" logic above. */
783 nullify_last_target_wait_ptid ();
784
1777feb0 785 /* If we followed the child, switch to it... */
e58b0e63
PA
786 if (follow_child)
787 {
5b6d1e4f 788 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 789 switch_to_thread (child_thr);
e58b0e63
PA
790
791 /* ... and preserve the stepping state, in case the
792 user was stepping over the fork call. */
793 if (should_resume)
794 {
795 tp = inferior_thread ();
8358c15c
JK
796 tp->control.step_resume_breakpoint
797 = step_resume_breakpoint;
16c381f0
JK
798 tp->control.step_range_start = step_range_start;
799 tp->control.step_range_end = step_range_end;
800 tp->control.step_frame_id = step_frame_id;
186c406b
TT
801 tp->control.exception_resume_breakpoint
802 = exception_resume_breakpoint;
8980e177 803 tp->thread_fsm = thread_fsm;
e58b0e63
PA
804 }
805 else
806 {
807 /* If we get here, it was because we're trying to
808 resume from a fork catchpoint, but, the user
809 has switched threads away from the thread that
810 forked. In that case, the resume command
811 issued is most likely not applicable to the
812 child, so just warn, and refuse to resume. */
3e43a32a 813 warning (_("Not resuming: switched threads "
fd7dcb94 814 "before following fork child."));
e58b0e63
PA
815 }
816
817 /* Reset breakpoints in the child as appropriate. */
818 follow_inferior_reset_breakpoints ();
819 }
e58b0e63
PA
820 }
821 }
822 break;
823 case TARGET_WAITKIND_SPURIOUS:
824 /* Nothing to follow. */
825 break;
826 default:
827 internal_error (__FILE__, __LINE__,
828 "Unexpected pending_follow.kind %d\n",
829 tp->pending_follow.kind);
830 break;
831 }
c906108c 832
e58b0e63 833 return should_resume;
c906108c
SS
834}
835
d83ad864 836static void
6604731b 837follow_inferior_reset_breakpoints (void)
c906108c 838{
4e1c45ea
PA
839 struct thread_info *tp = inferior_thread ();
840
6604731b
DJ
841 /* Was there a step_resume breakpoint? (There was if the user
842 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
843 thread number. Cloned step_resume breakpoints are disabled on
844 creation, so enable it here now that it is associated with the
845 correct thread.
6604731b
DJ
846
847 step_resumes are a form of bp that are made to be per-thread.
848 Since we created the step_resume bp when the parent process
849 was being debugged, and now are switching to the child process,
850 from the breakpoint package's viewpoint, that's a switch of
851 "threads". We must update the bp's notion of which thread
852 it is for, or it'll be ignored when it triggers. */
853
8358c15c 854 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
857 tp->control.step_resume_breakpoint->loc->enabled = 1;
858 }
6604731b 859
a1aa2221 860 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 861 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
862 {
863 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
864 tp->control.exception_resume_breakpoint->loc->enabled = 1;
865 }
186c406b 866
6604731b
DJ
867 /* Reinsert all breakpoints in the child. The user may have set
868 breakpoints after catching the fork, in which case those
869 were never set in the child, but only in the parent. This makes
870 sure the inserted breakpoints match the breakpoint list. */
871
872 breakpoint_re_set ();
873 insert_breakpoints ();
c906108c 874}
c906108c 875
6c95b8df
PA
876/* The child has exited or execed: resume threads of the parent the
877 user wanted to be executing. */
878
879static int
880proceed_after_vfork_done (struct thread_info *thread,
881 void *arg)
882{
883 int pid = * (int *) arg;
884
00431a78
PA
885 if (thread->ptid.pid () == pid
886 && thread->state == THREAD_RUNNING
887 && !thread->executing
6c95b8df 888 && !thread->stop_requested
a493e3e2 889 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
890 {
891 if (debug_infrun)
892 fprintf_unfiltered (gdb_stdlog,
893 "infrun: resuming vfork parent thread %s\n",
a068643d 894 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 895
00431a78 896 switch_to_thread (thread);
70509625 897 clear_proceed_status (0);
64ce06e4 898 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
899 }
900
901 return 0;
902}
903
5ed8105e
PA
904/* Save/restore inferior_ptid, current program space and current
905 inferior. Only use this if the current context points at an exited
906 inferior (and therefore there's no current thread to save). */
907class scoped_restore_exited_inferior
908{
909public:
910 scoped_restore_exited_inferior ()
911 : m_saved_ptid (&inferior_ptid)
912 {}
913
914private:
915 scoped_restore_tmpl<ptid_t> m_saved_ptid;
916 scoped_restore_current_program_space m_pspace;
917 scoped_restore_current_inferior m_inferior;
918};
919
6c95b8df
PA
920/* Called whenever we notice an exec or exit event, to handle
921 detaching or resuming a vfork parent. */
922
923static void
924handle_vfork_child_exec_or_exit (int exec)
925{
926 struct inferior *inf = current_inferior ();
927
928 if (inf->vfork_parent)
929 {
930 int resume_parent = -1;
931
932 /* This exec or exit marks the end of the shared memory region
b73715df
TV
933 between the parent and the child. Break the bonds. */
934 inferior *vfork_parent = inf->vfork_parent;
935 inf->vfork_parent->vfork_child = NULL;
936 inf->vfork_parent = NULL;
6c95b8df 937
b73715df
TV
938 /* If the user wanted to detach from the parent, now is the
939 time. */
940 if (vfork_parent->pending_detach)
6c95b8df
PA
941 {
942 struct thread_info *tp;
6c95b8df
PA
943 struct program_space *pspace;
944 struct address_space *aspace;
945
1777feb0 946 /* follow-fork child, detach-on-fork on. */
6c95b8df 947
b73715df 948 vfork_parent->pending_detach = 0;
68c9da30 949
5ed8105e
PA
950 gdb::optional<scoped_restore_exited_inferior>
951 maybe_restore_inferior;
952 gdb::optional<scoped_restore_current_pspace_and_thread>
953 maybe_restore_thread;
954
955 /* If we're handling a child exit, then inferior_ptid points
956 at the inferior's pid, not to a thread. */
f50f4e56 957 if (!exec)
5ed8105e 958 maybe_restore_inferior.emplace ();
f50f4e56 959 else
5ed8105e 960 maybe_restore_thread.emplace ();
6c95b8df
PA
961
962 /* We're letting loose of the parent. */
b73715df 963 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 964 switch_to_thread (tp);
6c95b8df
PA
965
966 /* We're about to detach from the parent, which implicitly
967 removes breakpoints from its address space. There's a
968 catch here: we want to reuse the spaces for the child,
969 but, parent/child are still sharing the pspace at this
970 point, although the exec in reality makes the kernel give
971 the child a fresh set of new pages. The problem here is
972 that the breakpoints module being unaware of this, would
973 likely chose the child process to write to the parent
974 address space. Swapping the child temporarily away from
975 the spaces has the desired effect. Yes, this is "sort
976 of" a hack. */
977
978 pspace = inf->pspace;
979 aspace = inf->aspace;
980 inf->aspace = NULL;
981 inf->pspace = NULL;
982
f67c0c91 983 if (print_inferior_events)
6c95b8df 984 {
a068643d 985 std::string pidstr
b73715df 986 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 987
223ffa71 988 target_terminal::ours_for_output ();
6c95b8df
PA
989
990 if (exec)
6f259a23
DB
991 {
992 fprintf_filtered (gdb_stdlog,
f67c0c91 993 _("[Detaching vfork parent %s "
a068643d 994 "after child exec]\n"), pidstr.c_str ());
6f259a23 995 }
6c95b8df 996 else
6f259a23
DB
997 {
998 fprintf_filtered (gdb_stdlog,
f67c0c91 999 _("[Detaching vfork parent %s "
a068643d 1000 "after child exit]\n"), pidstr.c_str ());
6f259a23 1001 }
6c95b8df
PA
1002 }
1003
b73715df 1004 target_detach (vfork_parent, 0);
6c95b8df
PA
1005
1006 /* Put it back. */
1007 inf->pspace = pspace;
1008 inf->aspace = aspace;
6c95b8df
PA
1009 }
1010 else if (exec)
1011 {
1012 /* We're staying attached to the parent, so, really give the
1013 child a new address space. */
564b1e3f 1014 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1015 inf->aspace = inf->pspace->aspace;
1016 inf->removable = 1;
1017 set_current_program_space (inf->pspace);
1018
b73715df 1019 resume_parent = vfork_parent->pid;
6c95b8df
PA
1020 }
1021 else
1022 {
6c95b8df
PA
1023 /* If this is a vfork child exiting, then the pspace and
1024 aspaces were shared with the parent. Since we're
1025 reporting the process exit, we'll be mourning all that is
1026 found in the address space, and switching to null_ptid,
1027 preparing to start a new inferior. But, since we don't
1028 want to clobber the parent's address/program spaces, we
1029 go ahead and create a new one for this exiting
1030 inferior. */
1031
5ed8105e
PA
1032 /* Switch to null_ptid while running clone_program_space, so
1033 that clone_program_space doesn't want to read the
1034 selected frame of a dead process. */
1035 scoped_restore restore_ptid
1036 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df 1037
53af73bf
PA
1038 inf->pspace = new program_space (maybe_new_address_space ());
1039 inf->aspace = inf->pspace->aspace;
1040 set_current_program_space (inf->pspace);
6c95b8df 1041 inf->removable = 1;
7dcd53a0 1042 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1043 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1044
b73715df 1045 resume_parent = vfork_parent->pid;
6c95b8df
PA
1046 }
1047
6c95b8df
PA
1048 gdb_assert (current_program_space == inf->pspace);
1049
1050 if (non_stop && resume_parent != -1)
1051 {
1052 /* If the user wanted the parent to be running, let it go
1053 free now. */
5ed8105e 1054 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1055
1056 if (debug_infrun)
3e43a32a
MS
1057 fprintf_unfiltered (gdb_stdlog,
1058 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1059 resume_parent);
1060
1061 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1062 }
1063 }
1064}
1065
eb6c553b 1066/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1067
1068static const char follow_exec_mode_new[] = "new";
1069static const char follow_exec_mode_same[] = "same";
40478521 1070static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1071{
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075};
1076
1077static const char *follow_exec_mode_string = follow_exec_mode_same;
1078static void
1079show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081{
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083}
1084
ecf45d2c 1085/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1086
c906108c 1087static void
4ca51187 1088follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1089{
6c95b8df 1090 struct inferior *inf = current_inferior ();
e99b03dc 1091 int pid = ptid.pid ();
94585166 1092 ptid_t process_ptid;
7a292a7a 1093
65d2b333
PW
1094 /* Switch terminal for any messages produced e.g. by
1095 breakpoint_re_set. */
1096 target_terminal::ours_for_output ();
1097
c906108c
SS
1098 /* This is an exec event that we actually wish to pay attention to.
1099 Refresh our symbol table to the newly exec'd program, remove any
1100 momentary bp's, etc.
1101
1102 If there are breakpoints, they aren't really inserted now,
1103 since the exec() transformed our inferior into a fresh set
1104 of instructions.
1105
1106 We want to preserve symbolic breakpoints on the list, since
1107 we have hopes that they can be reset after the new a.out's
1108 symbol table is read.
1109
1110 However, any "raw" breakpoints must be removed from the list
1111 (e.g., the solib bp's), since their address is probably invalid
1112 now.
1113
1114 And, we DON'T want to call delete_breakpoints() here, since
1115 that may write the bp's "shadow contents" (the instruction
85102364 1116 value that was overwritten with a TRAP instruction). Since
1777feb0 1117 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1118
1119 mark_breakpoints_out ();
1120
95e50b27
PA
1121 /* The target reports the exec event to the main thread, even if
1122 some other thread does the exec, and even if the main thread was
1123 stopped or already gone. We may still have non-leader threads of
1124 the process on our list. E.g., on targets that don't have thread
1125 exit events (like remote); or on native Linux in non-stop mode if
1126 there were only two threads in the inferior and the non-leader
1127 one is the one that execs (and nothing forces an update of the
1128 thread list up to here). When debugging remotely, it's best to
1129 avoid extra traffic, when possible, so avoid syncing the thread
1130 list with the target, and instead go ahead and delete all threads
1131 of the process but one that reported the event. Note this must
1132 be done before calling update_breakpoints_after_exec, as
1133 otherwise clearing the threads' resources would reference stale
1134 thread breakpoints -- it may have been one of these threads that
1135 stepped across the exec. We could just clear their stepping
1136 states, but as long as we're iterating, might as well delete
1137 them. Deleting them now rather than at the next user-visible
1138 stop provides a nicer sequence of events for user and MI
1139 notifications. */
08036331 1140 for (thread_info *th : all_threads_safe ())
d7e15655 1141 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1142 delete_thread (th);
95e50b27
PA
1143
1144 /* We also need to clear any left over stale state for the
1145 leader/event thread. E.g., if there was any step-resume
1146 breakpoint or similar, it's gone now. We cannot truly
1147 step-to-next statement through an exec(). */
08036331 1148 thread_info *th = inferior_thread ();
8358c15c 1149 th->control.step_resume_breakpoint = NULL;
186c406b 1150 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1151 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1152 th->control.step_range_start = 0;
1153 th->control.step_range_end = 0;
c906108c 1154
95e50b27
PA
1155 /* The user may have had the main thread held stopped in the
1156 previous image (e.g., schedlock on, or non-stop). Release
1157 it now. */
a75724bc
PA
1158 th->stop_requested = 0;
1159
95e50b27
PA
1160 update_breakpoints_after_exec ();
1161
1777feb0 1162 /* What is this a.out's name? */
f2907e49 1163 process_ptid = ptid_t (pid);
6c95b8df 1164 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1165 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1166 exec_file_target);
c906108c
SS
1167
1168 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1169 inferior has essentially been killed & reborn. */
7a292a7a 1170
6ca15a4b 1171 breakpoint_init_inferior (inf_execd);
e85a822c 1172
797bc1cb
TT
1173 gdb::unique_xmalloc_ptr<char> exec_file_host
1174 = exec_file_find (exec_file_target, NULL);
ff862be4 1175
ecf45d2c
SL
1176 /* If we were unable to map the executable target pathname onto a host
1177 pathname, tell the user that. Otherwise GDB's subsequent behavior
1178 is confusing. Maybe it would even be better to stop at this point
1179 so that the user can specify a file manually before continuing. */
1180 if (exec_file_host == NULL)
1181 warning (_("Could not load symbols for executable %s.\n"
1182 "Do you need \"set sysroot\"?"),
1183 exec_file_target);
c906108c 1184
cce9b6bf
PA
1185 /* Reset the shared library package. This ensures that we get a
1186 shlib event when the child reaches "_start", at which point the
1187 dld will have had a chance to initialize the child. */
1188 /* Also, loading a symbol file below may trigger symbol lookups, and
1189 we don't want those to be satisfied by the libraries of the
1190 previous incarnation of this process. */
1191 no_shared_libraries (NULL, 0);
1192
6c95b8df
PA
1193 if (follow_exec_mode_string == follow_exec_mode_new)
1194 {
6c95b8df
PA
1195 /* The user wants to keep the old inferior and program spaces
1196 around. Create a new fresh one, and switch to it. */
1197
35ed81d4
SM
1198 /* Do exit processing for the original inferior before setting the new
1199 inferior's pid. Having two inferiors with the same pid would confuse
1200 find_inferior_p(t)id. Transfer the terminal state and info from the
1201 old to the new inferior. */
1202 inf = add_inferior_with_spaces ();
1203 swap_terminal_info (inf, current_inferior ());
057302ce 1204 exit_inferior_silent (current_inferior ());
17d8546e 1205
94585166 1206 inf->pid = pid;
ecf45d2c 1207 target_follow_exec (inf, exec_file_target);
6c95b8df 1208
5b6d1e4f
PA
1209 inferior *org_inferior = current_inferior ();
1210 switch_to_inferior_no_thread (inf);
1211 push_target (org_inferior->process_target ());
1212 thread_info *thr = add_thread (inf->process_target (), ptid);
1213 switch_to_thread (thr);
6c95b8df 1214 }
9107fc8d
PA
1215 else
1216 {
1217 /* The old description may no longer be fit for the new image.
1218 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1219 old description; we'll read a new one below. No need to do
1220 this on "follow-exec-mode new", as the old inferior stays
1221 around (its description is later cleared/refetched on
1222 restart). */
1223 target_clear_description ();
1224 }
6c95b8df
PA
1225
1226 gdb_assert (current_program_space == inf->pspace);
1227
ecf45d2c
SL
1228 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1229 because the proper displacement for a PIE (Position Independent
1230 Executable) main symbol file will only be computed by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail
1232 to insert the breakpoints with the zero displacement. */
797bc1cb 1233 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1234
9107fc8d
PA
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
268a4a75 1243 solib_create_inferior_hook (0);
c906108c 1244
4efc6507
DE
1245 jit_inferior_created_hook ();
1246
c1e56572
JK
1247 breakpoint_re_set ();
1248
c906108c
SS
1249 /* Reinsert all breakpoints. (Those which were symbolic have
1250 been reset to the proper address in the new a.out, thanks
1777feb0 1251 to symbol_file_command...). */
c906108c
SS
1252 insert_breakpoints ();
1253
1254 /* The next resume of this inferior should bring it to the shlib
1255 startup breakpoints. (If the user had also set bp's on
1256 "main" from the old (parent) process, then they'll auto-
1777feb0 1257 matically get reset there in the new process.). */
c906108c
SS
1258}
1259
c2829269
PA
1260/* The queue of threads that need to do a step-over operation to get
1261 past e.g., a breakpoint. What technique is used to step over the
1262 breakpoint/watchpoint does not matter -- all threads end up in the
1263 same queue, to maintain rough temporal order of execution, in order
1264 to avoid starvation, otherwise, we could e.g., find ourselves
1265 constantly stepping the same couple threads past their breakpoints
1266 over and over, if the single-step finish fast enough. */
1267struct thread_info *step_over_queue_head;
1268
6c4cfb24
PA
1269/* Bit flags indicating what the thread needs to step over. */
1270
8d297bbf 1271enum step_over_what_flag
6c4cfb24
PA
1272 {
1273 /* Step over a breakpoint. */
1274 STEP_OVER_BREAKPOINT = 1,
1275
1276 /* Step past a non-continuable watchpoint, in order to let the
1277 instruction execute so we can evaluate the watchpoint
1278 expression. */
1279 STEP_OVER_WATCHPOINT = 2
1280 };
8d297bbf 1281DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1282
963f9c80 1283/* Info about an instruction that is being stepped over. */
31e77af2
PA
1284
1285struct step_over_info
1286{
963f9c80
PA
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
8b86c959 1291 const address_space *aspace;
31e77af2 1292 CORE_ADDR address;
963f9c80
PA
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
21edc42f
YQ
1297
1298 /* The thread's global number. */
1299 int thread;
31e77af2
PA
1300};
1301
1302/* The step-over info of the location that is being stepped over.
1303
1304 Note that with async/breakpoint always-inserted mode, a user might
1305 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1306 being stepped over. As setting a new breakpoint inserts all
1307 breakpoints, we need to make sure the breakpoint being stepped over
1308 isn't inserted then. We do that by only clearing the step-over
1309 info when the step-over is actually finished (or aborted).
1310
1311 Presently GDB can only step over one breakpoint at any given time.
1312 Given threads that can't run code in the same address space as the
1313 breakpoint's can't really miss the breakpoint, GDB could be taught
1314 to step-over at most one breakpoint per address space (so this info
1315 could move to the address space object if/when GDB is extended).
1316 The set of breakpoints being stepped over will normally be much
1317 smaller than the set of all breakpoints, so a flag in the
1318 breakpoint location structure would be wasteful. A separate list
1319 also saves complexity and run-time, as otherwise we'd have to go
1320 through all breakpoint locations clearing their flag whenever we
1321 start a new sequence. Similar considerations weigh against storing
1322 this info in the thread object. Plus, not all step overs actually
1323 have breakpoint locations -- e.g., stepping past a single-step
1324 breakpoint, or stepping to complete a non-continuable
1325 watchpoint. */
1326static struct step_over_info step_over_info;
1327
1328/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1329 stepping over.
1330 N.B. We record the aspace and address now, instead of say just the thread,
1331 because when we need the info later the thread may be running. */
31e77af2
PA
1332
1333static void
8b86c959 1334set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1335 int nonsteppable_watchpoint_p,
1336 int thread)
31e77af2
PA
1337{
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
963f9c80 1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1341 step_over_info.thread = thread;
31e77af2
PA
1342}
1343
1344/* Called when we're not longer stepping over a breakpoint / an
1345 instruction, so all breakpoints are free to be (re)inserted. */
1346
1347static void
1348clear_step_over_info (void)
1349{
372316f1
PA
1350 if (debug_infrun)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "infrun: clear_step_over_info\n");
31e77af2
PA
1353 step_over_info.aspace = NULL;
1354 step_over_info.address = 0;
963f9c80 1355 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1356 step_over_info.thread = -1;
31e77af2
PA
1357}
1358
7f89fd65 1359/* See infrun.h. */
31e77af2
PA
1360
1361int
1362stepping_past_instruction_at (struct address_space *aspace,
1363 CORE_ADDR address)
1364{
1365 return (step_over_info.aspace != NULL
1366 && breakpoint_address_match (aspace, address,
1367 step_over_info.aspace,
1368 step_over_info.address));
1369}
1370
963f9c80
PA
1371/* See infrun.h. */
1372
21edc42f
YQ
1373int
1374thread_is_stepping_over_breakpoint (int thread)
1375{
1376 return (step_over_info.thread != -1
1377 && thread == step_over_info.thread);
1378}
1379
1380/* See infrun.h. */
1381
963f9c80
PA
1382int
1383stepping_past_nonsteppable_watchpoint (void)
1384{
1385 return step_over_info.nonsteppable_watchpoint_p;
1386}
1387
6cc83d2a
PA
1388/* Returns true if step-over info is valid. */
1389
1390static int
1391step_over_info_valid_p (void)
1392{
963f9c80
PA
1393 return (step_over_info.aspace != NULL
1394 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1395}
1396
c906108c 1397\f
237fc4c9
PA
1398/* Displaced stepping. */
1399
1400/* In non-stop debugging mode, we must take special care to manage
1401 breakpoints properly; in particular, the traditional strategy for
1402 stepping a thread past a breakpoint it has hit is unsuitable.
1403 'Displaced stepping' is a tactic for stepping one thread past a
1404 breakpoint it has hit while ensuring that other threads running
1405 concurrently will hit the breakpoint as they should.
1406
1407 The traditional way to step a thread T off a breakpoint in a
1408 multi-threaded program in all-stop mode is as follows:
1409
1410 a0) Initially, all threads are stopped, and breakpoints are not
1411 inserted.
1412 a1) We single-step T, leaving breakpoints uninserted.
1413 a2) We insert breakpoints, and resume all threads.
1414
1415 In non-stop debugging, however, this strategy is unsuitable: we
1416 don't want to have to stop all threads in the system in order to
1417 continue or step T past a breakpoint. Instead, we use displaced
1418 stepping:
1419
1420 n0) Initially, T is stopped, other threads are running, and
1421 breakpoints are inserted.
1422 n1) We copy the instruction "under" the breakpoint to a separate
1423 location, outside the main code stream, making any adjustments
1424 to the instruction, register, and memory state as directed by
1425 T's architecture.
1426 n2) We single-step T over the instruction at its new location.
1427 n3) We adjust the resulting register and memory state as directed
1428 by T's architecture. This includes resetting T's PC to point
1429 back into the main instruction stream.
1430 n4) We resume T.
1431
1432 This approach depends on the following gdbarch methods:
1433
1434 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1435 indicate where to copy the instruction, and how much space must
1436 be reserved there. We use these in step n1.
1437
1438 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1439 address, and makes any necessary adjustments to the instruction,
1440 register contents, and memory. We use this in step n1.
1441
1442 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1443 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1444 same effect the instruction would have had if we had executed it
1445 at its original address. We use this in step n3.
1446
237fc4c9
PA
1447 The gdbarch_displaced_step_copy_insn and
1448 gdbarch_displaced_step_fixup functions must be written so that
1449 copying an instruction with gdbarch_displaced_step_copy_insn,
1450 single-stepping across the copied instruction, and then applying
1451 gdbarch_displaced_insn_fixup should have the same effects on the
1452 thread's memory and registers as stepping the instruction in place
1453 would have. Exactly which responsibilities fall to the copy and
1454 which fall to the fixup is up to the author of those functions.
1455
1456 See the comments in gdbarch.sh for details.
1457
1458 Note that displaced stepping and software single-step cannot
1459 currently be used in combination, although with some care I think
1460 they could be made to. Software single-step works by placing
1461 breakpoints on all possible subsequent instructions; if the
1462 displaced instruction is a PC-relative jump, those breakpoints
1463 could fall in very strange places --- on pages that aren't
1464 executable, or at addresses that are not proper instruction
1465 boundaries. (We do generally let other threads run while we wait
1466 to hit the software single-step breakpoint, and they might
1467 encounter such a corrupted instruction.) One way to work around
1468 this would be to have gdbarch_displaced_step_copy_insn fully
1469 simulate the effect of PC-relative instructions (and return NULL)
1470 on architectures that use software single-stepping.
1471
1472 In non-stop mode, we can have independent and simultaneous step
1473 requests, so more than one thread may need to simultaneously step
1474 over a breakpoint. The current implementation assumes there is
1475 only one scratch space per process. In this case, we have to
1476 serialize access to the scratch space. If thread A wants to step
1477 over a breakpoint, but we are currently waiting for some other
1478 thread to complete a displaced step, we leave thread A stopped and
1479 place it in the displaced_step_request_queue. Whenever a displaced
1480 step finishes, we pick the next thread in the queue and start a new
1481 displaced step operation on it. See displaced_step_prepare and
1482 displaced_step_fixup for details. */
1483
cfba9872
SM
1484/* Default destructor for displaced_step_closure. */
1485
1486displaced_step_closure::~displaced_step_closure () = default;
1487
fc1cf338
PA
1488/* Get the displaced stepping state of process PID. */
1489
39a36629 1490static displaced_step_inferior_state *
00431a78 1491get_displaced_stepping_state (inferior *inf)
fc1cf338 1492{
d20172fc 1493 return &inf->displaced_step_state;
fc1cf338
PA
1494}
1495
372316f1
PA
1496/* Returns true if any inferior has a thread doing a displaced
1497 step. */
1498
39a36629
SM
1499static bool
1500displaced_step_in_progress_any_inferior ()
372316f1 1501{
d20172fc 1502 for (inferior *i : all_inferiors ())
39a36629 1503 {
d20172fc 1504 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1505 return true;
1506 }
372316f1 1507
39a36629 1508 return false;
372316f1
PA
1509}
1510
c0987663
YQ
1511/* Return true if thread represented by PTID is doing a displaced
1512 step. */
1513
1514static int
00431a78 1515displaced_step_in_progress_thread (thread_info *thread)
c0987663 1516{
00431a78 1517 gdb_assert (thread != NULL);
c0987663 1518
d20172fc 1519 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1520}
1521
8f572e5c
PA
1522/* Return true if process PID has a thread doing a displaced step. */
1523
1524static int
00431a78 1525displaced_step_in_progress (inferior *inf)
8f572e5c 1526{
d20172fc 1527 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1528}
1529
a42244db
YQ
1530/* If inferior is in displaced stepping, and ADDR equals to starting address
1531 of copy area, return corresponding displaced_step_closure. Otherwise,
1532 return NULL. */
1533
1534struct displaced_step_closure*
1535get_displaced_step_closure_by_addr (CORE_ADDR addr)
1536{
d20172fc 1537 displaced_step_inferior_state *displaced
00431a78 1538 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1539
1540 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1541 if (displaced->step_thread != nullptr
00431a78 1542 && displaced->step_copy == addr)
d8d83535 1543 return displaced->step_closure.get ();
a42244db
YQ
1544
1545 return NULL;
1546}
1547
fc1cf338
PA
1548static void
1549infrun_inferior_exit (struct inferior *inf)
1550{
d20172fc 1551 inf->displaced_step_state.reset ();
fc1cf338 1552}
237fc4c9 1553
fff08868
HZ
1554/* If ON, and the architecture supports it, GDB will use displaced
1555 stepping to step over breakpoints. If OFF, or if the architecture
1556 doesn't support it, GDB will instead use the traditional
1557 hold-and-step approach. If AUTO (which is the default), GDB will
1558 decide which technique to use to step over breakpoints depending on
9822cb57 1559 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1560
72d0e2c5 1561static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1562
237fc4c9
PA
1563static void
1564show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567{
72d0e2c5 1568 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1569 fprintf_filtered (file,
1570 _("Debugger's willingness to use displaced stepping "
1571 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1572 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1573 else
3e43a32a
MS
1574 fprintf_filtered (file,
1575 _("Debugger's willingness to use displaced stepping "
1576 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1577}
1578
9822cb57
SM
1579/* Return true if the gdbarch implements the required methods to use
1580 displaced stepping. */
1581
1582static bool
1583gdbarch_supports_displaced_stepping (gdbarch *arch)
1584{
1585 /* Only check for the presence of step_copy_insn. Other required methods
1586 are checked by the gdbarch validation. */
1587 return gdbarch_displaced_step_copy_insn_p (arch);
1588}
1589
fff08868 1590/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1591 over breakpoints of thread TP. */
fff08868 1592
9822cb57
SM
1593static bool
1594use_displaced_stepping (thread_info *tp)
237fc4c9 1595{
9822cb57
SM
1596 /* If the user disabled it explicitly, don't use displaced stepping. */
1597 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1598 return false;
1599
1600 /* If "auto", only use displaced stepping if the target operates in a non-stop
1601 way. */
1602 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1603 && !target_is_non_stop_p ())
1604 return false;
1605
1606 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1607
1608 /* If the architecture doesn't implement displaced stepping, don't use
1609 it. */
1610 if (!gdbarch_supports_displaced_stepping (gdbarch))
1611 return false;
1612
1613 /* If recording, don't use displaced stepping. */
1614 if (find_record_target () != nullptr)
1615 return false;
1616
d20172fc
SM
1617 displaced_step_inferior_state *displaced_state
1618 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1619
9822cb57
SM
1620 /* If displaced stepping failed before for this inferior, don't bother trying
1621 again. */
1622 if (displaced_state->failed_before)
1623 return false;
1624
1625 return true;
237fc4c9
PA
1626}
1627
d8d83535
SM
1628/* Simple function wrapper around displaced_step_inferior_state::reset. */
1629
237fc4c9 1630static void
d8d83535 1631displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1632{
d8d83535 1633 displaced->reset ();
237fc4c9
PA
1634}
1635
d8d83535
SM
1636/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1637 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1638
1639using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1640
1641/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1642void
1643displaced_step_dump_bytes (struct ui_file *file,
1644 const gdb_byte *buf,
1645 size_t len)
1646{
1647 int i;
1648
1649 for (i = 0; i < len; i++)
1650 fprintf_unfiltered (file, "%02x ", buf[i]);
1651 fputs_unfiltered ("\n", file);
1652}
1653
1654/* Prepare to single-step, using displaced stepping.
1655
1656 Note that we cannot use displaced stepping when we have a signal to
1657 deliver. If we have a signal to deliver and an instruction to step
1658 over, then after the step, there will be no indication from the
1659 target whether the thread entered a signal handler or ignored the
1660 signal and stepped over the instruction successfully --- both cases
1661 result in a simple SIGTRAP. In the first case we mustn't do a
1662 fixup, and in the second case we must --- but we can't tell which.
1663 Comments in the code for 'random signals' in handle_inferior_event
1664 explain how we handle this case instead.
