Fix leak of struct call_thread_fsm in call_function_by_hand_dummy.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
4ef3f3be 77static int follow_fork (void);
96baa820 78
d83ad864
DB
79static int follow_fork_inferior (int follow_child, int detach_fork);
80
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
e58b0e63
PA
85void nullify_last_target_wait_ptid (void);
86
2c03e5be 87static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
88
89static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
2484c66b
UW
91static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
8550d3b3
YQ
93static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
aff4e175
AB
95static void resume (gdb_signal sig);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
105/* See infrun.h. */
106
107void
108infrun_async (int enable)
109{
110 if (infrun_is_async != enable)
111 {
112 infrun_is_async = enable;
113
114 if (debug_infrun)
115 fprintf_unfiltered (gdb_stdlog,
116 "infrun: infrun_async(%d)\n",
117 enable);
118
119 if (enable)
120 mark_async_event_handler (infrun_async_inferior_event_token);
121 else
122 clear_async_event_handler (infrun_async_inferior_event_token);
123 }
124}
125
0b333c5e
PA
126/* See infrun.h. */
127
128void
129mark_infrun_async_event_handler (void)
130{
131 mark_async_event_handler (infrun_async_inferior_event_token);
132}
133
5fbbeb29
CF
134/* When set, stop the 'step' command if we enter a function which has
135 no line number information. The normal behavior is that we step
136 over such function. */
137int step_stop_if_no_debug = 0;
920d2a44
AC
138static void
139show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
143}
5fbbeb29 144
b9f437de
PA
145/* proceed and normal_stop use this to notify the user when the
146 inferior stopped in a different thread than it had been running
147 in. */
96baa820 148
39f77062 149static ptid_t previous_inferior_ptid;
7a292a7a 150
07107ca6
LM
151/* If set (default for legacy reasons), when following a fork, GDB
152 will detach from one of the fork branches, child or parent.
153 Exactly which branch is detached depends on 'set follow-fork-mode'
154 setting. */
155
156static int detach_fork = 1;
6c95b8df 157
237fc4c9
PA
158int debug_displaced = 0;
159static void
160show_debug_displaced (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
164}
165
ccce17b0 166unsigned int debug_infrun = 0;
920d2a44
AC
167static void
168show_debug_infrun (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
171 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
172}
527159b7 173
03583c20
UW
174
175/* Support for disabling address space randomization. */
176
177int disable_randomization = 1;
178
179static void
180show_disable_randomization (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 if (target_supports_disable_randomization ())
184 fprintf_filtered (file,
185 _("Disabling randomization of debuggee's "
186 "virtual address space is %s.\n"),
187 value);
188 else
189 fputs_filtered (_("Disabling randomization of debuggee's "
190 "virtual address space is unsupported on\n"
191 "this platform.\n"), file);
192}
193
194static void
eb4c3f4a 195set_disable_randomization (const char *args, int from_tty,
03583c20
UW
196 struct cmd_list_element *c)
197{
198 if (!target_supports_disable_randomization ())
199 error (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform."));
202}
203
d32dc48e
PA
204/* User interface for non-stop mode. */
205
206int non_stop = 0;
207static int non_stop_1 = 0;
208
209static void
eb4c3f4a 210set_non_stop (const char *args, int from_tty,
d32dc48e
PA
211 struct cmd_list_element *c)
212{
213 if (target_has_execution)
214 {
215 non_stop_1 = non_stop;
216 error (_("Cannot change this setting while the inferior is running."));
217 }
218
219 non_stop = non_stop_1;
220}
221
222static void
223show_non_stop (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225{
226 fprintf_filtered (file,
227 _("Controlling the inferior in non-stop mode is %s.\n"),
228 value);
229}
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
d914c394
SS
235int observer_mode = 0;
236static int observer_mode_1 = 0;
237
238static void
eb4c3f4a 239set_observer_mode (const char *args, int from_tty,
d914c394
SS
240 struct cmd_list_element *c)
241{
d914c394
SS
242 if (target_has_execution)
243 {
244 observer_mode_1 = observer_mode;
245 error (_("Cannot change this setting while the inferior is running."));
246 }
247
248 observer_mode = observer_mode_1;
249
250 may_write_registers = !observer_mode;
251 may_write_memory = !observer_mode;
252 may_insert_breakpoints = !observer_mode;
253 may_insert_tracepoints = !observer_mode;
254 /* We can insert fast tracepoints in or out of observer mode,
255 but enable them if we're going into this mode. */
256 if (observer_mode)
257 may_insert_fast_tracepoints = 1;
258 may_stop = !observer_mode;
259 update_target_permissions ();
260
261 /* Going *into* observer mode we must force non-stop, then
262 going out we leave it that way. */
263 if (observer_mode)
264 {
d914c394
SS
265 pagination_enabled = 0;
266 non_stop = non_stop_1 = 1;
267 }
268
269 if (from_tty)
270 printf_filtered (_("Observer mode is now %s.\n"),
271 (observer_mode ? "on" : "off"));
272}
273
274static void
275show_observer_mode (struct ui_file *file, int from_tty,
276 struct cmd_list_element *c, const char *value)
277{
278 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
279}
280
281/* This updates the value of observer mode based on changes in
282 permissions. Note that we are deliberately ignoring the values of
283 may-write-registers and may-write-memory, since the user may have
284 reason to enable these during a session, for instance to turn on a
285 debugging-related global. */
286
287void
288update_observer_mode (void)
289{
290 int newval;
291
292 newval = (!may_insert_breakpoints
293 && !may_insert_tracepoints
294 && may_insert_fast_tracepoints
295 && !may_stop
296 && non_stop);
297
298 /* Let the user know if things change. */
299 if (newval != observer_mode)
300 printf_filtered (_("Observer mode is now %s.\n"),
301 (newval ? "on" : "off"));
302
303 observer_mode = observer_mode_1 = newval;
304}
c2c6d25f 305
c906108c
SS
306/* Tables of how to react to signals; the user sets them. */
307
308static unsigned char *signal_stop;
309static unsigned char *signal_print;
310static unsigned char *signal_program;
311
ab04a2af
TT
312/* Table of signals that are registered with "catch signal". A
313 non-zero entry indicates that the signal is caught by some "catch
314 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
315 signals. */
316static unsigned char *signal_catch;
317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321static unsigned char *signal_pass;
322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
9b224c5e
PA
339/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
340 this function is to avoid exporting `signal_program'. */
341
342void
343update_signals_program_target (void)
344{
a493e3e2 345 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
346}
347
1777feb0 348/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 349
edb3359d 350#define RESUME_ALL minus_one_ptid
c906108c
SS
351
352/* Command list pointer for the "stop" placeholder. */
353
354static struct cmd_list_element *stop_command;
355
c906108c
SS
356/* Nonzero if we want to give control to the user when we're notified
357 of shared library events by the dynamic linker. */
628fe4e4 358int stop_on_solib_events;
f9e14852
GB
359
360/* Enable or disable optional shared library event breakpoints
361 as appropriate when the above flag is changed. */
362
363static void
eb4c3f4a
TT
364set_stop_on_solib_events (const char *args,
365 int from_tty, struct cmd_list_element *c)
f9e14852
GB
366{
367 update_solib_breakpoints ();
368}
369
920d2a44
AC
370static void
371show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373{
374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 value);
376}
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
00431a78 461 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
462 }
463
f67c0c91 464 if (print_inferior_events)
d83ad864 465 {
8dd06f7a 466 /* Ensure that we have a process ptid. */
e99b03dc 467 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
f67c0c91 471 _("[Detaching after %s from child %s]\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
e99b03dc 481 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
f67c0c91 492 add_thread_silent (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
f67c0c91 552 if (print_inferior_events)
d83ad864 553 {
f67c0c91
SDJ
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
223ffa71 557 target_terminal::ours_for_output ();
6f259a23 558 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
6f259a23 561 has_vforked ? "vfork" : "fork",
f67c0c91 562 child_pid.c_str ());
d83ad864
DB
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
e99b03dc 568 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
6f259a23 599 {
f67c0c91 600 if (print_inferior_events)
6f259a23 601 {
8dd06f7a 602 /* Ensure that we have a process ptid. */
e99b03dc 603 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 604
223ffa71 605 target_terminal::ours_for_output ();
6f259a23 606 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
607 _("[Detaching after fork from "
608 "parent %s]\n"),
8dd06f7a 609 target_pid_to_str (process_ptid));
6f259a23
DB
610 }
611
6e1e1966 612 target_detach (parent_inf, 0);
6f259a23 613 }
d83ad864
DB
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
79639e11 621 inferior_ptid = child_ptid;
f67c0c91 622 add_thread_silent (inferior_ptid);
2a00d7ce 623 set_current_inferior (child_inf);
d83ad864
DB
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
564b1e3f 636 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652}
653
e58b0e63
PA
654/* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
6604731b 658static int
4ef3f3be 659follow_fork (void)
c906108c 660{
ea1dd7bc 661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
4e3990f4
DE
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 670 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
8980e177 674 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
00431a78
PA
692 if (wait_ptid != minus_one_ptid
693 && inferior_ptid != wait_ptid)
e58b0e63
PA
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
00431a78
PA
699 thread_info *wait_thread
700 = find_thread_ptid (wait_ptid);
701 switch_to_thread (wait_thread);
e58b0e63
PA
702 should_resume = 0;
703 }
704 }
705
706 tp = inferior_thread ();
707
708 /* If there were any forks/vforks that were caught and are now to be
709 followed, then do so now. */
710 switch (tp->pending_follow.kind)
711 {
712 case TARGET_WAITKIND_FORKED:
713 case TARGET_WAITKIND_VFORKED:
714 {
715 ptid_t parent, child;
716
717 /* If the user did a next/step, etc, over a fork call,
718 preserve the stepping state in the fork child. */
719 if (follow_child && should_resume)
720 {
8358c15c
JK
721 step_resume_breakpoint = clone_momentary_breakpoint
722 (tp->control.step_resume_breakpoint);
16c381f0
JK
723 step_range_start = tp->control.step_range_start;
724 step_range_end = tp->control.step_range_end;
725 step_frame_id = tp->control.step_frame_id;
186c406b
TT
726 exception_resume_breakpoint
727 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 728 thread_fsm = tp->thread_fsm;
e58b0e63
PA
729
730 /* For now, delete the parent's sr breakpoint, otherwise,
731 parent/child sr breakpoints are considered duplicates,
732 and the child version will not be installed. Remove
733 this when the breakpoints module becomes aware of
734 inferiors and address spaces. */
735 delete_step_resume_breakpoint (tp);
16c381f0
JK
736 tp->control.step_range_start = 0;
737 tp->control.step_range_end = 0;
738 tp->control.step_frame_id = null_frame_id;
186c406b 739 delete_exception_resume_breakpoint (tp);
8980e177 740 tp->thread_fsm = NULL;
e58b0e63
PA
741 }
742
743 parent = inferior_ptid;
744 child = tp->pending_follow.value.related_pid;
745
d83ad864
DB
746 /* Set up inferior(s) as specified by the caller, and tell the
747 target to do whatever is necessary to follow either parent
748 or child. */
749 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
750 {
751 /* Target refused to follow, or there's some other reason
752 we shouldn't resume. */
753 should_resume = 0;
754 }
755 else
756 {
757 /* This pending follow fork event is now handled, one way
758 or another. The previous selected thread may be gone
759 from the lists by now, but if it is still around, need
760 to clear the pending follow request. */
e09875d4 761 tp = find_thread_ptid (parent);
e58b0e63
PA
762 if (tp)
763 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
764
765 /* This makes sure we don't try to apply the "Switched
766 over from WAIT_PID" logic above. */
767 nullify_last_target_wait_ptid ();
768
1777feb0 769 /* If we followed the child, switch to it... */
e58b0e63
PA
770 if (follow_child)
771 {
00431a78
PA
772 thread_info *child_thr = find_thread_ptid (child);
773 switch_to_thread (child_thr);
e58b0e63
PA
774
775 /* ... and preserve the stepping state, in case the
776 user was stepping over the fork call. */
777 if (should_resume)
778 {
779 tp = inferior_thread ();
8358c15c
JK
780 tp->control.step_resume_breakpoint
781 = step_resume_breakpoint;
16c381f0
JK
782 tp->control.step_range_start = step_range_start;
783 tp->control.step_range_end = step_range_end;
784 tp->control.step_frame_id = step_frame_id;
186c406b
TT
785 tp->control.exception_resume_breakpoint
786 = exception_resume_breakpoint;
8980e177 787 tp->thread_fsm = thread_fsm;
e58b0e63
PA
788 }
789 else
790 {
791 /* If we get here, it was because we're trying to
792 resume from a fork catchpoint, but, the user
793 has switched threads away from the thread that
794 forked. In that case, the resume command
795 issued is most likely not applicable to the
796 child, so just warn, and refuse to resume. */
3e43a32a 797 warning (_("Not resuming: switched threads "
fd7dcb94 798 "before following fork child."));
e58b0e63
PA
799 }
800
801 /* Reset breakpoints in the child as appropriate. */
802 follow_inferior_reset_breakpoints ();
803 }
e58b0e63
PA
804 }
805 }
806 break;
807 case TARGET_WAITKIND_SPURIOUS:
808 /* Nothing to follow. */
809 break;
810 default:
811 internal_error (__FILE__, __LINE__,
812 "Unexpected pending_follow.kind %d\n",
813 tp->pending_follow.kind);
814 break;
815 }
c906108c 816
e58b0e63 817 return should_resume;
c906108c
SS
818}
819
d83ad864 820static void
6604731b 821follow_inferior_reset_breakpoints (void)
c906108c 822{
4e1c45ea
PA
823 struct thread_info *tp = inferior_thread ();
824
6604731b
DJ
825 /* Was there a step_resume breakpoint? (There was if the user
826 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
827 thread number. Cloned step_resume breakpoints are disabled on
828 creation, so enable it here now that it is associated with the
829 correct thread.
6604731b
DJ
830
831 step_resumes are a form of bp that are made to be per-thread.
832 Since we created the step_resume bp when the parent process
833 was being debugged, and now are switching to the child process,
834 from the breakpoint package's viewpoint, that's a switch of
835 "threads". We must update the bp's notion of which thread
836 it is for, or it'll be ignored when it triggers. */
837
8358c15c 838 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
841 tp->control.step_resume_breakpoint->loc->enabled = 1;
842 }
6604731b 843
a1aa2221 844 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 845 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
846 {
847 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
848 tp->control.exception_resume_breakpoint->loc->enabled = 1;
849 }
186c406b 850
6604731b
DJ
851 /* Reinsert all breakpoints in the child. The user may have set
852 breakpoints after catching the fork, in which case those
853 were never set in the child, but only in the parent. This makes
854 sure the inserted breakpoints match the breakpoint list. */
855
856 breakpoint_re_set ();
857 insert_breakpoints ();
c906108c 858}
c906108c 859
6c95b8df
PA
860/* The child has exited or execed: resume threads of the parent the
861 user wanted to be executing. */
862
863static int
864proceed_after_vfork_done (struct thread_info *thread,
865 void *arg)
866{
867 int pid = * (int *) arg;
868
00431a78
PA
869 if (thread->ptid.pid () == pid
870 && thread->state == THREAD_RUNNING
871 && !thread->executing
6c95b8df 872 && !thread->stop_requested
a493e3e2 873 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
874 {
875 if (debug_infrun)
876 fprintf_unfiltered (gdb_stdlog,
877 "infrun: resuming vfork parent thread %s\n",
878 target_pid_to_str (thread->ptid));
879
00431a78 880 switch_to_thread (thread);
70509625 881 clear_proceed_status (0);
64ce06e4 882 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
883 }
884
885 return 0;
886}
887
5ed8105e
PA
888/* Save/restore inferior_ptid, current program space and current
889 inferior. Only use this if the current context points at an exited
890 inferior (and therefore there's no current thread to save). */
891class scoped_restore_exited_inferior
892{
893public:
894 scoped_restore_exited_inferior ()
895 : m_saved_ptid (&inferior_ptid)
896 {}
897
898private:
899 scoped_restore_tmpl<ptid_t> m_saved_ptid;
900 scoped_restore_current_program_space m_pspace;
901 scoped_restore_current_inferior m_inferior;
902};
903
6c95b8df
PA
904/* Called whenever we notice an exec or exit event, to handle
905 detaching or resuming a vfork parent. */
906
907static void
908handle_vfork_child_exec_or_exit (int exec)
909{
910 struct inferior *inf = current_inferior ();
911
912 if (inf->vfork_parent)
913 {
914 int resume_parent = -1;
915
916 /* This exec or exit marks the end of the shared memory region
917 between the parent and the child. If the user wanted to
918 detach from the parent, now is the time. */
919
920 if (inf->vfork_parent->pending_detach)
921 {
922 struct thread_info *tp;
6c95b8df
PA
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
5ed8105e
PA
930 gdb::optional<scoped_restore_exited_inferior>
931 maybe_restore_inferior;
932 gdb::optional<scoped_restore_current_pspace_and_thread>
933 maybe_restore_thread;
934
935 /* If we're handling a child exit, then inferior_ptid points
936 at the inferior's pid, not to a thread. */
f50f4e56 937 if (!exec)
5ed8105e 938 maybe_restore_inferior.emplace ();
f50f4e56 939 else
5ed8105e 940 maybe_restore_thread.emplace ();
6c95b8df
PA
941
942 /* We're letting loose of the parent. */
00431a78
PA
943 tp = any_live_thread_of_inferior (inf->vfork_parent);
944 switch_to_thread (tp);
6c95b8df
PA
945
946 /* We're about to detach from the parent, which implicitly
947 removes breakpoints from its address space. There's a
948 catch here: we want to reuse the spaces for the child,
949 but, parent/child are still sharing the pspace at this
950 point, although the exec in reality makes the kernel give
951 the child a fresh set of new pages. The problem here is
952 that the breakpoints module being unaware of this, would
953 likely chose the child process to write to the parent
954 address space. Swapping the child temporarily away from
955 the spaces has the desired effect. Yes, this is "sort
956 of" a hack. */
957
958 pspace = inf->pspace;
959 aspace = inf->aspace;
960 inf->aspace = NULL;
961 inf->pspace = NULL;
962
f67c0c91 963 if (print_inferior_events)
6c95b8df 964 {
f67c0c91 965 const char *pidstr
f2907e49 966 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 967
223ffa71 968 target_terminal::ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
973 _("[Detaching vfork parent %s "
974 "after child exec]\n"), pidstr);
6f259a23 975 }
6c95b8df 976 else
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
979 _("[Detaching vfork parent %s "
980 "after child exit]\n"), pidstr);
6f259a23 981 }
6c95b8df
PA
982 }
983
6e1e1966 984 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
985
986 /* Put it back. */
987 inf->pspace = pspace;
988 inf->aspace = aspace;
6c95b8df
PA
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
564b1e3f 994 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
6c95b8df
PA
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
5ed8105e
PA
1017 /* Switch to null_ptid while running clone_program_space, so
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
1020 scoped_restore restore_ptid
1021 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
564b1e3f 1028 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
6c95b8df
PA
1036 resume_parent = inf->vfork_parent->pid;
1037 /* Break the bonds. */
1038 inf->vfork_parent->vfork_child = NULL;
1039 }
1040
1041 inf->vfork_parent = NULL;
1042
1043 gdb_assert (current_program_space == inf->pspace);
1044
1045 if (non_stop && resume_parent != -1)
1046 {
1047 /* If the user wanted the parent to be running, let it go
1048 free now. */
5ed8105e 1049 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1050
1051 if (debug_infrun)
3e43a32a
MS
1052 fprintf_unfiltered (gdb_stdlog,
1053 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1054 resume_parent);
1055
1056 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
6c95b8df 1085 struct inferior *inf = current_inferior ();
e99b03dc 1086 int pid = ptid.pid ();
94585166 1087 ptid_t process_ptid;
7a292a7a 1088
c906108c
SS
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1777feb0 1108 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1109
1110 mark_breakpoints_out ();
1111
95e50b27
PA
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
08036331 1131 for (thread_info *th : all_threads_safe ())
d7e15655 1132 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1133 delete_thread (th);
95e50b27
PA
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
08036331 1139 thread_info *th = inferior_thread ();
8358c15c 1140 th->control.step_resume_breakpoint = NULL;
186c406b 1141 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1142 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
c906108c 1145
95e50b27
PA
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
a75724bc
PA
1149 th->stop_requested = 0;
1150
95e50b27
PA
1151 update_breakpoints_after_exec ();
1152
1777feb0 1153 /* What is this a.out's name? */
f2907e49 1154 process_ptid = ptid_t (pid);
6c95b8df 1155 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1156 target_pid_to_str (process_ptid),
ecf45d2c 1157 exec_file_target);
c906108c
SS
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1160 inferior has essentially been killed & reborn. */
7a292a7a 1161
c906108c 1162 gdb_flush (gdb_stdout);
6ca15a4b
PA
1163
1164 breakpoint_init_inferior (inf_execd);
e85a822c 1165
797bc1cb
TT
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
ff862be4 1168
ecf45d2c
SL
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
c906108c 1177
cce9b6bf
PA
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
6c95b8df
PA
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
6c95b8df
PA
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
35ed81d4
SM
1191 /* Do exit processing for the original inferior before setting the new
1192 inferior's pid. Having two inferiors with the same pid would confuse
1193 find_inferior_p(t)id. Transfer the terminal state and info from the
1194 old to the new inferior. */
1195 inf = add_inferior_with_spaces ();
1196 swap_terminal_info (inf, current_inferior ());
057302ce 1197 exit_inferior_silent (current_inferior ());
17d8546e 1198
94585166 1199 inf->pid = pid;
ecf45d2c 1200 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1201
1202 set_current_inferior (inf);
94585166 1203 set_current_program_space (inf->pspace);
c4c17fb0 1204 add_thread (ptid);
6c95b8df 1205 }
9107fc8d
PA
1206 else
1207 {
1208 /* The old description may no longer be fit for the new image.
1209 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1210 old description; we'll read a new one below. No need to do
1211 this on "follow-exec-mode new", as the old inferior stays
1212 around (its description is later cleared/refetched on
1213 restart). */
1214 target_clear_description ();
1215 }
6c95b8df
PA
1216
1217 gdb_assert (current_program_space == inf->pspace);
1218
ecf45d2c
SL
1219 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1220 because the proper displacement for a PIE (Position Independent
1221 Executable) main symbol file will only be computed by
1222 solib_create_inferior_hook below. breakpoint_re_set would fail
1223 to insert the breakpoints with the zero displacement. */
797bc1cb 1224 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1225
9107fc8d
PA
1226 /* If the target can specify a description, read it. Must do this
1227 after flipping to the new executable (because the target supplied
1228 description must be compatible with the executable's
1229 architecture, and the old executable may e.g., be 32-bit, while
1230 the new one 64-bit), and before anything involving memory or
1231 registers. */
1232 target_find_description ();
1233
268a4a75 1234 solib_create_inferior_hook (0);
c906108c 1235
4efc6507
DE
1236 jit_inferior_created_hook ();
1237
c1e56572
JK
1238 breakpoint_re_set ();
1239
c906108c
SS
1240 /* Reinsert all breakpoints. (Those which were symbolic have
1241 been reset to the proper address in the new a.out, thanks
1777feb0 1242 to symbol_file_command...). */
c906108c
SS
1243 insert_breakpoints ();
1244
1245 /* The next resume of this inferior should bring it to the shlib
1246 startup breakpoints. (If the user had also set bp's on
1247 "main" from the old (parent) process, then they'll auto-
1777feb0 1248 matically get reset there in the new process.). */
c906108c
SS
1249}
1250
c2829269
PA
1251/* The queue of threads that need to do a step-over operation to get
1252 past e.g., a breakpoint. What technique is used to step over the
1253 breakpoint/watchpoint does not matter -- all threads end up in the
1254 same queue, to maintain rough temporal order of execution, in order
1255 to avoid starvation, otherwise, we could e.g., find ourselves
1256 constantly stepping the same couple threads past their breakpoints
1257 over and over, if the single-step finish fast enough. */
1258struct thread_info *step_over_queue_head;
1259
6c4cfb24
PA
1260/* Bit flags indicating what the thread needs to step over. */
1261
8d297bbf 1262enum step_over_what_flag
6c4cfb24
PA
1263 {
1264 /* Step over a breakpoint. */
1265 STEP_OVER_BREAKPOINT = 1,
1266
1267 /* Step past a non-continuable watchpoint, in order to let the
1268 instruction execute so we can evaluate the watchpoint
1269 expression. */
1270 STEP_OVER_WATCHPOINT = 2
1271 };
8d297bbf 1272DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1273
963f9c80 1274/* Info about an instruction that is being stepped over. */
31e77af2
PA
1275
1276struct step_over_info
1277{
963f9c80
PA
1278 /* If we're stepping past a breakpoint, this is the address space
1279 and address of the instruction the breakpoint is set at. We'll
1280 skip inserting all breakpoints here. Valid iff ASPACE is
1281 non-NULL. */
8b86c959 1282 const address_space *aspace;
31e77af2 1283 CORE_ADDR address;
963f9c80
PA
1284
1285 /* The instruction being stepped over triggers a nonsteppable
1286 watchpoint. If true, we'll skip inserting watchpoints. */
1287 int nonsteppable_watchpoint_p;
21edc42f
YQ
1288
1289 /* The thread's global number. */
1290 int thread;
31e77af2
PA
1291};
1292
1293/* The step-over info of the location that is being stepped over.
1294
1295 Note that with async/breakpoint always-inserted mode, a user might
1296 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1297 being stepped over. As setting a new breakpoint inserts all
1298 breakpoints, we need to make sure the breakpoint being stepped over
1299 isn't inserted then. We do that by only clearing the step-over
1300 info when the step-over is actually finished (or aborted).
1301
1302 Presently GDB can only step over one breakpoint at any given time.
1303 Given threads that can't run code in the same address space as the
1304 breakpoint's can't really miss the breakpoint, GDB could be taught
1305 to step-over at most one breakpoint per address space (so this info
1306 could move to the address space object if/when GDB is extended).
1307 The set of breakpoints being stepped over will normally be much
1308 smaller than the set of all breakpoints, so a flag in the
1309 breakpoint location structure would be wasteful. A separate list
1310 also saves complexity and run-time, as otherwise we'd have to go
1311 through all breakpoint locations clearing their flag whenever we
1312 start a new sequence. Similar considerations weigh against storing
1313 this info in the thread object. Plus, not all step overs actually
1314 have breakpoint locations -- e.g., stepping past a single-step
1315 breakpoint, or stepping to complete a non-continuable
1316 watchpoint. */
1317static struct step_over_info step_over_info;
1318
1319/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1320 stepping over.
1321 N.B. We record the aspace and address now, instead of say just the thread,
1322 because when we need the info later the thread may be running. */
31e77af2
PA
1323
1324static void
8b86c959 1325set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1326 int nonsteppable_watchpoint_p,
1327 int thread)
31e77af2
PA
1328{
1329 step_over_info.aspace = aspace;
1330 step_over_info.address = address;
963f9c80 1331 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1332 step_over_info.thread = thread;
31e77af2
PA
1333}
1334
1335/* Called when we're not longer stepping over a breakpoint / an
1336 instruction, so all breakpoints are free to be (re)inserted. */
1337
1338static void
1339clear_step_over_info (void)
1340{
372316f1
PA
1341 if (debug_infrun)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "infrun: clear_step_over_info\n");
31e77af2
PA
1344 step_over_info.aspace = NULL;
1345 step_over_info.address = 0;
963f9c80 1346 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1347 step_over_info.thread = -1;
31e77af2
PA
1348}
1349
7f89fd65 1350/* See infrun.h. */
31e77af2
PA
1351
1352int
1353stepping_past_instruction_at (struct address_space *aspace,
1354 CORE_ADDR address)
1355{
1356 return (step_over_info.aspace != NULL
1357 && breakpoint_address_match (aspace, address,
1358 step_over_info.aspace,
1359 step_over_info.address));
1360}
1361
963f9c80
PA
1362/* See infrun.h. */
1363
21edc42f
YQ
1364int
1365thread_is_stepping_over_breakpoint (int thread)
1366{
1367 return (step_over_info.thread != -1
1368 && thread == step_over_info.thread);
1369}
1370
1371/* See infrun.h. */
1372
963f9c80
PA
1373int
1374stepping_past_nonsteppable_watchpoint (void)
1375{
1376 return step_over_info.nonsteppable_watchpoint_p;
1377}
1378
6cc83d2a
PA
1379/* Returns true if step-over info is valid. */
1380
1381static int
1382step_over_info_valid_p (void)
1383{
963f9c80
PA
1384 return (step_over_info.aspace != NULL
1385 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1386}
1387
c906108c 1388\f
237fc4c9
PA
1389/* Displaced stepping. */
1390
1391/* In non-stop debugging mode, we must take special care to manage
1392 breakpoints properly; in particular, the traditional strategy for
1393 stepping a thread past a breakpoint it has hit is unsuitable.
1394 'Displaced stepping' is a tactic for stepping one thread past a
1395 breakpoint it has hit while ensuring that other threads running
1396 concurrently will hit the breakpoint as they should.
1397
1398 The traditional way to step a thread T off a breakpoint in a
1399 multi-threaded program in all-stop mode is as follows:
1400
1401 a0) Initially, all threads are stopped, and breakpoints are not
1402 inserted.
1403 a1) We single-step T, leaving breakpoints uninserted.
1404 a2) We insert breakpoints, and resume all threads.
1405
1406 In non-stop debugging, however, this strategy is unsuitable: we
1407 don't want to have to stop all threads in the system in order to
1408 continue or step T past a breakpoint. Instead, we use displaced
1409 stepping:
1410
1411 n0) Initially, T is stopped, other threads are running, and
1412 breakpoints are inserted.
1413 n1) We copy the instruction "under" the breakpoint to a separate
1414 location, outside the main code stream, making any adjustments
1415 to the instruction, register, and memory state as directed by
1416 T's architecture.
1417 n2) We single-step T over the instruction at its new location.
1418 n3) We adjust the resulting register and memory state as directed
1419 by T's architecture. This includes resetting T's PC to point
1420 back into the main instruction stream.
1421 n4) We resume T.
1422
1423 This approach depends on the following gdbarch methods:
1424
1425 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1426 indicate where to copy the instruction, and how much space must
1427 be reserved there. We use these in step n1.
1428
1429 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1430 address, and makes any necessary adjustments to the instruction,
1431 register contents, and memory. We use this in step n1.
1432
1433 - gdbarch_displaced_step_fixup adjusts registers and memory after
1434 we have successfuly single-stepped the instruction, to yield the
1435 same effect the instruction would have had if we had executed it
1436 at its original address. We use this in step n3.
1437
237fc4c9
PA
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
cfba9872
SM
1475/* Default destructor for displaced_step_closure. */
1476
1477displaced_step_closure::~displaced_step_closure () = default;
1478
fc1cf338
PA
1479/* Per-inferior displaced stepping state. */
1480struct displaced_step_inferior_state
1481{
fc1cf338 1482 /* The process this displaced step state refers to. */
00431a78 1483 inferior *inf;
fc1cf338 1484
3fc8eb30
PA
1485 /* True if preparing a displaced step ever failed. If so, we won't
1486 try displaced stepping for this inferior again. */
1487 int failed_before;
1488
00431a78 1489 /* If this is not nullptr, this is the thread carrying out a
fc1cf338
PA
1490 displaced single-step in process PID. This thread's state will
1491 require fixing up once it has completed its step. */
00431a78 1492 thread_info *step_thread;
fc1cf338
PA
1493
1494 /* The architecture the thread had when we stepped it. */
1495 struct gdbarch *step_gdbarch;
1496
1497 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1498 for post-step cleanup. */
1499 struct displaced_step_closure *step_closure;
1500
1501 /* The address of the original instruction, and the copy we
1502 made. */
1503 CORE_ADDR step_original, step_copy;
1504
1505 /* Saved contents of copy area. */
1506 gdb_byte *step_saved_copy;
1507};
1508
1509/* The list of states of processes involved in displaced stepping
1510 presently. */
39a36629
SM
1511static std::forward_list<displaced_step_inferior_state *>
1512 displaced_step_inferior_states;
fc1cf338
PA
1513
1514/* Get the displaced stepping state of process PID. */
1515
39a36629 1516static displaced_step_inferior_state *
00431a78 1517get_displaced_stepping_state (inferior *inf)
fc1cf338 1518{
39a36629
SM
1519 for (auto *state : displaced_step_inferior_states)
1520 {
1521 if (state->inf == inf)
1522 return state;
1523 }
fc1cf338 1524
39a36629 1525 return nullptr;
fc1cf338
PA
1526}
1527
372316f1
PA
1528/* Returns true if any inferior has a thread doing a displaced
1529 step. */
1530
39a36629
SM
1531static bool
1532displaced_step_in_progress_any_inferior ()
372316f1 1533{
39a36629
SM
1534 for (auto *state : displaced_step_inferior_states)
1535 {
1536 if (state->step_thread != nullptr)
1537 return true;
1538 }
372316f1 1539
39a36629 1540 return false;
372316f1
PA
1541}
1542
c0987663
YQ
1543/* Return true if thread represented by PTID is doing a displaced
1544 step. */
1545
1546static int
00431a78 1547displaced_step_in_progress_thread (thread_info *thread)
c0987663
YQ
1548{
1549 struct displaced_step_inferior_state *displaced;
1550
00431a78 1551 gdb_assert (thread != NULL);
c0987663 1552
00431a78 1553 displaced = get_displaced_stepping_state (thread->inf);
c0987663 1554
00431a78 1555 return (displaced != NULL && displaced->step_thread == thread);
c0987663
YQ
1556}
1557
8f572e5c
PA
1558/* Return true if process PID has a thread doing a displaced step. */
1559
1560static int
00431a78 1561displaced_step_in_progress (inferior *inf)
8f572e5c
PA
1562{
1563 struct displaced_step_inferior_state *displaced;
1564
00431a78
PA
1565 displaced = get_displaced_stepping_state (inf);
1566 if (displaced != NULL && displaced->step_thread != nullptr)
8f572e5c
PA
1567 return 1;
1568
1569 return 0;
1570}
1571
fc1cf338
PA
1572/* Add a new displaced stepping state for process PID to the displaced
1573 stepping state list, or return a pointer to an already existing
1574 entry, if it already exists. Never returns NULL. */
1575
39a36629 1576static displaced_step_inferior_state *
00431a78 1577add_displaced_stepping_state (inferior *inf)
fc1cf338 1578{
39a36629
SM
1579 displaced_step_inferior_state *state
1580 = get_displaced_stepping_state (inf);
fc1cf338 1581
39a36629
SM
1582 if (state != nullptr)
1583 return state;
237fc4c9 1584
8d749320 1585 state = XCNEW (struct displaced_step_inferior_state);
00431a78 1586 state->inf = inf;
39a36629
SM
1587
1588 displaced_step_inferior_states.push_front (state);
237fc4c9 1589
fc1cf338
PA
1590 return state;
1591}
1592
a42244db
YQ
1593/* If inferior is in displaced stepping, and ADDR equals to starting address
1594 of copy area, return corresponding displaced_step_closure. Otherwise,
1595 return NULL. */
1596
1597struct displaced_step_closure*
1598get_displaced_step_closure_by_addr (CORE_ADDR addr)
1599{
1600 struct displaced_step_inferior_state *displaced
00431a78 1601 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1602
1603 /* If checking the mode of displaced instruction in copy area. */
00431a78
PA
1604 if (displaced != NULL
1605 && displaced->step_thread != nullptr
1606 && displaced->step_copy == addr)
a42244db
YQ
1607 return displaced->step_closure;
1608
1609 return NULL;
1610}
1611
fc1cf338 1612/* Remove the displaced stepping state of process PID. */
237fc4c9 1613
fc1cf338 1614static void
00431a78 1615remove_displaced_stepping_state (inferior *inf)
fc1cf338 1616{
00431a78 1617 gdb_assert (inf != nullptr);
fc1cf338 1618
39a36629
SM
1619 displaced_step_inferior_states.remove_if
1620 ([inf] (displaced_step_inferior_state *state)
1621 {
1622 if (state->inf == inf)
1623 {
1624 xfree (state);
1625 return true;
1626 }
1627 else
1628 return false;
1629 });
fc1cf338
PA
1630}
1631
1632static void
1633infrun_inferior_exit (struct inferior *inf)
1634{
00431a78 1635 remove_displaced_stepping_state (inf);
fc1cf338 1636}
237fc4c9 1637
fff08868
HZ
1638/* If ON, and the architecture supports it, GDB will use displaced
1639 stepping to step over breakpoints. If OFF, or if the architecture
1640 doesn't support it, GDB will instead use the traditional
1641 hold-and-step approach. If AUTO (which is the default), GDB will
1642 decide which technique to use to step over breakpoints depending on
1643 which of all-stop or non-stop mode is active --- displaced stepping
1644 in non-stop mode; hold-and-step in all-stop mode. */
1645
72d0e2c5 1646static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1647
237fc4c9
PA
1648static void
1649show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1650 struct cmd_list_element *c,
1651 const char *value)
1652{
72d0e2c5 1653 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1654 fprintf_filtered (file,
1655 _("Debugger's willingness to use displaced stepping "
1656 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1657 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1658 else
3e43a32a
MS
1659 fprintf_filtered (file,
1660 _("Debugger's willingness to use displaced stepping "
1661 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1662}
1663
fff08868 1664/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1665 over breakpoints of thread TP. */
fff08868 1666
237fc4c9 1667static int
3fc8eb30 1668use_displaced_stepping (struct thread_info *tp)
237fc4c9 1669{
00431a78 1670 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1671 struct gdbarch *gdbarch = regcache->arch ();
3fc8eb30
PA
1672 struct displaced_step_inferior_state *displaced_state;
1673
00431a78 1674 displaced_state = get_displaced_stepping_state (tp->inf);
3fc8eb30 1675
fbea99ea
PA
1676 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1677 && target_is_non_stop_p ())
72d0e2c5 1678 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1679 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1680 && find_record_target () == NULL
1681 && (displaced_state == NULL
1682 || !displaced_state->failed_before));
237fc4c9
PA
1683}
1684
1685/* Clean out any stray displaced stepping state. */
1686static void
fc1cf338 1687displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1688{
1689 /* Indicate that there is no cleanup pending. */
00431a78 1690 displaced->step_thread = nullptr;
237fc4c9 1691
cfba9872 1692 delete displaced->step_closure;
6d45d4b4 1693 displaced->step_closure = NULL;
237fc4c9
PA
1694}
1695
1696static void
fc1cf338 1697displaced_step_clear_cleanup (void *arg)
237fc4c9 1698{
9a3c8263
SM
1699 struct displaced_step_inferior_state *state
1700 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1701
1702 displaced_step_clear (state);
237fc4c9
PA
1703}
1704
1705/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1706void
1707displaced_step_dump_bytes (struct ui_file *file,
1708 const gdb_byte *buf,
1709 size_t len)
1710{
1711 int i;
1712
1713 for (i = 0; i < len; i++)
1714 fprintf_unfiltered (file, "%02x ", buf[i]);
1715 fputs_unfiltered ("\n", file);
1716}
1717
1718/* Prepare to single-step, using displaced stepping.
