stepi/nexti: skip signal handler if "handle nostop" signal arrives
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
ecd75fc8 4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820 81
d83ad864
DB
82static int follow_fork_inferior (int follow_child, int detach_fork);
83
84static void follow_inferior_reset_breakpoints (void);
85
96baa820 86static void set_schedlock_func (char *args, int from_tty,
488f131b 87 struct cmd_list_element *c);
96baa820 88
a289b8f6
JK
89static int currently_stepping (struct thread_info *tp);
90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
93void _initialize_infrun (void);
43ff13b4 94
e58b0e63
PA
95void nullify_last_target_wait_ptid (void);
96
2c03e5be 97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
2484c66b
UW
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
5fbbeb29
CF
103/* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106int step_stop_if_no_debug = 0;
920d2a44
AC
107static void
108show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112}
5fbbeb29 113
1777feb0 114/* In asynchronous mode, but simulating synchronous execution. */
96baa820 115
43ff13b4
JM
116int sync_execution = 0;
117
b9f437de
PA
118/* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
96baa820 121
39f77062 122static ptid_t previous_inferior_ptid;
7a292a7a 123
07107ca6
LM
124/* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129static int detach_fork = 1;
6c95b8df 130
237fc4c9
PA
131int debug_displaced = 0;
132static void
133show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135{
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137}
138
ccce17b0 139unsigned int debug_infrun = 0;
920d2a44
AC
140static void
141show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145}
527159b7 146
03583c20
UW
147
148/* Support for disabling address space randomization. */
149
150int disable_randomization = 1;
151
152static void
153show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165}
166
167static void
168set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170{
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175}
176
d32dc48e
PA
177/* User interface for non-stop mode. */
178
179int non_stop = 0;
180static int non_stop_1 = 0;
181
182static void
183set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185{
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193}
194
195static void
196show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202}
203
d914c394
SS
204/* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
d914c394
SS
208int observer_mode = 0;
209static int observer_mode_1 = 0;
210
211static void
212set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214{
d914c394
SS
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
d914c394
SS
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245}
246
247static void
248show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252}
253
254/* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260void
261update_observer_mode (void)
262{
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277}
c2c6d25f 278
c906108c
SS
279/* Tables of how to react to signals; the user sets them. */
280
281static unsigned char *signal_stop;
282static unsigned char *signal_print;
283static unsigned char *signal_program;
284
ab04a2af
TT
285/* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289static unsigned char *signal_catch;
290
2455069d
UW
291/* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294static unsigned char *signal_pass;
295
c906108c
SS
296#define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304#define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
9b224c5e
PA
312/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315void
316update_signals_program_target (void)
317{
a493e3e2 318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
319}
320
1777feb0 321/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 322
edb3359d 323#define RESUME_ALL minus_one_ptid
c906108c
SS
324
325/* Command list pointer for the "stop" placeholder. */
326
327static struct cmd_list_element *stop_command;
328
c906108c
SS
329/* Function inferior was in as of last step command. */
330
331static struct symbol *step_start_function;
332
c906108c
SS
333/* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
628fe4e4 335int stop_on_solib_events;
f9e14852
GB
336
337/* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340static void
341set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342{
343 update_solib_breakpoints ();
344}
345
920d2a44
AC
346static void
347show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349{
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352}
c906108c 353
c906108c
SS
354/* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357int stop_after_trap;
358
642fd101
DE
359/* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
72cec141 364struct regcache *stop_registers;
c906108c 365
c906108c
SS
366/* Nonzero after stop if current stack frame should be printed. */
367
368static int stop_print_frame;
369
e02bc4cc 370/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
39f77062 373static ptid_t target_last_wait_ptid;
e02bc4cc
DS
374static struct target_waitstatus target_last_waitstatus;
375
0d1e5fa7
PA
376static void context_switch (ptid_t ptid);
377
4e1c45ea 378void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 379
53904c9e
AC
380static const char follow_fork_mode_child[] = "child";
381static const char follow_fork_mode_parent[] = "parent";
382
40478521 383static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
ef346e04 387};
c906108c 388
53904c9e 389static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
390static void
391show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393{
3e43a32a
MS
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
397 value);
398}
c906108c
SS
399\f
400
d83ad864
DB
401/* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407static int
408follow_fork_inferior (int follow_child, int detach_fork)
409{
410 int has_vforked;
411 int parent_pid, child_pid;
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
415 parent_pid = ptid_get_lwp (inferior_ptid);
416 if (parent_pid == 0)
417 parent_pid = ptid_get_pid (inferior_ptid);
418 child_pid
419 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && (!target_is_async_p () || sync_execution)
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 struct cleanup *old_chain;
445
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
456 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 }
458
459 if (info_verbose || debug_infrun)
460 {
6f259a23 461 target_terminal_ours_for_output ();
d83ad864 462 fprintf_filtered (gdb_stdlog,
6f259a23
DB
463 _("Detaching after %s from "
464 "child process %d.\n"),
465 has_vforked ? "vfork" : "fork",
d83ad864
DB
466 child_pid);
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472 struct cleanup *old_chain;
473
474 /* Add process to GDB's tables. */
475 child_inf = add_inferior (child_pid);
476
477 parent_inf = current_inferior ();
478 child_inf->attach_flag = parent_inf->attach_flag;
479 copy_terminal_info (child_inf, parent_inf);
480 child_inf->gdbarch = parent_inf->gdbarch;
481 copy_inferior_target_desc_info (child_inf, parent_inf);
482
483 old_chain = save_inferior_ptid ();
484 save_current_program_space ();
485
486 inferior_ptid = ptid_build (child_pid, child_pid, 0);
487 add_thread (inferior_ptid);
488 child_inf->symfile_flags = SYMFILE_NO_READ;
489
490 /* If this is a vfork child, then the address-space is
491 shared with the parent. */
492 if (has_vforked)
493 {
494 child_inf->pspace = parent_inf->pspace;
495 child_inf->aspace = parent_inf->aspace;
496
497 /* The parent will be frozen until the child is done
498 with the shared region. Keep track of the
499 parent. */
500 child_inf->vfork_parent = parent_inf;
501 child_inf->pending_detach = 0;
502 parent_inf->vfork_child = child_inf;
503 parent_inf->pending_detach = 0;
504 }
505 else
506 {
507 child_inf->aspace = new_address_space ();
508 child_inf->pspace = add_program_space (child_inf->aspace);
509 child_inf->removable = 1;
510 set_current_program_space (child_inf->pspace);
511 clone_program_space (child_inf->pspace, parent_inf->pspace);
512
513 /* Let the shared library layer (e.g., solib-svr4) learn
514 about this new process, relocate the cloned exec, pull
515 in shared libraries, and install the solib event
516 breakpoint. If a "cloned-VM" event was propagated
517 better throughout the core, this wouldn't be
518 required. */
519 solib_create_inferior_hook (0);
520 }
521
522 do_cleanups (old_chain);
523 }
524
525 if (has_vforked)
526 {
527 struct inferior *parent_inf;
528
529 parent_inf = current_inferior ();
530
531 /* If we detached from the child, then we have to be careful
532 to not insert breakpoints in the parent until the child
533 is done with the shared memory region. However, if we're
534 staying attached to the child, then we can and should
535 insert breakpoints, so that we can debug it. A
536 subsequent child exec or exit is enough to know when does
537 the child stops using the parent's address space. */
538 parent_inf->waiting_for_vfork_done = detach_fork;
539 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
540 }
541 }
542 else
543 {
544 /* Follow the child. */
545 struct inferior *parent_inf, *child_inf;
546 struct program_space *parent_pspace;
547
548 if (info_verbose || debug_infrun)
549 {
6f259a23
DB
550 target_terminal_ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("Attaching after process %d "
553 "%s to child process %d.\n"),
554 parent_pid,
555 has_vforked ? "vfork" : "fork",
556 child_pid);
d83ad864
DB
557 }
558
559 /* Add the new inferior first, so that the target_detach below
560 doesn't unpush the target. */
561
562 child_inf = add_inferior (child_pid);
563
564 parent_inf = current_inferior ();
565 child_inf->attach_flag = parent_inf->attach_flag;
566 copy_terminal_info (child_inf, parent_inf);
567 child_inf->gdbarch = parent_inf->gdbarch;
568 copy_inferior_target_desc_info (child_inf, parent_inf);
569
570 parent_pspace = parent_inf->pspace;
571
572 /* If we're vforking, we want to hold on to the parent until the
573 child exits or execs. At child exec or exit time we can
574 remove the old breakpoints from the parent and detach or
575 resume debugging it. Otherwise, detach the parent now; we'll
576 want to reuse it's program/address spaces, but we can't set
577 them to the child before removing breakpoints from the
578 parent, otherwise, the breakpoints module could decide to
579 remove breakpoints from the wrong process (since they'd be
580 assigned to the same address space). */
581
582 if (has_vforked)
583 {
584 gdb_assert (child_inf->vfork_parent == NULL);
585 gdb_assert (parent_inf->vfork_child == NULL);
586 child_inf->vfork_parent = parent_inf;
587 child_inf->pending_detach = 0;
588 parent_inf->vfork_child = child_inf;
589 parent_inf->pending_detach = detach_fork;
590 parent_inf->waiting_for_vfork_done = 0;
591 }
592 else if (detach_fork)
6f259a23
DB
593 {
594 if (info_verbose || debug_infrun)
595 {
596 target_terminal_ours_for_output ();
597 fprintf_filtered (gdb_stdlog,
598 _("Detaching after fork from "
599 "child process %d.\n"),
600 child_pid);
601 }
602
603 target_detach (NULL, 0);
604 }
d83ad864
DB
605
606 /* Note that the detach above makes PARENT_INF dangling. */
607
608 /* Add the child thread to the appropriate lists, and switch to
609 this new thread, before cloning the program space, and
610 informing the solib layer about this new process. */
611
612 inferior_ptid = ptid_build (child_pid, child_pid, 0);
613 add_thread (inferior_ptid);
614
615 /* If this is a vfork child, then the address-space is shared
616 with the parent. If we detached from the parent, then we can
617 reuse the parent's program/address spaces. */
618 if (has_vforked || detach_fork)
619 {
620 child_inf->pspace = parent_pspace;
621 child_inf->aspace = child_inf->pspace->aspace;
622 }
623 else
624 {
625 child_inf->aspace = new_address_space ();
626 child_inf->pspace = add_program_space (child_inf->aspace);
627 child_inf->removable = 1;
628 child_inf->symfile_flags = SYMFILE_NO_READ;
629 set_current_program_space (child_inf->pspace);
630 clone_program_space (child_inf->pspace, parent_pspace);
631
632 /* Let the shared library layer (e.g., solib-svr4) learn
633 about this new process, relocate the cloned exec, pull in
634 shared libraries, and install the solib event breakpoint.
635 If a "cloned-VM" event was propagated better throughout
636 the core, this wouldn't be required. */
637 solib_create_inferior_hook (0);
638 }
639 }
640
641 return target_follow_fork (follow_child, detach_fork);
642}
643
e58b0e63
PA
644/* Tell the target to follow the fork we're stopped at. Returns true
645 if the inferior should be resumed; false, if the target for some
646 reason decided it's best not to resume. */
647
6604731b 648static int
4ef3f3be 649follow_fork (void)
c906108c 650{
ea1dd7bc 651 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
652 int should_resume = 1;
653 struct thread_info *tp;
654
655 /* Copy user stepping state to the new inferior thread. FIXME: the
656 followed fork child thread should have a copy of most of the
4e3990f4
DE
657 parent thread structure's run control related fields, not just these.
658 Initialized to avoid "may be used uninitialized" warnings from gcc. */
659 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 660 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
661 CORE_ADDR step_range_start = 0;
662 CORE_ADDR step_range_end = 0;
663 struct frame_id step_frame_id = { 0 };
17b2616c 664 struct interp *command_interp = NULL;
e58b0e63
PA
665
666 if (!non_stop)
667 {
668 ptid_t wait_ptid;
669 struct target_waitstatus wait_status;
670
671 /* Get the last target status returned by target_wait(). */
672 get_last_target_status (&wait_ptid, &wait_status);
673
674 /* If not stopped at a fork event, then there's nothing else to
675 do. */
676 if (wait_status.kind != TARGET_WAITKIND_FORKED
677 && wait_status.kind != TARGET_WAITKIND_VFORKED)
678 return 1;
679
680 /* Check if we switched over from WAIT_PTID, since the event was
681 reported. */
682 if (!ptid_equal (wait_ptid, minus_one_ptid)
683 && !ptid_equal (inferior_ptid, wait_ptid))
684 {
685 /* We did. Switch back to WAIT_PTID thread, to tell the
686 target to follow it (in either direction). We'll
687 afterwards refuse to resume, and inform the user what
688 happened. */
689 switch_to_thread (wait_ptid);
690 should_resume = 0;
691 }
692 }
693
694 tp = inferior_thread ();
695
696 /* If there were any forks/vforks that were caught and are now to be
697 followed, then do so now. */
698 switch (tp->pending_follow.kind)
699 {
700 case TARGET_WAITKIND_FORKED:
701 case TARGET_WAITKIND_VFORKED:
702 {
703 ptid_t parent, child;
704
705 /* If the user did a next/step, etc, over a fork call,
706 preserve the stepping state in the fork child. */
707 if (follow_child && should_resume)
708 {
8358c15c
JK
709 step_resume_breakpoint = clone_momentary_breakpoint
710 (tp->control.step_resume_breakpoint);
16c381f0
JK
711 step_range_start = tp->control.step_range_start;
712 step_range_end = tp->control.step_range_end;
713 step_frame_id = tp->control.step_frame_id;
186c406b
TT
714 exception_resume_breakpoint
715 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 716 command_interp = tp->control.command_interp;
e58b0e63
PA
717
718 /* For now, delete the parent's sr breakpoint, otherwise,
719 parent/child sr breakpoints are considered duplicates,
720 and the child version will not be installed. Remove
721 this when the breakpoints module becomes aware of
722 inferiors and address spaces. */
723 delete_step_resume_breakpoint (tp);
16c381f0
JK
724 tp->control.step_range_start = 0;
725 tp->control.step_range_end = 0;
726 tp->control.step_frame_id = null_frame_id;
186c406b 727 delete_exception_resume_breakpoint (tp);
17b2616c 728 tp->control.command_interp = NULL;
e58b0e63
PA
729 }
730
731 parent = inferior_ptid;
732 child = tp->pending_follow.value.related_pid;
733
d83ad864
DB
734 /* Set up inferior(s) as specified by the caller, and tell the
735 target to do whatever is necessary to follow either parent
736 or child. */
737 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
738 {
739 /* Target refused to follow, or there's some other reason
740 we shouldn't resume. */
741 should_resume = 0;
742 }
743 else
744 {
745 /* This pending follow fork event is now handled, one way
746 or another. The previous selected thread may be gone
747 from the lists by now, but if it is still around, need
748 to clear the pending follow request. */
e09875d4 749 tp = find_thread_ptid (parent);
e58b0e63
PA
750 if (tp)
751 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
752
753 /* This makes sure we don't try to apply the "Switched
754 over from WAIT_PID" logic above. */
755 nullify_last_target_wait_ptid ();
756
1777feb0 757 /* If we followed the child, switch to it... */
e58b0e63
PA
758 if (follow_child)
759 {
760 switch_to_thread (child);
761
762 /* ... and preserve the stepping state, in case the
763 user was stepping over the fork call. */
764 if (should_resume)
765 {
766 tp = inferior_thread ();
8358c15c
JK
767 tp->control.step_resume_breakpoint
768 = step_resume_breakpoint;
16c381f0
JK
769 tp->control.step_range_start = step_range_start;
770 tp->control.step_range_end = step_range_end;
771 tp->control.step_frame_id = step_frame_id;
186c406b
TT
772 tp->control.exception_resume_breakpoint
773 = exception_resume_breakpoint;
17b2616c 774 tp->control.command_interp = command_interp;
e58b0e63
PA
775 }
776 else
777 {
778 /* If we get here, it was because we're trying to
779 resume from a fork catchpoint, but, the user
780 has switched threads away from the thread that
781 forked. In that case, the resume command
782 issued is most likely not applicable to the
783 child, so just warn, and refuse to resume. */
3e43a32a
MS
784 warning (_("Not resuming: switched threads "
785 "before following fork child.\n"));
e58b0e63
PA
786 }
787
788 /* Reset breakpoints in the child as appropriate. */
789 follow_inferior_reset_breakpoints ();
790 }
791 else
792 switch_to_thread (parent);
793 }
794 }
795 break;
796 case TARGET_WAITKIND_SPURIOUS:
797 /* Nothing to follow. */
798 break;
799 default:
800 internal_error (__FILE__, __LINE__,
801 "Unexpected pending_follow.kind %d\n",
802 tp->pending_follow.kind);
803 break;
804 }
c906108c 805
e58b0e63 806 return should_resume;
c906108c
SS
807}
808
d83ad864 809static void
6604731b 810follow_inferior_reset_breakpoints (void)
c906108c 811{
4e1c45ea
PA
812 struct thread_info *tp = inferior_thread ();
813
6604731b
DJ
814 /* Was there a step_resume breakpoint? (There was if the user
815 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
816 thread number. Cloned step_resume breakpoints are disabled on
817 creation, so enable it here now that it is associated with the
818 correct thread.