1665
1666 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1667 stepped now; 0 if displaced stepping this thread got queued; or -1
1668 if this instruction can't be displaced stepped. */
1669
237fc4c9 1670static int
00431a78 1671displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1672{
00431a78 1673 regcache *regcache = get_thread_regcache (tp);
ac7936df 1674 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1675 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1676 CORE_ADDR original, copy;
1677 ULONGEST len;
9e529e1d 1678 int status;
237fc4c9
PA
1679
1680 /* We should never reach this function if the architecture does not
1681 support displaced stepping. */
9822cb57 1682 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1683
c2829269
PA
1684 /* Nor if the thread isn't meant to step over a breakpoint. */
1685 gdb_assert (tp->control.trap_expected);
1686
c1e36e3e
PA
1687 /* Disable range stepping while executing in the scratch pad. We
1688 want a single-step even if executing the displaced instruction in
1689 the scratch buffer lands within the stepping range (e.g., a
1690 jump/branch). */
1691 tp->control.may_range_step = 0;
1692
fc1cf338
PA
1693 /* We have to displaced step one thread at a time, as we only have
1694 access to a single scratch space per inferior. */
237fc4c9 1695
d20172fc
SM
1696 displaced_step_inferior_state *displaced
1697 = get_displaced_stepping_state (tp->inf);
fc1cf338 1698
00431a78 1699 if (displaced->step_thread != nullptr)
237fc4c9
PA
1700 {
1701 /* Already waiting for a displaced step to finish. Defer this
1702 request and place in queue. */
237fc4c9
PA
1703
1704 if (debug_displaced)
1705 fprintf_unfiltered (gdb_stdlog,
c2829269 1706 "displaced: deferring step of %s\n",
a068643d 1707 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1708
c2829269 1709 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1710 return 0;
1711 }
1712 else
1713 {
1714 if (debug_displaced)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "displaced: stepping %s now\n",
a068643d 1717 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1718 }
1719
d8d83535 1720 displaced_step_reset (displaced);
237fc4c9 1721
00431a78
PA
1722 scoped_restore_current_thread restore_thread;
1723
1724 switch_to_thread (tp);
ad53cd71 1725
515630c5 1726 original = regcache_read_pc (regcache);
237fc4c9
PA
1727
1728 copy = gdbarch_displaced_step_location (gdbarch);
1729 len = gdbarch_max_insn_length (gdbarch);
1730
d35ae833
PA
1731 if (breakpoint_in_range_p (aspace, copy, len))
1732 {
1733 /* There's a breakpoint set in the scratch pad location range
1734 (which is usually around the entry point). We'd either
1735 install it before resuming, which would overwrite/corrupt the
1736 scratch pad, or if it was already inserted, this displaced
1737 step would overwrite it. The latter is OK in the sense that
1738 we already assume that no thread is going to execute the code
1739 in the scratch pad range (after initial startup) anyway, but
1740 the former is unacceptable. Simply punt and fallback to
1741 stepping over this breakpoint in-line. */
1742 if (debug_displaced)
1743 {
1744 fprintf_unfiltered (gdb_stdlog,
1745 "displaced: breakpoint set in scratch pad. "
1746 "Stepping over breakpoint in-line instead.\n");
1747 }
1748
d35ae833
PA
1749 return -1;
1750 }
1751
237fc4c9 1752 /* Save the original contents of the copy area. */
d20172fc
SM
1753 displaced->step_saved_copy.resize (len);
1754 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1755 if (status != 0)
1756 throw_error (MEMORY_ERROR,
1757 _("Error accessing memory address %s (%s) for "
1758 "displaced-stepping scratch space."),
1759 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1760 if (debug_displaced)
1761 {
5af949e3
UW
1762 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1763 paddress (gdbarch, copy));
fc1cf338 1764 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1765 displaced->step_saved_copy.data (),
fc1cf338 1766 len);
237fc4c9
PA
1767 };
1768
e8217e61
SM
1769 displaced->step_closure
1770 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1771 if (displaced->step_closure == NULL)
7f03bd92
PA
1772 {
1773 /* The architecture doesn't know how or want to displaced step
1774 this instruction or instruction sequence. Fallback to
1775 stepping over the breakpoint in-line. */
7f03bd92
PA
1776 return -1;
1777 }
237fc4c9 1778
9f5a595d
UW
1779 /* Save the information we need to fix things up if the step
1780 succeeds. */
00431a78 1781 displaced->step_thread = tp;
fc1cf338 1782 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1783 displaced->step_original = original;
1784 displaced->step_copy = copy;
9f5a595d 1785
9799571e 1786 {
d8d83535 1787 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1788
9799571e
TT
1789 /* Resume execution at the copy. */
1790 regcache_write_pc (regcache, copy);
237fc4c9 1791
9799571e
TT
1792 cleanup.release ();
1793 }
ad53cd71 1794
237fc4c9 1795 if (debug_displaced)
5af949e3
UW
1796 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1797 paddress (gdbarch, copy));
237fc4c9 1798
237fc4c9
PA
1799 return 1;
1800}
1801
3fc8eb30
PA
1802/* Wrapper for displaced_step_prepare_throw that disabled further
1803 attempts at displaced stepping if we get a memory error. */
1804
1805static int
00431a78 1806displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1807{
1808 int prepared = -1;
1809
a70b8144 1810 try
3fc8eb30 1811 {
00431a78 1812 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1813 }
230d2906 1814 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1815 {
1816 struct displaced_step_inferior_state *displaced_state;
1817
16b41842
PA
1818 if (ex.error != MEMORY_ERROR
1819 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1820 throw;
3fc8eb30
PA
1821
1822 if (debug_infrun)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1826 ex.what ());
3fc8eb30
PA
1827 }
1828
1829 /* Be verbose if "set displaced-stepping" is "on", silent if
1830 "auto". */
1831 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1832 {
fd7dcb94 1833 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1834 ex.what ());
3fc8eb30
PA
1835 }
1836
1837 /* Disable further displaced stepping attempts. */
1838 displaced_state
00431a78 1839 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1840 displaced_state->failed_before = 1;
1841 }
3fc8eb30
PA
1842
1843 return prepared;
1844}
1845
237fc4c9 1846static void
3e43a32a
MS
1847write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1848 const gdb_byte *myaddr, int len)
237fc4c9 1849{
2989a365 1850 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1851
237fc4c9
PA
1852 inferior_ptid = ptid;
1853 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1854}
1855
e2d96639
YQ
1856/* Restore the contents of the copy area for thread PTID. */
1857
1858static void
1859displaced_step_restore (struct displaced_step_inferior_state *displaced,
1860 ptid_t ptid)
1861{
1862 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1863
1864 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1865 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1866 if (debug_displaced)
1867 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1868 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1869 paddress (displaced->step_gdbarch,
1870 displaced->step_copy));
1871}
1872
372316f1
PA
1873/* If we displaced stepped an instruction successfully, adjust
1874 registers and memory to yield the same effect the instruction would
1875 have had if we had executed it at its original address, and return
1876 1. If the instruction didn't complete, relocate the PC and return
1877 -1. If the thread wasn't displaced stepping, return 0. */
1878
1879static int
00431a78 1880displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1881{
fc1cf338 1882 struct displaced_step_inferior_state *displaced
00431a78 1883 = get_displaced_stepping_state (event_thread->inf);
372316f1 1884 int ret;
fc1cf338 1885
00431a78
PA
1886 /* Was this event for the thread we displaced? */
1887 if (displaced->step_thread != event_thread)
372316f1 1888 return 0;
237fc4c9 1889
d8d83535 1890 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1891
00431a78 1892 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1893
cb71640d
PA
1894 /* Fixup may need to read memory/registers. Switch to the thread
1895 that we're fixing up. Also, target_stopped_by_watchpoint checks
1896 the current thread. */
00431a78 1897 switch_to_thread (event_thread);
cb71640d 1898
237fc4c9 1899 /* Did the instruction complete successfully? */
cb71640d
PA
1900 if (signal == GDB_SIGNAL_TRAP
1901 && !(target_stopped_by_watchpoint ()
1902 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1903 || target_have_steppable_watchpoint)))
237fc4c9
PA
1904 {
1905 /* Fix up the resulting state. */
fc1cf338 1906 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
d8d83535 1907 displaced->step_closure.get (),
fc1cf338
PA
1908 displaced->step_original,
1909 displaced->step_copy,
00431a78 1910 get_thread_regcache (displaced->step_thread));
372316f1 1911 ret = 1;
237fc4c9
PA
1912 }
1913 else
1914 {
1915 /* Since the instruction didn't complete, all we can do is
1916 relocate the PC. */
00431a78 1917 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1918 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1919
fc1cf338 1920 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1921 regcache_write_pc (regcache, pc);
372316f1 1922 ret = -1;
237fc4c9
PA
1923 }
1924
372316f1 1925 return ret;
c2829269 1926}
1c5cfe86 1927
4d9d9d04
PA
1928/* Data to be passed around while handling an event. This data is
1929 discarded between events. */
1930struct execution_control_state
1931{
5b6d1e4f 1932 process_stratum_target *target;
4d9d9d04
PA
1933 ptid_t ptid;
1934 /* The thread that got the event, if this was a thread event; NULL
1935 otherwise. */
1936 struct thread_info *event_thread;
1937
1938 struct target_waitstatus ws;
1939 int stop_func_filled_in;
1940 CORE_ADDR stop_func_start;
1941 CORE_ADDR stop_func_end;
1942 const char *stop_func_name;
1943 int wait_some_more;
1944
1945 /* True if the event thread hit the single-step breakpoint of
1946 another thread. Thus the event doesn't cause a stop, the thread
1947 needs to be single-stepped past the single-step breakpoint before
1948 we can switch back to the original stepping thread. */
1949 int hit_singlestep_breakpoint;
1950};
1951
1952/* Clear ECS and set it to point at TP. */
c2829269
PA
1953
1954static void
4d9d9d04
PA
1955reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1956{
1957 memset (ecs, 0, sizeof (*ecs));
1958 ecs->event_thread = tp;
1959 ecs->ptid = tp->ptid;
1960}
1961
1962static void keep_going_pass_signal (struct execution_control_state *ecs);
1963static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1964static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1965static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1966
1967/* Are there any pending step-over requests? If so, run all we can
1968 now and return true. Otherwise, return false. */
1969
1970static int
c2829269
PA
1971start_step_over (void)
1972{
1973 struct thread_info *tp, *next;
1974
372316f1
PA
1975 /* Don't start a new step-over if we already have an in-line
1976 step-over operation ongoing. */
1977 if (step_over_info_valid_p ())
1978 return 0;
1979
c2829269 1980 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1981 {
4d9d9d04
PA
1982 struct execution_control_state ecss;
1983 struct execution_control_state *ecs = &ecss;
8d297bbf 1984 step_over_what step_what;
372316f1 1985 int must_be_in_line;
c2829269 1986
c65d6b55
PA
1987 gdb_assert (!tp->stop_requested);
1988
c2829269 1989 next = thread_step_over_chain_next (tp);
237fc4c9 1990
c2829269
PA
1991 /* If this inferior already has a displaced step in process,
1992 don't start a new one. */
00431a78 1993 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1994 continue;
1995
372316f1
PA
1996 step_what = thread_still_needs_step_over (tp);
1997 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1998 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1999 && !use_displaced_stepping (tp)));
372316f1
PA
2000
2001 /* We currently stop all threads of all processes to step-over
2002 in-line. If we need to start a new in-line step-over, let
2003 any pending displaced steps finish first. */
2004 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2005 return 0;
2006
c2829269
PA
2007 thread_step_over_chain_remove (tp);
2008
2009 if (step_over_queue_head == NULL)
2010 {
2011 if (debug_infrun)
2012 fprintf_unfiltered (gdb_stdlog,
2013 "infrun: step-over queue now empty\n");
2014 }
2015
372316f1
PA
2016 if (tp->control.trap_expected
2017 || tp->resumed
2018 || tp->executing)
ad53cd71 2019 {
4d9d9d04
PA
2020 internal_error (__FILE__, __LINE__,
2021 "[%s] has inconsistent state: "
372316f1 2022 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2023 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2024 tp->control.trap_expected,
372316f1 2025 tp->resumed,
4d9d9d04 2026 tp->executing);
ad53cd71 2027 }
1c5cfe86 2028
4d9d9d04
PA
2029 if (debug_infrun)
2030 fprintf_unfiltered (gdb_stdlog,
2031 "infrun: resuming [%s] for step-over\n",
a068643d 2032 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2033
2034 /* keep_going_pass_signal skips the step-over if the breakpoint
2035 is no longer inserted. In all-stop, we want to keep looking
2036 for a thread that needs a step-over instead of resuming TP,
2037 because we wouldn't be able to resume anything else until the
2038 target stops again. In non-stop, the resume always resumes
2039 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2040 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2041 continue;
8550d3b3 2042
00431a78 2043 switch_to_thread (tp);
4d9d9d04
PA
2044 reset_ecs (ecs, tp);
2045 keep_going_pass_signal (ecs);
1c5cfe86 2046
4d9d9d04
PA
2047 if (!ecs->wait_some_more)
2048 error (_("Command aborted."));
1c5cfe86 2049
372316f1
PA
2050 gdb_assert (tp->resumed);
2051
2052 /* If we started a new in-line step-over, we're done. */
2053 if (step_over_info_valid_p ())
2054 {
2055 gdb_assert (tp->control.trap_expected);
2056 return 1;
2057 }
2058
fbea99ea 2059 if (!target_is_non_stop_p ())
4d9d9d04
PA
2060 {
2061 /* On all-stop, shouldn't have resumed unless we needed a
2062 step over. */
2063 gdb_assert (tp->control.trap_expected
2064 || tp->step_after_step_resume_breakpoint);
2065
2066 /* With remote targets (at least), in all-stop, we can't
2067 issue any further remote commands until the program stops
2068 again. */
2069 return 1;
1c5cfe86 2070 }
c2829269 2071
4d9d9d04
PA
2072 /* Either the thread no longer needed a step-over, or a new
2073 displaced stepping sequence started. Even in the latter
2074 case, continue looking. Maybe we can also start another
2075 displaced step on a thread of other process. */
237fc4c9 2076 }
4d9d9d04
PA
2077
2078 return 0;
237fc4c9
PA
2079}
2080
5231c1fd
PA
2081/* Update global variables holding ptids to hold NEW_PTID if they were
2082 holding OLD_PTID. */
2083static void
2084infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2085{
d7e15655 2086 if (inferior_ptid == old_ptid)
5231c1fd 2087 inferior_ptid = new_ptid;
5231c1fd
PA
2088}
2089
237fc4c9 2090\f
c906108c 2091
53904c9e
AC
2092static const char schedlock_off[] = "off";
2093static const char schedlock_on[] = "on";
2094static const char schedlock_step[] = "step";
f2665db5 2095static const char schedlock_replay[] = "replay";
40478521 2096static const char *const scheduler_enums[] = {
ef346e04
AC
2097 schedlock_off,
2098 schedlock_on,
2099 schedlock_step,
f2665db5 2100 schedlock_replay,
ef346e04
AC
2101 NULL
2102};
f2665db5 2103static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2104static void
2105show_scheduler_mode (struct ui_file *file, int from_tty,
2106 struct cmd_list_element *c, const char *value)
2107{
3e43a32a
MS
2108 fprintf_filtered (file,
2109 _("Mode for locking scheduler "
2110 "during execution is \"%s\".\n"),
920d2a44
AC
2111 value);
2112}
c906108c
SS
2113
2114static void
eb4c3f4a 2115set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2116{
eefe576e
AC
2117 if (!target_can_lock_scheduler)
2118 {
2119 scheduler_mode = schedlock_off;
2120 error (_("Target '%s' cannot support this command."), target_shortname);
2121 }
c906108c
SS
2122}
2123
d4db2f36
PA
2124/* True if execution commands resume all threads of all processes by
2125 default; otherwise, resume only threads of the current inferior
2126 process. */
491144b5 2127bool sched_multi = false;
d4db2f36 2128
2facfe5c
DD
2129/* Try to setup for software single stepping over the specified location.
2130 Return 1 if target_resume() should use hardware single step.
2131
2132 GDBARCH the current gdbarch.
2133 PC the location to step over. */
2134
2135static int
2136maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2137{
2138 int hw_step = 1;
2139
f02253f1 2140 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2141 && gdbarch_software_single_step_p (gdbarch))
2142 hw_step = !insert_single_step_breakpoints (gdbarch);
2143
2facfe5c
DD
2144 return hw_step;
2145}
c906108c 2146
f3263aa4
PA
2147/* See infrun.h. */
2148
09cee04b
PA
2149ptid_t
2150user_visible_resume_ptid (int step)
2151{
f3263aa4 2152 ptid_t resume_ptid;
09cee04b 2153
09cee04b
PA
2154 if (non_stop)
2155 {
2156 /* With non-stop mode on, threads are always handled
2157 individually. */
2158 resume_ptid = inferior_ptid;
2159 }
2160 else if ((scheduler_mode == schedlock_on)
03d46957 2161 || (scheduler_mode == schedlock_step && step))
09cee04b 2162 {
f3263aa4
PA
2163 /* User-settable 'scheduler' mode requires solo thread
2164 resume. */
09cee04b
PA
2165 resume_ptid = inferior_ptid;
2166 }
f2665db5
MM
2167 else if ((scheduler_mode == schedlock_replay)
2168 && target_record_will_replay (minus_one_ptid, execution_direction))
2169 {
2170 /* User-settable 'scheduler' mode requires solo thread resume in replay
2171 mode. */
2172 resume_ptid = inferior_ptid;
2173 }
f3263aa4
PA
2174 else if (!sched_multi && target_supports_multi_process ())
2175 {
2176 /* Resume all threads of the current process (and none of other
2177 processes). */
e99b03dc 2178 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2179 }
2180 else
2181 {
2182 /* Resume all threads of all processes. */
2183 resume_ptid = RESUME_ALL;
2184 }
09cee04b
PA
2185
2186 return resume_ptid;
2187}
2188
5b6d1e4f
PA
2189/* See infrun.h. */
2190
2191process_stratum_target *
2192user_visible_resume_target (ptid_t resume_ptid)
2193{
2194 return (resume_ptid == minus_one_ptid && sched_multi
2195 ? NULL
2196 : current_inferior ()->process_target ());
2197}
2198
fbea99ea
PA
2199/* Return a ptid representing the set of threads that we will resume,
2200 in the perspective of the target, assuming run control handling
2201 does not require leaving some threads stopped (e.g., stepping past
2202 breakpoint). USER_STEP indicates whether we're about to start the
2203 target for a stepping command. */
2204
2205static ptid_t
2206internal_resume_ptid (int user_step)
2207{
2208 /* In non-stop, we always control threads individually. Note that
2209 the target may always work in non-stop mode even with "set
2210 non-stop off", in which case user_visible_resume_ptid could
2211 return a wildcard ptid. */
2212 if (target_is_non_stop_p ())
2213 return inferior_ptid;
2214 else
2215 return user_visible_resume_ptid (user_step);
2216}
2217
64ce06e4
PA
2218/* Wrapper for target_resume, that handles infrun-specific
2219 bookkeeping. */
2220
2221static void
2222do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2223{
2224 struct thread_info *tp = inferior_thread ();
2225
c65d6b55
PA
2226 gdb_assert (!tp->stop_requested);
2227
64ce06e4 2228 /* Install inferior's terminal modes. */
223ffa71 2229 target_terminal::inferior ();
64ce06e4
PA
2230
2231 /* Avoid confusing the next resume, if the next stop/resume
2232 happens to apply to another thread. */
2233 tp->suspend.stop_signal = GDB_SIGNAL_0;
2234
8f572e5c
PA
2235 /* Advise target which signals may be handled silently.
2236
2237 If we have removed breakpoints because we are stepping over one
2238 in-line (in any thread), we need to receive all signals to avoid
2239 accidentally skipping a breakpoint during execution of a signal
2240 handler.
2241
2242 Likewise if we're displaced stepping, otherwise a trap for a
2243 breakpoint in a signal handler might be confused with the
2244 displaced step finishing. We don't make the displaced_step_fixup
2245 step distinguish the cases instead, because:
2246
2247 - a backtrace while stopped in the signal handler would show the
2248 scratch pad as frame older than the signal handler, instead of
2249 the real mainline code.
2250
2251 - when the thread is later resumed, the signal handler would
2252 return to the scratch pad area, which would no longer be
2253 valid. */
2254 if (step_over_info_valid_p ()
00431a78 2255 || displaced_step_in_progress (tp->inf))
adc6a863 2256 target_pass_signals ({});
64ce06e4 2257 else
adc6a863 2258 target_pass_signals (signal_pass);
64ce06e4
PA
2259
2260 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2261
2262 target_commit_resume ();
5b6d1e4f
PA
2263
2264 if (target_can_async_p ())
2265 target_async (1);
64ce06e4
PA
2266}
2267
d930703d 2268/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2269 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2270 call 'resume', which handles exceptions. */
c906108c 2271
71d378ae
PA
2272static void
2273resume_1 (enum gdb_signal sig)
c906108c 2274{
515630c5 2275 struct regcache *regcache = get_current_regcache ();
ac7936df 2276 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2277 struct thread_info *tp = inferior_thread ();
515630c5 2278 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2279 const address_space *aspace = regcache->aspace ();
b0f16a3e 2280 ptid_t resume_ptid;
856e7dd6
PA
2281 /* This represents the user's step vs continue request. When
2282 deciding whether "set scheduler-locking step" applies, it's the
2283 user's intention that counts. */
2284 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2285 /* This represents what we'll actually request the target to do.
2286 This can decay from a step to a continue, if e.g., we need to
2287 implement single-stepping with breakpoints (software
2288 single-step). */
6b403daa 2289 int step;
c7e8a53c 2290
c65d6b55 2291 gdb_assert (!tp->stop_requested);
c2829269
PA
2292 gdb_assert (!thread_is_in_step_over_chain (tp));
2293
372316f1
PA
2294 if (tp->suspend.waitstatus_pending_p)
2295 {
2296 if (debug_infrun)
2297 {
23fdd69e
SM
2298 std::string statstr
2299 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2300
372316f1 2301 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2302 "infrun: resume: thread %s has pending wait "
2303 "status %s (currently_stepping=%d).\n",
a068643d
TT
2304 target_pid_to_str (tp->ptid).c_str (),
2305 statstr.c_str (),
372316f1 2306 currently_stepping (tp));
372316f1
PA
2307 }
2308
5b6d1e4f 2309 tp->inf->process_target ()->threads_executing = true;
719546c4 2310 tp->resumed = true;
372316f1
PA
2311
2312 /* FIXME: What should we do if we are supposed to resume this
2313 thread with a signal? Maybe we should maintain a queue of
2314 pending signals to deliver. */
2315 if (sig != GDB_SIGNAL_0)
2316 {
fd7dcb94 2317 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2318 gdb_signal_to_name (sig),
2319 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2320 }
2321
2322 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2323
2324 if (target_can_async_p ())
9516f85a
AB
2325 {
2326 target_async (1);
2327 /* Tell the event loop we have an event to process. */
2328 mark_async_event_handler (infrun_async_inferior_event_token);
2329 }
372316f1
PA
2330 return;
2331 }
2332
2333 tp->stepped_breakpoint = 0;
2334
6b403daa
PA
2335 /* Depends on stepped_breakpoint. */
2336 step = currently_stepping (tp);
2337
74609e71
YQ
2338 if (current_inferior ()->waiting_for_vfork_done)
2339 {
48f9886d
PA
2340 /* Don't try to single-step a vfork parent that is waiting for
2341 the child to get out of the shared memory region (by exec'ing
2342 or exiting). This is particularly important on software
2343 single-step archs, as the child process would trip on the
2344 software single step breakpoint inserted for the parent
2345 process. Since the parent will not actually execute any
2346 instruction until the child is out of the shared region (such
2347 are vfork's semantics), it is safe to simply continue it.
2348 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2349 the parent, and tell it to `keep_going', which automatically
2350 re-sets it stepping. */
74609e71
YQ
2351 if (debug_infrun)
2352 fprintf_unfiltered (gdb_stdlog,
2353 "infrun: resume : clear step\n");
a09dd441 2354 step = 0;
74609e71
YQ
2355 }
2356
527159b7 2357 if (debug_infrun)
237fc4c9 2358 fprintf_unfiltered (gdb_stdlog,
c9737c08 2359 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2360 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2361 step, gdb_signal_to_symbol_string (sig),
2362 tp->control.trap_expected,
a068643d 2363 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2364 paddress (gdbarch, pc));
c906108c 2365
c2c6d25f
JM
2366 /* Normally, by the time we reach `resume', the breakpoints are either
2367 removed or inserted, as appropriate. The exception is if we're sitting
2368 at a permanent breakpoint; we need to step over it, but permanent
2369 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2370 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2371 {
af48d08f
PA
2372 if (sig != GDB_SIGNAL_0)
2373 {
2374 /* We have a signal to pass to the inferior. The resume
2375 may, or may not take us to the signal handler. If this
2376 is a step, we'll need to stop in the signal handler, if
2377 there's one, (if the target supports stepping into
2378 handlers), or in the next mainline instruction, if
2379 there's no handler. If this is a continue, we need to be
2380 sure to run the handler with all breakpoints inserted.
2381 In all cases, set a breakpoint at the current address
2382 (where the handler returns to), and once that breakpoint
2383 is hit, resume skipping the permanent breakpoint. If
2384 that breakpoint isn't hit, then we've stepped into the
2385 signal handler (or hit some other event). We'll delete
2386 the step-resume breakpoint then. */
2387
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: resume: skipping permanent breakpoint, "
2391 "deliver signal first\n");
2392
2393 clear_step_over_info ();
2394 tp->control.trap_expected = 0;
2395
2396 if (tp->control.step_resume_breakpoint == NULL)
2397 {
2398 /* Set a "high-priority" step-resume, as we don't want
2399 user breakpoints at PC to trigger (again) when this
2400 hits. */
2401 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2402 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2403
2404 tp->step_after_step_resume_breakpoint = step;
2405 }
2406
2407 insert_breakpoints ();
2408 }
2409 else
2410 {
2411 /* There's no signal to pass, we can go ahead and skip the
2412 permanent breakpoint manually. */
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "infrun: resume: skipping permanent breakpoint\n");
2416 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2417 /* Update pc to reflect the new address from which we will
2418 execute instructions. */
2419 pc = regcache_read_pc (regcache);
2420
2421 if (step)
2422 {
2423 /* We've already advanced the PC, so the stepping part
2424 is done. Now we need to arrange for a trap to be
2425 reported to handle_inferior_event. Set a breakpoint
2426 at the current PC, and run to it. Don't update
2427 prev_pc, because if we end in
44a1ee51
PA
2428 switch_back_to_stepped_thread, we want the "expected
2429 thread advanced also" branch to be taken. IOW, we
2430 don't want this thread to step further from PC
af48d08f 2431 (overstep). */
1ac806b8 2432 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2433 insert_single_step_breakpoint (gdbarch, aspace, pc);
2434 insert_breakpoints ();
2435
fbea99ea 2436 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2437 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2438 tp->resumed = true;
af48d08f
PA
2439 return;
2440 }
2441 }
6d350bb5 2442 }
c2c6d25f 2443
c1e36e3e
PA
2444 /* If we have a breakpoint to step over, make sure to do a single
2445 step only. Same if we have software watchpoints. */
2446 if (tp->control.trap_expected || bpstat_should_step ())
2447 tp->control.may_range_step = 0;
2448
7da6a5b9
LM
2449 /* If displaced stepping is enabled, step over breakpoints by executing a
2450 copy of the instruction at a different address.
237fc4c9
PA
2451
2452 We can't use displaced stepping when we have a signal to deliver;
2453 the comments for displaced_step_prepare explain why. The
2454 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2455 signals' explain what we do instead.
2456
2457 We can't use displaced stepping when we are waiting for vfork_done
2458 event, displaced stepping breaks the vfork child similarly as single
2459 step software breakpoint. */
3fc8eb30
PA
2460 if (tp->control.trap_expected
2461 && use_displaced_stepping (tp)
cb71640d 2462 && !step_over_info_valid_p ()
a493e3e2 2463 && sig == GDB_SIGNAL_0
74609e71 2464 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2465 {
00431a78 2466 int prepared = displaced_step_prepare (tp);
fc1cf338 2467
3fc8eb30 2468 if (prepared == 0)
d56b7306 2469 {
4d9d9d04
PA
2470 if (debug_infrun)
2471 fprintf_unfiltered (gdb_stdlog,
2472 "Got placed in step-over queue\n");
2473
2474 tp->control.trap_expected = 0;
d56b7306
VP
2475 return;
2476 }
3fc8eb30
PA
2477 else if (prepared < 0)
2478 {
2479 /* Fallback to stepping over the breakpoint in-line. */
2480
2481 if (target_is_non_stop_p ())
2482 stop_all_threads ();
2483
a01bda52 2484 set_step_over_info (regcache->aspace (),
21edc42f 2485 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2486
2487 step = maybe_software_singlestep (gdbarch, pc);
2488
2489 insert_breakpoints ();
2490 }
2491 else if (prepared > 0)
2492 {
2493 struct displaced_step_inferior_state *displaced;
99e40580 2494
3fc8eb30
PA
2495 /* Update pc to reflect the new address from which we will
2496 execute instructions due to displaced stepping. */
00431a78 2497 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2498
00431a78 2499 displaced = get_displaced_stepping_state (tp->inf);
d8d83535
SM
2500 step = gdbarch_displaced_step_hw_singlestep
2501 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2502 }
237fc4c9
PA
2503 }
2504
2facfe5c 2505 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2506 else if (step)
2facfe5c 2507 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2508
30852783
UW
2509 /* Currently, our software single-step implementation leads to different
2510 results than hardware single-stepping in one situation: when stepping
2511 into delivering a signal which has an associated signal handler,
2512 hardware single-step will stop at the first instruction of the handler,
2513 while software single-step will simply skip execution of the handler.
2514
2515 For now, this difference in behavior is accepted since there is no
2516 easy way to actually implement single-stepping into a signal handler
2517 without kernel support.
2518
2519 However, there is one scenario where this difference leads to follow-on
2520 problems: if we're stepping off a breakpoint by removing all breakpoints
2521 and then single-stepping. In this case, the software single-step
2522 behavior means that even if there is a *breakpoint* in the signal
2523 handler, GDB still would not stop.
2524
2525 Fortunately, we can at least fix this particular issue. We detect
2526 here the case where we are about to deliver a signal while software
2527 single-stepping with breakpoints removed. In this situation, we
2528 revert the decisions to remove all breakpoints and insert single-
2529 step breakpoints, and instead we install a step-resume breakpoint
2530 at the current address, deliver the signal without stepping, and
2531 once we arrive back at the step-resume breakpoint, actually step
2532 over the breakpoint we originally wanted to step over. */
34b7e8a6 2533 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2534 && sig != GDB_SIGNAL_0
2535 && step_over_info_valid_p ())
30852783
UW
2536 {
2537 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2538 immediately after a handler returns, might already have
30852783
UW
2539 a step-resume breakpoint set on the earlier handler. We cannot
2540 set another step-resume breakpoint; just continue on until the
2541 original breakpoint is hit. */
2542 if (tp->control.step_resume_breakpoint == NULL)
2543 {
2c03e5be 2544 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2545 tp->step_after_step_resume_breakpoint = 1;
2546 }
2547
34b7e8a6 2548 delete_single_step_breakpoints (tp);
30852783 2549
31e77af2 2550 clear_step_over_info ();
30852783 2551 tp->control.trap_expected = 0;
31e77af2
PA
2552
2553 insert_breakpoints ();
30852783
UW
2554 }
2555
b0f16a3e
SM
2556 /* If STEP is set, it's a request to use hardware stepping
2557 facilities. But in that case, we should never
2558 use singlestep breakpoint. */
34b7e8a6 2559 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2560
fbea99ea 2561 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2562 if (tp->control.trap_expected)
b0f16a3e
SM
2563 {
2564 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2565 hit, either by single-stepping the thread with the breakpoint
2566 removed, or by displaced stepping, with the breakpoint inserted.
2567 In the former case, we need to single-step only this thread,
2568 and keep others stopped, as they can miss this breakpoint if
2569 allowed to run. That's not really a problem for displaced
2570 stepping, but, we still keep other threads stopped, in case
2571 another thread is also stopped for a breakpoint waiting for
2572 its turn in the displaced stepping queue. */
b0f16a3e
SM
2573 resume_ptid = inferior_ptid;
2574 }
fbea99ea
PA
2575 else
2576 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2577
7f5ef605
PA
2578 if (execution_direction != EXEC_REVERSE
2579 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2580 {
372316f1
PA
2581 /* There are two cases where we currently need to step a
2582 breakpoint instruction when we have a signal to deliver:
2583
2584 - See handle_signal_stop where we handle random signals that
2585 could take out us out of the stepping range. Normally, in
2586 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2587 signal handler with a breakpoint at PC, but there are cases
2588 where we should _always_ single-step, even if we have a
2589 step-resume breakpoint, like when a software watchpoint is
2590 set. Assuming single-stepping and delivering a signal at the
2591 same time would takes us to the signal handler, then we could
2592 have removed the breakpoint at PC to step over it. However,
2593 some hardware step targets (like e.g., Mac OS) can't step
2594 into signal handlers, and for those, we need to leave the
2595 breakpoint at PC inserted, as otherwise if the handler
2596 recurses and executes PC again, it'll miss the breakpoint.
2597 So we leave the breakpoint inserted anyway, but we need to
2598 record that we tried to step a breakpoint instruction, so
372316f1
PA
2599 that adjust_pc_after_break doesn't end up confused.
2600
2601 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2602 in one thread after another thread that was stepping had been
2603 momentarily paused for a step-over. When we re-resume the
2604 stepping thread, it may be resumed from that address with a
2605 breakpoint that hasn't trapped yet. Seen with
2606 gdb.threads/non-stop-fair-events.exp, on targets that don't
2607 do displaced stepping. */
2608
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2612 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2613
2614 tp->stepped_breakpoint = 1;
2615
b0f16a3e
SM
2616 /* Most targets can step a breakpoint instruction, thus
2617 executing it normally. But if this one cannot, just
2618 continue and we will hit it anyway. */
7f5ef605 2619 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2620 step = 0;
2621 }
ef5cf84e 2622
b0f16a3e 2623 if (debug_displaced
cb71640d 2624 && tp->control.trap_expected
3fc8eb30 2625 && use_displaced_stepping (tp)
cb71640d 2626 && !step_over_info_valid_p ())
b0f16a3e 2627 {
00431a78 2628 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2629 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2630 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2631 gdb_byte buf[4];
2632
2633 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2634 paddress (resume_gdbarch, actual_pc));
2635 read_memory (actual_pc, buf, sizeof (buf));
2636 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2637 }
237fc4c9 2638
b0f16a3e
SM
2639 if (tp->control.may_range_step)
2640 {
2641 /* If we're resuming a thread with the PC out of the step
2642 range, then we're doing some nested/finer run control
2643 operation, like stepping the thread out of the dynamic
2644 linker or the displaced stepping scratch pad. We
2645 shouldn't have allowed a range step then. */
2646 gdb_assert (pc_in_thread_step_range (pc, tp));
2647 }
c1e36e3e 2648
64ce06e4 2649 do_target_resume (resume_ptid, step, sig);
719546c4 2650 tp->resumed = true;
c906108c 2651}
71d378ae
PA
2652
2653/* Resume the inferior. SIG is the signal to give the inferior
2654 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2655 rolls back state on error. */
2656
aff4e175 2657static void
71d378ae
PA
2658resume (gdb_signal sig)
2659{
a70b8144 2660 try
71d378ae
PA
2661 {
2662 resume_1 (sig);
2663 }
230d2906 2664 catch (const gdb_exception &ex)
71d378ae
PA
2665 {
2666 /* If resuming is being aborted for any reason, delete any
2667 single-step breakpoint resume_1 may have created, to avoid
2668 confusing the following resumption, and to avoid leaving
2669 single-step breakpoints perturbing other threads, in case
2670 we're running in non-stop mode. */
2671 if (inferior_ptid != null_ptid)
2672 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2673 throw;
71d378ae 2674 }
71d378ae
PA
2675}
2676
c906108c 2677\f
237fc4c9 2678/* Proceeding. */
c906108c 2679
4c2f2a79
PA
2680/* See infrun.h. */
2681
2682/* Counter that tracks number of user visible stops. This can be used
2683 to tell whether a command has proceeded the inferior past the
2684 current location. This allows e.g., inferior function calls in
2685 breakpoint commands to not interrupt the command list. When the
2686 call finishes successfully, the inferior is standing at the same
2687 breakpoint as if nothing happened (and so we don't call
2688 normal_stop). */
2689static ULONGEST current_stop_id;
2690
2691/* See infrun.h. */
2692
2693ULONGEST
2694get_stop_id (void)
2695{
2696 return current_stop_id;
2697}
2698
2699/* Called when we report a user visible stop. */
2700
2701static void
2702new_stop_id (void)
2703{
2704 current_stop_id++;
2705}
2706
c906108c
SS
2707/* Clear out all variables saying what to do when inferior is continued.
2708 First do this, then set the ones you want, then call `proceed'. */
2709
a7212384
UW
2710static void
2711clear_proceed_status_thread (struct thread_info *tp)
c906108c 2712{
a7212384
UW
2713 if (debug_infrun)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2716 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2717
372316f1
PA
2718 /* If we're starting a new sequence, then the previous finished
2719 single-step is no longer relevant. */
2720 if (tp->suspend.waitstatus_pending_p)
2721 {
2722 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2723 {
2724 if (debug_infrun)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "infrun: clear_proceed_status: pending "
2727 "event of %s was a finished step. "
2728 "Discarding.\n",
a068643d 2729 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2730
2731 tp->suspend.waitstatus_pending_p = 0;
2732 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2733 }
2734 else if (debug_infrun)
2735 {
23fdd69e
SM
2736 std::string statstr
2737 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2738
372316f1
PA
2739 fprintf_unfiltered (gdb_stdlog,
2740 "infrun: clear_proceed_status_thread: thread %s "
2741 "has pending wait status %s "
2742 "(currently_stepping=%d).\n",
a068643d
TT
2743 target_pid_to_str (tp->ptid).c_str (),
2744 statstr.c_str (),
372316f1 2745 currently_stepping (tp));
372316f1
PA
2746 }
2747 }
2748
70509625
PA
2749 /* If this signal should not be seen by program, give it zero.
2750 Used for debugging signals. */
2751 if (!signal_pass_state (tp->suspend.stop_signal))
2752 tp->suspend.stop_signal = GDB_SIGNAL_0;
2753
46e3ed7f 2754 delete tp->thread_fsm;
243a9253
PA
2755 tp->thread_fsm = NULL;
2756
16c381f0
JK
2757 tp->control.trap_expected = 0;
2758 tp->control.step_range_start = 0;
2759 tp->control.step_range_end = 0;
c1e36e3e 2760 tp->control.may_range_step = 0;
16c381f0
JK
2761 tp->control.step_frame_id = null_frame_id;
2762 tp->control.step_stack_frame_id = null_frame_id;
2763 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2764 tp->control.step_start_function = NULL;
a7212384 2765 tp->stop_requested = 0;
4e1c45ea 2766
16c381f0 2767 tp->control.stop_step = 0;
32400beb 2768
16c381f0 2769 tp->control.proceed_to_finish = 0;
414c69f7 2770
856e7dd6 2771 tp->control.stepping_command = 0;
17b2616c 2772
a7212384 2773 /* Discard any remaining commands or status from previous stop. */
16c381f0 2774 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2775}
32400beb 2776
a7212384 2777void
70509625 2778clear_proceed_status (int step)
a7212384 2779{
f2665db5
MM
2780 /* With scheduler-locking replay, stop replaying other threads if we're
2781 not replaying the user-visible resume ptid.
2782
2783 This is a convenience feature to not require the user to explicitly
2784 stop replaying the other threads. We're assuming that the user's
2785 intent is to resume tracing the recorded process. */
2786 if (!non_stop && scheduler_mode == schedlock_replay
2787 && target_record_is_replaying (minus_one_ptid)
2788 && !target_record_will_replay (user_visible_resume_ptid (step),
2789 execution_direction))
2790 target_record_stop_replaying ();
2791
08036331 2792 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2793 {
08036331 2794 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2795 process_stratum_target *resume_target
2796 = user_visible_resume_target (resume_ptid);
70509625
PA
2797
2798 /* In all-stop mode, delete the per-thread status of all threads
2799 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2800 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2801 clear_proceed_status_thread (tp);
6c95b8df
PA
2802 }
2803
d7e15655 2804 if (inferior_ptid != null_ptid)
a7212384
UW
2805 {
2806 struct inferior *inferior;
2807
2808 if (non_stop)
2809 {
6c95b8df
PA
2810 /* If in non-stop mode, only delete the per-thread status of
2811 the current thread. */
a7212384
UW
2812 clear_proceed_status_thread (inferior_thread ());
2813 }
6c95b8df 2814
d6b48e9c 2815 inferior = current_inferior ();
16c381f0 2816 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2817 }
2818
76727919 2819 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2820}
2821
99619bea
PA
2822/* Returns true if TP is still stopped at a breakpoint that needs
2823 stepping-over in order to make progress. If the breakpoint is gone
2824 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2825
2826static int
6c4cfb24 2827thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2828{
2829 if (tp->stepping_over_breakpoint)
2830 {
00431a78 2831 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2832
a01bda52 2833 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2834 regcache_read_pc (regcache))
2835 == ordinary_breakpoint_here)
99619bea
PA
2836 return 1;
2837
2838 tp->stepping_over_breakpoint = 0;
2839 }
2840
2841 return 0;
2842}
2843
6c4cfb24
PA
2844/* Check whether thread TP still needs to start a step-over in order
2845 to make progress when resumed. Returns an bitwise or of enum
2846 step_over_what bits, indicating what needs to be stepped over. */
2847
8d297bbf 2848static step_over_what
6c4cfb24
PA
2849thread_still_needs_step_over (struct thread_info *tp)
2850{
8d297bbf 2851 step_over_what what = 0;
6c4cfb24
PA
2852
2853 if (thread_still_needs_step_over_bp (tp))
2854 what |= STEP_OVER_BREAKPOINT;
2855
2856 if (tp->stepping_over_watchpoint
2857 && !target_have_steppable_watchpoint)
2858 what |= STEP_OVER_WATCHPOINT;
2859
2860 return what;
2861}
2862
483805cf
PA
2863/* Returns true if scheduler locking applies. STEP indicates whether
2864 we're about to do a step/next-like command to a thread. */
2865
2866static int
856e7dd6 2867schedlock_applies (struct thread_info *tp)
483805cf
PA
2868{
2869 return (scheduler_mode == schedlock_on
2870 || (scheduler_mode == schedlock_step
f2665db5
MM
2871 && tp->control.stepping_command)
2872 || (scheduler_mode == schedlock_replay
2873 && target_record_will_replay (minus_one_ptid,
2874 execution_direction)));
483805cf
PA
2875}
2876
5b6d1e4f
PA
2877/* Calls target_commit_resume on all targets. */
2878
2879static void
2880commit_resume_all_targets ()
2881{
2882 scoped_restore_current_thread restore_thread;
2883
2884 /* Map between process_target and a representative inferior. This
2885 is to avoid committing a resume in the same target more than
2886 once. Resumptions must be idempotent, so this is an
2887 optimization. */
2888 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2889
2890 for (inferior *inf : all_non_exited_inferiors ())
2891 if (inf->has_execution ())
2892 conn_inf[inf->process_target ()] = inf;
2893
2894 for (const auto &ci : conn_inf)
2895 {
2896 inferior *inf = ci.second;
2897 switch_to_inferior_no_thread (inf);
2898 target_commit_resume ();
2899 }
2900}
2901
2f4fcf00
PA
2902/* Check that all the targets we're about to resume are in non-stop
2903 mode. Ideally, we'd only care whether all targets support
2904 target-async, but we're not there yet. E.g., stop_all_threads
2905 doesn't know how to handle all-stop targets. Also, the remote
2906 protocol in all-stop mode is synchronous, irrespective of
2907 target-async, which means that things like a breakpoint re-set
2908 triggered by one target would try to read memory from all targets
2909 and fail. */
2910
2911static void
2912check_multi_target_resumption (process_stratum_target *resume_target)
2913{
2914 if (!non_stop && resume_target == nullptr)
2915 {
2916 scoped_restore_current_thread restore_thread;
2917
2918 /* This is used to track whether we're resuming more than one
2919 target. */
2920 process_stratum_target *first_connection = nullptr;
2921
2922 /* The first inferior we see with a target that does not work in
2923 always-non-stop mode. */
2924 inferior *first_not_non_stop = nullptr;
2925
2926 for (inferior *inf : all_non_exited_inferiors (resume_target))
2927 {
2928 switch_to_inferior_no_thread (inf);
2929
2930 if (!target_has_execution)
2931 continue;
2932
2933 process_stratum_target *proc_target
2934 = current_inferior ()->process_target();
2935
2936 if (!target_is_non_stop_p ())
2937 first_not_non_stop = inf;
2938
2939 if (first_connection == nullptr)
2940 first_connection = proc_target;
2941 else if (first_connection != proc_target
2942 && first_not_non_stop != nullptr)
2943 {
2944 switch_to_inferior_no_thread (first_not_non_stop);
2945
2946 proc_target = current_inferior ()->process_target();
2947
2948 error (_("Connection %d (%s) does not support "
2949 "multi-target resumption."),
2950 proc_target->connection_number,
2951 make_target_connection_string (proc_target).c_str ());
2952 }
2953 }
2954 }
2955}
2956
c906108c
SS
2957/* Basic routine for continuing the program in various fashions.