1719
1720 Note that we cannot use displaced stepping when we have a signal to
1721 deliver. If we have a signal to deliver and an instruction to step
1722 over, then after the step, there will be no indication from the
1723 target whether the thread entered a signal handler or ignored the
1724 signal and stepped over the instruction successfully --- both cases
1725 result in a simple SIGTRAP. In the first case we mustn't do a
1726 fixup, and in the second case we must --- but we can't tell which.
1727 Comments in the code for 'random signals' in handle_inferior_event
1728 explain how we handle this case instead.
1729
1730 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1731 stepped now; 0 if displaced stepping this thread got queued; or -1
1732 if this instruction can't be displaced stepped. */
1733
237fc4c9 1734static int
00431a78 1735displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1736{
2989a365 1737 struct cleanup *ignore_cleanups;
00431a78 1738 regcache *regcache = get_thread_regcache (tp);
ac7936df 1739 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1740 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1741 CORE_ADDR original, copy;
1742 ULONGEST len;
1743 struct displaced_step_closure *closure;
fc1cf338 1744 struct displaced_step_inferior_state *displaced;
9e529e1d 1745 int status;
237fc4c9
PA
1746
1747 /* We should never reach this function if the architecture does not
1748 support displaced stepping. */
1749 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1750
c2829269
PA
1751 /* Nor if the thread isn't meant to step over a breakpoint. */
1752 gdb_assert (tp->control.trap_expected);
1753
c1e36e3e
PA
1754 /* Disable range stepping while executing in the scratch pad. We
1755 want a single-step even if executing the displaced instruction in
1756 the scratch buffer lands within the stepping range (e.g., a
1757 jump/branch). */
1758 tp->control.may_range_step = 0;
1759
fc1cf338
PA
1760 /* We have to displaced step one thread at a time, as we only have
1761 access to a single scratch space per inferior. */
237fc4c9 1762
00431a78 1763 displaced = add_displaced_stepping_state (tp->inf);
fc1cf338 1764
00431a78 1765 if (displaced->step_thread != nullptr)
237fc4c9
PA
1766 {
1767 /* Already waiting for a displaced step to finish. Defer this
1768 request and place in queue. */
237fc4c9
PA
1769
1770 if (debug_displaced)
1771 fprintf_unfiltered (gdb_stdlog,
c2829269 1772 "displaced: deferring step of %s\n",
00431a78 1773 target_pid_to_str (tp->ptid));
237fc4c9 1774
c2829269 1775 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1776 return 0;
1777 }
1778 else
1779 {
1780 if (debug_displaced)
1781 fprintf_unfiltered (gdb_stdlog,
1782 "displaced: stepping %s now\n",
00431a78 1783 target_pid_to_str (tp->ptid));
237fc4c9
PA
1784 }
1785
fc1cf338 1786 displaced_step_clear (displaced);
237fc4c9 1787
00431a78
PA
1788 scoped_restore_current_thread restore_thread;
1789
1790 switch_to_thread (tp);
ad53cd71 1791
515630c5 1792 original = regcache_read_pc (regcache);
237fc4c9
PA
1793
1794 copy = gdbarch_displaced_step_location (gdbarch);
1795 len = gdbarch_max_insn_length (gdbarch);
1796
d35ae833
PA
1797 if (breakpoint_in_range_p (aspace, copy, len))
1798 {
1799 /* There's a breakpoint set in the scratch pad location range
1800 (which is usually around the entry point). We'd either
1801 install it before resuming, which would overwrite/corrupt the
1802 scratch pad, or if it was already inserted, this displaced
1803 step would overwrite it. The latter is OK in the sense that
1804 we already assume that no thread is going to execute the code
1805 in the scratch pad range (after initial startup) anyway, but
1806 the former is unacceptable. Simply punt and fallback to
1807 stepping over this breakpoint in-line. */
1808 if (debug_displaced)
1809 {
1810 fprintf_unfiltered (gdb_stdlog,
1811 "displaced: breakpoint set in scratch pad. "
1812 "Stepping over breakpoint in-line instead.\n");
1813 }
1814
d35ae833
PA
1815 return -1;
1816 }
1817
237fc4c9 1818 /* Save the original contents of the copy area. */
224c3ddb 1819 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1820 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1821 &displaced->step_saved_copy);
9e529e1d
JK
1822 status = target_read_memory (copy, displaced->step_saved_copy, len);
1823 if (status != 0)
1824 throw_error (MEMORY_ERROR,
1825 _("Error accessing memory address %s (%s) for "
1826 "displaced-stepping scratch space."),
1827 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1828 if (debug_displaced)
1829 {
5af949e3
UW
1830 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1831 paddress (gdbarch, copy));
fc1cf338
PA
1832 displaced_step_dump_bytes (gdb_stdlog,
1833 displaced->step_saved_copy,
1834 len);
237fc4c9
PA
1835 };
1836
1837 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1838 original, copy, regcache);
7f03bd92
PA
1839 if (closure == NULL)
1840 {
1841 /* The architecture doesn't know how or want to displaced step
1842 this instruction or instruction sequence. Fallback to
1843 stepping over the breakpoint in-line. */
2989a365 1844 do_cleanups (ignore_cleanups);
7f03bd92
PA
1845 return -1;
1846 }
237fc4c9 1847
9f5a595d
UW
1848 /* Save the information we need to fix things up if the step
1849 succeeds. */
00431a78 1850 displaced->step_thread = tp;
fc1cf338
PA
1851 displaced->step_gdbarch = gdbarch;
1852 displaced->step_closure = closure;
1853 displaced->step_original = original;
1854 displaced->step_copy = copy;
9f5a595d 1855
fc1cf338 1856 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1857
1858 /* Resume execution at the copy. */
515630c5 1859 regcache_write_pc (regcache, copy);
237fc4c9 1860
ad53cd71
PA
1861 discard_cleanups (ignore_cleanups);
1862
237fc4c9 1863 if (debug_displaced)
5af949e3
UW
1864 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1865 paddress (gdbarch, copy));
237fc4c9 1866
237fc4c9
PA
1867 return 1;
1868}
1869
3fc8eb30
PA
1870/* Wrapper for displaced_step_prepare_throw that disabled further
1871 attempts at displaced stepping if we get a memory error. */
1872
1873static int
00431a78 1874displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1875{
1876 int prepared = -1;
1877
1878 TRY
1879 {
00431a78 1880 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1881 }
1882 CATCH (ex, RETURN_MASK_ERROR)
1883 {
1884 struct displaced_step_inferior_state *displaced_state;
1885
16b41842
PA
1886 if (ex.error != MEMORY_ERROR
1887 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1888 throw_exception (ex);
1889
1890 if (debug_infrun)
1891 {
1892 fprintf_unfiltered (gdb_stdlog,
1893 "infrun: disabling displaced stepping: %s\n",
1894 ex.message);
1895 }
1896
1897 /* Be verbose if "set displaced-stepping" is "on", silent if
1898 "auto". */
1899 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1900 {
fd7dcb94 1901 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1902 ex.message);
1903 }
1904
1905 /* Disable further displaced stepping attempts. */
1906 displaced_state
00431a78 1907 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1908 displaced_state->failed_before = 1;
1909 }
1910 END_CATCH
1911
1912 return prepared;
1913}
1914
237fc4c9 1915static void
3e43a32a
MS
1916write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1917 const gdb_byte *myaddr, int len)
237fc4c9 1918{
2989a365 1919 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1920
237fc4c9
PA
1921 inferior_ptid = ptid;
1922 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1923}
1924
e2d96639
YQ
1925/* Restore the contents of the copy area for thread PTID. */
1926
1927static void
1928displaced_step_restore (struct displaced_step_inferior_state *displaced,
1929 ptid_t ptid)
1930{
1931 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1932
1933 write_memory_ptid (ptid, displaced->step_copy,
1934 displaced->step_saved_copy, len);
1935 if (debug_displaced)
1936 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1937 target_pid_to_str (ptid),
1938 paddress (displaced->step_gdbarch,
1939 displaced->step_copy));
1940}
1941
372316f1
PA
1942/* If we displaced stepped an instruction successfully, adjust
1943 registers and memory to yield the same effect the instruction would
1944 have had if we had executed it at its original address, and return
1945 1. If the instruction didn't complete, relocate the PC and return
1946 -1. If the thread wasn't displaced stepping, return 0. */
1947
1948static int
00431a78 1949displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9
PA
1950{
1951 struct cleanup *old_cleanups;
fc1cf338 1952 struct displaced_step_inferior_state *displaced
00431a78 1953 = get_displaced_stepping_state (event_thread->inf);
372316f1 1954 int ret;
fc1cf338
PA
1955
1956 /* Was any thread of this process doing a displaced step? */
1957 if (displaced == NULL)
372316f1 1958 return 0;
237fc4c9 1959
00431a78
PA
1960 /* Was this event for the thread we displaced? */
1961 if (displaced->step_thread != event_thread)
372316f1 1962 return 0;
237fc4c9 1963
fc1cf338 1964 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1965
00431a78 1966 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1967
cb71640d
PA
1968 /* Fixup may need to read memory/registers. Switch to the thread
1969 that we're fixing up. Also, target_stopped_by_watchpoint checks
1970 the current thread. */
00431a78 1971 switch_to_thread (event_thread);
cb71640d 1972
237fc4c9 1973 /* Did the instruction complete successfully? */
cb71640d
PA
1974 if (signal == GDB_SIGNAL_TRAP
1975 && !(target_stopped_by_watchpoint ()
1976 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1977 || target_have_steppable_watchpoint)))
237fc4c9
PA
1978 {
1979 /* Fix up the resulting state. */
fc1cf338
PA
1980 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1981 displaced->step_closure,
1982 displaced->step_original,
1983 displaced->step_copy,
00431a78 1984 get_thread_regcache (displaced->step_thread));
372316f1 1985 ret = 1;
237fc4c9
PA
1986 }
1987 else
1988 {
1989 /* Since the instruction didn't complete, all we can do is
1990 relocate the PC. */
00431a78 1991 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1992 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1993
fc1cf338 1994 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1995 regcache_write_pc (regcache, pc);
372316f1 1996 ret = -1;
237fc4c9
PA
1997 }
1998
1999 do_cleanups (old_cleanups);
2000
00431a78 2001 displaced->step_thread = nullptr;
372316f1
PA
2002
2003 return ret;
c2829269 2004}
1c5cfe86 2005
4d9d9d04
PA
2006/* Data to be passed around while handling an event. This data is
2007 discarded between events. */
2008struct execution_control_state
2009{
2010 ptid_t ptid;
2011 /* The thread that got the event, if this was a thread event; NULL
2012 otherwise. */
2013 struct thread_info *event_thread;
2014
2015 struct target_waitstatus ws;
2016 int stop_func_filled_in;
2017 CORE_ADDR stop_func_start;
2018 CORE_ADDR stop_func_end;
2019 const char *stop_func_name;
2020 int wait_some_more;
2021
2022 /* True if the event thread hit the single-step breakpoint of
2023 another thread. Thus the event doesn't cause a stop, the thread
2024 needs to be single-stepped past the single-step breakpoint before
2025 we can switch back to the original stepping thread. */
2026 int hit_singlestep_breakpoint;
2027};
2028
2029/* Clear ECS and set it to point at TP. */
c2829269
PA
2030
2031static void
4d9d9d04
PA
2032reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2033{
2034 memset (ecs, 0, sizeof (*ecs));
2035 ecs->event_thread = tp;
2036 ecs->ptid = tp->ptid;
2037}
2038
2039static void keep_going_pass_signal (struct execution_control_state *ecs);
2040static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2041static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2042static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2043
2044/* Are there any pending step-over requests? If so, run all we can
2045 now and return true. Otherwise, return false. */
2046
2047static int
c2829269
PA
2048start_step_over (void)
2049{
2050 struct thread_info *tp, *next;
2051
372316f1
PA
2052 /* Don't start a new step-over if we already have an in-line
2053 step-over operation ongoing. */
2054 if (step_over_info_valid_p ())
2055 return 0;
2056
c2829269 2057 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2058 {
4d9d9d04
PA
2059 struct execution_control_state ecss;
2060 struct execution_control_state *ecs = &ecss;
8d297bbf 2061 step_over_what step_what;
372316f1 2062 int must_be_in_line;
c2829269 2063
c65d6b55
PA
2064 gdb_assert (!tp->stop_requested);
2065
c2829269 2066 next = thread_step_over_chain_next (tp);
237fc4c9 2067
c2829269
PA
2068 /* If this inferior already has a displaced step in process,
2069 don't start a new one. */
00431a78 2070 if (displaced_step_in_progress (tp->inf))
c2829269
PA
2071 continue;
2072
372316f1
PA
2073 step_what = thread_still_needs_step_over (tp);
2074 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2075 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2076 && !use_displaced_stepping (tp)));
372316f1
PA
2077
2078 /* We currently stop all threads of all processes to step-over
2079 in-line. If we need to start a new in-line step-over, let
2080 any pending displaced steps finish first. */
2081 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2082 return 0;
2083
c2829269
PA
2084 thread_step_over_chain_remove (tp);
2085
2086 if (step_over_queue_head == NULL)
2087 {
2088 if (debug_infrun)
2089 fprintf_unfiltered (gdb_stdlog,
2090 "infrun: step-over queue now empty\n");
2091 }
2092
372316f1
PA
2093 if (tp->control.trap_expected
2094 || tp->resumed
2095 || tp->executing)
ad53cd71 2096 {
4d9d9d04
PA
2097 internal_error (__FILE__, __LINE__,
2098 "[%s] has inconsistent state: "
372316f1 2099 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2100 target_pid_to_str (tp->ptid),
2101 tp->control.trap_expected,
372316f1 2102 tp->resumed,
4d9d9d04 2103 tp->executing);
ad53cd71 2104 }
1c5cfe86 2105
4d9d9d04
PA
2106 if (debug_infrun)
2107 fprintf_unfiltered (gdb_stdlog,
2108 "infrun: resuming [%s] for step-over\n",
2109 target_pid_to_str (tp->ptid));
2110
2111 /* keep_going_pass_signal skips the step-over if the breakpoint
2112 is no longer inserted. In all-stop, we want to keep looking
2113 for a thread that needs a step-over instead of resuming TP,
2114 because we wouldn't be able to resume anything else until the
2115 target stops again. In non-stop, the resume always resumes
2116 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2117 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2118 continue;
8550d3b3 2119
00431a78 2120 switch_to_thread (tp);
4d9d9d04
PA
2121 reset_ecs (ecs, tp);
2122 keep_going_pass_signal (ecs);
1c5cfe86 2123
4d9d9d04
PA
2124 if (!ecs->wait_some_more)
2125 error (_("Command aborted."));
1c5cfe86 2126
372316f1
PA
2127 gdb_assert (tp->resumed);
2128
2129 /* If we started a new in-line step-over, we're done. */
2130 if (step_over_info_valid_p ())
2131 {
2132 gdb_assert (tp->control.trap_expected);
2133 return 1;
2134 }
2135
fbea99ea 2136 if (!target_is_non_stop_p ())
4d9d9d04
PA
2137 {
2138 /* On all-stop, shouldn't have resumed unless we needed a
2139 step over. */
2140 gdb_assert (tp->control.trap_expected
2141 || tp->step_after_step_resume_breakpoint);
2142
2143 /* With remote targets (at least), in all-stop, we can't
2144 issue any further remote commands until the program stops
2145 again. */
2146 return 1;
1c5cfe86 2147 }
c2829269 2148
4d9d9d04
PA
2149 /* Either the thread no longer needed a step-over, or a new
2150 displaced stepping sequence started. Even in the latter
2151 case, continue looking. Maybe we can also start another
2152 displaced step on a thread of other process. */
237fc4c9 2153 }
4d9d9d04
PA
2154
2155 return 0;
237fc4c9
PA
2156}
2157
5231c1fd
PA
2158/* Update global variables holding ptids to hold NEW_PTID if they were
2159 holding OLD_PTID. */
2160static void
2161infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2162{
d7e15655 2163 if (inferior_ptid == old_ptid)
5231c1fd 2164 inferior_ptid = new_ptid;
5231c1fd
PA
2165}
2166
237fc4c9 2167\f
c906108c 2168
53904c9e
AC
2169static const char schedlock_off[] = "off";
2170static const char schedlock_on[] = "on";
2171static const char schedlock_step[] = "step";
f2665db5 2172static const char schedlock_replay[] = "replay";
40478521 2173static const char *const scheduler_enums[] = {
ef346e04
AC
2174 schedlock_off,
2175 schedlock_on,
2176 schedlock_step,
f2665db5 2177 schedlock_replay,
ef346e04
AC
2178 NULL
2179};
f2665db5 2180static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2181static void
2182show_scheduler_mode (struct ui_file *file, int from_tty,
2183 struct cmd_list_element *c, const char *value)
2184{
3e43a32a
MS
2185 fprintf_filtered (file,
2186 _("Mode for locking scheduler "
2187 "during execution is \"%s\".\n"),
920d2a44
AC
2188 value);
2189}
c906108c
SS
2190
2191static void
eb4c3f4a 2192set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2193{
eefe576e
AC
2194 if (!target_can_lock_scheduler)
2195 {
2196 scheduler_mode = schedlock_off;
2197 error (_("Target '%s' cannot support this command."), target_shortname);
2198 }
c906108c
SS
2199}
2200
d4db2f36
PA
2201/* True if execution commands resume all threads of all processes by
2202 default; otherwise, resume only threads of the current inferior
2203 process. */
2204int sched_multi = 0;
2205
2facfe5c
DD
2206/* Try to setup for software single stepping over the specified location.
2207 Return 1 if target_resume() should use hardware single step.
2208
2209 GDBARCH the current gdbarch.
2210 PC the location to step over. */
2211
2212static int
2213maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2214{
2215 int hw_step = 1;
2216
f02253f1 2217 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2218 && gdbarch_software_single_step_p (gdbarch))
2219 hw_step = !insert_single_step_breakpoints (gdbarch);
2220
2facfe5c
DD
2221 return hw_step;
2222}
c906108c 2223
f3263aa4
PA
2224/* See infrun.h. */
2225
09cee04b
PA
2226ptid_t
2227user_visible_resume_ptid (int step)
2228{
f3263aa4 2229 ptid_t resume_ptid;
09cee04b 2230
09cee04b
PA
2231 if (non_stop)
2232 {
2233 /* With non-stop mode on, threads are always handled
2234 individually. */
2235 resume_ptid = inferior_ptid;
2236 }
2237 else if ((scheduler_mode == schedlock_on)
03d46957 2238 || (scheduler_mode == schedlock_step && step))
09cee04b 2239 {
f3263aa4
PA
2240 /* User-settable 'scheduler' mode requires solo thread
2241 resume. */
09cee04b
PA
2242 resume_ptid = inferior_ptid;
2243 }
f2665db5
MM
2244 else if ((scheduler_mode == schedlock_replay)
2245 && target_record_will_replay (minus_one_ptid, execution_direction))
2246 {
2247 /* User-settable 'scheduler' mode requires solo thread resume in replay
2248 mode. */
2249 resume_ptid = inferior_ptid;
2250 }
f3263aa4
PA
2251 else if (!sched_multi && target_supports_multi_process ())
2252 {
2253 /* Resume all threads of the current process (and none of other
2254 processes). */
e99b03dc 2255 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2256 }
2257 else
2258 {
2259 /* Resume all threads of all processes. */
2260 resume_ptid = RESUME_ALL;
2261 }
09cee04b
PA
2262
2263 return resume_ptid;
2264}
2265
fbea99ea
PA
2266/* Return a ptid representing the set of threads that we will resume,
2267 in the perspective of the target, assuming run control handling
2268 does not require leaving some threads stopped (e.g., stepping past
2269 breakpoint). USER_STEP indicates whether we're about to start the
2270 target for a stepping command. */
2271
2272static ptid_t
2273internal_resume_ptid (int user_step)
2274{
2275 /* In non-stop, we always control threads individually. Note that
2276 the target may always work in non-stop mode even with "set
2277 non-stop off", in which case user_visible_resume_ptid could
2278 return a wildcard ptid. */
2279 if (target_is_non_stop_p ())
2280 return inferior_ptid;
2281 else
2282 return user_visible_resume_ptid (user_step);
2283}
2284
64ce06e4
PA
2285/* Wrapper for target_resume, that handles infrun-specific
2286 bookkeeping. */
2287
2288static void
2289do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2290{
2291 struct thread_info *tp = inferior_thread ();
2292
c65d6b55
PA
2293 gdb_assert (!tp->stop_requested);
2294
64ce06e4 2295 /* Install inferior's terminal modes. */
223ffa71 2296 target_terminal::inferior ();
64ce06e4
PA
2297
2298 /* Avoid confusing the next resume, if the next stop/resume
2299 happens to apply to another thread. */
2300 tp->suspend.stop_signal = GDB_SIGNAL_0;
2301
8f572e5c
PA
2302 /* Advise target which signals may be handled silently.
2303
2304 If we have removed breakpoints because we are stepping over one
2305 in-line (in any thread), we need to receive all signals to avoid
2306 accidentally skipping a breakpoint during execution of a signal
2307 handler.
2308
2309 Likewise if we're displaced stepping, otherwise a trap for a
2310 breakpoint in a signal handler might be confused with the
2311 displaced step finishing. We don't make the displaced_step_fixup
2312 step distinguish the cases instead, because:
2313
2314 - a backtrace while stopped in the signal handler would show the
2315 scratch pad as frame older than the signal handler, instead of
2316 the real mainline code.
2317
2318 - when the thread is later resumed, the signal handler would
2319 return to the scratch pad area, which would no longer be
2320 valid. */
2321 if (step_over_info_valid_p ()
00431a78 2322 || displaced_step_in_progress (tp->inf))
64ce06e4
PA
2323 target_pass_signals (0, NULL);
2324 else
2325 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2326
2327 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2328
2329 target_commit_resume ();
64ce06e4
PA
2330}
2331
d930703d 2332/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2333 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2334 call 'resume', which handles exceptions. */
c906108c 2335
71d378ae
PA
2336static void
2337resume_1 (enum gdb_signal sig)
c906108c 2338{
515630c5 2339 struct regcache *regcache = get_current_regcache ();
ac7936df 2340 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2341 struct thread_info *tp = inferior_thread ();
515630c5 2342 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2343 const address_space *aspace = regcache->aspace ();
b0f16a3e 2344 ptid_t resume_ptid;
856e7dd6
PA
2345 /* This represents the user's step vs continue request. When
2346 deciding whether "set scheduler-locking step" applies, it's the
2347 user's intention that counts. */
2348 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2349 /* This represents what we'll actually request the target to do.
2350 This can decay from a step to a continue, if e.g., we need to
2351 implement single-stepping with breakpoints (software
2352 single-step). */
6b403daa 2353 int step;
c7e8a53c 2354
c65d6b55 2355 gdb_assert (!tp->stop_requested);
c2829269
PA
2356 gdb_assert (!thread_is_in_step_over_chain (tp));
2357
372316f1
PA
2358 if (tp->suspend.waitstatus_pending_p)
2359 {
2360 if (debug_infrun)
2361 {
23fdd69e
SM
2362 std::string statstr
2363 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2364
372316f1 2365 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2366 "infrun: resume: thread %s has pending wait "
2367 "status %s (currently_stepping=%d).\n",
2368 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2369 currently_stepping (tp));
372316f1
PA
2370 }
2371
2372 tp->resumed = 1;
2373
2374 /* FIXME: What should we do if we are supposed to resume this
2375 thread with a signal? Maybe we should maintain a queue of
2376 pending signals to deliver. */
2377 if (sig != GDB_SIGNAL_0)
2378 {
fd7dcb94 2379 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2380 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2381 }
2382
2383 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2384
2385 if (target_can_async_p ())
9516f85a
AB
2386 {
2387 target_async (1);
2388 /* Tell the event loop we have an event to process. */
2389 mark_async_event_handler (infrun_async_inferior_event_token);
2390 }
372316f1
PA
2391 return;
2392 }
2393
2394 tp->stepped_breakpoint = 0;
2395
6b403daa
PA
2396 /* Depends on stepped_breakpoint. */
2397 step = currently_stepping (tp);
2398
74609e71
YQ
2399 if (current_inferior ()->waiting_for_vfork_done)
2400 {
48f9886d
PA
2401 /* Don't try to single-step a vfork parent that is waiting for
2402 the child to get out of the shared memory region (by exec'ing
2403 or exiting). This is particularly important on software
2404 single-step archs, as the child process would trip on the
2405 software single step breakpoint inserted for the parent
2406 process. Since the parent will not actually execute any
2407 instruction until the child is out of the shared region (such
2408 are vfork's semantics), it is safe to simply continue it.
2409 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2410 the parent, and tell it to `keep_going', which automatically
2411 re-sets it stepping. */
74609e71
YQ
2412 if (debug_infrun)
2413 fprintf_unfiltered (gdb_stdlog,
2414 "infrun: resume : clear step\n");
a09dd441 2415 step = 0;
74609e71
YQ
2416 }
2417
527159b7 2418 if (debug_infrun)
237fc4c9 2419 fprintf_unfiltered (gdb_stdlog,
c9737c08 2420 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2421 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2422 step, gdb_signal_to_symbol_string (sig),
2423 tp->control.trap_expected,
0d9a9a5f
PA
2424 target_pid_to_str (inferior_ptid),
2425 paddress (gdbarch, pc));
c906108c 2426
c2c6d25f
JM
2427 /* Normally, by the time we reach `resume', the breakpoints are either
2428 removed or inserted, as appropriate. The exception is if we're sitting
2429 at a permanent breakpoint; we need to step over it, but permanent
2430 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2431 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2432 {
af48d08f
PA
2433 if (sig != GDB_SIGNAL_0)
2434 {
2435 /* We have a signal to pass to the inferior. The resume
2436 may, or may not take us to the signal handler. If this
2437 is a step, we'll need to stop in the signal handler, if
2438 there's one, (if the target supports stepping into
2439 handlers), or in the next mainline instruction, if
2440 there's no handler. If this is a continue, we need to be
2441 sure to run the handler with all breakpoints inserted.
2442 In all cases, set a breakpoint at the current address
2443 (where the handler returns to), and once that breakpoint
2444 is hit, resume skipping the permanent breakpoint. If
2445 that breakpoint isn't hit, then we've stepped into the
2446 signal handler (or hit some other event). We'll delete
2447 the step-resume breakpoint then. */
2448
2449 if (debug_infrun)
2450 fprintf_unfiltered (gdb_stdlog,
2451 "infrun: resume: skipping permanent breakpoint, "
2452 "deliver signal first\n");
2453
2454 clear_step_over_info ();
2455 tp->control.trap_expected = 0;
2456
2457 if (tp->control.step_resume_breakpoint == NULL)
2458 {
2459 /* Set a "high-priority" step-resume, as we don't want
2460 user breakpoints at PC to trigger (again) when this
2461 hits. */
2462 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2463 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2464
2465 tp->step_after_step_resume_breakpoint = step;
2466 }
2467
2468 insert_breakpoints ();
2469 }
2470 else
2471 {
2472 /* There's no signal to pass, we can go ahead and skip the
2473 permanent breakpoint manually. */
2474 if (debug_infrun)
2475 fprintf_unfiltered (gdb_stdlog,
2476 "infrun: resume: skipping permanent breakpoint\n");
2477 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2478 /* Update pc to reflect the new address from which we will
2479 execute instructions. */
2480 pc = regcache_read_pc (regcache);
2481
2482 if (step)
2483 {
2484 /* We've already advanced the PC, so the stepping part
2485 is done. Now we need to arrange for a trap to be
2486 reported to handle_inferior_event. Set a breakpoint
2487 at the current PC, and run to it. Don't update
2488 prev_pc, because if we end in
44a1ee51
PA
2489 switch_back_to_stepped_thread, we want the "expected
2490 thread advanced also" branch to be taken. IOW, we
2491 don't want this thread to step further from PC
af48d08f 2492 (overstep). */
1ac806b8 2493 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2494 insert_single_step_breakpoint (gdbarch, aspace, pc);
2495 insert_breakpoints ();
2496
fbea99ea 2497 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2498 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2499 tp->resumed = 1;
af48d08f
PA
2500 return;
2501 }
2502 }
6d350bb5 2503 }
c2c6d25f 2504
c1e36e3e
PA
2505 /* If we have a breakpoint to step over, make sure to do a single
2506 step only. Same if we have software watchpoints. */
2507 if (tp->control.trap_expected || bpstat_should_step ())
2508 tp->control.may_range_step = 0;
2509
237fc4c9
PA
2510 /* If enabled, step over breakpoints by executing a copy of the
2511 instruction at a different address.
2512
2513 We can't use displaced stepping when we have a signal to deliver;
2514 the comments for displaced_step_prepare explain why. The
2515 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2516 signals' explain what we do instead.
2517
2518 We can't use displaced stepping when we are waiting for vfork_done
2519 event, displaced stepping breaks the vfork child similarly as single
2520 step software breakpoint. */
3fc8eb30
PA
2521 if (tp->control.trap_expected
2522 && use_displaced_stepping (tp)
cb71640d 2523 && !step_over_info_valid_p ()
a493e3e2 2524 && sig == GDB_SIGNAL_0
74609e71 2525 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2526 {
00431a78 2527 int prepared = displaced_step_prepare (tp);
fc1cf338 2528
3fc8eb30 2529 if (prepared == 0)
d56b7306 2530 {
4d9d9d04
PA
2531 if (debug_infrun)
2532 fprintf_unfiltered (gdb_stdlog,
2533 "Got placed in step-over queue\n");
2534
2535 tp->control.trap_expected = 0;
d56b7306
VP
2536 return;
2537 }
3fc8eb30
PA
2538 else if (prepared < 0)
2539 {
2540 /* Fallback to stepping over the breakpoint in-line. */
2541
2542 if (target_is_non_stop_p ())
2543 stop_all_threads ();
2544
a01bda52 2545 set_step_over_info (regcache->aspace (),
21edc42f 2546 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2547
2548 step = maybe_software_singlestep (gdbarch, pc);
2549
2550 insert_breakpoints ();
2551 }
2552 else if (prepared > 0)
2553 {
2554 struct displaced_step_inferior_state *displaced;
99e40580 2555
3fc8eb30
PA
2556 /* Update pc to reflect the new address from which we will
2557 execute instructions due to displaced stepping. */
00431a78 2558 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2559
00431a78 2560 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2561 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2562 displaced->step_closure);
2563 }
237fc4c9
PA
2564 }
2565
2facfe5c 2566 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2567 else if (step)
2facfe5c 2568 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2569
30852783
UW
2570 /* Currently, our software single-step implementation leads to different
2571 results than hardware single-stepping in one situation: when stepping
2572 into delivering a signal which has an associated signal handler,
2573 hardware single-step will stop at the first instruction of the handler,
2574 while software single-step will simply skip execution of the handler.
2575
2576 For now, this difference in behavior is accepted since there is no
2577 easy way to actually implement single-stepping into a signal handler
2578 without kernel support.
2579
2580 However, there is one scenario where this difference leads to follow-on
2581 problems: if we're stepping off a breakpoint by removing all breakpoints
2582 and then single-stepping. In this case, the software single-step
2583 behavior means that even if there is a *breakpoint* in the signal
2584 handler, GDB still would not stop.
2585
2586 Fortunately, we can at least fix this particular issue. We detect
2587 here the case where we are about to deliver a signal while software
2588 single-stepping with breakpoints removed. In this situation, we
2589 revert the decisions to remove all breakpoints and insert single-
2590 step breakpoints, and instead we install a step-resume breakpoint
2591 at the current address, deliver the signal without stepping, and
2592 once we arrive back at the step-resume breakpoint, actually step
2593 over the breakpoint we originally wanted to step over. */
34b7e8a6 2594 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2595 && sig != GDB_SIGNAL_0
2596 && step_over_info_valid_p ())
30852783
UW
2597 {
2598 /* If we have nested signals or a pending signal is delivered
2599 immediately after a handler returns, might might already have
2600 a step-resume breakpoint set on the earlier handler. We cannot
2601 set another step-resume breakpoint; just continue on until the
2602 original breakpoint is hit. */
2603 if (tp->control.step_resume_breakpoint == NULL)
2604 {
2c03e5be 2605 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2606 tp->step_after_step_resume_breakpoint = 1;
2607 }
2608
34b7e8a6 2609 delete_single_step_breakpoints (tp);
30852783 2610
31e77af2 2611 clear_step_over_info ();
30852783 2612 tp->control.trap_expected = 0;
31e77af2
PA
2613
2614 insert_breakpoints ();
30852783
UW
2615 }
2616
b0f16a3e
SM
2617 /* If STEP is set, it's a request to use hardware stepping
2618 facilities. But in that case, we should never
2619 use singlestep breakpoint. */
34b7e8a6 2620 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2621
fbea99ea 2622 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2623 if (tp->control.trap_expected)
b0f16a3e
SM
2624 {
2625 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2626 hit, either by single-stepping the thread with the breakpoint
2627 removed, or by displaced stepping, with the breakpoint inserted.
2628 In the former case, we need to single-step only this thread,
2629 and keep others stopped, as they can miss this breakpoint if
2630 allowed to run. That's not really a problem for displaced
2631 stepping, but, we still keep other threads stopped, in case
2632 another thread is also stopped for a breakpoint waiting for
2633 its turn in the displaced stepping queue. */
b0f16a3e
SM
2634 resume_ptid = inferior_ptid;
2635 }
fbea99ea
PA
2636 else
2637 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2638
7f5ef605
PA
2639 if (execution_direction != EXEC_REVERSE
2640 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2641 {
372316f1
PA
2642 /* There are two cases where we currently need to step a
2643 breakpoint instruction when we have a signal to deliver:
2644
2645 - See handle_signal_stop where we handle random signals that
2646 could take out us out of the stepping range. Normally, in
2647 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2648 signal handler with a breakpoint at PC, but there are cases
2649 where we should _always_ single-step, even if we have a
2650 step-resume breakpoint, like when a software watchpoint is
2651 set. Assuming single-stepping and delivering a signal at the
2652 same time would takes us to the signal handler, then we could
2653 have removed the breakpoint at PC to step over it. However,
2654 some hardware step targets (like e.g., Mac OS) can't step
2655 into signal handlers, and for those, we need to leave the
2656 breakpoint at PC inserted, as otherwise if the handler
2657 recurses and executes PC again, it'll miss the breakpoint.
2658 So we leave the breakpoint inserted anyway, but we need to
2659 record that we tried to step a breakpoint instruction, so
372316f1
PA
2660 that adjust_pc_after_break doesn't end up confused.
2661
2662 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2663 in one thread after another thread that was stepping had been
2664 momentarily paused for a step-over. When we re-resume the
2665 stepping thread, it may be resumed from that address with a
2666 breakpoint that hasn't trapped yet. Seen with
2667 gdb.threads/non-stop-fair-events.exp, on targets that don't
2668 do displaced stepping. */
2669
2670 if (debug_infrun)
2671 fprintf_unfiltered (gdb_stdlog,
2672 "infrun: resume: [%s] stepped breakpoint\n",
2673 target_pid_to_str (tp->ptid));
7f5ef605
PA
2674
2675 tp->stepped_breakpoint = 1;
2676
b0f16a3e
SM
2677 /* Most targets can step a breakpoint instruction, thus
2678 executing it normally. But if this one cannot, just
2679 continue and we will hit it anyway. */
7f5ef605 2680 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2681 step = 0;
2682 }
ef5cf84e 2683
b0f16a3e 2684 if (debug_displaced
cb71640d 2685 && tp->control.trap_expected
3fc8eb30 2686 && use_displaced_stepping (tp)
cb71640d 2687 && !step_over_info_valid_p ())
b0f16a3e 2688 {
00431a78 2689 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2690 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2691 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2692 gdb_byte buf[4];
2693
2694 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2695 paddress (resume_gdbarch, actual_pc));
2696 read_memory (actual_pc, buf, sizeof (buf));
2697 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2698 }
237fc4c9 2699
b0f16a3e
SM
2700 if (tp->control.may_range_step)
2701 {
2702 /* If we're resuming a thread with the PC out of the step
2703 range, then we're doing some nested/finer run control
2704 operation, like stepping the thread out of the dynamic
2705 linker or the displaced stepping scratch pad. We
2706 shouldn't have allowed a range step then. */
2707 gdb_assert (pc_in_thread_step_range (pc, tp));
2708 }
c1e36e3e 2709
64ce06e4 2710 do_target_resume (resume_ptid, step, sig);
372316f1 2711 tp->resumed = 1;
c906108c 2712}
71d378ae
PA
2713
2714/* Resume the inferior. SIG is the signal to give the inferior
2715 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2716 rolls back state on error. */
2717
aff4e175 2718static void
71d378ae
PA
2719resume (gdb_signal sig)
2720{
2721 TRY
2722 {
2723 resume_1 (sig);
2724 }
2725 CATCH (ex, RETURN_MASK_ALL)
2726 {
2727 /* If resuming is being aborted for any reason, delete any
2728 single-step breakpoint resume_1 may have created, to avoid
2729 confusing the following resumption, and to avoid leaving
2730 single-step breakpoints perturbing other threads, in case
2731 we're running in non-stop mode. */
2732 if (inferior_ptid != null_ptid)
2733 delete_single_step_breakpoints (inferior_thread ());
2734 throw_exception (ex);
2735 }
2736 END_CATCH
2737}
2738
c906108c 2739\f
237fc4c9 2740/* Proceeding. */
c906108c 2741
4c2f2a79
PA
2742/* See infrun.h. */
2743
2744/* Counter that tracks number of user visible stops. This can be used
2745 to tell whether a command has proceeded the inferior past the
2746 current location. This allows e.g., inferior function calls in
2747 breakpoint commands to not interrupt the command list. When the
2748 call finishes successfully, the inferior is standing at the same
2749 breakpoint as if nothing happened (and so we don't call
2750 normal_stop). */
2751static ULONGEST current_stop_id;
2752
2753/* See infrun.h. */
2754
2755ULONGEST
2756get_stop_id (void)
2757{
2758 return current_stop_id;
2759}
2760
2761/* Called when we report a user visible stop. */
2762
2763static void
2764new_stop_id (void)
2765{
2766 current_stop_id++;
2767}
2768
c906108c
SS
2769/* Clear out all variables saying what to do when inferior is continued.