6604731b
DJ
819
820 step_resumes are a form of bp that are made to be per-thread.
821 Since we created the step_resume bp when the parent process
822 was being debugged, and now are switching to the child process,
823 from the breakpoint package's viewpoint, that's a switch of
824 "threads". We must update the bp's notion of which thread
825 it is for, or it'll be ignored when it triggers. */
826
8358c15c 827 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
828 {
829 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
830 tp->control.step_resume_breakpoint->loc->enabled = 1;
831 }
6604731b 832
a1aa2221 833 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 834 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
835 {
836 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
837 tp->control.exception_resume_breakpoint->loc->enabled = 1;
838 }
186c406b 839
6604731b
DJ
840 /* Reinsert all breakpoints in the child. The user may have set
841 breakpoints after catching the fork, in which case those
842 were never set in the child, but only in the parent. This makes
843 sure the inserted breakpoints match the breakpoint list. */
844
845 breakpoint_re_set ();
846 insert_breakpoints ();
c906108c 847}
c906108c 848
6c95b8df
PA
849/* The child has exited or execed: resume threads of the parent the
850 user wanted to be executing. */
851
852static int
853proceed_after_vfork_done (struct thread_info *thread,
854 void *arg)
855{
856 int pid = * (int *) arg;
857
858 if (ptid_get_pid (thread->ptid) == pid
859 && is_running (thread->ptid)
860 && !is_executing (thread->ptid)
861 && !thread->stop_requested
a493e3e2 862 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
863 {
864 if (debug_infrun)
865 fprintf_unfiltered (gdb_stdlog,
866 "infrun: resuming vfork parent thread %s\n",
867 target_pid_to_str (thread->ptid));
868
869 switch_to_thread (thread->ptid);
70509625 870 clear_proceed_status (0);
a493e3e2 871 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
872 }
873
874 return 0;
875}
876
877/* Called whenever we notice an exec or exit event, to handle
878 detaching or resuming a vfork parent. */
879
880static void
881handle_vfork_child_exec_or_exit (int exec)
882{
883 struct inferior *inf = current_inferior ();
884
885 if (inf->vfork_parent)
886 {
887 int resume_parent = -1;
888
889 /* This exec or exit marks the end of the shared memory region
890 between the parent and the child. If the user wanted to
891 detach from the parent, now is the time. */
892
893 if (inf->vfork_parent->pending_detach)
894 {
895 struct thread_info *tp;
896 struct cleanup *old_chain;
897 struct program_space *pspace;
898 struct address_space *aspace;
899
1777feb0 900 /* follow-fork child, detach-on-fork on. */
6c95b8df 901
68c9da30
PA
902 inf->vfork_parent->pending_detach = 0;
903
f50f4e56
PA
904 if (!exec)
905 {
906 /* If we're handling a child exit, then inferior_ptid
907 points at the inferior's pid, not to a thread. */
908 old_chain = save_inferior_ptid ();
909 save_current_program_space ();
910 save_current_inferior ();
911 }
912 else
913 old_chain = save_current_space_and_thread ();
6c95b8df
PA
914
915 /* We're letting loose of the parent. */
916 tp = any_live_thread_of_process (inf->vfork_parent->pid);
917 switch_to_thread (tp->ptid);
918
919 /* We're about to detach from the parent, which implicitly
920 removes breakpoints from its address space. There's a
921 catch here: we want to reuse the spaces for the child,
922 but, parent/child are still sharing the pspace at this
923 point, although the exec in reality makes the kernel give
924 the child a fresh set of new pages. The problem here is
925 that the breakpoints module being unaware of this, would
926 likely chose the child process to write to the parent
927 address space. Swapping the child temporarily away from
928 the spaces has the desired effect. Yes, this is "sort
929 of" a hack. */
930
931 pspace = inf->pspace;
932 aspace = inf->aspace;
933 inf->aspace = NULL;
934 inf->pspace = NULL;
935
936 if (debug_infrun || info_verbose)
937 {
6f259a23 938 target_terminal_ours_for_output ();
6c95b8df
PA
939
940 if (exec)
6f259a23
DB
941 {
942 fprintf_filtered (gdb_stdlog,
943 _("Detaching vfork parent process "
944 "%d after child exec.\n"),
945 inf->vfork_parent->pid);
946 }
6c95b8df 947 else
6f259a23
DB
948 {
949 fprintf_filtered (gdb_stdlog,
950 _("Detaching vfork parent process "
951 "%d after child exit.\n"),
952 inf->vfork_parent->pid);
953 }
6c95b8df
PA
954 }
955
956 target_detach (NULL, 0);
957
958 /* Put it back. */
959 inf->pspace = pspace;
960 inf->aspace = aspace;
961
962 do_cleanups (old_chain);
963 }
964 else if (exec)
965 {
966 /* We're staying attached to the parent, so, really give the
967 child a new address space. */
968 inf->pspace = add_program_space (maybe_new_address_space ());
969 inf->aspace = inf->pspace->aspace;
970 inf->removable = 1;
971 set_current_program_space (inf->pspace);
972
973 resume_parent = inf->vfork_parent->pid;
974
975 /* Break the bonds. */
976 inf->vfork_parent->vfork_child = NULL;
977 }
978 else
979 {
980 struct cleanup *old_chain;
981 struct program_space *pspace;
982
983 /* If this is a vfork child exiting, then the pspace and
984 aspaces were shared with the parent. Since we're
985 reporting the process exit, we'll be mourning all that is
986 found in the address space, and switching to null_ptid,
987 preparing to start a new inferior. But, since we don't
988 want to clobber the parent's address/program spaces, we
989 go ahead and create a new one for this exiting
990 inferior. */
991
992 /* Switch to null_ptid, so that clone_program_space doesn't want
993 to read the selected frame of a dead process. */
994 old_chain = save_inferior_ptid ();
995 inferior_ptid = null_ptid;
996
997 /* This inferior is dead, so avoid giving the breakpoints
998 module the option to write through to it (cloning a
999 program space resets breakpoints). */
1000 inf->aspace = NULL;
1001 inf->pspace = NULL;
1002 pspace = add_program_space (maybe_new_address_space ());
1003 set_current_program_space (pspace);
1004 inf->removable = 1;
7dcd53a0 1005 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1006 clone_program_space (pspace, inf->vfork_parent->pspace);
1007 inf->pspace = pspace;
1008 inf->aspace = pspace->aspace;
1009
1010 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1011 inferior. */
6c95b8df
PA
1012 do_cleanups (old_chain);
1013
1014 resume_parent = inf->vfork_parent->pid;
1015 /* Break the bonds. */
1016 inf->vfork_parent->vfork_child = NULL;
1017 }
1018
1019 inf->vfork_parent = NULL;
1020
1021 gdb_assert (current_program_space == inf->pspace);
1022
1023 if (non_stop && resume_parent != -1)
1024 {
1025 /* If the user wanted the parent to be running, let it go
1026 free now. */
1027 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1028
1029 if (debug_infrun)
3e43a32a
MS
1030 fprintf_unfiltered (gdb_stdlog,
1031 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1032 resume_parent);
1033
1034 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1035
1036 do_cleanups (old_chain);
1037 }
1038 }
1039}
1040
eb6c553b 1041/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1042
1043static const char follow_exec_mode_new[] = "new";
1044static const char follow_exec_mode_same[] = "same";
40478521 1045static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1046{
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050};
1051
1052static const char *follow_exec_mode_string = follow_exec_mode_same;
1053static void
1054show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056{
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058}
1059
1777feb0 1060/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1061
c906108c 1062static void
3a3e9ee3 1063follow_exec (ptid_t pid, char *execd_pathname)
c906108c 1064{
4e1c45ea 1065 struct thread_info *th = inferior_thread ();
6c95b8df 1066 struct inferior *inf = current_inferior ();
7a292a7a 1067
c906108c
SS
1068 /* This is an exec event that we actually wish to pay attention to.
1069 Refresh our symbol table to the newly exec'd program, remove any
1070 momentary bp's, etc.
1071
1072 If there are breakpoints, they aren't really inserted now,
1073 since the exec() transformed our inferior into a fresh set
1074 of instructions.
1075
1076 We want to preserve symbolic breakpoints on the list, since
1077 we have hopes that they can be reset after the new a.out's
1078 symbol table is read.
1079
1080 However, any "raw" breakpoints must be removed from the list
1081 (e.g., the solib bp's), since their address is probably invalid
1082 now.
1083
1084 And, we DON'T want to call delete_breakpoints() here, since
1085 that may write the bp's "shadow contents" (the instruction
1086 value that was overwritten witha TRAP instruction). Since
1777feb0 1087 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1088
1089 mark_breakpoints_out ();
1090
c906108c
SS
1091 update_breakpoints_after_exec ();
1092
1093 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 1094 statement through an exec(). */
8358c15c 1095 th->control.step_resume_breakpoint = NULL;
186c406b 1096 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1097 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1098 th->control.step_range_start = 0;
1099 th->control.step_range_end = 0;
c906108c 1100
a75724bc
PA
1101 /* The target reports the exec event to the main thread, even if
1102 some other thread does the exec, and even if the main thread was
1103 already stopped --- if debugging in non-stop mode, it's possible
1104 the user had the main thread held stopped in the previous image
1105 --- release it now. This is the same behavior as step-over-exec
1106 with scheduler-locking on in all-stop mode. */
1107 th->stop_requested = 0;
1108
1777feb0 1109 /* What is this a.out's name? */
6c95b8df
PA
1110 printf_unfiltered (_("%s is executing new program: %s\n"),
1111 target_pid_to_str (inferior_ptid),
1112 execd_pathname);
c906108c
SS
1113
1114 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1115 inferior has essentially been killed & reborn. */
7a292a7a 1116
c906108c 1117 gdb_flush (gdb_stdout);
6ca15a4b
PA
1118
1119 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
1120
1121 if (gdb_sysroot && *gdb_sysroot)
1122 {
1123 char *name = alloca (strlen (gdb_sysroot)
1124 + strlen (execd_pathname)
1125 + 1);
abbb1732 1126
e85a822c
DJ
1127 strcpy (name, gdb_sysroot);
1128 strcat (name, execd_pathname);
1129 execd_pathname = name;
1130 }
c906108c 1131
cce9b6bf
PA
1132 /* Reset the shared library package. This ensures that we get a
1133 shlib event when the child reaches "_start", at which point the
1134 dld will have had a chance to initialize the child. */
1135 /* Also, loading a symbol file below may trigger symbol lookups, and
1136 we don't want those to be satisfied by the libraries of the
1137 previous incarnation of this process. */
1138 no_shared_libraries (NULL, 0);
1139
6c95b8df
PA
1140 if (follow_exec_mode_string == follow_exec_mode_new)
1141 {
1142 struct program_space *pspace;
6c95b8df
PA
1143
1144 /* The user wants to keep the old inferior and program spaces
1145 around. Create a new fresh one, and switch to it. */
1146
1147 inf = add_inferior (current_inferior ()->pid);
1148 pspace = add_program_space (maybe_new_address_space ());
1149 inf->pspace = pspace;
1150 inf->aspace = pspace->aspace;
1151
1152 exit_inferior_num_silent (current_inferior ()->num);
1153
1154 set_current_inferior (inf);
1155 set_current_program_space (pspace);
1156 }
9107fc8d
PA
1157 else
1158 {
1159 /* The old description may no longer be fit for the new image.
1160 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1161 old description; we'll read a new one below. No need to do
1162 this on "follow-exec-mode new", as the old inferior stays
1163 around (its description is later cleared/refetched on
1164 restart). */
1165 target_clear_description ();
1166 }
6c95b8df
PA
1167
1168 gdb_assert (current_program_space == inf->pspace);
1169
1777feb0 1170 /* That a.out is now the one to use. */
6c95b8df
PA
1171 exec_file_attach (execd_pathname, 0);
1172
c1e56572
JK
1173 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1174 (Position Independent Executable) main symbol file will get applied by
1175 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1176 the breakpoints with the zero displacement. */
1177
7dcd53a0
TT
1178 symbol_file_add (execd_pathname,
1179 (inf->symfile_flags
1180 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1181 NULL, 0);
1182
7dcd53a0
TT
1183 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1184 set_initial_language ();
c906108c 1185
9107fc8d
PA
1186 /* If the target can specify a description, read it. Must do this
1187 after flipping to the new executable (because the target supplied
1188 description must be compatible with the executable's
1189 architecture, and the old executable may e.g., be 32-bit, while
1190 the new one 64-bit), and before anything involving memory or
1191 registers. */
1192 target_find_description ();
1193
268a4a75 1194 solib_create_inferior_hook (0);
c906108c 1195
4efc6507
DE
1196 jit_inferior_created_hook ();
1197
c1e56572
JK
1198 breakpoint_re_set ();
1199
c906108c
SS
1200 /* Reinsert all breakpoints. (Those which were symbolic have
1201 been reset to the proper address in the new a.out, thanks
1777feb0 1202 to symbol_file_command...). */
c906108c
SS
1203 insert_breakpoints ();
1204
1205 /* The next resume of this inferior should bring it to the shlib
1206 startup breakpoints. (If the user had also set bp's on
1207 "main" from the old (parent) process, then they'll auto-
1777feb0 1208 matically get reset there in the new process.). */
c906108c
SS
1209}
1210
963f9c80 1211/* Info about an instruction that is being stepped over. */
31e77af2
PA
1212
1213struct step_over_info
1214{
963f9c80
PA
1215 /* If we're stepping past a breakpoint, this is the address space
1216 and address of the instruction the breakpoint is set at. We'll
1217 skip inserting all breakpoints here. Valid iff ASPACE is
1218 non-NULL. */
31e77af2 1219 struct address_space *aspace;
31e77af2 1220 CORE_ADDR address;
963f9c80
PA
1221
1222 /* The instruction being stepped over triggers a nonsteppable
1223 watchpoint. If true, we'll skip inserting watchpoints. */
1224 int nonsteppable_watchpoint_p;
31e77af2
PA
1225};
1226
1227/* The step-over info of the location that is being stepped over.
1228
1229 Note that with async/breakpoint always-inserted mode, a user might
1230 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1231 being stepped over. As setting a new breakpoint inserts all
1232 breakpoints, we need to make sure the breakpoint being stepped over
1233 isn't inserted then. We do that by only clearing the step-over
1234 info when the step-over is actually finished (or aborted).
1235
1236 Presently GDB can only step over one breakpoint at any given time.
1237 Given threads that can't run code in the same address space as the
1238 breakpoint's can't really miss the breakpoint, GDB could be taught
1239 to step-over at most one breakpoint per address space (so this info
1240 could move to the address space object if/when GDB is extended).
1241 The set of breakpoints being stepped over will normally be much
1242 smaller than the set of all breakpoints, so a flag in the
1243 breakpoint location structure would be wasteful. A separate list
1244 also saves complexity and run-time, as otherwise we'd have to go
1245 through all breakpoint locations clearing their flag whenever we
1246 start a new sequence. Similar considerations weigh against storing
1247 this info in the thread object. Plus, not all step overs actually
1248 have breakpoint locations -- e.g., stepping past a single-step
1249 breakpoint, or stepping to complete a non-continuable
1250 watchpoint. */
1251static struct step_over_info step_over_info;
1252
1253/* Record the address of the breakpoint/instruction we're currently
1254 stepping over. */
1255
1256static void
963f9c80
PA
1257set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1258 int nonsteppable_watchpoint_p)
31e77af2
PA
1259{
1260 step_over_info.aspace = aspace;
1261 step_over_info.address = address;
963f9c80 1262 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1263}
1264
1265/* Called when we're not longer stepping over a breakpoint / an
1266 instruction, so all breakpoints are free to be (re)inserted. */
1267
1268static void
1269clear_step_over_info (void)
1270{
1271 step_over_info.aspace = NULL;
1272 step_over_info.address = 0;
963f9c80 1273 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1274}
1275
7f89fd65 1276/* See infrun.h. */
31e77af2
PA
1277
1278int
1279stepping_past_instruction_at (struct address_space *aspace,
1280 CORE_ADDR address)
1281{
1282 return (step_over_info.aspace != NULL
1283 && breakpoint_address_match (aspace, address,
1284 step_over_info.aspace,
1285 step_over_info.address));
1286}
1287
963f9c80
PA
1288/* See infrun.h. */
1289
1290int
1291stepping_past_nonsteppable_watchpoint (void)
1292{
1293 return step_over_info.nonsteppable_watchpoint_p;
1294}
1295
6cc83d2a
PA
1296/* Returns true if step-over info is valid. */
1297
1298static int
1299step_over_info_valid_p (void)
1300{
963f9c80
PA
1301 return (step_over_info.aspace != NULL
1302 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1303}
1304
c906108c 1305\f
237fc4c9
PA
1306/* Displaced stepping. */
1307
1308/* In non-stop debugging mode, we must take special care to manage
1309 breakpoints properly; in particular, the traditional strategy for
1310 stepping a thread past a breakpoint it has hit is unsuitable.