2958
2959 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2960 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2961 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2962
2963 You should call clear_proceed_status before calling proceed. */
2964
2965void
64ce06e4 2966proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2967{
e58b0e63
PA
2968 struct regcache *regcache;
2969 struct gdbarch *gdbarch;
e58b0e63 2970 CORE_ADDR pc;
4d9d9d04
PA
2971 struct execution_control_state ecss;
2972 struct execution_control_state *ecs = &ecss;
4d9d9d04 2973 int started;
c906108c 2974
e58b0e63
PA
2975 /* If we're stopped at a fork/vfork, follow the branch set by the
2976 "set follow-fork-mode" command; otherwise, we'll just proceed
2977 resuming the current thread. */
2978 if (!follow_fork ())
2979 {
2980 /* The target for some reason decided not to resume. */
2981 normal_stop ();
f148b27e
PA
2982 if (target_can_async_p ())
2983 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2984 return;
2985 }
2986
842951eb
PA
2987 /* We'll update this if & when we switch to a new thread. */
2988 previous_inferior_ptid = inferior_ptid;
2989
e58b0e63 2990 regcache = get_current_regcache ();
ac7936df 2991 gdbarch = regcache->arch ();
8b86c959
YQ
2992 const address_space *aspace = regcache->aspace ();
2993
e58b0e63 2994 pc = regcache_read_pc (regcache);
08036331 2995 thread_info *cur_thr = inferior_thread ();
e58b0e63 2996
99619bea 2997 /* Fill in with reasonable starting values. */
08036331 2998 init_thread_stepping_state (cur_thr);
99619bea 2999
08036331 3000 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 3001
5b6d1e4f
PA
3002 ptid_t resume_ptid
3003 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3004 process_stratum_target *resume_target
3005 = user_visible_resume_target (resume_ptid);
3006
2f4fcf00
PA
3007 check_multi_target_resumption (resume_target);
3008
2acceee2 3009 if (addr == (CORE_ADDR) -1)
c906108c 3010 {
08036331 3011 if (pc == cur_thr->suspend.stop_pc
af48d08f 3012 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3013 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3014 /* There is a breakpoint at the address we will resume at,
3015 step one instruction before inserting breakpoints so that
3016 we do not stop right away (and report a second hit at this
b2175913
MS
3017 breakpoint).
3018
3019 Note, we don't do this in reverse, because we won't
3020 actually be executing the breakpoint insn anyway.
3021 We'll be (un-)executing the previous instruction. */
08036331 3022 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3023 else if (gdbarch_single_step_through_delay_p (gdbarch)
3024 && gdbarch_single_step_through_delay (gdbarch,
3025 get_current_frame ()))
3352ef37
AC
3026 /* We stepped onto an instruction that needs to be stepped
3027 again before re-inserting the breakpoint, do so. */
08036331 3028 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3029 }
3030 else
3031 {
515630c5 3032 regcache_write_pc (regcache, addr);
c906108c
SS
3033 }
3034
70509625 3035 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3036 cur_thr->suspend.stop_signal = siggnal;
70509625 3037
4d9d9d04
PA
3038 /* If an exception is thrown from this point on, make sure to
3039 propagate GDB's knowledge of the executing state to the
3040 frontend/user running state. */
5b6d1e4f 3041 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3042
3043 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3044 threads (e.g., we might need to set threads stepping over
3045 breakpoints first), from the user/frontend's point of view, all
3046 threads in RESUME_PTID are now running. Unless we're calling an
3047 inferior function, as in that case we pretend the inferior
3048 doesn't run at all. */
08036331 3049 if (!cur_thr->control.in_infcall)
719546c4 3050 set_running (resume_target, resume_ptid, true);
17b2616c 3051
527159b7 3052 if (debug_infrun)
8a9de0e4 3053 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3054 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3055 paddress (gdbarch, addr),
64ce06e4 3056 gdb_signal_to_symbol_string (siggnal));
527159b7 3057
4d9d9d04
PA
3058 annotate_starting ();
3059
3060 /* Make sure that output from GDB appears before output from the
3061 inferior. */
3062 gdb_flush (gdb_stdout);
3063
d930703d
PA
3064 /* Since we've marked the inferior running, give it the terminal. A
3065 QUIT/Ctrl-C from here on is forwarded to the target (which can
3066 still detect attempts to unblock a stuck connection with repeated
3067 Ctrl-C from within target_pass_ctrlc). */
3068 target_terminal::inferior ();
3069
4d9d9d04
PA
3070 /* In a multi-threaded task we may select another thread and
3071 then continue or step.
3072
3073 But if a thread that we're resuming had stopped at a breakpoint,
3074 it will immediately cause another breakpoint stop without any
3075 execution (i.e. it will report a breakpoint hit incorrectly). So
3076 we must step over it first.
3077
3078 Look for threads other than the current (TP) that reported a
3079 breakpoint hit and haven't been resumed yet since. */
3080
3081 /* If scheduler locking applies, we can avoid iterating over all
3082 threads. */
08036331 3083 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3084 {
5b6d1e4f
PA
3085 for (thread_info *tp : all_non_exited_threads (resume_target,
3086 resume_ptid))
08036331 3087 {
f3f8ece4
PA
3088 switch_to_thread_no_regs (tp);
3089
4d9d9d04
PA
3090 /* Ignore the current thread here. It's handled
3091 afterwards. */
08036331 3092 if (tp == cur_thr)
4d9d9d04 3093 continue;
c906108c 3094
4d9d9d04
PA
3095 if (!thread_still_needs_step_over (tp))
3096 continue;
3097
3098 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3099
99619bea
PA
3100 if (debug_infrun)
3101 fprintf_unfiltered (gdb_stdlog,
3102 "infrun: need to step-over [%s] first\n",
a068643d 3103 target_pid_to_str (tp->ptid).c_str ());
99619bea 3104
4d9d9d04 3105 thread_step_over_chain_enqueue (tp);
2adfaa28 3106 }
f3f8ece4
PA
3107
3108 switch_to_thread (cur_thr);
30852783
UW
3109 }
3110
4d9d9d04
PA
3111 /* Enqueue the current thread last, so that we move all other
3112 threads over their breakpoints first. */
08036331
PA
3113 if (cur_thr->stepping_over_breakpoint)
3114 thread_step_over_chain_enqueue (cur_thr);
30852783 3115
4d9d9d04
PA
3116 /* If the thread isn't started, we'll still need to set its prev_pc,
3117 so that switch_back_to_stepped_thread knows the thread hasn't
3118 advanced. Must do this before resuming any thread, as in
3119 all-stop/remote, once we resume we can't send any other packet
3120 until the target stops again. */
08036331 3121 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 3122
a9bc57b9
TT
3123 {
3124 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3125
a9bc57b9 3126 started = start_step_over ();
c906108c 3127
a9bc57b9
TT
3128 if (step_over_info_valid_p ())
3129 {
3130 /* Either this thread started a new in-line step over, or some
3131 other thread was already doing one. In either case, don't
3132 resume anything else until the step-over is finished. */
3133 }
3134 else if (started && !target_is_non_stop_p ())
3135 {
3136 /* A new displaced stepping sequence was started. In all-stop,
3137 we can't talk to the target anymore until it next stops. */
3138 }
3139 else if (!non_stop && target_is_non_stop_p ())
3140 {
3141 /* In all-stop, but the target is always in non-stop mode.
3142 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3143 for (thread_info *tp : all_non_exited_threads (resume_target,
3144 resume_ptid))
3145 {
3146 switch_to_thread_no_regs (tp);
3147
f9fac3c8
SM
3148 if (!tp->inf->has_execution ())
3149 {
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "infrun: proceed: [%s] target has "
3153 "no execution\n",
3154 target_pid_to_str (tp->ptid).c_str ());
3155 continue;
3156 }
f3f8ece4 3157
f9fac3c8
SM
3158 if (tp->resumed)
3159 {
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "infrun: proceed: [%s] resumed\n",
3163 target_pid_to_str (tp->ptid).c_str ());
3164 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3165 continue;
3166 }
fbea99ea 3167
f9fac3c8
SM
3168 if (thread_is_in_step_over_chain (tp))
3169 {
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: [%s] needs step-over\n",
3173 target_pid_to_str (tp->ptid).c_str ());
3174 continue;
3175 }
fbea99ea 3176
f9fac3c8
SM
3177 if (debug_infrun)
3178 fprintf_unfiltered (gdb_stdlog,
3179 "infrun: proceed: resuming %s\n",
3180 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3181
f9fac3c8
SM
3182 reset_ecs (ecs, tp);
3183 switch_to_thread (tp);
3184 keep_going_pass_signal (ecs);
3185 if (!ecs->wait_some_more)
3186 error (_("Command aborted."));
3187 }
a9bc57b9 3188 }
08036331 3189 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3190 {
3191 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3192 reset_ecs (ecs, cur_thr);
3193 switch_to_thread (cur_thr);
a9bc57b9
TT
3194 keep_going_pass_signal (ecs);
3195 if (!ecs->wait_some_more)
3196 error (_("Command aborted."));
3197 }
3198 }
c906108c 3199
5b6d1e4f 3200 commit_resume_all_targets ();
85ad3aaf 3201
731f534f 3202 finish_state.release ();
c906108c 3203
873657b9
PA
3204 /* If we've switched threads above, switch back to the previously
3205 current thread. We don't want the user to see a different
3206 selected thread. */
3207 switch_to_thread (cur_thr);
3208
0b333c5e
PA
3209 /* Tell the event loop to wait for it to stop. If the target
3210 supports asynchronous execution, it'll do this from within
3211 target_resume. */
362646f5 3212 if (!target_can_async_p ())
0b333c5e 3213 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3214}
c906108c
SS
3215\f
3216
3217/* Start remote-debugging of a machine over a serial link. */
96baa820 3218
c906108c 3219void
8621d6a9 3220start_remote (int from_tty)
c906108c 3221{
5b6d1e4f
PA
3222 inferior *inf = current_inferior ();
3223 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3224
1777feb0 3225 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3226 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3227 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3228 nothing is returned (instead of just blocking). Because of this,
3229 targets expecting an immediate response need to, internally, set
3230 things up so that the target_wait() is forced to eventually
1777feb0 3231 timeout. */
6426a772
JM
3232 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3233 differentiate to its caller what the state of the target is after
3234 the initial open has been performed. Here we're assuming that
3235 the target has stopped. It should be possible to eventually have
3236 target_open() return to the caller an indication that the target
3237 is currently running and GDB state should be set to the same as
1777feb0 3238 for an async run. */
5b6d1e4f 3239 wait_for_inferior (inf);
8621d6a9
DJ
3240
3241 /* Now that the inferior has stopped, do any bookkeeping like
3242 loading shared libraries. We want to do this before normal_stop,
3243 so that the displayed frame is up to date. */
8b88a78e 3244 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3245
6426a772 3246 normal_stop ();
c906108c
SS
3247}
3248
3249/* Initialize static vars when a new inferior begins. */
3250
3251void
96baa820 3252init_wait_for_inferior (void)
c906108c
SS
3253{
3254 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3255
c906108c
SS
3256 breakpoint_init_inferior (inf_starting);
3257
70509625 3258 clear_proceed_status (0);
9f976b41 3259
ab1ddbcf 3260 nullify_last_target_wait_ptid ();
237fc4c9 3261
842951eb 3262 previous_inferior_ptid = inferior_ptid;
c906108c 3263}
237fc4c9 3264
c906108c 3265\f
488f131b 3266
ec9499be 3267static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3268
568d6575
UW
3269static void handle_step_into_function (struct gdbarch *gdbarch,
3270 struct execution_control_state *ecs);
3271static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
4f5d7f63 3273static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3274static void check_exception_resume (struct execution_control_state *,
28106bc2 3275 struct frame_info *);
611c83ae 3276
bdc36728 3277static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3278static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3279static void keep_going (struct execution_control_state *ecs);
94c57d6a 3280static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3281static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3282
252fbfc8
PA
3283/* This function is attached as a "thread_stop_requested" observer.
3284 Cleanup local state that assumed the PTID was to be resumed, and
3285 report the stop to the frontend. */
3286
2c0b251b 3287static void
252fbfc8
PA
3288infrun_thread_stop_requested (ptid_t ptid)
3289{
5b6d1e4f
PA
3290 process_stratum_target *curr_target = current_inferior ()->process_target ();
3291
c65d6b55
PA
3292 /* PTID was requested to stop. If the thread was already stopped,
3293 but the user/frontend doesn't know about that yet (e.g., the
3294 thread had been temporarily paused for some step-over), set up
3295 for reporting the stop now. */
5b6d1e4f 3296 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3297 {
3298 if (tp->state != THREAD_RUNNING)
3299 continue;
3300 if (tp->executing)
3301 continue;
c65d6b55 3302
08036331
PA
3303 /* Remove matching threads from the step-over queue, so
3304 start_step_over doesn't try to resume them
3305 automatically. */
3306 if (thread_is_in_step_over_chain (tp))
3307 thread_step_over_chain_remove (tp);
c65d6b55 3308
08036331
PA
3309 /* If the thread is stopped, but the user/frontend doesn't
3310 know about that yet, queue a pending event, as if the
3311 thread had just stopped now. Unless the thread already had
3312 a pending event. */
3313 if (!tp->suspend.waitstatus_pending_p)
3314 {
3315 tp->suspend.waitstatus_pending_p = 1;
3316 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3317 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3318 }
c65d6b55 3319
08036331
PA
3320 /* Clear the inline-frame state, since we're re-processing the
3321 stop. */
5b6d1e4f 3322 clear_inline_frame_state (tp);
c65d6b55 3323
08036331
PA
3324 /* If this thread was paused because some other thread was
3325 doing an inline-step over, let that finish first. Once
3326 that happens, we'll restart all threads and consume pending
3327 stop events then. */
3328 if (step_over_info_valid_p ())
3329 continue;
3330
3331 /* Otherwise we can process the (new) pending event now. Set
3332 it so this pending event is considered by
3333 do_target_wait. */
719546c4 3334 tp->resumed = true;
08036331 3335 }
252fbfc8
PA
3336}
3337
a07daef3
PA
3338static void
3339infrun_thread_thread_exit (struct thread_info *tp, int silent)
3340{
5b6d1e4f
PA
3341 if (target_last_proc_target == tp->inf->process_target ()
3342 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3343 nullify_last_target_wait_ptid ();
3344}
3345
0cbcdb96
PA
3346/* Delete the step resume, single-step and longjmp/exception resume
3347 breakpoints of TP. */
4e1c45ea 3348
0cbcdb96
PA
3349static void
3350delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3351{
0cbcdb96
PA
3352 delete_step_resume_breakpoint (tp);
3353 delete_exception_resume_breakpoint (tp);
34b7e8a6 3354 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3355}
3356
0cbcdb96
PA
3357/* If the target still has execution, call FUNC for each thread that
3358 just stopped. In all-stop, that's all the non-exited threads; in
3359 non-stop, that's the current thread, only. */
3360
3361typedef void (*for_each_just_stopped_thread_callback_func)
3362 (struct thread_info *tp);
4e1c45ea
PA
3363
3364static void
0cbcdb96 3365for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3366{
d7e15655 3367 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3368 return;
3369
fbea99ea 3370 if (target_is_non_stop_p ())
4e1c45ea 3371 {
0cbcdb96
PA
3372 /* If in non-stop mode, only the current thread stopped. */
3373 func (inferior_thread ());
4e1c45ea
PA
3374 }
3375 else
0cbcdb96 3376 {
0cbcdb96 3377 /* In all-stop mode, all threads have stopped. */
08036331
PA
3378 for (thread_info *tp : all_non_exited_threads ())
3379 func (tp);
0cbcdb96
PA
3380 }
3381}
3382
3383/* Delete the step resume and longjmp/exception resume breakpoints of
3384 the threads that just stopped. */
3385
3386static void
3387delete_just_stopped_threads_infrun_breakpoints (void)
3388{
3389 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3390}
3391
3392/* Delete the single-step breakpoints of the threads that just
3393 stopped. */
7c16b83e 3394
34b7e8a6
PA
3395static void
3396delete_just_stopped_threads_single_step_breakpoints (void)
3397{
3398 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3399}
3400
221e1a37 3401/* See infrun.h. */
223698f8 3402
221e1a37 3403void
223698f8
DE
3404print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3405 const struct target_waitstatus *ws)
3406{
23fdd69e 3407 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3408 string_file stb;
223698f8
DE
3409
3410 /* The text is split over several lines because it was getting too long.
3411 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3412 output as a unit; we want only one timestamp printed if debug_timestamp
3413 is set. */
3414
d7e74731 3415 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3416 waiton_ptid.pid (),
e38504b3 3417 waiton_ptid.lwp (),
cc6bcb54 3418 waiton_ptid.tid ());
e99b03dc 3419 if (waiton_ptid.pid () != -1)
a068643d 3420 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3421 stb.printf (", status) =\n");
3422 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3423 result_ptid.pid (),
e38504b3 3424 result_ptid.lwp (),
cc6bcb54 3425 result_ptid.tid (),
a068643d 3426 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3427 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3428
3429 /* This uses %s in part to handle %'s in the text, but also to avoid
3430 a gcc error: the format attribute requires a string literal. */
d7e74731 3431 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3432}
3433
372316f1
PA
3434/* Select a thread at random, out of those which are resumed and have
3435 had events. */
3436
3437static struct thread_info *
5b6d1e4f 3438random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3439{
372316f1 3440 int num_events = 0;
08036331 3441
5b6d1e4f 3442 auto has_event = [&] (thread_info *tp)
08036331 3443 {
5b6d1e4f
PA
3444 return (tp->ptid.matches (waiton_ptid)
3445 && tp->resumed
08036331
PA
3446 && tp->suspend.waitstatus_pending_p);
3447 };
372316f1
PA
3448
3449 /* First see how many events we have. Count only resumed threads
3450 that have an event pending. */
5b6d1e4f 3451 for (thread_info *tp : inf->non_exited_threads ())
08036331 3452 if (has_event (tp))
372316f1
PA
3453 num_events++;
3454
3455 if (num_events == 0)
3456 return NULL;
3457
3458 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3459 int random_selector = (int) ((num_events * (double) rand ())
3460 / (RAND_MAX + 1.0));
372316f1
PA
3461
3462 if (debug_infrun && num_events > 1)
3463 fprintf_unfiltered (gdb_stdlog,
3464 "infrun: Found %d events, selecting #%d\n",
3465 num_events, random_selector);
3466
3467 /* Select the Nth thread that has had an event. */
5b6d1e4f 3468 for (thread_info *tp : inf->non_exited_threads ())
08036331 3469 if (has_event (tp))
372316f1 3470 if (random_selector-- == 0)
08036331 3471 return tp;
372316f1 3472
08036331 3473 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3474}
3475
3476/* Wrapper for target_wait that first checks whether threads have
3477 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3478 more events. INF is the inferior we're using to call target_wait
3479 on. */
372316f1
PA
3480
3481static ptid_t
5b6d1e4f
PA
3482do_target_wait_1 (inferior *inf, ptid_t ptid,
3483 target_waitstatus *status, int options)
372316f1
PA
3484{
3485 ptid_t event_ptid;
3486 struct thread_info *tp;
3487
24ed6739
AB
3488 /* We know that we are looking for an event in the target of inferior
3489 INF, but we don't know which thread the event might come from. As
3490 such we want to make sure that INFERIOR_PTID is reset so that none of
3491 the wait code relies on it - doing so is always a mistake. */
3492 switch_to_inferior_no_thread (inf);
3493
372316f1
PA
3494 /* First check if there is a resumed thread with a wait status
3495 pending. */
d7e15655 3496 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3497 {
5b6d1e4f 3498 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3499 }
3500 else
3501 {
3502 if (debug_infrun)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "infrun: Waiting for specific thread %s.\n",
a068643d 3505 target_pid_to_str (ptid).c_str ());
372316f1
PA
3506
3507 /* We have a specific thread to check. */
5b6d1e4f 3508 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3509 gdb_assert (tp != NULL);
3510 if (!tp->suspend.waitstatus_pending_p)
3511 tp = NULL;
3512 }
3513
3514 if (tp != NULL
3515 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3516 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3517 {
00431a78 3518 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3519 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3520 CORE_ADDR pc;
3521 int discard = 0;
3522
3523 pc = regcache_read_pc (regcache);
3524
3525 if (pc != tp->suspend.stop_pc)
3526 {
3527 if (debug_infrun)
3528 fprintf_unfiltered (gdb_stdlog,
3529 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3530 target_pid_to_str (tp->ptid).c_str (),
defd2172 3531 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3532 paddress (gdbarch, pc));
3533 discard = 1;
3534 }
a01bda52 3535 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3540 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3541 paddress (gdbarch, pc));
3542
3543 discard = 1;
3544 }
3545
3546 if (discard)
3547 {
3548 if (debug_infrun)
3549 fprintf_unfiltered (gdb_stdlog,
3550 "infrun: pending event of %s cancelled.\n",
a068643d 3551 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3552
3553 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3554 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3555 }
3556 }
3557
3558 if (tp != NULL)
3559 {
3560 if (debug_infrun)
3561 {
23fdd69e
SM
3562 std::string statstr
3563 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3564
372316f1
PA
3565 fprintf_unfiltered (gdb_stdlog,
3566 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3567 statstr.c_str (),
a068643d 3568 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3569 }
3570
3571 /* Now that we've selected our final event LWP, un-adjust its PC
3572 if it was a software breakpoint (and the target doesn't
3573 always adjust the PC itself). */
3574 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3575 && !target_supports_stopped_by_sw_breakpoint ())
3576 {
3577 struct regcache *regcache;
3578 struct gdbarch *gdbarch;
3579 int decr_pc;
3580
00431a78 3581 regcache = get_thread_regcache (tp);
ac7936df 3582 gdbarch = regcache->arch ();
372316f1
PA
3583
3584 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3585 if (decr_pc != 0)
3586 {
3587 CORE_ADDR pc;
3588
3589 pc = regcache_read_pc (regcache);
3590 regcache_write_pc (regcache, pc + decr_pc);
3591 }
3592 }
3593
3594 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3595 *status = tp->suspend.waitstatus;
3596 tp->suspend.waitstatus_pending_p = 0;
3597
3598 /* Wake up the event loop again, until all pending events are
3599 processed. */
3600 if (target_is_async_p ())
3601 mark_async_event_handler (infrun_async_inferior_event_token);
3602 return tp->ptid;
3603 }
3604
3605 /* But if we don't find one, we'll have to wait. */
3606
3607 if (deprecated_target_wait_hook)
3608 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3609 else
3610 event_ptid = target_wait (ptid, status, options);
3611
3612 return event_ptid;
3613}
3614
5b6d1e4f
PA
3615/* Returns true if INF has any resumed thread with a status
3616 pending. */
3617
3618static bool
3619threads_are_resumed_pending_p (inferior *inf)
3620{
3621 for (thread_info *tp : inf->non_exited_threads ())
3622 if (tp->resumed
3623 && tp->suspend.waitstatus_pending_p)
3624 return true;
3625
3626 return false;
3627}
3628
3629/* Wrapper for target_wait that first checks whether threads have
3630 pending statuses to report before actually asking the target for
3631 more events. Polls for events from all inferiors/targets. */
3632
3633static bool
3634do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3635{
3636 int num_inferiors = 0;
3637 int random_selector;
3638
3639 /* For fairness, we pick the first inferior/target to poll at
3640 random, and then continue polling the rest of the inferior list
3641 starting from that one in a circular fashion until the whole list
3642 is polled once. */
3643
3644 auto inferior_matches = [&wait_ptid] (inferior *inf)
3645 {
3646 return (inf->process_target () != NULL
3647 && (threads_are_executing (inf->process_target ())
3648 || threads_are_resumed_pending_p (inf))
3649 && ptid_t (inf->pid).matches (wait_ptid));
3650 };
3651
3652 /* First see how many resumed inferiors we have. */
3653 for (inferior *inf : all_inferiors ())
3654 if (inferior_matches (inf))
3655 num_inferiors++;
3656
3657 if (num_inferiors == 0)
3658 {
3659 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3660 return false;
3661 }
3662
3663 /* Now randomly pick an inferior out of those that were resumed. */
3664 random_selector = (int)
3665 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3666
3667 if (debug_infrun && num_inferiors > 1)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "infrun: Found %d inferiors, starting at #%d\n",
3670 num_inferiors, random_selector);
3671
3672 /* Select the Nth inferior that was resumed. */
3673
3674 inferior *selected = nullptr;
3675
3676 for (inferior *inf : all_inferiors ())
3677 if (inferior_matches (inf))
3678 if (random_selector-- == 0)
3679 {
3680 selected = inf;
3681 break;
3682 }
3683
3684 /* Now poll for events out of each of the resumed inferior's
3685 targets, starting from the selected one. */
3686
3687 auto do_wait = [&] (inferior *inf)
3688 {
5b6d1e4f
PA
3689 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3690 ecs->target = inf->process_target ();
3691 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3692 };
3693
3694 /* Needed in all-stop+target-non-stop mode, because we end up here
3695 spuriously after the target is all stopped and we've already
3696 reported the stop to the user, polling for events. */
3697 scoped_restore_current_thread restore_thread;
3698
3699 int inf_num = selected->num;
3700 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3701 if (inferior_matches (inf))
3702 if (do_wait (inf))
3703 return true;
3704
3705 for (inferior *inf = inferior_list;
3706 inf != NULL && inf->num < inf_num;
3707 inf = inf->next)
3708 if (inferior_matches (inf))
3709 if (do_wait (inf))
3710 return true;
3711
3712 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3713 return false;
3714}
3715
24291992
PA
3716/* Prepare and stabilize the inferior for detaching it. E.g.,
3717 detaching while a thread is displaced stepping is a recipe for
3718 crashing it, as nothing would readjust the PC out of the scratch
3719 pad. */
3720
3721void
3722prepare_for_detach (void)
3723{
3724 struct inferior *inf = current_inferior ();
f2907e49 3725 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3726
00431a78 3727 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3728
3729 /* Is any thread of this process displaced stepping? If not,
3730 there's nothing else to do. */
d20172fc 3731 if (displaced->step_thread == nullptr)
24291992
PA
3732 return;
3733
3734 if (debug_infrun)
3735 fprintf_unfiltered (gdb_stdlog,
3736 "displaced-stepping in-process while detaching");
3737
9bcb1f16 3738 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3739
00431a78 3740 while (displaced->step_thread != nullptr)
24291992 3741 {
24291992
PA
3742 struct execution_control_state ecss;
3743 struct execution_control_state *ecs;
3744
3745 ecs = &ecss;
3746 memset (ecs, 0, sizeof (*ecs));
3747
3748 overlay_cache_invalid = 1;
f15cb84a
YQ
3749 /* Flush target cache before starting to handle each event.
3750 Target was running and cache could be stale. This is just a
3751 heuristic. Running threads may modify target memory, but we
3752 don't get any event. */
3753 target_dcache_invalidate ();
24291992 3754
5b6d1e4f 3755 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3756
3757 if (debug_infrun)
3758 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3759
3760 /* If an error happens while handling the event, propagate GDB's
3761 knowledge of the executing state to the frontend/user running
3762 state. */
5b6d1e4f
PA
3763 scoped_finish_thread_state finish_state (inf->process_target (),
3764 minus_one_ptid);
24291992
PA
3765
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
3768
3769 /* No error, don't finish the state yet. */
731f534f 3770 finish_state.release ();
24291992
PA
3771
3772 /* Breakpoints and watchpoints are not installed on the target
3773 at this point, and signals are passed directly to the
3774 inferior, so this must mean the process is gone. */
3775 if (!ecs->wait_some_more)
3776 {
9bcb1f16 3777 restore_detaching.release ();
24291992
PA
3778 error (_("Program exited while detaching"));
3779 }
3780 }
3781
9bcb1f16 3782 restore_detaching.release ();
24291992
PA
3783}
3784
cd0fc7c3 3785/* Wait for control to return from inferior to debugger.
ae123ec6 3786
cd0fc7c3
SS
3787 If inferior gets a signal, we may decide to start it up again
3788 instead of returning. That is why there is a loop in this function.
3789 When this function actually returns it means the inferior
3790 should be left stopped and GDB should read more commands. */
3791
5b6d1e4f
PA
3792static void
3793wait_for_inferior (inferior *inf)
cd0fc7c3 3794{
527159b7 3795 if (debug_infrun)
ae123ec6 3796 fprintf_unfiltered
e4c8541f 3797 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3798
4c41382a 3799 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3800
e6f5c25b
PA
3801 /* If an error happens while handling the event, propagate GDB's
3802 knowledge of the executing state to the frontend/user running
3803 state. */
5b6d1e4f
PA
3804 scoped_finish_thread_state finish_state
3805 (inf->process_target (), minus_one_ptid);
e6f5c25b 3806
c906108c
SS
3807 while (1)
3808 {
ae25568b
PA
3809 struct execution_control_state ecss;
3810 struct execution_control_state *ecs = &ecss;
29f49a6a 3811
ae25568b
PA
3812 memset (ecs, 0, sizeof (*ecs));
3813
ec9499be 3814 overlay_cache_invalid = 1;
ec9499be 3815
f15cb84a
YQ
3816 /* Flush target cache before starting to handle each event.
3817 Target was running and cache could be stale. This is just a
3818 heuristic. Running threads may modify target memory, but we
3819 don't get any event. */
3820 target_dcache_invalidate ();
3821
5b6d1e4f
PA
3822 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3823 ecs->target = inf->process_target ();
c906108c 3824
f00150c9 3825 if (debug_infrun)
5b6d1e4f 3826 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3827
cd0fc7c3
SS
3828 /* Now figure out what to do with the result of the result. */
3829 handle_inferior_event (ecs);
c906108c 3830
cd0fc7c3
SS
3831 if (!ecs->wait_some_more)
3832 break;
3833 }
4e1c45ea 3834
e6f5c25b 3835 /* No error, don't finish the state yet. */
731f534f 3836 finish_state.release ();
cd0fc7c3 3837}
c906108c 3838
d3d4baed
PA
3839/* Cleanup that reinstalls the readline callback handler, if the
3840 target is running in the background. If while handling the target
3841 event something triggered a secondary prompt, like e.g., a
3842 pagination prompt, we'll have removed the callback handler (see
3843 gdb_readline_wrapper_line). Need to do this as we go back to the
3844 event loop, ready to process further input. Note this has no
3845 effect if the handler hasn't actually been removed, because calling
3846 rl_callback_handler_install resets the line buffer, thus losing
3847 input. */
3848
3849static void
d238133d 3850reinstall_readline_callback_handler_cleanup ()
d3d4baed 3851{
3b12939d
PA
3852 struct ui *ui = current_ui;
3853
3854 if (!ui->async)
6c400b59
PA
3855 {
3856 /* We're not going back to the top level event loop yet. Don't
3857 install the readline callback, as it'd prep the terminal,
3858 readline-style (raw, noecho) (e.g., --batch). We'll install
3859 it the next time the prompt is displayed, when we're ready
3860 for input. */
3861 return;
3862 }
3863
3b12939d 3864 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3865 gdb_rl_callback_handler_reinstall ();
3866}
3867
243a9253
PA
3868/* Clean up the FSMs of threads that are now stopped. In non-stop,
3869 that's just the event thread. In all-stop, that's all threads. */
3870
3871static void
3872clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3873{
08036331
PA
3874 if (ecs->event_thread != NULL
3875 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3876 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3877
3878 if (!non_stop)
3879 {
08036331 3880 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3881 {
3882 if (thr->thread_fsm == NULL)
3883 continue;
3884 if (thr == ecs->event_thread)
3885 continue;
3886
00431a78 3887 switch_to_thread (thr);
46e3ed7f 3888 thr->thread_fsm->clean_up (thr);
243a9253
PA
3889 }
3890
3891 if (ecs->event_thread != NULL)
00431a78 3892 switch_to_thread (ecs->event_thread);
243a9253
PA
3893 }
3894}
3895
3b12939d
PA
3896/* Helper for all_uis_check_sync_execution_done that works on the
3897 current UI. */
3898
3899static void
3900check_curr_ui_sync_execution_done (void)
3901{
3902 struct ui *ui = current_ui;
3903
3904 if (ui->prompt_state == PROMPT_NEEDED
3905 && ui->async
3906 && !gdb_in_secondary_prompt_p (ui))
3907 {
223ffa71 3908 target_terminal::ours ();
76727919 3909 gdb::observers::sync_execution_done.notify ();
3eb7562a 3910 ui_register_input_event_handler (ui);
3b12939d
PA
3911 }
3912}
3913
3914/* See infrun.h. */
3915
3916void
3917all_uis_check_sync_execution_done (void)
3918{
0e454242 3919 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3920 {
3921 check_curr_ui_sync_execution_done ();
3922 }
3923}
3924
a8836c93
PA
3925/* See infrun.h. */
3926
3927void
3928all_uis_on_sync_execution_starting (void)
3929{
0e454242 3930 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3931 {
3932 if (current_ui->prompt_state == PROMPT_NEEDED)
3933 async_disable_stdin ();
3934 }
3935}
3936
1777feb0 3937/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3938 event loop whenever a change of state is detected on the file
1777feb0
MS
3939 descriptor corresponding to the target. It can be called more than
3940 once to complete a single execution command. In such cases we need
3941 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3942 that this function is called for a single execution command, then
3943 report to the user that the inferior has stopped, and do the
1777feb0 3944 necessary cleanups. */
43ff13b4
JM
3945
3946void
fba45db2 3947fetch_inferior_event (void *client_data)
43ff13b4 3948{
0d1e5fa7 3949 struct execution_control_state ecss;
a474d7c2 3950 struct execution_control_state *ecs = &ecss;
0f641c01 3951 int cmd_done = 0;
43ff13b4 3952
0d1e5fa7
PA
3953 memset (ecs, 0, sizeof (*ecs));
3954
c61db772
PA
3955 /* Events are always processed with the main UI as current UI. This
3956 way, warnings, debug output, etc. are always consistently sent to
3957 the main console. */
4b6749b9 3958 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3959
d3d4baed 3960 /* End up with readline processing input, if necessary. */
d238133d
TT
3961 {
3962 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3963
3964 /* We're handling a live event, so make sure we're doing live
3965 debugging. If we're looking at traceframes while the target is
3966 running, we're going to need to get back to that mode after
3967 handling the event. */
3968 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3969 if (non_stop)
3970 {
3971 maybe_restore_traceframe.emplace ();
3972 set_current_traceframe (-1);
3973 }
43ff13b4 3974
873657b9
PA
3975 /* The user/frontend should not notice a thread switch due to
3976 internal events. Make sure we revert to the user selected
3977 thread and frame after handling the event and running any
3978 breakpoint commands. */
3979 scoped_restore_current_thread restore_thread;
d238133d
TT
3980
3981 overlay_cache_invalid = 1;
3982 /* Flush target cache before starting to handle each event. Target
3983 was running and cache could be stale. This is just a heuristic.