2770 First do this, then set the ones you want, then call `proceed'. */
2771
a7212384
UW
2772static void
2773clear_proceed_status_thread (struct thread_info *tp)
c906108c 2774{
a7212384
UW
2775 if (debug_infrun)
2776 fprintf_unfiltered (gdb_stdlog,
2777 "infrun: clear_proceed_status_thread (%s)\n",
2778 target_pid_to_str (tp->ptid));
d6b48e9c 2779
372316f1
PA
2780 /* If we're starting a new sequence, then the previous finished
2781 single-step is no longer relevant. */
2782 if (tp->suspend.waitstatus_pending_p)
2783 {
2784 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2785 {
2786 if (debug_infrun)
2787 fprintf_unfiltered (gdb_stdlog,
2788 "infrun: clear_proceed_status: pending "
2789 "event of %s was a finished step. "
2790 "Discarding.\n",
2791 target_pid_to_str (tp->ptid));
2792
2793 tp->suspend.waitstatus_pending_p = 0;
2794 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2795 }
2796 else if (debug_infrun)
2797 {
23fdd69e
SM
2798 std::string statstr
2799 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2800
372316f1
PA
2801 fprintf_unfiltered (gdb_stdlog,
2802 "infrun: clear_proceed_status_thread: thread %s "
2803 "has pending wait status %s "
2804 "(currently_stepping=%d).\n",
23fdd69e 2805 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2806 currently_stepping (tp));
372316f1
PA
2807 }
2808 }
2809
70509625
PA
2810 /* If this signal should not be seen by program, give it zero.
2811 Used for debugging signals. */
2812 if (!signal_pass_state (tp->suspend.stop_signal))
2813 tp->suspend.stop_signal = GDB_SIGNAL_0;
2814
243a9253
PA
2815 thread_fsm_delete (tp->thread_fsm);
2816 tp->thread_fsm = NULL;
2817
16c381f0
JK
2818 tp->control.trap_expected = 0;
2819 tp->control.step_range_start = 0;
2820 tp->control.step_range_end = 0;
c1e36e3e 2821 tp->control.may_range_step = 0;
16c381f0
JK
2822 tp->control.step_frame_id = null_frame_id;
2823 tp->control.step_stack_frame_id = null_frame_id;
2824 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2825 tp->control.step_start_function = NULL;
a7212384 2826 tp->stop_requested = 0;
4e1c45ea 2827
16c381f0 2828 tp->control.stop_step = 0;
32400beb 2829
16c381f0 2830 tp->control.proceed_to_finish = 0;
414c69f7 2831
856e7dd6 2832 tp->control.stepping_command = 0;
17b2616c 2833
a7212384 2834 /* Discard any remaining commands or status from previous stop. */
16c381f0 2835 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2836}
32400beb 2837
a7212384 2838void
70509625 2839clear_proceed_status (int step)
a7212384 2840{
f2665db5
MM
2841 /* With scheduler-locking replay, stop replaying other threads if we're
2842 not replaying the user-visible resume ptid.
2843
2844 This is a convenience feature to not require the user to explicitly
2845 stop replaying the other threads. We're assuming that the user's
2846 intent is to resume tracing the recorded process. */
2847 if (!non_stop && scheduler_mode == schedlock_replay
2848 && target_record_is_replaying (minus_one_ptid)
2849 && !target_record_will_replay (user_visible_resume_ptid (step),
2850 execution_direction))
2851 target_record_stop_replaying ();
2852
08036331 2853 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2854 {
08036331 2855 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2856
2857 /* In all-stop mode, delete the per-thread status of all threads
2858 we're about to resume, implicitly and explicitly. */
08036331
PA
2859 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2860 clear_proceed_status_thread (tp);
6c95b8df
PA
2861 }
2862
d7e15655 2863 if (inferior_ptid != null_ptid)
a7212384
UW
2864 {
2865 struct inferior *inferior;
2866
2867 if (non_stop)
2868 {
6c95b8df
PA
2869 /* If in non-stop mode, only delete the per-thread status of
2870 the current thread. */
a7212384
UW
2871 clear_proceed_status_thread (inferior_thread ());
2872 }
6c95b8df 2873
d6b48e9c 2874 inferior = current_inferior ();
16c381f0 2875 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2876 }
2877
76727919 2878 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2879}
2880
99619bea
PA
2881/* Returns true if TP is still stopped at a breakpoint that needs
2882 stepping-over in order to make progress. If the breakpoint is gone
2883 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2884
2885static int
6c4cfb24 2886thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2887{
2888 if (tp->stepping_over_breakpoint)
2889 {
00431a78 2890 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2891
a01bda52 2892 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2893 regcache_read_pc (regcache))
2894 == ordinary_breakpoint_here)
99619bea
PA
2895 return 1;
2896
2897 tp->stepping_over_breakpoint = 0;
2898 }
2899
2900 return 0;
2901}
2902
6c4cfb24
PA
2903/* Check whether thread TP still needs to start a step-over in order
2904 to make progress when resumed. Returns an bitwise or of enum
2905 step_over_what bits, indicating what needs to be stepped over. */
2906
8d297bbf 2907static step_over_what
6c4cfb24
PA
2908thread_still_needs_step_over (struct thread_info *tp)
2909{
8d297bbf 2910 step_over_what what = 0;
6c4cfb24
PA
2911
2912 if (thread_still_needs_step_over_bp (tp))
2913 what |= STEP_OVER_BREAKPOINT;
2914
2915 if (tp->stepping_over_watchpoint
2916 && !target_have_steppable_watchpoint)
2917 what |= STEP_OVER_WATCHPOINT;
2918
2919 return what;
2920}
2921
483805cf
PA
2922/* Returns true if scheduler locking applies. STEP indicates whether
2923 we're about to do a step/next-like command to a thread. */
2924
2925static int
856e7dd6 2926schedlock_applies (struct thread_info *tp)
483805cf
PA
2927{
2928 return (scheduler_mode == schedlock_on
2929 || (scheduler_mode == schedlock_step
f2665db5
MM
2930 && tp->control.stepping_command)
2931 || (scheduler_mode == schedlock_replay
2932 && target_record_will_replay (minus_one_ptid,
2933 execution_direction)));
483805cf
PA
2934}
2935
c906108c
SS
2936/* Basic routine for continuing the program in various fashions.
2937
2938 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2939 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2940 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2941
2942 You should call clear_proceed_status before calling proceed. */
2943
2944void
64ce06e4 2945proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2946{
e58b0e63
PA
2947 struct regcache *regcache;
2948 struct gdbarch *gdbarch;
e58b0e63 2949 CORE_ADDR pc;
4d9d9d04
PA
2950 ptid_t resume_ptid;
2951 struct execution_control_state ecss;
2952 struct execution_control_state *ecs = &ecss;
4d9d9d04 2953 int started;
c906108c 2954
e58b0e63
PA
2955 /* If we're stopped at a fork/vfork, follow the branch set by the
2956 "set follow-fork-mode" command; otherwise, we'll just proceed
2957 resuming the current thread. */
2958 if (!follow_fork ())
2959 {
2960 /* The target for some reason decided not to resume. */
2961 normal_stop ();
f148b27e
PA
2962 if (target_can_async_p ())
2963 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2964 return;
2965 }
2966
842951eb
PA
2967 /* We'll update this if & when we switch to a new thread. */
2968 previous_inferior_ptid = inferior_ptid;
2969
e58b0e63 2970 regcache = get_current_regcache ();
ac7936df 2971 gdbarch = regcache->arch ();
8b86c959
YQ
2972 const address_space *aspace = regcache->aspace ();
2973
e58b0e63 2974 pc = regcache_read_pc (regcache);
08036331 2975 thread_info *cur_thr = inferior_thread ();
e58b0e63 2976
99619bea 2977 /* Fill in with reasonable starting values. */
08036331 2978 init_thread_stepping_state (cur_thr);
99619bea 2979
08036331 2980 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2981
2acceee2 2982 if (addr == (CORE_ADDR) -1)
c906108c 2983 {
08036331 2984 if (pc == cur_thr->suspend.stop_pc
af48d08f 2985 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2986 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2987 /* There is a breakpoint at the address we will resume at,
2988 step one instruction before inserting breakpoints so that
2989 we do not stop right away (and report a second hit at this
b2175913
MS
2990 breakpoint).
2991
2992 Note, we don't do this in reverse, because we won't
2993 actually be executing the breakpoint insn anyway.
2994 We'll be (un-)executing the previous instruction. */
08036331 2995 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2996 else if (gdbarch_single_step_through_delay_p (gdbarch)
2997 && gdbarch_single_step_through_delay (gdbarch,
2998 get_current_frame ()))
3352ef37
AC
2999 /* We stepped onto an instruction that needs to be stepped
3000 again before re-inserting the breakpoint, do so. */
08036331 3001 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3002 }
3003 else
3004 {
515630c5 3005 regcache_write_pc (regcache, addr);
c906108c
SS
3006 }
3007
70509625 3008 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3009 cur_thr->suspend.stop_signal = siggnal;
70509625 3010
08036331 3011 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
3012
3013 /* If an exception is thrown from this point on, make sure to
3014 propagate GDB's knowledge of the executing state to the
3015 frontend/user running state. */
731f534f 3016 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
3017
3018 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3019 threads (e.g., we might need to set threads stepping over
3020 breakpoints first), from the user/frontend's point of view, all
3021 threads in RESUME_PTID are now running. Unless we're calling an
3022 inferior function, as in that case we pretend the inferior
3023 doesn't run at all. */
08036331 3024 if (!cur_thr->control.in_infcall)
4d9d9d04 3025 set_running (resume_ptid, 1);
17b2616c 3026
527159b7 3027 if (debug_infrun)
8a9de0e4 3028 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3029 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3030 paddress (gdbarch, addr),
64ce06e4 3031 gdb_signal_to_symbol_string (siggnal));
527159b7 3032
4d9d9d04
PA
3033 annotate_starting ();
3034
3035 /* Make sure that output from GDB appears before output from the
3036 inferior. */
3037 gdb_flush (gdb_stdout);
3038
d930703d
PA
3039 /* Since we've marked the inferior running, give it the terminal. A
3040 QUIT/Ctrl-C from here on is forwarded to the target (which can
3041 still detect attempts to unblock a stuck connection with repeated
3042 Ctrl-C from within target_pass_ctrlc). */
3043 target_terminal::inferior ();
3044
4d9d9d04
PA
3045 /* In a multi-threaded task we may select another thread and
3046 then continue or step.
3047
3048 But if a thread that we're resuming had stopped at a breakpoint,
3049 it will immediately cause another breakpoint stop without any
3050 execution (i.e. it will report a breakpoint hit incorrectly). So
3051 we must step over it first.
3052
3053 Look for threads other than the current (TP) that reported a
3054 breakpoint hit and haven't been resumed yet since. */
3055
3056 /* If scheduler locking applies, we can avoid iterating over all
3057 threads. */
08036331 3058 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3059 {
08036331
PA
3060 for (thread_info *tp : all_non_exited_threads (resume_ptid))
3061 {
4d9d9d04
PA
3062 /* Ignore the current thread here. It's handled
3063 afterwards. */
08036331 3064 if (tp == cur_thr)
4d9d9d04 3065 continue;
c906108c 3066
4d9d9d04
PA
3067 if (!thread_still_needs_step_over (tp))
3068 continue;
3069
3070 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3071
99619bea
PA
3072 if (debug_infrun)
3073 fprintf_unfiltered (gdb_stdlog,
3074 "infrun: need to step-over [%s] first\n",
4d9d9d04 3075 target_pid_to_str (tp->ptid));
99619bea 3076
4d9d9d04 3077 thread_step_over_chain_enqueue (tp);
2adfaa28 3078 }
30852783
UW
3079 }
3080
4d9d9d04
PA
3081 /* Enqueue the current thread last, so that we move all other
3082 threads over their breakpoints first. */
08036331
PA
3083 if (cur_thr->stepping_over_breakpoint)
3084 thread_step_over_chain_enqueue (cur_thr);
30852783 3085
4d9d9d04
PA
3086 /* If the thread isn't started, we'll still need to set its prev_pc,
3087 so that switch_back_to_stepped_thread knows the thread hasn't
3088 advanced. Must do this before resuming any thread, as in
3089 all-stop/remote, once we resume we can't send any other packet
3090 until the target stops again. */
08036331 3091 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 3092
a9bc57b9
TT
3093 {
3094 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3095
a9bc57b9 3096 started = start_step_over ();
c906108c 3097
a9bc57b9
TT
3098 if (step_over_info_valid_p ())
3099 {
3100 /* Either this thread started a new in-line step over, or some
3101 other thread was already doing one. In either case, don't
3102 resume anything else until the step-over is finished. */
3103 }
3104 else if (started && !target_is_non_stop_p ())
3105 {
3106 /* A new displaced stepping sequence was started. In all-stop,
3107 we can't talk to the target anymore until it next stops. */
3108 }
3109 else if (!non_stop && target_is_non_stop_p ())
3110 {
3111 /* In all-stop, but the target is always in non-stop mode.
3112 Start all other threads that are implicitly resumed too. */
08036331 3113 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3114 {
fbea99ea
PA
3115 if (tp->resumed)
3116 {
3117 if (debug_infrun)
3118 fprintf_unfiltered (gdb_stdlog,
3119 "infrun: proceed: [%s] resumed\n",
3120 target_pid_to_str (tp->ptid));
3121 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3122 continue;
3123 }
3124
3125 if (thread_is_in_step_over_chain (tp))
3126 {
3127 if (debug_infrun)
3128 fprintf_unfiltered (gdb_stdlog,
3129 "infrun: proceed: [%s] needs step-over\n",
3130 target_pid_to_str (tp->ptid));
3131 continue;
3132 }
3133
3134 if (debug_infrun)
3135 fprintf_unfiltered (gdb_stdlog,
3136 "infrun: proceed: resuming %s\n",
3137 target_pid_to_str (tp->ptid));
3138
3139 reset_ecs (ecs, tp);
00431a78 3140 switch_to_thread (tp);
fbea99ea
PA
3141 keep_going_pass_signal (ecs);
3142 if (!ecs->wait_some_more)
fd7dcb94 3143 error (_("Command aborted."));
fbea99ea 3144 }
a9bc57b9 3145 }
08036331 3146 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3147 {
3148 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3149 reset_ecs (ecs, cur_thr);
3150 switch_to_thread (cur_thr);
a9bc57b9
TT
3151 keep_going_pass_signal (ecs);
3152 if (!ecs->wait_some_more)
3153 error (_("Command aborted."));
3154 }
3155 }
c906108c 3156
85ad3aaf
PA
3157 target_commit_resume ();
3158
731f534f 3159 finish_state.release ();
c906108c 3160
0b333c5e
PA
3161 /* Tell the event loop to wait for it to stop. If the target
3162 supports asynchronous execution, it'll do this from within
3163 target_resume. */
362646f5 3164 if (!target_can_async_p ())
0b333c5e 3165 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3166}
c906108c
SS
3167\f
3168
3169/* Start remote-debugging of a machine over a serial link. */
96baa820 3170
c906108c 3171void
8621d6a9 3172start_remote (int from_tty)
c906108c 3173{
d6b48e9c 3174 struct inferior *inferior;
d6b48e9c
PA
3175
3176 inferior = current_inferior ();
16c381f0 3177 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3178
1777feb0 3179 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3180 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3181 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3182 nothing is returned (instead of just blocking). Because of this,
3183 targets expecting an immediate response need to, internally, set
3184 things up so that the target_wait() is forced to eventually
1777feb0 3185 timeout. */
6426a772
JM
3186 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3187 differentiate to its caller what the state of the target is after
3188 the initial open has been performed. Here we're assuming that
3189 the target has stopped. It should be possible to eventually have
3190 target_open() return to the caller an indication that the target
3191 is currently running and GDB state should be set to the same as
1777feb0 3192 for an async run. */
e4c8541f 3193 wait_for_inferior ();
8621d6a9
DJ
3194
3195 /* Now that the inferior has stopped, do any bookkeeping like
3196 loading shared libraries. We want to do this before normal_stop,
3197 so that the displayed frame is up to date. */
8b88a78e 3198 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3199
6426a772 3200 normal_stop ();
c906108c
SS
3201}
3202
3203/* Initialize static vars when a new inferior begins. */
3204
3205void
96baa820 3206init_wait_for_inferior (void)
c906108c
SS
3207{
3208 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3209
c906108c
SS
3210 breakpoint_init_inferior (inf_starting);
3211
70509625 3212 clear_proceed_status (0);
9f976b41 3213
ca005067 3214 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3215
842951eb 3216 previous_inferior_ptid = inferior_ptid;
c906108c 3217}
237fc4c9 3218
c906108c 3219\f
488f131b 3220
ec9499be 3221static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3222
568d6575
UW
3223static void handle_step_into_function (struct gdbarch *gdbarch,
3224 struct execution_control_state *ecs);
3225static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3226 struct execution_control_state *ecs);
4f5d7f63 3227static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3228static void check_exception_resume (struct execution_control_state *,
28106bc2 3229 struct frame_info *);
611c83ae 3230
bdc36728 3231static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3232static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3233static void keep_going (struct execution_control_state *ecs);
94c57d6a 3234static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3235static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3236
252fbfc8
PA
3237/* This function is attached as a "thread_stop_requested" observer.
3238 Cleanup local state that assumed the PTID was to be resumed, and
3239 report the stop to the frontend. */
3240
2c0b251b 3241static void
252fbfc8
PA
3242infrun_thread_stop_requested (ptid_t ptid)
3243{
c65d6b55
PA
3244 /* PTID was requested to stop. If the thread was already stopped,
3245 but the user/frontend doesn't know about that yet (e.g., the
3246 thread had been temporarily paused for some step-over), set up
3247 for reporting the stop now. */
08036331
PA
3248 for (thread_info *tp : all_threads (ptid))
3249 {
3250 if (tp->state != THREAD_RUNNING)
3251 continue;
3252 if (tp->executing)
3253 continue;
c65d6b55 3254
08036331
PA
3255 /* Remove matching threads from the step-over queue, so
3256 start_step_over doesn't try to resume them
3257 automatically. */
3258 if (thread_is_in_step_over_chain (tp))
3259 thread_step_over_chain_remove (tp);
c65d6b55 3260
08036331
PA
3261 /* If the thread is stopped, but the user/frontend doesn't
3262 know about that yet, queue a pending event, as if the
3263 thread had just stopped now. Unless the thread already had
3264 a pending event. */
3265 if (!tp->suspend.waitstatus_pending_p)
3266 {
3267 tp->suspend.waitstatus_pending_p = 1;
3268 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3269 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3270 }
c65d6b55 3271
08036331
PA
3272 /* Clear the inline-frame state, since we're re-processing the
3273 stop. */
3274 clear_inline_frame_state (tp->ptid);
c65d6b55 3275
08036331
PA
3276 /* If this thread was paused because some other thread was
3277 doing an inline-step over, let that finish first. Once
3278 that happens, we'll restart all threads and consume pending
3279 stop events then. */
3280 if (step_over_info_valid_p ())
3281 continue;
3282
3283 /* Otherwise we can process the (new) pending event now. Set
3284 it so this pending event is considered by
3285 do_target_wait. */
3286 tp->resumed = 1;
3287 }
252fbfc8
PA
3288}
3289
a07daef3
PA
3290static void
3291infrun_thread_thread_exit (struct thread_info *tp, int silent)
3292{
d7e15655 3293 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3294 nullify_last_target_wait_ptid ();
3295}
3296
0cbcdb96
PA
3297/* Delete the step resume, single-step and longjmp/exception resume
3298 breakpoints of TP. */
4e1c45ea 3299
0cbcdb96
PA
3300static void
3301delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3302{
0cbcdb96
PA
3303 delete_step_resume_breakpoint (tp);
3304 delete_exception_resume_breakpoint (tp);
34b7e8a6 3305 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3306}
3307
0cbcdb96
PA
3308/* If the target still has execution, call FUNC for each thread that
3309 just stopped. In all-stop, that's all the non-exited threads; in
3310 non-stop, that's the current thread, only. */
3311
3312typedef void (*for_each_just_stopped_thread_callback_func)
3313 (struct thread_info *tp);
4e1c45ea
PA
3314
3315static void
0cbcdb96 3316for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3317{
d7e15655 3318 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3319 return;
3320
fbea99ea 3321 if (target_is_non_stop_p ())
4e1c45ea 3322 {
0cbcdb96
PA
3323 /* If in non-stop mode, only the current thread stopped. */
3324 func (inferior_thread ());
4e1c45ea
PA
3325 }
3326 else
0cbcdb96 3327 {
0cbcdb96 3328 /* In all-stop mode, all threads have stopped. */
08036331
PA
3329 for (thread_info *tp : all_non_exited_threads ())
3330 func (tp);
0cbcdb96
PA
3331 }
3332}
3333
3334/* Delete the step resume and longjmp/exception resume breakpoints of
3335 the threads that just stopped. */
3336
3337static void
3338delete_just_stopped_threads_infrun_breakpoints (void)
3339{
3340 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3341}
3342
3343/* Delete the single-step breakpoints of the threads that just
3344 stopped. */
7c16b83e 3345
34b7e8a6
PA
3346static void
3347delete_just_stopped_threads_single_step_breakpoints (void)
3348{
3349 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3350}
3351
1777feb0 3352/* A cleanup wrapper. */
4e1c45ea
PA
3353
3354static void
0cbcdb96 3355delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3356{
0cbcdb96 3357 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3358}
3359
221e1a37 3360/* See infrun.h. */
223698f8 3361
221e1a37 3362void
223698f8
DE
3363print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3364 const struct target_waitstatus *ws)
3365{
23fdd69e 3366 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3367 string_file stb;
223698f8
DE
3368
3369 /* The text is split over several lines because it was getting too long.
3370 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3371 output as a unit; we want only one timestamp printed if debug_timestamp
3372 is set. */
3373
d7e74731 3374 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3375 waiton_ptid.pid (),
e38504b3 3376 waiton_ptid.lwp (),
cc6bcb54 3377 waiton_ptid.tid ());
e99b03dc 3378 if (waiton_ptid.pid () != -1)
d7e74731
PA
3379 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3380 stb.printf (", status) =\n");
3381 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3382 result_ptid.pid (),
e38504b3 3383 result_ptid.lwp (),
cc6bcb54 3384 result_ptid.tid (),
d7e74731 3385 target_pid_to_str (result_ptid));
23fdd69e 3386 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3387
3388 /* This uses %s in part to handle %'s in the text, but also to avoid
3389 a gcc error: the format attribute requires a string literal. */
d7e74731 3390 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3391}
3392
372316f1
PA
3393/* Select a thread at random, out of those which are resumed and have
3394 had events. */
3395
3396static struct thread_info *
3397random_pending_event_thread (ptid_t waiton_ptid)
3398{
372316f1 3399 int num_events = 0;
08036331
PA
3400
3401 auto has_event = [] (thread_info *tp)
3402 {
3403 return (tp->resumed
3404 && tp->suspend.waitstatus_pending_p);
3405 };
372316f1
PA
3406
3407 /* First see how many events we have. Count only resumed threads
3408 that have an event pending. */
08036331
PA
3409 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3410 if (has_event (tp))
372316f1
PA
3411 num_events++;
3412
3413 if (num_events == 0)
3414 return NULL;
3415
3416 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3417 int random_selector = (int) ((num_events * (double) rand ())
3418 / (RAND_MAX + 1.0));
372316f1
PA
3419
3420 if (debug_infrun && num_events > 1)
3421 fprintf_unfiltered (gdb_stdlog,
3422 "infrun: Found %d events, selecting #%d\n",
3423 num_events, random_selector);
3424
3425 /* Select the Nth thread that has had an event. */
08036331
PA
3426 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3427 if (has_event (tp))
372316f1 3428 if (random_selector-- == 0)
08036331 3429 return tp;
372316f1 3430
08036331 3431 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3432}
3433
3434/* Wrapper for target_wait that first checks whether threads have
3435 pending statuses to report before actually asking the target for
3436 more events. */
3437
3438static ptid_t
3439do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3440{
3441 ptid_t event_ptid;
3442 struct thread_info *tp;
3443
3444 /* First check if there is a resumed thread with a wait status
3445 pending. */
d7e15655 3446 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3447 {
3448 tp = random_pending_event_thread (ptid);
3449 }
3450 else
3451 {
3452 if (debug_infrun)
3453 fprintf_unfiltered (gdb_stdlog,
3454 "infrun: Waiting for specific thread %s.\n",
3455 target_pid_to_str (ptid));
3456
3457 /* We have a specific thread to check. */
3458 tp = find_thread_ptid (ptid);
3459 gdb_assert (tp != NULL);
3460 if (!tp->suspend.waitstatus_pending_p)
3461 tp = NULL;
3462 }
3463
3464 if (tp != NULL
3465 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3466 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3467 {
00431a78 3468 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3469 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3470 CORE_ADDR pc;
3471 int discard = 0;
3472
3473 pc = regcache_read_pc (regcache);
3474
3475 if (pc != tp->suspend.stop_pc)
3476 {
3477 if (debug_infrun)
3478 fprintf_unfiltered (gdb_stdlog,
3479 "infrun: PC of %s changed. was=%s, now=%s\n",
3480 target_pid_to_str (tp->ptid),
defd2172 3481 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3482 paddress (gdbarch, pc));
3483 discard = 1;
3484 }
a01bda52 3485 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3486 {
3487 if (debug_infrun)
3488 fprintf_unfiltered (gdb_stdlog,
3489 "infrun: previous breakpoint of %s, at %s gone\n",
3490 target_pid_to_str (tp->ptid),
3491 paddress (gdbarch, pc));
3492
3493 discard = 1;
3494 }
3495
3496 if (discard)
3497 {
3498 if (debug_infrun)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: pending event of %s cancelled.\n",
3501 target_pid_to_str (tp->ptid));
3502
3503 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3504 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3505 }
3506 }
3507
3508 if (tp != NULL)
3509 {
3510 if (debug_infrun)
3511 {
23fdd69e
SM
3512 std::string statstr
3513 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3514
372316f1
PA
3515 fprintf_unfiltered (gdb_stdlog,
3516 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3517 statstr.c_str (),
372316f1 3518 target_pid_to_str (tp->ptid));
372316f1
PA
3519 }
3520
3521 /* Now that we've selected our final event LWP, un-adjust its PC
3522 if it was a software breakpoint (and the target doesn't
3523 always adjust the PC itself). */
3524 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3525 && !target_supports_stopped_by_sw_breakpoint ())
3526 {
3527 struct regcache *regcache;
3528 struct gdbarch *gdbarch;
3529 int decr_pc;
3530
00431a78 3531 regcache = get_thread_regcache (tp);
ac7936df 3532 gdbarch = regcache->arch ();
372316f1
PA
3533
3534 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3535 if (decr_pc != 0)
3536 {
3537 CORE_ADDR pc;
3538
3539 pc = regcache_read_pc (regcache);
3540 regcache_write_pc (regcache, pc + decr_pc);
3541 }
3542 }
3543
3544 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3545 *status = tp->suspend.waitstatus;
3546 tp->suspend.waitstatus_pending_p = 0;
3547
3548 /* Wake up the event loop again, until all pending events are
3549 processed. */
3550 if (target_is_async_p ())
3551 mark_async_event_handler (infrun_async_inferior_event_token);
3552 return tp->ptid;
3553 }
3554
3555 /* But if we don't find one, we'll have to wait. */
3556
3557 if (deprecated_target_wait_hook)
3558 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3559 else
3560 event_ptid = target_wait (ptid, status, options);
3561
3562 return event_ptid;
3563}
3564
24291992
PA
3565/* Prepare and stabilize the inferior for detaching it. E.g.,
3566 detaching while a thread is displaced stepping is a recipe for
3567 crashing it, as nothing would readjust the PC out of the scratch
3568 pad. */
3569
3570void
3571prepare_for_detach (void)
3572{
3573 struct inferior *inf = current_inferior ();
f2907e49 3574 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3575
00431a78 3576 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3577
3578 /* Is any thread of this process displaced stepping? If not,
3579 there's nothing else to do. */
00431a78 3580 if (displaced == NULL || displaced->step_thread == nullptr)
24291992
PA
3581 return;
3582
3583 if (debug_infrun)
3584 fprintf_unfiltered (gdb_stdlog,
3585 "displaced-stepping in-process while detaching");
3586
9bcb1f16 3587 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3588
00431a78 3589 while (displaced->step_thread != nullptr)
24291992 3590 {
24291992
PA
3591 struct execution_control_state ecss;
3592 struct execution_control_state *ecs;
3593
3594 ecs = &ecss;
3595 memset (ecs, 0, sizeof (*ecs));
3596
3597 overlay_cache_invalid = 1;
f15cb84a
YQ
3598 /* Flush target cache before starting to handle each event.
3599 Target was running and cache could be stale. This is just a
3600 heuristic. Running threads may modify target memory, but we
3601 don't get any event. */
3602 target_dcache_invalidate ();
24291992 3603
372316f1 3604 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3605
3606 if (debug_infrun)
3607 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3608
3609 /* If an error happens while handling the event, propagate GDB's
3610 knowledge of the executing state to the frontend/user running
3611 state. */
731f534f 3612 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3613
3614 /* Now figure out what to do with the result of the result. */
3615 handle_inferior_event (ecs);
3616
3617 /* No error, don't finish the state yet. */
731f534f 3618 finish_state.release ();
24291992
PA
3619
3620 /* Breakpoints and watchpoints are not installed on the target
3621 at this point, and signals are passed directly to the
3622 inferior, so this must mean the process is gone. */
3623 if (!ecs->wait_some_more)
3624 {
9bcb1f16 3625 restore_detaching.release ();
24291992
PA
3626 error (_("Program exited while detaching"));
3627 }
3628 }
3629
9bcb1f16 3630 restore_detaching.release ();
24291992
PA
3631}
3632
cd0fc7c3 3633/* Wait for control to return from inferior to debugger.
ae123ec6 3634
cd0fc7c3
SS
3635 If inferior gets a signal, we may decide to start it up again
3636 instead of returning. That is why there is a loop in this function.
3637 When this function actually returns it means the inferior
3638 should be left stopped and GDB should read more commands. */
3639
3640void
e4c8541f 3641wait_for_inferior (void)
cd0fc7c3
SS
3642{
3643 struct cleanup *old_cleanups;
c906108c 3644
527159b7 3645 if (debug_infrun)
ae123ec6 3646 fprintf_unfiltered
e4c8541f 3647 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3648
0cbcdb96
PA
3649 old_cleanups
3650 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3651 NULL);
cd0fc7c3 3652
e6f5c25b
PA
3653 /* If an error happens while handling the event, propagate GDB's
3654 knowledge of the executing state to the frontend/user running
3655 state. */
731f534f 3656 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3657
c906108c
SS
3658 while (1)
3659 {
ae25568b
PA
3660 struct execution_control_state ecss;
3661 struct execution_control_state *ecs = &ecss;
963f9c80 3662 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3663
ae25568b
PA
3664 memset (ecs, 0, sizeof (*ecs));
3665
ec9499be 3666 overlay_cache_invalid = 1;
ec9499be 3667
f15cb84a
YQ
3668 /* Flush target cache before starting to handle each event.
3669 Target was running and cache could be stale. This is just a
3670 heuristic. Running threads may modify target memory, but we
3671 don't get any event. */
3672 target_dcache_invalidate ();
3673
372316f1 3674 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3675
f00150c9 3676 if (debug_infrun)
223698f8 3677 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3678
cd0fc7c3
SS
3679 /* Now figure out what to do with the result of the result. */
3680 handle_inferior_event (ecs);
c906108c 3681
cd0fc7c3
SS
3682 if (!ecs->wait_some_more)
3683 break;
3684 }
4e1c45ea 3685
e6f5c25b 3686 /* No error, don't finish the state yet. */
731f534f 3687 finish_state.release ();
e6f5c25b 3688
cd0fc7c3
SS
3689 do_cleanups (old_cleanups);
3690}
c906108c 3691
d3d4baed
PA
3692/* Cleanup that reinstalls the readline callback handler, if the
3693 target is running in the background. If while handling the target
3694 event something triggered a secondary prompt, like e.g., a
3695 pagination prompt, we'll have removed the callback handler (see
3696 gdb_readline_wrapper_line). Need to do this as we go back to the
3697 event loop, ready to process further input. Note this has no
3698 effect if the handler hasn't actually been removed, because calling
3699 rl_callback_handler_install resets the line buffer, thus losing
3700 input. */
3701
3702static void
3703reinstall_readline_callback_handler_cleanup (void *arg)
3704{
3b12939d
PA
3705 struct ui *ui = current_ui;
3706
3707 if (!ui->async)
6c400b59
PA
3708 {
3709 /* We're not going back to the top level event loop yet. Don't
3710 install the readline callback, as it'd prep the terminal,
3711 readline-style (raw, noecho) (e.g., --batch). We'll install
3712 it the next time the prompt is displayed, when we're ready
3713 for input. */
3714 return;
3715 }
3716
3b12939d 3717 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3718 gdb_rl_callback_handler_reinstall ();
3719}
3720
243a9253
PA
3721/* Clean up the FSMs of threads that are now stopped. In non-stop,
3722 that's just the event thread. In all-stop, that's all threads. */
3723
3724static void
3725clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3726{
08036331
PA
3727 if (ecs->event_thread != NULL
3728 && ecs->event_thread->thread_fsm != NULL)
3729 thread_fsm_clean_up (ecs->event_thread->thread_fsm,
3730 ecs->event_thread);
243a9253
PA
3731
3732 if (!non_stop)
3733 {
08036331 3734 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3735 {
3736 if (thr->thread_fsm == NULL)
3737 continue;
3738 if (thr == ecs->event_thread)
3739 continue;
3740
00431a78 3741 switch_to_thread (thr);
8980e177 3742 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3743 }
3744
3745 if (ecs->event_thread != NULL)
00431a78 3746 switch_to_thread (ecs->event_thread);
243a9253
PA
3747 }
3748}
3749
3b12939d
PA
3750/* Helper for all_uis_check_sync_execution_done that works on the
3751 current UI. */
3752
3753static void
3754check_curr_ui_sync_execution_done (void)
3755{
3756 struct ui *ui = current_ui;
3757
3758 if (ui->prompt_state == PROMPT_NEEDED
3759 && ui->async
3760 && !gdb_in_secondary_prompt_p (ui))
3761 {
223ffa71 3762 target_terminal::ours ();
76727919 3763 gdb::observers::sync_execution_done.notify ();
3eb7562a 3764 ui_register_input_event_handler (ui);
3b12939d
PA
3765 }
3766}
3767
3768/* See infrun.h. */
3769
3770void
3771all_uis_check_sync_execution_done (void)
3772{
0e454242 3773 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3774 {
3775 check_curr_ui_sync_execution_done ();
3776 }
3777}
3778
a8836c93
PA
3779/* See infrun.h. */
3780
3781void
3782all_uis_on_sync_execution_starting (void)
3783{
0e454242 3784 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3785 {
3786 if (current_ui->prompt_state == PROMPT_NEEDED)
3787 async_disable_stdin ();
3788 }
3789}
3790
1777feb0 3791/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3792 event loop whenever a change of state is detected on the file
1777feb0
MS
3793 descriptor corresponding to the target. It can be called more than
3794 once to complete a single execution command. In such cases we need
3795 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3796 that this function is called for a single execution command, then
3797 report to the user that the inferior has stopped, and do the
1777feb0 3798 necessary cleanups. */
43ff13b4
JM
3799
3800void
fba45db2 3801fetch_inferior_event (void *client_data)
43ff13b4 3802{
0d1e5fa7 3803 struct execution_control_state ecss;
a474d7c2 3804 struct execution_control_state *ecs = &ecss;
4f8d22e3 3805 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
0f641c01 3806 int cmd_done = 0;
963f9c80 3807 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3808
0d1e5fa7
PA
3809 memset (ecs, 0, sizeof (*ecs));
3810
c61db772
PA
3811 /* Events are always processed with the main UI as current UI. This
3812 way, warnings, debug output, etc. are always consistently sent to
3813 the main console. */
4b6749b9 3814 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3815
d3d4baed
PA
3816 /* End up with readline processing input, if necessary. */
3817 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3818
c5187ac6
PA
3819 /* We're handling a live event, so make sure we're doing live
3820 debugging. If we're looking at traceframes while the target is
3821 running, we're going to need to get back to that mode after
3822 handling the event. */
6f14adc5 3823 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
c5187ac6
PA
3824 if (non_stop)
3825 {
6f14adc5 3826 maybe_restore_traceframe.emplace ();
e6e4e701 3827 set_current_traceframe (-1);
c5187ac6
PA
3828 }
3829
5ed8105e
PA
3830 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3831
4f8d22e3
PA
3832 if (non_stop)
3833 /* In non-stop mode, the user/frontend should not notice a thread
3834 switch due to internal events. Make sure we reverse to the
3835 user selected thread and frame after handling the event and
3836 running any breakpoint commands. */
5ed8105e 3837 maybe_restore_thread.emplace ();
4f8d22e3 3838
ec9499be 3839 overlay_cache_invalid = 1;
f15cb84a
YQ
3840 /* Flush target cache before starting to handle each event. Target
3841 was running and cache could be stale. This is just a heuristic.