1311 'Displaced stepping' is a tactic for stepping one thread past a
1312 breakpoint it has hit while ensuring that other threads running
1313 concurrently will hit the breakpoint as they should.
1314
1315 The traditional way to step a thread T off a breakpoint in a
1316 multi-threaded program in all-stop mode is as follows:
1317
1318 a0) Initially, all threads are stopped, and breakpoints are not
1319 inserted.
1320 a1) We single-step T, leaving breakpoints uninserted.
1321 a2) We insert breakpoints, and resume all threads.
1322
1323 In non-stop debugging, however, this strategy is unsuitable: we
1324 don't want to have to stop all threads in the system in order to
1325 continue or step T past a breakpoint. Instead, we use displaced
1326 stepping:
1327
1328 n0) Initially, T is stopped, other threads are running, and
1329 breakpoints are inserted.
1330 n1) We copy the instruction "under" the breakpoint to a separate
1331 location, outside the main code stream, making any adjustments
1332 to the instruction, register, and memory state as directed by
1333 T's architecture.
1334 n2) We single-step T over the instruction at its new location.
1335 n3) We adjust the resulting register and memory state as directed
1336 by T's architecture. This includes resetting T's PC to point
1337 back into the main instruction stream.
1338 n4) We resume T.
1339
1340 This approach depends on the following gdbarch methods:
1341
1342 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1343 indicate where to copy the instruction, and how much space must
1344 be reserved there. We use these in step n1.
1345
1346 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1347 address, and makes any necessary adjustments to the instruction,
1348 register contents, and memory. We use this in step n1.
1349
1350 - gdbarch_displaced_step_fixup adjusts registers and memory after
1351 we have successfuly single-stepped the instruction, to yield the
1352 same effect the instruction would have had if we had executed it
1353 at its original address. We use this in step n3.
1354
1355 - gdbarch_displaced_step_free_closure provides cleanup.
1356
1357 The gdbarch_displaced_step_copy_insn and
1358 gdbarch_displaced_step_fixup functions must be written so that
1359 copying an instruction with gdbarch_displaced_step_copy_insn,
1360 single-stepping across the copied instruction, and then applying
1361 gdbarch_displaced_insn_fixup should have the same effects on the
1362 thread's memory and registers as stepping the instruction in place
1363 would have. Exactly which responsibilities fall to the copy and
1364 which fall to the fixup is up to the author of those functions.
1365
1366 See the comments in gdbarch.sh for details.
1367
1368 Note that displaced stepping and software single-step cannot
1369 currently be used in combination, although with some care I think
1370 they could be made to. Software single-step works by placing
1371 breakpoints on all possible subsequent instructions; if the
1372 displaced instruction is a PC-relative jump, those breakpoints
1373 could fall in very strange places --- on pages that aren't
1374 executable, or at addresses that are not proper instruction
1375 boundaries. (We do generally let other threads run while we wait
1376 to hit the software single-step breakpoint, and they might
1377 encounter such a corrupted instruction.) One way to work around
1378 this would be to have gdbarch_displaced_step_copy_insn fully
1379 simulate the effect of PC-relative instructions (and return NULL)
1380 on architectures that use software single-stepping.
1381
1382 In non-stop mode, we can have independent and simultaneous step
1383 requests, so more than one thread may need to simultaneously step
1384 over a breakpoint. The current implementation assumes there is
1385 only one scratch space per process. In this case, we have to
1386 serialize access to the scratch space. If thread A wants to step
1387 over a breakpoint, but we are currently waiting for some other
1388 thread to complete a displaced step, we leave thread A stopped and
1389 place it in the displaced_step_request_queue. Whenever a displaced
1390 step finishes, we pick the next thread in the queue and start a new
1391 displaced step operation on it. See displaced_step_prepare and
1392 displaced_step_fixup for details. */
1393
237fc4c9
PA
1394struct displaced_step_request
1395{
1396 ptid_t ptid;
1397 struct displaced_step_request *next;
1398};
1399
fc1cf338
PA
1400/* Per-inferior displaced stepping state. */
1401struct displaced_step_inferior_state
1402{
1403 /* Pointer to next in linked list. */
1404 struct displaced_step_inferior_state *next;
1405
1406 /* The process this displaced step state refers to. */
1407 int pid;
1408
1409 /* A queue of pending displaced stepping requests. One entry per
1410 thread that needs to do a displaced step. */
1411 struct displaced_step_request *step_request_queue;
1412
1413 /* If this is not null_ptid, this is the thread carrying out a
1414 displaced single-step in process PID. This thread's state will
1415 require fixing up once it has completed its step. */
1416 ptid_t step_ptid;
1417
1418 /* The architecture the thread had when we stepped it. */
1419 struct gdbarch *step_gdbarch;
1420
1421 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1422 for post-step cleanup. */
1423 struct displaced_step_closure *step_closure;
1424
1425 /* The address of the original instruction, and the copy we
1426 made. */
1427 CORE_ADDR step_original, step_copy;
1428
1429 /* Saved contents of copy area. */
1430 gdb_byte *step_saved_copy;
1431};
1432
1433/* The list of states of processes involved in displaced stepping
1434 presently. */
1435static struct displaced_step_inferior_state *displaced_step_inferior_states;
1436
1437/* Get the displaced stepping state of process PID. */
1438
1439static struct displaced_step_inferior_state *
1440get_displaced_stepping_state (int pid)
1441{
1442 struct displaced_step_inferior_state *state;
1443
1444 for (state = displaced_step_inferior_states;
1445 state != NULL;
1446 state = state->next)
1447 if (state->pid == pid)
1448 return state;
1449
1450 return NULL;
1451}
1452
1453/* Add a new displaced stepping state for process PID to the displaced
1454 stepping state list, or return a pointer to an already existing
1455 entry, if it already exists. Never returns NULL. */
1456
1457static struct displaced_step_inferior_state *
1458add_displaced_stepping_state (int pid)
1459{
1460 struct displaced_step_inferior_state *state;
1461
1462 for (state = displaced_step_inferior_states;
1463 state != NULL;
1464 state = state->next)
1465 if (state->pid == pid)
1466 return state;
237fc4c9 1467
fc1cf338
PA
1468 state = xcalloc (1, sizeof (*state));
1469 state->pid = pid;
1470 state->next = displaced_step_inferior_states;
1471 displaced_step_inferior_states = state;
237fc4c9 1472
fc1cf338
PA
1473 return state;
1474}
1475
a42244db
YQ
1476/* If inferior is in displaced stepping, and ADDR equals to starting address
1477 of copy area, return corresponding displaced_step_closure. Otherwise,
1478 return NULL. */
1479
1480struct displaced_step_closure*
1481get_displaced_step_closure_by_addr (CORE_ADDR addr)
1482{
1483 struct displaced_step_inferior_state *displaced
1484 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1485
1486 /* If checking the mode of displaced instruction in copy area. */
1487 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1488 && (displaced->step_copy == addr))
1489 return displaced->step_closure;
1490
1491 return NULL;
1492}
1493
fc1cf338 1494/* Remove the displaced stepping state of process PID. */
237fc4c9 1495
fc1cf338
PA
1496static void
1497remove_displaced_stepping_state (int pid)
1498{
1499 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1500
fc1cf338
PA
1501 gdb_assert (pid != 0);
1502
1503 it = displaced_step_inferior_states;
1504 prev_next_p = &displaced_step_inferior_states;
1505 while (it)
1506 {
1507 if (it->pid == pid)
1508 {
1509 *prev_next_p = it->next;
1510 xfree (it);
1511 return;
1512 }
1513
1514 prev_next_p = &it->next;
1515 it = *prev_next_p;
1516 }
1517}
1518
1519static void
1520infrun_inferior_exit (struct inferior *inf)
1521{
1522 remove_displaced_stepping_state (inf->pid);
1523}
237fc4c9 1524
fff08868
HZ
1525/* If ON, and the architecture supports it, GDB will use displaced
1526 stepping to step over breakpoints. If OFF, or if the architecture
1527 doesn't support it, GDB will instead use the traditional
1528 hold-and-step approach. If AUTO (which is the default), GDB will
1529 decide which technique to use to step over breakpoints depending on
1530 which of all-stop or non-stop mode is active --- displaced stepping
1531 in non-stop mode; hold-and-step in all-stop mode. */
1532
72d0e2c5 1533static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1534
237fc4c9
PA
1535static void
1536show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1537 struct cmd_list_element *c,
1538 const char *value)
1539{
72d0e2c5 1540 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1541 fprintf_filtered (file,
1542 _("Debugger's willingness to use displaced stepping "
1543 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1544 value, non_stop ? "on" : "off");
1545 else
3e43a32a
MS
1546 fprintf_filtered (file,
1547 _("Debugger's willingness to use displaced stepping "
1548 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1549}
1550
fff08868
HZ
1551/* Return non-zero if displaced stepping can/should be used to step
1552 over breakpoints. */
1553
237fc4c9
PA
1554static int
1555use_displaced_stepping (struct gdbarch *gdbarch)
1556{
72d0e2c5
YQ
1557 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1558 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1559 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1560 && find_record_target () == NULL);
237fc4c9
PA
1561}
1562
1563/* Clean out any stray displaced stepping state. */
1564static void
fc1cf338 1565displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1566{
1567 /* Indicate that there is no cleanup pending. */
fc1cf338 1568 displaced->step_ptid = null_ptid;
237fc4c9 1569
fc1cf338 1570 if (displaced->step_closure)
237fc4c9 1571 {
fc1cf338
PA
1572 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1573 displaced->step_closure);
1574 displaced->step_closure = NULL;
237fc4c9
PA
1575 }
1576}
1577
1578static void
fc1cf338 1579displaced_step_clear_cleanup (void *arg)
237fc4c9 1580{
fc1cf338
PA
1581 struct displaced_step_inferior_state *state = arg;
1582
1583 displaced_step_clear (state);
237fc4c9
PA
1584}
1585
1586/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1587void
1588displaced_step_dump_bytes (struct ui_file *file,
1589 const gdb_byte *buf,
1590 size_t len)
1591{
1592 int i;
1593
1594 for (i = 0; i < len; i++)
1595 fprintf_unfiltered (file, "%02x ", buf[i]);
1596 fputs_unfiltered ("\n", file);
1597}
1598
1599/* Prepare to single-step, using displaced stepping.
1600
1601 Note that we cannot use displaced stepping when we have a signal to
1602 deliver. If we have a signal to deliver and an instruction to step
1603 over, then after the step, there will be no indication from the
1604 target whether the thread entered a signal handler or ignored the
1605 signal and stepped over the instruction successfully --- both cases
1606 result in a simple SIGTRAP. In the first case we mustn't do a
1607 fixup, and in the second case we must --- but we can't tell which.
1608 Comments in the code for 'random signals' in handle_inferior_event
1609 explain how we handle this case instead.
1610
1611 Returns 1 if preparing was successful -- this thread is going to be
1612 stepped now; or 0 if displaced stepping this thread got queued. */
1613static int
1614displaced_step_prepare (ptid_t ptid)
1615{
ad53cd71 1616 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1617 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1618 struct regcache *regcache = get_thread_regcache (ptid);
1619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1620 CORE_ADDR original, copy;
1621 ULONGEST len;
1622 struct displaced_step_closure *closure;
fc1cf338 1623 struct displaced_step_inferior_state *displaced;
9e529e1d 1624 int status;
237fc4c9
PA
1625
1626 /* We should never reach this function if the architecture does not
1627 support displaced stepping. */
1628 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1629
c1e36e3e
PA
1630 /* Disable range stepping while executing in the scratch pad. We
1631 want a single-step even if executing the displaced instruction in
1632 the scratch buffer lands within the stepping range (e.g., a
1633 jump/branch). */
1634 tp->control.may_range_step = 0;
1635
fc1cf338
PA
1636 /* We have to displaced step one thread at a time, as we only have
1637 access to a single scratch space per inferior. */
237fc4c9 1638
fc1cf338
PA
1639 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1640
1641 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1642 {
1643 /* Already waiting for a displaced step to finish. Defer this
1644 request and place in queue. */
1645 struct displaced_step_request *req, *new_req;
1646
1647 if (debug_displaced)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "displaced: defering step of %s\n",
1650 target_pid_to_str (ptid));
1651
1652 new_req = xmalloc (sizeof (*new_req));
1653 new_req->ptid = ptid;
1654 new_req->next = NULL;
1655
fc1cf338 1656 if (displaced->step_request_queue)
237fc4c9 1657 {
fc1cf338 1658 for (req = displaced->step_request_queue;
237fc4c9
PA
1659 req && req->next;
1660 req = req->next)
1661 ;
1662 req->next = new_req;
1663 }
1664 else
fc1cf338 1665 displaced->step_request_queue = new_req;
237fc4c9
PA
1666
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (ptid));
1675 }
1676
fc1cf338 1677 displaced_step_clear (displaced);
237fc4c9 1678
ad53cd71
PA
1679 old_cleanups = save_inferior_ptid ();
1680 inferior_ptid = ptid;
1681
515630c5 1682 original = regcache_read_pc (regcache);
237fc4c9
PA
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 /* Save the original contents of the copy area. */
fc1cf338 1688 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1689 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1690 &displaced->step_saved_copy);
9e529e1d
JK
1691 status = target_read_memory (copy, displaced->step_saved_copy, len);
1692 if (status != 0)
1693 throw_error (MEMORY_ERROR,
1694 _("Error accessing memory address %s (%s) for "
1695 "displaced-stepping scratch space."),
1696 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1697 if (debug_displaced)
1698 {
5af949e3
UW
1699 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1700 paddress (gdbarch, copy));
fc1cf338
PA
1701 displaced_step_dump_bytes (gdb_stdlog,
1702 displaced->step_saved_copy,
1703 len);
237fc4c9
PA
1704 };
1705
1706 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1707 original, copy, regcache);
237fc4c9
PA
1708
1709 /* We don't support the fully-simulated case at present. */
1710 gdb_assert (closure);
1711
9f5a595d
UW
1712 /* Save the information we need to fix things up if the step
1713 succeeds. */
fc1cf338
PA
1714 displaced->step_ptid = ptid;
1715 displaced->step_gdbarch = gdbarch;
1716 displaced->step_closure = closure;
1717 displaced->step_original = original;
1718 displaced->step_copy = copy;
9f5a595d 1719
fc1cf338 1720 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1721
1722 /* Resume execution at the copy. */
515630c5 1723 regcache_write_pc (regcache, copy);
237fc4c9 1724
ad53cd71
PA
1725 discard_cleanups (ignore_cleanups);
1726
1727 do_cleanups (old_cleanups);
237fc4c9
PA
1728
1729 if (debug_displaced)
5af949e3
UW
1730 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1731 paddress (gdbarch, copy));
237fc4c9 1732
237fc4c9
PA
1733 return 1;
1734}
1735
237fc4c9 1736static void
3e43a32a
MS
1737write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1738 const gdb_byte *myaddr, int len)
237fc4c9
PA
1739{
1740 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1741
237fc4c9
PA
1742 inferior_ptid = ptid;
1743 write_memory (memaddr, myaddr, len);
1744 do_cleanups (ptid_cleanup);
1745}
1746
e2d96639
YQ
1747/* Restore the contents of the copy area for thread PTID. */
1748
1749static void
1750displaced_step_restore (struct displaced_step_inferior_state *displaced,
1751 ptid_t ptid)
1752{
1753 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1754
1755 write_memory_ptid (ptid, displaced->step_copy,
1756 displaced->step_saved_copy, len);
1757 if (debug_displaced)
1758 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1759 target_pid_to_str (ptid),
1760 paddress (displaced->step_gdbarch,
1761 displaced->step_copy));
1762}
1763
237fc4c9 1764static void
2ea28649 1765displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1766{
1767 struct cleanup *old_cleanups;
fc1cf338
PA
1768 struct displaced_step_inferior_state *displaced
1769 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1770
1771 /* Was any thread of this process doing a displaced step? */
1772 if (displaced == NULL)
1773 return;
237fc4c9
PA
1774
1775 /* Was this event for the pid we displaced? */
fc1cf338
PA
1776 if (ptid_equal (displaced->step_ptid, null_ptid)
1777 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1778 return;
1779
fc1cf338 1780 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1781
e2d96639 1782 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1783
1784 /* Did the instruction complete successfully? */
a493e3e2 1785 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1786 {
1787 /* Fix up the resulting state. */
fc1cf338
PA
1788 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1789 displaced->step_closure,
1790 displaced->step_original,
1791 displaced->step_copy,
1792 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1793 }
1794 else
1795 {
1796 /* Since the instruction didn't complete, all we can do is
1797 relocate the PC. */
515630c5
UW
1798 struct regcache *regcache = get_thread_regcache (event_ptid);
1799 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1800
fc1cf338 1801 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1802 regcache_write_pc (regcache, pc);
237fc4c9
PA
1803 }
1804
1805 do_cleanups (old_cleanups);
1806
fc1cf338 1807 displaced->step_ptid = null_ptid;
1c5cfe86 1808
237fc4c9 1809 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1810 one now. Leave the state object around, since we're likely to
1811 need it again soon. */
1812 while (displaced->step_request_queue)