3984 Running threads may modify target memory, but we don't get any
3985 event. */
3986 target_dcache_invalidate ();
3987
3988 scoped_restore save_exec_dir
3989 = make_scoped_restore (&execution_direction,
3990 target_execution_direction ());
3991
5b6d1e4f
PA
3992 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3993 return;
3994
3995 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3996
3997 /* Switch to the target that generated the event, so we can do
3998 target calls. Any inferior bound to the target will do, so we
3999 just switch to the first we find. */
4000 for (inferior *inf : all_inferiors (ecs->target))
4001 {
4002 switch_to_inferior_no_thread (inf);
4003 break;
4004 }
d238133d
TT
4005
4006 if (debug_infrun)
5b6d1e4f 4007 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
4008
4009 /* If an error happens while handling the event, propagate GDB's
4010 knowledge of the executing state to the frontend/user running
4011 state. */
4012 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4013 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4014
979a0d13 4015 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4016 still for the thread which has thrown the exception. */
4017 auto defer_bpstat_clear
4018 = make_scope_exit (bpstat_clear_actions);
4019 auto defer_delete_threads
4020 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4021
4022 /* Now figure out what to do with the result of the result. */
4023 handle_inferior_event (ecs);
4024
4025 if (!ecs->wait_some_more)
4026 {
5b6d1e4f 4027 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4028 int should_stop = 1;
4029 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4030
d238133d 4031 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4032
d238133d
TT
4033 if (thr != NULL)
4034 {
4035 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4036
d238133d 4037 if (thread_fsm != NULL)
46e3ed7f 4038 should_stop = thread_fsm->should_stop (thr);
d238133d 4039 }
243a9253 4040
d238133d
TT
4041 if (!should_stop)
4042 {
4043 keep_going (ecs);
4044 }
4045 else
4046 {
46e3ed7f 4047 bool should_notify_stop = true;
d238133d 4048 int proceeded = 0;
1840d81a 4049
d238133d 4050 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4051
d238133d 4052 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4053 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4054
d238133d
TT
4055 if (should_notify_stop)
4056 {
4057 /* We may not find an inferior if this was a process exit. */
4058 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4059 proceeded = normal_stop ();
4060 }
243a9253 4061
d238133d
TT
4062 if (!proceeded)
4063 {
4064 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4065 cmd_done = 1;
4066 }
873657b9
PA
4067
4068 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4069 previously selected thread is gone. We have two
4070 choices - switch to no thread selected, or restore the
4071 previously selected thread (now exited). We chose the
4072 later, just because that's what GDB used to do. After
4073 this, "info threads" says "The current thread <Thread
4074 ID 2> has terminated." instead of "No thread
4075 selected.". */
4076 if (!non_stop
4077 && cmd_done
4078 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4079 restore_thread.dont_restore ();
d238133d
TT
4080 }
4081 }
4f8d22e3 4082
d238133d
TT
4083 defer_delete_threads.release ();
4084 defer_bpstat_clear.release ();
29f49a6a 4085
d238133d
TT
4086 /* No error, don't finish the thread states yet. */
4087 finish_state.release ();
731f534f 4088
d238133d
TT
4089 /* This scope is used to ensure that readline callbacks are
4090 reinstalled here. */
4091 }
4f8d22e3 4092
3b12939d
PA
4093 /* If a UI was in sync execution mode, and now isn't, restore its
4094 prompt (a synchronous execution command has finished, and we're
4095 ready for input). */
4096 all_uis_check_sync_execution_done ();
0f641c01
PA
4097
4098 if (cmd_done
0f641c01 4099 && exec_done_display_p
00431a78
PA
4100 && (inferior_ptid == null_ptid
4101 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4102 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4103}
4104
29734269
SM
4105/* See infrun.h. */
4106
edb3359d 4107void
29734269
SM
4108set_step_info (thread_info *tp, struct frame_info *frame,
4109 struct symtab_and_line sal)
edb3359d 4110{
29734269
SM
4111 /* This can be removed once this function no longer implicitly relies on the
4112 inferior_ptid value. */
4113 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4114
16c381f0
JK
4115 tp->control.step_frame_id = get_frame_id (frame);
4116 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4117
4118 tp->current_symtab = sal.symtab;
4119 tp->current_line = sal.line;
4120}
4121
0d1e5fa7
PA
4122/* Clear context switchable stepping state. */
4123
4124void
4e1c45ea 4125init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4126{
7f5ef605 4127 tss->stepped_breakpoint = 0;
0d1e5fa7 4128 tss->stepping_over_breakpoint = 0;
963f9c80 4129 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4130 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4131}
4132
ab1ddbcf 4133/* See infrun.h. */
c32c64b7 4134
6efcd9a8 4135void
5b6d1e4f
PA
4136set_last_target_status (process_stratum_target *target, ptid_t ptid,
4137 target_waitstatus status)
c32c64b7 4138{
5b6d1e4f 4139 target_last_proc_target = target;
c32c64b7
DE
4140 target_last_wait_ptid = ptid;
4141 target_last_waitstatus = status;
4142}
4143
ab1ddbcf 4144/* See infrun.h. */
e02bc4cc
DS
4145
4146void
5b6d1e4f
PA
4147get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4148 target_waitstatus *status)
e02bc4cc 4149{
5b6d1e4f
PA
4150 if (target != nullptr)
4151 *target = target_last_proc_target;
ab1ddbcf
PA
4152 if (ptid != nullptr)
4153 *ptid = target_last_wait_ptid;
4154 if (status != nullptr)
4155 *status = target_last_waitstatus;
e02bc4cc
DS
4156}
4157
ab1ddbcf
PA
4158/* See infrun.h. */
4159
ac264b3b
MS
4160void
4161nullify_last_target_wait_ptid (void)
4162{
5b6d1e4f 4163 target_last_proc_target = nullptr;
ac264b3b 4164 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4165 target_last_waitstatus = {};
ac264b3b
MS
4166}
4167
dcf4fbde 4168/* Switch thread contexts. */
dd80620e
MS
4169
4170static void
00431a78 4171context_switch (execution_control_state *ecs)
dd80620e 4172{
00431a78
PA
4173 if (debug_infrun
4174 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4175 && (inferior_ptid == null_ptid
4176 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4177 {
4178 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4179 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4180 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4181 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4182 }
4183
00431a78 4184 switch_to_thread (ecs->event_thread);
dd80620e
MS
4185}
4186
d8dd4d5f
PA
4187/* If the target can't tell whether we've hit breakpoints
4188 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4189 check whether that could have been caused by a breakpoint. If so,
4190 adjust the PC, per gdbarch_decr_pc_after_break. */
4191
4fa8626c 4192static void
d8dd4d5f
PA
4193adjust_pc_after_break (struct thread_info *thread,
4194 struct target_waitstatus *ws)
4fa8626c 4195{
24a73cce
UW
4196 struct regcache *regcache;
4197 struct gdbarch *gdbarch;
118e6252 4198 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4199
4fa8626c
DJ
4200 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4201 we aren't, just return.
9709f61c
DJ
4202
4203 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4204 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4205 implemented by software breakpoints should be handled through the normal
4206 breakpoint layer.
8fb3e588 4207
4fa8626c
DJ
4208 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4209 different signals (SIGILL or SIGEMT for instance), but it is less
4210 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4211 gdbarch_decr_pc_after_break. I don't know any specific target that
4212 generates these signals at breakpoints (the code has been in GDB since at
4213 least 1992) so I can not guess how to handle them here.
8fb3e588 4214
e6cf7916
UW
4215 In earlier versions of GDB, a target with
4216 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4217 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4218 target with both of these set in GDB history, and it seems unlikely to be
4219 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4220
d8dd4d5f 4221 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4222 return;
4223
d8dd4d5f 4224 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4225 return;
4226
4058b839
PA
4227 /* In reverse execution, when a breakpoint is hit, the instruction
4228 under it has already been de-executed. The reported PC always
4229 points at the breakpoint address, so adjusting it further would
4230 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4231 architecture:
4232
4233 B1 0x08000000 : INSN1
4234 B2 0x08000001 : INSN2
4235 0x08000002 : INSN3
4236 PC -> 0x08000003 : INSN4
4237
4238 Say you're stopped at 0x08000003 as above. Reverse continuing
4239 from that point should hit B2 as below. Reading the PC when the
4240 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4241 been de-executed already.
4242
4243 B1 0x08000000 : INSN1
4244 B2 PC -> 0x08000001 : INSN2
4245 0x08000002 : INSN3
4246 0x08000003 : INSN4
4247
4248 We can't apply the same logic as for forward execution, because
4249 we would wrongly adjust the PC to 0x08000000, since there's a
4250 breakpoint at PC - 1. We'd then report a hit on B1, although
4251 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4252 behaviour. */
4253 if (execution_direction == EXEC_REVERSE)
4254 return;
4255
1cf4d951
PA
4256 /* If the target can tell whether the thread hit a SW breakpoint,
4257 trust it. Targets that can tell also adjust the PC
4258 themselves. */
4259 if (target_supports_stopped_by_sw_breakpoint ())
4260 return;
4261
4262 /* Note that relying on whether a breakpoint is planted in memory to
4263 determine this can fail. E.g,. the breakpoint could have been
4264 removed since. Or the thread could have been told to step an
4265 instruction the size of a breakpoint instruction, and only
4266 _after_ was a breakpoint inserted at its address. */
4267
24a73cce
UW
4268 /* If this target does not decrement the PC after breakpoints, then
4269 we have nothing to do. */
00431a78 4270 regcache = get_thread_regcache (thread);
ac7936df 4271 gdbarch = regcache->arch ();
118e6252 4272
527a273a 4273 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4274 if (decr_pc == 0)
24a73cce
UW
4275 return;
4276
8b86c959 4277 const address_space *aspace = regcache->aspace ();
6c95b8df 4278
8aad930b
AC
4279 /* Find the location where (if we've hit a breakpoint) the
4280 breakpoint would be. */
118e6252 4281 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4282
1cf4d951
PA
4283 /* If the target can't tell whether a software breakpoint triggered,
4284 fallback to figuring it out based on breakpoints we think were
4285 inserted in the target, and on whether the thread was stepped or
4286 continued. */
4287
1c5cfe86
PA
4288 /* Check whether there actually is a software breakpoint inserted at
4289 that location.
4290
4291 If in non-stop mode, a race condition is possible where we've
4292 removed a breakpoint, but stop events for that breakpoint were
4293 already queued and arrive later. To suppress those spurious
4294 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4295 and retire them after a number of stop events are reported. Note
4296 this is an heuristic and can thus get confused. The real fix is
4297 to get the "stopped by SW BP and needs adjustment" info out of
4298 the target/kernel (and thus never reach here; see above). */
6c95b8df 4299 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4300 || (target_is_non_stop_p ()
4301 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4302 {
07036511 4303 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4304
8213266a 4305 if (record_full_is_used ())
07036511
TT
4306 restore_operation_disable.emplace
4307 (record_full_gdb_operation_disable_set ());
96429cc8 4308
1c0fdd0e
UW
4309 /* When using hardware single-step, a SIGTRAP is reported for both
4310 a completed single-step and a software breakpoint. Need to
4311 differentiate between the two, as the latter needs adjusting
4312 but the former does not.
4313
4314 The SIGTRAP can be due to a completed hardware single-step only if
4315 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4316 - this thread is currently being stepped
4317
4318 If any of these events did not occur, we must have stopped due
4319 to hitting a software breakpoint, and have to back up to the
4320 breakpoint address.
4321
4322 As a special case, we could have hardware single-stepped a
4323 software breakpoint. In this case (prev_pc == breakpoint_pc),
4324 we also need to back up to the breakpoint address. */
4325
d8dd4d5f
PA
4326 if (thread_has_single_step_breakpoints_set (thread)
4327 || !currently_stepping (thread)
4328 || (thread->stepped_breakpoint
4329 && thread->prev_pc == breakpoint_pc))
515630c5 4330 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4331 }
4fa8626c
DJ
4332}
4333
edb3359d
DJ
4334static int
4335stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4336{
4337 for (frame = get_prev_frame (frame);
4338 frame != NULL;
4339 frame = get_prev_frame (frame))
4340 {
4341 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4342 return 1;
4343 if (get_frame_type (frame) != INLINE_FRAME)
4344 break;
4345 }
4346
4347 return 0;
4348}
4349
4a4c04f1
BE
4350/* Look for an inline frame that is marked for skip.
4351 If PREV_FRAME is TRUE start at the previous frame,
4352 otherwise start at the current frame. Stop at the
4353 first non-inline frame, or at the frame where the
4354 step started. */
4355
4356static bool
4357inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4358{
4359 struct frame_info *frame = get_current_frame ();
4360
4361 if (prev_frame)
4362 frame = get_prev_frame (frame);
4363
4364 for (; frame != NULL; frame = get_prev_frame (frame))
4365 {
4366 const char *fn = NULL;
4367 symtab_and_line sal;
4368 struct symbol *sym;
4369
4370 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4371 break;
4372 if (get_frame_type (frame) != INLINE_FRAME)
4373 break;
4374
4375 sal = find_frame_sal (frame);
4376 sym = get_frame_function (frame);
4377
4378 if (sym != NULL)
4379 fn = sym->print_name ();
4380
4381 if (sal.line != 0
4382 && function_name_is_marked_for_skip (fn, sal))
4383 return true;
4384 }
4385
4386 return false;
4387}
4388
c65d6b55
PA
4389/* If the event thread has the stop requested flag set, pretend it
4390 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4391 target_stop). */
4392
4393static bool
4394handle_stop_requested (struct execution_control_state *ecs)
4395{
4396 if (ecs->event_thread->stop_requested)
4397 {
4398 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4399 ecs->ws.value.sig = GDB_SIGNAL_0;
4400 handle_signal_stop (ecs);
4401 return true;
4402 }
4403 return false;
4404}
4405
a96d9b2e
SDJ
4406/* Auxiliary function that handles syscall entry/return events.
4407 It returns 1 if the inferior should keep going (and GDB
4408 should ignore the event), or 0 if the event deserves to be
4409 processed. */
ca2163eb 4410
a96d9b2e 4411static int
ca2163eb 4412handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4413{
ca2163eb 4414 struct regcache *regcache;
ca2163eb
PA
4415 int syscall_number;
4416
00431a78 4417 context_switch (ecs);
ca2163eb 4418
00431a78 4419 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4420 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4421 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4422
a96d9b2e
SDJ
4423 if (catch_syscall_enabled () > 0
4424 && catching_syscall_number (syscall_number) > 0)
4425 {
4426 if (debug_infrun)
4427 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4428 syscall_number);
a96d9b2e 4429
16c381f0 4430 ecs->event_thread->control.stop_bpstat
a01bda52 4431 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4432 ecs->event_thread->suspend.stop_pc,
4433 ecs->event_thread, &ecs->ws);
ab04a2af 4434
c65d6b55
PA
4435 if (handle_stop_requested (ecs))
4436 return 0;
4437
ce12b012 4438 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4439 {
4440 /* Catchpoint hit. */
ca2163eb
PA
4441 return 0;
4442 }
a96d9b2e 4443 }
ca2163eb 4444
c65d6b55
PA
4445 if (handle_stop_requested (ecs))
4446 return 0;
4447
ca2163eb 4448 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4449 keep_going (ecs);
4450 return 1;
a96d9b2e
SDJ
4451}
4452
7e324e48
GB
4453/* Lazily fill in the execution_control_state's stop_func_* fields. */
4454
4455static void
4456fill_in_stop_func (struct gdbarch *gdbarch,
4457 struct execution_control_state *ecs)
4458{
4459 if (!ecs->stop_func_filled_in)
4460 {
98a617f8
KB
4461 const block *block;
4462
7e324e48
GB
4463 /* Don't care about return value; stop_func_start and stop_func_name
4464 will both be 0 if it doesn't work. */
98a617f8
KB
4465 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4466 &ecs->stop_func_name,
4467 &ecs->stop_func_start,
4468 &ecs->stop_func_end,
4469 &block);
4470
4471 /* The call to find_pc_partial_function, above, will set
4472 stop_func_start and stop_func_end to the start and end
4473 of the range containing the stop pc. If this range
4474 contains the entry pc for the block (which is always the
4475 case for contiguous blocks), advance stop_func_start past
4476 the function's start offset and entrypoint. Note that
4477 stop_func_start is NOT advanced when in a range of a
4478 non-contiguous block that does not contain the entry pc. */
4479 if (block != nullptr
4480 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4481 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4482 {
4483 ecs->stop_func_start
4484 += gdbarch_deprecated_function_start_offset (gdbarch);
4485
4486 if (gdbarch_skip_entrypoint_p (gdbarch))
4487 ecs->stop_func_start
4488 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4489 }
591a12a1 4490
7e324e48
GB
4491 ecs->stop_func_filled_in = 1;
4492 }
4493}
4494
4f5d7f63 4495
00431a78 4496/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4497
4498static enum stop_kind
00431a78 4499get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4500{
5b6d1e4f 4501 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4502
4503 gdb_assert (inf != NULL);
4504 return inf->control.stop_soon;
4505}
4506
5b6d1e4f
PA
4507/* Poll for one event out of the current target. Store the resulting
4508 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4509
4510static ptid_t
5b6d1e4f 4511poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4512{
4513 ptid_t event_ptid;
372316f1
PA
4514
4515 overlay_cache_invalid = 1;
4516
4517 /* Flush target cache before starting to handle each event.
4518 Target was running and cache could be stale. This is just a
4519 heuristic. Running threads may modify target memory, but we
4520 don't get any event. */
4521 target_dcache_invalidate ();
4522
4523 if (deprecated_target_wait_hook)
5b6d1e4f 4524 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4525 else
5b6d1e4f 4526 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4527
4528 if (debug_infrun)
5b6d1e4f 4529 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4530
4531 return event_ptid;
4532}
4533
5b6d1e4f
PA
4534/* An event reported by wait_one. */
4535
4536struct wait_one_event
4537{
4538 /* The target the event came out of. */
4539 process_stratum_target *target;
4540
4541 /* The PTID the event was for. */
4542 ptid_t ptid;
4543
4544 /* The waitstatus. */
4545 target_waitstatus ws;
4546};
4547
4548/* Wait for one event out of any target. */
4549
4550static wait_one_event
4551wait_one ()
4552{
4553 while (1)
4554 {
4555 for (inferior *inf : all_inferiors ())
4556 {
4557 process_stratum_target *target = inf->process_target ();
4558 if (target == NULL
4559 || !target->is_async_p ()
4560 || !target->threads_executing)
4561 continue;
4562
4563 switch_to_inferior_no_thread (inf);
4564
4565 wait_one_event event;
4566 event.target = target;
4567 event.ptid = poll_one_curr_target (&event.ws);
4568
4569 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4570 {
4571 /* If nothing is resumed, remove the target from the
4572 event loop. */
4573 target_async (0);
4574 }
4575 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4576 return event;
4577 }
4578
4579 /* Block waiting for some event. */
4580
4581 fd_set readfds;
4582 int nfds = 0;
4583
4584 FD_ZERO (&readfds);
4585
4586 for (inferior *inf : all_inferiors ())
4587 {
4588 process_stratum_target *target = inf->process_target ();
4589 if (target == NULL
4590 || !target->is_async_p ()
4591 || !target->threads_executing)
4592 continue;
4593
4594 int fd = target->async_wait_fd ();
4595 FD_SET (fd, &readfds);
4596 if (nfds <= fd)
4597 nfds = fd + 1;
4598 }
4599
4600 if (nfds == 0)
4601 {
4602 /* No waitable targets left. All must be stopped. */
4603 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4604 }
4605
4606 QUIT;
4607
4608 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4609 if (numfds < 0)
4610 {
4611 if (errno == EINTR)
4612 continue;
4613 else
4614 perror_with_name ("interruptible_select");
4615 }
4616 }
4617}
4618
372316f1
PA
4619/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4620 instead of the current thread. */
4621#define THREAD_STOPPED_BY(REASON) \
4622static int \
4623thread_stopped_by_ ## REASON (ptid_t ptid) \
4624{ \
2989a365 4625 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4626 inferior_ptid = ptid; \
4627 \
2989a365 4628 return target_stopped_by_ ## REASON (); \
372316f1
PA
4629}
4630
4631/* Generate thread_stopped_by_watchpoint. */
4632THREAD_STOPPED_BY (watchpoint)
4633/* Generate thread_stopped_by_sw_breakpoint. */
4634THREAD_STOPPED_BY (sw_breakpoint)
4635/* Generate thread_stopped_by_hw_breakpoint. */
4636THREAD_STOPPED_BY (hw_breakpoint)
4637
372316f1
PA
4638/* Save the thread's event and stop reason to process it later. */
4639
4640static void
5b6d1e4f 4641save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4642{
372316f1
PA
4643 if (debug_infrun)
4644 {
23fdd69e 4645 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4646
372316f1
PA
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4649 statstr.c_str (),
e99b03dc 4650 tp->ptid.pid (),
e38504b3 4651 tp->ptid.lwp (),
cc6bcb54 4652 tp->ptid.tid ());
372316f1
PA
4653 }
4654
4655 /* Record for later. */
4656 tp->suspend.waitstatus = *ws;
4657 tp->suspend.waitstatus_pending_p = 1;
4658
00431a78 4659 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4660 const address_space *aspace = regcache->aspace ();
372316f1
PA
4661
4662 if (ws->kind == TARGET_WAITKIND_STOPPED
4663 && ws->value.sig == GDB_SIGNAL_TRAP)
4664 {
4665 CORE_ADDR pc = regcache_read_pc (regcache);
4666
4667 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4668
4669 if (thread_stopped_by_watchpoint (tp->ptid))
4670 {
4671 tp->suspend.stop_reason
4672 = TARGET_STOPPED_BY_WATCHPOINT;
4673 }
4674 else if (target_supports_stopped_by_sw_breakpoint ()
4675 && thread_stopped_by_sw_breakpoint (tp->ptid))
4676 {
4677 tp->suspend.stop_reason
4678 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4679 }
4680 else if (target_supports_stopped_by_hw_breakpoint ()
4681 && thread_stopped_by_hw_breakpoint (tp->ptid))
4682 {
4683 tp->suspend.stop_reason
4684 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4685 }
4686 else if (!target_supports_stopped_by_hw_breakpoint ()
4687 && hardware_breakpoint_inserted_here_p (aspace,
4688 pc))
4689 {
4690 tp->suspend.stop_reason
4691 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4692 }
4693 else if (!target_supports_stopped_by_sw_breakpoint ()
4694 && software_breakpoint_inserted_here_p (aspace,
4695 pc))
4696 {
4697 tp->suspend.stop_reason
4698 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4699 }
4700 else if (!thread_has_single_step_breakpoints_set (tp)
4701 && currently_stepping (tp))
4702 {
4703 tp->suspend.stop_reason
4704 = TARGET_STOPPED_BY_SINGLE_STEP;
4705 }
4706 }
4707}
4708
6efcd9a8 4709/* See infrun.h. */
372316f1 4710
6efcd9a8 4711void
372316f1
PA
4712stop_all_threads (void)
4713{
4714 /* We may need multiple passes to discover all threads. */
4715 int pass;
4716 int iterations = 0;
372316f1 4717
fbea99ea 4718 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4719
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4722
00431a78 4723 scoped_restore_current_thread restore_thread;
372316f1 4724
65706a29 4725 target_thread_events (1);
9885e6bb 4726 SCOPE_EXIT { target_thread_events (0); };
65706a29 4727
372316f1
PA
4728 /* Request threads to stop, and then wait for the stops. Because
4729 threads we already know about can spawn more threads while we're
4730 trying to stop them, and we only learn about new threads when we
4731 update the thread list, do this in a loop, and keep iterating
4732 until two passes find no threads that need to be stopped. */
4733 for (pass = 0; pass < 2; pass++, iterations++)
4734 {
4735 if (debug_infrun)
4736 fprintf_unfiltered (gdb_stdlog,
4737 "infrun: stop_all_threads, pass=%d, "
4738 "iterations=%d\n", pass, iterations);
4739 while (1)
4740 {
372316f1 4741 int need_wait = 0;
372316f1
PA
4742
4743 update_thread_list ();
4744
4745 /* Go through all threads looking for threads that we need
4746 to tell the target to stop. */
08036331 4747 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4748 {
4749 if (t->executing)
4750 {
4751 /* If already stopping, don't request a stop again.
4752 We just haven't seen the notification yet. */
4753 if (!t->stop_requested)
4754 {
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog,
4757 "infrun: %s executing, "
4758 "need stop\n",
a068643d 4759 target_pid_to_str (t->ptid).c_str ());
f3f8ece4 4760 switch_to_thread_no_regs (t);
372316f1
PA
4761 target_stop (t->ptid);
4762 t->stop_requested = 1;
4763 }
4764 else
4765 {
4766 if (debug_infrun)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: %s executing, "
4769 "already stopping\n",
a068643d 4770 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4771 }
4772
4773 if (t->stop_requested)
4774 need_wait = 1;
4775 }
4776 else
4777 {
4778 if (debug_infrun)
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: %s not executing\n",
a068643d 4781 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4782
4783 /* The thread may be not executing, but still be
4784 resumed with a pending status to process. */
719546c4 4785 t->resumed = false;
372316f1
PA
4786 }
4787 }
4788
4789 if (!need_wait)
4790 break;
4791
4792 /* If we find new threads on the second iteration, restart
4793 over. We want to see two iterations in a row with all
4794 threads stopped. */
4795 if (pass > 0)
4796 pass = -1;
4797
5b6d1e4f
PA
4798 wait_one_event event = wait_one ();
4799
c29705b7 4800 if (debug_infrun)
372316f1 4801 {
c29705b7
PW
4802 fprintf_unfiltered (gdb_stdlog,
4803 "infrun: stop_all_threads %s %s\n",
5b6d1e4f
PA
4804 target_waitstatus_to_string (&event.ws).c_str (),
4805 target_pid_to_str (event.ptid).c_str ());
372316f1 4806 }
372316f1 4807
5b6d1e4f
PA
4808 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4809 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4810 || event.ws.kind == TARGET_WAITKIND_EXITED
4811 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
c29705b7
PW
4812 {
4813 /* All resumed threads exited
4814 or one thread/process exited/signalled. */
372316f1
PA
4815 }
4816 else
4817 {
5b6d1e4f 4818 thread_info *t = find_thread_ptid (event.target, event.ptid);
372316f1 4819 if (t == NULL)
5b6d1e4f 4820 t = add_thread (event.target, event.ptid);
372316f1
PA
4821
4822 t->stop_requested = 0;
4823 t->executing = 0;
719546c4 4824 t->resumed = false;
372316f1
PA
4825 t->control.may_range_step = 0;
4826
6efcd9a8
PA
4827 /* This may be the first time we see the inferior report
4828 a stop. */
5b6d1e4f 4829 inferior *inf = find_inferior_ptid (event.target, event.ptid);
6efcd9a8
PA
4830 if (inf->needs_setup)
4831 {
4832 switch_to_thread_no_regs (t);
4833 setup_inferior (0);
4834 }
4835
5b6d1e4f
PA
4836 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4837 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1
PA
4838 {
4839 /* We caught the event that we intended to catch, so
4840 there's no event pending. */
4841 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4842 t->suspend.waitstatus_pending_p = 0;
4843
00431a78 4844 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4845 {
4846 /* Add it back to the step-over queue. */
4847 if (debug_infrun)
4848 {
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: displaced-step of %s "
4851 "canceled: adding back to the "
4852 "step-over queue\n",
a068643d 4853 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4854 }
4855 t->control.trap_expected = 0;
4856 thread_step_over_chain_enqueue (t);
4857 }
4858 }
4859 else
4860 {
4861 enum gdb_signal sig;
4862 struct regcache *regcache;
372316f1
PA
4863
4864 if (debug_infrun)
4865 {
5b6d1e4f 4866 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4867
372316f1
PA
4868 fprintf_unfiltered (gdb_stdlog,
4869 "infrun: target_wait %s, saving "
4870 "status for %d.%ld.%ld\n",
23fdd69e 4871 statstr.c_str (),
e99b03dc 4872 t->ptid.pid (),
e38504b3 4873 t->ptid.lwp (),
cc6bcb54 4874 t->ptid.tid ());
372316f1
PA
4875 }
4876
4877 /* Record for later. */
5b6d1e4f 4878 save_waitstatus (t, &event.ws);
372316f1 4879
5b6d1e4f
PA
4880 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4881 ? event.ws.value.sig : GDB_SIGNAL_0);
372316f1 4882
00431a78 4883 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4884 {
4885 /* Add it back to the step-over queue. */
4886 t->control.trap_expected = 0;
4887 thread_step_over_chain_enqueue (t);
4888 }
4889
00431a78 4890 regcache = get_thread_regcache (t);
372316f1
PA
4891 t->suspend.stop_pc = regcache_read_pc (regcache);
4892
4893 if (debug_infrun)
4894 {
4895 fprintf_unfiltered (gdb_stdlog,
4896 "infrun: saved stop_pc=%s for %s "
4897 "(currently_stepping=%d)\n",
4898 paddress (target_gdbarch (),
4899 t->suspend.stop_pc),
a068643d 4900 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4901 currently_stepping (t));
4902 }
4903 }
4904 }
4905 }
4906 }
4907
372316f1
PA
4908 if (debug_infrun)
4909 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4910}
4911
f4836ba9
PA
4912/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4913
4914static int
4915handle_no_resumed (struct execution_control_state *ecs)
4916{
3b12939d 4917 if (target_can_async_p ())
f4836ba9 4918 {
3b12939d
PA
4919 struct ui *ui;
4920 int any_sync = 0;
f4836ba9 4921
3b12939d
PA
4922 ALL_UIS (ui)
4923 {
4924 if (ui->prompt_state == PROMPT_BLOCKED)
4925 {
4926 any_sync = 1;
4927 break;
4928 }
4929 }
4930 if (!any_sync)
4931 {
4932 /* There were no unwaited-for children left in the target, but,
4933 we're not synchronously waiting for events either. Just
4934 ignore. */
4935
4936 if (debug_infrun)
4937 fprintf_unfiltered (gdb_stdlog,
4938 "infrun: TARGET_WAITKIND_NO_RESUMED "
4939 "(ignoring: bg)\n");
4940 prepare_to_wait (ecs);
4941 return 1;
4942 }
f4836ba9
PA
4943 }
4944
4945 /* Otherwise, if we were running a synchronous execution command, we
4946 may need to cancel it and give the user back the terminal.
4947
4948 In non-stop mode, the target can't tell whether we've already
4949 consumed previous stop events, so it can end up sending us a
4950 no-resumed event like so:
4951
4952 #0 - thread 1 is left stopped
4953
4954 #1 - thread 2 is resumed and hits breakpoint
4955 -> TARGET_WAITKIND_STOPPED
4956
4957 #2 - thread 3 is resumed and exits
4958 this is the last resumed thread, so
4959 -> TARGET_WAITKIND_NO_RESUMED
4960
4961 #3 - gdb processes stop for thread 2 and decides to re-resume
4962 it.
4963
4964 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4965 thread 2 is now resumed, so the event should be ignored.
4966
4967 IOW, if the stop for thread 2 doesn't end a foreground command,
4968 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4969 event. But it could be that the event meant that thread 2 itself
4970 (or whatever other thread was the last resumed thread) exited.
4971
4972 To address this we refresh the thread list and check whether we
4973 have resumed threads _now_. In the example above, this removes
4974 thread 3 from the thread list. If thread 2 was re-resumed, we
4975 ignore this event. If we find no thread resumed, then we cancel
4976 the synchronous command show "no unwaited-for " to the user. */
4977 update_thread_list ();
4978
5b6d1e4f 4979 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
4980 {
4981 if (thread->executing
4982 || thread->suspend.waitstatus_pending_p)
4983 {
4984 /* There were no unwaited-for children left in the target at
4985 some point, but there are now. Just ignore. */
4986 if (debug_infrun)
4987 fprintf_unfiltered (gdb_stdlog,
4988 "infrun: TARGET_WAITKIND_NO_RESUMED "
4989 "(ignoring: found resumed)\n");
4990 prepare_to_wait (ecs);
4991 return 1;
4992 }
4993 }
4994
4995 /* Note however that we may find no resumed thread because the whole
4996 process exited meanwhile (thus updating the thread list results
4997 in an empty thread list). In this case we know we'll be getting
4998 a process exit event shortly. */
5b6d1e4f 4999 for (inferior *inf : all_non_exited_inferiors (ecs->target))
f4836ba9 5000 {
08036331 5001 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
5002 if (thread == NULL)
5003 {
5004 if (debug_infrun)
5005 fprintf_unfiltered (gdb_stdlog,
5006 "infrun: TARGET_WAITKIND_NO_RESUMED "
5007 "(expect process exit)\n");
5008 prepare_to_wait (ecs);
5009 return 1;
5010 }
5011 }
5012
5013 /* Go ahead and report the event. */
5014 return 0;
5015}
5016
05ba8510
PA
5017/* Given an execution control state that has been freshly filled in by
5018 an event from the inferior, figure out what it means and take
5019 appropriate action.
5020
5021 The alternatives are:
5022
22bcd14b 5023 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5024 debugger.
5025
5026 2) keep_going and return; to wait for the next event (set
5027 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5028 once). */
c906108c 5029
ec9499be 5030static void
595915c1 5031handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5032{
595915c1
TT
5033 /* Make sure that all temporary struct value objects that were
5034 created during the handling of the event get deleted at the
5035 end. */
5036 scoped_value_mark free_values;
5037
d6b48e9c
PA
5038 enum stop_kind stop_soon;
5039
c29705b7
PW
5040 if (debug_infrun)
5041 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5042 target_waitstatus_to_string (&ecs->ws).c_str ());
5043
28736962
PA
5044 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5045 {
5046 /* We had an event in the inferior, but we are not interested in
5047 handling it at this level. The lower layers have already
5048 done what needs to be done, if anything.
5049
5050 One of the possible circumstances for this is when the
5051 inferior produces output for the console. The inferior has
5052 not stopped, and we are ignoring the event. Another possible
5053 circumstance is any event which the lower level knows will be
5054 reported multiple times without an intervening resume. */
28736962
PA
5055 prepare_to_wait (ecs);
5056 return;
5057 }
5058
65706a29
PA
5059 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5060 {
65706a29
PA
5061 prepare_to_wait (ecs);
5062 return;
5063 }
5064
0e5bf2a8 5065 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5066 && handle_no_resumed (ecs))
5067 return;
0e5bf2a8 5068
5b6d1e4f
PA
5069 /* Cache the last target/ptid/waitstatus. */
5070 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5071
ca005067 5072 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5073 stop_stack_dummy = STOP_NONE;
ca005067 5074
0e5bf2a8
PA
5075 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5076 {
5077 /* No unwaited-for children left. IOW, all resumed children
5078 have exited. */
0e5bf2a8 5079 stop_print_frame = 0;
22bcd14b 5080 stop_waiting (ecs);
0e5bf2a8
PA
5081 return;
5082 }
5083
8c90c137 5084 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5085 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5086 {
5b6d1e4f 5087 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5088 /* If it's a new thread, add it to the thread database. */
5089 if (ecs->event_thread == NULL)
5b6d1e4f 5090 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5091
5092 /* Disable range stepping. If the next step request could use a
5093 range, this will be end up re-enabled then. */
5094 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5095 }
88ed393a
JK
5096
5097 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5098 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5099
5100 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5101 reinit_frame_cache ();
5102
28736962
PA
5103 breakpoint_retire_moribund ();
5104
2b009048
DJ
5105 /* First, distinguish signals caused by the debugger from signals
5106 that have to do with the program's own actions. Note that
5107 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5108 on the operating system version. Here we detect when a SIGILL or
5109 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5110 something similar for SIGSEGV, since a SIGSEGV will be generated
5111 when we're trying to execute a breakpoint instruction on a
5112 non-executable stack. This happens for call dummy breakpoints
5113 for architectures like SPARC that place call dummies on the
5114 stack. */
2b009048 5115 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5116 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5117 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5118 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5119 {
00431a78 5120 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5121
a01bda52 5122 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5123 regcache_read_pc (regcache)))
5124 {
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5128 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5129 }
2b009048
DJ
5130 }
5131
28736962
PA
5132 /* Mark the non-executing threads accordingly. In all-stop, all
5133 threads of all processes are stopped when we get any event
e1316e60 5134 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
5135 {
5136 ptid_t mark_ptid;
5137
fbea99ea 5138 if (!target_is_non_stop_p ())
372316f1
PA
5139 mark_ptid = minus_one_ptid;
5140 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5141 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5142 {
5143 /* If we're handling a process exit in non-stop mode, even
5144 though threads haven't been deleted yet, one would think
5145 that there is nothing to do, as threads of the dead process
5146 will be soon deleted, and threads of any other process were
5147 left running. However, on some targets, threads survive a
5148 process exit event. E.g., for the "checkpoint" command,
5149 when the current checkpoint/fork exits, linux-fork.c
5150 automatically switches to another fork from within
5151 target_mourn_inferior, by associating the same
5152 inferior/thread to another fork. We haven't mourned yet at
5153 this point, but we must mark any threads left in the
5154 process as not-executing so that finish_thread_state marks
5155 them stopped (in the user's perspective) if/when we present
5156 the stop to the user. */
e99b03dc 5157 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
5158 }
5159 else
5160 mark_ptid = ecs->ptid;
5161
719546c4 5162 set_executing (ecs->target, mark_ptid, false);
372316f1
PA
5163
5164 /* Likewise the resumed flag. */
719546c4 5165 set_resumed (ecs->target, mark_ptid, false);
372316f1 5166 }
8c90c137 5167
488f131b
JB
5168 switch (ecs->ws.kind)
5169 {
5170 case TARGET_WAITKIND_LOADED:
00431a78 5171 context_switch (ecs);
b0f4b84b
DJ
5172 /* Ignore gracefully during startup of the inferior, as it might
5173 be the shell which has just loaded some objects, otherwise
5174 add the symbols for the newly loaded objects. Also ignore at
5175 the beginning of an attach or remote session; we will query
5176 the full list of libraries once the connection is
5177 established. */
4f5d7f63 5178
00431a78 5179 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5180 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5181 {
edcc5120
TT
5182 struct regcache *regcache;
5183
00431a78 5184 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5185
5186 handle_solib_event ();
5187
5188 ecs->event_thread->control.stop_bpstat
a01bda52 5189 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5190 ecs->event_thread->suspend.stop_pc,
5191 ecs->event_thread, &ecs->ws);
ab04a2af 5192
c65d6b55
PA
5193 if (handle_stop_requested (ecs))
5194 return;
5195
ce12b012 5196 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5197 {
5198 /* A catchpoint triggered. */
94c57d6a
PA
5199 process_event_stop_test (ecs);
5200 return;
edcc5120 5201 }
488f131b 5202
b0f4b84b
DJ
5203 /* If requested, stop when the dynamic linker notifies
5204 gdb of events. This allows the user to get control
5205 and place breakpoints in initializer routines for
5206 dynamically loaded objects (among other things). */
a493e3e2 5207 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5208 if (stop_on_solib_events)
5209 {
55409f9d
DJ
5210 /* Make sure we print "Stopped due to solib-event" in
5211 normal_stop. */
5212 stop_print_frame = 1;
5213
22bcd14b 5214 stop_waiting (ecs);
b0f4b84b
DJ
5215 return;
5216 }
488f131b 5217 }
b0f4b84b
DJ
5218
5219 /* If we are skipping through a shell, or through shared library
5220 loading that we aren't interested in, resume the program. If
5c09a2c5 5221 we're running the program normally, also resume. */
b0f4b84b
DJ
5222 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5223 {
74960c60
VP
5224 /* Loading of shared libraries might have changed breakpoint
5225 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5226 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5227 insert_breakpoints ();
64ce06e4 5228 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5229 prepare_to_wait (ecs);
5230 return;
5231 }
5232
5c09a2c5
PA
5233 /* But stop if we're attaching or setting up a remote
5234 connection. */
5235 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5236 || stop_soon == STOP_QUIETLY_REMOTE)
5237 {
5238 if (debug_infrun)
5239 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5240 stop_waiting (ecs);
5c09a2c5
PA
5241 return;
5242 }
5243
5244 internal_error (__FILE__, __LINE__,
5245 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5246
488f131b 5247 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5248 if (handle_stop_requested (ecs))
5249 return;
00431a78 5250 context_switch (ecs);
64ce06e4 5251 resume (GDB_SIGNAL_0);
488f131b
JB
5252 prepare_to_wait (ecs);
5253 return;
c5aa993b 5254
65706a29 5255 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5256 if (handle_stop_requested (ecs))
5257 return;
00431a78 5258 context_switch (ecs);
65706a29
PA
5259 if (!switch_back_to_stepped_thread (ecs))
5260 keep_going (ecs);
5261 return;
5262
488f131b 5263 case TARGET_WAITKIND_EXITED:
940c3c06 5264 case TARGET_WAITKIND_SIGNALLED:
fb66883a 5265 inferior_ptid = ecs->ptid;
5b6d1e4f 5266 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
6c95b8df
PA
5267 set_current_program_space (current_inferior ()->pspace);
5268 handle_vfork_child_exec_or_exit (0);
223ffa71 5269 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5270
0c557179
SDJ
5271 /* Clearing any previous state of convenience variables. */
5272 clear_exit_convenience_vars ();
5273
940c3c06
PA
5274 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5275 {
5276 /* Record the exit code in the convenience variable $_exitcode, so
5277 that the user can inspect this again later. */
5278 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5279 (LONGEST) ecs->ws.value.integer);
5280
5281 /* Also record this in the inferior itself. */
5282 current_inferior ()->has_exit_code = 1;
5283 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5284
98eb56a4
PA
5285 /* Support the --return-child-result option. */
5286 return_child_result_value = ecs->ws.value.integer;
5287
76727919 5288 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5289 }
5290 else
0c557179 5291 {
00431a78 5292 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5293
5294 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5295 {
5296 /* Set the value of the internal variable $_exitsignal,
5297 which holds the signal uncaught by the inferior. */
5298 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5299 gdbarch_gdb_signal_to_target (gdbarch,
5300 ecs->ws.value.sig));
5301 }
5302 else
5303 {
5304 /* We don't have access to the target's method used for
5305 converting between signal numbers (GDB's internal
5306 representation <-> target's representation).