3842 Running threads may modify target memory, but we don't get any
3843 event. */
3844 target_dcache_invalidate ();
3dd5b83d 3845
b7b633e9
TT
3846 scoped_restore save_exec_dir
3847 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3848
0b333c5e
PA
3849 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3850 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3851
f00150c9 3852 if (debug_infrun)
223698f8 3853 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3854
29f49a6a
PA
3855 /* If an error happens while handling the event, propagate GDB's
3856 knowledge of the executing state to the frontend/user running
3857 state. */
731f534f
PA
3858 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3859 scoped_finish_thread_state finish_state (finish_ptid);
29f49a6a 3860
353d1d73
JK
3861 /* Get executed before make_cleanup_restore_current_thread above to apply
3862 still for the thread which has thrown the exception. */
731f534f 3863 struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup ();
353d1d73 3864
7c16b83e
PA
3865 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3866
43ff13b4 3867 /* Now figure out what to do with the result of the result. */
a474d7c2 3868 handle_inferior_event (ecs);
43ff13b4 3869
a474d7c2 3870 if (!ecs->wait_some_more)
43ff13b4 3871 {
c9657e70 3872 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3873 int should_stop = 1;
3874 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3875
0cbcdb96 3876 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3877
243a9253
PA
3878 if (thr != NULL)
3879 {
3880 struct thread_fsm *thread_fsm = thr->thread_fsm;
3881
3882 if (thread_fsm != NULL)
8980e177 3883 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3884 }
3885
3886 if (!should_stop)
3887 {
3888 keep_going (ecs);
3889 }
c2d11a7d 3890 else
0f641c01 3891 {
1840d81a
AB
3892 int should_notify_stop = 1;
3893 int proceeded = 0;
3894
243a9253
PA
3895 clean_up_just_stopped_threads_fsms (ecs);
3896
388a7084
PA
3897 if (thr != NULL && thr->thread_fsm != NULL)
3898 {
3899 should_notify_stop
3900 = thread_fsm_should_notify_stop (thr->thread_fsm);
3901 }
3902
3903 if (should_notify_stop)
3904 {
3905 /* We may not find an inferior if this was a process exit. */
3906 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3907 proceeded = normal_stop ();
1840d81a 3908 }
243a9253 3909
1840d81a
AB
3910 if (!proceeded)
3911 {
3912 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3913 cmd_done = 1;
388a7084 3914 }
0f641c01 3915 }
43ff13b4 3916 }
4f8d22e3 3917
29f49a6a
PA
3918 discard_cleanups (ts_old_chain);
3919
731f534f
PA
3920 /* No error, don't finish the thread states yet. */
3921 finish_state.release ();
3922
4f8d22e3
PA
3923 /* Revert thread and frame. */
3924 do_cleanups (old_chain);
3925
3b12939d
PA
3926 /* If a UI was in sync execution mode, and now isn't, restore its
3927 prompt (a synchronous execution command has finished, and we're
3928 ready for input). */
3929 all_uis_check_sync_execution_done ();
0f641c01
PA
3930
3931 if (cmd_done
0f641c01 3932 && exec_done_display_p
00431a78
PA
3933 && (inferior_ptid == null_ptid
3934 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3935 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3936}
3937
edb3359d
DJ
3938/* Record the frame and location we're currently stepping through. */
3939void
3940set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3941{
3942 struct thread_info *tp = inferior_thread ();
3943
16c381f0
JK
3944 tp->control.step_frame_id = get_frame_id (frame);
3945 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3946
3947 tp->current_symtab = sal.symtab;
3948 tp->current_line = sal.line;
3949}
3950
0d1e5fa7
PA
3951/* Clear context switchable stepping state. */
3952
3953void
4e1c45ea 3954init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3955{
7f5ef605 3956 tss->stepped_breakpoint = 0;
0d1e5fa7 3957 tss->stepping_over_breakpoint = 0;
963f9c80 3958 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3959 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3960}
3961
c32c64b7
DE
3962/* Set the cached copy of the last ptid/waitstatus. */
3963
6efcd9a8 3964void
c32c64b7
DE
3965set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3966{
3967 target_last_wait_ptid = ptid;
3968 target_last_waitstatus = status;
3969}
3970
e02bc4cc 3971/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3972 target_wait()/deprecated_target_wait_hook(). The data is actually
3973 cached by handle_inferior_event(), which gets called immediately
3974 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3975
3976void
488f131b 3977get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3978{
39f77062 3979 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3980 *status = target_last_waitstatus;
3981}
3982
ac264b3b
MS
3983void
3984nullify_last_target_wait_ptid (void)
3985{
3986 target_last_wait_ptid = minus_one_ptid;
3987}
3988
dcf4fbde 3989/* Switch thread contexts. */
dd80620e
MS
3990
3991static void
00431a78 3992context_switch (execution_control_state *ecs)
dd80620e 3993{
00431a78
PA
3994 if (debug_infrun
3995 && ecs->ptid != inferior_ptid
3996 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3997 {
3998 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3999 target_pid_to_str (inferior_ptid));
4000 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 4001 target_pid_to_str (ecs->ptid));
fd48f117
DJ
4002 }
4003
00431a78 4004 switch_to_thread (ecs->event_thread);
dd80620e
MS
4005}
4006
d8dd4d5f
PA
4007/* If the target can't tell whether we've hit breakpoints
4008 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4009 check whether that could have been caused by a breakpoint. If so,
4010 adjust the PC, per gdbarch_decr_pc_after_break. */
4011
4fa8626c 4012static void
d8dd4d5f
PA
4013adjust_pc_after_break (struct thread_info *thread,
4014 struct target_waitstatus *ws)
4fa8626c 4015{
24a73cce
UW
4016 struct regcache *regcache;
4017 struct gdbarch *gdbarch;
118e6252 4018 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4019
4fa8626c
DJ
4020 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4021 we aren't, just return.
9709f61c
DJ
4022
4023 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4024 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4025 implemented by software breakpoints should be handled through the normal
4026 breakpoint layer.
8fb3e588 4027
4fa8626c
DJ
4028 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4029 different signals (SIGILL or SIGEMT for instance), but it is less
4030 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4031 gdbarch_decr_pc_after_break. I don't know any specific target that
4032 generates these signals at breakpoints (the code has been in GDB since at
4033 least 1992) so I can not guess how to handle them here.
8fb3e588 4034
e6cf7916
UW
4035 In earlier versions of GDB, a target with
4036 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4037 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4038 target with both of these set in GDB history, and it seems unlikely to be
4039 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4040
d8dd4d5f 4041 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4042 return;
4043
d8dd4d5f 4044 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4045 return;
4046
4058b839
PA
4047 /* In reverse execution, when a breakpoint is hit, the instruction
4048 under it has already been de-executed. The reported PC always
4049 points at the breakpoint address, so adjusting it further would
4050 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4051 architecture:
4052
4053 B1 0x08000000 : INSN1
4054 B2 0x08000001 : INSN2
4055 0x08000002 : INSN3
4056 PC -> 0x08000003 : INSN4
4057
4058 Say you're stopped at 0x08000003 as above. Reverse continuing
4059 from that point should hit B2 as below. Reading the PC when the
4060 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4061 been de-executed already.
4062
4063 B1 0x08000000 : INSN1
4064 B2 PC -> 0x08000001 : INSN2
4065 0x08000002 : INSN3
4066 0x08000003 : INSN4
4067
4068 We can't apply the same logic as for forward execution, because
4069 we would wrongly adjust the PC to 0x08000000, since there's a
4070 breakpoint at PC - 1. We'd then report a hit on B1, although
4071 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4072 behaviour. */
4073 if (execution_direction == EXEC_REVERSE)
4074 return;
4075
1cf4d951
PA
4076 /* If the target can tell whether the thread hit a SW breakpoint,
4077 trust it. Targets that can tell also adjust the PC
4078 themselves. */
4079 if (target_supports_stopped_by_sw_breakpoint ())
4080 return;
4081
4082 /* Note that relying on whether a breakpoint is planted in memory to
4083 determine this can fail. E.g,. the breakpoint could have been
4084 removed since. Or the thread could have been told to step an
4085 instruction the size of a breakpoint instruction, and only
4086 _after_ was a breakpoint inserted at its address. */
4087
24a73cce
UW
4088 /* If this target does not decrement the PC after breakpoints, then
4089 we have nothing to do. */
00431a78 4090 regcache = get_thread_regcache (thread);
ac7936df 4091 gdbarch = regcache->arch ();
118e6252 4092
527a273a 4093 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4094 if (decr_pc == 0)
24a73cce
UW
4095 return;
4096
8b86c959 4097 const address_space *aspace = regcache->aspace ();
6c95b8df 4098
8aad930b
AC
4099 /* Find the location where (if we've hit a breakpoint) the
4100 breakpoint would be. */
118e6252 4101 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4102
1cf4d951
PA
4103 /* If the target can't tell whether a software breakpoint triggered,
4104 fallback to figuring it out based on breakpoints we think were
4105 inserted in the target, and on whether the thread was stepped or
4106 continued. */
4107
1c5cfe86
PA
4108 /* Check whether there actually is a software breakpoint inserted at
4109 that location.
4110
4111 If in non-stop mode, a race condition is possible where we've
4112 removed a breakpoint, but stop events for that breakpoint were
4113 already queued and arrive later. To suppress those spurious
4114 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4115 and retire them after a number of stop events are reported. Note
4116 this is an heuristic and can thus get confused. The real fix is
4117 to get the "stopped by SW BP and needs adjustment" info out of
4118 the target/kernel (and thus never reach here; see above). */
6c95b8df 4119 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4120 || (target_is_non_stop_p ()
4121 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4122 {
07036511 4123 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4124
8213266a 4125 if (record_full_is_used ())
07036511
TT
4126 restore_operation_disable.emplace
4127 (record_full_gdb_operation_disable_set ());
96429cc8 4128
1c0fdd0e
UW
4129 /* When using hardware single-step, a SIGTRAP is reported for both
4130 a completed single-step and a software breakpoint. Need to
4131 differentiate between the two, as the latter needs adjusting
4132 but the former does not.
4133
4134 The SIGTRAP can be due to a completed hardware single-step only if
4135 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4136 - this thread is currently being stepped
4137
4138 If any of these events did not occur, we must have stopped due
4139 to hitting a software breakpoint, and have to back up to the
4140 breakpoint address.
4141
4142 As a special case, we could have hardware single-stepped a
4143 software breakpoint. In this case (prev_pc == breakpoint_pc),
4144 we also need to back up to the breakpoint address. */
4145
d8dd4d5f
PA
4146 if (thread_has_single_step_breakpoints_set (thread)
4147 || !currently_stepping (thread)
4148 || (thread->stepped_breakpoint
4149 && thread->prev_pc == breakpoint_pc))
515630c5 4150 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4151 }
4fa8626c
DJ
4152}
4153
edb3359d
DJ
4154static int
4155stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4156{
4157 for (frame = get_prev_frame (frame);
4158 frame != NULL;
4159 frame = get_prev_frame (frame))
4160 {
4161 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4162 return 1;
4163 if (get_frame_type (frame) != INLINE_FRAME)
4164 break;
4165 }
4166
4167 return 0;
4168}
4169
c65d6b55
PA
4170/* If the event thread has the stop requested flag set, pretend it
4171 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4172 target_stop). */
4173
4174static bool
4175handle_stop_requested (struct execution_control_state *ecs)
4176{
4177 if (ecs->event_thread->stop_requested)
4178 {
4179 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4180 ecs->ws.value.sig = GDB_SIGNAL_0;
4181 handle_signal_stop (ecs);
4182 return true;
4183 }
4184 return false;
4185}
4186
a96d9b2e
SDJ
4187/* Auxiliary function that handles syscall entry/return events.
4188 It returns 1 if the inferior should keep going (and GDB
4189 should ignore the event), or 0 if the event deserves to be
4190 processed. */
ca2163eb 4191
a96d9b2e 4192static int
ca2163eb 4193handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4194{
ca2163eb 4195 struct regcache *regcache;
ca2163eb
PA
4196 int syscall_number;
4197
00431a78 4198 context_switch (ecs);
ca2163eb 4199
00431a78 4200 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4201 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4202 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4203
a96d9b2e
SDJ
4204 if (catch_syscall_enabled () > 0
4205 && catching_syscall_number (syscall_number) > 0)
4206 {
4207 if (debug_infrun)
4208 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4209 syscall_number);
a96d9b2e 4210
16c381f0 4211 ecs->event_thread->control.stop_bpstat
a01bda52 4212 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4213 ecs->event_thread->suspend.stop_pc,
4214 ecs->event_thread, &ecs->ws);
ab04a2af 4215
c65d6b55
PA
4216 if (handle_stop_requested (ecs))
4217 return 0;
4218
ce12b012 4219 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4220 {
4221 /* Catchpoint hit. */
ca2163eb
PA
4222 return 0;
4223 }
a96d9b2e 4224 }
ca2163eb 4225
c65d6b55
PA
4226 if (handle_stop_requested (ecs))
4227 return 0;
4228
ca2163eb 4229 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4230 keep_going (ecs);
4231 return 1;
a96d9b2e
SDJ
4232}
4233
7e324e48
GB
4234/* Lazily fill in the execution_control_state's stop_func_* fields. */
4235
4236static void
4237fill_in_stop_func (struct gdbarch *gdbarch,
4238 struct execution_control_state *ecs)
4239{
4240 if (!ecs->stop_func_filled_in)
4241 {
4242 /* Don't care about return value; stop_func_start and stop_func_name
4243 will both be 0 if it doesn't work. */
59adbf5d
KB
4244 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4245 &ecs->stop_func_name,
4246 &ecs->stop_func_start,
4247 &ecs->stop_func_end);
7e324e48
GB
4248 ecs->stop_func_start
4249 += gdbarch_deprecated_function_start_offset (gdbarch);
4250
591a12a1
UW
4251 if (gdbarch_skip_entrypoint_p (gdbarch))
4252 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4253 ecs->stop_func_start);
4254
7e324e48
GB
4255 ecs->stop_func_filled_in = 1;
4256 }
4257}
4258
4f5d7f63 4259
00431a78 4260/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4261
4262static enum stop_kind
00431a78 4263get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4264{
00431a78 4265 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4266
4267 gdb_assert (inf != NULL);
4268 return inf->control.stop_soon;
4269}
4270
372316f1
PA
4271/* Wait for one event. Store the resulting waitstatus in WS, and
4272 return the event ptid. */
4273
4274static ptid_t
4275wait_one (struct target_waitstatus *ws)
4276{
4277 ptid_t event_ptid;
4278 ptid_t wait_ptid = minus_one_ptid;
4279
4280 overlay_cache_invalid = 1;
4281
4282 /* Flush target cache before starting to handle each event.
4283 Target was running and cache could be stale. This is just a
4284 heuristic. Running threads may modify target memory, but we
4285 don't get any event. */
4286 target_dcache_invalidate ();
4287
4288 if (deprecated_target_wait_hook)
4289 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4290 else
4291 event_ptid = target_wait (wait_ptid, ws, 0);
4292
4293 if (debug_infrun)
4294 print_target_wait_results (wait_ptid, event_ptid, ws);
4295
4296 return event_ptid;
4297}
4298
4299/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4300 instead of the current thread. */
4301#define THREAD_STOPPED_BY(REASON) \
4302static int \
4303thread_stopped_by_ ## REASON (ptid_t ptid) \
4304{ \
2989a365 4305 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4306 inferior_ptid = ptid; \
4307 \
2989a365 4308 return target_stopped_by_ ## REASON (); \
372316f1
PA
4309}
4310
4311/* Generate thread_stopped_by_watchpoint. */
4312THREAD_STOPPED_BY (watchpoint)
4313/* Generate thread_stopped_by_sw_breakpoint. */
4314THREAD_STOPPED_BY (sw_breakpoint)
4315/* Generate thread_stopped_by_hw_breakpoint. */
4316THREAD_STOPPED_BY (hw_breakpoint)
4317
372316f1
PA
4318/* Save the thread's event and stop reason to process it later. */
4319
4320static void
4321save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4322{
372316f1
PA
4323 if (debug_infrun)
4324 {
23fdd69e 4325 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4326
372316f1
PA
4327 fprintf_unfiltered (gdb_stdlog,
4328 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4329 statstr.c_str (),
e99b03dc 4330 tp->ptid.pid (),
e38504b3 4331 tp->ptid.lwp (),
cc6bcb54 4332 tp->ptid.tid ());
372316f1
PA
4333 }
4334
4335 /* Record for later. */
4336 tp->suspend.waitstatus = *ws;
4337 tp->suspend.waitstatus_pending_p = 1;
4338
00431a78 4339 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4340 const address_space *aspace = regcache->aspace ();
372316f1
PA
4341
4342 if (ws->kind == TARGET_WAITKIND_STOPPED
4343 && ws->value.sig == GDB_SIGNAL_TRAP)
4344 {
4345 CORE_ADDR pc = regcache_read_pc (regcache);
4346
4347 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4348
4349 if (thread_stopped_by_watchpoint (tp->ptid))
4350 {
4351 tp->suspend.stop_reason
4352 = TARGET_STOPPED_BY_WATCHPOINT;
4353 }
4354 else if (target_supports_stopped_by_sw_breakpoint ()
4355 && thread_stopped_by_sw_breakpoint (tp->ptid))
4356 {
4357 tp->suspend.stop_reason
4358 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4359 }
4360 else if (target_supports_stopped_by_hw_breakpoint ()
4361 && thread_stopped_by_hw_breakpoint (tp->ptid))
4362 {
4363 tp->suspend.stop_reason
4364 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4365 }
4366 else if (!target_supports_stopped_by_hw_breakpoint ()
4367 && hardware_breakpoint_inserted_here_p (aspace,
4368 pc))
4369 {
4370 tp->suspend.stop_reason
4371 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4372 }
4373 else if (!target_supports_stopped_by_sw_breakpoint ()
4374 && software_breakpoint_inserted_here_p (aspace,
4375 pc))
4376 {
4377 tp->suspend.stop_reason
4378 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4379 }
4380 else if (!thread_has_single_step_breakpoints_set (tp)
4381 && currently_stepping (tp))
4382 {
4383 tp->suspend.stop_reason
4384 = TARGET_STOPPED_BY_SINGLE_STEP;
4385 }
4386 }
4387}
4388
65706a29
PA
4389/* A cleanup that disables thread create/exit events. */
4390
4391static void
4392disable_thread_events (void *arg)
4393{
4394 target_thread_events (0);
4395}
4396
6efcd9a8 4397/* See infrun.h. */
372316f1 4398
6efcd9a8 4399void
372316f1
PA
4400stop_all_threads (void)
4401{
4402 /* We may need multiple passes to discover all threads. */
4403 int pass;
4404 int iterations = 0;
372316f1
PA
4405 struct cleanup *old_chain;
4406
fbea99ea 4407 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4408
4409 if (debug_infrun)
4410 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4411
00431a78 4412 scoped_restore_current_thread restore_thread;
372316f1 4413
65706a29 4414 target_thread_events (1);
00431a78 4415 old_chain = make_cleanup (disable_thread_events, NULL);
65706a29 4416
372316f1
PA
4417 /* Request threads to stop, and then wait for the stops. Because
4418 threads we already know about can spawn more threads while we're
4419 trying to stop them, and we only learn about new threads when we
4420 update the thread list, do this in a loop, and keep iterating
4421 until two passes find no threads that need to be stopped. */
4422 for (pass = 0; pass < 2; pass++, iterations++)
4423 {
4424 if (debug_infrun)
4425 fprintf_unfiltered (gdb_stdlog,
4426 "infrun: stop_all_threads, pass=%d, "
4427 "iterations=%d\n", pass, iterations);
4428 while (1)
4429 {
4430 ptid_t event_ptid;
4431 struct target_waitstatus ws;
4432 int need_wait = 0;
372316f1
PA
4433
4434 update_thread_list ();
4435
4436 /* Go through all threads looking for threads that we need
4437 to tell the target to stop. */
08036331 4438 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4439 {
4440 if (t->executing)
4441 {
4442 /* If already stopping, don't request a stop again.
4443 We just haven't seen the notification yet. */
4444 if (!t->stop_requested)
4445 {
4446 if (debug_infrun)
4447 fprintf_unfiltered (gdb_stdlog,
4448 "infrun: %s executing, "
4449 "need stop\n",
4450 target_pid_to_str (t->ptid));
4451 target_stop (t->ptid);
4452 t->stop_requested = 1;
4453 }
4454 else
4455 {
4456 if (debug_infrun)
4457 fprintf_unfiltered (gdb_stdlog,
4458 "infrun: %s executing, "
4459 "already stopping\n",
4460 target_pid_to_str (t->ptid));
4461 }
4462
4463 if (t->stop_requested)
4464 need_wait = 1;
4465 }
4466 else
4467 {
4468 if (debug_infrun)
4469 fprintf_unfiltered (gdb_stdlog,
4470 "infrun: %s not executing\n",
4471 target_pid_to_str (t->ptid));
4472
4473 /* The thread may be not executing, but still be
4474 resumed with a pending status to process. */
4475 t->resumed = 0;
4476 }
4477 }
4478
4479 if (!need_wait)
4480 break;
4481
4482 /* If we find new threads on the second iteration, restart
4483 over. We want to see two iterations in a row with all
4484 threads stopped. */
4485 if (pass > 0)
4486 pass = -1;
4487
4488 event_ptid = wait_one (&ws);
00431a78 4489
372316f1
PA
4490 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4491 {
4492 /* All resumed threads exited. */
4493 }
65706a29
PA
4494 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4495 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4496 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4497 {
4498 if (debug_infrun)
4499 {
f2907e49 4500 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4501
4502 fprintf_unfiltered (gdb_stdlog,
4503 "infrun: %s exited while "
4504 "stopping threads\n",
4505 target_pid_to_str (ptid));
4506 }
4507 }
4508 else
4509 {
08036331 4510 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4511 if (t == NULL)
4512 t = add_thread (event_ptid);
4513
4514 t->stop_requested = 0;
4515 t->executing = 0;
4516 t->resumed = 0;
4517 t->control.may_range_step = 0;
4518
6efcd9a8
PA
4519 /* This may be the first time we see the inferior report
4520 a stop. */
08036331 4521 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4522 if (inf->needs_setup)
4523 {
4524 switch_to_thread_no_regs (t);
4525 setup_inferior (0);
4526 }
4527
372316f1
PA
4528 if (ws.kind == TARGET_WAITKIND_STOPPED
4529 && ws.value.sig == GDB_SIGNAL_0)
4530 {
4531 /* We caught the event that we intended to catch, so
4532 there's no event pending. */
4533 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4534 t->suspend.waitstatus_pending_p = 0;
4535
00431a78 4536 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4537 {
4538 /* Add it back to the step-over queue. */
4539 if (debug_infrun)
4540 {
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: displaced-step of %s "
4543 "canceled: adding back to the "
4544 "step-over queue\n",
4545 target_pid_to_str (t->ptid));
4546 }
4547 t->control.trap_expected = 0;
4548 thread_step_over_chain_enqueue (t);
4549 }
4550 }
4551 else
4552 {
4553 enum gdb_signal sig;
4554 struct regcache *regcache;
372316f1
PA
4555
4556 if (debug_infrun)
4557 {
23fdd69e 4558 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4559
372316f1
PA
4560 fprintf_unfiltered (gdb_stdlog,
4561 "infrun: target_wait %s, saving "
4562 "status for %d.%ld.%ld\n",
23fdd69e 4563 statstr.c_str (),
e99b03dc 4564 t->ptid.pid (),
e38504b3 4565 t->ptid.lwp (),
cc6bcb54 4566 t->ptid.tid ());
372316f1
PA
4567 }
4568
4569 /* Record for later. */
4570 save_waitstatus (t, &ws);
4571
4572 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4573 ? ws.value.sig : GDB_SIGNAL_0);
4574
00431a78 4575 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4576 {
4577 /* Add it back to the step-over queue. */
4578 t->control.trap_expected = 0;
4579 thread_step_over_chain_enqueue (t);
4580 }
4581
00431a78 4582 regcache = get_thread_regcache (t);
372316f1
PA
4583 t->suspend.stop_pc = regcache_read_pc (regcache);
4584
4585 if (debug_infrun)
4586 {
4587 fprintf_unfiltered (gdb_stdlog,
4588 "infrun: saved stop_pc=%s for %s "
4589 "(currently_stepping=%d)\n",
4590 paddress (target_gdbarch (),
4591 t->suspend.stop_pc),
4592 target_pid_to_str (t->ptid),
4593 currently_stepping (t));
4594 }
4595 }
4596 }
4597 }
4598 }
4599
4600 do_cleanups (old_chain);
4601
4602 if (debug_infrun)
4603 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4604}
4605
f4836ba9
PA
4606/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4607
4608static int
4609handle_no_resumed (struct execution_control_state *ecs)
4610{
3b12939d 4611 if (target_can_async_p ())
f4836ba9 4612 {
3b12939d
PA
4613 struct ui *ui;
4614 int any_sync = 0;
f4836ba9 4615
3b12939d
PA
4616 ALL_UIS (ui)
4617 {
4618 if (ui->prompt_state == PROMPT_BLOCKED)
4619 {
4620 any_sync = 1;
4621 break;
4622 }
4623 }
4624 if (!any_sync)
4625 {
4626 /* There were no unwaited-for children left in the target, but,
4627 we're not synchronously waiting for events either. Just
4628 ignore. */
4629
4630 if (debug_infrun)
4631 fprintf_unfiltered (gdb_stdlog,
4632 "infrun: TARGET_WAITKIND_NO_RESUMED "
4633 "(ignoring: bg)\n");
4634 prepare_to_wait (ecs);
4635 return 1;
4636 }
f4836ba9
PA
4637 }
4638
4639 /* Otherwise, if we were running a synchronous execution command, we
4640 may need to cancel it and give the user back the terminal.
4641
4642 In non-stop mode, the target can't tell whether we've already
4643 consumed previous stop events, so it can end up sending us a
4644 no-resumed event like so:
4645
4646 #0 - thread 1 is left stopped
4647
4648 #1 - thread 2 is resumed and hits breakpoint
4649 -> TARGET_WAITKIND_STOPPED
4650
4651 #2 - thread 3 is resumed and exits
4652 this is the last resumed thread, so
4653 -> TARGET_WAITKIND_NO_RESUMED
4654
4655 #3 - gdb processes stop for thread 2 and decides to re-resume
4656 it.
4657
4658 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4659 thread 2 is now resumed, so the event should be ignored.
4660
4661 IOW, if the stop for thread 2 doesn't end a foreground command,
4662 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4663 event. But it could be that the event meant that thread 2 itself
4664 (or whatever other thread was the last resumed thread) exited.
4665
4666 To address this we refresh the thread list and check whether we
4667 have resumed threads _now_. In the example above, this removes
4668 thread 3 from the thread list. If thread 2 was re-resumed, we
4669 ignore this event. If we find no thread resumed, then we cancel
4670 the synchronous command show "no unwaited-for " to the user. */
4671 update_thread_list ();
4672
08036331 4673 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4674 {
4675 if (thread->executing
4676 || thread->suspend.waitstatus_pending_p)
4677 {
4678 /* There were no unwaited-for children left in the target at
4679 some point, but there are now. Just ignore. */
4680 if (debug_infrun)
4681 fprintf_unfiltered (gdb_stdlog,
4682 "infrun: TARGET_WAITKIND_NO_RESUMED "
4683 "(ignoring: found resumed)\n");
4684 prepare_to_wait (ecs);
4685 return 1;
4686 }
4687 }
4688
4689 /* Note however that we may find no resumed thread because the whole
4690 process exited meanwhile (thus updating the thread list results
4691 in an empty thread list). In this case we know we'll be getting
4692 a process exit event shortly. */
08036331 4693 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4694 {
4695 if (inf->pid == 0)
4696 continue;
4697
08036331 4698 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4699 if (thread == NULL)
4700 {
4701 if (debug_infrun)
4702 fprintf_unfiltered (gdb_stdlog,
4703 "infrun: TARGET_WAITKIND_NO_RESUMED "
4704 "(expect process exit)\n");
4705 prepare_to_wait (ecs);
4706 return 1;
4707 }
4708 }
4709
4710 /* Go ahead and report the event. */
4711 return 0;
4712}
4713
05ba8510
PA
4714/* Given an execution control state that has been freshly filled in by
4715 an event from the inferior, figure out what it means and take
4716 appropriate action.
4717
4718 The alternatives are:
4719
22bcd14b 4720 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4721 debugger.
4722
4723 2) keep_going and return; to wait for the next event (set
4724 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4725 once). */
c906108c 4726
ec9499be 4727static void
0b6e5e10 4728handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4729{
d6b48e9c
PA
4730 enum stop_kind stop_soon;
4731
28736962
PA
4732 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4733 {
4734 /* We had an event in the inferior, but we are not interested in
4735 handling it at this level. The lower layers have already
4736 done what needs to be done, if anything.
4737
4738 One of the possible circumstances for this is when the
4739 inferior produces output for the console. The inferior has
4740 not stopped, and we are ignoring the event. Another possible
4741 circumstance is any event which the lower level knows will be
4742 reported multiple times without an intervening resume. */
4743 if (debug_infrun)
4744 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4745 prepare_to_wait (ecs);
4746 return;
4747 }
4748
65706a29
PA
4749 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4750 {
4751 if (debug_infrun)
4752 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4753 prepare_to_wait (ecs);
4754 return;
4755 }
4756
0e5bf2a8 4757 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4758 && handle_no_resumed (ecs))
4759 return;
0e5bf2a8 4760
1777feb0 4761 /* Cache the last pid/waitstatus. */
c32c64b7 4762 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4763
ca005067 4764 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4765 stop_stack_dummy = STOP_NONE;
ca005067 4766
0e5bf2a8
PA
4767 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4768 {
4769 /* No unwaited-for children left. IOW, all resumed children
4770 have exited. */
4771 if (debug_infrun)
4772 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4773
4774 stop_print_frame = 0;
22bcd14b 4775 stop_waiting (ecs);
0e5bf2a8
PA
4776 return;
4777 }
4778
8c90c137 4779 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4780 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4781 {
4782 ecs->event_thread = find_thread_ptid (ecs->ptid);
4783 /* If it's a new thread, add it to the thread database. */
4784 if (ecs->event_thread == NULL)
4785 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4786
4787 /* Disable range stepping. If the next step request could use a
4788 range, this will be end up re-enabled then. */
4789 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4790 }
88ed393a
JK
4791
4792 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4793 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4794
4795 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4796 reinit_frame_cache ();
4797
28736962
PA
4798 breakpoint_retire_moribund ();
4799
2b009048
DJ
4800 /* First, distinguish signals caused by the debugger from signals
4801 that have to do with the program's own actions. Note that
4802 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4803 on the operating system version. Here we detect when a SIGILL or
4804 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4805 something similar for SIGSEGV, since a SIGSEGV will be generated
4806 when we're trying to execute a breakpoint instruction on a
4807 non-executable stack. This happens for call dummy breakpoints
4808 for architectures like SPARC that place call dummies on the
4809 stack. */
2b009048 4810 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4811 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4812 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4813 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4814 {
00431a78 4815 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4816
a01bda52 4817 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4818 regcache_read_pc (regcache)))
4819 {
4820 if (debug_infrun)
4821 fprintf_unfiltered (gdb_stdlog,
4822 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4823 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4824 }
2b009048
DJ
4825 }
4826
28736962
PA
4827 /* Mark the non-executing threads accordingly. In all-stop, all
4828 threads of all processes are stopped when we get any event
e1316e60 4829 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4830 {
4831 ptid_t mark_ptid;
4832
fbea99ea 4833 if (!target_is_non_stop_p ())
372316f1
PA
4834 mark_ptid = minus_one_ptid;
4835 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4836 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4837 {
4838 /* If we're handling a process exit in non-stop mode, even
4839 though threads haven't been deleted yet, one would think
4840 that there is nothing to do, as threads of the dead process
4841 will be soon deleted, and threads of any other process were
4842 left running. However, on some targets, threads survive a
4843 process exit event. E.g., for the "checkpoint" command,
4844 when the current checkpoint/fork exits, linux-fork.c
4845 automatically switches to another fork from within
4846 target_mourn_inferior, by associating the same
4847 inferior/thread to another fork. We haven't mourned yet at
4848 this point, but we must mark any threads left in the
4849 process as not-executing so that finish_thread_state marks
4850 them stopped (in the user's perspective) if/when we present
4851 the stop to the user. */
e99b03dc 4852 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4853 }
4854 else
4855 mark_ptid = ecs->ptid;
4856
4857 set_executing (mark_ptid, 0);
4858
4859 /* Likewise the resumed flag. */
4860 set_resumed (mark_ptid, 0);
4861 }
8c90c137 4862
488f131b
JB
4863 switch (ecs->ws.kind)
4864 {
4865 case TARGET_WAITKIND_LOADED:
527159b7 4866 if (debug_infrun)
8a9de0e4 4867 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4868 context_switch (ecs);
b0f4b84b
DJ
4869 /* Ignore gracefully during startup of the inferior, as it might
4870 be the shell which has just loaded some objects, otherwise
4871 add the symbols for the newly loaded objects. Also ignore at
4872 the beginning of an attach or remote session; we will query
4873 the full list of libraries once the connection is
4874 established. */
4f5d7f63 4875
00431a78 4876 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4877 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4878 {
edcc5120
TT
4879 struct regcache *regcache;
4880
00431a78 4881 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4882
4883 handle_solib_event ();
4884
4885 ecs->event_thread->control.stop_bpstat
a01bda52 4886 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4887 ecs->event_thread->suspend.stop_pc,
4888 ecs->event_thread, &ecs->ws);
ab04a2af 4889
c65d6b55
PA
4890 if (handle_stop_requested (ecs))
4891 return;
4892
ce12b012 4893 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4894 {
4895 /* A catchpoint triggered. */
94c57d6a
PA
4896 process_event_stop_test (ecs);
4897 return;
edcc5120 4898 }
488f131b 4899
b0f4b84b
DJ
4900 /* If requested, stop when the dynamic linker notifies
4901 gdb of events. This allows the user to get control
4902 and place breakpoints in initializer routines for
4903 dynamically loaded objects (among other things). */
a493e3e2 4904 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4905 if (stop_on_solib_events)
4906 {
55409f9d
DJ
4907 /* Make sure we print "Stopped due to solib-event" in
4908 normal_stop. */
4909 stop_print_frame = 1;
4910
22bcd14b 4911 stop_waiting (ecs);
b0f4b84b
DJ
4912 return;
4913 }
488f131b 4914 }
b0f4b84b
DJ
4915
4916 /* If we are skipping through a shell, or through shared library
4917 loading that we aren't interested in, resume the program. If
5c09a2c5 4918 we're running the program normally, also resume. */
b0f4b84b
DJ
4919 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4920 {
74960c60
VP
4921 /* Loading of shared libraries might have changed breakpoint
4922 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4923 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4924 insert_breakpoints ();
64ce06e4 4925 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4926 prepare_to_wait (ecs);
4927 return;
4928 }
4929
5c09a2c5
PA
4930 /* But stop if we're attaching or setting up a remote
4931 connection. */
4932 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4933 || stop_soon == STOP_QUIETLY_REMOTE)
4934 {
4935 if (debug_infrun)
4936 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4937 stop_waiting (ecs);
5c09a2c5
PA
4938 return;
4939 }
4940
4941 internal_error (__FILE__, __LINE__,
4942 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4943
488f131b 4944 case TARGET_WAITKIND_SPURIOUS:
527159b7 4945 if (debug_infrun)
8a9de0e4 4946 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4947 if (handle_stop_requested (ecs))
4948 return;
00431a78 4949 context_switch (ecs);
64ce06e4 4950 resume (GDB_SIGNAL_0);
488f131b
JB
4951 prepare_to_wait (ecs);
4952 return;
c5aa993b 4953
65706a29
PA
4954 case TARGET_WAITKIND_THREAD_CREATED:
4955 if (debug_infrun)
4956 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4957 if (handle_stop_requested (ecs))
4958 return;
00431a78 4959 context_switch (ecs);
65706a29
PA
4960 if (!switch_back_to_stepped_thread (ecs))
4961 keep_going (ecs);
4962 return;
4963
488f131b 4964 case TARGET_WAITKIND_EXITED:
940c3c06 4965 case TARGET_WAITKIND_SIGNALLED:
527159b7 4966 if (debug_infrun)
940c3c06
PA
4967 {
4968 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4969 fprintf_unfiltered (gdb_stdlog,
4970 "infrun: TARGET_WAITKIND_EXITED\n");
4971 else
4972 fprintf_unfiltered (gdb_stdlog,
4973 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4974 }
4975
fb66883a 4976 inferior_ptid = ecs->ptid;
c9657e70 4977 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4978 set_current_program_space (current_inferior ()->pspace);
4979 handle_vfork_child_exec_or_exit (0);
223ffa71 4980 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4981
0c557179
SDJ
4982 /* Clearing any previous state of convenience variables. */
4983 clear_exit_convenience_vars ();
4984
940c3c06
PA
4985 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4986 {
4987 /* Record the exit code in the convenience variable $_exitcode, so
4988 that the user can inspect this again later. */
4989 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4990 (LONGEST) ecs->ws.value.integer);
4991
4992 /* Also record this in the inferior itself. */
4993 current_inferior ()->has_exit_code = 1;
4994 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4995
98eb56a4
PA
4996 /* Support the --return-child-result option. */
4997 return_child_result_value = ecs->ws.value.integer;
4998
76727919 4999 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5000 }
5001 else
0c557179 5002 {
00431a78 5003 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5004
5005 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5006 {
5007 /* Set the value of the internal variable $_exitsignal,
5008 which holds the signal uncaught by the inferior. */
5009 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5010 gdbarch_gdb_signal_to_target (gdbarch,
5011 ecs->ws.value.sig));
5012 }
5013 else
5014 {
5015 /* We don't have access to the target's method used for
5016 converting between signal numbers (GDB's internal
5017 representation <-> target's representation).