237fc4c9
PA
1813 {
1814 struct displaced_step_request *head;
1815 ptid_t ptid;
5af949e3 1816 struct regcache *regcache;
929dfd4f 1817 struct gdbarch *gdbarch;
1c5cfe86 1818 CORE_ADDR actual_pc;
6c95b8df 1819 struct address_space *aspace;
237fc4c9 1820
fc1cf338 1821 head = displaced->step_request_queue;
237fc4c9 1822 ptid = head->ptid;
fc1cf338 1823 displaced->step_request_queue = head->next;
237fc4c9
PA
1824 xfree (head);
1825
ad53cd71
PA
1826 context_switch (ptid);
1827
5af949e3
UW
1828 regcache = get_thread_regcache (ptid);
1829 actual_pc = regcache_read_pc (regcache);
6c95b8df 1830 aspace = get_regcache_aspace (regcache);
1c5cfe86 1831
6c95b8df 1832 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1833 {
1c5cfe86
PA
1834 if (debug_displaced)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "displaced: stepping queued %s now\n",
1837 target_pid_to_str (ptid));
1838
1839 displaced_step_prepare (ptid);
1840
929dfd4f
JB
1841 gdbarch = get_regcache_arch (regcache);
1842
1c5cfe86
PA
1843 if (debug_displaced)
1844 {
929dfd4f 1845 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1846 gdb_byte buf[4];
1847
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1849 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1850 read_memory (actual_pc, buf, sizeof (buf));
1851 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1852 }
1853
fc1cf338
PA
1854 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1855 displaced->step_closure))
a493e3e2 1856 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1857 else
a493e3e2 1858 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1859
1860 /* Done, we're stepping a thread. */
1861 break;
ad53cd71 1862 }
1c5cfe86
PA
1863 else
1864 {
1865 int step;
1866 struct thread_info *tp = inferior_thread ();
1867
1868 /* The breakpoint we were sitting under has since been
1869 removed. */
16c381f0 1870 tp->control.trap_expected = 0;
1c5cfe86
PA
1871
1872 /* Go back to what we were trying to do. */
1873 step = currently_stepping (tp);
ad53cd71 1874
1c5cfe86 1875 if (debug_displaced)
3e43a32a 1876 fprintf_unfiltered (gdb_stdlog,
27d2932e 1877 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1878 target_pid_to_str (tp->ptid), step);
1879
a493e3e2
PA
1880 target_resume (ptid, step, GDB_SIGNAL_0);
1881 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1882
1883 /* This request was discarded. See if there's any other
1884 thread waiting for its turn. */
1885 }
237fc4c9
PA
1886 }
1887}
1888
5231c1fd
PA
1889/* Update global variables holding ptids to hold NEW_PTID if they were
1890 holding OLD_PTID. */
1891static void
1892infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1893{
1894 struct displaced_step_request *it;
fc1cf338 1895 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1896
1897 if (ptid_equal (inferior_ptid, old_ptid))
1898 inferior_ptid = new_ptid;
1899
fc1cf338
PA
1900 for (displaced = displaced_step_inferior_states;
1901 displaced;
1902 displaced = displaced->next)
1903 {
1904 if (ptid_equal (displaced->step_ptid, old_ptid))
1905 displaced->step_ptid = new_ptid;
1906
1907 for (it = displaced->step_request_queue; it; it = it->next)
1908 if (ptid_equal (it->ptid, old_ptid))
1909 it->ptid = new_ptid;
1910 }
5231c1fd
PA
1911}
1912
237fc4c9
PA
1913\f
1914/* Resuming. */
c906108c
SS
1915
1916/* Things to clean up if we QUIT out of resume (). */
c906108c 1917static void
74b7792f 1918resume_cleanups (void *ignore)
c906108c 1919{
34b7e8a6
PA
1920 if (!ptid_equal (inferior_ptid, null_ptid))
1921 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1922
c906108c
SS
1923 normal_stop ();
1924}
1925
53904c9e
AC
1926static const char schedlock_off[] = "off";
1927static const char schedlock_on[] = "on";
1928static const char schedlock_step[] = "step";
40478521 1929static const char *const scheduler_enums[] = {
ef346e04
AC
1930 schedlock_off,
1931 schedlock_on,
1932 schedlock_step,
1933 NULL
1934};
920d2a44
AC
1935static const char *scheduler_mode = schedlock_off;
1936static void
1937show_scheduler_mode (struct ui_file *file, int from_tty,
1938 struct cmd_list_element *c, const char *value)
1939{
3e43a32a
MS
1940 fprintf_filtered (file,
1941 _("Mode for locking scheduler "
1942 "during execution is \"%s\".\n"),
920d2a44
AC
1943 value);
1944}
c906108c
SS
1945
1946static void
96baa820 1947set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1948{
eefe576e
AC
1949 if (!target_can_lock_scheduler)
1950 {
1951 scheduler_mode = schedlock_off;
1952 error (_("Target '%s' cannot support this command."), target_shortname);
1953 }
c906108c
SS
1954}
1955
d4db2f36
PA
1956/* True if execution commands resume all threads of all processes by
1957 default; otherwise, resume only threads of the current inferior
1958 process. */
1959int sched_multi = 0;
1960
2facfe5c
DD
1961/* Try to setup for software single stepping over the specified location.
1962 Return 1 if target_resume() should use hardware single step.
1963
1964 GDBARCH the current gdbarch.
1965 PC the location to step over. */
1966
1967static int
1968maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1969{
1970 int hw_step = 1;
1971
f02253f1
HZ
1972 if (execution_direction == EXEC_FORWARD
1973 && gdbarch_software_single_step_p (gdbarch)
99e40580 1974 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1975 {
99e40580 1976 hw_step = 0;
2facfe5c
DD
1977 }
1978 return hw_step;
1979}
c906108c 1980
09cee04b
PA
1981ptid_t
1982user_visible_resume_ptid (int step)
1983{
1984 /* By default, resume all threads of all processes. */
1985 ptid_t resume_ptid = RESUME_ALL;
1986
1987 /* Maybe resume only all threads of the current process. */
1988 if (!sched_multi && target_supports_multi_process ())
1989 {
1990 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1991 }
1992
1993 /* Maybe resume a single thread after all. */
1994 if (non_stop)
1995 {
1996 /* With non-stop mode on, threads are always handled
1997 individually. */
1998 resume_ptid = inferior_ptid;
1999 }
2000 else if ((scheduler_mode == schedlock_on)
03d46957 2001 || (scheduler_mode == schedlock_step && step))
09cee04b
PA
2002 {
2003 /* User-settable 'scheduler' mode requires solo thread resume. */
2004 resume_ptid = inferior_ptid;
2005 }
2006
70509625
PA
2007 /* We may actually resume fewer threads at first, e.g., if a thread
2008 is stopped at a breakpoint that needs stepping-off, but that
2009 should not be visible to the user/frontend, and neither should
2010 the frontend/user be allowed to proceed any of the threads that
2011 happen to be stopped for internal run control handling, if a
2012 previous command wanted them resumed. */
09cee04b
PA
2013 return resume_ptid;
2014}
2015
c906108c
SS
2016/* Resume the inferior, but allow a QUIT. This is useful if the user
2017 wants to interrupt some lengthy single-stepping operation
2018 (for child processes, the SIGINT goes to the inferior, and so
2019 we get a SIGINT random_signal, but for remote debugging and perhaps
2020 other targets, that's not true).
2021
2022 STEP nonzero if we should step (zero to continue instead).
2023 SIG is the signal to give the inferior (zero for none). */
2024void
2ea28649 2025resume (int step, enum gdb_signal sig)
c906108c 2026{
74b7792f 2027 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2028 struct regcache *regcache = get_current_regcache ();
2029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2030 struct thread_info *tp = inferior_thread ();
515630c5 2031 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2032 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2033 ptid_t resume_ptid;
a09dd441
PA
2034 /* From here on, this represents the caller's step vs continue
2035 request, while STEP represents what we'll actually request the
2036 target to do. STEP can decay from a step to a continue, if e.g.,
2037 we need to implement single-stepping with breakpoints (software
2038 single-step). When deciding whether "set scheduler-locking step"
2039 applies, it's the callers intention that counts. */
2040 const int entry_step = step;
c7e8a53c 2041
c906108c
SS
2042 QUIT;
2043
74609e71
YQ
2044 if (current_inferior ()->waiting_for_vfork_done)
2045 {
48f9886d
PA
2046 /* Don't try to single-step a vfork parent that is waiting for
2047 the child to get out of the shared memory region (by exec'ing
2048 or exiting). This is particularly important on software
2049 single-step archs, as the child process would trip on the
2050 software single step breakpoint inserted for the parent
2051 process. Since the parent will not actually execute any
2052 instruction until the child is out of the shared region (such
2053 are vfork's semantics), it is safe to simply continue it.
2054 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2055 the parent, and tell it to `keep_going', which automatically
2056 re-sets it stepping. */
74609e71
YQ
2057 if (debug_infrun)
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: resume : clear step\n");
a09dd441 2060 step = 0;
74609e71
YQ
2061 }
2062
527159b7 2063 if (debug_infrun)
237fc4c9 2064 fprintf_unfiltered (gdb_stdlog,
c9737c08 2065 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2066 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2067 step, gdb_signal_to_symbol_string (sig),
2068 tp->control.trap_expected,
0d9a9a5f
PA
2069 target_pid_to_str (inferior_ptid),
2070 paddress (gdbarch, pc));
c906108c 2071
c2c6d25f
JM
2072 /* Normally, by the time we reach `resume', the breakpoints are either
2073 removed or inserted, as appropriate. The exception is if we're sitting
2074 at a permanent breakpoint; we need to step over it, but permanent
2075 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2076 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2077 {
515630c5
UW
2078 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
2079 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 2080 else
ac74f770
MS
2081 error (_("\
2082The program is stopped at a permanent breakpoint, but GDB does not know\n\
2083how to step past a permanent breakpoint on this architecture. Try using\n\
2084a command like `return' or `jump' to continue execution."));
6d350bb5 2085 }
c2c6d25f 2086
c1e36e3e
PA
2087 /* If we have a breakpoint to step over, make sure to do a single
2088 step only. Same if we have software watchpoints. */
2089 if (tp->control.trap_expected || bpstat_should_step ())
2090 tp->control.may_range_step = 0;
2091
237fc4c9
PA
2092 /* If enabled, step over breakpoints by executing a copy of the
2093 instruction at a different address.
2094
2095 We can't use displaced stepping when we have a signal to deliver;
2096 the comments for displaced_step_prepare explain why. The
2097 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2098 signals' explain what we do instead.
2099
2100 We can't use displaced stepping when we are waiting for vfork_done
2101 event, displaced stepping breaks the vfork child similarly as single
2102 step software breakpoint. */
515630c5 2103 if (use_displaced_stepping (gdbarch)
36728e82 2104 && tp->control.trap_expected
a493e3e2 2105 && sig == GDB_SIGNAL_0
74609e71 2106 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2107 {
fc1cf338
PA
2108 struct displaced_step_inferior_state *displaced;
2109
237fc4c9 2110 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2111 {
2112 /* Got placed in displaced stepping queue. Will be resumed
2113 later when all the currently queued displaced stepping
251bde03
PA
2114 requests finish. The thread is not executing at this
2115 point, and the call to set_executing will be made later.
2116 But we need to call set_running here, since from the
2117 user/frontend's point of view, threads were set running.
2118 Unless we're calling an inferior function, as in that
2119 case we pretend the inferior doesn't run at all. */
2120 if (!tp->control.in_infcall)
a09dd441 2121 set_running (user_visible_resume_ptid (entry_step), 1);
d56b7306
VP
2122 discard_cleanups (old_cleanups);
2123 return;
2124 }
99e40580 2125
ca7781d2
LM
2126 /* Update pc to reflect the new address from which we will execute
2127 instructions due to displaced stepping. */
2128 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2129
fc1cf338 2130 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2131 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2132 displaced->step_closure);
237fc4c9
PA
2133 }
2134
2facfe5c 2135 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2136 else if (step)
2facfe5c 2137 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2138
30852783
UW
2139 /* Currently, our software single-step implementation leads to different
2140 results than hardware single-stepping in one situation: when stepping
2141 into delivering a signal which has an associated signal handler,
2142 hardware single-step will stop at the first instruction of the handler,
2143 while software single-step will simply skip execution of the handler.
2144
2145 For now, this difference in behavior is accepted since there is no
2146 easy way to actually implement single-stepping into a signal handler
2147 without kernel support.
2148
2149 However, there is one scenario where this difference leads to follow-on
2150 problems: if we're stepping off a breakpoint by removing all breakpoints
2151 and then single-stepping. In this case, the software single-step
2152 behavior means that even if there is a *breakpoint* in the signal
2153 handler, GDB still would not stop.
2154
2155 Fortunately, we can at least fix this particular issue. We detect
2156 here the case where we are about to deliver a signal while software
2157 single-stepping with breakpoints removed. In this situation, we
2158 revert the decisions to remove all breakpoints and insert single-
2159 step breakpoints, and instead we install a step-resume breakpoint
2160 at the current address, deliver the signal without stepping, and
2161 once we arrive back at the step-resume breakpoint, actually step
2162 over the breakpoint we originally wanted to step over. */
34b7e8a6 2163 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2164 && sig != GDB_SIGNAL_0
2165 && step_over_info_valid_p ())
30852783
UW
2166 {
2167 /* If we have nested signals or a pending signal is delivered
2168 immediately after a handler returns, might might already have
2169 a step-resume breakpoint set on the earlier handler. We cannot
2170 set another step-resume breakpoint; just continue on until the
2171 original breakpoint is hit. */
2172 if (tp->control.step_resume_breakpoint == NULL)
2173 {
2c03e5be 2174 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2175 tp->step_after_step_resume_breakpoint = 1;
2176 }
2177
34b7e8a6 2178 delete_single_step_breakpoints (tp);
30852783 2179
31e77af2 2180 clear_step_over_info ();
30852783 2181 tp->control.trap_expected = 0;
31e77af2
PA
2182
2183 insert_breakpoints ();
30852783
UW
2184 }
2185
b0f16a3e
SM
2186 /* If STEP is set, it's a request to use hardware stepping
2187 facilities. But in that case, we should never
2188 use singlestep breakpoint. */
34b7e8a6 2189 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2190
b0f16a3e
SM
2191 /* Decide the set of threads to ask the target to resume. Start
2192 by assuming everything will be resumed, than narrow the set
2193 by applying increasingly restricting conditions. */
a09dd441 2194 resume_ptid = user_visible_resume_ptid (entry_step);
cd76b0b7 2195
251bde03
PA
2196 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2197 (e.g., we might need to step over a breakpoint), from the
2198 user/frontend's point of view, all threads in RESUME_PTID are now
2199 running. Unless we're calling an inferior function, as in that
2200 case pretend we inferior doesn't run at all. */
2201 if (!tp->control.in_infcall)
2202 set_running (resume_ptid, 1);
2203
b0f16a3e 2204 /* Maybe resume a single thread after all. */
34b7e8a6 2205 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2206 && tp->control.trap_expected)
2207 {
2208 /* We're allowing a thread to run past a breakpoint it has
2209 hit, by single-stepping the thread with the breakpoint
2210 removed. In which case, we need to single-step only this
2211 thread, and keep others stopped, as they can miss this
2212 breakpoint if allowed to run. */
2213 resume_ptid = inferior_ptid;
2214 }
d4db2f36 2215
b0f16a3e
SM
2216 if (gdbarch_cannot_step_breakpoint (gdbarch))
2217 {
2218 /* Most targets can step a breakpoint instruction, thus
2219 executing it normally. But if this one cannot, just
2220 continue and we will hit it anyway. */
2221 if (step && breakpoint_inserted_here_p (aspace, pc))
2222 step = 0;
2223 }
ef5cf84e 2224
b0f16a3e
SM
2225 if (debug_displaced
2226 && use_displaced_stepping (gdbarch)
2227 && tp->control.trap_expected)
2228 {
2229 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2230 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2231 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2232 gdb_byte buf[4];
2233
2234 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2235 paddress (resume_gdbarch, actual_pc));
2236 read_memory (actual_pc, buf, sizeof (buf));
2237 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2238 }
237fc4c9 2239
b0f16a3e
SM
2240 if (tp->control.may_range_step)
2241 {
2242 /* If we're resuming a thread with the PC out of the step
2243 range, then we're doing some nested/finer run control
2244 operation, like stepping the thread out of the dynamic
2245 linker or the displaced stepping scratch pad. We
2246 shouldn't have allowed a range step then. */
2247 gdb_assert (pc_in_thread_step_range (pc, tp));
2248 }
c1e36e3e 2249
b0f16a3e
SM
2250 /* Install inferior's terminal modes. */
2251 target_terminal_inferior ();
2252
2253 /* Avoid confusing the next resume, if the next stop/resume
2254 happens to apply to another thread. */
2255 tp->suspend.stop_signal = GDB_SIGNAL_0;
2256
2257 /* Advise target which signals may be handled silently. If we have
6cc83d2a
PA
2258 removed breakpoints because we are stepping over one (in any
2259 thread), we need to receive all signals to avoid accidentally
2260 skipping a breakpoint during execution of a signal handler. */
2261 if (step_over_info_valid_p ())
b0f16a3e
SM
2262 target_pass_signals (0, NULL);
2263 else
2264 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 2265
b0f16a3e 2266 target_resume (resume_ptid, step, sig);
c906108c
SS
2267
2268 discard_cleanups (old_cleanups);
2269}
2270\f
237fc4c9 2271/* Proceeding. */
c906108c
SS
2272
2273/* Clear out all variables saying what to do when inferior is continued.