5307 Therefore, we cannot do a good job at displaying this
5308 information to the user. It's better to just warn
5309 her about it (if infrun debugging is enabled), and
5310 give up. */
5311 if (debug_infrun)
5312 fprintf_filtered (gdb_stdlog, _("\
5313Cannot fill $_exitsignal with the correct signal number.\n"));
5314 }
5315
76727919 5316 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5317 }
8cf64490 5318
488f131b 5319 gdb_flush (gdb_stdout);
bc1e6c81 5320 target_mourn_inferior (inferior_ptid);
488f131b 5321 stop_print_frame = 0;
22bcd14b 5322 stop_waiting (ecs);
488f131b 5323 return;
c5aa993b 5324
488f131b 5325 case TARGET_WAITKIND_FORKED:
deb3b17b 5326 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5327 /* Check whether the inferior is displaced stepping. */
5328 {
00431a78 5329 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5330 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5331
5332 /* If checking displaced stepping is supported, and thread
5333 ecs->ptid is displaced stepping. */
00431a78 5334 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5335 {
5336 struct inferior *parent_inf
5b6d1e4f 5337 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5338 struct regcache *child_regcache;
5339 CORE_ADDR parent_pc;
5340
d8d83535
SM
5341 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5342 {
5343 struct displaced_step_inferior_state *displaced
5344 = get_displaced_stepping_state (parent_inf);
5345
5346 /* Restore scratch pad for child process. */
5347 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5348 }
5349
e2d96639
YQ
5350 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5351 indicating that the displaced stepping of syscall instruction
5352 has been done. Perform cleanup for parent process here. Note
5353 that this operation also cleans up the child process for vfork,
5354 because their pages are shared. */
00431a78 5355 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5356 /* Start a new step-over in another thread if there's one
5357 that needs it. */
5358 start_step_over ();
e2d96639 5359
e2d96639
YQ
5360 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5361 the child's PC is also within the scratchpad. Set the child's PC
5362 to the parent's PC value, which has already been fixed up.
5363 FIXME: we use the parent's aspace here, although we're touching
5364 the child, because the child hasn't been added to the inferior
5365 list yet at this point. */
5366
5367 child_regcache
5b6d1e4f
PA
5368 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5369 ecs->ws.value.related_pid,
e2d96639
YQ
5370 gdbarch,
5371 parent_inf->aspace);
5372 /* Read PC value of parent process. */
5373 parent_pc = regcache_read_pc (regcache);
5374
5375 if (debug_displaced)
5376 fprintf_unfiltered (gdb_stdlog,
5377 "displaced: write child pc from %s to %s\n",
5378 paddress (gdbarch,
5379 regcache_read_pc (child_regcache)),
5380 paddress (gdbarch, parent_pc));
5381
5382 regcache_write_pc (child_regcache, parent_pc);
5383 }
5384 }
5385
00431a78 5386 context_switch (ecs);
5a2901d9 5387
b242c3c2
PA
5388 /* Immediately detach breakpoints from the child before there's
5389 any chance of letting the user delete breakpoints from the
5390 breakpoint lists. If we don't do this early, it's easy to
5391 leave left over traps in the child, vis: "break foo; catch
5392 fork; c; <fork>; del; c; <child calls foo>". We only follow
5393 the fork on the last `continue', and by that time the
5394 breakpoint at "foo" is long gone from the breakpoint table.
5395 If we vforked, then we don't need to unpatch here, since both
5396 parent and child are sharing the same memory pages; we'll
5397 need to unpatch at follow/detach time instead to be certain
5398 that new breakpoints added between catchpoint hit time and
5399 vfork follow are detached. */
5400 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5401 {
b242c3c2
PA
5402 /* This won't actually modify the breakpoint list, but will
5403 physically remove the breakpoints from the child. */
d80ee84f 5404 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5405 }
5406
34b7e8a6 5407 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5408
e58b0e63
PA
5409 /* In case the event is caught by a catchpoint, remember that
5410 the event is to be followed at the next resume of the thread,
5411 and not immediately. */
5412 ecs->event_thread->pending_follow = ecs->ws;
5413
f2ffa92b
PA
5414 ecs->event_thread->suspend.stop_pc
5415 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5416
16c381f0 5417 ecs->event_thread->control.stop_bpstat
a01bda52 5418 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5419 ecs->event_thread->suspend.stop_pc,
5420 ecs->event_thread, &ecs->ws);
675bf4cb 5421
c65d6b55
PA
5422 if (handle_stop_requested (ecs))
5423 return;
5424
ce12b012
PA
5425 /* If no catchpoint triggered for this, then keep going. Note
5426 that we're interested in knowing the bpstat actually causes a
5427 stop, not just if it may explain the signal. Software
5428 watchpoints, for example, always appear in the bpstat. */
5429 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5430 {
e58b0e63 5431 int should_resume;
3e43a32a
MS
5432 int follow_child
5433 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5434
a493e3e2 5435 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5436
5b6d1e4f
PA
5437 process_stratum_target *targ
5438 = ecs->event_thread->inf->process_target ();
5439
e58b0e63
PA
5440 should_resume = follow_fork ();
5441
5b6d1e4f
PA
5442 /* Note that one of these may be an invalid pointer,
5443 depending on detach_fork. */
00431a78 5444 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5445 thread_info *child
5446 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5447
a2077e25
PA
5448 /* At this point, the parent is marked running, and the
5449 child is marked stopped. */
5450
5451 /* If not resuming the parent, mark it stopped. */
5452 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5453 parent->set_running (false);
a2077e25
PA
5454
5455 /* If resuming the child, mark it running. */
5456 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5457 child->set_running (true);
a2077e25 5458
6c95b8df 5459 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5460 if (!detach_fork && (non_stop
5461 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5462 {
5463 if (follow_child)
5464 switch_to_thread (parent);
5465 else
5466 switch_to_thread (child);
5467
5468 ecs->event_thread = inferior_thread ();
5469 ecs->ptid = inferior_ptid;
5470 keep_going (ecs);
5471 }
5472
5473 if (follow_child)
5474 switch_to_thread (child);
5475 else
5476 switch_to_thread (parent);
5477
e58b0e63
PA
5478 ecs->event_thread = inferior_thread ();
5479 ecs->ptid = inferior_ptid;
5480
5481 if (should_resume)
5482 keep_going (ecs);
5483 else
22bcd14b 5484 stop_waiting (ecs);
04e68871
DJ
5485 return;
5486 }
94c57d6a
PA
5487 process_event_stop_test (ecs);
5488 return;
488f131b 5489
6c95b8df
PA
5490 case TARGET_WAITKIND_VFORK_DONE:
5491 /* Done with the shared memory region. Re-insert breakpoints in
5492 the parent, and keep going. */
5493
00431a78 5494 context_switch (ecs);
6c95b8df
PA
5495
5496 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5497 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5498
5499 if (handle_stop_requested (ecs))
5500 return;
5501
6c95b8df
PA
5502 /* This also takes care of reinserting breakpoints in the
5503 previously locked inferior. */
5504 keep_going (ecs);
5505 return;
5506
488f131b 5507 case TARGET_WAITKIND_EXECD:
488f131b 5508
cbd2b4e3
PA
5509 /* Note we can't read registers yet (the stop_pc), because we
5510 don't yet know the inferior's post-exec architecture.
5511 'stop_pc' is explicitly read below instead. */
00431a78 5512 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5513
6c95b8df
PA
5514 /* Do whatever is necessary to the parent branch of the vfork. */
5515 handle_vfork_child_exec_or_exit (1);
5516
795e548f
PA
5517 /* This causes the eventpoints and symbol table to be reset.
5518 Must do this now, before trying to determine whether to
5519 stop. */
71b43ef8 5520 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5521
17d8546e
DB
5522 /* In follow_exec we may have deleted the original thread and
5523 created a new one. Make sure that the event thread is the
5524 execd thread for that case (this is a nop otherwise). */
5525 ecs->event_thread = inferior_thread ();
5526
f2ffa92b
PA
5527 ecs->event_thread->suspend.stop_pc
5528 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5529
16c381f0 5530 ecs->event_thread->control.stop_bpstat
a01bda52 5531 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5532 ecs->event_thread->suspend.stop_pc,
5533 ecs->event_thread, &ecs->ws);
795e548f 5534
71b43ef8
PA
5535 /* Note that this may be referenced from inside
5536 bpstat_stop_status above, through inferior_has_execd. */
5537 xfree (ecs->ws.value.execd_pathname);
5538 ecs->ws.value.execd_pathname = NULL;
5539
c65d6b55
PA
5540 if (handle_stop_requested (ecs))
5541 return;
5542
04e68871 5543 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5544 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5545 {
a493e3e2 5546 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5547 keep_going (ecs);
5548 return;
5549 }
94c57d6a
PA
5550 process_event_stop_test (ecs);
5551 return;
488f131b 5552
b4dc5ffa
MK
5553 /* Be careful not to try to gather much state about a thread
5554 that's in a syscall. It's frequently a losing proposition. */
488f131b 5555 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5556 /* Getting the current syscall number. */
94c57d6a
PA
5557 if (handle_syscall_event (ecs) == 0)
5558 process_event_stop_test (ecs);
5559 return;
c906108c 5560
488f131b
JB
5561 /* Before examining the threads further, step this thread to
5562 get it entirely out of the syscall. (We get notice of the
5563 event when the thread is just on the verge of exiting a
5564 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5565 into user code.) */
488f131b 5566 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5567 if (handle_syscall_event (ecs) == 0)
5568 process_event_stop_test (ecs);
5569 return;
c906108c 5570
488f131b 5571 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5572 handle_signal_stop (ecs);
5573 return;
c906108c 5574
b2175913
MS
5575 case TARGET_WAITKIND_NO_HISTORY:
5576 /* Reverse execution: target ran out of history info. */
eab402df 5577
d1988021 5578 /* Switch to the stopped thread. */
00431a78 5579 context_switch (ecs);
d1988021
MM
5580 if (debug_infrun)
5581 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5582
34b7e8a6 5583 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5584 ecs->event_thread->suspend.stop_pc
5585 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5586
5587 if (handle_stop_requested (ecs))
5588 return;
5589
76727919 5590 gdb::observers::no_history.notify ();
22bcd14b 5591 stop_waiting (ecs);
b2175913 5592 return;
488f131b 5593 }
4f5d7f63
PA
5594}
5595
372316f1
PA
5596/* Restart threads back to what they were trying to do back when we
5597 paused them for an in-line step-over. The EVENT_THREAD thread is
5598 ignored. */
4d9d9d04
PA
5599
5600static void
372316f1
PA
5601restart_threads (struct thread_info *event_thread)
5602{
372316f1
PA
5603 /* In case the instruction just stepped spawned a new thread. */
5604 update_thread_list ();
5605
08036331 5606 for (thread_info *tp : all_non_exited_threads ())
372316f1 5607 {
f3f8ece4
PA
5608 switch_to_thread_no_regs (tp);
5609
372316f1
PA
5610 if (tp == event_thread)
5611 {
5612 if (debug_infrun)
5613 fprintf_unfiltered (gdb_stdlog,
5614 "infrun: restart threads: "
5615 "[%s] is event thread\n",
a068643d 5616 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5617 continue;
5618 }
5619
5620 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5621 {
5622 if (debug_infrun)
5623 fprintf_unfiltered (gdb_stdlog,
5624 "infrun: restart threads: "
5625 "[%s] not meant to be running\n",
a068643d 5626 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5627 continue;
5628 }
5629
5630 if (tp->resumed)
5631 {
5632 if (debug_infrun)
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: restart threads: [%s] resumed\n",
a068643d 5635 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5636 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5637 continue;
5638 }
5639
5640 if (thread_is_in_step_over_chain (tp))
5641 {
5642 if (debug_infrun)
5643 fprintf_unfiltered (gdb_stdlog,
5644 "infrun: restart threads: "
5645 "[%s] needs step-over\n",
a068643d 5646 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5647 gdb_assert (!tp->resumed);
5648 continue;
5649 }
5650
5651
5652 if (tp->suspend.waitstatus_pending_p)
5653 {
5654 if (debug_infrun)
5655 fprintf_unfiltered (gdb_stdlog,
5656 "infrun: restart threads: "
5657 "[%s] has pending status\n",
a068643d 5658 target_pid_to_str (tp->ptid).c_str ());
719546c4 5659 tp->resumed = true;
372316f1
PA
5660 continue;
5661 }
5662
c65d6b55
PA
5663 gdb_assert (!tp->stop_requested);
5664
372316f1
PA
5665 /* If some thread needs to start a step-over at this point, it
5666 should still be in the step-over queue, and thus skipped
5667 above. */
5668 if (thread_still_needs_step_over (tp))
5669 {
5670 internal_error (__FILE__, __LINE__,
5671 "thread [%s] needs a step-over, but not in "
5672 "step-over queue\n",
a068643d 5673 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5674 }
5675
5676 if (currently_stepping (tp))
5677 {
5678 if (debug_infrun)
5679 fprintf_unfiltered (gdb_stdlog,
5680 "infrun: restart threads: [%s] was stepping\n",
a068643d 5681 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5682 keep_going_stepped_thread (tp);
5683 }
5684 else
5685 {
5686 struct execution_control_state ecss;
5687 struct execution_control_state *ecs = &ecss;
5688
5689 if (debug_infrun)
5690 fprintf_unfiltered (gdb_stdlog,
5691 "infrun: restart threads: [%s] continuing\n",
a068643d 5692 target_pid_to_str (tp->ptid).c_str ());
372316f1 5693 reset_ecs (ecs, tp);
00431a78 5694 switch_to_thread (tp);
372316f1
PA
5695 keep_going_pass_signal (ecs);
5696 }
5697 }
5698}
5699
5700/* Callback for iterate_over_threads. Find a resumed thread that has
5701 a pending waitstatus. */
5702
5703static int
5704resumed_thread_with_pending_status (struct thread_info *tp,
5705 void *arg)
5706{
5707 return (tp->resumed
5708 && tp->suspend.waitstatus_pending_p);
5709}
5710
5711/* Called when we get an event that may finish an in-line or
5712 out-of-line (displaced stepping) step-over started previously.
5713 Return true if the event is processed and we should go back to the
5714 event loop; false if the caller should continue processing the
5715 event. */
5716
5717static int
4d9d9d04
PA
5718finish_step_over (struct execution_control_state *ecs)
5719{
372316f1
PA
5720 int had_step_over_info;
5721
00431a78 5722 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5723 ecs->event_thread->suspend.stop_signal);
5724
372316f1
PA
5725 had_step_over_info = step_over_info_valid_p ();
5726
5727 if (had_step_over_info)
4d9d9d04
PA
5728 {
5729 /* If we're stepping over a breakpoint with all threads locked,
5730 then only the thread that was stepped should be reporting
5731 back an event. */
5732 gdb_assert (ecs->event_thread->control.trap_expected);
5733
c65d6b55 5734 clear_step_over_info ();
4d9d9d04
PA
5735 }
5736
fbea99ea 5737 if (!target_is_non_stop_p ())
372316f1 5738 return 0;
4d9d9d04
PA
5739
5740 /* Start a new step-over in another thread if there's one that
5741 needs it. */
5742 start_step_over ();
372316f1
PA
5743
5744 /* If we were stepping over a breakpoint before, and haven't started
5745 a new in-line step-over sequence, then restart all other threads
5746 (except the event thread). We can't do this in all-stop, as then
5747 e.g., we wouldn't be able to issue any other remote packet until
5748 these other threads stop. */
5749 if (had_step_over_info && !step_over_info_valid_p ())
5750 {
5751 struct thread_info *pending;
5752
5753 /* If we only have threads with pending statuses, the restart
5754 below won't restart any thread and so nothing re-inserts the
5755 breakpoint we just stepped over. But we need it inserted
5756 when we later process the pending events, otherwise if
5757 another thread has a pending event for this breakpoint too,
5758 we'd discard its event (because the breakpoint that
5759 originally caused the event was no longer inserted). */
00431a78 5760 context_switch (ecs);
372316f1
PA
5761 insert_breakpoints ();
5762
5763 restart_threads (ecs->event_thread);
5764
5765 /* If we have events pending, go through handle_inferior_event
5766 again, picking up a pending event at random. This avoids
5767 thread starvation. */
5768
5769 /* But not if we just stepped over a watchpoint in order to let
5770 the instruction execute so we can evaluate its expression.
5771 The set of watchpoints that triggered is recorded in the
5772 breakpoint objects themselves (see bp->watchpoint_triggered).
5773 If we processed another event first, that other event could
5774 clobber this info. */
5775 if (ecs->event_thread->stepping_over_watchpoint)
5776 return 0;
5777
5778 pending = iterate_over_threads (resumed_thread_with_pending_status,
5779 NULL);
5780 if (pending != NULL)
5781 {
5782 struct thread_info *tp = ecs->event_thread;
5783 struct regcache *regcache;
5784
5785 if (debug_infrun)
5786 {
5787 fprintf_unfiltered (gdb_stdlog,
5788 "infrun: found resumed threads with "
5789 "pending events, saving status\n");
5790 }
5791
5792 gdb_assert (pending != tp);
5793
5794 /* Record the event thread's event for later. */
5795 save_waitstatus (tp, &ecs->ws);
5796 /* This was cleared early, by handle_inferior_event. Set it
5797 so this pending event is considered by
5798 do_target_wait. */
719546c4 5799 tp->resumed = true;
372316f1
PA
5800
5801 gdb_assert (!tp->executing);
5802
00431a78 5803 regcache = get_thread_regcache (tp);
372316f1
PA
5804 tp->suspend.stop_pc = regcache_read_pc (regcache);
5805
5806 if (debug_infrun)
5807 {
5808 fprintf_unfiltered (gdb_stdlog,
5809 "infrun: saved stop_pc=%s for %s "
5810 "(currently_stepping=%d)\n",
5811 paddress (target_gdbarch (),
5812 tp->suspend.stop_pc),
a068643d 5813 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5814 currently_stepping (tp));
5815 }
5816
5817 /* This in-line step-over finished; clear this so we won't
5818 start a new one. This is what handle_signal_stop would
5819 do, if we returned false. */
5820 tp->stepping_over_breakpoint = 0;
5821
5822 /* Wake up the event loop again. */
5823 mark_async_event_handler (infrun_async_inferior_event_token);
5824
5825 prepare_to_wait (ecs);
5826 return 1;
5827 }
5828 }
5829
5830 return 0;
4d9d9d04
PA
5831}
5832
4f5d7f63
PA
5833/* Come here when the program has stopped with a signal. */
5834
5835static void
5836handle_signal_stop (struct execution_control_state *ecs)
5837{
5838 struct frame_info *frame;
5839 struct gdbarch *gdbarch;
5840 int stopped_by_watchpoint;
5841 enum stop_kind stop_soon;
5842 int random_signal;
c906108c 5843
f0407826
DE
5844 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5845
c65d6b55
PA
5846 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5847
f0407826
DE
5848 /* Do we need to clean up the state of a thread that has
5849 completed a displaced single-step? (Doing so usually affects
5850 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5851 if (finish_step_over (ecs))
5852 return;
f0407826
DE
5853
5854 /* If we either finished a single-step or hit a breakpoint, but
5855 the user wanted this thread to be stopped, pretend we got a
5856 SIG0 (generic unsignaled stop). */
5857 if (ecs->event_thread->stop_requested
5858 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5859 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5860
f2ffa92b
PA
5861 ecs->event_thread->suspend.stop_pc
5862 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5863
527159b7 5864 if (debug_infrun)
237fc4c9 5865 {
00431a78 5866 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5867 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5868
f3f8ece4 5869 switch_to_thread (ecs->event_thread);
5af949e3
UW
5870
5871 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5872 paddress (reg_gdbarch,
f2ffa92b 5873 ecs->event_thread->suspend.stop_pc));
d92524f1 5874 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5875 {
5876 CORE_ADDR addr;
abbb1732 5877
237fc4c9
PA
5878 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5879
8b88a78e 5880 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5881 fprintf_unfiltered (gdb_stdlog,
5af949e3 5882 "infrun: stopped data address = %s\n",
b926417a 5883 paddress (reg_gdbarch, addr));
237fc4c9
PA
5884 else
5885 fprintf_unfiltered (gdb_stdlog,
5886 "infrun: (no data address available)\n");
5887 }
5888 }
527159b7 5889
36fa8042
PA
5890 /* This is originated from start_remote(), start_inferior() and
5891 shared libraries hook functions. */
00431a78 5892 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5893 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5894 {
00431a78 5895 context_switch (ecs);
36fa8042
PA
5896 if (debug_infrun)
5897 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5898 stop_print_frame = 1;
22bcd14b 5899 stop_waiting (ecs);
36fa8042
PA
5900 return;
5901 }
5902
36fa8042
PA
5903 /* This originates from attach_command(). We need to overwrite
5904 the stop_signal here, because some kernels don't ignore a
5905 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5906 See more comments in inferior.h. On the other hand, if we
5907 get a non-SIGSTOP, report it to the user - assume the backend
5908 will handle the SIGSTOP if it should show up later.
5909
5910 Also consider that the attach is complete when we see a
5911 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5912 target extended-remote report it instead of a SIGSTOP
5913 (e.g. gdbserver). We already rely on SIGTRAP being our
5914 signal, so this is no exception.
5915
5916 Also consider that the attach is complete when we see a
5917 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5918 the target to stop all threads of the inferior, in case the
5919 low level attach operation doesn't stop them implicitly. If
5920 they weren't stopped implicitly, then the stub will report a
5921 GDB_SIGNAL_0, meaning: stopped for no particular reason
5922 other than GDB's request. */
5923 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5924 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5925 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5926 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5927 {
5928 stop_print_frame = 1;
22bcd14b 5929 stop_waiting (ecs);
36fa8042
PA
5930 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5931 return;
5932 }
5933
488f131b 5934 /* See if something interesting happened to the non-current thread. If
b40c7d58 5935 so, then switch to that thread. */
d7e15655 5936 if (ecs->ptid != inferior_ptid)
488f131b 5937 {
527159b7 5938 if (debug_infrun)
8a9de0e4 5939 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5940
00431a78 5941 context_switch (ecs);
c5aa993b 5942
9a4105ab 5943 if (deprecated_context_hook)
00431a78 5944 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5945 }
c906108c 5946
568d6575
UW
5947 /* At this point, get hold of the now-current thread's frame. */
5948 frame = get_current_frame ();
5949 gdbarch = get_frame_arch (frame);
5950
2adfaa28 5951 /* Pull the single step breakpoints out of the target. */
af48d08f 5952 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5953 {
af48d08f 5954 struct regcache *regcache;
af48d08f 5955 CORE_ADDR pc;
2adfaa28 5956
00431a78 5957 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5958 const address_space *aspace = regcache->aspace ();
5959
af48d08f 5960 pc = regcache_read_pc (regcache);
34b7e8a6 5961
af48d08f
PA
5962 /* However, before doing so, if this single-step breakpoint was
5963 actually for another thread, set this thread up for moving
5964 past it. */
5965 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5966 aspace, pc))
5967 {
5968 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5969 {
5970 if (debug_infrun)
5971 {
5972 fprintf_unfiltered (gdb_stdlog,
af48d08f 5973 "infrun: [%s] hit another thread's "
34b7e8a6 5974 "single-step breakpoint\n",
a068643d 5975 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5976 }
af48d08f
PA
5977 ecs->hit_singlestep_breakpoint = 1;
5978 }
5979 }
5980 else
5981 {
5982 if (debug_infrun)
5983 {
5984 fprintf_unfiltered (gdb_stdlog,
5985 "infrun: [%s] hit its "
5986 "single-step breakpoint\n",
a068643d 5987 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5988 }
5989 }
488f131b 5990 }
af48d08f 5991 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5992
963f9c80
PA
5993 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5994 && ecs->event_thread->control.trap_expected
5995 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5996 stopped_by_watchpoint = 0;
5997 else
5998 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5999
6000 /* If necessary, step over this watchpoint. We'll be back to display
6001 it in a moment. */
6002 if (stopped_by_watchpoint
d92524f1 6003 && (target_have_steppable_watchpoint
568d6575 6004 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6005 {
488f131b
JB
6006 /* At this point, we are stopped at an instruction which has
6007 attempted to write to a piece of memory under control of
6008 a watchpoint. The instruction hasn't actually executed
6009 yet. If we were to evaluate the watchpoint expression
6010 now, we would get the old value, and therefore no change
6011 would seem to have occurred.
6012
6013 In order to make watchpoints work `right', we really need
6014 to complete the memory write, and then evaluate the
d983da9c
DJ
6015 watchpoint expression. We do this by single-stepping the
6016 target.
6017
7f89fd65 6018 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6019 it. For example, the PA can (with some kernel cooperation)
6020 single step over a watchpoint without disabling the watchpoint.
6021
6022 It is far more common to need to disable a watchpoint to step
6023 the inferior over it. If we have non-steppable watchpoints,
6024 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6025 disable all watchpoints.
6026
6027 Any breakpoint at PC must also be stepped over -- if there's
6028 one, it will have already triggered before the watchpoint
6029 triggered, and we either already reported it to the user, or
6030 it didn't cause a stop and we called keep_going. In either
6031 case, if there was a breakpoint at PC, we must be trying to
6032 step past it. */
6033 ecs->event_thread->stepping_over_watchpoint = 1;
6034 keep_going (ecs);
488f131b
JB
6035 return;
6036 }
6037
4e1c45ea 6038 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6039 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6040 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6041 ecs->event_thread->control.stop_step = 0;
488f131b 6042 stop_print_frame = 1;
488f131b 6043 stopped_by_random_signal = 0;
ddfe970e 6044 bpstat stop_chain = NULL;
488f131b 6045
edb3359d
DJ
6046 /* Hide inlined functions starting here, unless we just performed stepi or
6047 nexti. After stepi and nexti, always show the innermost frame (not any
6048 inline function call sites). */
16c381f0 6049 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6050 {
00431a78
PA
6051 const address_space *aspace
6052 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6053
6054 /* skip_inline_frames is expensive, so we avoid it if we can
6055 determine that the address is one where functions cannot have
6056 been inlined. This improves performance with inferiors that
6057 load a lot of shared libraries, because the solib event
6058 breakpoint is defined as the address of a function (i.e. not
6059 inline). Note that we have to check the previous PC as well
6060 as the current one to catch cases when we have just
6061 single-stepped off a breakpoint prior to reinstating it.
6062 Note that we're assuming that the code we single-step to is
6063 not inline, but that's not definitive: there's nothing
6064 preventing the event breakpoint function from containing
6065 inlined code, and the single-step ending up there. If the
6066 user had set a breakpoint on that inlined code, the missing
6067 skip_inline_frames call would break things. Fortunately
6068 that's an extremely unlikely scenario. */
f2ffa92b
PA
6069 if (!pc_at_non_inline_function (aspace,
6070 ecs->event_thread->suspend.stop_pc,
6071 &ecs->ws)
a210c238
MR
6072 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6073 && ecs->event_thread->control.trap_expected
6074 && pc_at_non_inline_function (aspace,
6075 ecs->event_thread->prev_pc,
09ac7c10 6076 &ecs->ws)))
1c5a993e 6077 {
f2ffa92b
PA
6078 stop_chain = build_bpstat_chain (aspace,
6079 ecs->event_thread->suspend.stop_pc,
6080 &ecs->ws);
00431a78 6081 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6082
6083 /* Re-fetch current thread's frame in case that invalidated
6084 the frame cache. */
6085 frame = get_current_frame ();
6086 gdbarch = get_frame_arch (frame);
6087 }
0574c78f 6088 }
edb3359d 6089
a493e3e2 6090 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6091 && ecs->event_thread->control.trap_expected
568d6575 6092 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6093 && currently_stepping (ecs->event_thread))
3352ef37 6094 {
b50d7442 6095 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6096 also on an instruction that needs to be stepped multiple
1777feb0 6097 times before it's been fully executing. E.g., architectures
3352ef37
AC
6098 with a delay slot. It needs to be stepped twice, once for
6099 the instruction and once for the delay slot. */
6100 int step_through_delay
568d6575 6101 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6102
527159b7 6103 if (debug_infrun && step_through_delay)
8a9de0e4 6104 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6105 if (ecs->event_thread->control.step_range_end == 0
6106 && step_through_delay)
3352ef37
AC
6107 {
6108 /* The user issued a continue when stopped at a breakpoint.
6109 Set up for another trap and get out of here. */
4e1c45ea 6110 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6111 keep_going (ecs);
6112 return;
6113 }
6114 else if (step_through_delay)
6115 {
6116 /* The user issued a step when stopped at a breakpoint.
6117 Maybe we should stop, maybe we should not - the delay
6118 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6119 case, don't decide that here, just set
6120 ecs->stepping_over_breakpoint, making sure we
6121 single-step again before breakpoints are re-inserted. */
4e1c45ea 6122 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6123 }
6124 }
6125
ab04a2af
TT
6126 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6127 handles this event. */
6128 ecs->event_thread->control.stop_bpstat
a01bda52 6129 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6130 ecs->event_thread->suspend.stop_pc,
6131 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6132
ab04a2af
TT
6133 /* Following in case break condition called a
6134 function. */
6135 stop_print_frame = 1;
73dd234f 6136
ab04a2af
TT
6137 /* This is where we handle "moribund" watchpoints. Unlike
6138 software breakpoints traps, hardware watchpoint traps are
6139 always distinguishable from random traps. If no high-level
6140 watchpoint is associated with the reported stop data address
6141 anymore, then the bpstat does not explain the signal ---
6142 simply make sure to ignore it if `stopped_by_watchpoint' is
6143 set. */
6144
6145 if (debug_infrun
6146 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6147 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6148 GDB_SIGNAL_TRAP)
ab04a2af
TT
6149 && stopped_by_watchpoint)
6150 fprintf_unfiltered (gdb_stdlog,
6151 "infrun: no user watchpoint explains "
6152 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6153
bac7d97b 6154 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6155 at one stage in the past included checks for an inferior
6156 function call's call dummy's return breakpoint. The original
6157 comment, that went with the test, read:
03cebad2 6158
ab04a2af
TT
6159 ``End of a stack dummy. Some systems (e.g. Sony news) give
6160 another signal besides SIGTRAP, so check here as well as
6161 above.''
73dd234f 6162
ab04a2af
TT
6163 If someone ever tries to get call dummys on a
6164 non-executable stack to work (where the target would stop
6165 with something like a SIGSEGV), then those tests might need
6166 to be re-instated. Given, however, that the tests were only
6167 enabled when momentary breakpoints were not being used, I
6168 suspect that it won't be the case.
488f131b 6169
ab04a2af
TT
6170 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6171 be necessary for call dummies on a non-executable stack on
6172 SPARC. */
488f131b 6173
bac7d97b 6174 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6175 random_signal
6176 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6177 ecs->event_thread->suspend.stop_signal);
bac7d97b 6178
1cf4d951
PA
6179 /* Maybe this was a trap for a software breakpoint that has since
6180 been removed. */
6181 if (random_signal && target_stopped_by_sw_breakpoint ())
6182 {
5133a315
LM
6183 if (gdbarch_program_breakpoint_here_p (gdbarch,
6184 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6185 {
6186 struct regcache *regcache;
6187 int decr_pc;
6188
6189 /* Re-adjust PC to what the program would see if GDB was not
6190 debugging it. */
00431a78 6191 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6192 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6193 if (decr_pc != 0)
6194 {
07036511
TT
6195 gdb::optional<scoped_restore_tmpl<int>>
6196 restore_operation_disable;
1cf4d951
PA
6197
6198 if (record_full_is_used ())
07036511
TT
6199 restore_operation_disable.emplace
6200 (record_full_gdb_operation_disable_set ());
1cf4d951 6201
f2ffa92b
PA
6202 regcache_write_pc (regcache,
6203 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6204 }
6205 }
6206 else
6207 {
6208 /* A delayed software breakpoint event. Ignore the trap. */
6209 if (debug_infrun)
6210 fprintf_unfiltered (gdb_stdlog,
6211 "infrun: delayed software breakpoint "
6212 "trap, ignoring\n");
6213 random_signal = 0;
6214 }
6215 }
6216
6217 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6218 has since been removed. */
6219 if (random_signal && target_stopped_by_hw_breakpoint ())
6220 {
6221 /* A delayed hardware breakpoint event. Ignore the trap. */
6222 if (debug_infrun)
6223 fprintf_unfiltered (gdb_stdlog,
6224 "infrun: delayed hardware breakpoint/watchpoint "
6225 "trap, ignoring\n");
6226 random_signal = 0;
6227 }
6228
bac7d97b
PA
6229 /* If not, perhaps stepping/nexting can. */
6230 if (random_signal)
6231 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6232 && currently_stepping (ecs->event_thread));
ab04a2af 6233
2adfaa28
PA
6234 /* Perhaps the thread hit a single-step breakpoint of _another_
6235 thread. Single-step breakpoints are transparent to the
6236 breakpoints module. */
6237 if (random_signal)
6238 random_signal = !ecs->hit_singlestep_breakpoint;
6239
bac7d97b
PA
6240 /* No? Perhaps we got a moribund watchpoint. */
6241 if (random_signal)
6242 random_signal = !stopped_by_watchpoint;
ab04a2af 6243
c65d6b55
PA
6244 /* Always stop if the user explicitly requested this thread to
6245 remain stopped. */
6246 if (ecs->event_thread->stop_requested)
6247 {
6248 random_signal = 1;
6249 if (debug_infrun)
6250 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6251 }
6252
488f131b
JB
6253 /* For the program's own signals, act according to
6254 the signal handling tables. */
6255
ce12b012 6256 if (random_signal)
488f131b
JB
6257 {
6258 /* Signal not for debugging purposes. */
5b6d1e4f 6259 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6260 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6261
527159b7 6262 if (debug_infrun)
c9737c08
PA
6263 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6264 gdb_signal_to_symbol_string (stop_signal));
527159b7 6265
488f131b
JB
6266 stopped_by_random_signal = 1;
6267
252fbfc8
PA
6268 /* Always stop on signals if we're either just gaining control
6269 of the program, or the user explicitly requested this thread
6270 to remain stopped. */
d6b48e9c 6271 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6272 || ecs->event_thread->stop_requested
24291992 6273 || (!inf->detaching
16c381f0 6274 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6275 {
22bcd14b 6276 stop_waiting (ecs);
488f131b
JB
6277 return;
6278 }
b57bacec
PA
6279
6280 /* Notify observers the signal has "handle print" set. Note we
6281 returned early above if stopping; normal_stop handles the
6282 printing in that case. */
6283 if (signal_print[ecs->event_thread->suspend.stop_signal])
6284 {
6285 /* The signal table tells us to print about this signal. */
223ffa71 6286 target_terminal::ours_for_output ();
76727919 6287 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6288 target_terminal::inferior ();
b57bacec 6289 }
488f131b
JB
6290
6291 /* Clear the signal if it should not be passed. */
16c381f0 6292 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6293 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6294
f2ffa92b 6295 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6296 && ecs->event_thread->control.trap_expected
8358c15c 6297 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6298 {
6299 /* We were just starting a new sequence, attempting to
6300 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6301 Instead this signal arrives. This signal will take us out
68f53502
AC
6302 of the stepping range so GDB needs to remember to, when
6303 the signal handler returns, resume stepping off that
6304 breakpoint. */
6305 /* To simplify things, "continue" is forced to use the same
6306 code paths as single-step - set a breakpoint at the
6307 signal return address and then, once hit, step off that
6308 breakpoint. */
237fc4c9
PA
6309 if (debug_infrun)
6310 fprintf_unfiltered (gdb_stdlog,
6311 "infrun: signal arrived while stepping over "
6312 "breakpoint\n");
d3169d93 6313
2c03e5be 6314 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6315 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6316 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6317 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6318
6319 /* If we were nexting/stepping some other thread, switch to
6320 it, so that we don't continue it, losing control. */
6321 if (!switch_back_to_stepped_thread (ecs))
6322 keep_going (ecs);
9d799f85 6323 return;
68f53502 6324 }
9d799f85 6325
e5f8a7cc 6326 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6327 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6328 ecs->event_thread)
e5f8a7cc 6329 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6330 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6331 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6332 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6333 {
6334 /* The inferior is about to take a signal that will take it
6335 out of the single step range. Set a breakpoint at the
6336 current PC (which is presumably where the signal handler
6337 will eventually return) and then allow the inferior to
6338 run free.