5018 Therefore, we cannot do a good job at displaying this
5019 information to the user. It's better to just warn
5020 her about it (if infrun debugging is enabled), and
5021 give up. */
5022 if (debug_infrun)
5023 fprintf_filtered (gdb_stdlog, _("\
5024Cannot fill $_exitsignal with the correct signal number.\n"));
5025 }
5026
76727919 5027 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5028 }
8cf64490 5029
488f131b 5030 gdb_flush (gdb_stdout);
bc1e6c81 5031 target_mourn_inferior (inferior_ptid);
488f131b 5032 stop_print_frame = 0;
22bcd14b 5033 stop_waiting (ecs);
488f131b 5034 return;
c5aa993b 5035
488f131b 5036 /* The following are the only cases in which we keep going;
1777feb0 5037 the above cases end in a continue or goto. */
488f131b 5038 case TARGET_WAITKIND_FORKED:
deb3b17b 5039 case TARGET_WAITKIND_VFORKED:
527159b7 5040 if (debug_infrun)
fed708ed
PA
5041 {
5042 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5043 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5044 else
5045 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5046 }
c906108c 5047
e2d96639
YQ
5048 /* Check whether the inferior is displaced stepping. */
5049 {
00431a78 5050 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5051 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5052
5053 /* If checking displaced stepping is supported, and thread
5054 ecs->ptid is displaced stepping. */
00431a78 5055 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5056 {
5057 struct inferior *parent_inf
c9657e70 5058 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5059 struct regcache *child_regcache;
5060 CORE_ADDR parent_pc;
5061
5062 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5063 indicating that the displaced stepping of syscall instruction
5064 has been done. Perform cleanup for parent process here. Note
5065 that this operation also cleans up the child process for vfork,
5066 because their pages are shared. */
00431a78 5067 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5068 /* Start a new step-over in another thread if there's one
5069 that needs it. */
5070 start_step_over ();
e2d96639
YQ
5071
5072 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5073 {
c0987663 5074 struct displaced_step_inferior_state *displaced
00431a78 5075 = get_displaced_stepping_state (parent_inf);
c0987663 5076
e2d96639
YQ
5077 /* Restore scratch pad for child process. */
5078 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5079 }
5080
5081 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5082 the child's PC is also within the scratchpad. Set the child's PC
5083 to the parent's PC value, which has already been fixed up.
5084 FIXME: we use the parent's aspace here, although we're touching
5085 the child, because the child hasn't been added to the inferior
5086 list yet at this point. */
5087
5088 child_regcache
5089 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5090 gdbarch,
5091 parent_inf->aspace);
5092 /* Read PC value of parent process. */
5093 parent_pc = regcache_read_pc (regcache);
5094
5095 if (debug_displaced)
5096 fprintf_unfiltered (gdb_stdlog,
5097 "displaced: write child pc from %s to %s\n",
5098 paddress (gdbarch,
5099 regcache_read_pc (child_regcache)),
5100 paddress (gdbarch, parent_pc));
5101
5102 regcache_write_pc (child_regcache, parent_pc);
5103 }
5104 }
5105
00431a78 5106 context_switch (ecs);
5a2901d9 5107
b242c3c2
PA
5108 /* Immediately detach breakpoints from the child before there's
5109 any chance of letting the user delete breakpoints from the
5110 breakpoint lists. If we don't do this early, it's easy to
5111 leave left over traps in the child, vis: "break foo; catch
5112 fork; c; <fork>; del; c; <child calls foo>". We only follow
5113 the fork on the last `continue', and by that time the
5114 breakpoint at "foo" is long gone from the breakpoint table.
5115 If we vforked, then we don't need to unpatch here, since both
5116 parent and child are sharing the same memory pages; we'll
5117 need to unpatch at follow/detach time instead to be certain
5118 that new breakpoints added between catchpoint hit time and
5119 vfork follow are detached. */
5120 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5121 {
b242c3c2
PA
5122 /* This won't actually modify the breakpoint list, but will
5123 physically remove the breakpoints from the child. */
d80ee84f 5124 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5125 }
5126
34b7e8a6 5127 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5128
e58b0e63
PA
5129 /* In case the event is caught by a catchpoint, remember that
5130 the event is to be followed at the next resume of the thread,
5131 and not immediately. */
5132 ecs->event_thread->pending_follow = ecs->ws;
5133
f2ffa92b
PA
5134 ecs->event_thread->suspend.stop_pc
5135 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5136
16c381f0 5137 ecs->event_thread->control.stop_bpstat
a01bda52 5138 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5139 ecs->event_thread->suspend.stop_pc,
5140 ecs->event_thread, &ecs->ws);
675bf4cb 5141
c65d6b55
PA
5142 if (handle_stop_requested (ecs))
5143 return;
5144
ce12b012
PA
5145 /* If no catchpoint triggered for this, then keep going. Note
5146 that we're interested in knowing the bpstat actually causes a
5147 stop, not just if it may explain the signal. Software
5148 watchpoints, for example, always appear in the bpstat. */
5149 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5150 {
e58b0e63 5151 int should_resume;
3e43a32a
MS
5152 int follow_child
5153 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5154
a493e3e2 5155 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5156
5157 should_resume = follow_fork ();
5158
00431a78
PA
5159 thread_info *parent = ecs->event_thread;
5160 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5161
a2077e25
PA
5162 /* At this point, the parent is marked running, and the
5163 child is marked stopped. */
5164
5165 /* If not resuming the parent, mark it stopped. */
5166 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5167 parent->set_running (false);
a2077e25
PA
5168
5169 /* If resuming the child, mark it running. */
5170 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5171 child->set_running (true);
a2077e25 5172
6c95b8df 5173 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5174 if (!detach_fork && (non_stop
5175 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5176 {
5177 if (follow_child)
5178 switch_to_thread (parent);
5179 else
5180 switch_to_thread (child);
5181
5182 ecs->event_thread = inferior_thread ();
5183 ecs->ptid = inferior_ptid;
5184 keep_going (ecs);
5185 }
5186
5187 if (follow_child)
5188 switch_to_thread (child);
5189 else
5190 switch_to_thread (parent);
5191
e58b0e63
PA
5192 ecs->event_thread = inferior_thread ();
5193 ecs->ptid = inferior_ptid;
5194
5195 if (should_resume)
5196 keep_going (ecs);
5197 else
22bcd14b 5198 stop_waiting (ecs);
04e68871
DJ
5199 return;
5200 }
94c57d6a
PA
5201 process_event_stop_test (ecs);
5202 return;
488f131b 5203
6c95b8df
PA
5204 case TARGET_WAITKIND_VFORK_DONE:
5205 /* Done with the shared memory region. Re-insert breakpoints in
5206 the parent, and keep going. */
5207
5208 if (debug_infrun)
3e43a32a
MS
5209 fprintf_unfiltered (gdb_stdlog,
5210 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5211
00431a78 5212 context_switch (ecs);
6c95b8df
PA
5213
5214 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5215 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5216
5217 if (handle_stop_requested (ecs))
5218 return;
5219
6c95b8df
PA
5220 /* This also takes care of reinserting breakpoints in the
5221 previously locked inferior. */
5222 keep_going (ecs);
5223 return;
5224
488f131b 5225 case TARGET_WAITKIND_EXECD:
527159b7 5226 if (debug_infrun)
fc5261f2 5227 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5228
cbd2b4e3
PA
5229 /* Note we can't read registers yet (the stop_pc), because we
5230 don't yet know the inferior's post-exec architecture.
5231 'stop_pc' is explicitly read below instead. */
00431a78 5232 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5233
6c95b8df
PA
5234 /* Do whatever is necessary to the parent branch of the vfork. */
5235 handle_vfork_child_exec_or_exit (1);
5236
795e548f
PA
5237 /* This causes the eventpoints and symbol table to be reset.
5238 Must do this now, before trying to determine whether to
5239 stop. */
71b43ef8 5240 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5241
17d8546e
DB
5242 /* In follow_exec we may have deleted the original thread and
5243 created a new one. Make sure that the event thread is the
5244 execd thread for that case (this is a nop otherwise). */
5245 ecs->event_thread = inferior_thread ();
5246
f2ffa92b
PA
5247 ecs->event_thread->suspend.stop_pc
5248 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5249
16c381f0 5250 ecs->event_thread->control.stop_bpstat
a01bda52 5251 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5252 ecs->event_thread->suspend.stop_pc,
5253 ecs->event_thread, &ecs->ws);
795e548f 5254
71b43ef8
PA
5255 /* Note that this may be referenced from inside
5256 bpstat_stop_status above, through inferior_has_execd. */
5257 xfree (ecs->ws.value.execd_pathname);
5258 ecs->ws.value.execd_pathname = NULL;
5259
c65d6b55
PA
5260 if (handle_stop_requested (ecs))
5261 return;
5262
04e68871 5263 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5264 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5265 {
a493e3e2 5266 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5267 keep_going (ecs);
5268 return;
5269 }
94c57d6a
PA
5270 process_event_stop_test (ecs);
5271 return;
488f131b 5272
b4dc5ffa
MK
5273 /* Be careful not to try to gather much state about a thread
5274 that's in a syscall. It's frequently a losing proposition. */
488f131b 5275 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5276 if (debug_infrun)
3e43a32a
MS
5277 fprintf_unfiltered (gdb_stdlog,
5278 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5279 /* Getting the current syscall number. */
94c57d6a
PA
5280 if (handle_syscall_event (ecs) == 0)
5281 process_event_stop_test (ecs);
5282 return;
c906108c 5283
488f131b
JB
5284 /* Before examining the threads further, step this thread to
5285 get it entirely out of the syscall. (We get notice of the
5286 event when the thread is just on the verge of exiting a
5287 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5288 into user code.) */
488f131b 5289 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5290 if (debug_infrun)
3e43a32a
MS
5291 fprintf_unfiltered (gdb_stdlog,
5292 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5293 if (handle_syscall_event (ecs) == 0)
5294 process_event_stop_test (ecs);
5295 return;
c906108c 5296
488f131b 5297 case TARGET_WAITKIND_STOPPED:
527159b7 5298 if (debug_infrun)
8a9de0e4 5299 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5300 handle_signal_stop (ecs);
5301 return;
c906108c 5302
b2175913 5303 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5304 if (debug_infrun)
5305 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5306 /* Reverse execution: target ran out of history info. */
eab402df 5307
d1988021 5308 /* Switch to the stopped thread. */
00431a78 5309 context_switch (ecs);
d1988021
MM
5310 if (debug_infrun)
5311 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5312
34b7e8a6 5313 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5314 ecs->event_thread->suspend.stop_pc
5315 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5316
5317 if (handle_stop_requested (ecs))
5318 return;
5319
76727919 5320 gdb::observers::no_history.notify ();
22bcd14b 5321 stop_waiting (ecs);
b2175913 5322 return;
488f131b 5323 }
4f5d7f63
PA
5324}
5325
0b6e5e10
JB
5326/* A wrapper around handle_inferior_event_1, which also makes sure
5327 that all temporary struct value objects that were created during
5328 the handling of the event get deleted at the end. */
5329
5330static void
5331handle_inferior_event (struct execution_control_state *ecs)
5332{
5333 struct value *mark = value_mark ();
5334
5335 handle_inferior_event_1 (ecs);
5336 /* Purge all temporary values created during the event handling,
5337 as it could be a long time before we return to the command level
5338 where such values would otherwise be purged. */
5339 value_free_to_mark (mark);
5340}
5341
372316f1
PA
5342/* Restart threads back to what they were trying to do back when we
5343 paused them for an in-line step-over. The EVENT_THREAD thread is
5344 ignored. */
4d9d9d04
PA
5345
5346static void
372316f1
PA
5347restart_threads (struct thread_info *event_thread)
5348{
372316f1
PA
5349 /* In case the instruction just stepped spawned a new thread. */
5350 update_thread_list ();
5351
08036331 5352 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5353 {
5354 if (tp == event_thread)
5355 {
5356 if (debug_infrun)
5357 fprintf_unfiltered (gdb_stdlog,
5358 "infrun: restart threads: "
5359 "[%s] is event thread\n",
5360 target_pid_to_str (tp->ptid));
5361 continue;
5362 }
5363
5364 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5365 {
5366 if (debug_infrun)
5367 fprintf_unfiltered (gdb_stdlog,
5368 "infrun: restart threads: "
5369 "[%s] not meant to be running\n",
5370 target_pid_to_str (tp->ptid));
5371 continue;
5372 }
5373
5374 if (tp->resumed)
5375 {
5376 if (debug_infrun)
5377 fprintf_unfiltered (gdb_stdlog,
5378 "infrun: restart threads: [%s] resumed\n",
5379 target_pid_to_str (tp->ptid));
5380 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5381 continue;
5382 }
5383
5384 if (thread_is_in_step_over_chain (tp))
5385 {
5386 if (debug_infrun)
5387 fprintf_unfiltered (gdb_stdlog,
5388 "infrun: restart threads: "
5389 "[%s] needs step-over\n",
5390 target_pid_to_str (tp->ptid));
5391 gdb_assert (!tp->resumed);
5392 continue;
5393 }
5394
5395
5396 if (tp->suspend.waitstatus_pending_p)
5397 {
5398 if (debug_infrun)
5399 fprintf_unfiltered (gdb_stdlog,
5400 "infrun: restart threads: "
5401 "[%s] has pending status\n",
5402 target_pid_to_str (tp->ptid));
5403 tp->resumed = 1;
5404 continue;
5405 }
5406
c65d6b55
PA
5407 gdb_assert (!tp->stop_requested);
5408
372316f1
PA
5409 /* If some thread needs to start a step-over at this point, it
5410 should still be in the step-over queue, and thus skipped
5411 above. */
5412 if (thread_still_needs_step_over (tp))
5413 {
5414 internal_error (__FILE__, __LINE__,
5415 "thread [%s] needs a step-over, but not in "
5416 "step-over queue\n",
5417 target_pid_to_str (tp->ptid));
5418 }
5419
5420 if (currently_stepping (tp))
5421 {
5422 if (debug_infrun)
5423 fprintf_unfiltered (gdb_stdlog,
5424 "infrun: restart threads: [%s] was stepping\n",
5425 target_pid_to_str (tp->ptid));
5426 keep_going_stepped_thread (tp);
5427 }
5428 else
5429 {
5430 struct execution_control_state ecss;
5431 struct execution_control_state *ecs = &ecss;
5432
5433 if (debug_infrun)
5434 fprintf_unfiltered (gdb_stdlog,
5435 "infrun: restart threads: [%s] continuing\n",
5436 target_pid_to_str (tp->ptid));
5437 reset_ecs (ecs, tp);
00431a78 5438 switch_to_thread (tp);
372316f1
PA
5439 keep_going_pass_signal (ecs);
5440 }
5441 }
5442}
5443
5444/* Callback for iterate_over_threads. Find a resumed thread that has
5445 a pending waitstatus. */
5446
5447static int
5448resumed_thread_with_pending_status (struct thread_info *tp,
5449 void *arg)
5450{
5451 return (tp->resumed
5452 && tp->suspend.waitstatus_pending_p);
5453}
5454
5455/* Called when we get an event that may finish an in-line or
5456 out-of-line (displaced stepping) step-over started previously.
5457 Return true if the event is processed and we should go back to the
5458 event loop; false if the caller should continue processing the
5459 event. */
5460
5461static int
4d9d9d04
PA
5462finish_step_over (struct execution_control_state *ecs)
5463{
372316f1
PA
5464 int had_step_over_info;
5465
00431a78 5466 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5467 ecs->event_thread->suspend.stop_signal);
5468
372316f1
PA
5469 had_step_over_info = step_over_info_valid_p ();
5470
5471 if (had_step_over_info)
4d9d9d04
PA
5472 {
5473 /* If we're stepping over a breakpoint with all threads locked,
5474 then only the thread that was stepped should be reporting
5475 back an event. */
5476 gdb_assert (ecs->event_thread->control.trap_expected);
5477
c65d6b55 5478 clear_step_over_info ();
4d9d9d04
PA
5479 }
5480
fbea99ea 5481 if (!target_is_non_stop_p ())
372316f1 5482 return 0;
4d9d9d04
PA
5483
5484 /* Start a new step-over in another thread if there's one that
5485 needs it. */
5486 start_step_over ();
372316f1
PA
5487
5488 /* If we were stepping over a breakpoint before, and haven't started
5489 a new in-line step-over sequence, then restart all other threads
5490 (except the event thread). We can't do this in all-stop, as then
5491 e.g., we wouldn't be able to issue any other remote packet until
5492 these other threads stop. */
5493 if (had_step_over_info && !step_over_info_valid_p ())
5494 {
5495 struct thread_info *pending;
5496
5497 /* If we only have threads with pending statuses, the restart
5498 below won't restart any thread and so nothing re-inserts the
5499 breakpoint we just stepped over. But we need it inserted
5500 when we later process the pending events, otherwise if
5501 another thread has a pending event for this breakpoint too,
5502 we'd discard its event (because the breakpoint that
5503 originally caused the event was no longer inserted). */
00431a78 5504 context_switch (ecs);
372316f1
PA
5505 insert_breakpoints ();
5506
5507 restart_threads (ecs->event_thread);
5508
5509 /* If we have events pending, go through handle_inferior_event
5510 again, picking up a pending event at random. This avoids
5511 thread starvation. */
5512
5513 /* But not if we just stepped over a watchpoint in order to let
5514 the instruction execute so we can evaluate its expression.
5515 The set of watchpoints that triggered is recorded in the
5516 breakpoint objects themselves (see bp->watchpoint_triggered).
5517 If we processed another event first, that other event could
5518 clobber this info. */
5519 if (ecs->event_thread->stepping_over_watchpoint)
5520 return 0;
5521
5522 pending = iterate_over_threads (resumed_thread_with_pending_status,
5523 NULL);
5524 if (pending != NULL)
5525 {
5526 struct thread_info *tp = ecs->event_thread;
5527 struct regcache *regcache;
5528
5529 if (debug_infrun)
5530 {
5531 fprintf_unfiltered (gdb_stdlog,
5532 "infrun: found resumed threads with "
5533 "pending events, saving status\n");
5534 }
5535
5536 gdb_assert (pending != tp);
5537
5538 /* Record the event thread's event for later. */
5539 save_waitstatus (tp, &ecs->ws);
5540 /* This was cleared early, by handle_inferior_event. Set it
5541 so this pending event is considered by
5542 do_target_wait. */
5543 tp->resumed = 1;
5544
5545 gdb_assert (!tp->executing);
5546
00431a78 5547 regcache = get_thread_regcache (tp);
372316f1
PA
5548 tp->suspend.stop_pc = regcache_read_pc (regcache);
5549
5550 if (debug_infrun)
5551 {
5552 fprintf_unfiltered (gdb_stdlog,
5553 "infrun: saved stop_pc=%s for %s "
5554 "(currently_stepping=%d)\n",
5555 paddress (target_gdbarch (),
5556 tp->suspend.stop_pc),
5557 target_pid_to_str (tp->ptid),
5558 currently_stepping (tp));
5559 }
5560
5561 /* This in-line step-over finished; clear this so we won't
5562 start a new one. This is what handle_signal_stop would
5563 do, if we returned false. */
5564 tp->stepping_over_breakpoint = 0;
5565
5566 /* Wake up the event loop again. */
5567 mark_async_event_handler (infrun_async_inferior_event_token);
5568
5569 prepare_to_wait (ecs);
5570 return 1;
5571 }
5572 }
5573
5574 return 0;
4d9d9d04
PA
5575}
5576
4f5d7f63
PA
5577/* Come here when the program has stopped with a signal. */
5578
5579static void
5580handle_signal_stop (struct execution_control_state *ecs)
5581{
5582 struct frame_info *frame;
5583 struct gdbarch *gdbarch;
5584 int stopped_by_watchpoint;
5585 enum stop_kind stop_soon;
5586 int random_signal;
c906108c 5587
f0407826
DE
5588 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5589
c65d6b55
PA
5590 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5591
f0407826
DE
5592 /* Do we need to clean up the state of a thread that has
5593 completed a displaced single-step? (Doing so usually affects
5594 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5595 if (finish_step_over (ecs))
5596 return;
f0407826
DE
5597
5598 /* If we either finished a single-step or hit a breakpoint, but
5599 the user wanted this thread to be stopped, pretend we got a
5600 SIG0 (generic unsignaled stop). */
5601 if (ecs->event_thread->stop_requested
5602 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5603 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5604
f2ffa92b
PA
5605 ecs->event_thread->suspend.stop_pc
5606 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5607
527159b7 5608 if (debug_infrun)
237fc4c9 5609 {
00431a78 5610 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5611 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5612 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5613
5614 inferior_ptid = ecs->ptid;
5af949e3
UW
5615
5616 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5617 paddress (reg_gdbarch,
f2ffa92b 5618 ecs->event_thread->suspend.stop_pc));
d92524f1 5619 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5620 {
5621 CORE_ADDR addr;
abbb1732 5622
237fc4c9
PA
5623 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5624
8b88a78e 5625 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5626 fprintf_unfiltered (gdb_stdlog,
5af949e3 5627 "infrun: stopped data address = %s\n",
b926417a 5628 paddress (reg_gdbarch, addr));
237fc4c9
PA
5629 else
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: (no data address available)\n");
5632 }
5633 }
527159b7 5634
36fa8042
PA
5635 /* This is originated from start_remote(), start_inferior() and
5636 shared libraries hook functions. */
00431a78 5637 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5638 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5639 {
00431a78 5640 context_switch (ecs);
36fa8042
PA
5641 if (debug_infrun)
5642 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5643 stop_print_frame = 1;
22bcd14b 5644 stop_waiting (ecs);
36fa8042
PA
5645 return;
5646 }
5647
36fa8042
PA
5648 /* This originates from attach_command(). We need to overwrite
5649 the stop_signal here, because some kernels don't ignore a
5650 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5651 See more comments in inferior.h. On the other hand, if we
5652 get a non-SIGSTOP, report it to the user - assume the backend
5653 will handle the SIGSTOP if it should show up later.
5654
5655 Also consider that the attach is complete when we see a
5656 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5657 target extended-remote report it instead of a SIGSTOP
5658 (e.g. gdbserver). We already rely on SIGTRAP being our
5659 signal, so this is no exception.
5660
5661 Also consider that the attach is complete when we see a
5662 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5663 the target to stop all threads of the inferior, in case the
5664 low level attach operation doesn't stop them implicitly. If
5665 they weren't stopped implicitly, then the stub will report a
5666 GDB_SIGNAL_0, meaning: stopped for no particular reason
5667 other than GDB's request. */
5668 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5669 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5670 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5671 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5672 {
5673 stop_print_frame = 1;
22bcd14b 5674 stop_waiting (ecs);
36fa8042
PA
5675 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5676 return;
5677 }
5678
488f131b 5679 /* See if something interesting happened to the non-current thread. If
b40c7d58 5680 so, then switch to that thread. */
d7e15655 5681 if (ecs->ptid != inferior_ptid)
488f131b 5682 {
527159b7 5683 if (debug_infrun)
8a9de0e4 5684 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5685
00431a78 5686 context_switch (ecs);
c5aa993b 5687
9a4105ab 5688 if (deprecated_context_hook)
00431a78 5689 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5690 }
c906108c 5691
568d6575
UW
5692 /* At this point, get hold of the now-current thread's frame. */
5693 frame = get_current_frame ();
5694 gdbarch = get_frame_arch (frame);
5695
2adfaa28 5696 /* Pull the single step breakpoints out of the target. */
af48d08f 5697 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5698 {
af48d08f 5699 struct regcache *regcache;
af48d08f 5700 CORE_ADDR pc;
2adfaa28 5701
00431a78 5702 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5703 const address_space *aspace = regcache->aspace ();
5704
af48d08f 5705 pc = regcache_read_pc (regcache);
34b7e8a6 5706
af48d08f
PA
5707 /* However, before doing so, if this single-step breakpoint was
5708 actually for another thread, set this thread up for moving
5709 past it. */
5710 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5711 aspace, pc))
5712 {
5713 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5714 {
5715 if (debug_infrun)
5716 {
5717 fprintf_unfiltered (gdb_stdlog,
af48d08f 5718 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5719 "single-step breakpoint\n",
5720 target_pid_to_str (ecs->ptid));
2adfaa28 5721 }
af48d08f
PA
5722 ecs->hit_singlestep_breakpoint = 1;
5723 }
5724 }
5725 else
5726 {
5727 if (debug_infrun)
5728 {
5729 fprintf_unfiltered (gdb_stdlog,
5730 "infrun: [%s] hit its "
5731 "single-step breakpoint\n",
5732 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5733 }
5734 }
488f131b 5735 }
af48d08f 5736 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5737
963f9c80
PA
5738 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5739 && ecs->event_thread->control.trap_expected
5740 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5741 stopped_by_watchpoint = 0;
5742 else
5743 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5744
5745 /* If necessary, step over this watchpoint. We'll be back to display
5746 it in a moment. */
5747 if (stopped_by_watchpoint
d92524f1 5748 && (target_have_steppable_watchpoint
568d6575 5749 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5750 {
488f131b
JB
5751 /* At this point, we are stopped at an instruction which has
5752 attempted to write to a piece of memory under control of
5753 a watchpoint. The instruction hasn't actually executed
5754 yet. If we were to evaluate the watchpoint expression
5755 now, we would get the old value, and therefore no change
5756 would seem to have occurred.
5757
5758 In order to make watchpoints work `right', we really need
5759 to complete the memory write, and then evaluate the
d983da9c
DJ
5760 watchpoint expression. We do this by single-stepping the
5761 target.
5762
7f89fd65 5763 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5764 it. For example, the PA can (with some kernel cooperation)
5765 single step over a watchpoint without disabling the watchpoint.
5766
5767 It is far more common to need to disable a watchpoint to step
5768 the inferior over it. If we have non-steppable watchpoints,
5769 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5770 disable all watchpoints.
5771
5772 Any breakpoint at PC must also be stepped over -- if there's
5773 one, it will have already triggered before the watchpoint
5774 triggered, and we either already reported it to the user, or
5775 it didn't cause a stop and we called keep_going. In either
5776 case, if there was a breakpoint at PC, we must be trying to
5777 step past it. */
5778 ecs->event_thread->stepping_over_watchpoint = 1;
5779 keep_going (ecs);
488f131b
JB
5780 return;
5781 }
5782
4e1c45ea 5783 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5784 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5785 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5786 ecs->event_thread->control.stop_step = 0;
488f131b 5787 stop_print_frame = 1;
488f131b 5788 stopped_by_random_signal = 0;
ddfe970e 5789 bpstat stop_chain = NULL;
488f131b 5790
edb3359d
DJ
5791 /* Hide inlined functions starting here, unless we just performed stepi or
5792 nexti. After stepi and nexti, always show the innermost frame (not any
5793 inline function call sites). */
16c381f0 5794 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5795 {
00431a78
PA
5796 const address_space *aspace
5797 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5798
5799 /* skip_inline_frames is expensive, so we avoid it if we can
5800 determine that the address is one where functions cannot have
5801 been inlined. This improves performance with inferiors that
5802 load a lot of shared libraries, because the solib event
5803 breakpoint is defined as the address of a function (i.e. not
5804 inline). Note that we have to check the previous PC as well
5805 as the current one to catch cases when we have just
5806 single-stepped off a breakpoint prior to reinstating it.
5807 Note that we're assuming that the code we single-step to is
5808 not inline, but that's not definitive: there's nothing
5809 preventing the event breakpoint function from containing
5810 inlined code, and the single-step ending up there. If the
5811 user had set a breakpoint on that inlined code, the missing
5812 skip_inline_frames call would break things. Fortunately
5813 that's an extremely unlikely scenario. */
f2ffa92b
PA
5814 if (!pc_at_non_inline_function (aspace,
5815 ecs->event_thread->suspend.stop_pc,
5816 &ecs->ws)
a210c238
MR
5817 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5818 && ecs->event_thread->control.trap_expected
5819 && pc_at_non_inline_function (aspace,
5820 ecs->event_thread->prev_pc,
09ac7c10 5821 &ecs->ws)))
1c5a993e 5822 {
f2ffa92b
PA
5823 stop_chain = build_bpstat_chain (aspace,
5824 ecs->event_thread->suspend.stop_pc,
5825 &ecs->ws);
00431a78 5826 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5827
5828 /* Re-fetch current thread's frame in case that invalidated
5829 the frame cache. */
5830 frame = get_current_frame ();
5831 gdbarch = get_frame_arch (frame);
5832 }
0574c78f 5833 }
edb3359d 5834
a493e3e2 5835 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5836 && ecs->event_thread->control.trap_expected
568d6575 5837 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5838 && currently_stepping (ecs->event_thread))
3352ef37 5839 {
b50d7442 5840 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5841 also on an instruction that needs to be stepped multiple
1777feb0 5842 times before it's been fully executing. E.g., architectures
3352ef37
AC
5843 with a delay slot. It needs to be stepped twice, once for
5844 the instruction and once for the delay slot. */
5845 int step_through_delay
568d6575 5846 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5847
527159b7 5848 if (debug_infrun && step_through_delay)
8a9de0e4 5849 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5850 if (ecs->event_thread->control.step_range_end == 0
5851 && step_through_delay)
3352ef37
AC
5852 {
5853 /* The user issued a continue when stopped at a breakpoint.
5854 Set up for another trap and get out of here. */
4e1c45ea 5855 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5856 keep_going (ecs);
5857 return;
5858 }
5859 else if (step_through_delay)
5860 {
5861 /* The user issued a step when stopped at a breakpoint.
5862 Maybe we should stop, maybe we should not - the delay
5863 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5864 case, don't decide that here, just set
5865 ecs->stepping_over_breakpoint, making sure we
5866 single-step again before breakpoints are re-inserted. */
4e1c45ea 5867 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5868 }
5869 }
5870
ab04a2af
TT
5871 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5872 handles this event. */
5873 ecs->event_thread->control.stop_bpstat
a01bda52 5874 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5875 ecs->event_thread->suspend.stop_pc,
5876 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5877
ab04a2af
TT
5878 /* Following in case break condition called a
5879 function. */
5880 stop_print_frame = 1;
73dd234f 5881
ab04a2af
TT
5882 /* This is where we handle "moribund" watchpoints. Unlike
5883 software breakpoints traps, hardware watchpoint traps are
5884 always distinguishable from random traps. If no high-level
5885 watchpoint is associated with the reported stop data address
5886 anymore, then the bpstat does not explain the signal ---
5887 simply make sure to ignore it if `stopped_by_watchpoint' is
5888 set. */
5889
5890 if (debug_infrun
5891 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5892 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5893 GDB_SIGNAL_TRAP)
ab04a2af
TT
5894 && stopped_by_watchpoint)
5895 fprintf_unfiltered (gdb_stdlog,
5896 "infrun: no user watchpoint explains "
5897 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5898
bac7d97b 5899 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5900 at one stage in the past included checks for an inferior
5901 function call's call dummy's return breakpoint. The original
5902 comment, that went with the test, read:
03cebad2 5903
ab04a2af
TT
5904 ``End of a stack dummy. Some systems (e.g. Sony news) give
5905 another signal besides SIGTRAP, so check here as well as
5906 above.''
73dd234f 5907
ab04a2af
TT
5908 If someone ever tries to get call dummys on a
5909 non-executable stack to work (where the target would stop
5910 with something like a SIGSEGV), then those tests might need
5911 to be re-instated. Given, however, that the tests were only
5912 enabled when momentary breakpoints were not being used, I
5913 suspect that it won't be the case.
488f131b 5914
ab04a2af
TT
5915 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5916 be necessary for call dummies on a non-executable stack on
5917 SPARC. */
488f131b 5918
bac7d97b 5919 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5920 random_signal
5921 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5922 ecs->event_thread->suspend.stop_signal);
bac7d97b 5923
1cf4d951
PA
5924 /* Maybe this was a trap for a software breakpoint that has since
5925 been removed. */
5926 if (random_signal && target_stopped_by_sw_breakpoint ())
5927 {
f2ffa92b
PA
5928 if (program_breakpoint_here_p (gdbarch,
5929 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5930 {
5931 struct regcache *regcache;
5932 int decr_pc;
5933
5934 /* Re-adjust PC to what the program would see if GDB was not
5935 debugging it. */
00431a78 5936 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5937 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5938 if (decr_pc != 0)
5939 {
07036511
TT
5940 gdb::optional<scoped_restore_tmpl<int>>
5941 restore_operation_disable;
1cf4d951
PA
5942
5943 if (record_full_is_used ())
07036511
TT
5944 restore_operation_disable.emplace
5945 (record_full_gdb_operation_disable_set ());
1cf4d951 5946
f2ffa92b
PA
5947 regcache_write_pc (regcache,
5948 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5949 }
5950 }
5951 else
5952 {
5953 /* A delayed software breakpoint event. Ignore the trap. */
5954 if (debug_infrun)
5955 fprintf_unfiltered (gdb_stdlog,
5956 "infrun: delayed software breakpoint "
5957 "trap, ignoring\n");
5958 random_signal = 0;
5959 }
5960 }
5961
5962 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5963 has since been removed. */
5964 if (random_signal && target_stopped_by_hw_breakpoint ())
5965 {
5966 /* A delayed hardware breakpoint event. Ignore the trap. */
5967 if (debug_infrun)
5968 fprintf_unfiltered (gdb_stdlog,
5969 "infrun: delayed hardware breakpoint/watchpoint "
5970 "trap, ignoring\n");
5971 random_signal = 0;
5972 }
5973
bac7d97b
PA
5974 /* If not, perhaps stepping/nexting can. */
5975 if (random_signal)
5976 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5977 && currently_stepping (ecs->event_thread));
ab04a2af 5978
2adfaa28
PA
5979 /* Perhaps the thread hit a single-step breakpoint of _another_
5980 thread. Single-step breakpoints are transparent to the
5981 breakpoints module. */
5982 if (random_signal)
5983 random_signal = !ecs->hit_singlestep_breakpoint;
5984
bac7d97b
PA
5985 /* No? Perhaps we got a moribund watchpoint. */
5986 if (random_signal)
5987 random_signal = !stopped_by_watchpoint;
ab04a2af 5988
c65d6b55
PA
5989 /* Always stop if the user explicitly requested this thread to
5990 remain stopped. */
5991 if (ecs->event_thread->stop_requested)
5992 {
5993 random_signal = 1;
5994 if (debug_infrun)
5995 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5996 }
5997
488f131b
JB
5998 /* For the program's own signals, act according to
5999 the signal handling tables. */
6000
ce12b012 6001 if (random_signal)
488f131b
JB
6002 {
6003 /* Signal not for debugging purposes. */
c9657e70 6004 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6005 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6006
527159b7 6007 if (debug_infrun)
c9737c08
PA
6008 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6009 gdb_signal_to_symbol_string (stop_signal));
527159b7 6010
488f131b
JB
6011 stopped_by_random_signal = 1;
6012
252fbfc8
PA
6013 /* Always stop on signals if we're either just gaining control
6014 of the program, or the user explicitly requested this thread
6015 to remain stopped. */
d6b48e9c 6016 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6017 || ecs->event_thread->stop_requested
24291992 6018 || (!inf->detaching
16c381f0 6019 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6020 {
22bcd14b 6021 stop_waiting (ecs);
488f131b
JB
6022 return;
6023 }
b57bacec
PA
6024
6025 /* Notify observers the signal has "handle print" set. Note we
6026 returned early above if stopping; normal_stop handles the
6027 printing in that case. */
6028 if (signal_print[ecs->event_thread->suspend.stop_signal])
6029 {
6030 /* The signal table tells us to print about this signal. */
223ffa71 6031 target_terminal::ours_for_output ();
76727919 6032 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6033 target_terminal::inferior ();
b57bacec 6034 }
488f131b
JB
6035
6036 /* Clear the signal if it should not be passed. */
16c381f0 6037 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6038 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6039
f2ffa92b 6040 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6041 && ecs->event_thread->control.trap_expected
8358c15c 6042 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6043 {
6044 /* We were just starting a new sequence, attempting to
6045 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6046 Instead this signal arrives. This signal will take us out
68f53502
AC
6047 of the stepping range so GDB needs to remember to, when
6048 the signal handler returns, resume stepping off that
6049 breakpoint. */
6050 /* To simplify things, "continue" is forced to use the same
6051 code paths as single-step - set a breakpoint at the
6052 signal return address and then, once hit, step off that
6053 breakpoint. */
237fc4c9
PA
6054 if (debug_infrun)
6055 fprintf_unfiltered (gdb_stdlog,
6056 "infrun: signal arrived while stepping over "
6057 "breakpoint\n");
d3169d93 6058
2c03e5be 6059 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6060 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6061 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6062 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6063
6064 /* If we were nexting/stepping some other thread, switch to
6065 it, so that we don't continue it, losing control. */
6066 if (!switch_back_to_stepped_thread (ecs))
6067 keep_going (ecs);
9d799f85 6068 return;
68f53502 6069 }
9d799f85 6070
e5f8a7cc 6071 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6072 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6073 ecs->event_thread)
e5f8a7cc 6074 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6075 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6076 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6077 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6078 {
6079 /* The inferior is about to take a signal that will take it
6080 out of the single step range. Set a breakpoint at the
6081 current PC (which is presumably where the signal handler
6082 will eventually return) and then allow the inferior to
6083 run free.