2274 First do this, then set the ones you want, then call `proceed'. */
2275
a7212384
UW
2276static void
2277clear_proceed_status_thread (struct thread_info *tp)
c906108c 2278{
a7212384
UW
2279 if (debug_infrun)
2280 fprintf_unfiltered (gdb_stdlog,
2281 "infrun: clear_proceed_status_thread (%s)\n",
2282 target_pid_to_str (tp->ptid));
d6b48e9c 2283
70509625
PA
2284 /* If this signal should not be seen by program, give it zero.
2285 Used for debugging signals. */
2286 if (!signal_pass_state (tp->suspend.stop_signal))
2287 tp->suspend.stop_signal = GDB_SIGNAL_0;
2288
16c381f0
JK
2289 tp->control.trap_expected = 0;
2290 tp->control.step_range_start = 0;
2291 tp->control.step_range_end = 0;
c1e36e3e 2292 tp->control.may_range_step = 0;
16c381f0
JK
2293 tp->control.step_frame_id = null_frame_id;
2294 tp->control.step_stack_frame_id = null_frame_id;
2295 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 2296 tp->stop_requested = 0;
4e1c45ea 2297
16c381f0 2298 tp->control.stop_step = 0;
32400beb 2299
16c381f0 2300 tp->control.proceed_to_finish = 0;
414c69f7 2301
17b2616c
PA
2302 tp->control.command_interp = NULL;
2303
a7212384 2304 /* Discard any remaining commands or status from previous stop. */
16c381f0 2305 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2306}
32400beb 2307
a7212384 2308void
70509625 2309clear_proceed_status (int step)
a7212384 2310{
6c95b8df
PA
2311 if (!non_stop)
2312 {
70509625
PA
2313 struct thread_info *tp;
2314 ptid_t resume_ptid;
2315
2316 resume_ptid = user_visible_resume_ptid (step);
2317
2318 /* In all-stop mode, delete the per-thread status of all threads
2319 we're about to resume, implicitly and explicitly. */
2320 ALL_NON_EXITED_THREADS (tp)
2321 {
2322 if (!ptid_match (tp->ptid, resume_ptid))
2323 continue;
2324 clear_proceed_status_thread (tp);
2325 }
6c95b8df
PA
2326 }
2327
a7212384
UW
2328 if (!ptid_equal (inferior_ptid, null_ptid))
2329 {
2330 struct inferior *inferior;
2331
2332 if (non_stop)
2333 {
6c95b8df
PA
2334 /* If in non-stop mode, only delete the per-thread status of
2335 the current thread. */
a7212384
UW
2336 clear_proceed_status_thread (inferior_thread ());
2337 }
6c95b8df 2338
d6b48e9c 2339 inferior = current_inferior ();
16c381f0 2340 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2341 }
2342
c906108c 2343 stop_after_trap = 0;
f3b1572e 2344
31e77af2
PA
2345 clear_step_over_info ();
2346
f3b1572e 2347 observer_notify_about_to_proceed ();
c906108c 2348
d5c31457
UW
2349 if (stop_registers)
2350 {
2351 regcache_xfree (stop_registers);
2352 stop_registers = NULL;
2353 }
c906108c
SS
2354}
2355
99619bea
PA
2356/* Returns true if TP is still stopped at a breakpoint that needs
2357 stepping-over in order to make progress. If the breakpoint is gone
2358 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2359
2360static int
99619bea
PA
2361thread_still_needs_step_over (struct thread_info *tp)
2362{
2363 if (tp->stepping_over_breakpoint)
2364 {
2365 struct regcache *regcache = get_thread_regcache (tp->ptid);
2366
2367 if (breakpoint_here_p (get_regcache_aspace (regcache),
2368 regcache_read_pc (regcache)))
2369 return 1;
2370
2371 tp->stepping_over_breakpoint = 0;
2372 }
2373
2374 return 0;
2375}
2376
483805cf
PA
2377/* Returns true if scheduler locking applies. STEP indicates whether
2378 we're about to do a step/next-like command to a thread. */
2379
2380static int
2381schedlock_applies (int step)
2382{
2383 return (scheduler_mode == schedlock_on
2384 || (scheduler_mode == schedlock_step
2385 && step));
2386}
2387
99619bea
PA
2388/* Look a thread other than EXCEPT that has previously reported a
2389 breakpoint event, and thus needs a step-over in order to make
2390 progress. Returns NULL is none is found. STEP indicates whether
2391 we're about to step the current thread, in order to decide whether
2392 "set scheduler-locking step" applies. */
2393
2394static struct thread_info *
2395find_thread_needs_step_over (int step, struct thread_info *except)
ea67f13b 2396{
99619bea 2397 struct thread_info *tp, *current;
5a437975
DE
2398
2399 /* With non-stop mode on, threads are always handled individually. */
2400 gdb_assert (! non_stop);
ea67f13b 2401
99619bea 2402 current = inferior_thread ();
d4db2f36 2403
99619bea
PA
2404 /* If scheduler locking applies, we can avoid iterating over all
2405 threads. */
483805cf 2406 if (schedlock_applies (step))
ea67f13b 2407 {
99619bea
PA
2408 if (except != current
2409 && thread_still_needs_step_over (current))
2410 return current;
515630c5 2411
99619bea
PA
2412 return NULL;
2413 }
0d9a9a5f 2414
034f788c 2415 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2416 {
2417 /* Ignore the EXCEPT thread. */
2418 if (tp == except)
2419 continue;
2420 /* Ignore threads of processes we're not resuming. */
2421 if (!sched_multi
2422 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2423 continue;
2424
2425 if (thread_still_needs_step_over (tp))
2426 return tp;
ea67f13b
DJ
2427 }
2428
99619bea 2429 return NULL;
ea67f13b 2430}
e4846b08 2431
c906108c
SS
2432/* Basic routine for continuing the program in various fashions.
2433
2434 ADDR is the address to resume at, or -1 for resume where stopped.
2435 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2436 or -1 for act according to how it stopped.
c906108c 2437 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2438 -1 means return after that and print nothing.
2439 You should probably set various step_... variables
2440 before calling here, if you are stepping.
c906108c
SS
2441
2442 You should call clear_proceed_status before calling proceed. */
2443
2444void
2ea28649 2445proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2446{
e58b0e63
PA
2447 struct regcache *regcache;
2448 struct gdbarch *gdbarch;
4e1c45ea 2449 struct thread_info *tp;
e58b0e63 2450 CORE_ADDR pc;
6c95b8df 2451 struct address_space *aspace;
c906108c 2452
e58b0e63
PA
2453 /* If we're stopped at a fork/vfork, follow the branch set by the
2454 "set follow-fork-mode" command; otherwise, we'll just proceed
2455 resuming the current thread. */
2456 if (!follow_fork ())
2457 {
2458 /* The target for some reason decided not to resume. */
2459 normal_stop ();
f148b27e
PA
2460 if (target_can_async_p ())
2461 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2462 return;
2463 }
2464
842951eb
PA
2465 /* We'll update this if & when we switch to a new thread. */
2466 previous_inferior_ptid = inferior_ptid;
2467
e58b0e63
PA
2468 regcache = get_current_regcache ();
2469 gdbarch = get_regcache_arch (regcache);
6c95b8df 2470 aspace = get_regcache_aspace (regcache);
e58b0e63 2471 pc = regcache_read_pc (regcache);
2adfaa28 2472 tp = inferior_thread ();
e58b0e63 2473
c906108c 2474 if (step > 0)
515630c5 2475 step_start_function = find_pc_function (pc);
c906108c
SS
2476 if (step < 0)
2477 stop_after_trap = 1;
2478
99619bea
PA
2479 /* Fill in with reasonable starting values. */
2480 init_thread_stepping_state (tp);
2481
2acceee2 2482 if (addr == (CORE_ADDR) -1)
c906108c 2483 {
6c95b8df 2484 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2485 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2486 /* There is a breakpoint at the address we will resume at,
2487 step one instruction before inserting breakpoints so that
2488 we do not stop right away (and report a second hit at this
b2175913
MS
2489 breakpoint).
2490
2491 Note, we don't do this in reverse, because we won't
2492 actually be executing the breakpoint insn anyway.
2493 We'll be (un-)executing the previous instruction. */
99619bea 2494 tp->stepping_over_breakpoint = 1;
515630c5
UW
2495 else if (gdbarch_single_step_through_delay_p (gdbarch)
2496 && gdbarch_single_step_through_delay (gdbarch,
2497 get_current_frame ()))
3352ef37
AC
2498 /* We stepped onto an instruction that needs to be stepped
2499 again before re-inserting the breakpoint, do so. */
99619bea 2500 tp->stepping_over_breakpoint = 1;
c906108c
SS
2501 }
2502 else
2503 {
515630c5 2504 regcache_write_pc (regcache, addr);
c906108c
SS
2505 }
2506
70509625
PA
2507 if (siggnal != GDB_SIGNAL_DEFAULT)
2508 tp->suspend.stop_signal = siggnal;
2509
17b2616c
PA
2510 /* Record the interpreter that issued the execution command that
2511 caused this thread to resume. If the top level interpreter is
2512 MI/async, and the execution command was a CLI command
2513 (next/step/etc.), we'll want to print stop event output to the MI
2514 console channel (the stepped-to line, etc.), as if the user
2515 entered the execution command on a real GDB console. */
2516 inferior_thread ()->control.command_interp = command_interp ();
2517
527159b7 2518 if (debug_infrun)
8a9de0e4 2519 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2520 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2521 paddress (gdbarch, addr),
2522 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2523
94cc34af
PA
2524 if (non_stop)
2525 /* In non-stop, each thread is handled individually. The context
2526 must already be set to the right thread here. */
2527 ;
2528 else
2529 {
99619bea
PA
2530 struct thread_info *step_over;
2531
94cc34af
PA
2532 /* In a multi-threaded task we may select another thread and
2533 then continue or step.
c906108c 2534
94cc34af
PA
2535 But if the old thread was stopped at a breakpoint, it will
2536 immediately cause another breakpoint stop without any
2537 execution (i.e. it will report a breakpoint hit incorrectly).
2538 So we must step over it first.
c906108c 2539
99619bea
PA
2540 Look for a thread other than the current (TP) that reported a
2541 breakpoint hit and hasn't been resumed yet since. */
2542 step_over = find_thread_needs_step_over (step, tp);
2543 if (step_over != NULL)
2adfaa28 2544 {
99619bea
PA
2545 if (debug_infrun)
2546 fprintf_unfiltered (gdb_stdlog,
2547 "infrun: need to step-over [%s] first\n",
2548 target_pid_to_str (step_over->ptid));
2549
2550 /* Store the prev_pc for the stepping thread too, needed by
2551 switch_back_to_stepping thread. */
2552 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2553 switch_to_thread (step_over->ptid);
2554 tp = step_over;
2adfaa28 2555 }
94cc34af 2556 }
c906108c 2557
31e77af2
PA
2558 /* If we need to step over a breakpoint, and we're not using
2559 displaced stepping to do so, insert all breakpoints (watchpoints,
2560 etc.) but the one we're stepping over, step one instruction, and
2561 then re-insert the breakpoint when that step is finished. */
99619bea 2562 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2563 {
31e77af2
PA
2564 struct regcache *regcache = get_current_regcache ();
2565
2566 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2567 regcache_read_pc (regcache), 0);
30852783 2568 }
31e77af2
PA
2569 else
2570 clear_step_over_info ();
30852783 2571
31e77af2 2572 insert_breakpoints ();
30852783 2573
99619bea
PA
2574 tp->control.trap_expected = tp->stepping_over_breakpoint;
2575
c906108c
SS
2576 annotate_starting ();
2577
2578 /* Make sure that output from GDB appears before output from the
2579 inferior. */
2580 gdb_flush (gdb_stdout);
2581
e4846b08 2582 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2583 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2584 scenarios such as inferior function calls or returning from
2585 a function via the return command. In those cases, the prev_pc
2586 value was not set properly for subsequent commands. The prev_pc value
2587 is used to initialize the starting line number in the ecs. With an
2588 invalid value, the gdb next command ends up stopping at the position
2589 represented by the next line table entry past our start position.
2590 On platforms that generate one line table entry per line, this
2591 is not a problem. However, on the ia64, the compiler generates
2592 extraneous line table entries that do not increase the line number.
2593 When we issue the gdb next command on the ia64 after an inferior call
2594 or a return command, we often end up a few instructions forward, still
2595 within the original line we started.
2596
d5cd6034
JB
2597 An attempt was made to refresh the prev_pc at the same time the
2598 execution_control_state is initialized (for instance, just before
2599 waiting for an inferior event). But this approach did not work
2600 because of platforms that use ptrace, where the pc register cannot
2601 be read unless the inferior is stopped. At that point, we are not
2602 guaranteed the inferior is stopped and so the regcache_read_pc() call
2603 can fail. Setting the prev_pc value here ensures the value is updated
2604 correctly when the inferior is stopped. */
4e1c45ea 2605 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2606
c906108c 2607 /* Resume inferior. */
99619bea 2608 resume (tp->control.trap_expected || step || bpstat_should_step (),
0de5618e 2609 tp->suspend.stop_signal);
c906108c
SS
2610
2611 /* Wait for it to stop (if not standalone)
2612 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2613 /* Do this only if we are not using the event loop, or if the target
1777feb0 2614 does not support asynchronous execution. */
362646f5 2615 if (!target_can_async_p ())
43ff13b4 2616 {
e4c8541f 2617 wait_for_inferior ();
43ff13b4
JM
2618 normal_stop ();
2619 }
c906108c 2620}
c906108c
SS
2621\f
2622
2623/* Start remote-debugging of a machine over a serial link. */
96baa820 2624
c906108c 2625void
8621d6a9 2626start_remote (int from_tty)
c906108c 2627{
d6b48e9c 2628 struct inferior *inferior;
d6b48e9c
PA
2629
2630 inferior = current_inferior ();
16c381f0 2631 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2632
1777feb0 2633 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2634 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2635 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2636 nothing is returned (instead of just blocking). Because of this,
2637 targets expecting an immediate response need to, internally, set
2638 things up so that the target_wait() is forced to eventually
1777feb0 2639 timeout. */
6426a772
JM
2640 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2641 differentiate to its caller what the state of the target is after
2642 the initial open has been performed. Here we're assuming that
2643 the target has stopped. It should be possible to eventually have
2644 target_open() return to the caller an indication that the target
2645 is currently running and GDB state should be set to the same as
1777feb0 2646 for an async run. */
e4c8541f 2647 wait_for_inferior ();
8621d6a9
DJ
2648
2649 /* Now that the inferior has stopped, do any bookkeeping like
2650 loading shared libraries. We want to do this before normal_stop,
2651 so that the displayed frame is up to date. */
2652 post_create_inferior (&current_target, from_tty);
2653
6426a772 2654 normal_stop ();
c906108c
SS
2655}
2656
2657/* Initialize static vars when a new inferior begins. */
2658
2659void
96baa820 2660init_wait_for_inferior (void)
c906108c
SS
2661{
2662 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2663
c906108c
SS
2664 breakpoint_init_inferior (inf_starting);
2665
70509625 2666 clear_proceed_status (0);
9f976b41 2667
ca005067 2668 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2669
842951eb 2670 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2671
edb3359d
DJ
2672 /* Discard any skipped inlined frames. */
2673 clear_inline_frame_state (minus_one_ptid);
c906108c 2674}
237fc4c9 2675
c906108c 2676\f
b83266a0
SS
2677/* This enum encodes possible reasons for doing a target_wait, so that
2678 wfi can call target_wait in one place. (Ultimately the call will be
2679 moved out of the infinite loop entirely.) */
2680
c5aa993b
JM
2681enum infwait_states
2682{
cd0fc7c3 2683 infwait_normal_state,
d983da9c 2684 infwait_step_watch_state,
cd0fc7c3 2685 infwait_nonstep_watch_state
b83266a0
SS
2686};
2687
0d1e5fa7 2688/* Current inferior wait state. */
8870954f 2689static enum infwait_states infwait_state;
cd0fc7c3 2690
0d1e5fa7
PA
2691/* Data to be passed around while handling an event. This data is
2692 discarded between events. */
c5aa993b 2693struct execution_control_state
488f131b 2694{
0d1e5fa7 2695 ptid_t ptid;
4e1c45ea
PA
2696 /* The thread that got the event, if this was a thread event; NULL
2697 otherwise. */
2698 struct thread_info *event_thread;
2699
488f131b 2700 struct target_waitstatus ws;
7e324e48 2701 int stop_func_filled_in;
488f131b
JB
2702 CORE_ADDR stop_func_start;
2703 CORE_ADDR stop_func_end;
2c02bd72 2704 const char *stop_func_name;
488f131b 2705 int wait_some_more;
4f5d7f63 2706
2adfaa28
PA
2707 /* True if the event thread hit the single-step breakpoint of
2708 another thread. Thus the event doesn't cause a stop, the thread
2709 needs to be single-stepped past the single-step breakpoint before
2710 we can switch back to the original stepping thread. */
2711 int hit_singlestep_breakpoint;
488f131b
JB
2712};
2713
ec9499be 2714static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2715
568d6575
UW
2716static void handle_step_into_function (struct gdbarch *gdbarch,
2717 struct execution_control_state *ecs);
2718static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2719 struct execution_control_state *ecs);
4f5d7f63 2720static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2721static void check_exception_resume (struct execution_control_state *,
28106bc2 2722 struct frame_info *);
611c83ae 2723
bdc36728 2724static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2725static void stop_waiting (struct execution_control_state *ecs);
104c1213 2726static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2727static void keep_going (struct execution_control_state *ecs);
94c57d6a 2728static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2729static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2730
252fbfc8
PA
2731/* Callback for iterate over threads. If the thread is stopped, but
2732 the user/frontend doesn't know about that yet, go through
2733 normal_stop, as if the thread had just stopped now. ARG points at
2734 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2735 ptid_is_pid(PTID) is true, applies to all threads of the process
2736 pointed at by PTID. Otherwise, apply only to the thread pointed by
2737 PTID. */
2738
2739static int
2740infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2741{
2742 ptid_t ptid = * (ptid_t *) arg;
2743
2744 if ((ptid_equal (info->ptid, ptid)
2745 || ptid_equal (minus_one_ptid, ptid)
2746 || (ptid_is_pid (ptid)
2747 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2748 && is_running (info->ptid)
2749 && !is_executing (info->ptid))
2750 {
2751 struct cleanup *old_chain;
2752 struct execution_control_state ecss;
2753 struct execution_control_state *ecs = &ecss;
2754
2755 memset (ecs, 0, sizeof (*ecs));
2756
2757 old_chain = make_cleanup_restore_current_thread ();
2758
f15cb84a
YQ
2759 overlay_cache_invalid = 1;
2760 /* Flush target cache before starting to handle each event.