6339
6340 Note that this is only needed for a signal delivered
6341 while in the single-step range. Nested signals aren't a
6342 problem as they eventually all return. */
237fc4c9
PA
6343 if (debug_infrun)
6344 fprintf_unfiltered (gdb_stdlog,
6345 "infrun: signal may take us out of "
6346 "single-step range\n");
6347
372316f1 6348 clear_step_over_info ();
2c03e5be 6349 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6350 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6351 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6352 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6353 keep_going (ecs);
6354 return;
d303a6c7 6355 }
9d799f85 6356
85102364 6357 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6358 when either there's a nested signal, or when there's a
6359 pending signal enabled just as the signal handler returns
6360 (leaving the inferior at the step-resume-breakpoint without
6361 actually executing it). Either way continue until the
6362 breakpoint is really hit. */
c447ac0b
PA
6363
6364 if (!switch_back_to_stepped_thread (ecs))
6365 {
6366 if (debug_infrun)
6367 fprintf_unfiltered (gdb_stdlog,
6368 "infrun: random signal, keep going\n");
6369
6370 keep_going (ecs);
6371 }
6372 return;
488f131b 6373 }
94c57d6a
PA
6374
6375 process_event_stop_test (ecs);
6376}
6377
6378/* Come here when we've got some debug event / signal we can explain
6379 (IOW, not a random signal), and test whether it should cause a
6380 stop, or whether we should resume the inferior (transparently).
6381 E.g., could be a breakpoint whose condition evaluates false; we
6382 could be still stepping within the line; etc. */
6383
6384static void
6385process_event_stop_test (struct execution_control_state *ecs)
6386{
6387 struct symtab_and_line stop_pc_sal;
6388 struct frame_info *frame;
6389 struct gdbarch *gdbarch;
cdaa5b73
PA
6390 CORE_ADDR jmp_buf_pc;
6391 struct bpstat_what what;
94c57d6a 6392
cdaa5b73 6393 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6394
cdaa5b73
PA
6395 frame = get_current_frame ();
6396 gdbarch = get_frame_arch (frame);
fcf3daef 6397
cdaa5b73 6398 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6399
cdaa5b73
PA
6400 if (what.call_dummy)
6401 {
6402 stop_stack_dummy = what.call_dummy;
6403 }
186c406b 6404
243a9253
PA
6405 /* A few breakpoint types have callbacks associated (e.g.,
6406 bp_jit_event). Run them now. */
6407 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6408
cdaa5b73
PA
6409 /* If we hit an internal event that triggers symbol changes, the
6410 current frame will be invalidated within bpstat_what (e.g., if we
6411 hit an internal solib event). Re-fetch it. */
6412 frame = get_current_frame ();
6413 gdbarch = get_frame_arch (frame);
e2e4d78b 6414
cdaa5b73
PA
6415 switch (what.main_action)
6416 {
6417 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6418 /* If we hit the breakpoint at longjmp while stepping, we
6419 install a momentary breakpoint at the target of the
6420 jmp_buf. */
186c406b 6421
cdaa5b73
PA
6422 if (debug_infrun)
6423 fprintf_unfiltered (gdb_stdlog,
6424 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6425
cdaa5b73 6426 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6427
cdaa5b73
PA
6428 if (what.is_longjmp)
6429 {
6430 struct value *arg_value;
6431
6432 /* If we set the longjmp breakpoint via a SystemTap probe,
6433 then use it to extract the arguments. The destination PC
6434 is the third argument to the probe. */
6435 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6436 if (arg_value)
8fa0c4f8
AA
6437 {
6438 jmp_buf_pc = value_as_address (arg_value);
6439 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6440 }
cdaa5b73
PA
6441 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6442 || !gdbarch_get_longjmp_target (gdbarch,
6443 frame, &jmp_buf_pc))
e2e4d78b 6444 {
cdaa5b73
PA
6445 if (debug_infrun)
6446 fprintf_unfiltered (gdb_stdlog,
6447 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6448 "(!gdbarch_get_longjmp_target)\n");
6449 keep_going (ecs);
6450 return;
e2e4d78b 6451 }
e2e4d78b 6452
cdaa5b73
PA
6453 /* Insert a breakpoint at resume address. */
6454 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6455 }
6456 else
6457 check_exception_resume (ecs, frame);
6458 keep_going (ecs);
6459 return;
e81a37f7 6460
cdaa5b73
PA
6461 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6462 {
6463 struct frame_info *init_frame;
e81a37f7 6464
cdaa5b73 6465 /* There are several cases to consider.
c906108c 6466
cdaa5b73
PA
6467 1. The initiating frame no longer exists. In this case we
6468 must stop, because the exception or longjmp has gone too
6469 far.
2c03e5be 6470
cdaa5b73
PA
6471 2. The initiating frame exists, and is the same as the
6472 current frame. We stop, because the exception or longjmp
6473 has been caught.
2c03e5be 6474
cdaa5b73
PA
6475 3. The initiating frame exists and is different from the
6476 current frame. This means the exception or longjmp has
6477 been caught beneath the initiating frame, so keep going.
c906108c 6478
cdaa5b73
PA
6479 4. longjmp breakpoint has been placed just to protect
6480 against stale dummy frames and user is not interested in
6481 stopping around longjmps. */
c5aa993b 6482
cdaa5b73
PA
6483 if (debug_infrun)
6484 fprintf_unfiltered (gdb_stdlog,
6485 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6486
cdaa5b73
PA
6487 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6488 != NULL);
6489 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6490
cdaa5b73
PA
6491 if (what.is_longjmp)
6492 {
b67a2c6f 6493 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6494
cdaa5b73 6495 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6496 {
cdaa5b73
PA
6497 /* Case 4. */
6498 keep_going (ecs);
6499 return;
e5ef252a 6500 }
cdaa5b73 6501 }
c5aa993b 6502
cdaa5b73 6503 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6504
cdaa5b73
PA
6505 if (init_frame)
6506 {
6507 struct frame_id current_id
6508 = get_frame_id (get_current_frame ());
6509 if (frame_id_eq (current_id,
6510 ecs->event_thread->initiating_frame))
6511 {
6512 /* Case 2. Fall through. */
6513 }
6514 else
6515 {
6516 /* Case 3. */
6517 keep_going (ecs);
6518 return;
6519 }
68f53502 6520 }
488f131b 6521
cdaa5b73
PA
6522 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6523 exists. */
6524 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6525
bdc36728 6526 end_stepping_range (ecs);
cdaa5b73
PA
6527 }
6528 return;
e5ef252a 6529
cdaa5b73
PA
6530 case BPSTAT_WHAT_SINGLE:
6531 if (debug_infrun)
6532 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6533 ecs->event_thread->stepping_over_breakpoint = 1;
6534 /* Still need to check other stuff, at least the case where we
6535 are stepping and step out of the right range. */
6536 break;
e5ef252a 6537
cdaa5b73
PA
6538 case BPSTAT_WHAT_STEP_RESUME:
6539 if (debug_infrun)
6540 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6541
cdaa5b73
PA
6542 delete_step_resume_breakpoint (ecs->event_thread);
6543 if (ecs->event_thread->control.proceed_to_finish
6544 && execution_direction == EXEC_REVERSE)
6545 {
6546 struct thread_info *tp = ecs->event_thread;
6547
6548 /* We are finishing a function in reverse, and just hit the
6549 step-resume breakpoint at the start address of the
6550 function, and we're almost there -- just need to back up
6551 by one more single-step, which should take us back to the
6552 function call. */
6553 tp->control.step_range_start = tp->control.step_range_end = 1;
6554 keep_going (ecs);
e5ef252a 6555 return;
cdaa5b73
PA
6556 }
6557 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6558 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6559 && execution_direction == EXEC_REVERSE)
6560 {
6561 /* We are stepping over a function call in reverse, and just
6562 hit the step-resume breakpoint at the start address of
6563 the function. Go back to single-stepping, which should
6564 take us back to the function call. */
6565 ecs->event_thread->stepping_over_breakpoint = 1;
6566 keep_going (ecs);
6567 return;
6568 }
6569 break;
e5ef252a 6570
cdaa5b73
PA
6571 case BPSTAT_WHAT_STOP_NOISY:
6572 if (debug_infrun)
6573 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6574 stop_print_frame = 1;
e5ef252a 6575
99619bea
PA
6576 /* Assume the thread stopped for a breapoint. We'll still check
6577 whether a/the breakpoint is there when the thread is next
6578 resumed. */
6579 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6580
22bcd14b 6581 stop_waiting (ecs);
cdaa5b73 6582 return;
e5ef252a 6583
cdaa5b73
PA
6584 case BPSTAT_WHAT_STOP_SILENT:
6585 if (debug_infrun)
6586 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6587 stop_print_frame = 0;
e5ef252a 6588
99619bea
PA
6589 /* Assume the thread stopped for a breapoint. We'll still check
6590 whether a/the breakpoint is there when the thread is next
6591 resumed. */
6592 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6593 stop_waiting (ecs);
cdaa5b73
PA
6594 return;
6595
6596 case BPSTAT_WHAT_HP_STEP_RESUME:
6597 if (debug_infrun)
6598 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6599
6600 delete_step_resume_breakpoint (ecs->event_thread);
6601 if (ecs->event_thread->step_after_step_resume_breakpoint)
6602 {
6603 /* Back when the step-resume breakpoint was inserted, we
6604 were trying to single-step off a breakpoint. Go back to
6605 doing that. */
6606 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6607 ecs->event_thread->stepping_over_breakpoint = 1;
6608 keep_going (ecs);
6609 return;
e5ef252a 6610 }
cdaa5b73
PA
6611 break;
6612
6613 case BPSTAT_WHAT_KEEP_CHECKING:
6614 break;
e5ef252a 6615 }
c906108c 6616
af48d08f
PA
6617 /* If we stepped a permanent breakpoint and we had a high priority
6618 step-resume breakpoint for the address we stepped, but we didn't
6619 hit it, then we must have stepped into the signal handler. The
6620 step-resume was only necessary to catch the case of _not_
6621 stepping into the handler, so delete it, and fall through to
6622 checking whether the step finished. */
6623 if (ecs->event_thread->stepped_breakpoint)
6624 {
6625 struct breakpoint *sr_bp
6626 = ecs->event_thread->control.step_resume_breakpoint;
6627
8d707a12
PA
6628 if (sr_bp != NULL
6629 && sr_bp->loc->permanent
af48d08f
PA
6630 && sr_bp->type == bp_hp_step_resume
6631 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6632 {
6633 if (debug_infrun)
6634 fprintf_unfiltered (gdb_stdlog,
6635 "infrun: stepped permanent breakpoint, stopped in "
6636 "handler\n");
6637 delete_step_resume_breakpoint (ecs->event_thread);
6638 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6639 }
6640 }
6641
cdaa5b73
PA
6642 /* We come here if we hit a breakpoint but should not stop for it.
6643 Possibly we also were stepping and should stop for that. So fall
6644 through and test for stepping. But, if not stepping, do not
6645 stop. */
c906108c 6646
a7212384
UW
6647 /* In all-stop mode, if we're currently stepping but have stopped in
6648 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6649 if (switch_back_to_stepped_thread (ecs))
6650 return;
776f04fa 6651
8358c15c 6652 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6653 {
527159b7 6654 if (debug_infrun)
d3169d93
DJ
6655 fprintf_unfiltered (gdb_stdlog,
6656 "infrun: step-resume breakpoint is inserted\n");
527159b7 6657
488f131b
JB
6658 /* Having a step-resume breakpoint overrides anything
6659 else having to do with stepping commands until
6660 that breakpoint is reached. */
488f131b
JB
6661 keep_going (ecs);
6662 return;
6663 }
c5aa993b 6664
16c381f0 6665 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6666 {
527159b7 6667 if (debug_infrun)
8a9de0e4 6668 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6669 /* Likewise if we aren't even stepping. */
488f131b
JB
6670 keep_going (ecs);
6671 return;
6672 }
c5aa993b 6673
4b7703ad
JB
6674 /* Re-fetch current thread's frame in case the code above caused
6675 the frame cache to be re-initialized, making our FRAME variable
6676 a dangling pointer. */
6677 frame = get_current_frame ();
628fe4e4 6678 gdbarch = get_frame_arch (frame);
7e324e48 6679 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6680
488f131b 6681 /* If stepping through a line, keep going if still within it.
c906108c 6682
488f131b
JB
6683 Note that step_range_end is the address of the first instruction
6684 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6685 within it!
6686
6687 Note also that during reverse execution, we may be stepping
6688 through a function epilogue and therefore must detect when
6689 the current-frame changes in the middle of a line. */
6690
f2ffa92b
PA
6691 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6692 ecs->event_thread)
31410e84 6693 && (execution_direction != EXEC_REVERSE
388a8562 6694 || frame_id_eq (get_frame_id (frame),
16c381f0 6695 ecs->event_thread->control.step_frame_id)))
488f131b 6696 {
527159b7 6697 if (debug_infrun)
5af949e3
UW
6698 fprintf_unfiltered
6699 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6700 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6701 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6702
c1e36e3e
PA
6703 /* Tentatively re-enable range stepping; `resume' disables it if
6704 necessary (e.g., if we're stepping over a breakpoint or we
6705 have software watchpoints). */
6706 ecs->event_thread->control.may_range_step = 1;
6707
b2175913
MS
6708 /* When stepping backward, stop at beginning of line range
6709 (unless it's the function entry point, in which case
6710 keep going back to the call point). */
f2ffa92b 6711 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6712 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6713 && stop_pc != ecs->stop_func_start
6714 && execution_direction == EXEC_REVERSE)
bdc36728 6715 end_stepping_range (ecs);
b2175913
MS
6716 else
6717 keep_going (ecs);
6718
488f131b
JB
6719 return;
6720 }
c5aa993b 6721
488f131b 6722 /* We stepped out of the stepping range. */
c906108c 6723
488f131b 6724 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6725 loader dynamic symbol resolution code...
6726
6727 EXEC_FORWARD: we keep on single stepping until we exit the run
6728 time loader code and reach the callee's address.
6729
6730 EXEC_REVERSE: we've already executed the callee (backward), and
6731 the runtime loader code is handled just like any other
6732 undebuggable function call. Now we need only keep stepping
6733 backward through the trampoline code, and that's handled further
6734 down, so there is nothing for us to do here. */
6735
6736 if (execution_direction != EXEC_REVERSE
16c381f0 6737 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6738 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6739 {
4c8c40e6 6740 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6741 gdbarch_skip_solib_resolver (gdbarch,
6742 ecs->event_thread->suspend.stop_pc);
c906108c 6743
527159b7 6744 if (debug_infrun)
3e43a32a
MS
6745 fprintf_unfiltered (gdb_stdlog,
6746 "infrun: stepped into dynsym resolve code\n");
527159b7 6747
488f131b
JB
6748 if (pc_after_resolver)
6749 {
6750 /* Set up a step-resume breakpoint at the address
6751 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6752 symtab_and_line sr_sal;
488f131b 6753 sr_sal.pc = pc_after_resolver;
6c95b8df 6754 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6755
a6d9a66e
UW
6756 insert_step_resume_breakpoint_at_sal (gdbarch,
6757 sr_sal, null_frame_id);
c5aa993b 6758 }
c906108c 6759
488f131b
JB
6760 keep_going (ecs);
6761 return;
6762 }
c906108c 6763
1d509aa6
MM
6764 /* Step through an indirect branch thunk. */
6765 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6766 && gdbarch_in_indirect_branch_thunk (gdbarch,
6767 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6768 {
6769 if (debug_infrun)
6770 fprintf_unfiltered (gdb_stdlog,
6771 "infrun: stepped into indirect branch thunk\n");
6772 keep_going (ecs);
6773 return;
6774 }
6775
16c381f0
JK
6776 if (ecs->event_thread->control.step_range_end != 1
6777 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6778 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6779 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6780 {
527159b7 6781 if (debug_infrun)
3e43a32a
MS
6782 fprintf_unfiltered (gdb_stdlog,
6783 "infrun: stepped into signal trampoline\n");
42edda50 6784 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6785 a signal trampoline (either by a signal being delivered or by
6786 the signal handler returning). Just single-step until the
6787 inferior leaves the trampoline (either by calling the handler
6788 or returning). */
488f131b
JB
6789 keep_going (ecs);
6790 return;
6791 }
c906108c 6792
14132e89
MR
6793 /* If we're in the return path from a shared library trampoline,
6794 we want to proceed through the trampoline when stepping. */
6795 /* macro/2012-04-25: This needs to come before the subroutine
6796 call check below as on some targets return trampolines look
6797 like subroutine calls (MIPS16 return thunks). */
6798 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6799 ecs->event_thread->suspend.stop_pc,
6800 ecs->stop_func_name)
14132e89
MR
6801 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6802 {
6803 /* Determine where this trampoline returns. */
f2ffa92b
PA
6804 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6805 CORE_ADDR real_stop_pc
6806 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6807
6808 if (debug_infrun)
6809 fprintf_unfiltered (gdb_stdlog,
6810 "infrun: stepped into solib return tramp\n");
6811
6812 /* Only proceed through if we know where it's going. */
6813 if (real_stop_pc)
6814 {
6815 /* And put the step-breakpoint there and go until there. */
51abb421 6816 symtab_and_line sr_sal;
14132e89
MR
6817 sr_sal.pc = real_stop_pc;
6818 sr_sal.section = find_pc_overlay (sr_sal.pc);
6819 sr_sal.pspace = get_frame_program_space (frame);
6820
6821 /* Do not specify what the fp should be when we stop since
6822 on some machines the prologue is where the new fp value
6823 is established. */
6824 insert_step_resume_breakpoint_at_sal (gdbarch,
6825 sr_sal, null_frame_id);
6826
6827 /* Restart without fiddling with the step ranges or
6828 other state. */
6829 keep_going (ecs);
6830 return;
6831 }
6832 }
6833
c17eaafe
DJ
6834 /* Check for subroutine calls. The check for the current frame
6835 equalling the step ID is not necessary - the check of the
6836 previous frame's ID is sufficient - but it is a common case and
6837 cheaper than checking the previous frame's ID.
14e60db5
DJ
6838
6839 NOTE: frame_id_eq will never report two invalid frame IDs as
6840 being equal, so to get into this block, both the current and
6841 previous frame must have valid frame IDs. */
005ca36a
JB
6842 /* The outer_frame_id check is a heuristic to detect stepping
6843 through startup code. If we step over an instruction which
6844 sets the stack pointer from an invalid value to a valid value,
6845 we may detect that as a subroutine call from the mythical
6846 "outermost" function. This could be fixed by marking
6847 outermost frames as !stack_p,code_p,special_p. Then the
6848 initial outermost frame, before sp was valid, would
ce6cca6d 6849 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6850 for more. */
edb3359d 6851 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6852 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6853 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6854 ecs->event_thread->control.step_stack_frame_id)
6855 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6856 outer_frame_id)
885eeb5b 6857 || (ecs->event_thread->control.step_start_function
f2ffa92b 6858 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6859 {
f2ffa92b 6860 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6861 CORE_ADDR real_stop_pc;
8fb3e588 6862
527159b7 6863 if (debug_infrun)
8a9de0e4 6864 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6865
b7a084be 6866 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6867 {
6868 /* I presume that step_over_calls is only 0 when we're
6869 supposed to be stepping at the assembly language level
6870 ("stepi"). Just stop. */
388a8562 6871 /* And this works the same backward as frontward. MVS */
bdc36728 6872 end_stepping_range (ecs);
95918acb
AC
6873 return;
6874 }
8fb3e588 6875
388a8562
MS
6876 /* Reverse stepping through solib trampolines. */
6877
6878 if (execution_direction == EXEC_REVERSE
16c381f0 6879 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6880 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6881 || (ecs->stop_func_start == 0
6882 && in_solib_dynsym_resolve_code (stop_pc))))
6883 {
6884 /* Any solib trampoline code can be handled in reverse
6885 by simply continuing to single-step. We have already
6886 executed the solib function (backwards), and a few
6887 steps will take us back through the trampoline to the
6888 caller. */
6889 keep_going (ecs);
6890 return;
6891 }
6892
16c381f0 6893 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6894 {
b2175913
MS
6895 /* We're doing a "next".
6896
6897 Normal (forward) execution: set a breakpoint at the
6898 callee's return address (the address at which the caller
6899 will resume).
6900
6901 Reverse (backward) execution. set the step-resume
6902 breakpoint at the start of the function that we just
6903 stepped into (backwards), and continue to there. When we
6130d0b7 6904 get there, we'll need to single-step back to the caller. */
b2175913
MS
6905
6906 if (execution_direction == EXEC_REVERSE)
6907 {
acf9414f
JK
6908 /* If we're already at the start of the function, we've either
6909 just stepped backward into a single instruction function,
6910 or stepped back out of a signal handler to the first instruction
6911 of the function. Just keep going, which will single-step back
6912 to the caller. */
58c48e72 6913 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6914 {
acf9414f 6915 /* Normal function call return (static or dynamic). */
51abb421 6916 symtab_and_line sr_sal;
acf9414f
JK
6917 sr_sal.pc = ecs->stop_func_start;
6918 sr_sal.pspace = get_frame_program_space (frame);
6919 insert_step_resume_breakpoint_at_sal (gdbarch,
6920 sr_sal, null_frame_id);
6921 }
b2175913
MS
6922 }
6923 else
568d6575 6924 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6925
8567c30f
AC
6926 keep_going (ecs);
6927 return;
6928 }
a53c66de 6929
95918acb 6930 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6931 calling routine and the real function), locate the real
6932 function. That's what tells us (a) whether we want to step
6933 into it at all, and (b) what prologue we want to run to the
6934 end of, if we do step into it. */
568d6575 6935 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6936 if (real_stop_pc == 0)
568d6575 6937 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6938 if (real_stop_pc != 0)
6939 ecs->stop_func_start = real_stop_pc;
8fb3e588 6940
db5f024e 6941 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6942 {
51abb421 6943 symtab_and_line sr_sal;
1b2bfbb9 6944 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6945 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6946
a6d9a66e
UW
6947 insert_step_resume_breakpoint_at_sal (gdbarch,
6948 sr_sal, null_frame_id);
8fb3e588
AC
6949 keep_going (ecs);
6950 return;
1b2bfbb9
RC
6951 }
6952
95918acb 6953 /* If we have line number information for the function we are
1bfeeb0f
JL
6954 thinking of stepping into and the function isn't on the skip
6955 list, step into it.
95918acb 6956
8fb3e588
AC
6957 If there are several symtabs at that PC (e.g. with include
6958 files), just want to know whether *any* of them have line
6959 numbers. find_pc_line handles this. */
95918acb
AC
6960 {
6961 struct symtab_and_line tmp_sal;
8fb3e588 6962
95918acb 6963 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6964 if (tmp_sal.line != 0
85817405 6965 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6966 tmp_sal)
6967 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6968 {
b2175913 6969 if (execution_direction == EXEC_REVERSE)
568d6575 6970 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6971 else
568d6575 6972 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6973 return;
6974 }
6975 }
6976
6977 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6978 set, we stop the step so that the user has a chance to switch
6979 in assembly mode. */
16c381f0 6980 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6981 && step_stop_if_no_debug)
95918acb 6982 {
bdc36728 6983 end_stepping_range (ecs);
95918acb
AC
6984 return;
6985 }
6986
b2175913
MS
6987 if (execution_direction == EXEC_REVERSE)
6988 {
acf9414f
JK
6989 /* If we're already at the start of the function, we've either just
6990 stepped backward into a single instruction function without line
6991 number info, or stepped back out of a signal handler to the first
6992 instruction of the function without line number info. Just keep
6993 going, which will single-step back to the caller. */
6994 if (ecs->stop_func_start != stop_pc)
6995 {
6996 /* Set a breakpoint at callee's start address.
6997 From there we can step once and be back in the caller. */
51abb421 6998 symtab_and_line sr_sal;
acf9414f
JK
6999 sr_sal.pc = ecs->stop_func_start;
7000 sr_sal.pspace = get_frame_program_space (frame);
7001 insert_step_resume_breakpoint_at_sal (gdbarch,
7002 sr_sal, null_frame_id);
7003 }
b2175913
MS
7004 }
7005 else
7006 /* Set a breakpoint at callee's return address (the address
7007 at which the caller will resume). */
568d6575 7008 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7009
95918acb 7010 keep_going (ecs);
488f131b 7011 return;
488f131b 7012 }
c906108c 7013
fdd654f3
MS
7014 /* Reverse stepping through solib trampolines. */
7015
7016 if (execution_direction == EXEC_REVERSE
16c381f0 7017 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7018 {
f2ffa92b
PA
7019 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7020
fdd654f3
MS
7021 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7022 || (ecs->stop_func_start == 0
7023 && in_solib_dynsym_resolve_code (stop_pc)))
7024 {
7025 /* Any solib trampoline code can be handled in reverse
7026 by simply continuing to single-step. We have already
7027 executed the solib function (backwards), and a few
7028 steps will take us back through the trampoline to the
7029 caller. */
7030 keep_going (ecs);
7031 return;
7032 }
7033 else if (in_solib_dynsym_resolve_code (stop_pc))
7034 {
7035 /* Stepped backward into the solib dynsym resolver.
7036 Set a breakpoint at its start and continue, then
7037 one more step will take us out. */
51abb421 7038 symtab_and_line sr_sal;
fdd654f3 7039 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7040 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7041 insert_step_resume_breakpoint_at_sal (gdbarch,
7042 sr_sal, null_frame_id);
7043 keep_going (ecs);
7044 return;
7045 }
7046 }
7047
8c95582d
AB
7048 /* This always returns the sal for the inner-most frame when we are in a
7049 stack of inlined frames, even if GDB actually believes that it is in a
7050 more outer frame. This is checked for below by calls to
7051 inline_skipped_frames. */
f2ffa92b 7052 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7053
1b2bfbb9
RC
7054 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7055 the trampoline processing logic, however, there are some trampolines
7056 that have no names, so we should do trampoline handling first. */
16c381f0 7057 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7058 && ecs->stop_func_name == NULL
2afb61aa 7059 && stop_pc_sal.line == 0)
1b2bfbb9 7060 {
527159b7 7061 if (debug_infrun)
3e43a32a
MS
7062 fprintf_unfiltered (gdb_stdlog,
7063 "infrun: stepped into undebuggable function\n");
527159b7 7064
1b2bfbb9 7065 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7066 undebuggable function (where there is no debugging information
7067 and no line number corresponding to the address where the
1b2bfbb9
RC
7068 inferior stopped). Since we want to skip this kind of code,
7069 we keep going until the inferior returns from this
14e60db5
DJ
7070 function - unless the user has asked us not to (via
7071 set step-mode) or we no longer know how to get back
7072 to the call site. */
7073 if (step_stop_if_no_debug
c7ce8faa 7074 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7075 {
7076 /* If we have no line number and the step-stop-if-no-debug
7077 is set, we stop the step so that the user has a chance to
7078 switch in assembly mode. */
bdc36728 7079 end_stepping_range (ecs);
1b2bfbb9
RC
7080 return;
7081 }
7082 else
7083 {
7084 /* Set a breakpoint at callee's return address (the address
7085 at which the caller will resume). */
568d6575 7086 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7087 keep_going (ecs);
7088 return;
7089 }
7090 }
7091
16c381f0 7092 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7093 {
7094 /* It is stepi or nexti. We always want to stop stepping after
7095 one instruction. */
527159b7 7096 if (debug_infrun)
8a9de0e4 7097 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7098 end_stepping_range (ecs);
1b2bfbb9
RC
7099 return;
7100 }
7101
2afb61aa 7102 if (stop_pc_sal.line == 0)
488f131b
JB
7103 {
7104 /* We have no line number information. That means to stop
7105 stepping (does this always happen right after one instruction,
7106 when we do "s" in a function with no line numbers,
7107 or can this happen as a result of a return or longjmp?). */
527159b7 7108 if (debug_infrun)
8a9de0e4 7109 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7110 end_stepping_range (ecs);
488f131b
JB
7111 return;
7112 }
c906108c 7113
edb3359d
DJ
7114 /* Look for "calls" to inlined functions, part one. If the inline
7115 frame machinery detected some skipped call sites, we have entered
7116 a new inline function. */
7117
7118 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7119 ecs->event_thread->control.step_frame_id)
00431a78 7120 && inline_skipped_frames (ecs->event_thread))
edb3359d 7121 {
edb3359d
DJ
7122 if (debug_infrun)
7123 fprintf_unfiltered (gdb_stdlog,
7124 "infrun: stepped into inlined function\n");
7125
51abb421 7126 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7127
16c381f0 7128 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7129 {
7130 /* For "step", we're going to stop. But if the call site
7131 for this inlined function is on the same source line as
7132 we were previously stepping, go down into the function
7133 first. Otherwise stop at the call site. */
7134
7135 if (call_sal.line == ecs->event_thread->current_line
7136 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7137 {
7138 step_into_inline_frame (ecs->event_thread);
7139 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7140 {
7141 keep_going (ecs);
7142 return;
7143 }
7144 }
edb3359d 7145
bdc36728 7146 end_stepping_range (ecs);
edb3359d
DJ
7147 return;
7148 }
7149 else
7150 {
7151 /* For "next", we should stop at the call site if it is on a
7152 different source line. Otherwise continue through the
7153 inlined function. */
7154 if (call_sal.line == ecs->event_thread->current_line
7155 && call_sal.symtab == ecs->event_thread->current_symtab)
7156 keep_going (ecs);
7157 else
bdc36728 7158 end_stepping_range (ecs);
edb3359d
DJ
7159 return;
7160 }
7161 }
7162
7163 /* Look for "calls" to inlined functions, part two. If we are still
7164 in the same real function we were stepping through, but we have
7165 to go further up to find the exact frame ID, we are stepping
7166 through a more inlined call beyond its call site. */
7167
7168 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7169 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7170 ecs->event_thread->control.step_frame_id)
edb3359d 7171 && stepped_in_from (get_current_frame (),
16c381f0 7172 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7173 {
7174 if (debug_infrun)
7175 fprintf_unfiltered (gdb_stdlog,
7176 "infrun: stepping through inlined function\n");
7177
4a4c04f1
BE
7178 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7179 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7180 keep_going (ecs);
7181 else
bdc36728 7182 end_stepping_range (ecs);
edb3359d
DJ
7183 return;
7184 }
7185
8c95582d 7186 bool refresh_step_info = true;
f2ffa92b 7187 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7188 && (ecs->event_thread->current_line != stop_pc_sal.line
7189 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7190 {
8c95582d
AB
7191 if (stop_pc_sal.is_stmt)
7192 {
7193 /* We are at the start of a different line. So stop. Note that
7194 we don't stop if we step into the middle of a different line.
7195 That is said to make things like for (;;) statements work
7196 better. */
7197 if (debug_infrun)
7198 fprintf_unfiltered (gdb_stdlog,
7199 "infrun: stepped to a different line\n");
7200 end_stepping_range (ecs);
7201 return;
7202 }
7203 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7204 ecs->event_thread->control.step_frame_id))
7205 {
7206 /* We are at the start of a different line, however, this line is
7207 not marked as a statement, and we have not changed frame. We
7208 ignore this line table entry, and continue stepping forward,
7209 looking for a better place to stop. */
7210 refresh_step_info = false;
7211 if (debug_infrun)
7212 fprintf_unfiltered (gdb_stdlog,
7213 "infrun: stepped to a different line, but "
7214 "it's not the start of a statement\n");
7215 }
488f131b 7216 }
c906108c 7217
488f131b 7218 /* We aren't done stepping.
c906108c 7219
488f131b
JB
7220 Optimize by setting the stepping range to the line.
7221 (We might not be in the original line, but if we entered a
7222 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7223 things like for(;;) statements work better.)
7224
7225 If we entered a SAL that indicates a non-statement line table entry,
7226 then we update the stepping range, but we don't update the step info,
7227 which includes things like the line number we are stepping away from.
7228 This means we will stop when we find a line table entry that is marked
7229 as is-statement, even if it matches the non-statement one we just
7230 stepped into. */
c906108c 7231
16c381f0
JK
7232 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7233 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7234 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7235 if (refresh_step_info)
7236 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7237
527159b7 7238 if (debug_infrun)
8a9de0e4 7239 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7240 keep_going (ecs);
104c1213
JM
7241}
7242
c447ac0b
PA
7243/* In all-stop mode, if we're currently stepping but have stopped in
7244 some other thread, we may need to switch back to the stepped
7245 thread. Returns true we set the inferior running, false if we left
7246 it stopped (and the event needs further processing). */
7247
7248static int
7249switch_back_to_stepped_thread (struct execution_control_state *ecs)
7250{
fbea99ea 7251 if (!target_is_non_stop_p ())
c447ac0b 7252 {
99619bea
PA
7253 struct thread_info *stepping_thread;
7254
7255 /* If any thread is blocked on some internal breakpoint, and we
7256 simply need to step over that breakpoint to get it going
7257 again, do that first. */
7258
7259 /* However, if we see an event for the stepping thread, then we
7260 know all other threads have been moved past their breakpoints
7261 already. Let the caller check whether the step is finished,
7262 etc., before deciding to move it past a breakpoint. */
7263 if (ecs->event_thread->control.step_range_end != 0)
7264 return 0;
7265
7266 /* Check if the current thread is blocked on an incomplete
7267 step-over, interrupted by a random signal. */
7268 if (ecs->event_thread->control.trap_expected
7269 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7270 {
99619bea
PA
7271 if (debug_infrun)
7272 {
7273 fprintf_unfiltered (gdb_stdlog,
7274 "infrun: need to finish step-over of [%s]\n",
a068643d 7275 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7276 }
7277 keep_going (ecs);
7278 return 1;
7279 }
2adfaa28 7280
99619bea
PA
7281 /* Check if the current thread is blocked by a single-step
7282 breakpoint of another thread. */
7283 if (ecs->hit_singlestep_breakpoint)
7284 {
7285 if (debug_infrun)
7286 {
7287 fprintf_unfiltered (gdb_stdlog,
7288 "infrun: need to step [%s] over single-step "
7289 "breakpoint\n",
a068643d 7290 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7291 }
7292 keep_going (ecs);
7293 return 1;
7294 }
7295
4d9d9d04
PA
7296 /* If this thread needs yet another step-over (e.g., stepping
7297 through a delay slot), do it first before moving on to
7298 another thread. */
7299 if (thread_still_needs_step_over (ecs->event_thread))
7300 {
7301 if (debug_infrun)
7302 {
7303 fprintf_unfiltered (gdb_stdlog,
7304 "infrun: thread [%s] still needs step-over\n",
a068643d 7305 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7306 }
7307 keep_going (ecs);
7308 return 1;
7309 }
70509625 7310
483805cf
PA
7311 /* If scheduler locking applies even if not stepping, there's no
7312 need to walk over threads. Above we've checked whether the
7313 current thread is stepping. If some other thread not the
7314 event thread is stepping, then it must be that scheduler
7315 locking is not in effect. */
856e7dd6 7316 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7317 return 0;
7318
4d9d9d04
PA
7319 /* Otherwise, we no longer expect a trap in the current thread.
7320 Clear the trap_expected flag before switching back -- this is
7321 what keep_going does as well, if we call it. */
7322 ecs->event_thread->control.trap_expected = 0;
7323
7324 /* Likewise, clear the signal if it should not be passed. */
7325 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7326 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7327
7328 /* Do all pending step-overs before actually proceeding with
483805cf 7329 step/next/etc. */
4d9d9d04
PA
7330 if (start_step_over ())
7331 {
7332 prepare_to_wait (ecs);
7333 return 1;
7334 }
7335
7336 /* Look for the stepping/nexting thread. */
483805cf 7337 stepping_thread = NULL;
4d9d9d04 7338
08036331 7339 for (thread_info *tp : all_non_exited_threads ())
483805cf 7340 {
f3f8ece4
PA
7341 switch_to_thread_no_regs (tp);
7342
fbea99ea
PA
7343 /* Ignore threads of processes the caller is not
7344 resuming. */
483805cf 7345 if (!sched_multi
5b6d1e4f
PA
7346 && (tp->inf->process_target () != ecs->target
7347 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7348 continue;
7349
7350 /* When stepping over a breakpoint, we lock all threads
7351 except the one that needs to move past the breakpoint.
7352 If a non-event thread has this set, the "incomplete
7353 step-over" check above should have caught it earlier. */
372316f1
PA
7354 if (tp->control.trap_expected)
7355 {
7356 internal_error (__FILE__, __LINE__,
7357 "[%s] has inconsistent state: "
7358 "trap_expected=%d\n",
a068643d 7359 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7360 tp->control.trap_expected);
7361 }
483805cf
PA
7362
7363 /* Did we find the stepping thread? */
7364 if (tp->control.step_range_end)
7365 {
7366 /* Yep. There should only one though. */
7367 gdb_assert (stepping_thread == NULL);
7368
7369 /* The event thread is handled at the top, before we
7370 enter this loop. */
7371 gdb_assert (tp != ecs->event_thread);
7372
7373 /* If some thread other than the event thread is
7374 stepping, then scheduler locking can't be in effect,
7375 otherwise we wouldn't have resumed the current event
7376 thread in the first place. */
856e7dd6 7377 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7378
7379 stepping_thread = tp;
7380 }
99619bea
PA
7381 }
7382
483805cf 7383 if (stepping_thread != NULL)
99619bea 7384 {
c447ac0b
PA
7385 if (debug_infrun)
7386 fprintf_unfiltered (gdb_stdlog,
7387 "infrun: switching back to stepped thread\n");
7388
2ac7589c
PA
7389 if (keep_going_stepped_thread (stepping_thread))
7390 {
7391 prepare_to_wait (ecs);
7392 return 1;
7393 }
7394 }
f3f8ece4
PA
7395
7396 switch_to_thread (ecs->event_thread);
2ac7589c 7397 }
2adfaa28 7398
2ac7589c
PA
7399 return 0;
7400}
2adfaa28 7401
2ac7589c
PA
7402/* Set a previously stepped thread back to stepping. Returns true on
7403 success, false if the resume is not possible (e.g., the thread
7404 vanished). */
7405
7406static int
7407keep_going_stepped_thread (struct thread_info *tp)
7408{
7409 struct frame_info *frame;
2ac7589c
PA
7410 struct execution_control_state ecss;
7411 struct execution_control_state *ecs = &ecss;
2adfaa28 7412
2ac7589c
PA
7413 /* If the stepping thread exited, then don't try to switch back and
7414 resume it, which could fail in several different ways depending
7415 on the target. Instead, just keep going.
2adfaa28 7416
2ac7589c
PA
7417 We can find a stepping dead thread in the thread list in two
7418 cases:
2adfaa28 7419
2ac7589c
PA
7420 - The target supports thread exit events, and when the target
7421 tries to delete the thread from the thread list, inferior_ptid
7422 pointed at the exiting thread. In such case, calling
7423 delete_thread does not really remove the thread from the list;
7424 instead, the thread is left listed, with 'exited' state.