6084
6085 Note that this is only needed for a signal delivered
6086 while in the single-step range. Nested signals aren't a
6087 problem as they eventually all return. */
237fc4c9
PA
6088 if (debug_infrun)
6089 fprintf_unfiltered (gdb_stdlog,
6090 "infrun: signal may take us out of "
6091 "single-step range\n");
6092
372316f1 6093 clear_step_over_info ();
2c03e5be 6094 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6095 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6096 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6097 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6098 keep_going (ecs);
6099 return;
d303a6c7 6100 }
9d799f85
AC
6101
6102 /* Note: step_resume_breakpoint may be non-NULL. This occures
6103 when either there's a nested signal, or when there's a
6104 pending signal enabled just as the signal handler returns
6105 (leaving the inferior at the step-resume-breakpoint without
6106 actually executing it). Either way continue until the
6107 breakpoint is really hit. */
c447ac0b
PA
6108
6109 if (!switch_back_to_stepped_thread (ecs))
6110 {
6111 if (debug_infrun)
6112 fprintf_unfiltered (gdb_stdlog,
6113 "infrun: random signal, keep going\n");
6114
6115 keep_going (ecs);
6116 }
6117 return;
488f131b 6118 }
94c57d6a
PA
6119
6120 process_event_stop_test (ecs);
6121}
6122
6123/* Come here when we've got some debug event / signal we can explain
6124 (IOW, not a random signal), and test whether it should cause a
6125 stop, or whether we should resume the inferior (transparently).
6126 E.g., could be a breakpoint whose condition evaluates false; we
6127 could be still stepping within the line; etc. */
6128
6129static void
6130process_event_stop_test (struct execution_control_state *ecs)
6131{
6132 struct symtab_and_line stop_pc_sal;
6133 struct frame_info *frame;
6134 struct gdbarch *gdbarch;
cdaa5b73
PA
6135 CORE_ADDR jmp_buf_pc;
6136 struct bpstat_what what;
94c57d6a 6137
cdaa5b73 6138 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6139
cdaa5b73
PA
6140 frame = get_current_frame ();
6141 gdbarch = get_frame_arch (frame);
fcf3daef 6142
cdaa5b73 6143 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6144
cdaa5b73
PA
6145 if (what.call_dummy)
6146 {
6147 stop_stack_dummy = what.call_dummy;
6148 }
186c406b 6149
243a9253
PA
6150 /* A few breakpoint types have callbacks associated (e.g.,
6151 bp_jit_event). Run them now. */
6152 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6153
cdaa5b73
PA
6154 /* If we hit an internal event that triggers symbol changes, the
6155 current frame will be invalidated within bpstat_what (e.g., if we
6156 hit an internal solib event). Re-fetch it. */
6157 frame = get_current_frame ();
6158 gdbarch = get_frame_arch (frame);
e2e4d78b 6159
cdaa5b73
PA
6160 switch (what.main_action)
6161 {
6162 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6163 /* If we hit the breakpoint at longjmp while stepping, we
6164 install a momentary breakpoint at the target of the
6165 jmp_buf. */
186c406b 6166
cdaa5b73
PA
6167 if (debug_infrun)
6168 fprintf_unfiltered (gdb_stdlog,
6169 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6170
cdaa5b73 6171 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6172
cdaa5b73
PA
6173 if (what.is_longjmp)
6174 {
6175 struct value *arg_value;
6176
6177 /* If we set the longjmp breakpoint via a SystemTap probe,
6178 then use it to extract the arguments. The destination PC
6179 is the third argument to the probe. */
6180 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6181 if (arg_value)
8fa0c4f8
AA
6182 {
6183 jmp_buf_pc = value_as_address (arg_value);
6184 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6185 }
cdaa5b73
PA
6186 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6187 || !gdbarch_get_longjmp_target (gdbarch,
6188 frame, &jmp_buf_pc))
e2e4d78b 6189 {
cdaa5b73
PA
6190 if (debug_infrun)
6191 fprintf_unfiltered (gdb_stdlog,
6192 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6193 "(!gdbarch_get_longjmp_target)\n");
6194 keep_going (ecs);
6195 return;
e2e4d78b 6196 }
e2e4d78b 6197
cdaa5b73
PA
6198 /* Insert a breakpoint at resume address. */
6199 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6200 }
6201 else
6202 check_exception_resume (ecs, frame);
6203 keep_going (ecs);
6204 return;
e81a37f7 6205
cdaa5b73
PA
6206 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6207 {
6208 struct frame_info *init_frame;
e81a37f7 6209
cdaa5b73 6210 /* There are several cases to consider.
c906108c 6211
cdaa5b73
PA
6212 1. The initiating frame no longer exists. In this case we
6213 must stop, because the exception or longjmp has gone too
6214 far.
2c03e5be 6215
cdaa5b73
PA
6216 2. The initiating frame exists, and is the same as the
6217 current frame. We stop, because the exception or longjmp
6218 has been caught.
2c03e5be 6219
cdaa5b73
PA
6220 3. The initiating frame exists and is different from the
6221 current frame. This means the exception or longjmp has
6222 been caught beneath the initiating frame, so keep going.
c906108c 6223
cdaa5b73
PA
6224 4. longjmp breakpoint has been placed just to protect
6225 against stale dummy frames and user is not interested in
6226 stopping around longjmps. */
c5aa993b 6227
cdaa5b73
PA
6228 if (debug_infrun)
6229 fprintf_unfiltered (gdb_stdlog,
6230 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6231
cdaa5b73
PA
6232 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6233 != NULL);
6234 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6235
cdaa5b73
PA
6236 if (what.is_longjmp)
6237 {
b67a2c6f 6238 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6239
cdaa5b73 6240 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6241 {
cdaa5b73
PA
6242 /* Case 4. */
6243 keep_going (ecs);
6244 return;
e5ef252a 6245 }
cdaa5b73 6246 }
c5aa993b 6247
cdaa5b73 6248 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6249
cdaa5b73
PA
6250 if (init_frame)
6251 {
6252 struct frame_id current_id
6253 = get_frame_id (get_current_frame ());
6254 if (frame_id_eq (current_id,
6255 ecs->event_thread->initiating_frame))
6256 {
6257 /* Case 2. Fall through. */
6258 }
6259 else
6260 {
6261 /* Case 3. */
6262 keep_going (ecs);
6263 return;
6264 }
68f53502 6265 }
488f131b 6266
cdaa5b73
PA
6267 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6268 exists. */
6269 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6270
bdc36728 6271 end_stepping_range (ecs);
cdaa5b73
PA
6272 }
6273 return;
e5ef252a 6274
cdaa5b73
PA
6275 case BPSTAT_WHAT_SINGLE:
6276 if (debug_infrun)
6277 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6278 ecs->event_thread->stepping_over_breakpoint = 1;
6279 /* Still need to check other stuff, at least the case where we
6280 are stepping and step out of the right range. */
6281 break;
e5ef252a 6282
cdaa5b73
PA
6283 case BPSTAT_WHAT_STEP_RESUME:
6284 if (debug_infrun)
6285 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6286
cdaa5b73
PA
6287 delete_step_resume_breakpoint (ecs->event_thread);
6288 if (ecs->event_thread->control.proceed_to_finish
6289 && execution_direction == EXEC_REVERSE)
6290 {
6291 struct thread_info *tp = ecs->event_thread;
6292
6293 /* We are finishing a function in reverse, and just hit the
6294 step-resume breakpoint at the start address of the
6295 function, and we're almost there -- just need to back up
6296 by one more single-step, which should take us back to the
6297 function call. */
6298 tp->control.step_range_start = tp->control.step_range_end = 1;
6299 keep_going (ecs);
e5ef252a 6300 return;
cdaa5b73
PA
6301 }
6302 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6303 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6304 && execution_direction == EXEC_REVERSE)
6305 {
6306 /* We are stepping over a function call in reverse, and just
6307 hit the step-resume breakpoint at the start address of
6308 the function. Go back to single-stepping, which should
6309 take us back to the function call. */
6310 ecs->event_thread->stepping_over_breakpoint = 1;
6311 keep_going (ecs);
6312 return;
6313 }
6314 break;
e5ef252a 6315
cdaa5b73
PA
6316 case BPSTAT_WHAT_STOP_NOISY:
6317 if (debug_infrun)
6318 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6319 stop_print_frame = 1;
e5ef252a 6320
99619bea
PA
6321 /* Assume the thread stopped for a breapoint. We'll still check
6322 whether a/the breakpoint is there when the thread is next
6323 resumed. */
6324 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6325
22bcd14b 6326 stop_waiting (ecs);
cdaa5b73 6327 return;
e5ef252a 6328
cdaa5b73
PA
6329 case BPSTAT_WHAT_STOP_SILENT:
6330 if (debug_infrun)
6331 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6332 stop_print_frame = 0;
e5ef252a 6333
99619bea
PA
6334 /* Assume the thread stopped for a breapoint. We'll still check
6335 whether a/the breakpoint is there when the thread is next
6336 resumed. */
6337 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6338 stop_waiting (ecs);
cdaa5b73
PA
6339 return;
6340
6341 case BPSTAT_WHAT_HP_STEP_RESUME:
6342 if (debug_infrun)
6343 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6344
6345 delete_step_resume_breakpoint (ecs->event_thread);
6346 if (ecs->event_thread->step_after_step_resume_breakpoint)
6347 {
6348 /* Back when the step-resume breakpoint was inserted, we
6349 were trying to single-step off a breakpoint. Go back to
6350 doing that. */
6351 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6352 ecs->event_thread->stepping_over_breakpoint = 1;
6353 keep_going (ecs);
6354 return;
e5ef252a 6355 }
cdaa5b73
PA
6356 break;
6357
6358 case BPSTAT_WHAT_KEEP_CHECKING:
6359 break;
e5ef252a 6360 }
c906108c 6361
af48d08f
PA
6362 /* If we stepped a permanent breakpoint and we had a high priority
6363 step-resume breakpoint for the address we stepped, but we didn't
6364 hit it, then we must have stepped into the signal handler. The
6365 step-resume was only necessary to catch the case of _not_
6366 stepping into the handler, so delete it, and fall through to
6367 checking whether the step finished. */
6368 if (ecs->event_thread->stepped_breakpoint)
6369 {
6370 struct breakpoint *sr_bp
6371 = ecs->event_thread->control.step_resume_breakpoint;
6372
8d707a12
PA
6373 if (sr_bp != NULL
6374 && sr_bp->loc->permanent
af48d08f
PA
6375 && sr_bp->type == bp_hp_step_resume
6376 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6377 {
6378 if (debug_infrun)
6379 fprintf_unfiltered (gdb_stdlog,
6380 "infrun: stepped permanent breakpoint, stopped in "
6381 "handler\n");
6382 delete_step_resume_breakpoint (ecs->event_thread);
6383 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6384 }
6385 }
6386
cdaa5b73
PA
6387 /* We come here if we hit a breakpoint but should not stop for it.
6388 Possibly we also were stepping and should stop for that. So fall
6389 through and test for stepping. But, if not stepping, do not
6390 stop. */
c906108c 6391
a7212384
UW
6392 /* In all-stop mode, if we're currently stepping but have stopped in
6393 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6394 if (switch_back_to_stepped_thread (ecs))
6395 return;
776f04fa 6396
8358c15c 6397 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6398 {
527159b7 6399 if (debug_infrun)
d3169d93
DJ
6400 fprintf_unfiltered (gdb_stdlog,
6401 "infrun: step-resume breakpoint is inserted\n");
527159b7 6402
488f131b
JB
6403 /* Having a step-resume breakpoint overrides anything
6404 else having to do with stepping commands until
6405 that breakpoint is reached. */
488f131b
JB
6406 keep_going (ecs);
6407 return;
6408 }
c5aa993b 6409
16c381f0 6410 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6411 {
527159b7 6412 if (debug_infrun)
8a9de0e4 6413 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6414 /* Likewise if we aren't even stepping. */
488f131b
JB
6415 keep_going (ecs);
6416 return;
6417 }
c5aa993b 6418
4b7703ad
JB
6419 /* Re-fetch current thread's frame in case the code above caused
6420 the frame cache to be re-initialized, making our FRAME variable
6421 a dangling pointer. */
6422 frame = get_current_frame ();
628fe4e4 6423 gdbarch = get_frame_arch (frame);
7e324e48 6424 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6425
488f131b 6426 /* If stepping through a line, keep going if still within it.
c906108c 6427
488f131b
JB
6428 Note that step_range_end is the address of the first instruction
6429 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6430 within it!
6431
6432 Note also that during reverse execution, we may be stepping
6433 through a function epilogue and therefore must detect when
6434 the current-frame changes in the middle of a line. */
6435
f2ffa92b
PA
6436 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6437 ecs->event_thread)
31410e84 6438 && (execution_direction != EXEC_REVERSE
388a8562 6439 || frame_id_eq (get_frame_id (frame),
16c381f0 6440 ecs->event_thread->control.step_frame_id)))
488f131b 6441 {
527159b7 6442 if (debug_infrun)
5af949e3
UW
6443 fprintf_unfiltered
6444 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6445 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6446 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6447
c1e36e3e
PA
6448 /* Tentatively re-enable range stepping; `resume' disables it if
6449 necessary (e.g., if we're stepping over a breakpoint or we
6450 have software watchpoints). */
6451 ecs->event_thread->control.may_range_step = 1;
6452
b2175913
MS
6453 /* When stepping backward, stop at beginning of line range
6454 (unless it's the function entry point, in which case
6455 keep going back to the call point). */
f2ffa92b 6456 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6457 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6458 && stop_pc != ecs->stop_func_start
6459 && execution_direction == EXEC_REVERSE)
bdc36728 6460 end_stepping_range (ecs);
b2175913
MS
6461 else
6462 keep_going (ecs);
6463
488f131b
JB
6464 return;
6465 }
c5aa993b 6466
488f131b 6467 /* We stepped out of the stepping range. */
c906108c 6468
488f131b 6469 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6470 loader dynamic symbol resolution code...
6471
6472 EXEC_FORWARD: we keep on single stepping until we exit the run
6473 time loader code and reach the callee's address.
6474
6475 EXEC_REVERSE: we've already executed the callee (backward), and
6476 the runtime loader code is handled just like any other
6477 undebuggable function call. Now we need only keep stepping
6478 backward through the trampoline code, and that's handled further
6479 down, so there is nothing for us to do here. */
6480
6481 if (execution_direction != EXEC_REVERSE
16c381f0 6482 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6483 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6484 {
4c8c40e6 6485 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6486 gdbarch_skip_solib_resolver (gdbarch,
6487 ecs->event_thread->suspend.stop_pc);
c906108c 6488
527159b7 6489 if (debug_infrun)
3e43a32a
MS
6490 fprintf_unfiltered (gdb_stdlog,
6491 "infrun: stepped into dynsym resolve code\n");
527159b7 6492
488f131b
JB
6493 if (pc_after_resolver)
6494 {
6495 /* Set up a step-resume breakpoint at the address
6496 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6497 symtab_and_line sr_sal;
488f131b 6498 sr_sal.pc = pc_after_resolver;
6c95b8df 6499 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6500
a6d9a66e
UW
6501 insert_step_resume_breakpoint_at_sal (gdbarch,
6502 sr_sal, null_frame_id);
c5aa993b 6503 }
c906108c 6504
488f131b
JB
6505 keep_going (ecs);
6506 return;
6507 }
c906108c 6508
1d509aa6
MM
6509 /* Step through an indirect branch thunk. */
6510 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6511 && gdbarch_in_indirect_branch_thunk (gdbarch,
6512 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6513 {
6514 if (debug_infrun)
6515 fprintf_unfiltered (gdb_stdlog,
6516 "infrun: stepped into indirect branch thunk\n");
6517 keep_going (ecs);
6518 return;
6519 }
6520
16c381f0
JK
6521 if (ecs->event_thread->control.step_range_end != 1
6522 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6523 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6524 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6525 {
527159b7 6526 if (debug_infrun)
3e43a32a
MS
6527 fprintf_unfiltered (gdb_stdlog,
6528 "infrun: stepped into signal trampoline\n");
42edda50 6529 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6530 a signal trampoline (either by a signal being delivered or by
6531 the signal handler returning). Just single-step until the
6532 inferior leaves the trampoline (either by calling the handler
6533 or returning). */
488f131b
JB
6534 keep_going (ecs);
6535 return;
6536 }
c906108c 6537
14132e89
MR
6538 /* If we're in the return path from a shared library trampoline,
6539 we want to proceed through the trampoline when stepping. */
6540 /* macro/2012-04-25: This needs to come before the subroutine
6541 call check below as on some targets return trampolines look
6542 like subroutine calls (MIPS16 return thunks). */
6543 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6544 ecs->event_thread->suspend.stop_pc,
6545 ecs->stop_func_name)
14132e89
MR
6546 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6547 {
6548 /* Determine where this trampoline returns. */
f2ffa92b
PA
6549 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6550 CORE_ADDR real_stop_pc
6551 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6552
6553 if (debug_infrun)
6554 fprintf_unfiltered (gdb_stdlog,
6555 "infrun: stepped into solib return tramp\n");
6556
6557 /* Only proceed through if we know where it's going. */
6558 if (real_stop_pc)
6559 {
6560 /* And put the step-breakpoint there and go until there. */
51abb421 6561 symtab_and_line sr_sal;
14132e89
MR
6562 sr_sal.pc = real_stop_pc;
6563 sr_sal.section = find_pc_overlay (sr_sal.pc);
6564 sr_sal.pspace = get_frame_program_space (frame);
6565
6566 /* Do not specify what the fp should be when we stop since
6567 on some machines the prologue is where the new fp value
6568 is established. */
6569 insert_step_resume_breakpoint_at_sal (gdbarch,
6570 sr_sal, null_frame_id);
6571
6572 /* Restart without fiddling with the step ranges or
6573 other state. */
6574 keep_going (ecs);
6575 return;
6576 }
6577 }
6578
c17eaafe
DJ
6579 /* Check for subroutine calls. The check for the current frame
6580 equalling the step ID is not necessary - the check of the
6581 previous frame's ID is sufficient - but it is a common case and
6582 cheaper than checking the previous frame's ID.
14e60db5
DJ
6583
6584 NOTE: frame_id_eq will never report two invalid frame IDs as
6585 being equal, so to get into this block, both the current and
6586 previous frame must have valid frame IDs. */
005ca36a
JB
6587 /* The outer_frame_id check is a heuristic to detect stepping
6588 through startup code. If we step over an instruction which
6589 sets the stack pointer from an invalid value to a valid value,
6590 we may detect that as a subroutine call from the mythical
6591 "outermost" function. This could be fixed by marking
6592 outermost frames as !stack_p,code_p,special_p. Then the
6593 initial outermost frame, before sp was valid, would
ce6cca6d 6594 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6595 for more. */
edb3359d 6596 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6597 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6598 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6599 ecs->event_thread->control.step_stack_frame_id)
6600 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6601 outer_frame_id)
885eeb5b 6602 || (ecs->event_thread->control.step_start_function
f2ffa92b 6603 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6604 {
f2ffa92b 6605 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6606 CORE_ADDR real_stop_pc;
8fb3e588 6607
527159b7 6608 if (debug_infrun)
8a9de0e4 6609 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6610
b7a084be 6611 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6612 {
6613 /* I presume that step_over_calls is only 0 when we're
6614 supposed to be stepping at the assembly language level
6615 ("stepi"). Just stop. */
388a8562 6616 /* And this works the same backward as frontward. MVS */
bdc36728 6617 end_stepping_range (ecs);
95918acb
AC
6618 return;
6619 }
8fb3e588 6620
388a8562
MS
6621 /* Reverse stepping through solib trampolines. */
6622
6623 if (execution_direction == EXEC_REVERSE
16c381f0 6624 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6625 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6626 || (ecs->stop_func_start == 0
6627 && in_solib_dynsym_resolve_code (stop_pc))))
6628 {
6629 /* Any solib trampoline code can be handled in reverse
6630 by simply continuing to single-step. We have already
6631 executed the solib function (backwards), and a few
6632 steps will take us back through the trampoline to the
6633 caller. */
6634 keep_going (ecs);
6635 return;
6636 }
6637
16c381f0 6638 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6639 {
b2175913
MS
6640 /* We're doing a "next".
6641
6642 Normal (forward) execution: set a breakpoint at the
6643 callee's return address (the address at which the caller
6644 will resume).
6645
6646 Reverse (backward) execution. set the step-resume
6647 breakpoint at the start of the function that we just
6648 stepped into (backwards), and continue to there. When we
6130d0b7 6649 get there, we'll need to single-step back to the caller. */
b2175913
MS
6650
6651 if (execution_direction == EXEC_REVERSE)
6652 {
acf9414f
JK
6653 /* If we're already at the start of the function, we've either
6654 just stepped backward into a single instruction function,
6655 or stepped back out of a signal handler to the first instruction
6656 of the function. Just keep going, which will single-step back
6657 to the caller. */
58c48e72 6658 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6659 {
acf9414f 6660 /* Normal function call return (static or dynamic). */
51abb421 6661 symtab_and_line sr_sal;
acf9414f
JK
6662 sr_sal.pc = ecs->stop_func_start;
6663 sr_sal.pspace = get_frame_program_space (frame);
6664 insert_step_resume_breakpoint_at_sal (gdbarch,
6665 sr_sal, null_frame_id);
6666 }
b2175913
MS
6667 }
6668 else
568d6575 6669 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6670
8567c30f
AC
6671 keep_going (ecs);
6672 return;
6673 }
a53c66de 6674
95918acb 6675 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6676 calling routine and the real function), locate the real
6677 function. That's what tells us (a) whether we want to step
6678 into it at all, and (b) what prologue we want to run to the
6679 end of, if we do step into it. */
568d6575 6680 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6681 if (real_stop_pc == 0)
568d6575 6682 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6683 if (real_stop_pc != 0)
6684 ecs->stop_func_start = real_stop_pc;
8fb3e588 6685
db5f024e 6686 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6687 {
51abb421 6688 symtab_and_line sr_sal;
1b2bfbb9 6689 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6690 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6691
a6d9a66e
UW
6692 insert_step_resume_breakpoint_at_sal (gdbarch,
6693 sr_sal, null_frame_id);
8fb3e588
AC
6694 keep_going (ecs);
6695 return;
1b2bfbb9
RC
6696 }
6697
95918acb 6698 /* If we have line number information for the function we are
1bfeeb0f
JL
6699 thinking of stepping into and the function isn't on the skip
6700 list, step into it.
95918acb 6701
8fb3e588
AC
6702 If there are several symtabs at that PC (e.g. with include
6703 files), just want to know whether *any* of them have line
6704 numbers. find_pc_line handles this. */
95918acb
AC
6705 {
6706 struct symtab_and_line tmp_sal;
8fb3e588 6707
95918acb 6708 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6709 if (tmp_sal.line != 0
85817405 6710 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6711 tmp_sal))
95918acb 6712 {
b2175913 6713 if (execution_direction == EXEC_REVERSE)
568d6575 6714 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6715 else
568d6575 6716 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6717 return;
6718 }
6719 }
6720
6721 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6722 set, we stop the step so that the user has a chance to switch
6723 in assembly mode. */
16c381f0 6724 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6725 && step_stop_if_no_debug)
95918acb 6726 {
bdc36728 6727 end_stepping_range (ecs);
95918acb
AC
6728 return;
6729 }
6730
b2175913
MS
6731 if (execution_direction == EXEC_REVERSE)
6732 {
acf9414f
JK
6733 /* If we're already at the start of the function, we've either just
6734 stepped backward into a single instruction function without line
6735 number info, or stepped back out of a signal handler to the first
6736 instruction of the function without line number info. Just keep
6737 going, which will single-step back to the caller. */
6738 if (ecs->stop_func_start != stop_pc)
6739 {
6740 /* Set a breakpoint at callee's start address.
6741 From there we can step once and be back in the caller. */
51abb421 6742 symtab_and_line sr_sal;
acf9414f
JK
6743 sr_sal.pc = ecs->stop_func_start;
6744 sr_sal.pspace = get_frame_program_space (frame);
6745 insert_step_resume_breakpoint_at_sal (gdbarch,
6746 sr_sal, null_frame_id);
6747 }
b2175913
MS
6748 }
6749 else
6750 /* Set a breakpoint at callee's return address (the address
6751 at which the caller will resume). */
568d6575 6752 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6753
95918acb 6754 keep_going (ecs);
488f131b 6755 return;
488f131b 6756 }
c906108c 6757
fdd654f3
MS
6758 /* Reverse stepping through solib trampolines. */
6759
6760 if (execution_direction == EXEC_REVERSE
16c381f0 6761 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6762 {
f2ffa92b
PA
6763 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6764
fdd654f3
MS
6765 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6766 || (ecs->stop_func_start == 0
6767 && in_solib_dynsym_resolve_code (stop_pc)))
6768 {
6769 /* Any solib trampoline code can be handled in reverse
6770 by simply continuing to single-step. We have already
6771 executed the solib function (backwards), and a few
6772 steps will take us back through the trampoline to the
6773 caller. */
6774 keep_going (ecs);
6775 return;
6776 }
6777 else if (in_solib_dynsym_resolve_code (stop_pc))
6778 {
6779 /* Stepped backward into the solib dynsym resolver.
6780 Set a breakpoint at its start and continue, then
6781 one more step will take us out. */
51abb421 6782 symtab_and_line sr_sal;
fdd654f3 6783 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6784 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6785 insert_step_resume_breakpoint_at_sal (gdbarch,
6786 sr_sal, null_frame_id);
6787 keep_going (ecs);
6788 return;
6789 }
6790 }
6791
f2ffa92b 6792 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6793
1b2bfbb9
RC
6794 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6795 the trampoline processing logic, however, there are some trampolines
6796 that have no names, so we should do trampoline handling first. */
16c381f0 6797 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6798 && ecs->stop_func_name == NULL
2afb61aa 6799 && stop_pc_sal.line == 0)
1b2bfbb9 6800 {
527159b7 6801 if (debug_infrun)
3e43a32a
MS
6802 fprintf_unfiltered (gdb_stdlog,
6803 "infrun: stepped into undebuggable function\n");
527159b7 6804
1b2bfbb9 6805 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6806 undebuggable function (where there is no debugging information
6807 and no line number corresponding to the address where the
1b2bfbb9
RC
6808 inferior stopped). Since we want to skip this kind of code,
6809 we keep going until the inferior returns from this
14e60db5
DJ
6810 function - unless the user has asked us not to (via
6811 set step-mode) or we no longer know how to get back
6812 to the call site. */
6813 if (step_stop_if_no_debug
c7ce8faa 6814 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6815 {
6816 /* If we have no line number and the step-stop-if-no-debug
6817 is set, we stop the step so that the user has a chance to
6818 switch in assembly mode. */
bdc36728 6819 end_stepping_range (ecs);
1b2bfbb9
RC
6820 return;
6821 }
6822 else
6823 {
6824 /* Set a breakpoint at callee's return address (the address
6825 at which the caller will resume). */
568d6575 6826 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6827 keep_going (ecs);
6828 return;
6829 }
6830 }
6831
16c381f0 6832 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6833 {
6834 /* It is stepi or nexti. We always want to stop stepping after
6835 one instruction. */
527159b7 6836 if (debug_infrun)
8a9de0e4 6837 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6838 end_stepping_range (ecs);
1b2bfbb9
RC
6839 return;
6840 }
6841
2afb61aa 6842 if (stop_pc_sal.line == 0)
488f131b
JB
6843 {
6844 /* We have no line number information. That means to stop
6845 stepping (does this always happen right after one instruction,
6846 when we do "s" in a function with no line numbers,
6847 or can this happen as a result of a return or longjmp?). */
527159b7 6848 if (debug_infrun)
8a9de0e4 6849 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6850 end_stepping_range (ecs);
488f131b
JB
6851 return;
6852 }
c906108c 6853
edb3359d
DJ
6854 /* Look for "calls" to inlined functions, part one. If the inline
6855 frame machinery detected some skipped call sites, we have entered
6856 a new inline function. */
6857
6858 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6859 ecs->event_thread->control.step_frame_id)
00431a78 6860 && inline_skipped_frames (ecs->event_thread))
edb3359d 6861 {
edb3359d
DJ
6862 if (debug_infrun)
6863 fprintf_unfiltered (gdb_stdlog,
6864 "infrun: stepped into inlined function\n");
6865
51abb421 6866 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6867
16c381f0 6868 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6869 {
6870 /* For "step", we're going to stop. But if the call site
6871 for this inlined function is on the same source line as
6872 we were previously stepping, go down into the function
6873 first. Otherwise stop at the call site. */
6874
6875 if (call_sal.line == ecs->event_thread->current_line
6876 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6877 step_into_inline_frame (ecs->event_thread);
edb3359d 6878
bdc36728 6879 end_stepping_range (ecs);
edb3359d
DJ
6880 return;
6881 }
6882 else
6883 {
6884 /* For "next", we should stop at the call site if it is on a
6885 different source line. Otherwise continue through the
6886 inlined function. */
6887 if (call_sal.line == ecs->event_thread->current_line
6888 && call_sal.symtab == ecs->event_thread->current_symtab)
6889 keep_going (ecs);
6890 else
bdc36728 6891 end_stepping_range (ecs);
edb3359d
DJ
6892 return;
6893 }
6894 }
6895
6896 /* Look for "calls" to inlined functions, part two. If we are still
6897 in the same real function we were stepping through, but we have
6898 to go further up to find the exact frame ID, we are stepping
6899 through a more inlined call beyond its call site. */
6900
6901 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6902 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6903 ecs->event_thread->control.step_frame_id)
edb3359d 6904 && stepped_in_from (get_current_frame (),
16c381f0 6905 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6906 {
6907 if (debug_infrun)
6908 fprintf_unfiltered (gdb_stdlog,
6909 "infrun: stepping through inlined function\n");
6910
16c381f0 6911 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6912 keep_going (ecs);
6913 else
bdc36728 6914 end_stepping_range (ecs);
edb3359d
DJ
6915 return;
6916 }
6917
f2ffa92b 6918 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6919 && (ecs->event_thread->current_line != stop_pc_sal.line
6920 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6921 {
6922 /* We are at the start of a different line. So stop. Note that
6923 we don't stop if we step into the middle of a different line.
6924 That is said to make things like for (;;) statements work
6925 better. */
527159b7 6926 if (debug_infrun)
3e43a32a
MS
6927 fprintf_unfiltered (gdb_stdlog,
6928 "infrun: stepped to a different line\n");
bdc36728 6929 end_stepping_range (ecs);
488f131b
JB
6930 return;
6931 }
c906108c 6932
488f131b 6933 /* We aren't done stepping.
c906108c 6934
488f131b
JB
6935 Optimize by setting the stepping range to the line.
6936 (We might not be in the original line, but if we entered a
6937 new line in mid-statement, we continue stepping. This makes
6938 things like for(;;) statements work better.) */
c906108c 6939
16c381f0
JK
6940 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6941 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6942 ecs->event_thread->control.may_range_step = 1;
edb3359d 6943 set_step_info (frame, stop_pc_sal);
488f131b 6944
527159b7 6945 if (debug_infrun)
8a9de0e4 6946 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6947 keep_going (ecs);
104c1213
JM
6948}
6949
c447ac0b
PA
6950/* In all-stop mode, if we're currently stepping but have stopped in
6951 some other thread, we may need to switch back to the stepped
6952 thread. Returns true we set the inferior running, false if we left
6953 it stopped (and the event needs further processing). */
6954
6955static int
6956switch_back_to_stepped_thread (struct execution_control_state *ecs)
6957{
fbea99ea 6958 if (!target_is_non_stop_p ())
c447ac0b 6959 {
99619bea
PA
6960 struct thread_info *stepping_thread;
6961
6962 /* If any thread is blocked on some internal breakpoint, and we
6963 simply need to step over that breakpoint to get it going
6964 again, do that first. */
6965
6966 /* However, if we see an event for the stepping thread, then we
6967 know all other threads have been moved past their breakpoints
6968 already. Let the caller check whether the step is finished,
6969 etc., before deciding to move it past a breakpoint. */
6970 if (ecs->event_thread->control.step_range_end != 0)
6971 return 0;
6972
6973 /* Check if the current thread is blocked on an incomplete
6974 step-over, interrupted by a random signal. */
6975 if (ecs->event_thread->control.trap_expected
6976 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6977 {
99619bea
PA
6978 if (debug_infrun)
6979 {
6980 fprintf_unfiltered (gdb_stdlog,
6981 "infrun: need to finish step-over of [%s]\n",
6982 target_pid_to_str (ecs->event_thread->ptid));
6983 }
6984 keep_going (ecs);
6985 return 1;
6986 }
2adfaa28 6987
99619bea
PA
6988 /* Check if the current thread is blocked by a single-step
6989 breakpoint of another thread. */
6990 if (ecs->hit_singlestep_breakpoint)
6991 {
6992 if (debug_infrun)
6993 {
6994 fprintf_unfiltered (gdb_stdlog,
6995 "infrun: need to step [%s] over single-step "
6996 "breakpoint\n",
6997 target_pid_to_str (ecs->ptid));
6998 }
6999 keep_going (ecs);
7000 return 1;
7001 }
7002
4d9d9d04
PA
7003 /* If this thread needs yet another step-over (e.g., stepping
7004 through a delay slot), do it first before moving on to
7005 another thread. */
7006 if (thread_still_needs_step_over (ecs->event_thread))
7007 {
7008 if (debug_infrun)
7009 {
7010 fprintf_unfiltered (gdb_stdlog,
7011 "infrun: thread [%s] still needs step-over\n",
7012 target_pid_to_str (ecs->event_thread->ptid));
7013 }
7014 keep_going (ecs);
7015 return 1;
7016 }
70509625 7017
483805cf
PA
7018 /* If scheduler locking applies even if not stepping, there's no
7019 need to walk over threads. Above we've checked whether the
7020 current thread is stepping. If some other thread not the
7021 event thread is stepping, then it must be that scheduler
7022 locking is not in effect. */
856e7dd6 7023 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7024 return 0;
7025
4d9d9d04
PA
7026 /* Otherwise, we no longer expect a trap in the current thread.
7027 Clear the trap_expected flag before switching back -- this is
7028 what keep_going does as well, if we call it. */
7029 ecs->event_thread->control.trap_expected = 0;
7030
7031 /* Likewise, clear the signal if it should not be passed. */
7032 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7033 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7034
7035 /* Do all pending step-overs before actually proceeding with
483805cf 7036 step/next/etc. */
4d9d9d04
PA
7037 if (start_step_over ())
7038 {
7039 prepare_to_wait (ecs);
7040 return 1;
7041 }
7042
7043 /* Look for the stepping/nexting thread. */
483805cf 7044 stepping_thread = NULL;
4d9d9d04 7045
08036331 7046 for (thread_info *tp : all_non_exited_threads ())
483805cf 7047 {
fbea99ea
PA
7048 /* Ignore threads of processes the caller is not
7049 resuming. */
483805cf 7050 if (!sched_multi
e99b03dc 7051 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
7052 continue;
7053
7054 /* When stepping over a breakpoint, we lock all threads
7055 except the one that needs to move past the breakpoint.
7056 If a non-event thread has this set, the "incomplete
7057 step-over" check above should have caught it earlier. */
372316f1
PA
7058 if (tp->control.trap_expected)
7059 {
7060 internal_error (__FILE__, __LINE__,
7061 "[%s] has inconsistent state: "
7062 "trap_expected=%d\n",
7063 target_pid_to_str (tp->ptid),
7064 tp->control.trap_expected);
7065 }
483805cf
PA
7066
7067 /* Did we find the stepping thread? */
7068 if (tp->control.step_range_end)
7069 {
7070 /* Yep. There should only one though. */
7071 gdb_assert (stepping_thread == NULL);
7072
7073 /* The event thread is handled at the top, before we
7074 enter this loop. */
7075 gdb_assert (tp != ecs->event_thread);
7076
7077 /* If some thread other than the event thread is
7078 stepping, then scheduler locking can't be in effect,
7079 otherwise we wouldn't have resumed the current event
7080 thread in the first place. */
856e7dd6 7081 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7082
7083 stepping_thread = tp;
7084 }
99619bea
PA
7085 }
7086
483805cf 7087 if (stepping_thread != NULL)
99619bea 7088 {
c447ac0b
PA
7089 if (debug_infrun)
7090 fprintf_unfiltered (gdb_stdlog,
7091 "infrun: switching back to stepped thread\n");
7092
2ac7589c
PA
7093 if (keep_going_stepped_thread (stepping_thread))
7094 {
7095 prepare_to_wait (ecs);
7096 return 1;
7097 }
7098 }
7099 }
2adfaa28 7100
2ac7589c
PA
7101 return 0;
7102}
2adfaa28 7103
2ac7589c
PA
7104/* Set a previously stepped thread back to stepping. Returns true on
7105 success, false if the resume is not possible (e.g., the thread
7106 vanished). */
7107
7108static int
7109keep_going_stepped_thread (struct thread_info *tp)
7110{
7111 struct frame_info *frame;
2ac7589c
PA
7112 struct execution_control_state ecss;
7113 struct execution_control_state *ecs = &ecss;
2adfaa28 7114
2ac7589c
PA
7115 /* If the stepping thread exited, then don't try to switch back and
7116 resume it, which could fail in several different ways depending
7117 on the target. Instead, just keep going.
2adfaa28 7118
2ac7589c
PA
7119 We can find a stepping dead thread in the thread list in two
7120 cases:
2adfaa28 7121
2ac7589c
PA
7122 - The target supports thread exit events, and when the target
7123 tries to delete the thread from the thread list, inferior_ptid
7124 pointed at the exiting thread. In such case, calling
7125 delete_thread does not really remove the thread from the list;
7126 instead, the thread is left listed, with 'exited' state.