2761 Target was running and cache could be stale. This is just a
2762 heuristic. Running threads may modify target memory, but we
2763 don't get any event. */
2764 target_dcache_invalidate ();
2765
252fbfc8
PA
2766 /* Go through handle_inferior_event/normal_stop, so we always
2767 have consistent output as if the stop event had been
2768 reported. */
2769 ecs->ptid = info->ptid;
e09875d4 2770 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2771 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2772 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2773
2774 handle_inferior_event (ecs);
2775
2776 if (!ecs->wait_some_more)
2777 {
2778 struct thread_info *tp;
2779
2780 normal_stop ();
2781
fa4cd53f 2782 /* Finish off the continuations. */
252fbfc8 2783 tp = inferior_thread ();
fa4cd53f
PA
2784 do_all_intermediate_continuations_thread (tp, 1);
2785 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2786 }
2787
2788 do_cleanups (old_chain);
2789 }
2790
2791 return 0;
2792}
2793
2794/* This function is attached as a "thread_stop_requested" observer.
2795 Cleanup local state that assumed the PTID was to be resumed, and
2796 report the stop to the frontend. */
2797
2c0b251b 2798static void
252fbfc8
PA
2799infrun_thread_stop_requested (ptid_t ptid)
2800{
fc1cf338 2801 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2802
2803 /* PTID was requested to stop. Remove it from the displaced
2804 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2805
2806 for (displaced = displaced_step_inferior_states;
2807 displaced;
2808 displaced = displaced->next)
252fbfc8 2809 {
fc1cf338 2810 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2811
fc1cf338
PA
2812 it = displaced->step_request_queue;
2813 prev_next_p = &displaced->step_request_queue;
2814 while (it)
252fbfc8 2815 {
fc1cf338
PA
2816 if (ptid_match (it->ptid, ptid))
2817 {
2818 *prev_next_p = it->next;
2819 it->next = NULL;
2820 xfree (it);
2821 }
252fbfc8 2822 else
fc1cf338
PA
2823 {
2824 prev_next_p = &it->next;
2825 }
252fbfc8 2826
fc1cf338 2827 it = *prev_next_p;
252fbfc8 2828 }
252fbfc8
PA
2829 }
2830
2831 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2832}
2833
a07daef3
PA
2834static void
2835infrun_thread_thread_exit (struct thread_info *tp, int silent)
2836{
2837 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2838 nullify_last_target_wait_ptid ();
2839}
2840
0cbcdb96
PA
2841/* Delete the step resume, single-step and longjmp/exception resume
2842 breakpoints of TP. */
4e1c45ea 2843
0cbcdb96
PA
2844static void
2845delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 2846{
0cbcdb96
PA
2847 delete_step_resume_breakpoint (tp);
2848 delete_exception_resume_breakpoint (tp);
34b7e8a6 2849 delete_single_step_breakpoints (tp);
4e1c45ea
PA
2850}
2851
0cbcdb96
PA
2852/* If the target still has execution, call FUNC for each thread that
2853 just stopped. In all-stop, that's all the non-exited threads; in
2854 non-stop, that's the current thread, only. */
2855
2856typedef void (*for_each_just_stopped_thread_callback_func)
2857 (struct thread_info *tp);
4e1c45ea
PA
2858
2859static void
0cbcdb96 2860for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 2861{
0cbcdb96 2862 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
2863 return;
2864
2865 if (non_stop)
2866 {
0cbcdb96
PA
2867 /* If in non-stop mode, only the current thread stopped. */
2868 func (inferior_thread ());
4e1c45ea
PA
2869 }
2870 else
0cbcdb96
PA
2871 {
2872 struct thread_info *tp;
2873
2874 /* In all-stop mode, all threads have stopped. */
2875 ALL_NON_EXITED_THREADS (tp)
2876 {
2877 func (tp);
2878 }
2879 }
2880}
2881
2882/* Delete the step resume and longjmp/exception resume breakpoints of
2883 the threads that just stopped. */
2884
2885static void
2886delete_just_stopped_threads_infrun_breakpoints (void)
2887{
2888 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
2889}
2890
2891/* Delete the single-step breakpoints of the threads that just
2892 stopped. */
7c16b83e 2893
34b7e8a6
PA
2894static void
2895delete_just_stopped_threads_single_step_breakpoints (void)
2896{
2897 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
2898}
2899
1777feb0 2900/* A cleanup wrapper. */
4e1c45ea
PA
2901
2902static void
0cbcdb96 2903delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 2904{
0cbcdb96 2905 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
2906}
2907
223698f8
DE
2908/* Pretty print the results of target_wait, for debugging purposes. */
2909
2910static void
2911print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2912 const struct target_waitstatus *ws)
2913{
2914 char *status_string = target_waitstatus_to_string (ws);
2915 struct ui_file *tmp_stream = mem_fileopen ();
2916 char *text;
223698f8
DE
2917
2918 /* The text is split over several lines because it was getting too long.
2919 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2920 output as a unit; we want only one timestamp printed if debug_timestamp
2921 is set. */
2922
2923 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2924 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2925 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2926 fprintf_unfiltered (tmp_stream,
2927 " [%s]", target_pid_to_str (waiton_ptid));
2928 fprintf_unfiltered (tmp_stream, ", status) =\n");
2929 fprintf_unfiltered (tmp_stream,
2930 "infrun: %d [%s],\n",
dfd4cc63
LM
2931 ptid_get_pid (result_ptid),
2932 target_pid_to_str (result_ptid));
223698f8
DE
2933 fprintf_unfiltered (tmp_stream,
2934 "infrun: %s\n",
2935 status_string);
2936
759ef836 2937 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2938
2939 /* This uses %s in part to handle %'s in the text, but also to avoid
2940 a gcc error: the format attribute requires a string literal. */
2941 fprintf_unfiltered (gdb_stdlog, "%s", text);
2942
2943 xfree (status_string);
2944 xfree (text);
2945 ui_file_delete (tmp_stream);
2946}
2947
24291992
PA
2948/* Prepare and stabilize the inferior for detaching it. E.g.,
2949 detaching while a thread is displaced stepping is a recipe for
2950 crashing it, as nothing would readjust the PC out of the scratch
2951 pad. */
2952
2953void
2954prepare_for_detach (void)
2955{
2956 struct inferior *inf = current_inferior ();
2957 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2958 struct cleanup *old_chain_1;
2959 struct displaced_step_inferior_state *displaced;
2960
2961 displaced = get_displaced_stepping_state (inf->pid);
2962
2963 /* Is any thread of this process displaced stepping? If not,
2964 there's nothing else to do. */
2965 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2966 return;
2967
2968 if (debug_infrun)
2969 fprintf_unfiltered (gdb_stdlog,
2970 "displaced-stepping in-process while detaching");
2971
2972 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2973 inf->detaching = 1;
2974
2975 while (!ptid_equal (displaced->step_ptid, null_ptid))
2976 {
2977 struct cleanup *old_chain_2;
2978 struct execution_control_state ecss;
2979 struct execution_control_state *ecs;
2980
2981 ecs = &ecss;
2982 memset (ecs, 0, sizeof (*ecs));
2983
2984 overlay_cache_invalid = 1;
f15cb84a
YQ
2985 /* Flush target cache before starting to handle each event.
2986 Target was running and cache could be stale. This is just a
2987 heuristic. Running threads may modify target memory, but we
2988 don't get any event. */
2989 target_dcache_invalidate ();
24291992 2990
24291992
PA
2991 if (deprecated_target_wait_hook)
2992 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2993 else
2994 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2995
2996 if (debug_infrun)
2997 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2998
2999 /* If an error happens while handling the event, propagate GDB's
3000 knowledge of the executing state to the frontend/user running
3001 state. */
3e43a32a
MS
3002 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3003 &minus_one_ptid);
24291992
PA
3004
3005 /* Now figure out what to do with the result of the result. */
3006 handle_inferior_event (ecs);
3007
3008 /* No error, don't finish the state yet. */
3009 discard_cleanups (old_chain_2);
3010
3011 /* Breakpoints and watchpoints are not installed on the target
3012 at this point, and signals are passed directly to the
3013 inferior, so this must mean the process is gone. */
3014 if (!ecs->wait_some_more)
3015 {
3016 discard_cleanups (old_chain_1);
3017 error (_("Program exited while detaching"));
3018 }
3019 }
3020
3021 discard_cleanups (old_chain_1);
3022}
3023
cd0fc7c3 3024/* Wait for control to return from inferior to debugger.
ae123ec6 3025
cd0fc7c3
SS
3026 If inferior gets a signal, we may decide to start it up again
3027 instead of returning. That is why there is a loop in this function.
3028 When this function actually returns it means the inferior
3029 should be left stopped and GDB should read more commands. */
3030
3031void
e4c8541f 3032wait_for_inferior (void)
cd0fc7c3
SS
3033{
3034 struct cleanup *old_cleanups;
c906108c 3035
527159b7 3036 if (debug_infrun)
ae123ec6 3037 fprintf_unfiltered
e4c8541f 3038 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3039
0cbcdb96
PA
3040 old_cleanups
3041 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3042 NULL);
cd0fc7c3 3043
c906108c
SS
3044 while (1)
3045 {
ae25568b
PA
3046 struct execution_control_state ecss;
3047 struct execution_control_state *ecs = &ecss;
29f49a6a 3048 struct cleanup *old_chain;
963f9c80 3049 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3050
ae25568b
PA
3051 memset (ecs, 0, sizeof (*ecs));
3052
ec9499be 3053 overlay_cache_invalid = 1;
ec9499be 3054
f15cb84a
YQ
3055 /* Flush target cache before starting to handle each event.
3056 Target was running and cache could be stale. This is just a
3057 heuristic. Running threads may modify target memory, but we
3058 don't get any event. */
3059 target_dcache_invalidate ();
3060
9a4105ab 3061 if (deprecated_target_wait_hook)
47608cb1 3062 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3063 else
47608cb1 3064 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3065
f00150c9 3066 if (debug_infrun)
223698f8 3067 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3068
29f49a6a
PA
3069 /* If an error happens while handling the event, propagate GDB's
3070 knowledge of the executing state to the frontend/user running
3071 state. */
3072 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3073
cd0fc7c3
SS
3074 /* Now figure out what to do with the result of the result. */
3075 handle_inferior_event (ecs);
c906108c 3076
29f49a6a
PA
3077 /* No error, don't finish the state yet. */
3078 discard_cleanups (old_chain);
3079
cd0fc7c3
SS
3080 if (!ecs->wait_some_more)
3081 break;
3082 }
4e1c45ea 3083
cd0fc7c3
SS
3084 do_cleanups (old_cleanups);
3085}
c906108c 3086
1777feb0 3087/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3088 event loop whenever a change of state is detected on the file
1777feb0
MS
3089 descriptor corresponding to the target. It can be called more than
3090 once to complete a single execution command. In such cases we need
3091 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3092 that this function is called for a single execution command, then
3093 report to the user that the inferior has stopped, and do the
1777feb0 3094 necessary cleanups. */
43ff13b4
JM
3095
3096void
fba45db2 3097fetch_inferior_event (void *client_data)
43ff13b4 3098{
0d1e5fa7 3099 struct execution_control_state ecss;
a474d7c2 3100 struct execution_control_state *ecs = &ecss;
4f8d22e3 3101 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3102 struct cleanup *ts_old_chain;
4f8d22e3 3103 int was_sync = sync_execution;
0f641c01 3104 int cmd_done = 0;
963f9c80 3105 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3106
0d1e5fa7
PA
3107 memset (ecs, 0, sizeof (*ecs));
3108
c5187ac6
PA
3109 /* We're handling a live event, so make sure we're doing live
3110 debugging. If we're looking at traceframes while the target is
3111 running, we're going to need to get back to that mode after
3112 handling the event. */
3113 if (non_stop)
3114 {
3115 make_cleanup_restore_current_traceframe ();
e6e4e701 3116 set_current_traceframe (-1);
c5187ac6
PA
3117 }
3118
4f8d22e3
PA
3119 if (non_stop)
3120 /* In non-stop mode, the user/frontend should not notice a thread
3121 switch due to internal events. Make sure we reverse to the
3122 user selected thread and frame after handling the event and
3123 running any breakpoint commands. */
3124 make_cleanup_restore_current_thread ();
3125
ec9499be 3126 overlay_cache_invalid = 1;
f15cb84a
YQ
3127 /* Flush target cache before starting to handle each event. Target
3128 was running and cache could be stale. This is just a heuristic.