64ce06e4 7425
2ac7589c
PA
7426 - The target's debug interface does not support thread exit
7427 events, and so we have no idea whatsoever if the previously
7428 stepping thread is still alive. For that reason, we need to
7429 synchronously query the target now. */
2adfaa28 7430
00431a78 7431 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7432 {
7433 if (debug_infrun)
7434 fprintf_unfiltered (gdb_stdlog,
7435 "infrun: not resuming previously "
7436 "stepped thread, it has vanished\n");
7437
00431a78 7438 delete_thread (tp);
2ac7589c 7439 return 0;
c447ac0b 7440 }
2ac7589c
PA
7441
7442 if (debug_infrun)
7443 fprintf_unfiltered (gdb_stdlog,
7444 "infrun: resuming previously stepped thread\n");
7445
7446 reset_ecs (ecs, tp);
00431a78 7447 switch_to_thread (tp);
2ac7589c 7448
f2ffa92b 7449 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7450 frame = get_current_frame ();
2ac7589c
PA
7451
7452 /* If the PC of the thread we were trying to single-step has
7453 changed, then that thread has trapped or been signaled, but the
7454 event has not been reported to GDB yet. Re-poll the target
7455 looking for this particular thread's event (i.e. temporarily
7456 enable schedlock) by:
7457
7458 - setting a break at the current PC
7459 - resuming that particular thread, only (by setting trap
7460 expected)
7461
7462 This prevents us continuously moving the single-step breakpoint
7463 forward, one instruction at a time, overstepping. */
7464
f2ffa92b 7465 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7466 {
7467 ptid_t resume_ptid;
7468
7469 if (debug_infrun)
7470 fprintf_unfiltered (gdb_stdlog,
7471 "infrun: expected thread advanced also (%s -> %s)\n",
7472 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7473 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7474
7475 /* Clear the info of the previous step-over, as it's no longer
7476 valid (if the thread was trying to step over a breakpoint, it
7477 has already succeeded). It's what keep_going would do too,
7478 if we called it. Do this before trying to insert the sss
7479 breakpoint, otherwise if we were previously trying to step
7480 over this exact address in another thread, the breakpoint is
7481 skipped. */
7482 clear_step_over_info ();
7483 tp->control.trap_expected = 0;
7484
7485 insert_single_step_breakpoint (get_frame_arch (frame),
7486 get_frame_address_space (frame),
f2ffa92b 7487 tp->suspend.stop_pc);
2ac7589c 7488
719546c4 7489 tp->resumed = true;
fbea99ea 7490 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7491 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7492 }
7493 else
7494 {
7495 if (debug_infrun)
7496 fprintf_unfiltered (gdb_stdlog,
7497 "infrun: expected thread still hasn't advanced\n");
7498
7499 keep_going_pass_signal (ecs);
7500 }
7501 return 1;
c447ac0b
PA
7502}
7503
8b061563
PA
7504/* Is thread TP in the middle of (software or hardware)
7505 single-stepping? (Note the result of this function must never be
7506 passed directly as target_resume's STEP parameter.) */
104c1213 7507
a289b8f6 7508static int
b3444185 7509currently_stepping (struct thread_info *tp)
a7212384 7510{
8358c15c
JK
7511 return ((tp->control.step_range_end
7512 && tp->control.step_resume_breakpoint == NULL)
7513 || tp->control.trap_expected
af48d08f 7514 || tp->stepped_breakpoint
8358c15c 7515 || bpstat_should_step ());
a7212384
UW
7516}
7517
b2175913
MS
7518/* Inferior has stepped into a subroutine call with source code that
7519 we should not step over. Do step to the first line of code in
7520 it. */
c2c6d25f
JM
7521
7522static void
568d6575
UW
7523handle_step_into_function (struct gdbarch *gdbarch,
7524 struct execution_control_state *ecs)
c2c6d25f 7525{
7e324e48
GB
7526 fill_in_stop_func (gdbarch, ecs);
7527
f2ffa92b
PA
7528 compunit_symtab *cust
7529 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7530 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7531 ecs->stop_func_start
7532 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7533
51abb421 7534 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7535 /* Use the step_resume_break to step until the end of the prologue,
7536 even if that involves jumps (as it seems to on the vax under
7537 4.2). */
7538 /* If the prologue ends in the middle of a source line, continue to
7539 the end of that source line (if it is still within the function).
7540 Otherwise, just go to end of prologue. */
2afb61aa
PA
7541 if (stop_func_sal.end
7542 && stop_func_sal.pc != ecs->stop_func_start
7543 && stop_func_sal.end < ecs->stop_func_end)
7544 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7545
2dbd5e30
KB
7546 /* Architectures which require breakpoint adjustment might not be able
7547 to place a breakpoint at the computed address. If so, the test
7548 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7549 ecs->stop_func_start to an address at which a breakpoint may be
7550 legitimately placed.
8fb3e588 7551
2dbd5e30
KB
7552 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7553 made, GDB will enter an infinite loop when stepping through
7554 optimized code consisting of VLIW instructions which contain
7555 subinstructions corresponding to different source lines. On
7556 FR-V, it's not permitted to place a breakpoint on any but the
7557 first subinstruction of a VLIW instruction. When a breakpoint is
7558 set, GDB will adjust the breakpoint address to the beginning of
7559 the VLIW instruction. Thus, we need to make the corresponding
7560 adjustment here when computing the stop address. */
8fb3e588 7561
568d6575 7562 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7563 {
7564 ecs->stop_func_start
568d6575 7565 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7566 ecs->stop_func_start);
2dbd5e30
KB
7567 }
7568
f2ffa92b 7569 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7570 {
7571 /* We are already there: stop now. */
bdc36728 7572 end_stepping_range (ecs);
c2c6d25f
JM
7573 return;
7574 }
7575 else
7576 {
7577 /* Put the step-breakpoint there and go until there. */
51abb421 7578 symtab_and_line sr_sal;
c2c6d25f
JM
7579 sr_sal.pc = ecs->stop_func_start;
7580 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7581 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7582
c2c6d25f 7583 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7584 some machines the prologue is where the new fp value is
7585 established. */
a6d9a66e 7586 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7587
7588 /* And make sure stepping stops right away then. */
16c381f0
JK
7589 ecs->event_thread->control.step_range_end
7590 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7591 }
7592 keep_going (ecs);
7593}
d4f3574e 7594
b2175913
MS
7595/* Inferior has stepped backward into a subroutine call with source
7596 code that we should not step over. Do step to the beginning of the
7597 last line of code in it. */
7598
7599static void
568d6575
UW
7600handle_step_into_function_backward (struct gdbarch *gdbarch,
7601 struct execution_control_state *ecs)
b2175913 7602{
43f3e411 7603 struct compunit_symtab *cust;
167e4384 7604 struct symtab_and_line stop_func_sal;
b2175913 7605
7e324e48
GB
7606 fill_in_stop_func (gdbarch, ecs);
7607
f2ffa92b 7608 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7609 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7610 ecs->stop_func_start
7611 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7612
f2ffa92b 7613 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7614
7615 /* OK, we're just going to keep stepping here. */
f2ffa92b 7616 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7617 {
7618 /* We're there already. Just stop stepping now. */
bdc36728 7619 end_stepping_range (ecs);
b2175913
MS
7620 }
7621 else
7622 {
7623 /* Else just reset the step range and keep going.
7624 No step-resume breakpoint, they don't work for
7625 epilogues, which can have multiple entry paths. */
16c381f0
JK
7626 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7627 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7628 keep_going (ecs);
7629 }
7630 return;
7631}
7632
d3169d93 7633/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7634 This is used to both functions and to skip over code. */
7635
7636static void
2c03e5be
PA
7637insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7638 struct symtab_and_line sr_sal,
7639 struct frame_id sr_id,
7640 enum bptype sr_type)
44cbf7b5 7641{
611c83ae
PA
7642 /* There should never be more than one step-resume or longjmp-resume
7643 breakpoint per thread, so we should never be setting a new
44cbf7b5 7644 step_resume_breakpoint when one is already active. */
8358c15c 7645 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7646 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7647
7648 if (debug_infrun)
7649 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7650 "infrun: inserting step-resume breakpoint at %s\n",
7651 paddress (gdbarch, sr_sal.pc));
d3169d93 7652
8358c15c 7653 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7654 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7655}
7656
9da8c2a0 7657void
2c03e5be
PA
7658insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7659 struct symtab_and_line sr_sal,
7660 struct frame_id sr_id)
7661{
7662 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7663 sr_sal, sr_id,
7664 bp_step_resume);
44cbf7b5 7665}
7ce450bd 7666
2c03e5be
PA
7667/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7668 This is used to skip a potential signal handler.
7ce450bd 7669
14e60db5
DJ
7670 This is called with the interrupted function's frame. The signal
7671 handler, when it returns, will resume the interrupted function at
7672 RETURN_FRAME.pc. */
d303a6c7
AC
7673
7674static void
2c03e5be 7675insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7676{
f4c1edd8 7677 gdb_assert (return_frame != NULL);
d303a6c7 7678
51abb421
PA
7679 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7680
7681 symtab_and_line sr_sal;
568d6575 7682 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7683 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7684 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7685
2c03e5be
PA
7686 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7687 get_stack_frame_id (return_frame),
7688 bp_hp_step_resume);
d303a6c7
AC
7689}
7690
2c03e5be
PA
7691/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7692 is used to skip a function after stepping into it (for "next" or if
7693 the called function has no debugging information).
14e60db5
DJ
7694
7695 The current function has almost always been reached by single
7696 stepping a call or return instruction. NEXT_FRAME belongs to the
7697 current function, and the breakpoint will be set at the caller's
7698 resume address.
7699
7700 This is a separate function rather than reusing
2c03e5be 7701 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7702 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7703 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7704
7705static void
7706insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7707{
14e60db5
DJ
7708 /* We shouldn't have gotten here if we don't know where the call site
7709 is. */
c7ce8faa 7710 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7711
51abb421 7712 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7713
51abb421 7714 symtab_and_line sr_sal;
c7ce8faa
DJ
7715 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7716 frame_unwind_caller_pc (next_frame));
14e60db5 7717 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7718 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7719
a6d9a66e 7720 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7721 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7722}
7723
611c83ae
PA
7724/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7725 new breakpoint at the target of a jmp_buf. The handling of
7726 longjmp-resume uses the same mechanisms used for handling
7727 "step-resume" breakpoints. */
7728
7729static void
a6d9a66e 7730insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7731{
e81a37f7
TT
7732 /* There should never be more than one longjmp-resume breakpoint per
7733 thread, so we should never be setting a new
611c83ae 7734 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7735 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7736
7737 if (debug_infrun)
7738 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7739 "infrun: inserting longjmp-resume breakpoint at %s\n",
7740 paddress (gdbarch, pc));
611c83ae 7741
e81a37f7 7742 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7743 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7744}
7745
186c406b
TT
7746/* Insert an exception resume breakpoint. TP is the thread throwing
7747 the exception. The block B is the block of the unwinder debug hook
7748 function. FRAME is the frame corresponding to the call to this
7749 function. SYM is the symbol of the function argument holding the
7750 target PC of the exception. */
7751
7752static void
7753insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7754 const struct block *b,
186c406b
TT
7755 struct frame_info *frame,
7756 struct symbol *sym)
7757{
a70b8144 7758 try
186c406b 7759 {
63e43d3a 7760 struct block_symbol vsym;
186c406b
TT
7761 struct value *value;
7762 CORE_ADDR handler;
7763 struct breakpoint *bp;
7764
987012b8 7765 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7766 b, VAR_DOMAIN);
63e43d3a 7767 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7768 /* If the value was optimized out, revert to the old behavior. */
7769 if (! value_optimized_out (value))
7770 {
7771 handler = value_as_address (value);
7772
7773 if (debug_infrun)
7774 fprintf_unfiltered (gdb_stdlog,
7775 "infrun: exception resume at %lx\n",
7776 (unsigned long) handler);
7777
7778 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7779 handler,
7780 bp_exception_resume).release ();
c70a6932
JK
7781
7782 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7783 frame = NULL;
7784
5d5658a1 7785 bp->thread = tp->global_num;
186c406b
TT
7786 inferior_thread ()->control.exception_resume_breakpoint = bp;
7787 }
7788 }
230d2906 7789 catch (const gdb_exception_error &e)
492d29ea
PA
7790 {
7791 /* We want to ignore errors here. */
7792 }
186c406b
TT
7793}
7794
28106bc2
SDJ
7795/* A helper for check_exception_resume that sets an
7796 exception-breakpoint based on a SystemTap probe. */
7797
7798static void
7799insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7800 const struct bound_probe *probe,
28106bc2
SDJ
7801 struct frame_info *frame)
7802{
7803 struct value *arg_value;
7804 CORE_ADDR handler;
7805 struct breakpoint *bp;
7806
7807 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7808 if (!arg_value)
7809 return;
7810
7811 handler = value_as_address (arg_value);
7812
7813 if (debug_infrun)
7814 fprintf_unfiltered (gdb_stdlog,
7815 "infrun: exception resume at %s\n",
6bac7473 7816 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7817 handler));
7818
7819 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7820 handler, bp_exception_resume).release ();
5d5658a1 7821 bp->thread = tp->global_num;
28106bc2
SDJ
7822 inferior_thread ()->control.exception_resume_breakpoint = bp;
7823}
7824
186c406b
TT
7825/* This is called when an exception has been intercepted. Check to
7826 see whether the exception's destination is of interest, and if so,
7827 set an exception resume breakpoint there. */
7828
7829static void
7830check_exception_resume (struct execution_control_state *ecs,
28106bc2 7831 struct frame_info *frame)
186c406b 7832{
729662a5 7833 struct bound_probe probe;
28106bc2
SDJ
7834 struct symbol *func;
7835
7836 /* First see if this exception unwinding breakpoint was set via a
7837 SystemTap probe point. If so, the probe has two arguments: the
7838 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7839 set a breakpoint there. */
6bac7473 7840 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7841 if (probe.prob)
28106bc2 7842 {
729662a5 7843 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7844 return;
7845 }
7846
7847 func = get_frame_function (frame);
7848 if (!func)
7849 return;
186c406b 7850
a70b8144 7851 try
186c406b 7852 {
3977b71f 7853 const struct block *b;
8157b174 7854 struct block_iterator iter;
186c406b
TT
7855 struct symbol *sym;
7856 int argno = 0;
7857
7858 /* The exception breakpoint is a thread-specific breakpoint on
7859 the unwinder's debug hook, declared as:
7860
7861 void _Unwind_DebugHook (void *cfa, void *handler);
7862
7863 The CFA argument indicates the frame to which control is
7864 about to be transferred. HANDLER is the destination PC.
7865
7866 We ignore the CFA and set a temporary breakpoint at HANDLER.
7867 This is not extremely efficient but it avoids issues in gdb
7868 with computing the DWARF CFA, and it also works even in weird
7869 cases such as throwing an exception from inside a signal
7870 handler. */
7871
7872 b = SYMBOL_BLOCK_VALUE (func);
7873 ALL_BLOCK_SYMBOLS (b, iter, sym)
7874 {
7875 if (!SYMBOL_IS_ARGUMENT (sym))
7876 continue;
7877
7878 if (argno == 0)
7879 ++argno;
7880 else
7881 {
7882 insert_exception_resume_breakpoint (ecs->event_thread,
7883 b, frame, sym);
7884 break;
7885 }
7886 }
7887 }
230d2906 7888 catch (const gdb_exception_error &e)
492d29ea
PA
7889 {
7890 }
186c406b
TT
7891}
7892
104c1213 7893static void
22bcd14b 7894stop_waiting (struct execution_control_state *ecs)
104c1213 7895{
527159b7 7896 if (debug_infrun)
22bcd14b 7897 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7898
cd0fc7c3
SS
7899 /* Let callers know we don't want to wait for the inferior anymore. */
7900 ecs->wait_some_more = 0;
fbea99ea
PA
7901
7902 /* If all-stop, but the target is always in non-stop mode, stop all
7903 threads now that we're presenting the stop to the user. */
7904 if (!non_stop && target_is_non_stop_p ())
7905 stop_all_threads ();
cd0fc7c3
SS
7906}
7907
4d9d9d04
PA
7908/* Like keep_going, but passes the signal to the inferior, even if the
7909 signal is set to nopass. */
d4f3574e
SS
7910
7911static void
4d9d9d04 7912keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7913{
d7e15655 7914 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7915 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7916
d4f3574e 7917 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7918 ecs->event_thread->prev_pc
00431a78 7919 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7920
4d9d9d04 7921 if (ecs->event_thread->control.trap_expected)
d4f3574e 7922 {
4d9d9d04
PA
7923 struct thread_info *tp = ecs->event_thread;
7924
7925 if (debug_infrun)
7926 fprintf_unfiltered (gdb_stdlog,
7927 "infrun: %s has trap_expected set, "
7928 "resuming to collect trap\n",
a068643d 7929 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7930
a9ba6bae
PA
7931 /* We haven't yet gotten our trap, and either: intercepted a
7932 non-signal event (e.g., a fork); or took a signal which we
7933 are supposed to pass through to the inferior. Simply
7934 continue. */
64ce06e4 7935 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7936 }
372316f1
PA
7937 else if (step_over_info_valid_p ())
7938 {
7939 /* Another thread is stepping over a breakpoint in-line. If
7940 this thread needs a step-over too, queue the request. In
7941 either case, this resume must be deferred for later. */
7942 struct thread_info *tp = ecs->event_thread;
7943
7944 if (ecs->hit_singlestep_breakpoint
7945 || thread_still_needs_step_over (tp))
7946 {
7947 if (debug_infrun)
7948 fprintf_unfiltered (gdb_stdlog,
7949 "infrun: step-over already in progress: "
7950 "step-over for %s deferred\n",
a068643d 7951 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7952 thread_step_over_chain_enqueue (tp);
7953 }
7954 else
7955 {
7956 if (debug_infrun)
7957 fprintf_unfiltered (gdb_stdlog,
7958 "infrun: step-over in progress: "
7959 "resume of %s deferred\n",
a068643d 7960 target_pid_to_str (tp->ptid).c_str ());
372316f1 7961 }
372316f1 7962 }
d4f3574e
SS
7963 else
7964 {
31e77af2 7965 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7966 int remove_bp;
7967 int remove_wps;
8d297bbf 7968 step_over_what step_what;
31e77af2 7969
d4f3574e 7970 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7971 anyway (if we got a signal, the user asked it be passed to
7972 the child)
7973 -- or --
7974 We got our expected trap, but decided we should resume from
7975 it.
d4f3574e 7976
a9ba6bae 7977 We're going to run this baby now!
d4f3574e 7978
c36b740a
VP
7979 Note that insert_breakpoints won't try to re-insert
7980 already inserted breakpoints. Therefore, we don't
7981 care if breakpoints were already inserted, or not. */
a9ba6bae 7982
31e77af2
PA
7983 /* If we need to step over a breakpoint, and we're not using
7984 displaced stepping to do so, insert all breakpoints
7985 (watchpoints, etc.) but the one we're stepping over, step one
7986 instruction, and then re-insert the breakpoint when that step
7987 is finished. */
963f9c80 7988
6c4cfb24
PA
7989 step_what = thread_still_needs_step_over (ecs->event_thread);
7990
963f9c80 7991 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7992 || (step_what & STEP_OVER_BREAKPOINT));
7993 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7994
cb71640d
PA
7995 /* We can't use displaced stepping if we need to step past a
7996 watchpoint. The instruction copied to the scratch pad would
7997 still trigger the watchpoint. */
7998 if (remove_bp
3fc8eb30 7999 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8000 {
a01bda52 8001 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8002 regcache_read_pc (regcache), remove_wps,
8003 ecs->event_thread->global_num);
45e8c884 8004 }
963f9c80 8005 else if (remove_wps)
21edc42f 8006 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8007
8008 /* If we now need to do an in-line step-over, we need to stop
8009 all other threads. Note this must be done before
8010 insert_breakpoints below, because that removes the breakpoint
8011 we're about to step over, otherwise other threads could miss
8012 it. */
fbea99ea 8013 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8014 stop_all_threads ();
abbb1732 8015
31e77af2 8016 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8017 try
31e77af2
PA
8018 {
8019 insert_breakpoints ();
8020 }
230d2906 8021 catch (const gdb_exception_error &e)
31e77af2
PA
8022 {
8023 exception_print (gdb_stderr, e);
22bcd14b 8024 stop_waiting (ecs);
bdf2a94a 8025 clear_step_over_info ();
31e77af2 8026 return;
d4f3574e
SS
8027 }
8028
963f9c80 8029 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8030
64ce06e4 8031 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8032 }
8033
488f131b 8034 prepare_to_wait (ecs);
d4f3574e
SS
8035}
8036
4d9d9d04
PA
8037/* Called when we should continue running the inferior, because the
8038 current event doesn't cause a user visible stop. This does the
8039 resuming part; waiting for the next event is done elsewhere. */
8040
8041static void
8042keep_going (struct execution_control_state *ecs)
8043{
8044 if (ecs->event_thread->control.trap_expected
8045 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8046 ecs->event_thread->control.trap_expected = 0;
8047
8048 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8049 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8050 keep_going_pass_signal (ecs);
8051}
8052
104c1213
JM
8053/* This function normally comes after a resume, before
8054 handle_inferior_event exits. It takes care of any last bits of
8055 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8056
104c1213
JM
8057static void
8058prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8059{
527159b7 8060 if (debug_infrun)
8a9de0e4 8061 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8062
104c1213 8063 ecs->wait_some_more = 1;
0b333c5e
PA
8064
8065 if (!target_is_async_p ())
8066 mark_infrun_async_event_handler ();
c906108c 8067}
11cf8741 8068
fd664c91 8069/* We are done with the step range of a step/next/si/ni command.
b57bacec 8070 Called once for each n of a "step n" operation. */
fd664c91
PA
8071
8072static void
bdc36728 8073end_stepping_range (struct execution_control_state *ecs)
fd664c91 8074{
bdc36728 8075 ecs->event_thread->control.stop_step = 1;
bdc36728 8076 stop_waiting (ecs);
fd664c91
PA
8077}
8078
33d62d64
JK
8079/* Several print_*_reason functions to print why the inferior has stopped.
8080 We always print something when the inferior exits, or receives a signal.
8081 The rest of the cases are dealt with later on in normal_stop and
8082 print_it_typical. Ideally there should be a call to one of these
8083 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8084 stop_waiting is called.
33d62d64 8085
fd664c91
PA
8086 Note that we don't call these directly, instead we delegate that to
8087 the interpreters, through observers. Interpreters then call these
8088 with whatever uiout is right. */
33d62d64 8089
fd664c91
PA
8090void
8091print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8092{
fd664c91 8093 /* For CLI-like interpreters, print nothing. */
33d62d64 8094
112e8700 8095 if (uiout->is_mi_like_p ())
fd664c91 8096 {
112e8700 8097 uiout->field_string ("reason",
fd664c91
PA
8098 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8099 }
8100}
33d62d64 8101
fd664c91
PA
8102void
8103print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8104{
33d62d64 8105 annotate_signalled ();
112e8700
SM
8106 if (uiout->is_mi_like_p ())
8107 uiout->field_string
8108 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8109 uiout->text ("\nProgram terminated with signal ");
33d62d64 8110 annotate_signal_name ();
112e8700 8111 uiout->field_string ("signal-name",
2ea28649 8112 gdb_signal_to_name (siggnal));
33d62d64 8113 annotate_signal_name_end ();
112e8700 8114 uiout->text (", ");
33d62d64 8115 annotate_signal_string ();
112e8700 8116 uiout->field_string ("signal-meaning",
2ea28649 8117 gdb_signal_to_string (siggnal));
33d62d64 8118 annotate_signal_string_end ();
112e8700
SM
8119 uiout->text (".\n");
8120 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8121}
8122
fd664c91
PA
8123void
8124print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8125{
fda326dd 8126 struct inferior *inf = current_inferior ();
a068643d 8127 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8128
33d62d64
JK
8129 annotate_exited (exitstatus);
8130 if (exitstatus)
8131 {
112e8700
SM
8132 if (uiout->is_mi_like_p ())
8133 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8134 std::string exit_code_str
8135 = string_printf ("0%o", (unsigned int) exitstatus);
8136 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8137 plongest (inf->num), pidstr.c_str (),
8138 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8139 }
8140 else
11cf8741 8141 {
112e8700
SM
8142 if (uiout->is_mi_like_p ())
8143 uiout->field_string
8144 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8145 uiout->message ("[Inferior %s (%s) exited normally]\n",
8146 plongest (inf->num), pidstr.c_str ());
33d62d64 8147 }
33d62d64
JK
8148}
8149
012b3a21
WT
8150/* Some targets/architectures can do extra processing/display of
8151 segmentation faults. E.g., Intel MPX boundary faults.
8152 Call the architecture dependent function to handle the fault. */
8153
8154static void
8155handle_segmentation_fault (struct ui_out *uiout)
8156{
8157 struct regcache *regcache = get_current_regcache ();
ac7936df 8158 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8159
8160 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8161 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8162}
8163
fd664c91
PA
8164void
8165print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8166{
f303dbd6
PA
8167 struct thread_info *thr = inferior_thread ();
8168
33d62d64
JK
8169 annotate_signal ();
8170
112e8700 8171 if (uiout->is_mi_like_p ())
f303dbd6
PA
8172 ;
8173 else if (show_thread_that_caused_stop ())
33d62d64 8174 {
f303dbd6 8175 const char *name;
33d62d64 8176
112e8700 8177 uiout->text ("\nThread ");
33eca680 8178 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8179
8180 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8181 if (name != NULL)
8182 {
112e8700 8183 uiout->text (" \"");
33eca680 8184 uiout->field_string ("name", name);
112e8700 8185 uiout->text ("\"");
f303dbd6 8186 }
33d62d64 8187 }
f303dbd6 8188 else
112e8700 8189 uiout->text ("\nProgram");
f303dbd6 8190
112e8700
SM
8191 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8192 uiout->text (" stopped");
33d62d64
JK
8193 else
8194 {
112e8700 8195 uiout->text (" received signal ");
8b93c638 8196 annotate_signal_name ();
112e8700
SM
8197 if (uiout->is_mi_like_p ())
8198 uiout->field_string
8199 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8200 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8201 annotate_signal_name_end ();
112e8700 8202 uiout->text (", ");
8b93c638 8203 annotate_signal_string ();
112e8700 8204 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8205
8206 if (siggnal == GDB_SIGNAL_SEGV)
8207 handle_segmentation_fault (uiout);
8208
8b93c638 8209 annotate_signal_string_end ();
33d62d64 8210 }
112e8700 8211 uiout->text (".\n");
33d62d64 8212}
252fbfc8 8213
fd664c91
PA
8214void
8215print_no_history_reason (struct ui_out *uiout)
33d62d64 8216{
112e8700 8217 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8218}
43ff13b4 8219
0c7e1a46
PA
8220/* Print current location without a level number, if we have changed
8221 functions or hit a breakpoint. Print source line if we have one.
8222 bpstat_print contains the logic deciding in detail what to print,
8223 based on the event(s) that just occurred. */
8224
243a9253
PA
8225static void
8226print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8227{
8228 int bpstat_ret;
f486487f 8229 enum print_what source_flag;
0c7e1a46
PA
8230 int do_frame_printing = 1;
8231 struct thread_info *tp = inferior_thread ();
8232
8233 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8234 switch (bpstat_ret)
8235 {
8236 case PRINT_UNKNOWN:
8237 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8238 should) carry around the function and does (or should) use
8239 that when doing a frame comparison. */
8240 if (tp->control.stop_step
8241 && frame_id_eq (tp->control.step_frame_id,
8242 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8243 && (tp->control.step_start_function
8244 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8245 {
8246 /* Finished step, just print source line. */
8247 source_flag = SRC_LINE;
8248 }
8249 else
8250 {
8251 /* Print location and source line. */
8252 source_flag = SRC_AND_LOC;
8253 }
8254 break;
8255 case PRINT_SRC_AND_LOC:
8256 /* Print location and source line. */
8257 source_flag = SRC_AND_LOC;
8258 break;
8259 case PRINT_SRC_ONLY:
8260 source_flag = SRC_LINE;
8261 break;
8262 case PRINT_NOTHING:
8263 /* Something bogus. */
8264 source_flag = SRC_LINE;
8265 do_frame_printing = 0;
8266 break;
8267 default:
8268 internal_error (__FILE__, __LINE__, _("Unknown value."));
8269 }
8270
8271 /* The behavior of this routine with respect to the source
8272 flag is:
8273 SRC_LINE: Print only source line
8274 LOCATION: Print only location
8275 SRC_AND_LOC: Print location and source line. */
8276 if (do_frame_printing)
8277 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8278}
8279
243a9253
PA
8280/* See infrun.h. */
8281
8282void
4c7d57e7 8283print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8284{
243a9253 8285 struct target_waitstatus last;
243a9253
PA
8286 struct thread_info *tp;
8287
5b6d1e4f 8288 get_last_target_status (nullptr, nullptr, &last);
243a9253 8289
67ad9399
TT
8290 {
8291 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8292
67ad9399 8293 print_stop_location (&last);
243a9253 8294
67ad9399 8295 /* Display the auto-display expressions. */
4c7d57e7
TT
8296 if (displays)
8297 do_displays ();
67ad9399 8298 }
243a9253
PA
8299
8300 tp = inferior_thread ();
8301 if (tp->thread_fsm != NULL
46e3ed7f 8302 && tp->thread_fsm->finished_p ())
243a9253
PA
8303 {
8304 struct return_value_info *rv;
8305
46e3ed7f 8306 rv = tp->thread_fsm->return_value ();
243a9253
PA
8307 if (rv != NULL)
8308 print_return_value (uiout, rv);
8309 }
0c7e1a46
PA
8310}
8311
388a7084
PA
8312/* See infrun.h. */
8313
8314void
8315maybe_remove_breakpoints (void)
8316{
8317 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8318 {
8319 if (remove_breakpoints ())
8320 {
223ffa71 8321 target_terminal::ours_for_output ();
388a7084
PA
8322 printf_filtered (_("Cannot remove breakpoints because "
8323 "program is no longer writable.\nFurther "
8324 "execution is probably impossible.\n"));
8325 }
8326 }
8327}
8328
4c2f2a79
PA
8329/* The execution context that just caused a normal stop. */
8330
8331struct stop_context
8332{
2d844eaf
TT
8333 stop_context ();
8334 ~stop_context ();
8335
8336 DISABLE_COPY_AND_ASSIGN (stop_context);
8337
8338 bool changed () const;
8339
4c2f2a79
PA
8340 /* The stop ID. */
8341 ULONGEST stop_id;
c906108c 8342
4c2f2a79 8343 /* The event PTID. */
c906108c 8344
4c2f2a79
PA
8345 ptid_t ptid;
8346
8347 /* If stopp for a thread event, this is the thread that caused the
8348 stop. */
8349 struct thread_info *thread;
8350
8351 /* The inferior that caused the stop. */
8352 int inf_num;
8353};
8354
2d844eaf 8355/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8356 takes a strong reference to the thread. */
8357
2d844eaf 8358stop_context::stop_context ()
4c2f2a79 8359{
2d844eaf
TT
8360 stop_id = get_stop_id ();
8361 ptid = inferior_ptid;
8362 inf_num = current_inferior ()->num;
4c2f2a79 8363
d7e15655 8364 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8365 {
8366 /* Take a strong reference so that the thread can't be deleted
8367 yet. */
2d844eaf
TT
8368 thread = inferior_thread ();
8369 thread->incref ();
4c2f2a79
PA
8370 }
8371 else
2d844eaf 8372 thread = NULL;
4c2f2a79
PA
8373}
8374
8375/* Release a stop context previously created with save_stop_context.
8376 Releases the strong reference to the thread as well. */
8377
2d844eaf 8378stop_context::~stop_context ()
4c2f2a79 8379{
2d844eaf
TT
8380 if (thread != NULL)
8381 thread->decref ();
4c2f2a79
PA
8382}
8383
8384/* Return true if the current context no longer matches the saved stop
8385 context. */
8386
2d844eaf
TT
8387bool
8388stop_context::changed () const
8389{
8390 if (ptid != inferior_ptid)
8391 return true;
8392 if (inf_num != current_inferior ()->num)
8393 return true;
8394 if (thread != NULL && thread->state != THREAD_STOPPED)
8395 return true;
8396 if (get_stop_id () != stop_id)
8397 return true;
8398 return false;
4c2f2a79
PA
8399}
8400
8401/* See infrun.h. */
8402
8403int
96baa820 8404normal_stop (void)
c906108c 8405{
73b65bb0 8406 struct target_waitstatus last;
73b65bb0 8407
5b6d1e4f 8408 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8409
4c2f2a79
PA
8410 new_stop_id ();
8411
29f49a6a
PA
8412 /* If an exception is thrown from this point on, make sure to
8413 propagate GDB's knowledge of the executing state to the
8414 frontend/user running state. A QUIT is an easy exception to see
8415 here, so do this before any filtered output. */
731f534f 8416
5b6d1e4f 8417 ptid_t finish_ptid = null_ptid;
731f534f 8418
c35b1492 8419 if (!non_stop)
5b6d1e4f 8420 finish_ptid = minus_one_ptid;
e1316e60
PA
8421 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8422 || last.kind == TARGET_WAITKIND_EXITED)
8423 {
8424 /* On some targets, we may still have live threads in the
8425 inferior when we get a process exit event. E.g., for
8426 "checkpoint", when the current checkpoint/fork exits,
8427 linux-fork.c automatically switches to another fork from
8428 within target_mourn_inferior. */
731f534f 8429 if (inferior_ptid != null_ptid)
5b6d1e4f 8430 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8431 }
8432 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8433 finish_ptid = inferior_ptid;
8434
8435 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8436 if (finish_ptid != null_ptid)
8437 {
8438 maybe_finish_thread_state.emplace
8439 (user_visible_resume_target (finish_ptid), finish_ptid);
8440 }
29f49a6a 8441
b57bacec
PA
8442 /* As we're presenting a stop, and potentially removing breakpoints,
8443 update the thread list so we can tell whether there are threads
8444 running on the target. With target remote, for example, we can
8445 only learn about new threads when we explicitly update the thread
8446 list. Do this before notifying the interpreters about signal
8447 stops, end of stepping ranges, etc., so that the "new thread"
8448 output is emitted before e.g., "Program received signal FOO",
8449 instead of after. */
8450 update_thread_list ();
8451
8452 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8453 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8454
c906108c
SS
8455 /* As with the notification of thread events, we want to delay
8456 notifying the user that we've switched thread context until
8457 the inferior actually stops.
8458
73b65bb0
DJ
8459 There's no point in saying anything if the inferior has exited.
8460 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8461 "received a signal".
8462
8463 Also skip saying anything in non-stop mode. In that mode, as we
8464 don't want GDB to switch threads behind the user's back, to avoid
8465 races where the user is typing a command to apply to thread x,
8466 but GDB switches to thread y before the user finishes entering
8467 the command, fetch_inferior_event installs a cleanup to restore
8468 the current thread back to the thread the user had selected right
8469 after this event is handled, so we're not really switching, only
8470 informing of a stop. */
4f8d22e3 8471 if (!non_stop
731f534f 8472 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8473 && target_has_execution
8474 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8475 && last.kind != TARGET_WAITKIND_EXITED
8476 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8477 {
0e454242 8478 SWITCH_THRU_ALL_UIS ()
3b12939d 8479 {
223ffa71 8480 target_terminal::ours_for_output ();
3b12939d 8481 printf_filtered (_("[Switching to %s]\n"),
a068643d 8482 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8483 annotate_thread_changed ();
8484 }
39f77062 8485 previous_inferior_ptid = inferior_ptid;
c906108c 8486 }
c906108c 8487
0e5bf2a8
PA
8488 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8489 {
0e454242 8490 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8491 if (current_ui->prompt_state == PROMPT_BLOCKED)
8492 {
223ffa71 8493 target_terminal::ours_for_output ();
3b12939d
PA
8494 printf_filtered (_("No unwaited-for children left.\n"));
8495 }
0e5bf2a8
PA
8496 }
8497
b57bacec 8498 /* Note: this depends on the update_thread_list call above. */
388a7084 8499 maybe_remove_breakpoints ();
c906108c 8500
c906108c
SS
8501 /* If an auto-display called a function and that got a signal,
8502 delete that auto-display to avoid an infinite recursion. */
8503
8504 if (stopped_by_random_signal)
8505 disable_current_display ();
8506
0e454242 8507 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8508 {
8509 async_enable_stdin ();
8510 }
c906108c 8511
388a7084 8512 /* Let the user/frontend see the threads as stopped. */
731f534f 8513 maybe_finish_thread_state.reset ();
388a7084
PA
8514
8515 /* Select innermost stack frame - i.e., current frame is frame 0,
8516 and current location is based on that. Handle the case where the
8517 dummy call is returning after being stopped. E.g. the dummy call
8518 previously hit a breakpoint. (If the dummy call returns
8519 normally, we won't reach here.) Do this before the stop hook is
8520 run, so that it doesn't get to see the temporary dummy frame,
8521 which is not where we'll present the stop. */
8522 if (has_stack_frames ())
8523 {
8524 if (stop_stack_dummy == STOP_STACK_DUMMY)
8525 {
8526 /* Pop the empty frame that contains the stack dummy. This
8527 also restores inferior state prior to the call (struct
8528 infcall_suspend_state). */
8529 struct frame_info *frame = get_current_frame ();
8530
8531 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8532 frame_pop (frame);
8533 /* frame_pop calls reinit_frame_cache as the last thing it
8534 does which means there's now no selected frame. */
8535 }
8536
8537 select_frame (get_current_frame ());
8538
8539 /* Set the current source location. */
8540 set_current_sal_from_frame (get_current_frame ());
8541 }
dd7e2d2b
PA
8542
8543 /* Look up the hook_stop and run it (CLI internally handles problem
8544 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8545 if (stop_command != NULL)
8546 {
2d844eaf 8547 stop_context saved_context;
4c2f2a79 8548
a70b8144 8549 try
bf469271
PA
8550 {
8551 execute_cmd_pre_hook (stop_command);
8552 }
230d2906 8553 catch (const gdb_exception &ex)
bf469271
PA
8554 {
8555 exception_fprintf (gdb_stderr, ex,
8556 "Error while running hook_stop:\n");
8557 }
4c2f2a79
PA
8558
8559 /* If the stop hook resumes the target, then there's no point in
8560 trying to notify about the previous stop; its context is
8561 gone. Likewise if the command switches thread or inferior --
8562 the observers would print a stop for the wrong
8563 thread/inferior. */
2d844eaf
TT
8564 if (saved_context.changed ())
8565 return 1;
4c2f2a79 8566 }
dd7e2d2b 8567
388a7084
PA
8568 /* Notify observers about the stop. This is where the interpreters
8569 print the stop event. */
d7e15655 8570 if (inferior_ptid != null_ptid)
76727919 8571 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8572 stop_print_frame);
8573 else
76727919 8574 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8575
243a9253
PA
8576 annotate_stopped ();
8577
48844aa6
PA
8578 if (target_has_execution)
8579 {
8580 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8581 && last.kind != TARGET_WAITKIND_EXITED
8582 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8583 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8584 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8585 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8586 }
6c95b8df
PA
8587
8588 /* Try to get rid of automatically added inferiors that are no
8589 longer needed. Keeping those around slows down things linearly.