64ce06e4 7127
2ac7589c
PA
7128 - The target's debug interface does not support thread exit
7129 events, and so we have no idea whatsoever if the previously
7130 stepping thread is still alive. For that reason, we need to
7131 synchronously query the target now. */
2adfaa28 7132
00431a78 7133 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7134 {
7135 if (debug_infrun)
7136 fprintf_unfiltered (gdb_stdlog,
7137 "infrun: not resuming previously "
7138 "stepped thread, it has vanished\n");
7139
00431a78 7140 delete_thread (tp);
2ac7589c 7141 return 0;
c447ac0b 7142 }
2ac7589c
PA
7143
7144 if (debug_infrun)
7145 fprintf_unfiltered (gdb_stdlog,
7146 "infrun: resuming previously stepped thread\n");
7147
7148 reset_ecs (ecs, tp);
00431a78 7149 switch_to_thread (tp);
2ac7589c 7150
f2ffa92b 7151 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7152 frame = get_current_frame ();
2ac7589c
PA
7153
7154 /* If the PC of the thread we were trying to single-step has
7155 changed, then that thread has trapped or been signaled, but the
7156 event has not been reported to GDB yet. Re-poll the target
7157 looking for this particular thread's event (i.e. temporarily
7158 enable schedlock) by:
7159
7160 - setting a break at the current PC
7161 - resuming that particular thread, only (by setting trap
7162 expected)
7163
7164 This prevents us continuously moving the single-step breakpoint
7165 forward, one instruction at a time, overstepping. */
7166
f2ffa92b 7167 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7168 {
7169 ptid_t resume_ptid;
7170
7171 if (debug_infrun)
7172 fprintf_unfiltered (gdb_stdlog,
7173 "infrun: expected thread advanced also (%s -> %s)\n",
7174 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7175 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7176
7177 /* Clear the info of the previous step-over, as it's no longer
7178 valid (if the thread was trying to step over a breakpoint, it
7179 has already succeeded). It's what keep_going would do too,
7180 if we called it. Do this before trying to insert the sss
7181 breakpoint, otherwise if we were previously trying to step
7182 over this exact address in another thread, the breakpoint is
7183 skipped. */
7184 clear_step_over_info ();
7185 tp->control.trap_expected = 0;
7186
7187 insert_single_step_breakpoint (get_frame_arch (frame),
7188 get_frame_address_space (frame),
f2ffa92b 7189 tp->suspend.stop_pc);
2ac7589c 7190
372316f1 7191 tp->resumed = 1;
fbea99ea 7192 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7193 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7194 }
7195 else
7196 {
7197 if (debug_infrun)
7198 fprintf_unfiltered (gdb_stdlog,
7199 "infrun: expected thread still hasn't advanced\n");
7200
7201 keep_going_pass_signal (ecs);
7202 }
7203 return 1;
c447ac0b
PA
7204}
7205
8b061563
PA
7206/* Is thread TP in the middle of (software or hardware)
7207 single-stepping? (Note the result of this function must never be
7208 passed directly as target_resume's STEP parameter.) */
104c1213 7209
a289b8f6 7210static int
b3444185 7211currently_stepping (struct thread_info *tp)
a7212384 7212{
8358c15c
JK
7213 return ((tp->control.step_range_end
7214 && tp->control.step_resume_breakpoint == NULL)
7215 || tp->control.trap_expected
af48d08f 7216 || tp->stepped_breakpoint
8358c15c 7217 || bpstat_should_step ());
a7212384
UW
7218}
7219
b2175913
MS
7220/* Inferior has stepped into a subroutine call with source code that
7221 we should not step over. Do step to the first line of code in
7222 it. */
c2c6d25f
JM
7223
7224static void
568d6575
UW
7225handle_step_into_function (struct gdbarch *gdbarch,
7226 struct execution_control_state *ecs)
c2c6d25f 7227{
7e324e48
GB
7228 fill_in_stop_func (gdbarch, ecs);
7229
f2ffa92b
PA
7230 compunit_symtab *cust
7231 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7232 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7233 ecs->stop_func_start
7234 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7235
51abb421 7236 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7237 /* Use the step_resume_break to step until the end of the prologue,
7238 even if that involves jumps (as it seems to on the vax under
7239 4.2). */
7240 /* If the prologue ends in the middle of a source line, continue to
7241 the end of that source line (if it is still within the function).
7242 Otherwise, just go to end of prologue. */
2afb61aa
PA
7243 if (stop_func_sal.end
7244 && stop_func_sal.pc != ecs->stop_func_start
7245 && stop_func_sal.end < ecs->stop_func_end)
7246 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7247
2dbd5e30
KB
7248 /* Architectures which require breakpoint adjustment might not be able
7249 to place a breakpoint at the computed address. If so, the test
7250 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7251 ecs->stop_func_start to an address at which a breakpoint may be
7252 legitimately placed.
8fb3e588 7253
2dbd5e30
KB
7254 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7255 made, GDB will enter an infinite loop when stepping through
7256 optimized code consisting of VLIW instructions which contain
7257 subinstructions corresponding to different source lines. On
7258 FR-V, it's not permitted to place a breakpoint on any but the
7259 first subinstruction of a VLIW instruction. When a breakpoint is
7260 set, GDB will adjust the breakpoint address to the beginning of
7261 the VLIW instruction. Thus, we need to make the corresponding
7262 adjustment here when computing the stop address. */
8fb3e588 7263
568d6575 7264 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7265 {
7266 ecs->stop_func_start
568d6575 7267 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7268 ecs->stop_func_start);
2dbd5e30
KB
7269 }
7270
f2ffa92b 7271 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7272 {
7273 /* We are already there: stop now. */
bdc36728 7274 end_stepping_range (ecs);
c2c6d25f
JM
7275 return;
7276 }
7277 else
7278 {
7279 /* Put the step-breakpoint there and go until there. */
51abb421 7280 symtab_and_line sr_sal;
c2c6d25f
JM
7281 sr_sal.pc = ecs->stop_func_start;
7282 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7283 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7284
c2c6d25f 7285 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7286 some machines the prologue is where the new fp value is
7287 established. */
a6d9a66e 7288 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7289
7290 /* And make sure stepping stops right away then. */
16c381f0
JK
7291 ecs->event_thread->control.step_range_end
7292 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7293 }
7294 keep_going (ecs);
7295}
d4f3574e 7296
b2175913
MS
7297/* Inferior has stepped backward into a subroutine call with source
7298 code that we should not step over. Do step to the beginning of the
7299 last line of code in it. */
7300
7301static void
568d6575
UW
7302handle_step_into_function_backward (struct gdbarch *gdbarch,
7303 struct execution_control_state *ecs)
b2175913 7304{
43f3e411 7305 struct compunit_symtab *cust;
167e4384 7306 struct symtab_and_line stop_func_sal;
b2175913 7307
7e324e48
GB
7308 fill_in_stop_func (gdbarch, ecs);
7309
f2ffa92b 7310 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7311 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7312 ecs->stop_func_start
7313 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7314
f2ffa92b 7315 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7316
7317 /* OK, we're just going to keep stepping here. */
f2ffa92b 7318 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7319 {
7320 /* We're there already. Just stop stepping now. */
bdc36728 7321 end_stepping_range (ecs);
b2175913
MS
7322 }
7323 else
7324 {
7325 /* Else just reset the step range and keep going.
7326 No step-resume breakpoint, they don't work for
7327 epilogues, which can have multiple entry paths. */
16c381f0
JK
7328 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7329 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7330 keep_going (ecs);
7331 }
7332 return;
7333}
7334
d3169d93 7335/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7336 This is used to both functions and to skip over code. */
7337
7338static void
2c03e5be
PA
7339insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7340 struct symtab_and_line sr_sal,
7341 struct frame_id sr_id,
7342 enum bptype sr_type)
44cbf7b5 7343{
611c83ae
PA
7344 /* There should never be more than one step-resume or longjmp-resume
7345 breakpoint per thread, so we should never be setting a new
44cbf7b5 7346 step_resume_breakpoint when one is already active. */
8358c15c 7347 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7348 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7349
7350 if (debug_infrun)
7351 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7352 "infrun: inserting step-resume breakpoint at %s\n",
7353 paddress (gdbarch, sr_sal.pc));
d3169d93 7354
8358c15c 7355 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7356 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7357}
7358
9da8c2a0 7359void
2c03e5be
PA
7360insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7361 struct symtab_and_line sr_sal,
7362 struct frame_id sr_id)
7363{
7364 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7365 sr_sal, sr_id,
7366 bp_step_resume);
44cbf7b5 7367}
7ce450bd 7368
2c03e5be
PA
7369/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7370 This is used to skip a potential signal handler.
7ce450bd 7371
14e60db5
DJ
7372 This is called with the interrupted function's frame. The signal
7373 handler, when it returns, will resume the interrupted function at
7374 RETURN_FRAME.pc. */
d303a6c7
AC
7375
7376static void
2c03e5be 7377insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7378{
f4c1edd8 7379 gdb_assert (return_frame != NULL);
d303a6c7 7380
51abb421
PA
7381 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7382
7383 symtab_and_line sr_sal;
568d6575 7384 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7385 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7386 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7387
2c03e5be
PA
7388 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7389 get_stack_frame_id (return_frame),
7390 bp_hp_step_resume);
d303a6c7
AC
7391}
7392
2c03e5be
PA
7393/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7394 is used to skip a function after stepping into it (for "next" or if
7395 the called function has no debugging information).
14e60db5
DJ
7396
7397 The current function has almost always been reached by single
7398 stepping a call or return instruction. NEXT_FRAME belongs to the
7399 current function, and the breakpoint will be set at the caller's
7400 resume address.
7401
7402 This is a separate function rather than reusing
2c03e5be 7403 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7404 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7405 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7406
7407static void
7408insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7409{
14e60db5
DJ
7410 /* We shouldn't have gotten here if we don't know where the call site
7411 is. */
c7ce8faa 7412 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7413
51abb421 7414 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7415
51abb421 7416 symtab_and_line sr_sal;
c7ce8faa
DJ
7417 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7418 frame_unwind_caller_pc (next_frame));
14e60db5 7419 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7420 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7421
a6d9a66e 7422 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7423 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7424}
7425
611c83ae
PA
7426/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7427 new breakpoint at the target of a jmp_buf. The handling of
7428 longjmp-resume uses the same mechanisms used for handling
7429 "step-resume" breakpoints. */
7430
7431static void
a6d9a66e 7432insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7433{
e81a37f7
TT
7434 /* There should never be more than one longjmp-resume breakpoint per
7435 thread, so we should never be setting a new
611c83ae 7436 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7437 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7438
7439 if (debug_infrun)
7440 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7441 "infrun: inserting longjmp-resume breakpoint at %s\n",
7442 paddress (gdbarch, pc));
611c83ae 7443
e81a37f7 7444 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7445 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7446}
7447
186c406b
TT
7448/* Insert an exception resume breakpoint. TP is the thread throwing
7449 the exception. The block B is the block of the unwinder debug hook
7450 function. FRAME is the frame corresponding to the call to this
7451 function. SYM is the symbol of the function argument holding the
7452 target PC of the exception. */
7453
7454static void
7455insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7456 const struct block *b,
186c406b
TT
7457 struct frame_info *frame,
7458 struct symbol *sym)
7459{
492d29ea 7460 TRY
186c406b 7461 {
63e43d3a 7462 struct block_symbol vsym;
186c406b
TT
7463 struct value *value;
7464 CORE_ADDR handler;
7465 struct breakpoint *bp;
7466
de63c46b
PA
7467 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7468 b, VAR_DOMAIN);
63e43d3a 7469 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7470 /* If the value was optimized out, revert to the old behavior. */
7471 if (! value_optimized_out (value))
7472 {
7473 handler = value_as_address (value);
7474
7475 if (debug_infrun)
7476 fprintf_unfiltered (gdb_stdlog,
7477 "infrun: exception resume at %lx\n",
7478 (unsigned long) handler);
7479
7480 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7481 handler,
7482 bp_exception_resume).release ();
c70a6932
JK
7483
7484 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7485 frame = NULL;
7486
5d5658a1 7487 bp->thread = tp->global_num;
186c406b
TT
7488 inferior_thread ()->control.exception_resume_breakpoint = bp;
7489 }
7490 }
492d29ea
PA
7491 CATCH (e, RETURN_MASK_ERROR)
7492 {
7493 /* We want to ignore errors here. */
7494 }
7495 END_CATCH
186c406b
TT
7496}
7497
28106bc2
SDJ
7498/* A helper for check_exception_resume that sets an
7499 exception-breakpoint based on a SystemTap probe. */
7500
7501static void
7502insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7503 const struct bound_probe *probe,
28106bc2
SDJ
7504 struct frame_info *frame)
7505{
7506 struct value *arg_value;
7507 CORE_ADDR handler;
7508 struct breakpoint *bp;
7509
7510 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7511 if (!arg_value)
7512 return;
7513
7514 handler = value_as_address (arg_value);
7515
7516 if (debug_infrun)
7517 fprintf_unfiltered (gdb_stdlog,
7518 "infrun: exception resume at %s\n",
6bac7473 7519 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7520 handler));
7521
7522 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7523 handler, bp_exception_resume).release ();
5d5658a1 7524 bp->thread = tp->global_num;
28106bc2
SDJ
7525 inferior_thread ()->control.exception_resume_breakpoint = bp;
7526}
7527
186c406b
TT
7528/* This is called when an exception has been intercepted. Check to
7529 see whether the exception's destination is of interest, and if so,
7530 set an exception resume breakpoint there. */
7531
7532static void
7533check_exception_resume (struct execution_control_state *ecs,
28106bc2 7534 struct frame_info *frame)
186c406b 7535{
729662a5 7536 struct bound_probe probe;
28106bc2
SDJ
7537 struct symbol *func;
7538
7539 /* First see if this exception unwinding breakpoint was set via a
7540 SystemTap probe point. If so, the probe has two arguments: the
7541 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7542 set a breakpoint there. */
6bac7473 7543 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7544 if (probe.prob)
28106bc2 7545 {
729662a5 7546 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7547 return;
7548 }
7549
7550 func = get_frame_function (frame);
7551 if (!func)
7552 return;
186c406b 7553
492d29ea 7554 TRY
186c406b 7555 {
3977b71f 7556 const struct block *b;
8157b174 7557 struct block_iterator iter;
186c406b
TT
7558 struct symbol *sym;
7559 int argno = 0;
7560
7561 /* The exception breakpoint is a thread-specific breakpoint on
7562 the unwinder's debug hook, declared as:
7563
7564 void _Unwind_DebugHook (void *cfa, void *handler);
7565
7566 The CFA argument indicates the frame to which control is
7567 about to be transferred. HANDLER is the destination PC.
7568
7569 We ignore the CFA and set a temporary breakpoint at HANDLER.
7570 This is not extremely efficient but it avoids issues in gdb
7571 with computing the DWARF CFA, and it also works even in weird
7572 cases such as throwing an exception from inside a signal
7573 handler. */
7574
7575 b = SYMBOL_BLOCK_VALUE (func);
7576 ALL_BLOCK_SYMBOLS (b, iter, sym)
7577 {
7578 if (!SYMBOL_IS_ARGUMENT (sym))
7579 continue;
7580
7581 if (argno == 0)
7582 ++argno;
7583 else
7584 {
7585 insert_exception_resume_breakpoint (ecs->event_thread,
7586 b, frame, sym);
7587 break;
7588 }
7589 }
7590 }
492d29ea
PA
7591 CATCH (e, RETURN_MASK_ERROR)
7592 {
7593 }
7594 END_CATCH
186c406b
TT
7595}
7596
104c1213 7597static void
22bcd14b 7598stop_waiting (struct execution_control_state *ecs)
104c1213 7599{
527159b7 7600 if (debug_infrun)
22bcd14b 7601 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7602
cd0fc7c3
SS
7603 /* Let callers know we don't want to wait for the inferior anymore. */
7604 ecs->wait_some_more = 0;
fbea99ea
PA
7605
7606 /* If all-stop, but the target is always in non-stop mode, stop all
7607 threads now that we're presenting the stop to the user. */
7608 if (!non_stop && target_is_non_stop_p ())
7609 stop_all_threads ();
cd0fc7c3
SS
7610}
7611
4d9d9d04
PA
7612/* Like keep_going, but passes the signal to the inferior, even if the
7613 signal is set to nopass. */
d4f3574e
SS
7614
7615static void
4d9d9d04 7616keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7617{
d7e15655 7618 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7619 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7620
d4f3574e 7621 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7622 ecs->event_thread->prev_pc
00431a78 7623 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7624
4d9d9d04 7625 if (ecs->event_thread->control.trap_expected)
d4f3574e 7626 {
4d9d9d04
PA
7627 struct thread_info *tp = ecs->event_thread;
7628
7629 if (debug_infrun)
7630 fprintf_unfiltered (gdb_stdlog,
7631 "infrun: %s has trap_expected set, "
7632 "resuming to collect trap\n",
7633 target_pid_to_str (tp->ptid));
7634
a9ba6bae
PA
7635 /* We haven't yet gotten our trap, and either: intercepted a
7636 non-signal event (e.g., a fork); or took a signal which we
7637 are supposed to pass through to the inferior. Simply
7638 continue. */
64ce06e4 7639 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7640 }
372316f1
PA
7641 else if (step_over_info_valid_p ())
7642 {
7643 /* Another thread is stepping over a breakpoint in-line. If
7644 this thread needs a step-over too, queue the request. In
7645 either case, this resume must be deferred for later. */
7646 struct thread_info *tp = ecs->event_thread;
7647
7648 if (ecs->hit_singlestep_breakpoint
7649 || thread_still_needs_step_over (tp))
7650 {
7651 if (debug_infrun)
7652 fprintf_unfiltered (gdb_stdlog,
7653 "infrun: step-over already in progress: "
7654 "step-over for %s deferred\n",
7655 target_pid_to_str (tp->ptid));
7656 thread_step_over_chain_enqueue (tp);
7657 }
7658 else
7659 {
7660 if (debug_infrun)
7661 fprintf_unfiltered (gdb_stdlog,
7662 "infrun: step-over in progress: "
7663 "resume of %s deferred\n",
7664 target_pid_to_str (tp->ptid));
7665 }
372316f1 7666 }
d4f3574e
SS
7667 else
7668 {
31e77af2 7669 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7670 int remove_bp;
7671 int remove_wps;
8d297bbf 7672 step_over_what step_what;
31e77af2 7673
d4f3574e 7674 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7675 anyway (if we got a signal, the user asked it be passed to
7676 the child)
7677 -- or --
7678 We got our expected trap, but decided we should resume from
7679 it.
d4f3574e 7680
a9ba6bae 7681 We're going to run this baby now!
d4f3574e 7682
c36b740a
VP
7683 Note that insert_breakpoints won't try to re-insert
7684 already inserted breakpoints. Therefore, we don't
7685 care if breakpoints were already inserted, or not. */
a9ba6bae 7686
31e77af2
PA
7687 /* If we need to step over a breakpoint, and we're not using
7688 displaced stepping to do so, insert all breakpoints
7689 (watchpoints, etc.) but the one we're stepping over, step one
7690 instruction, and then re-insert the breakpoint when that step
7691 is finished. */
963f9c80 7692
6c4cfb24
PA
7693 step_what = thread_still_needs_step_over (ecs->event_thread);
7694
963f9c80 7695 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7696 || (step_what & STEP_OVER_BREAKPOINT));
7697 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7698
cb71640d
PA
7699 /* We can't use displaced stepping if we need to step past a
7700 watchpoint. The instruction copied to the scratch pad would
7701 still trigger the watchpoint. */
7702 if (remove_bp
3fc8eb30 7703 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7704 {
a01bda52 7705 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7706 regcache_read_pc (regcache), remove_wps,
7707 ecs->event_thread->global_num);
45e8c884 7708 }
963f9c80 7709 else if (remove_wps)
21edc42f 7710 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7711
7712 /* If we now need to do an in-line step-over, we need to stop
7713 all other threads. Note this must be done before
7714 insert_breakpoints below, because that removes the breakpoint
7715 we're about to step over, otherwise other threads could miss
7716 it. */
fbea99ea 7717 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7718 stop_all_threads ();
abbb1732 7719
31e77af2 7720 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7721 TRY
31e77af2
PA
7722 {
7723 insert_breakpoints ();
7724 }
492d29ea 7725 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7726 {
7727 exception_print (gdb_stderr, e);
22bcd14b 7728 stop_waiting (ecs);
bdf2a94a 7729 clear_step_over_info ();
31e77af2 7730 return;
d4f3574e 7731 }
492d29ea 7732 END_CATCH
d4f3574e 7733
963f9c80 7734 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7735
64ce06e4 7736 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7737 }
7738
488f131b 7739 prepare_to_wait (ecs);
d4f3574e
SS
7740}
7741
4d9d9d04
PA
7742/* Called when we should continue running the inferior, because the
7743 current event doesn't cause a user visible stop. This does the
7744 resuming part; waiting for the next event is done elsewhere. */
7745
7746static void
7747keep_going (struct execution_control_state *ecs)
7748{
7749 if (ecs->event_thread->control.trap_expected
7750 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7751 ecs->event_thread->control.trap_expected = 0;
7752
7753 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7754 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7755 keep_going_pass_signal (ecs);
7756}
7757
104c1213
JM
7758/* This function normally comes after a resume, before
7759 handle_inferior_event exits. It takes care of any last bits of
7760 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7761
104c1213
JM
7762static void
7763prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7764{
527159b7 7765 if (debug_infrun)
8a9de0e4 7766 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7767
104c1213 7768 ecs->wait_some_more = 1;
0b333c5e
PA
7769
7770 if (!target_is_async_p ())
7771 mark_infrun_async_event_handler ();
c906108c 7772}
11cf8741 7773
fd664c91 7774/* We are done with the step range of a step/next/si/ni command.
b57bacec 7775 Called once for each n of a "step n" operation. */
fd664c91
PA
7776
7777static void
bdc36728 7778end_stepping_range (struct execution_control_state *ecs)
fd664c91 7779{
bdc36728 7780 ecs->event_thread->control.stop_step = 1;
bdc36728 7781 stop_waiting (ecs);
fd664c91
PA
7782}
7783
33d62d64
JK
7784/* Several print_*_reason functions to print why the inferior has stopped.
7785 We always print something when the inferior exits, or receives a signal.
7786 The rest of the cases are dealt with later on in normal_stop and
7787 print_it_typical. Ideally there should be a call to one of these
7788 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7789 stop_waiting is called.
33d62d64 7790
fd664c91
PA
7791 Note that we don't call these directly, instead we delegate that to
7792 the interpreters, through observers. Interpreters then call these
7793 with whatever uiout is right. */
33d62d64 7794
fd664c91
PA
7795void
7796print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7797{
fd664c91 7798 /* For CLI-like interpreters, print nothing. */
33d62d64 7799
112e8700 7800 if (uiout->is_mi_like_p ())
fd664c91 7801 {
112e8700 7802 uiout->field_string ("reason",
fd664c91
PA
7803 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7804 }
7805}
33d62d64 7806
fd664c91
PA
7807void
7808print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7809{
33d62d64 7810 annotate_signalled ();
112e8700
SM
7811 if (uiout->is_mi_like_p ())
7812 uiout->field_string
7813 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7814 uiout->text ("\nProgram terminated with signal ");
33d62d64 7815 annotate_signal_name ();
112e8700 7816 uiout->field_string ("signal-name",
2ea28649 7817 gdb_signal_to_name (siggnal));
33d62d64 7818 annotate_signal_name_end ();
112e8700 7819 uiout->text (", ");
33d62d64 7820 annotate_signal_string ();
112e8700 7821 uiout->field_string ("signal-meaning",
2ea28649 7822 gdb_signal_to_string (siggnal));
33d62d64 7823 annotate_signal_string_end ();
112e8700
SM
7824 uiout->text (".\n");
7825 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7826}
7827
fd664c91
PA
7828void
7829print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7830{
fda326dd 7831 struct inferior *inf = current_inferior ();
f2907e49 7832 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7833
33d62d64
JK
7834 annotate_exited (exitstatus);
7835 if (exitstatus)
7836 {
112e8700
SM
7837 if (uiout->is_mi_like_p ())
7838 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7839 uiout->text ("[Inferior ");
7840 uiout->text (plongest (inf->num));
7841 uiout->text (" (");
7842 uiout->text (pidstr);
7843 uiout->text (") exited with code ");
7844 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7845 uiout->text ("]\n");
33d62d64
JK
7846 }
7847 else
11cf8741 7848 {
112e8700
SM
7849 if (uiout->is_mi_like_p ())
7850 uiout->field_string
7851 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7852 uiout->text ("[Inferior ");
7853 uiout->text (plongest (inf->num));
7854 uiout->text (" (");
7855 uiout->text (pidstr);
7856 uiout->text (") exited normally]\n");
33d62d64 7857 }
33d62d64
JK
7858}
7859
012b3a21
WT
7860/* Some targets/architectures can do extra processing/display of
7861 segmentation faults. E.g., Intel MPX boundary faults.
7862 Call the architecture dependent function to handle the fault. */
7863
7864static void
7865handle_segmentation_fault (struct ui_out *uiout)
7866{
7867 struct regcache *regcache = get_current_regcache ();
ac7936df 7868 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7869
7870 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7871 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7872}
7873
fd664c91
PA
7874void
7875print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7876{
f303dbd6
PA
7877 struct thread_info *thr = inferior_thread ();
7878
33d62d64
JK
7879 annotate_signal ();
7880
112e8700 7881 if (uiout->is_mi_like_p ())
f303dbd6
PA
7882 ;
7883 else if (show_thread_that_caused_stop ())
33d62d64 7884 {
f303dbd6 7885 const char *name;
33d62d64 7886
112e8700
SM
7887 uiout->text ("\nThread ");
7888 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7889
7890 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7891 if (name != NULL)
7892 {
112e8700
SM
7893 uiout->text (" \"");
7894 uiout->field_fmt ("name", "%s", name);
7895 uiout->text ("\"");
f303dbd6 7896 }
33d62d64 7897 }
f303dbd6 7898 else
112e8700 7899 uiout->text ("\nProgram");
f303dbd6 7900
112e8700
SM
7901 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7902 uiout->text (" stopped");
33d62d64
JK
7903 else
7904 {
112e8700 7905 uiout->text (" received signal ");
8b93c638 7906 annotate_signal_name ();
112e8700
SM
7907 if (uiout->is_mi_like_p ())
7908 uiout->field_string
7909 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7910 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7911 annotate_signal_name_end ();
112e8700 7912 uiout->text (", ");
8b93c638 7913 annotate_signal_string ();
112e8700 7914 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7915
7916 if (siggnal == GDB_SIGNAL_SEGV)
7917 handle_segmentation_fault (uiout);
7918
8b93c638 7919 annotate_signal_string_end ();
33d62d64 7920 }
112e8700 7921 uiout->text (".\n");
33d62d64 7922}
252fbfc8 7923
fd664c91
PA
7924void
7925print_no_history_reason (struct ui_out *uiout)
33d62d64 7926{
112e8700 7927 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7928}
43ff13b4 7929
0c7e1a46
PA
7930/* Print current location without a level number, if we have changed
7931 functions or hit a breakpoint. Print source line if we have one.
7932 bpstat_print contains the logic deciding in detail what to print,
7933 based on the event(s) that just occurred. */
7934
243a9253
PA
7935static void
7936print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7937{
7938 int bpstat_ret;
f486487f 7939 enum print_what source_flag;
0c7e1a46
PA
7940 int do_frame_printing = 1;
7941 struct thread_info *tp = inferior_thread ();
7942
7943 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7944 switch (bpstat_ret)
7945 {
7946 case PRINT_UNKNOWN:
7947 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7948 should) carry around the function and does (or should) use
7949 that when doing a frame comparison. */
7950 if (tp->control.stop_step
7951 && frame_id_eq (tp->control.step_frame_id,
7952 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7953 && (tp->control.step_start_function
7954 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7955 {
7956 /* Finished step, just print source line. */
7957 source_flag = SRC_LINE;
7958 }
7959 else
7960 {
7961 /* Print location and source line. */
7962 source_flag = SRC_AND_LOC;
7963 }
7964 break;
7965 case PRINT_SRC_AND_LOC:
7966 /* Print location and source line. */
7967 source_flag = SRC_AND_LOC;
7968 break;
7969 case PRINT_SRC_ONLY:
7970 source_flag = SRC_LINE;
7971 break;
7972 case PRINT_NOTHING:
7973 /* Something bogus. */
7974 source_flag = SRC_LINE;
7975 do_frame_printing = 0;
7976 break;
7977 default:
7978 internal_error (__FILE__, __LINE__, _("Unknown value."));
7979 }
7980
7981 /* The behavior of this routine with respect to the source
7982 flag is:
7983 SRC_LINE: Print only source line
7984 LOCATION: Print only location
7985 SRC_AND_LOC: Print location and source line. */
7986 if (do_frame_printing)
7987 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7988}
7989
243a9253
PA
7990/* See infrun.h. */
7991
7992void
7993print_stop_event (struct ui_out *uiout)
7994{
243a9253
PA
7995 struct target_waitstatus last;
7996 ptid_t last_ptid;
7997 struct thread_info *tp;
7998
7999 get_last_target_status (&last_ptid, &last);
8000
67ad9399
TT
8001 {
8002 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8003
67ad9399 8004 print_stop_location (&last);
243a9253 8005
67ad9399
TT
8006 /* Display the auto-display expressions. */
8007 do_displays ();
8008 }
243a9253
PA
8009
8010 tp = inferior_thread ();
8011 if (tp->thread_fsm != NULL
8012 && thread_fsm_finished_p (tp->thread_fsm))
8013 {
8014 struct return_value_info *rv;
8015
8016 rv = thread_fsm_return_value (tp->thread_fsm);
8017 if (rv != NULL)
8018 print_return_value (uiout, rv);
8019 }
0c7e1a46
PA
8020}
8021
388a7084
PA
8022/* See infrun.h. */
8023
8024void
8025maybe_remove_breakpoints (void)
8026{
8027 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8028 {
8029 if (remove_breakpoints ())
8030 {
223ffa71 8031 target_terminal::ours_for_output ();
388a7084
PA
8032 printf_filtered (_("Cannot remove breakpoints because "
8033 "program is no longer writable.\nFurther "
8034 "execution is probably impossible.\n"));
8035 }
8036 }
8037}
8038
4c2f2a79
PA
8039/* The execution context that just caused a normal stop. */
8040
8041struct stop_context
8042{
2d844eaf
TT
8043 stop_context ();
8044 ~stop_context ();
8045
8046 DISABLE_COPY_AND_ASSIGN (stop_context);
8047
8048 bool changed () const;
8049
4c2f2a79
PA
8050 /* The stop ID. */
8051 ULONGEST stop_id;
c906108c 8052
4c2f2a79 8053 /* The event PTID. */
c906108c 8054
4c2f2a79
PA
8055 ptid_t ptid;
8056
8057 /* If stopp for a thread event, this is the thread that caused the
8058 stop. */
8059 struct thread_info *thread;
8060
8061 /* The inferior that caused the stop. */
8062 int inf_num;
8063};
8064
2d844eaf 8065/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8066 takes a strong reference to the thread. */
8067
2d844eaf 8068stop_context::stop_context ()
4c2f2a79 8069{
2d844eaf
TT
8070 stop_id = get_stop_id ();
8071 ptid = inferior_ptid;
8072 inf_num = current_inferior ()->num;
4c2f2a79 8073
d7e15655 8074 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8075 {
8076 /* Take a strong reference so that the thread can't be deleted
8077 yet. */
2d844eaf
TT
8078 thread = inferior_thread ();
8079 thread->incref ();
4c2f2a79
PA
8080 }
8081 else
2d844eaf 8082 thread = NULL;
4c2f2a79
PA
8083}
8084
8085/* Release a stop context previously created with save_stop_context.
8086 Releases the strong reference to the thread as well. */
8087
2d844eaf 8088stop_context::~stop_context ()
4c2f2a79 8089{
2d844eaf
TT
8090 if (thread != NULL)
8091 thread->decref ();
4c2f2a79
PA
8092}
8093
8094/* Return true if the current context no longer matches the saved stop
8095 context. */
8096
2d844eaf
TT
8097bool
8098stop_context::changed () const
8099{
8100 if (ptid != inferior_ptid)
8101 return true;
8102 if (inf_num != current_inferior ()->num)
8103 return true;
8104 if (thread != NULL && thread->state != THREAD_STOPPED)
8105 return true;
8106 if (get_stop_id () != stop_id)
8107 return true;
8108 return false;
4c2f2a79
PA
8109}
8110
8111/* See infrun.h. */
8112
8113int
96baa820 8114normal_stop (void)
c906108c 8115{
73b65bb0
DJ
8116 struct target_waitstatus last;
8117 ptid_t last_ptid;
8118
8119 get_last_target_status (&last_ptid, &last);
8120
4c2f2a79
PA
8121 new_stop_id ();
8122
29f49a6a
PA
8123 /* If an exception is thrown from this point on, make sure to
8124 propagate GDB's knowledge of the executing state to the
8125 frontend/user running state. A QUIT is an easy exception to see
8126 here, so do this before any filtered output. */
731f534f
PA
8127
8128 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8129
c35b1492 8130 if (!non_stop)
731f534f 8131 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8132 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8133 || last.kind == TARGET_WAITKIND_EXITED)
8134 {
8135 /* On some targets, we may still have live threads in the
8136 inferior when we get a process exit event. E.g., for
8137 "checkpoint", when the current checkpoint/fork exits,
8138 linux-fork.c automatically switches to another fork from
8139 within target_mourn_inferior. */
731f534f
PA
8140 if (inferior_ptid != null_ptid)
8141 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8142 }
8143 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8144 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8145
b57bacec
PA
8146 /* As we're presenting a stop, and potentially removing breakpoints,
8147 update the thread list so we can tell whether there are threads
8148 running on the target. With target remote, for example, we can
8149 only learn about new threads when we explicitly update the thread
8150 list. Do this before notifying the interpreters about signal
8151 stops, end of stepping ranges, etc., so that the "new thread"
8152 output is emitted before e.g., "Program received signal FOO",
8153 instead of after. */
8154 update_thread_list ();
8155
8156 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8157 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8158
c906108c
SS
8159 /* As with the notification of thread events, we want to delay
8160 notifying the user that we've switched thread context until
8161 the inferior actually stops.
8162
73b65bb0
DJ
8163 There's no point in saying anything if the inferior has exited.
8164 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8165 "received a signal".
8166
8167 Also skip saying anything in non-stop mode. In that mode, as we
8168 don't want GDB to switch threads behind the user's back, to avoid
8169 races where the user is typing a command to apply to thread x,
8170 but GDB switches to thread y before the user finishes entering
8171 the command, fetch_inferior_event installs a cleanup to restore
8172 the current thread back to the thread the user had selected right
8173 after this event is handled, so we're not really switching, only
8174 informing of a stop. */
4f8d22e3 8175 if (!non_stop
731f534f 8176 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8177 && target_has_execution
8178 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8179 && last.kind != TARGET_WAITKIND_EXITED
8180 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8181 {
0e454242 8182 SWITCH_THRU_ALL_UIS ()
3b12939d 8183 {
223ffa71 8184 target_terminal::ours_for_output ();
3b12939d
PA
8185 printf_filtered (_("[Switching to %s]\n"),
8186 target_pid_to_str (inferior_ptid));
8187 annotate_thread_changed ();
8188 }
39f77062 8189 previous_inferior_ptid = inferior_ptid;
c906108c 8190 }
c906108c 8191
0e5bf2a8
PA
8192 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8193 {
0e454242 8194 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8195 if (current_ui->prompt_state == PROMPT_BLOCKED)
8196 {
223ffa71 8197 target_terminal::ours_for_output ();
3b12939d
PA
8198 printf_filtered (_("No unwaited-for children left.\n"));
8199 }
0e5bf2a8
PA
8200 }
8201
b57bacec 8202 /* Note: this depends on the update_thread_list call above. */
388a7084 8203 maybe_remove_breakpoints ();
c906108c 8204
c906108c
SS
8205 /* If an auto-display called a function and that got a signal,
8206 delete that auto-display to avoid an infinite recursion. */
8207
8208 if (stopped_by_random_signal)
8209 disable_current_display ();
8210
0e454242 8211 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8212 {
8213 async_enable_stdin ();
8214 }
c906108c 8215
388a7084 8216 /* Let the user/frontend see the threads as stopped. */
731f534f 8217 maybe_finish_thread_state.reset ();
388a7084
PA
8218
8219 /* Select innermost stack frame - i.e., current frame is frame 0,
8220 and current location is based on that. Handle the case where the
8221 dummy call is returning after being stopped. E.g. the dummy call
8222 previously hit a breakpoint. (If the dummy call returns
8223 normally, we won't reach here.) Do this before the stop hook is
8224 run, so that it doesn't get to see the temporary dummy frame,
8225 which is not where we'll present the stop. */
8226 if (has_stack_frames ())
8227 {
8228 if (stop_stack_dummy == STOP_STACK_DUMMY)
8229 {
8230 /* Pop the empty frame that contains the stack dummy. This
8231 also restores inferior state prior to the call (struct
8232 infcall_suspend_state). */
8233 struct frame_info *frame = get_current_frame ();
8234
8235 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8236 frame_pop (frame);
8237 /* frame_pop calls reinit_frame_cache as the last thing it
8238 does which means there's now no selected frame. */
8239 }
8240
8241 select_frame (get_current_frame ());
8242
8243 /* Set the current source location. */
8244 set_current_sal_from_frame (get_current_frame ());
8245 }
dd7e2d2b
PA
8246
8247 /* Look up the hook_stop and run it (CLI internally handles problem
8248 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8249 if (stop_command != NULL)
8250 {
2d844eaf 8251 stop_context saved_context;
4c2f2a79 8252
bf469271
PA
8253 TRY
8254 {
8255 execute_cmd_pre_hook (stop_command);
8256 }
8257 CATCH (ex, RETURN_MASK_ALL)
8258 {
8259 exception_fprintf (gdb_stderr, ex,
8260 "Error while running hook_stop:\n");
8261 }
8262 END_CATCH
4c2f2a79
PA
8263
8264 /* If the stop hook resumes the target, then there's no point in
8265 trying to notify about the previous stop; its context is
8266 gone. Likewise if the command switches thread or inferior --
8267 the observers would print a stop for the wrong
8268 thread/inferior. */
2d844eaf
TT
8269 if (saved_context.changed ())
8270 return 1;
4c2f2a79 8271 }
dd7e2d2b 8272
388a7084
PA
8273 /* Notify observers about the stop. This is where the interpreters
8274 print the stop event. */
d7e15655 8275 if (inferior_ptid != null_ptid)
76727919 8276 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8277 stop_print_frame);
8278 else
76727919 8279 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8280
243a9253
PA
8281 annotate_stopped ();
8282
48844aa6
PA
8283 if (target_has_execution)
8284 {
8285 if (last.kind != TARGET_WAITKIND_SIGNALLED
8286 && last.kind != TARGET_WAITKIND_EXITED)
8287 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8288 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8289 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8290 }
6c95b8df
PA
8291
8292 /* Try to get rid of automatically added inferiors that are no
8293 longer needed. Keeping those around slows down things linearly.