3129 Running threads may modify target memory, but we don't get any
3130 event. */
3131 target_dcache_invalidate ();
3dd5b83d 3132
32231432
PA
3133 make_cleanup_restore_integer (&execution_direction);
3134 execution_direction = target_execution_direction ();
3135
9a4105ab 3136 if (deprecated_target_wait_hook)
a474d7c2 3137 ecs->ptid =
47608cb1 3138 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3139 else
47608cb1 3140 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3141
f00150c9 3142 if (debug_infrun)
223698f8 3143 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3144
29f49a6a
PA
3145 /* If an error happens while handling the event, propagate GDB's
3146 knowledge of the executing state to the frontend/user running
3147 state. */
3148 if (!non_stop)
3149 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3150 else
3151 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3152
353d1d73
JK
3153 /* Get executed before make_cleanup_restore_current_thread above to apply
3154 still for the thread which has thrown the exception. */
3155 make_bpstat_clear_actions_cleanup ();
3156
7c16b83e
PA
3157 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3158
43ff13b4 3159 /* Now figure out what to do with the result of the result. */
a474d7c2 3160 handle_inferior_event (ecs);
43ff13b4 3161
a474d7c2 3162 if (!ecs->wait_some_more)
43ff13b4 3163 {
d6b48e9c
PA
3164 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3165
0cbcdb96 3166 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3167
d6b48e9c 3168 /* We may not find an inferior if this was a process exit. */
16c381f0 3169 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3170 normal_stop ();
3171
af679fd0 3172 if (target_has_execution
0e5bf2a8 3173 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3174 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3175 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3176 && ecs->event_thread->step_multi
16c381f0 3177 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3178 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3179 else
0f641c01
PA
3180 {
3181 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3182 cmd_done = 1;
3183 }
43ff13b4 3184 }
4f8d22e3 3185
29f49a6a
PA
3186 /* No error, don't finish the thread states yet. */
3187 discard_cleanups (ts_old_chain);
3188
4f8d22e3
PA
3189 /* Revert thread and frame. */
3190 do_cleanups (old_chain);
3191
3192 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3193 restore the prompt (a synchronous execution command has finished,
3194 and we're ready for input). */
b4a14fd0 3195 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3196 observer_notify_sync_execution_done ();
0f641c01
PA
3197
3198 if (cmd_done
3199 && !was_sync
3200 && exec_done_display_p
3201 && (ptid_equal (inferior_ptid, null_ptid)
3202 || !is_running (inferior_ptid)))
3203 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3204}
3205
edb3359d
DJ
3206/* Record the frame and location we're currently stepping through. */
3207void
3208set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3209{
3210 struct thread_info *tp = inferior_thread ();
3211
16c381f0
JK
3212 tp->control.step_frame_id = get_frame_id (frame);
3213 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3214
3215 tp->current_symtab = sal.symtab;
3216 tp->current_line = sal.line;
3217}
3218
0d1e5fa7
PA
3219/* Clear context switchable stepping state. */
3220
3221void
4e1c45ea 3222init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
3223{
3224 tss->stepping_over_breakpoint = 0;
963f9c80 3225 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3226 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3227}
3228
c32c64b7
DE
3229/* Set the cached copy of the last ptid/waitstatus. */
3230
3231static void
3232set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3233{
3234 target_last_wait_ptid = ptid;
3235 target_last_waitstatus = status;
3236}
3237
e02bc4cc 3238/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3239 target_wait()/deprecated_target_wait_hook(). The data is actually
3240 cached by handle_inferior_event(), which gets called immediately
3241 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3242
3243void
488f131b 3244get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3245{
39f77062 3246 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3247 *status = target_last_waitstatus;
3248}
3249
ac264b3b
MS
3250void
3251nullify_last_target_wait_ptid (void)
3252{
3253 target_last_wait_ptid = minus_one_ptid;
3254}
3255
dcf4fbde 3256/* Switch thread contexts. */
dd80620e
MS
3257
3258static void
0d1e5fa7 3259context_switch (ptid_t ptid)
dd80620e 3260{
4b51d87b 3261 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3262 {
3263 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3264 target_pid_to_str (inferior_ptid));
3265 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3266 target_pid_to_str (ptid));
fd48f117
DJ
3267 }
3268
0d1e5fa7 3269 switch_to_thread (ptid);
dd80620e
MS
3270}
3271
4fa8626c
DJ
3272static void
3273adjust_pc_after_break (struct execution_control_state *ecs)
3274{
24a73cce
UW
3275 struct regcache *regcache;
3276 struct gdbarch *gdbarch;
6c95b8df 3277 struct address_space *aspace;
118e6252 3278 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3279
4fa8626c
DJ
3280 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3281 we aren't, just return.
9709f61c
DJ
3282
3283 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3284 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3285 implemented by software breakpoints should be handled through the normal
3286 breakpoint layer.
8fb3e588 3287
4fa8626c
DJ
3288 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3289 different signals (SIGILL or SIGEMT for instance), but it is less
3290 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3291 gdbarch_decr_pc_after_break. I don't know any specific target that
3292 generates these signals at breakpoints (the code has been in GDB since at
3293 least 1992) so I can not guess how to handle them here.
8fb3e588 3294
e6cf7916
UW
3295 In earlier versions of GDB, a target with
3296 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3297 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3298 target with both of these set in GDB history, and it seems unlikely to be
3299 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3300
3301 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3302 return;
3303
a493e3e2 3304 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3305 return;
3306
4058b839
PA
3307 /* In reverse execution, when a breakpoint is hit, the instruction
3308 under it has already been de-executed. The reported PC always
3309 points at the breakpoint address, so adjusting it further would
3310 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3311 architecture:
3312
3313 B1 0x08000000 : INSN1
3314 B2 0x08000001 : INSN2
3315 0x08000002 : INSN3
3316 PC -> 0x08000003 : INSN4
3317
3318 Say you're stopped at 0x08000003 as above. Reverse continuing
3319 from that point should hit B2 as below. Reading the PC when the
3320 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3321 been de-executed already.
3322
3323 B1 0x08000000 : INSN1
3324 B2 PC -> 0x08000001 : INSN2
3325 0x08000002 : INSN3
3326 0x08000003 : INSN4
3327
3328 We can't apply the same logic as for forward execution, because
3329 we would wrongly adjust the PC to 0x08000000, since there's a
3330 breakpoint at PC - 1. We'd then report a hit on B1, although
3331 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3332 behaviour. */
3333 if (execution_direction == EXEC_REVERSE)
3334 return;
3335
24a73cce
UW
3336 /* If this target does not decrement the PC after breakpoints, then
3337 we have nothing to do. */
3338 regcache = get_thread_regcache (ecs->ptid);
3339 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3340
3341 decr_pc = target_decr_pc_after_break (gdbarch);
3342 if (decr_pc == 0)
24a73cce
UW
3343 return;
3344
6c95b8df
PA
3345 aspace = get_regcache_aspace (regcache);
3346
8aad930b
AC
3347 /* Find the location where (if we've hit a breakpoint) the
3348 breakpoint would be. */
118e6252 3349 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3350
1c5cfe86
PA
3351 /* Check whether there actually is a software breakpoint inserted at
3352 that location.
3353
3354 If in non-stop mode, a race condition is possible where we've
3355 removed a breakpoint, but stop events for that breakpoint were
3356 already queued and arrive later. To suppress those spurious
3357 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3358 and retire them after a number of stop events are reported. */
6c95b8df
PA
3359 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3360 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3361 {
77f9e713 3362 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3363
8213266a 3364 if (record_full_is_used ())
77f9e713 3365 record_full_gdb_operation_disable_set ();
96429cc8 3366
1c0fdd0e
UW
3367 /* When using hardware single-step, a SIGTRAP is reported for both
3368 a completed single-step and a software breakpoint. Need to
3369 differentiate between the two, as the latter needs adjusting
3370 but the former does not.
3371
3372 The SIGTRAP can be due to a completed hardware single-step only if
3373 - we didn't insert software single-step breakpoints
3374 - the thread to be examined is still the current thread
3375 - this thread is currently being stepped
3376
3377 If any of these events did not occur, we must have stopped due
3378 to hitting a software breakpoint, and have to back up to the
3379 breakpoint address.
3380
3381 As a special case, we could have hardware single-stepped a
3382 software breakpoint. In this case (prev_pc == breakpoint_pc),
3383 we also need to back up to the breakpoint address. */
3384
34b7e8a6 3385 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
1c0fdd0e 3386 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3387 || !currently_stepping (ecs->event_thread)
3388 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3389 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3390
77f9e713 3391 do_cleanups (old_cleanups);
8aad930b 3392 }
4fa8626c
DJ
3393}
3394
edb3359d
DJ
3395static int
3396stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3397{
3398 for (frame = get_prev_frame (frame);
3399 frame != NULL;
3400 frame = get_prev_frame (frame))
3401 {
3402 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3403 return 1;
3404 if (get_frame_type (frame) != INLINE_FRAME)
3405 break;
3406 }
3407
3408 return 0;
3409}
3410
a96d9b2e
SDJ
3411/* Auxiliary function that handles syscall entry/return events.
3412 It returns 1 if the inferior should keep going (and GDB
3413 should ignore the event), or 0 if the event deserves to be
3414 processed. */
ca2163eb 3415
a96d9b2e 3416static int
ca2163eb 3417handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3418{
ca2163eb 3419 struct regcache *regcache;
ca2163eb
PA
3420 int syscall_number;
3421
3422 if (!ptid_equal (ecs->ptid, inferior_ptid))
3423 context_switch (ecs->ptid);
3424
3425 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3426 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3427 stop_pc = regcache_read_pc (regcache);
3428
a96d9b2e
SDJ
3429 if (catch_syscall_enabled () > 0
3430 && catching_syscall_number (syscall_number) > 0)
3431 {
3432 if (debug_infrun)
3433 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3434 syscall_number);
a96d9b2e 3435
16c381f0 3436 ecs->event_thread->control.stop_bpstat
6c95b8df 3437 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3438 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3439
ce12b012 3440 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3441 {
3442 /* Catchpoint hit. */
ca2163eb
PA
3443 return 0;
3444 }
a96d9b2e 3445 }
ca2163eb
PA
3446
3447 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3448 keep_going (ecs);
3449 return 1;
a96d9b2e
SDJ
3450}
3451
7e324e48
GB
3452/* Lazily fill in the execution_control_state's stop_func_* fields. */
3453
3454static void
3455fill_in_stop_func (struct gdbarch *gdbarch,
3456 struct execution_control_state *ecs)
3457{
3458 if (!ecs->stop_func_filled_in)
3459 {
3460 /* Don't care about return value; stop_func_start and stop_func_name
3461 will both be 0 if it doesn't work. */
3462 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3463 &ecs->stop_func_start, &ecs->stop_func_end);
3464 ecs->stop_func_start
3465 += gdbarch_deprecated_function_start_offset (gdbarch);
3466
591a12a1
UW
3467 if (gdbarch_skip_entrypoint_p (gdbarch))
3468 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3469 ecs->stop_func_start);
3470
7e324e48
GB
3471 ecs->stop_func_filled_in = 1;
3472 }
3473}
3474
4f5d7f63
PA
3475
3476/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3477
3478static enum stop_kind
3479get_inferior_stop_soon (ptid_t ptid)
3480{
3481 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3482
3483 gdb_assert (inf != NULL);
3484 return inf->control.stop_soon;
3485}
3486
05ba8510
PA
3487/* Given an execution control state that has been freshly filled in by
3488 an event from the inferior, figure out what it means and take
3489 appropriate action.
3490
3491 The alternatives are:
3492
22bcd14b 3493 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3494 debugger.
3495
3496 2) keep_going and return; to wait for the next event (set
3497 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3498 once). */
c906108c 3499
ec9499be 3500static void
96baa820 3501handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3502{
d6b48e9c
PA
3503 enum stop_kind stop_soon;
3504
28736962
PA
3505 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3506 {
3507 /* We had an event in the inferior, but we are not interested in
3508 handling it at this level. The lower layers have already
3509 done what needs to be done, if anything.
3510
3511 One of the possible circumstances for this is when the
3512 inferior produces output for the console. The inferior has
3513 not stopped, and we are ignoring the event. Another possible
3514 circumstance is any event which the lower level knows will be
3515 reported multiple times without an intervening resume. */
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3518 prepare_to_wait (ecs);
3519 return;
3520 }
3521
0e5bf2a8
PA
3522 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3523 && target_can_async_p () && !sync_execution)
3524 {
3525 /* There were no unwaited-for children left in the target, but,
3526 we're not synchronously waiting for events either. Just
3527 ignore. Otherwise, if we were running a synchronous
3528 execution command, we need to cancel it and give the user
3529 back the terminal. */
3530 if (debug_infrun)
3531 fprintf_unfiltered (gdb_stdlog,
3532 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3533 prepare_to_wait (ecs);
3534 return;
3535 }
3536
1777feb0 3537 /* Cache the last pid/waitstatus. */
c32c64b7 3538 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3539
ca005067 3540 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3541 stop_stack_dummy = STOP_NONE;
ca005067 3542
0e5bf2a8
PA
3543 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3544 {
3545 /* No unwaited-for children left. IOW, all resumed children
3546 have exited. */
3547 if (debug_infrun)
3548 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3549
3550 stop_print_frame = 0;
22bcd14b 3551 stop_waiting (ecs);
0e5bf2a8
PA
3552 return;
3553 }
3554
8c90c137 3555 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3556 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3557 {
3558 ecs->event_thread = find_thread_ptid (ecs->ptid);
3559 /* If it's a new thread, add it to the thread database. */
3560 if (ecs->event_thread == NULL)
3561 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3562
3563 /* Disable range stepping. If the next step request could use a
3564 range, this will be end up re-enabled then. */
3565 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3566 }
88ed393a
JK
3567
3568 /* Dependent on valid ECS->EVENT_THREAD. */
3569 adjust_pc_after_break (ecs);
3570
3571 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3572 reinit_frame_cache ();
3573
28736962
PA
3574 breakpoint_retire_moribund ();
3575
2b009048
DJ
3576 /* First, distinguish signals caused by the debugger from signals
3577 that have to do with the program's own actions. Note that
3578 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3579 on the operating system version. Here we detect when a SIGILL or
3580 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3581 something similar for SIGSEGV, since a SIGSEGV will be generated
3582 when we're trying to execute a breakpoint instruction on a
3583 non-executable stack. This happens for call dummy breakpoints
3584 for architectures like SPARC that place call dummies on the
3585 stack. */
2b009048 3586 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3587 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3588 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3589 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3590 {
de0a0249
UW
3591 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3592
3593 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3594 regcache_read_pc (regcache)))
3595 {
3596 if (debug_infrun)
3597 fprintf_unfiltered (gdb_stdlog,
3598 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3599 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3600 }
2b009048
DJ
3601 }
3602
28736962
PA
3603 /* Mark the non-executing threads accordingly. In all-stop, all
3604 threads of all processes are stopped when we get any event
3605 reported. In non-stop mode, only the event thread stops. If
3606 we're handling a process exit in non-stop mode, there's nothing
3607 to do, as threads of the dead process are gone, and threads of
3608 any other process were left running. */
3609 if (!non_stop)
3610 set_executing (minus_one_ptid, 0);
3611 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3612 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3613 set_executing (ecs->ptid, 0);
8c90c137 3614
488f131b
JB
3615 switch (ecs->ws.kind)
3616 {
3617 case TARGET_WAITKIND_LOADED:
527159b7 3618 if (debug_infrun)
8a9de0e4 3619 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3620 if (!ptid_equal (ecs->ptid, inferior_ptid))
3621 context_switch (ecs->ptid);
b0f4b84b
DJ
3622 /* Ignore gracefully during startup of the inferior, as it might
3623 be the shell which has just loaded some objects, otherwise
3624 add the symbols for the newly loaded objects. Also ignore at
3625 the beginning of an attach or remote session; we will query
3626 the full list of libraries once the connection is
3627 established. */
4f5d7f63
PA
3628
3629 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3630 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3631 {
edcc5120
TT
3632 struct regcache *regcache;
3633
edcc5120
TT
3634 regcache = get_thread_regcache (ecs->ptid);
3635
3636 handle_solib_event ();
3637
3638 ecs->event_thread->control.stop_bpstat
3639 = bpstat_stop_status (get_regcache_aspace (regcache),
3640 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3641
ce12b012 3642 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3643 {
3644 /* A catchpoint triggered. */
94c57d6a
PA
3645 process_event_stop_test (ecs);
3646 return;
edcc5120 3647 }
488f131b 3648
b0f4b84b
DJ
3649 /* If requested, stop when the dynamic linker notifies
3650 gdb of events. This allows the user to get control
3651 and place breakpoints in initializer routines for
3652 dynamically loaded objects (among other things). */
a493e3e2 3653 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3654 if (stop_on_solib_events)
3655 {
55409f9d
DJ
3656 /* Make sure we print "Stopped due to solib-event" in
3657 normal_stop. */
3658 stop_print_frame = 1;
3659
22bcd14b 3660 stop_waiting (ecs);
b0f4b84b
DJ
3661 return;
3662 }
488f131b 3663 }
b0f4b84b
DJ
3664
3665 /* If we are skipping through a shell, or through shared library
3666 loading that we aren't interested in, resume the program. If
5c09a2c5 3667 we're running the program normally, also resume. */
b0f4b84b
DJ
3668 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3669 {
74960c60
VP
3670 /* Loading of shared libraries might have changed breakpoint
3671 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3672 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3673 insert_breakpoints ();
a493e3e2 3674 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3675 prepare_to_wait (ecs);
3676 return;
3677 }
3678
5c09a2c5
PA
3679 /* But stop if we're attaching or setting up a remote
3680 connection. */
3681 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3682 || stop_soon == STOP_QUIETLY_REMOTE)
3683 {
3684 if (debug_infrun)
3685 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3686 stop_waiting (ecs);
5c09a2c5
PA
3687 return;
3688 }
3689
3690 internal_error (__FILE__, __LINE__,
3691 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3692
488f131b 3693 case TARGET_WAITKIND_SPURIOUS:
527159b7 3694 if (debug_infrun)
8a9de0e4 3695 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3696 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3697 context_switch (ecs->ptid);
a493e3e2 3698 resume (0, GDB_SIGNAL_0);
488f131b
JB
3699 prepare_to_wait (ecs);
3700 return;
c5aa993b 3701
488f131b 3702 case TARGET_WAITKIND_EXITED:
940c3c06 3703 case TARGET_WAITKIND_SIGNALLED:
527159b7 3704 if (debug_infrun)
940c3c06
PA
3705 {
3706 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3707 fprintf_unfiltered (gdb_stdlog,
3708 "infrun: TARGET_WAITKIND_EXITED\n");
3709 else
3710 fprintf_unfiltered (gdb_stdlog,
3711 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3712 }
3713
fb66883a 3714 inferior_ptid = ecs->ptid;
6c95b8df
PA
3715 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3716 set_current_program_space (current_inferior ()->pspace);
3717 handle_vfork_child_exec_or_exit (0);
1777feb0 3718 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3719
0c557179
SDJ
3720 /* Clearing any previous state of convenience variables. */
3721 clear_exit_convenience_vars ();
3722
940c3c06
PA
3723 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3724 {
3725 /* Record the exit code in the convenience variable $_exitcode, so
3726 that the user can inspect this again later. */
3727 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3728 (LONGEST) ecs->ws.value.integer);
3729
3730 /* Also record this in the inferior itself. */
3731 current_inferior ()->has_exit_code = 1;
3732 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3733
98eb56a4
PA
3734 /* Support the --return-child-result option. */
3735 return_child_result_value = ecs->ws.value.integer;
3736
fd664c91 3737 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3738 }
3739 else
0c557179
SDJ
3740 {
3741 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3742 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3743
3744 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3745 {
3746 /* Set the value of the internal variable $_exitsignal,
3747 which holds the signal uncaught by the inferior. */
3748 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3749 gdbarch_gdb_signal_to_target (gdbarch,
3750 ecs->ws.value.sig));
3751 }
3752 else
3753 {
3754 /* We don't have access to the target's method used for
3755 converting between signal numbers (GDB's internal
3756 representation <-> target's representation).