8590 Note that this never removes the current inferior. */
8591 prune_inferiors ();
4c2f2a79
PA
8592
8593 return 0;
c906108c 8594}
c906108c 8595\f
c5aa993b 8596int
96baa820 8597signal_stop_state (int signo)
c906108c 8598{
d6b48e9c 8599 return signal_stop[signo];
c906108c
SS
8600}
8601
c5aa993b 8602int
96baa820 8603signal_print_state (int signo)
c906108c
SS
8604{
8605 return signal_print[signo];
8606}
8607
c5aa993b 8608int
96baa820 8609signal_pass_state (int signo)
c906108c
SS
8610{
8611 return signal_program[signo];
8612}
8613
2455069d
UW
8614static void
8615signal_cache_update (int signo)
8616{
8617 if (signo == -1)
8618 {
a493e3e2 8619 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8620 signal_cache_update (signo);
8621
8622 return;
8623 }
8624
8625 signal_pass[signo] = (signal_stop[signo] == 0
8626 && signal_print[signo] == 0
ab04a2af
TT
8627 && signal_program[signo] == 1
8628 && signal_catch[signo] == 0);
2455069d
UW
8629}
8630
488f131b 8631int
7bda5e4a 8632signal_stop_update (int signo, int state)
d4f3574e
SS
8633{
8634 int ret = signal_stop[signo];
abbb1732 8635
d4f3574e 8636 signal_stop[signo] = state;
2455069d 8637 signal_cache_update (signo);
d4f3574e
SS
8638 return ret;
8639}
8640
488f131b 8641int
7bda5e4a 8642signal_print_update (int signo, int state)
d4f3574e
SS
8643{
8644 int ret = signal_print[signo];
abbb1732 8645
d4f3574e 8646 signal_print[signo] = state;
2455069d 8647 signal_cache_update (signo);
d4f3574e
SS
8648 return ret;
8649}
8650
488f131b 8651int
7bda5e4a 8652signal_pass_update (int signo, int state)
d4f3574e
SS
8653{
8654 int ret = signal_program[signo];
abbb1732 8655
d4f3574e 8656 signal_program[signo] = state;
2455069d 8657 signal_cache_update (signo);
d4f3574e
SS
8658 return ret;
8659}
8660
ab04a2af
TT
8661/* Update the global 'signal_catch' from INFO and notify the
8662 target. */
8663
8664void
8665signal_catch_update (const unsigned int *info)
8666{
8667 int i;
8668
8669 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8670 signal_catch[i] = info[i] > 0;
8671 signal_cache_update (-1);
adc6a863 8672 target_pass_signals (signal_pass);
ab04a2af
TT
8673}
8674
c906108c 8675static void
96baa820 8676sig_print_header (void)
c906108c 8677{
3e43a32a
MS
8678 printf_filtered (_("Signal Stop\tPrint\tPass "
8679 "to program\tDescription\n"));
c906108c
SS
8680}
8681
8682static void
2ea28649 8683sig_print_info (enum gdb_signal oursig)
c906108c 8684{
2ea28649 8685 const char *name = gdb_signal_to_name (oursig);
c906108c 8686 int name_padding = 13 - strlen (name);
96baa820 8687
c906108c
SS
8688 if (name_padding <= 0)
8689 name_padding = 0;
8690
8691 printf_filtered ("%s", name);
488f131b 8692 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8693 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8694 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8695 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8696 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8697}
8698
8699/* Specify how various signals in the inferior should be handled. */
8700
8701static void
0b39b52e 8702handle_command (const char *args, int from_tty)
c906108c 8703{
c906108c 8704 int digits, wordlen;
b926417a 8705 int sigfirst, siglast;
2ea28649 8706 enum gdb_signal oursig;
c906108c 8707 int allsigs;
c906108c
SS
8708
8709 if (args == NULL)
8710 {
e2e0b3e5 8711 error_no_arg (_("signal to handle"));
c906108c
SS
8712 }
8713
1777feb0 8714 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8715
adc6a863
PA
8716 const size_t nsigs = GDB_SIGNAL_LAST;
8717 unsigned char sigs[nsigs] {};
c906108c 8718
1777feb0 8719 /* Break the command line up into args. */
c906108c 8720
773a1edc 8721 gdb_argv built_argv (args);
c906108c
SS
8722
8723 /* Walk through the args, looking for signal oursigs, signal names, and
8724 actions. Signal numbers and signal names may be interspersed with
8725 actions, with the actions being performed for all signals cumulatively
1777feb0 8726 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8727
773a1edc 8728 for (char *arg : built_argv)
c906108c 8729 {
773a1edc
TT
8730 wordlen = strlen (arg);
8731 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8732 {;
8733 }
8734 allsigs = 0;
8735 sigfirst = siglast = -1;
8736
773a1edc 8737 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8738 {
8739 /* Apply action to all signals except those used by the
1777feb0 8740 debugger. Silently skip those. */
c906108c
SS
8741 allsigs = 1;
8742 sigfirst = 0;
8743 siglast = nsigs - 1;
8744 }
773a1edc 8745 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8746 {
8747 SET_SIGS (nsigs, sigs, signal_stop);
8748 SET_SIGS (nsigs, sigs, signal_print);
8749 }
773a1edc 8750 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8751 {
8752 UNSET_SIGS (nsigs, sigs, signal_program);
8753 }
773a1edc 8754 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8755 {
8756 SET_SIGS (nsigs, sigs, signal_print);
8757 }
773a1edc 8758 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8759 {
8760 SET_SIGS (nsigs, sigs, signal_program);
8761 }
773a1edc 8762 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8763 {
8764 UNSET_SIGS (nsigs, sigs, signal_stop);
8765 }
773a1edc 8766 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8767 {
8768 SET_SIGS (nsigs, sigs, signal_program);
8769 }
773a1edc 8770 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8771 {
8772 UNSET_SIGS (nsigs, sigs, signal_print);
8773 UNSET_SIGS (nsigs, sigs, signal_stop);
8774 }
773a1edc 8775 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8776 {
8777 UNSET_SIGS (nsigs, sigs, signal_program);
8778 }
8779 else if (digits > 0)
8780 {
8781 /* It is numeric. The numeric signal refers to our own
8782 internal signal numbering from target.h, not to host/target
8783 signal number. This is a feature; users really should be
8784 using symbolic names anyway, and the common ones like
8785 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8786
8787 sigfirst = siglast = (int)
773a1edc
TT
8788 gdb_signal_from_command (atoi (arg));
8789 if (arg[digits] == '-')
c906108c
SS
8790 {
8791 siglast = (int)
773a1edc 8792 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8793 }
8794 if (sigfirst > siglast)
8795 {
1777feb0 8796 /* Bet he didn't figure we'd think of this case... */
b926417a 8797 std::swap (sigfirst, siglast);
c906108c
SS
8798 }
8799 }
8800 else
8801 {
773a1edc 8802 oursig = gdb_signal_from_name (arg);
a493e3e2 8803 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8804 {
8805 sigfirst = siglast = (int) oursig;
8806 }
8807 else
8808 {
8809 /* Not a number and not a recognized flag word => complain. */
773a1edc 8810 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8811 }
8812 }
8813
8814 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8815 which signals to apply actions to. */
c906108c 8816
b926417a 8817 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8818 {
2ea28649 8819 switch ((enum gdb_signal) signum)
c906108c 8820 {
a493e3e2
PA
8821 case GDB_SIGNAL_TRAP:
8822 case GDB_SIGNAL_INT:
c906108c
SS
8823 if (!allsigs && !sigs[signum])
8824 {
9e2f0ad4 8825 if (query (_("%s is used by the debugger.\n\
3e43a32a 8826Are you sure you want to change it? "),
2ea28649 8827 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8828 {
8829 sigs[signum] = 1;
8830 }
8831 else
c119e040 8832 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8833 }
8834 break;
a493e3e2
PA
8835 case GDB_SIGNAL_0:
8836 case GDB_SIGNAL_DEFAULT:
8837 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8838 /* Make sure that "all" doesn't print these. */
8839 break;
8840 default:
8841 sigs[signum] = 1;
8842 break;
8843 }
8844 }
c906108c
SS
8845 }
8846
b926417a 8847 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8848 if (sigs[signum])
8849 {
2455069d 8850 signal_cache_update (-1);
adc6a863
PA
8851 target_pass_signals (signal_pass);
8852 target_program_signals (signal_program);
c906108c 8853
3a031f65
PA
8854 if (from_tty)
8855 {
8856 /* Show the results. */
8857 sig_print_header ();
8858 for (; signum < nsigs; signum++)
8859 if (sigs[signum])
aead7601 8860 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8861 }
8862
8863 break;
8864 }
c906108c
SS
8865}
8866
de0bea00
MF
8867/* Complete the "handle" command. */
8868
eb3ff9a5 8869static void
de0bea00 8870handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8871 completion_tracker &tracker,
6f937416 8872 const char *text, const char *word)
de0bea00 8873{
de0bea00
MF
8874 static const char * const keywords[] =
8875 {
8876 "all",
8877 "stop",
8878 "ignore",
8879 "print",
8880 "pass",
8881 "nostop",
8882 "noignore",
8883 "noprint",
8884 "nopass",
8885 NULL,
8886 };
8887
eb3ff9a5
PA
8888 signal_completer (ignore, tracker, text, word);
8889 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8890}
8891
2ea28649
PA
8892enum gdb_signal
8893gdb_signal_from_command (int num)
ed01b82c
PA
8894{
8895 if (num >= 1 && num <= 15)
2ea28649 8896 return (enum gdb_signal) num;
ed01b82c
PA
8897 error (_("Only signals 1-15 are valid as numeric signals.\n\
8898Use \"info signals\" for a list of symbolic signals."));
8899}
8900
c906108c
SS
8901/* Print current contents of the tables set by the handle command.
8902 It is possible we should just be printing signals actually used
8903 by the current target (but for things to work right when switching
8904 targets, all signals should be in the signal tables). */
8905
8906static void
1d12d88f 8907info_signals_command (const char *signum_exp, int from_tty)
c906108c 8908{
2ea28649 8909 enum gdb_signal oursig;
abbb1732 8910
c906108c
SS
8911 sig_print_header ();
8912
8913 if (signum_exp)
8914 {
8915 /* First see if this is a symbol name. */
2ea28649 8916 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8917 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8918 {
8919 /* No, try numeric. */
8920 oursig =
2ea28649 8921 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8922 }
8923 sig_print_info (oursig);
8924 return;
8925 }
8926
8927 printf_filtered ("\n");
8928 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8929 for (oursig = GDB_SIGNAL_FIRST;
8930 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8931 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8932 {
8933 QUIT;
8934
a493e3e2
PA
8935 if (oursig != GDB_SIGNAL_UNKNOWN
8936 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8937 sig_print_info (oursig);
8938 }
8939
3e43a32a
MS
8940 printf_filtered (_("\nUse the \"handle\" command "
8941 "to change these tables.\n"));
c906108c 8942}
4aa995e1
PA
8943
8944/* The $_siginfo convenience variable is a bit special. We don't know
8945 for sure the type of the value until we actually have a chance to
7a9dd1b2 8946 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8947 also dependent on which thread you have selected.
8948
8949 1. making $_siginfo be an internalvar that creates a new value on
8950 access.
8951
8952 2. making the value of $_siginfo be an lval_computed value. */
8953
8954/* This function implements the lval_computed support for reading a
8955 $_siginfo value. */
8956
8957static void
8958siginfo_value_read (struct value *v)
8959{
8960 LONGEST transferred;
8961
a911d87a
PA
8962 /* If we can access registers, so can we access $_siginfo. Likewise
8963 vice versa. */
8964 validate_registers_access ();
c709acd1 8965
4aa995e1 8966 transferred =
8b88a78e 8967 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8968 NULL,
8969 value_contents_all_raw (v),
8970 value_offset (v),
8971 TYPE_LENGTH (value_type (v)));
8972
8973 if (transferred != TYPE_LENGTH (value_type (v)))
8974 error (_("Unable to read siginfo"));
8975}
8976
8977/* This function implements the lval_computed support for writing a
8978 $_siginfo value. */
8979
8980static void
8981siginfo_value_write (struct value *v, struct value *fromval)
8982{
8983 LONGEST transferred;
8984
a911d87a
PA
8985 /* If we can access registers, so can we access $_siginfo. Likewise
8986 vice versa. */
8987 validate_registers_access ();
c709acd1 8988
8b88a78e 8989 transferred = target_write (current_top_target (),
4aa995e1
PA
8990 TARGET_OBJECT_SIGNAL_INFO,
8991 NULL,
8992 value_contents_all_raw (fromval),
8993 value_offset (v),
8994 TYPE_LENGTH (value_type (fromval)));
8995
8996 if (transferred != TYPE_LENGTH (value_type (fromval)))
8997 error (_("Unable to write siginfo"));
8998}
8999
c8f2448a 9000static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9001 {
9002 siginfo_value_read,
9003 siginfo_value_write
9004 };
9005
9006/* Return a new value with the correct type for the siginfo object of
78267919
UW
9007 the current thread using architecture GDBARCH. Return a void value
9008 if there's no object available. */
4aa995e1 9009
2c0b251b 9010static struct value *
22d2b532
SDJ
9011siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9012 void *ignore)
4aa995e1 9013{
4aa995e1 9014 if (target_has_stack
d7e15655 9015 && inferior_ptid != null_ptid
78267919 9016 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9017 {
78267919 9018 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9019
78267919 9020 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9021 }
9022
78267919 9023 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9024}
9025
c906108c 9026\f
16c381f0
JK
9027/* infcall_suspend_state contains state about the program itself like its
9028 registers and any signal it received when it last stopped.
9029 This state must be restored regardless of how the inferior function call
9030 ends (either successfully, or after it hits a breakpoint or signal)
9031 if the program is to properly continue where it left off. */
9032
6bf78e29 9033class infcall_suspend_state
7a292a7a 9034{
6bf78e29
AB
9035public:
9036 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9037 once the inferior function call has finished. */
9038 infcall_suspend_state (struct gdbarch *gdbarch,
9039 const struct thread_info *tp,
9040 struct regcache *regcache)
9041 : m_thread_suspend (tp->suspend),
9042 m_registers (new readonly_detached_regcache (*regcache))
9043 {
9044 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9045
9046 if (gdbarch_get_siginfo_type_p (gdbarch))
9047 {
9048 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9049 size_t len = TYPE_LENGTH (type);
9050
9051 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9052
9053 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9054 siginfo_data.get (), 0, len) != len)
9055 {
9056 /* Errors ignored. */
9057 siginfo_data.reset (nullptr);
9058 }
9059 }
9060
9061 if (siginfo_data)
9062 {
9063 m_siginfo_gdbarch = gdbarch;
9064 m_siginfo_data = std::move (siginfo_data);
9065 }
9066 }
9067
9068 /* Return a pointer to the stored register state. */
16c381f0 9069
6bf78e29
AB
9070 readonly_detached_regcache *registers () const
9071 {
9072 return m_registers.get ();
9073 }
9074
9075 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9076
9077 void restore (struct gdbarch *gdbarch,
9078 struct thread_info *tp,
9079 struct regcache *regcache) const
9080 {
9081 tp->suspend = m_thread_suspend;
9082
9083 if (m_siginfo_gdbarch == gdbarch)
9084 {
9085 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9086
9087 /* Errors ignored. */
9088 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9089 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9090 }
9091
9092 /* The inferior can be gone if the user types "print exit(0)"
9093 (and perhaps other times). */
9094 if (target_has_execution)
9095 /* NB: The register write goes through to the target. */
9096 regcache->restore (registers ());
9097 }
9098
9099private:
9100 /* How the current thread stopped before the inferior function call was
9101 executed. */
9102 struct thread_suspend_state m_thread_suspend;
9103
9104 /* The registers before the inferior function call was executed. */
9105 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9106
35515841 9107 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9108 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9109
9110 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9111 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9112 content would be invalid. */
6bf78e29 9113 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9114};
9115
cb524840
TT
9116infcall_suspend_state_up
9117save_infcall_suspend_state ()
b89667eb 9118{
b89667eb 9119 struct thread_info *tp = inferior_thread ();
1736ad11 9120 struct regcache *regcache = get_current_regcache ();
ac7936df 9121 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9122
6bf78e29
AB
9123 infcall_suspend_state_up inf_state
9124 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9125
6bf78e29
AB
9126 /* Having saved the current state, adjust the thread state, discarding
9127 any stop signal information. The stop signal is not useful when
9128 starting an inferior function call, and run_inferior_call will not use
9129 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9130 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9131
b89667eb
DE
9132 return inf_state;
9133}
9134
9135/* Restore inferior session state to INF_STATE. */
9136
9137void
16c381f0 9138restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9139{
9140 struct thread_info *tp = inferior_thread ();
1736ad11 9141 struct regcache *regcache = get_current_regcache ();
ac7936df 9142 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9143
6bf78e29 9144 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9145 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9146}
9147
b89667eb 9148void
16c381f0 9149discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9150{
dd848631 9151 delete inf_state;
b89667eb
DE
9152}
9153
daf6667d 9154readonly_detached_regcache *
16c381f0 9155get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9156{
6bf78e29 9157 return inf_state->registers ();
b89667eb
DE
9158}
9159
16c381f0
JK
9160/* infcall_control_state contains state regarding gdb's control of the
9161 inferior itself like stepping control. It also contains session state like
9162 the user's currently selected frame. */
b89667eb 9163
16c381f0 9164struct infcall_control_state
b89667eb 9165{
16c381f0
JK
9166 struct thread_control_state thread_control;
9167 struct inferior_control_state inferior_control;
d82142e2
JK
9168
9169 /* Other fields: */
ee841dd8
TT
9170 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9171 int stopped_by_random_signal = 0;
7a292a7a 9172
b89667eb 9173 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9174 struct frame_id selected_frame_id {};
7a292a7a
SS
9175};
9176
c906108c 9177/* Save all of the information associated with the inferior<==>gdb
b89667eb 9178 connection. */
c906108c 9179
cb524840
TT
9180infcall_control_state_up
9181save_infcall_control_state ()
c906108c 9182{
cb524840 9183 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9184 struct thread_info *tp = inferior_thread ();
d6b48e9c 9185 struct inferior *inf = current_inferior ();
7a292a7a 9186
16c381f0
JK
9187 inf_status->thread_control = tp->control;
9188 inf_status->inferior_control = inf->control;
d82142e2 9189
8358c15c 9190 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9191 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9192
16c381f0
JK
9193 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9194 chain. If caller's caller is walking the chain, they'll be happier if we
9195 hand them back the original chain when restore_infcall_control_state is
9196 called. */
9197 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9198
9199 /* Other fields: */
9200 inf_status->stop_stack_dummy = stop_stack_dummy;
9201 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9202
206415a3 9203 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9204
7a292a7a 9205 return inf_status;
c906108c
SS
9206}
9207
bf469271
PA
9208static void
9209restore_selected_frame (const frame_id &fid)
c906108c 9210{
bf469271 9211 frame_info *frame = frame_find_by_id (fid);
c906108c 9212
aa0cd9c1
AC
9213 /* If inf_status->selected_frame_id is NULL, there was no previously
9214 selected frame. */
101dcfbe 9215 if (frame == NULL)
c906108c 9216 {
8a3fe4f8 9217 warning (_("Unable to restore previously selected frame."));
bf469271 9218 return;
c906108c
SS
9219 }
9220
0f7d239c 9221 select_frame (frame);
c906108c
SS
9222}
9223
b89667eb
DE
9224/* Restore inferior session state to INF_STATUS. */
9225
c906108c 9226void
16c381f0 9227restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9228{
4e1c45ea 9229 struct thread_info *tp = inferior_thread ();
d6b48e9c 9230 struct inferior *inf = current_inferior ();
4e1c45ea 9231
8358c15c
JK
9232 if (tp->control.step_resume_breakpoint)
9233 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9234
5b79abe7
TT
9235 if (tp->control.exception_resume_breakpoint)
9236 tp->control.exception_resume_breakpoint->disposition
9237 = disp_del_at_next_stop;
9238
d82142e2 9239 /* Handle the bpstat_copy of the chain. */
16c381f0 9240 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9241
16c381f0
JK
9242 tp->control = inf_status->thread_control;
9243 inf->control = inf_status->inferior_control;
d82142e2
JK
9244
9245 /* Other fields: */
9246 stop_stack_dummy = inf_status->stop_stack_dummy;
9247 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9248
b89667eb 9249 if (target_has_stack)
c906108c 9250 {
bf469271 9251 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9252 walking the stack might encounter a garbage pointer and
9253 error() trying to dereference it. */
a70b8144 9254 try
bf469271
PA
9255 {
9256 restore_selected_frame (inf_status->selected_frame_id);
9257 }
230d2906 9258 catch (const gdb_exception_error &ex)
bf469271
PA
9259 {
9260 exception_fprintf (gdb_stderr, ex,
9261 "Unable to restore previously selected frame:\n");
9262 /* Error in restoring the selected frame. Select the
9263 innermost frame. */
9264 select_frame (get_current_frame ());
9265 }
c906108c 9266 }
c906108c 9267
ee841dd8 9268 delete inf_status;
7a292a7a 9269}
c906108c
SS
9270
9271void
16c381f0 9272discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9273{
8358c15c
JK
9274 if (inf_status->thread_control.step_resume_breakpoint)
9275 inf_status->thread_control.step_resume_breakpoint->disposition
9276 = disp_del_at_next_stop;
9277
5b79abe7
TT
9278 if (inf_status->thread_control.exception_resume_breakpoint)
9279 inf_status->thread_control.exception_resume_breakpoint->disposition
9280 = disp_del_at_next_stop;
9281
1777feb0 9282 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9283 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9284
ee841dd8 9285 delete inf_status;
7a292a7a 9286}
b89667eb 9287\f
7f89fd65 9288/* See infrun.h. */
0c557179
SDJ
9289
9290void
9291clear_exit_convenience_vars (void)
9292{
9293 clear_internalvar (lookup_internalvar ("_exitsignal"));
9294 clear_internalvar (lookup_internalvar ("_exitcode"));
9295}
c5aa993b 9296\f
488f131b 9297
b2175913
MS
9298/* User interface for reverse debugging:
9299 Set exec-direction / show exec-direction commands
9300 (returns error unless target implements to_set_exec_direction method). */
9301
170742de 9302enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9303static const char exec_forward[] = "forward";
9304static const char exec_reverse[] = "reverse";
9305static const char *exec_direction = exec_forward;
40478521 9306static const char *const exec_direction_names[] = {
b2175913
MS
9307 exec_forward,
9308 exec_reverse,
9309 NULL
9310};
9311
9312static void
eb4c3f4a 9313set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9314 struct cmd_list_element *cmd)
9315{
9316 if (target_can_execute_reverse)
9317 {
9318 if (!strcmp (exec_direction, exec_forward))
9319 execution_direction = EXEC_FORWARD;
9320 else if (!strcmp (exec_direction, exec_reverse))
9321 execution_direction = EXEC_REVERSE;
9322 }
8bbed405
MS
9323 else
9324 {
9325 exec_direction = exec_forward;
9326 error (_("Target does not support this operation."));
9327 }
b2175913
MS
9328}
9329
9330static void
9331show_exec_direction_func (struct ui_file *out, int from_tty,
9332 struct cmd_list_element *cmd, const char *value)
9333{
9334 switch (execution_direction) {
9335 case EXEC_FORWARD:
9336 fprintf_filtered (out, _("Forward.\n"));
9337 break;
9338 case EXEC_REVERSE:
9339 fprintf_filtered (out, _("Reverse.\n"));
9340 break;
b2175913 9341 default:
d8b34453
PA
9342 internal_error (__FILE__, __LINE__,
9343 _("bogus execution_direction value: %d"),
9344 (int) execution_direction);
b2175913
MS
9345 }
9346}
9347
d4db2f36
PA
9348static void
9349show_schedule_multiple (struct ui_file *file, int from_tty,
9350 struct cmd_list_element *c, const char *value)
9351{
3e43a32a
MS
9352 fprintf_filtered (file, _("Resuming the execution of threads "
9353 "of all processes is %s.\n"), value);
d4db2f36 9354}
ad52ddc6 9355
22d2b532
SDJ
9356/* Implementation of `siginfo' variable. */
9357
9358static const struct internalvar_funcs siginfo_funcs =
9359{
9360 siginfo_make_value,
9361 NULL,
9362 NULL
9363};
9364
372316f1
PA
9365/* Callback for infrun's target events source. This is marked when a
9366 thread has a pending status to process. */
9367
9368static void
9369infrun_async_inferior_event_handler (gdb_client_data data)
9370{
372316f1
PA
9371 inferior_event_handler (INF_REG_EVENT, NULL);
9372}
9373
6c265988 9374void _initialize_infrun ();
c906108c 9375void
6c265988 9376_initialize_infrun ()
c906108c 9377{
de0bea00 9378 struct cmd_list_element *c;
c906108c 9379
372316f1
PA
9380 /* Register extra event sources in the event loop. */
9381 infrun_async_inferior_event_token
9382 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9383
11db9430 9384 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9385What debugger does when program gets various signals.\n\
9386Specify a signal as argument to print info on that signal only."));
c906108c
SS
9387 add_info_alias ("handle", "signals", 0);
9388
de0bea00 9389 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9390Specify how to handle signals.\n\
486c7739 9391Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9392Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9393If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9394will be displayed instead.\n\
9395\n\
c906108c
SS
9396Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9397from 1-15 are allowed for compatibility with old versions of GDB.\n\
9398Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9399The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9400used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9401\n\
1bedd215 9402Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9403\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9404Stop means reenter debugger if this signal happens (implies print).\n\
9405Print means print a message if this signal happens.\n\
9406Pass means let program see this signal; otherwise program doesn't know.\n\
9407Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9408Pass and Stop may be combined.\n\
9409\n\
9410Multiple signals may be specified. Signal numbers and signal names\n\
9411may be interspersed with actions, with the actions being performed for\n\
9412all signals cumulatively specified."));
de0bea00 9413 set_cmd_completer (c, handle_completer);
486c7739 9414
c906108c 9415 if (!dbx_commands)
1a966eab
AC
9416 stop_command = add_cmd ("stop", class_obscure,
9417 not_just_help_class_command, _("\
9418There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9419This allows you to set a list of commands to be run each time execution\n\
1a966eab 9420of the program stops."), &cmdlist);
c906108c 9421
ccce17b0 9422 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9423Set inferior debugging."), _("\
9424Show inferior debugging."), _("\
9425When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9426 NULL,
9427 show_debug_infrun,
9428 &setdebuglist, &showdebuglist);
527159b7 9429
3e43a32a
MS
9430 add_setshow_boolean_cmd ("displaced", class_maintenance,
9431 &debug_displaced, _("\
237fc4c9
PA
9432Set displaced stepping debugging."), _("\
9433Show displaced stepping debugging."), _("\
9434When non-zero, displaced stepping specific debugging is enabled."),
9435 NULL,
9436 show_debug_displaced,
9437 &setdebuglist, &showdebuglist);
9438
ad52ddc6
PA
9439 add_setshow_boolean_cmd ("non-stop", no_class,
9440 &non_stop_1, _("\
9441Set whether gdb controls the inferior in non-stop mode."), _("\
9442Show whether gdb controls the inferior in non-stop mode."), _("\
9443When debugging a multi-threaded program and this setting is\n\
9444off (the default, also called all-stop mode), when one thread stops\n\
9445(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9446all other threads in the program while you interact with the thread of\n\
9447interest. When you continue or step a thread, you can allow the other\n\
9448threads to run, or have them remain stopped, but while you inspect any\n\
9449thread's state, all threads stop.\n\
9450\n\
9451In non-stop mode, when one thread stops, other threads can continue\n\
9452to run freely. You'll be able to step each thread independently,\n\
9453leave it stopped or free to run as needed."),
9454 set_non_stop,
9455 show_non_stop,
9456 &setlist,
9457 &showlist);
9458
adc6a863 9459 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9460 {
9461 signal_stop[i] = 1;
9462 signal_print[i] = 1;
9463 signal_program[i] = 1;
ab04a2af 9464 signal_catch[i] = 0;
c906108c
SS
9465 }
9466
4d9d9d04
PA
9467 /* Signals caused by debugger's own actions should not be given to
9468 the program afterwards.
9469
9470 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9471 explicitly specifies that it should be delivered to the target
9472 program. Typically, that would occur when a user is debugging a
9473 target monitor on a simulator: the target monitor sets a
9474 breakpoint; the simulator encounters this breakpoint and halts
9475 the simulation handing control to GDB; GDB, noting that the stop
9476 address doesn't map to any known breakpoint, returns control back
9477 to the simulator; the simulator then delivers the hardware
9478 equivalent of a GDB_SIGNAL_TRAP to the program being
9479 debugged. */
a493e3e2
PA
9480 signal_program[GDB_SIGNAL_TRAP] = 0;
9481 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9482
9483 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9484 signal_stop[GDB_SIGNAL_ALRM] = 0;
9485 signal_print[GDB_SIGNAL_ALRM] = 0;
9486 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9487 signal_print[GDB_SIGNAL_VTALRM] = 0;
9488 signal_stop[GDB_SIGNAL_PROF] = 0;
9489 signal_print[GDB_SIGNAL_PROF] = 0;
9490 signal_stop[GDB_SIGNAL_CHLD] = 0;
9491 signal_print[GDB_SIGNAL_CHLD] = 0;
9492 signal_stop[GDB_SIGNAL_IO] = 0;
9493 signal_print[GDB_SIGNAL_IO] = 0;
9494 signal_stop[GDB_SIGNAL_POLL] = 0;
9495 signal_print[GDB_SIGNAL_POLL] = 0;
9496 signal_stop[GDB_SIGNAL_URG] = 0;
9497 signal_print[GDB_SIGNAL_URG] = 0;
9498 signal_stop[GDB_SIGNAL_WINCH] = 0;
9499 signal_print[GDB_SIGNAL_WINCH] = 0;
9500 signal_stop[GDB_SIGNAL_PRIO] = 0;
9501 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9502
cd0fc7c3
SS
9503 /* These signals are used internally by user-level thread
9504 implementations. (See signal(5) on Solaris.) Like the above
9505 signals, a healthy program receives and handles them as part of
9506 its normal operation. */
a493e3e2
PA
9507 signal_stop[GDB_SIGNAL_LWP] = 0;
9508 signal_print[GDB_SIGNAL_LWP] = 0;
9509 signal_stop[GDB_SIGNAL_WAITING] = 0;
9510 signal_print[GDB_SIGNAL_WAITING] = 0;
9511 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9512 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9513 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9514 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9515
2455069d
UW
9516 /* Update cached state. */
9517 signal_cache_update (-1);
9518
85c07804
AC
9519 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9520 &stop_on_solib_events, _("\
9521Set stopping for shared library events."), _("\
9522Show stopping for shared library events."), _("\
c906108c
SS
9523If nonzero, gdb will give control to the user when the dynamic linker\n\
9524notifies gdb of shared library events. The most common event of interest\n\
85c07804 9525to the user would be loading/unloading of a new library."),
f9e14852 9526 set_stop_on_solib_events,
920d2a44 9527 show_stop_on_solib_events,
85c07804 9528 &setlist, &showlist);
c906108c 9529
7ab04401
AC
9530 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9531 follow_fork_mode_kind_names,
9532 &follow_fork_mode_string, _("\
9533Set debugger response to a program call of fork or vfork."), _("\
9534Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9535A fork or vfork creates a new process. follow-fork-mode can be:\n\
9536 parent - the original process is debugged after a fork\n\
9537 child - the new process is debugged after a fork\n\
ea1dd7bc 9538The unfollowed process will continue to run.\n\
7ab04401
AC
9539By default, the debugger will follow the parent process."),
9540 NULL,
920d2a44 9541 show_follow_fork_mode_string,
7ab04401
AC
9542 &setlist, &showlist);
9543
6c95b8df
PA
9544 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9545 follow_exec_mode_names,
9546 &follow_exec_mode_string, _("\
9547Set debugger response to a program call of exec."), _("\
9548Show debugger response to a program call of exec."), _("\
9549An exec call replaces the program image of a process.\n\
9550\n\
9551follow-exec-mode can be:\n\
9552\n\
cce7e648 9553 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9554to this new inferior. The program the process was running before\n\
9555the exec call can be restarted afterwards by restarting the original\n\
9556inferior.\n\
9557\n\
9558 same - the debugger keeps the process bound to the same inferior.\n\
9559The new executable image replaces the previous executable loaded in\n\
9560the inferior. Restarting the inferior after the exec call restarts\n\
9561the executable the process was running after the exec call.\n\
9562\n\
9563By default, the debugger will use the same inferior."),
9564 NULL,
9565 show_follow_exec_mode_string,
9566 &setlist, &showlist);
9567
7ab04401
AC
9568 add_setshow_enum_cmd ("scheduler-locking", class_run,
9569 scheduler_enums, &scheduler_mode, _("\
9570Set mode for locking scheduler during execution."), _("\
9571Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9572off == no locking (threads may preempt at any time)\n\
9573on == full locking (no thread except the current thread may run)\n\
9574 This applies to both normal execution and replay mode.\n\
9575step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9576 In this mode, other threads may run during other commands.\n\
9577 This applies to both normal execution and replay mode.\n\
9578replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9579 set_schedlock_func, /* traps on target vector */
920d2a44 9580 show_scheduler_mode,
7ab04401 9581 &setlist, &showlist);
5fbbeb29 9582
d4db2f36
PA
9583 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9584Set mode for resuming threads of all processes."), _("\
9585Show mode for resuming threads of all processes."), _("\
9586When on, execution commands (such as 'continue' or 'next') resume all\n\
9587threads of all processes. When off (which is the default), execution\n\
9588commands only resume the threads of the current process. The set of\n\
9589threads that are resumed is further refined by the scheduler-locking\n\
9590mode (see help set scheduler-locking)."),
9591 NULL,
9592 show_schedule_multiple,
9593 &setlist, &showlist);
9594
5bf193a2
AC
9595 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9596Set mode of the step operation."), _("\
9597Show mode of the step operation."), _("\
9598When set, doing a step over a function without debug line information\n\
9599will stop at the first instruction of that function. Otherwise, the\n\
9600function is skipped and the step command stops at a different source line."),
9601 NULL,
920d2a44 9602 show_step_stop_if_no_debug,
5bf193a2 9603 &setlist, &showlist);
ca6724c1 9604
72d0e2c5
YQ
9605 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9606 &can_use_displaced_stepping, _("\
237fc4c9
PA
9607Set debugger's willingness to use displaced stepping."), _("\
9608Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9609If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9610supported by the target architecture. If off, gdb will not use displaced\n\
9611stepping to step over breakpoints, even if such is supported by the target\n\
9612architecture. If auto (which is the default), gdb will use displaced stepping\n\
9613if the target architecture supports it and non-stop mode is active, but will not\n\
9614use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9615 NULL,
9616 show_can_use_displaced_stepping,
9617 &setlist, &showlist);
237fc4c9 9618
b2175913
MS
9619 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9620 &exec_direction, _("Set direction of execution.\n\
9621Options are 'forward' or 'reverse'."),
9622 _("Show direction of execution (forward/reverse)."),
9623 _("Tells gdb whether to execute forward or backward."),
9624 set_exec_direction_func, show_exec_direction_func,
9625 &setlist, &showlist);
9626
6c95b8df
PA
9627 /* Set/show detach-on-fork: user-settable mode. */
9628
9629 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9630Set whether gdb will detach the child of a fork."), _("\
9631Show whether gdb will detach the child of a fork."), _("\
9632Tells gdb whether to detach the child of a fork."),
9633 NULL, NULL, &setlist, &showlist);
9634
03583c20
UW
9635 /* Set/show disable address space randomization mode. */
9636
9637 add_setshow_boolean_cmd ("disable-randomization", class_support,
9638 &disable_randomization, _("\
9639Set disabling of debuggee's virtual address space randomization."), _("\
9640Show disabling of debuggee's virtual address space randomization."), _("\
9641When this mode is on (which is the default), randomization of the virtual\n\
9642address space is disabled. Standalone programs run with the randomization\n\
9643enabled by default on some platforms."),
9644 &set_disable_randomization,
9645 &show_disable_randomization,
9646 &setlist, &showlist);
9647
ca6724c1 9648 /* ptid initializations */
ca6724c1
KB
9649 inferior_ptid = null_ptid;
9650 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9651
76727919
TT
9652 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9653 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9654 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9655 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9656
9657 /* Explicitly create without lookup, since that tries to create a
9658 value with a void typed value, and when we get here, gdbarch
9659 isn't initialized yet. At this point, we're quite sure there
9660 isn't another convenience variable of the same name. */
22d2b532 9661 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9662
9663 add_setshow_boolean_cmd ("observer", no_class,
9664 &observer_mode_1, _("\
9665Set whether gdb controls the inferior in observer mode."), _("\
9666Show whether gdb controls the inferior in observer mode."), _("\
9667In observer mode, GDB can get data from the inferior, but not\n\
9668affect its execution. Registers and memory may not be changed,\n\
9669breakpoints may not be set, and the program cannot be interrupted\n\
9670or signalled."),
9671 set_observer_mode,
9672 show_observer_mode,
9673 &setlist,
9674 &showlist);
c906108c 9675}
This page took 3.785194 seconds and 4 git commands to generate.