8294 Note that this never removes the current inferior. */
8295 prune_inferiors ();
4c2f2a79
PA
8296
8297 return 0;
c906108c 8298}
c906108c 8299\f
c5aa993b 8300int
96baa820 8301signal_stop_state (int signo)
c906108c 8302{
d6b48e9c 8303 return signal_stop[signo];
c906108c
SS
8304}
8305
c5aa993b 8306int
96baa820 8307signal_print_state (int signo)
c906108c
SS
8308{
8309 return signal_print[signo];
8310}
8311
c5aa993b 8312int
96baa820 8313signal_pass_state (int signo)
c906108c
SS
8314{
8315 return signal_program[signo];
8316}
8317
2455069d
UW
8318static void
8319signal_cache_update (int signo)
8320{
8321 if (signo == -1)
8322 {
a493e3e2 8323 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8324 signal_cache_update (signo);
8325
8326 return;
8327 }
8328
8329 signal_pass[signo] = (signal_stop[signo] == 0
8330 && signal_print[signo] == 0
ab04a2af
TT
8331 && signal_program[signo] == 1
8332 && signal_catch[signo] == 0);
2455069d
UW
8333}
8334
488f131b 8335int
7bda5e4a 8336signal_stop_update (int signo, int state)
d4f3574e
SS
8337{
8338 int ret = signal_stop[signo];
abbb1732 8339
d4f3574e 8340 signal_stop[signo] = state;
2455069d 8341 signal_cache_update (signo);
d4f3574e
SS
8342 return ret;
8343}
8344
488f131b 8345int
7bda5e4a 8346signal_print_update (int signo, int state)
d4f3574e
SS
8347{
8348 int ret = signal_print[signo];
abbb1732 8349
d4f3574e 8350 signal_print[signo] = state;
2455069d 8351 signal_cache_update (signo);
d4f3574e
SS
8352 return ret;
8353}
8354
488f131b 8355int
7bda5e4a 8356signal_pass_update (int signo, int state)
d4f3574e
SS
8357{
8358 int ret = signal_program[signo];
abbb1732 8359
d4f3574e 8360 signal_program[signo] = state;
2455069d 8361 signal_cache_update (signo);
d4f3574e
SS
8362 return ret;
8363}
8364
ab04a2af
TT
8365/* Update the global 'signal_catch' from INFO and notify the
8366 target. */
8367
8368void
8369signal_catch_update (const unsigned int *info)
8370{
8371 int i;
8372
8373 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8374 signal_catch[i] = info[i] > 0;
8375 signal_cache_update (-1);
8376 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8377}
8378
c906108c 8379static void
96baa820 8380sig_print_header (void)
c906108c 8381{
3e43a32a
MS
8382 printf_filtered (_("Signal Stop\tPrint\tPass "
8383 "to program\tDescription\n"));
c906108c
SS
8384}
8385
8386static void
2ea28649 8387sig_print_info (enum gdb_signal oursig)
c906108c 8388{
2ea28649 8389 const char *name = gdb_signal_to_name (oursig);
c906108c 8390 int name_padding = 13 - strlen (name);
96baa820 8391
c906108c
SS
8392 if (name_padding <= 0)
8393 name_padding = 0;
8394
8395 printf_filtered ("%s", name);
488f131b 8396 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8397 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8398 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8399 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8400 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8401}
8402
8403/* Specify how various signals in the inferior should be handled. */
8404
8405static void
0b39b52e 8406handle_command (const char *args, int from_tty)
c906108c 8407{
c906108c 8408 int digits, wordlen;
b926417a 8409 int sigfirst, siglast;
2ea28649 8410 enum gdb_signal oursig;
c906108c
SS
8411 int allsigs;
8412 int nsigs;
8413 unsigned char *sigs;
c906108c
SS
8414
8415 if (args == NULL)
8416 {
e2e0b3e5 8417 error_no_arg (_("signal to handle"));
c906108c
SS
8418 }
8419
1777feb0 8420 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8421
a493e3e2 8422 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8423 sigs = (unsigned char *) alloca (nsigs);
8424 memset (sigs, 0, nsigs);
8425
1777feb0 8426 /* Break the command line up into args. */
c906108c 8427
773a1edc 8428 gdb_argv built_argv (args);
c906108c
SS
8429
8430 /* Walk through the args, looking for signal oursigs, signal names, and
8431 actions. Signal numbers and signal names may be interspersed with
8432 actions, with the actions being performed for all signals cumulatively
1777feb0 8433 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8434
773a1edc 8435 for (char *arg : built_argv)
c906108c 8436 {
773a1edc
TT
8437 wordlen = strlen (arg);
8438 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8439 {;
8440 }
8441 allsigs = 0;
8442 sigfirst = siglast = -1;
8443
773a1edc 8444 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8445 {
8446 /* Apply action to all signals except those used by the
1777feb0 8447 debugger. Silently skip those. */
c906108c
SS
8448 allsigs = 1;
8449 sigfirst = 0;
8450 siglast = nsigs - 1;
8451 }
773a1edc 8452 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8453 {
8454 SET_SIGS (nsigs, sigs, signal_stop);
8455 SET_SIGS (nsigs, sigs, signal_print);
8456 }
773a1edc 8457 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8458 {
8459 UNSET_SIGS (nsigs, sigs, signal_program);
8460 }
773a1edc 8461 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8462 {
8463 SET_SIGS (nsigs, sigs, signal_print);
8464 }
773a1edc 8465 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8466 {
8467 SET_SIGS (nsigs, sigs, signal_program);
8468 }
773a1edc 8469 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8470 {
8471 UNSET_SIGS (nsigs, sigs, signal_stop);
8472 }
773a1edc 8473 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8474 {
8475 SET_SIGS (nsigs, sigs, signal_program);
8476 }
773a1edc 8477 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8478 {
8479 UNSET_SIGS (nsigs, sigs, signal_print);
8480 UNSET_SIGS (nsigs, sigs, signal_stop);
8481 }
773a1edc 8482 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8483 {
8484 UNSET_SIGS (nsigs, sigs, signal_program);
8485 }
8486 else if (digits > 0)
8487 {
8488 /* It is numeric. The numeric signal refers to our own
8489 internal signal numbering from target.h, not to host/target
8490 signal number. This is a feature; users really should be
8491 using symbolic names anyway, and the common ones like
8492 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8493
8494 sigfirst = siglast = (int)
773a1edc
TT
8495 gdb_signal_from_command (atoi (arg));
8496 if (arg[digits] == '-')
c906108c
SS
8497 {
8498 siglast = (int)
773a1edc 8499 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8500 }
8501 if (sigfirst > siglast)
8502 {
1777feb0 8503 /* Bet he didn't figure we'd think of this case... */
b926417a 8504 std::swap (sigfirst, siglast);
c906108c
SS
8505 }
8506 }
8507 else
8508 {
773a1edc 8509 oursig = gdb_signal_from_name (arg);
a493e3e2 8510 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8511 {
8512 sigfirst = siglast = (int) oursig;
8513 }
8514 else
8515 {
8516 /* Not a number and not a recognized flag word => complain. */
773a1edc 8517 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8518 }
8519 }
8520
8521 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8522 which signals to apply actions to. */
c906108c 8523
b926417a 8524 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8525 {
2ea28649 8526 switch ((enum gdb_signal) signum)
c906108c 8527 {
a493e3e2
PA
8528 case GDB_SIGNAL_TRAP:
8529 case GDB_SIGNAL_INT:
c906108c
SS
8530 if (!allsigs && !sigs[signum])
8531 {
9e2f0ad4 8532 if (query (_("%s is used by the debugger.\n\
3e43a32a 8533Are you sure you want to change it? "),
2ea28649 8534 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8535 {
8536 sigs[signum] = 1;
8537 }
8538 else
8539 {
a3f17187 8540 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8541 gdb_flush (gdb_stdout);
8542 }
8543 }
8544 break;
a493e3e2
PA
8545 case GDB_SIGNAL_0:
8546 case GDB_SIGNAL_DEFAULT:
8547 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8548 /* Make sure that "all" doesn't print these. */
8549 break;
8550 default:
8551 sigs[signum] = 1;
8552 break;
8553 }
8554 }
c906108c
SS
8555 }
8556
b926417a 8557 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8558 if (sigs[signum])
8559 {
2455069d 8560 signal_cache_update (-1);
a493e3e2
PA
8561 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8562 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8563
3a031f65
PA
8564 if (from_tty)
8565 {
8566 /* Show the results. */
8567 sig_print_header ();
8568 for (; signum < nsigs; signum++)
8569 if (sigs[signum])
aead7601 8570 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8571 }
8572
8573 break;
8574 }
c906108c
SS
8575}
8576
de0bea00
MF
8577/* Complete the "handle" command. */
8578
eb3ff9a5 8579static void
de0bea00 8580handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8581 completion_tracker &tracker,
6f937416 8582 const char *text, const char *word)
de0bea00 8583{
de0bea00
MF
8584 static const char * const keywords[] =
8585 {
8586 "all",
8587 "stop",
8588 "ignore",
8589 "print",
8590 "pass",
8591 "nostop",
8592 "noignore",
8593 "noprint",
8594 "nopass",
8595 NULL,
8596 };
8597
eb3ff9a5
PA
8598 signal_completer (ignore, tracker, text, word);
8599 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8600}
8601
2ea28649
PA
8602enum gdb_signal
8603gdb_signal_from_command (int num)
ed01b82c
PA
8604{
8605 if (num >= 1 && num <= 15)
2ea28649 8606 return (enum gdb_signal) num;
ed01b82c
PA
8607 error (_("Only signals 1-15 are valid as numeric signals.\n\
8608Use \"info signals\" for a list of symbolic signals."));
8609}
8610
c906108c
SS
8611/* Print current contents of the tables set by the handle command.
8612 It is possible we should just be printing signals actually used
8613 by the current target (but for things to work right when switching
8614 targets, all signals should be in the signal tables). */
8615
8616static void
1d12d88f 8617info_signals_command (const char *signum_exp, int from_tty)
c906108c 8618{
2ea28649 8619 enum gdb_signal oursig;
abbb1732 8620
c906108c
SS
8621 sig_print_header ();
8622
8623 if (signum_exp)
8624 {
8625 /* First see if this is a symbol name. */
2ea28649 8626 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8627 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8628 {
8629 /* No, try numeric. */
8630 oursig =
2ea28649 8631 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8632 }
8633 sig_print_info (oursig);
8634 return;
8635 }
8636
8637 printf_filtered ("\n");
8638 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8639 for (oursig = GDB_SIGNAL_FIRST;
8640 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8641 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8642 {
8643 QUIT;
8644
a493e3e2
PA
8645 if (oursig != GDB_SIGNAL_UNKNOWN
8646 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8647 sig_print_info (oursig);
8648 }
8649
3e43a32a
MS
8650 printf_filtered (_("\nUse the \"handle\" command "
8651 "to change these tables.\n"));
c906108c 8652}
4aa995e1
PA
8653
8654/* The $_siginfo convenience variable is a bit special. We don't know
8655 for sure the type of the value until we actually have a chance to
7a9dd1b2 8656 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8657 also dependent on which thread you have selected.
8658
8659 1. making $_siginfo be an internalvar that creates a new value on
8660 access.
8661
8662 2. making the value of $_siginfo be an lval_computed value. */
8663
8664/* This function implements the lval_computed support for reading a
8665 $_siginfo value. */
8666
8667static void
8668siginfo_value_read (struct value *v)
8669{
8670 LONGEST transferred;
8671
a911d87a
PA
8672 /* If we can access registers, so can we access $_siginfo. Likewise
8673 vice versa. */
8674 validate_registers_access ();
c709acd1 8675
4aa995e1 8676 transferred =
8b88a78e 8677 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8678 NULL,
8679 value_contents_all_raw (v),
8680 value_offset (v),
8681 TYPE_LENGTH (value_type (v)));
8682
8683 if (transferred != TYPE_LENGTH (value_type (v)))
8684 error (_("Unable to read siginfo"));
8685}
8686
8687/* This function implements the lval_computed support for writing a
8688 $_siginfo value. */
8689
8690static void
8691siginfo_value_write (struct value *v, struct value *fromval)
8692{
8693 LONGEST transferred;
8694
a911d87a
PA
8695 /* If we can access registers, so can we access $_siginfo. Likewise
8696 vice versa. */
8697 validate_registers_access ();
c709acd1 8698
8b88a78e 8699 transferred = target_write (current_top_target (),
4aa995e1
PA
8700 TARGET_OBJECT_SIGNAL_INFO,
8701 NULL,
8702 value_contents_all_raw (fromval),
8703 value_offset (v),
8704 TYPE_LENGTH (value_type (fromval)));
8705
8706 if (transferred != TYPE_LENGTH (value_type (fromval)))
8707 error (_("Unable to write siginfo"));
8708}
8709
c8f2448a 8710static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8711 {
8712 siginfo_value_read,
8713 siginfo_value_write
8714 };
8715
8716/* Return a new value with the correct type for the siginfo object of
78267919
UW
8717 the current thread using architecture GDBARCH. Return a void value
8718 if there's no object available. */
4aa995e1 8719
2c0b251b 8720static struct value *
22d2b532
SDJ
8721siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8722 void *ignore)
4aa995e1 8723{
4aa995e1 8724 if (target_has_stack
d7e15655 8725 && inferior_ptid != null_ptid
78267919 8726 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8727 {
78267919 8728 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8729
78267919 8730 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8731 }
8732
78267919 8733 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8734}
8735
c906108c 8736\f
16c381f0
JK
8737/* infcall_suspend_state contains state about the program itself like its
8738 registers and any signal it received when it last stopped.
8739 This state must be restored regardless of how the inferior function call
8740 ends (either successfully, or after it hits a breakpoint or signal)
8741 if the program is to properly continue where it left off. */
8742
6bf78e29 8743class infcall_suspend_state
7a292a7a 8744{
6bf78e29
AB
8745public:
8746 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8747 once the inferior function call has finished. */
8748 infcall_suspend_state (struct gdbarch *gdbarch,
8749 const struct thread_info *tp,
8750 struct regcache *regcache)
8751 : m_thread_suspend (tp->suspend),
8752 m_registers (new readonly_detached_regcache (*regcache))
8753 {
8754 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8755
8756 if (gdbarch_get_siginfo_type_p (gdbarch))
8757 {
8758 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8759 size_t len = TYPE_LENGTH (type);
8760
8761 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8762
8763 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8764 siginfo_data.get (), 0, len) != len)
8765 {
8766 /* Errors ignored. */
8767 siginfo_data.reset (nullptr);
8768 }
8769 }
8770
8771 if (siginfo_data)
8772 {
8773 m_siginfo_gdbarch = gdbarch;
8774 m_siginfo_data = std::move (siginfo_data);
8775 }
8776 }
8777
8778 /* Return a pointer to the stored register state. */
16c381f0 8779
6bf78e29
AB
8780 readonly_detached_regcache *registers () const
8781 {
8782 return m_registers.get ();
8783 }
8784
8785 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8786
8787 void restore (struct gdbarch *gdbarch,
8788 struct thread_info *tp,
8789 struct regcache *regcache) const
8790 {
8791 tp->suspend = m_thread_suspend;
8792
8793 if (m_siginfo_gdbarch == gdbarch)
8794 {
8795 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8796
8797 /* Errors ignored. */
8798 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8799 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8800 }
8801
8802 /* The inferior can be gone if the user types "print exit(0)"
8803 (and perhaps other times). */
8804 if (target_has_execution)
8805 /* NB: The register write goes through to the target. */
8806 regcache->restore (registers ());
8807 }
8808
8809private:
8810 /* How the current thread stopped before the inferior function call was
8811 executed. */
8812 struct thread_suspend_state m_thread_suspend;
8813
8814 /* The registers before the inferior function call was executed. */
8815 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8816
35515841 8817 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8818 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8819
8820 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8821 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8822 content would be invalid. */
6bf78e29 8823 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8824};
8825
cb524840
TT
8826infcall_suspend_state_up
8827save_infcall_suspend_state ()
b89667eb 8828{
b89667eb 8829 struct thread_info *tp = inferior_thread ();
1736ad11 8830 struct regcache *regcache = get_current_regcache ();
ac7936df 8831 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8832
6bf78e29
AB
8833 infcall_suspend_state_up inf_state
8834 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8835
6bf78e29
AB
8836 /* Having saved the current state, adjust the thread state, discarding
8837 any stop signal information. The stop signal is not useful when
8838 starting an inferior function call, and run_inferior_call will not use
8839 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8840 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8841
b89667eb
DE
8842 return inf_state;
8843}
8844
8845/* Restore inferior session state to INF_STATE. */
8846
8847void
16c381f0 8848restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8849{
8850 struct thread_info *tp = inferior_thread ();
1736ad11 8851 struct regcache *regcache = get_current_regcache ();
ac7936df 8852 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8853
6bf78e29 8854 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8855 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8856}
8857
b89667eb 8858void
16c381f0 8859discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8860{
dd848631 8861 delete inf_state;
b89667eb
DE
8862}
8863
daf6667d 8864readonly_detached_regcache *
16c381f0 8865get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8866{
6bf78e29 8867 return inf_state->registers ();
b89667eb
DE
8868}
8869
16c381f0
JK
8870/* infcall_control_state contains state regarding gdb's control of the
8871 inferior itself like stepping control. It also contains session state like
8872 the user's currently selected frame. */
b89667eb 8873
16c381f0 8874struct infcall_control_state
b89667eb 8875{
16c381f0
JK
8876 struct thread_control_state thread_control;
8877 struct inferior_control_state inferior_control;
d82142e2
JK
8878
8879 /* Other fields: */
ee841dd8
TT
8880 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8881 int stopped_by_random_signal = 0;
7a292a7a 8882
b89667eb 8883 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8884 struct frame_id selected_frame_id {};
7a292a7a
SS
8885};
8886
c906108c 8887/* Save all of the information associated with the inferior<==>gdb
b89667eb 8888 connection. */
c906108c 8889
cb524840
TT
8890infcall_control_state_up
8891save_infcall_control_state ()
c906108c 8892{
cb524840 8893 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8894 struct thread_info *tp = inferior_thread ();
d6b48e9c 8895 struct inferior *inf = current_inferior ();
7a292a7a 8896
16c381f0
JK
8897 inf_status->thread_control = tp->control;
8898 inf_status->inferior_control = inf->control;
d82142e2 8899
8358c15c 8900 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8901 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8902
16c381f0
JK
8903 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8904 chain. If caller's caller is walking the chain, they'll be happier if we
8905 hand them back the original chain when restore_infcall_control_state is
8906 called. */
8907 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8908
8909 /* Other fields: */
8910 inf_status->stop_stack_dummy = stop_stack_dummy;
8911 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8912
206415a3 8913 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8914
7a292a7a 8915 return inf_status;
c906108c
SS
8916}
8917
bf469271
PA
8918static void
8919restore_selected_frame (const frame_id &fid)
c906108c 8920{
bf469271 8921 frame_info *frame = frame_find_by_id (fid);
c906108c 8922
aa0cd9c1
AC
8923 /* If inf_status->selected_frame_id is NULL, there was no previously
8924 selected frame. */
101dcfbe 8925 if (frame == NULL)
c906108c 8926 {
8a3fe4f8 8927 warning (_("Unable to restore previously selected frame."));
bf469271 8928 return;
c906108c
SS
8929 }
8930
0f7d239c 8931 select_frame (frame);
c906108c
SS
8932}
8933
b89667eb
DE
8934/* Restore inferior session state to INF_STATUS. */
8935
c906108c 8936void
16c381f0 8937restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8938{
4e1c45ea 8939 struct thread_info *tp = inferior_thread ();
d6b48e9c 8940 struct inferior *inf = current_inferior ();
4e1c45ea 8941
8358c15c
JK
8942 if (tp->control.step_resume_breakpoint)
8943 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8944
5b79abe7
TT
8945 if (tp->control.exception_resume_breakpoint)
8946 tp->control.exception_resume_breakpoint->disposition
8947 = disp_del_at_next_stop;
8948
d82142e2 8949 /* Handle the bpstat_copy of the chain. */
16c381f0 8950 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8951
16c381f0
JK
8952 tp->control = inf_status->thread_control;
8953 inf->control = inf_status->inferior_control;
d82142e2
JK
8954
8955 /* Other fields: */
8956 stop_stack_dummy = inf_status->stop_stack_dummy;
8957 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8958
b89667eb 8959 if (target_has_stack)
c906108c 8960 {
bf469271 8961 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8962 walking the stack might encounter a garbage pointer and
8963 error() trying to dereference it. */
bf469271
PA
8964 TRY
8965 {
8966 restore_selected_frame (inf_status->selected_frame_id);
8967 }
8968 CATCH (ex, RETURN_MASK_ERROR)
8969 {
8970 exception_fprintf (gdb_stderr, ex,
8971 "Unable to restore previously selected frame:\n");
8972 /* Error in restoring the selected frame. Select the
8973 innermost frame. */
8974 select_frame (get_current_frame ());
8975 }
8976 END_CATCH
c906108c 8977 }
c906108c 8978
ee841dd8 8979 delete inf_status;
7a292a7a 8980}
c906108c
SS
8981
8982void
16c381f0 8983discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8984{
8358c15c
JK
8985 if (inf_status->thread_control.step_resume_breakpoint)
8986 inf_status->thread_control.step_resume_breakpoint->disposition
8987 = disp_del_at_next_stop;
8988
5b79abe7
TT
8989 if (inf_status->thread_control.exception_resume_breakpoint)
8990 inf_status->thread_control.exception_resume_breakpoint->disposition
8991 = disp_del_at_next_stop;
8992
1777feb0 8993 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8994 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8995
ee841dd8 8996 delete inf_status;
7a292a7a 8997}
b89667eb 8998\f
7f89fd65 8999/* See infrun.h. */
0c557179
SDJ
9000
9001void
9002clear_exit_convenience_vars (void)
9003{
9004 clear_internalvar (lookup_internalvar ("_exitsignal"));
9005 clear_internalvar (lookup_internalvar ("_exitcode"));
9006}
c5aa993b 9007\f
488f131b 9008
b2175913
MS
9009/* User interface for reverse debugging:
9010 Set exec-direction / show exec-direction commands
9011 (returns error unless target implements to_set_exec_direction method). */
9012
170742de 9013enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9014static const char exec_forward[] = "forward";
9015static const char exec_reverse[] = "reverse";
9016static const char *exec_direction = exec_forward;
40478521 9017static const char *const exec_direction_names[] = {
b2175913
MS
9018 exec_forward,
9019 exec_reverse,
9020 NULL
9021};
9022
9023static void
eb4c3f4a 9024set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9025 struct cmd_list_element *cmd)
9026{
9027 if (target_can_execute_reverse)
9028 {
9029 if (!strcmp (exec_direction, exec_forward))
9030 execution_direction = EXEC_FORWARD;
9031 else if (!strcmp (exec_direction, exec_reverse))
9032 execution_direction = EXEC_REVERSE;
9033 }
8bbed405
MS
9034 else
9035 {
9036 exec_direction = exec_forward;
9037 error (_("Target does not support this operation."));
9038 }
b2175913
MS
9039}
9040
9041static void
9042show_exec_direction_func (struct ui_file *out, int from_tty,
9043 struct cmd_list_element *cmd, const char *value)
9044{
9045 switch (execution_direction) {
9046 case EXEC_FORWARD:
9047 fprintf_filtered (out, _("Forward.\n"));
9048 break;
9049 case EXEC_REVERSE:
9050 fprintf_filtered (out, _("Reverse.\n"));
9051 break;
b2175913 9052 default:
d8b34453
PA
9053 internal_error (__FILE__, __LINE__,
9054 _("bogus execution_direction value: %d"),
9055 (int) execution_direction);
b2175913
MS
9056 }
9057}
9058
d4db2f36
PA
9059static void
9060show_schedule_multiple (struct ui_file *file, int from_tty,
9061 struct cmd_list_element *c, const char *value)
9062{
3e43a32a
MS
9063 fprintf_filtered (file, _("Resuming the execution of threads "
9064 "of all processes is %s.\n"), value);
d4db2f36 9065}
ad52ddc6 9066
22d2b532
SDJ
9067/* Implementation of `siginfo' variable. */
9068
9069static const struct internalvar_funcs siginfo_funcs =
9070{
9071 siginfo_make_value,
9072 NULL,
9073 NULL
9074};
9075
372316f1
PA
9076/* Callback for infrun's target events source. This is marked when a
9077 thread has a pending status to process. */
9078
9079static void
9080infrun_async_inferior_event_handler (gdb_client_data data)
9081{
372316f1
PA
9082 inferior_event_handler (INF_REG_EVENT, NULL);
9083}
9084
c906108c 9085void
96baa820 9086_initialize_infrun (void)
c906108c 9087{
52f0bd74
AC
9088 int i;
9089 int numsigs;
de0bea00 9090 struct cmd_list_element *c;
c906108c 9091
372316f1
PA
9092 /* Register extra event sources in the event loop. */
9093 infrun_async_inferior_event_token
9094 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9095
11db9430 9096 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9097What debugger does when program gets various signals.\n\
9098Specify a signal as argument to print info on that signal only."));
c906108c
SS
9099 add_info_alias ("handle", "signals", 0);
9100
de0bea00 9101 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9102Specify how to handle signals.\n\
486c7739 9103Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9104Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9105If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9106will be displayed instead.\n\
9107\n\
c906108c
SS
9108Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9109from 1-15 are allowed for compatibility with old versions of GDB.\n\
9110Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9111The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9112used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9113\n\
1bedd215 9114Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9115\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9116Stop means reenter debugger if this signal happens (implies print).\n\
9117Print means print a message if this signal happens.\n\
9118Pass means let program see this signal; otherwise program doesn't know.\n\
9119Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9120Pass and Stop may be combined.\n\
9121\n\
9122Multiple signals may be specified. Signal numbers and signal names\n\
9123may be interspersed with actions, with the actions being performed for\n\
9124all signals cumulatively specified."));
de0bea00 9125 set_cmd_completer (c, handle_completer);
486c7739 9126
c906108c 9127 if (!dbx_commands)
1a966eab
AC
9128 stop_command = add_cmd ("stop", class_obscure,
9129 not_just_help_class_command, _("\
9130There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9131This allows you to set a list of commands to be run each time execution\n\
1a966eab 9132of the program stops."), &cmdlist);
c906108c 9133
ccce17b0 9134 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9135Set inferior debugging."), _("\
9136Show inferior debugging."), _("\
9137When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9138 NULL,
9139 show_debug_infrun,
9140 &setdebuglist, &showdebuglist);
527159b7 9141
3e43a32a
MS
9142 add_setshow_boolean_cmd ("displaced", class_maintenance,
9143 &debug_displaced, _("\
237fc4c9
PA
9144Set displaced stepping debugging."), _("\
9145Show displaced stepping debugging."), _("\
9146When non-zero, displaced stepping specific debugging is enabled."),
9147 NULL,
9148 show_debug_displaced,
9149 &setdebuglist, &showdebuglist);
9150
ad52ddc6
PA
9151 add_setshow_boolean_cmd ("non-stop", no_class,
9152 &non_stop_1, _("\
9153Set whether gdb controls the inferior in non-stop mode."), _("\
9154Show whether gdb controls the inferior in non-stop mode."), _("\
9155When debugging a multi-threaded program and this setting is\n\
9156off (the default, also called all-stop mode), when one thread stops\n\
9157(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9158all other threads in the program while you interact with the thread of\n\
9159interest. When you continue or step a thread, you can allow the other\n\
9160threads to run, or have them remain stopped, but while you inspect any\n\
9161thread's state, all threads stop.\n\
9162\n\
9163In non-stop mode, when one thread stops, other threads can continue\n\
9164to run freely. You'll be able to step each thread independently,\n\
9165leave it stopped or free to run as needed."),
9166 set_non_stop,
9167 show_non_stop,
9168 &setlist,
9169 &showlist);
9170
a493e3e2 9171 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9172 signal_stop = XNEWVEC (unsigned char, numsigs);
9173 signal_print = XNEWVEC (unsigned char, numsigs);
9174 signal_program = XNEWVEC (unsigned char, numsigs);
9175 signal_catch = XNEWVEC (unsigned char, numsigs);
9176 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9177 for (i = 0; i < numsigs; i++)
9178 {
9179 signal_stop[i] = 1;
9180 signal_print[i] = 1;
9181 signal_program[i] = 1;
ab04a2af 9182 signal_catch[i] = 0;
c906108c
SS
9183 }
9184
4d9d9d04
PA
9185 /* Signals caused by debugger's own actions should not be given to
9186 the program afterwards.
9187
9188 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9189 explicitly specifies that it should be delivered to the target
9190 program. Typically, that would occur when a user is debugging a
9191 target monitor on a simulator: the target monitor sets a
9192 breakpoint; the simulator encounters this breakpoint and halts
9193 the simulation handing control to GDB; GDB, noting that the stop
9194 address doesn't map to any known breakpoint, returns control back
9195 to the simulator; the simulator then delivers the hardware
9196 equivalent of a GDB_SIGNAL_TRAP to the program being
9197 debugged. */
a493e3e2
PA
9198 signal_program[GDB_SIGNAL_TRAP] = 0;
9199 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9200
9201 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9202 signal_stop[GDB_SIGNAL_ALRM] = 0;
9203 signal_print[GDB_SIGNAL_ALRM] = 0;
9204 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9205 signal_print[GDB_SIGNAL_VTALRM] = 0;
9206 signal_stop[GDB_SIGNAL_PROF] = 0;
9207 signal_print[GDB_SIGNAL_PROF] = 0;
9208 signal_stop[GDB_SIGNAL_CHLD] = 0;
9209 signal_print[GDB_SIGNAL_CHLD] = 0;
9210 signal_stop[GDB_SIGNAL_IO] = 0;
9211 signal_print[GDB_SIGNAL_IO] = 0;
9212 signal_stop[GDB_SIGNAL_POLL] = 0;
9213 signal_print[GDB_SIGNAL_POLL] = 0;
9214 signal_stop[GDB_SIGNAL_URG] = 0;
9215 signal_print[GDB_SIGNAL_URG] = 0;
9216 signal_stop[GDB_SIGNAL_WINCH] = 0;
9217 signal_print[GDB_SIGNAL_WINCH] = 0;
9218 signal_stop[GDB_SIGNAL_PRIO] = 0;
9219 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9220
cd0fc7c3
SS
9221 /* These signals are used internally by user-level thread
9222 implementations. (See signal(5) on Solaris.) Like the above
9223 signals, a healthy program receives and handles them as part of
9224 its normal operation. */
a493e3e2
PA
9225 signal_stop[GDB_SIGNAL_LWP] = 0;
9226 signal_print[GDB_SIGNAL_LWP] = 0;
9227 signal_stop[GDB_SIGNAL_WAITING] = 0;
9228 signal_print[GDB_SIGNAL_WAITING] = 0;
9229 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9230 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9231 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9232 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9233
2455069d
UW
9234 /* Update cached state. */
9235 signal_cache_update (-1);
9236
85c07804
AC
9237 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9238 &stop_on_solib_events, _("\
9239Set stopping for shared library events."), _("\
9240Show stopping for shared library events."), _("\
c906108c
SS
9241If nonzero, gdb will give control to the user when the dynamic linker\n\
9242notifies gdb of shared library events. The most common event of interest\n\
85c07804 9243to the user would be loading/unloading of a new library."),
f9e14852 9244 set_stop_on_solib_events,
920d2a44 9245 show_stop_on_solib_events,
85c07804 9246 &setlist, &showlist);
c906108c 9247
7ab04401
AC
9248 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9249 follow_fork_mode_kind_names,
9250 &follow_fork_mode_string, _("\
9251Set debugger response to a program call of fork or vfork."), _("\
9252Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9253A fork or vfork creates a new process. follow-fork-mode can be:\n\
9254 parent - the original process is debugged after a fork\n\
9255 child - the new process is debugged after a fork\n\
ea1dd7bc 9256The unfollowed process will continue to run.\n\
7ab04401
AC
9257By default, the debugger will follow the parent process."),
9258 NULL,
920d2a44 9259 show_follow_fork_mode_string,
7ab04401
AC
9260 &setlist, &showlist);
9261
6c95b8df
PA
9262 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9263 follow_exec_mode_names,
9264 &follow_exec_mode_string, _("\
9265Set debugger response to a program call of exec."), _("\
9266Show debugger response to a program call of exec."), _("\
9267An exec call replaces the program image of a process.\n\
9268\n\
9269follow-exec-mode can be:\n\
9270\n\
cce7e648 9271 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9272to this new inferior. The program the process was running before\n\
9273the exec call can be restarted afterwards by restarting the original\n\
9274inferior.\n\
9275\n\
9276 same - the debugger keeps the process bound to the same inferior.\n\
9277The new executable image replaces the previous executable loaded in\n\
9278the inferior. Restarting the inferior after the exec call restarts\n\
9279the executable the process was running after the exec call.\n\
9280\n\
9281By default, the debugger will use the same inferior."),
9282 NULL,
9283 show_follow_exec_mode_string,
9284 &setlist, &showlist);
9285
7ab04401
AC
9286 add_setshow_enum_cmd ("scheduler-locking", class_run,
9287 scheduler_enums, &scheduler_mode, _("\
9288Set mode for locking scheduler during execution."), _("\
9289Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9290off == no locking (threads may preempt at any time)\n\
9291on == full locking (no thread except the current thread may run)\n\
9292 This applies to both normal execution and replay mode.\n\
9293step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9294 In this mode, other threads may run during other commands.\n\
9295 This applies to both normal execution and replay mode.\n\
9296replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9297 set_schedlock_func, /* traps on target vector */
920d2a44 9298 show_scheduler_mode,
7ab04401 9299 &setlist, &showlist);
5fbbeb29 9300
d4db2f36
PA
9301 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9302Set mode for resuming threads of all processes."), _("\
9303Show mode for resuming threads of all processes."), _("\
9304When on, execution commands (such as 'continue' or 'next') resume all\n\
9305threads of all processes. When off (which is the default), execution\n\
9306commands only resume the threads of the current process. The set of\n\
9307threads that are resumed is further refined by the scheduler-locking\n\
9308mode (see help set scheduler-locking)."),
9309 NULL,
9310 show_schedule_multiple,
9311 &setlist, &showlist);
9312
5bf193a2
AC
9313 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9314Set mode of the step operation."), _("\
9315Show mode of the step operation."), _("\
9316When set, doing a step over a function without debug line information\n\
9317will stop at the first instruction of that function. Otherwise, the\n\
9318function is skipped and the step command stops at a different source line."),
9319 NULL,
920d2a44 9320 show_step_stop_if_no_debug,
5bf193a2 9321 &setlist, &showlist);
ca6724c1 9322
72d0e2c5
YQ
9323 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9324 &can_use_displaced_stepping, _("\
237fc4c9
PA
9325Set debugger's willingness to use displaced stepping."), _("\
9326Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9327If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9328supported by the target architecture. If off, gdb will not use displaced\n\
9329stepping to step over breakpoints, even if such is supported by the target\n\
9330architecture. If auto (which is the default), gdb will use displaced stepping\n\
9331if the target architecture supports it and non-stop mode is active, but will not\n\
9332use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9333 NULL,
9334 show_can_use_displaced_stepping,
9335 &setlist, &showlist);
237fc4c9 9336
b2175913
MS
9337 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9338 &exec_direction, _("Set direction of execution.\n\
9339Options are 'forward' or 'reverse'."),
9340 _("Show direction of execution (forward/reverse)."),
9341 _("Tells gdb whether to execute forward or backward."),
9342 set_exec_direction_func, show_exec_direction_func,
9343 &setlist, &showlist);
9344
6c95b8df
PA
9345 /* Set/show detach-on-fork: user-settable mode. */
9346
9347 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9348Set whether gdb will detach the child of a fork."), _("\
9349Show whether gdb will detach the child of a fork."), _("\
9350Tells gdb whether to detach the child of a fork."),
9351 NULL, NULL, &setlist, &showlist);
9352
03583c20
UW
9353 /* Set/show disable address space randomization mode. */
9354
9355 add_setshow_boolean_cmd ("disable-randomization", class_support,
9356 &disable_randomization, _("\
9357Set disabling of debuggee's virtual address space randomization."), _("\
9358Show disabling of debuggee's virtual address space randomization."), _("\
9359When this mode is on (which is the default), randomization of the virtual\n\
9360address space is disabled. Standalone programs run with the randomization\n\
9361enabled by default on some platforms."),
9362 &set_disable_randomization,
9363 &show_disable_randomization,
9364 &setlist, &showlist);
9365
ca6724c1 9366 /* ptid initializations */
ca6724c1
KB
9367 inferior_ptid = null_ptid;
9368 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9369
76727919
TT
9370 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9371 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9372 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9373 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9374
9375 /* Explicitly create without lookup, since that tries to create a
9376 value with a void typed value, and when we get here, gdbarch
9377 isn't initialized yet. At this point, we're quite sure there
9378 isn't another convenience variable of the same name. */
22d2b532 9379 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9380
9381 add_setshow_boolean_cmd ("observer", no_class,
9382 &observer_mode_1, _("\
9383Set whether gdb controls the inferior in observer mode."), _("\
9384Show whether gdb controls the inferior in observer mode."), _("\
9385In observer mode, GDB can get data from the inferior, but not\n\
9386affect its execution. Registers and memory may not be changed,\n\
9387breakpoints may not be set, and the program cannot be interrupted\n\
9388or signalled."),
9389 set_observer_mode,
9390 show_observer_mode,
9391 &setlist,
9392 &showlist);
c906108c 9393}
This page took 2.71909 seconds and 4 git commands to generate.