3757 Therefore, we cannot do a good job at displaying this
3758 information to the user. It's better to just warn
3759 her about it (if infrun debugging is enabled), and
3760 give up. */
3761 if (debug_infrun)
3762 fprintf_filtered (gdb_stdlog, _("\
3763Cannot fill $_exitsignal with the correct signal number.\n"));
3764 }
3765
fd664c91 3766 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3767 }
8cf64490 3768
488f131b
JB
3769 gdb_flush (gdb_stdout);
3770 target_mourn_inferior ();
488f131b 3771 stop_print_frame = 0;
22bcd14b 3772 stop_waiting (ecs);
488f131b 3773 return;
c5aa993b 3774
488f131b 3775 /* The following are the only cases in which we keep going;
1777feb0 3776 the above cases end in a continue or goto. */
488f131b 3777 case TARGET_WAITKIND_FORKED:
deb3b17b 3778 case TARGET_WAITKIND_VFORKED:
527159b7 3779 if (debug_infrun)
fed708ed
PA
3780 {
3781 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3782 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3783 else
3784 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3785 }
c906108c 3786
e2d96639
YQ
3787 /* Check whether the inferior is displaced stepping. */
3788 {
3789 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3790 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3791 struct displaced_step_inferior_state *displaced
3792 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3793
3794 /* If checking displaced stepping is supported, and thread
3795 ecs->ptid is displaced stepping. */
3796 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3797 {
3798 struct inferior *parent_inf
3799 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3800 struct regcache *child_regcache;
3801 CORE_ADDR parent_pc;
3802
3803 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3804 indicating that the displaced stepping of syscall instruction
3805 has been done. Perform cleanup for parent process here. Note
3806 that this operation also cleans up the child process for vfork,
3807 because their pages are shared. */
a493e3e2 3808 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3809
3810 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3811 {
3812 /* Restore scratch pad for child process. */
3813 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3814 }
3815
3816 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3817 the child's PC is also within the scratchpad. Set the child's PC
3818 to the parent's PC value, which has already been fixed up.
3819 FIXME: we use the parent's aspace here, although we're touching
3820 the child, because the child hasn't been added to the inferior
3821 list yet at this point. */
3822
3823 child_regcache
3824 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3825 gdbarch,
3826 parent_inf->aspace);
3827 /* Read PC value of parent process. */
3828 parent_pc = regcache_read_pc (regcache);
3829
3830 if (debug_displaced)
3831 fprintf_unfiltered (gdb_stdlog,
3832 "displaced: write child pc from %s to %s\n",
3833 paddress (gdbarch,
3834 regcache_read_pc (child_regcache)),
3835 paddress (gdbarch, parent_pc));
3836
3837 regcache_write_pc (child_regcache, parent_pc);
3838 }
3839 }
3840
5a2901d9 3841 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3842 context_switch (ecs->ptid);
5a2901d9 3843
b242c3c2
PA
3844 /* Immediately detach breakpoints from the child before there's
3845 any chance of letting the user delete breakpoints from the
3846 breakpoint lists. If we don't do this early, it's easy to
3847 leave left over traps in the child, vis: "break foo; catch
3848 fork; c; <fork>; del; c; <child calls foo>". We only follow
3849 the fork on the last `continue', and by that time the
3850 breakpoint at "foo" is long gone from the breakpoint table.
3851 If we vforked, then we don't need to unpatch here, since both
3852 parent and child are sharing the same memory pages; we'll
3853 need to unpatch at follow/detach time instead to be certain
3854 that new breakpoints added between catchpoint hit time and
3855 vfork follow are detached. */
3856 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3857 {
b242c3c2
PA
3858 /* This won't actually modify the breakpoint list, but will
3859 physically remove the breakpoints from the child. */
d80ee84f 3860 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3861 }
3862
34b7e8a6 3863 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 3864
e58b0e63
PA
3865 /* In case the event is caught by a catchpoint, remember that
3866 the event is to be followed at the next resume of the thread,
3867 and not immediately. */
3868 ecs->event_thread->pending_follow = ecs->ws;
3869
fb14de7b 3870 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3871
16c381f0 3872 ecs->event_thread->control.stop_bpstat
6c95b8df 3873 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3874 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3875
ce12b012
PA
3876 /* If no catchpoint triggered for this, then keep going. Note
3877 that we're interested in knowing the bpstat actually causes a
3878 stop, not just if it may explain the signal. Software
3879 watchpoints, for example, always appear in the bpstat. */
3880 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3881 {
6c95b8df
PA
3882 ptid_t parent;
3883 ptid_t child;
e58b0e63 3884 int should_resume;
3e43a32a
MS
3885 int follow_child
3886 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3887
a493e3e2 3888 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3889
3890 should_resume = follow_fork ();
3891
6c95b8df
PA
3892 parent = ecs->ptid;
3893 child = ecs->ws.value.related_pid;
3894
3895 /* In non-stop mode, also resume the other branch. */
3896 if (non_stop && !detach_fork)
3897 {
3898 if (follow_child)
3899 switch_to_thread (parent);
3900 else
3901 switch_to_thread (child);
3902
3903 ecs->event_thread = inferior_thread ();
3904 ecs->ptid = inferior_ptid;
3905 keep_going (ecs);
3906 }
3907
3908 if (follow_child)
3909 switch_to_thread (child);
3910 else
3911 switch_to_thread (parent);
3912
e58b0e63
PA
3913 ecs->event_thread = inferior_thread ();
3914 ecs->ptid = inferior_ptid;
3915
3916 if (should_resume)
3917 keep_going (ecs);
3918 else
22bcd14b 3919 stop_waiting (ecs);
04e68871
DJ
3920 return;
3921 }
94c57d6a
PA
3922 process_event_stop_test (ecs);
3923 return;
488f131b 3924
6c95b8df
PA
3925 case TARGET_WAITKIND_VFORK_DONE:
3926 /* Done with the shared memory region. Re-insert breakpoints in
3927 the parent, and keep going. */
3928
3929 if (debug_infrun)
3e43a32a
MS
3930 fprintf_unfiltered (gdb_stdlog,
3931 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3932
3933 if (!ptid_equal (ecs->ptid, inferior_ptid))
3934 context_switch (ecs->ptid);
3935
3936 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3937 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3938 /* This also takes care of reinserting breakpoints in the
3939 previously locked inferior. */
3940 keep_going (ecs);
3941 return;
3942
488f131b 3943 case TARGET_WAITKIND_EXECD:
527159b7 3944 if (debug_infrun)
fc5261f2 3945 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3946
5a2901d9 3947 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3948 context_switch (ecs->ptid);
5a2901d9 3949
fb14de7b 3950 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3951
6c95b8df
PA
3952 /* Do whatever is necessary to the parent branch of the vfork. */
3953 handle_vfork_child_exec_or_exit (1);
3954
795e548f
PA
3955 /* This causes the eventpoints and symbol table to be reset.
3956 Must do this now, before trying to determine whether to
3957 stop. */
71b43ef8 3958 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3959
16c381f0 3960 ecs->event_thread->control.stop_bpstat
6c95b8df 3961 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3962 stop_pc, ecs->ptid, &ecs->ws);
795e548f 3963
71b43ef8
PA
3964 /* Note that this may be referenced from inside
3965 bpstat_stop_status above, through inferior_has_execd. */
3966 xfree (ecs->ws.value.execd_pathname);
3967 ecs->ws.value.execd_pathname = NULL;
3968
04e68871 3969 /* If no catchpoint triggered for this, then keep going. */
ce12b012 3970 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3971 {
a493e3e2 3972 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3973 keep_going (ecs);
3974 return;
3975 }
94c57d6a
PA
3976 process_event_stop_test (ecs);
3977 return;
488f131b 3978
b4dc5ffa
MK
3979 /* Be careful not to try to gather much state about a thread
3980 that's in a syscall. It's frequently a losing proposition. */
488f131b 3981 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3982 if (debug_infrun)
3e43a32a
MS
3983 fprintf_unfiltered (gdb_stdlog,
3984 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3985 /* Getting the current syscall number. */
94c57d6a
PA
3986 if (handle_syscall_event (ecs) == 0)
3987 process_event_stop_test (ecs);
3988 return;
c906108c 3989
488f131b
JB
3990 /* Before examining the threads further, step this thread to
3991 get it entirely out of the syscall. (We get notice of the
3992 event when the thread is just on the verge of exiting a
3993 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3994 into user code.) */
488f131b 3995 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3996 if (debug_infrun)
3e43a32a
MS
3997 fprintf_unfiltered (gdb_stdlog,
3998 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3999 if (handle_syscall_event (ecs) == 0)
4000 process_event_stop_test (ecs);
4001 return;
c906108c 4002
488f131b 4003 case TARGET_WAITKIND_STOPPED:
527159b7 4004 if (debug_infrun)
8a9de0e4 4005 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 4006 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
4007 handle_signal_stop (ecs);
4008 return;
c906108c 4009
b2175913 4010 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4011 if (debug_infrun)
4012 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4013 /* Reverse execution: target ran out of history info. */
eab402df 4014
34b7e8a6 4015 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4016 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4017 observer_notify_no_history ();
22bcd14b 4018 stop_waiting (ecs);
b2175913 4019 return;
488f131b 4020 }
4f5d7f63
PA
4021}
4022
4023/* Come here when the program has stopped with a signal. */
4024
4025static void
4026handle_signal_stop (struct execution_control_state *ecs)
4027{
4028 struct frame_info *frame;
4029 struct gdbarch *gdbarch;
4030 int stopped_by_watchpoint;
4031 enum stop_kind stop_soon;
4032 int random_signal;
c906108c 4033
f0407826
DE
4034 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4035
4036 /* Do we need to clean up the state of a thread that has
4037 completed a displaced single-step? (Doing so usually affects
4038 the PC, so do it here, before we set stop_pc.) */
4039 displaced_step_fixup (ecs->ptid,
4040 ecs->event_thread->suspend.stop_signal);
4041
4042 /* If we either finished a single-step or hit a breakpoint, but
4043 the user wanted this thread to be stopped, pretend we got a
4044 SIG0 (generic unsignaled stop). */
4045 if (ecs->event_thread->stop_requested
4046 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4047 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4048
515630c5 4049 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4050
527159b7 4051 if (debug_infrun)
237fc4c9 4052 {
5af949e3
UW
4053 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4054 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4055 struct cleanup *old_chain = save_inferior_ptid ();
4056
4057 inferior_ptid = ecs->ptid;
5af949e3
UW
4058
4059 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4060 paddress (gdbarch, stop_pc));
d92524f1 4061 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4062 {
4063 CORE_ADDR addr;
abbb1732 4064
237fc4c9
PA
4065 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4066
4067 if (target_stopped_data_address (&current_target, &addr))
4068 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4069 "infrun: stopped data address = %s\n",
4070 paddress (gdbarch, addr));
237fc4c9
PA
4071 else
4072 fprintf_unfiltered (gdb_stdlog,
4073 "infrun: (no data address available)\n");
4074 }
7f82dfc7
JK
4075
4076 do_cleanups (old_chain);
237fc4c9 4077 }
527159b7 4078
36fa8042
PA
4079 /* This is originated from start_remote(), start_inferior() and
4080 shared libraries hook functions. */
4081 stop_soon = get_inferior_stop_soon (ecs->ptid);
4082 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4083 {
4084 if (!ptid_equal (ecs->ptid, inferior_ptid))
4085 context_switch (ecs->ptid);
4086 if (debug_infrun)
4087 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4088 stop_print_frame = 1;
22bcd14b 4089 stop_waiting (ecs);
36fa8042
PA
4090 return;
4091 }
4092
4093 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4094 && stop_after_trap)
4095 {
4096 if (!ptid_equal (ecs->ptid, inferior_ptid))
4097 context_switch (ecs->ptid);
4098 if (debug_infrun)
4099 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4100 stop_print_frame = 0;
22bcd14b 4101 stop_waiting (ecs);
36fa8042
PA
4102 return;
4103 }
4104
4105 /* This originates from attach_command(). We need to overwrite
4106 the stop_signal here, because some kernels don't ignore a
4107 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4108 See more comments in inferior.h. On the other hand, if we
4109 get a non-SIGSTOP, report it to the user - assume the backend
4110 will handle the SIGSTOP if it should show up later.
4111
4112 Also consider that the attach is complete when we see a
4113 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4114 target extended-remote report it instead of a SIGSTOP
4115 (e.g. gdbserver). We already rely on SIGTRAP being our
4116 signal, so this is no exception.
4117
4118 Also consider that the attach is complete when we see a
4119 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4120 the target to stop all threads of the inferior, in case the
4121 low level attach operation doesn't stop them implicitly. If
4122 they weren't stopped implicitly, then the stub will report a
4123 GDB_SIGNAL_0, meaning: stopped for no particular reason
4124 other than GDB's request. */
4125 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4126 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4127 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4128 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4129 {
4130 stop_print_frame = 1;
22bcd14b 4131 stop_waiting (ecs);
36fa8042
PA
4132 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4133 return;
4134 }
4135
488f131b 4136 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4137 so, then switch to that thread. */
4138 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4139 {
527159b7 4140 if (debug_infrun)
8a9de0e4 4141 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4142
0d1e5fa7 4143 context_switch (ecs->ptid);
c5aa993b 4144
9a4105ab
AC
4145 if (deprecated_context_hook)
4146 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4147 }
c906108c 4148
568d6575
UW
4149 /* At this point, get hold of the now-current thread's frame. */
4150 frame = get_current_frame ();
4151 gdbarch = get_frame_arch (frame);
4152
2adfaa28 4153 /* Pull the single step breakpoints out of the target. */
34b7e8a6 4154 if (gdbarch_software_single_step_p (gdbarch))
488f131b 4155 {
34b7e8a6 4156 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
2adfaa28
PA
4157 {
4158 struct regcache *regcache;
4159 struct address_space *aspace;
4160 CORE_ADDR pc;
4161
4162 regcache = get_thread_regcache (ecs->ptid);
4163 aspace = get_regcache_aspace (regcache);
4164 pc = regcache_read_pc (regcache);
34b7e8a6
PA
4165
4166 /* However, before doing so, if this single-step breakpoint was
4167 actually for another thread, set this thread up for moving
4168 past it. */
4169 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4170 aspace, pc))
4171 {
4172 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4173 {
4174 if (debug_infrun)
4175 {
4176 fprintf_unfiltered (gdb_stdlog,
4177 "infrun: [%s] hit another thread's "
4178 "single-step breakpoint\n",
4179 target_pid_to_str (ecs->ptid));
4180 }
4181 ecs->hit_singlestep_breakpoint = 1;
4182 }
4183 }
4184 else
2adfaa28
PA
4185 {
4186 if (debug_infrun)
4187 {
4188 fprintf_unfiltered (gdb_stdlog,
34b7e8a6
PA
4189 "infrun: [%s] hit its "
4190 "single-step breakpoint\n",
4191 target_pid_to_str (ecs->ptid));
2adfaa28 4192 }
2adfaa28
PA
4193 }
4194 }
4195
34b7e8a6 4196 delete_just_stopped_threads_single_step_breakpoints ();
488f131b 4197 }
c906108c 4198
963f9c80
PA
4199 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4200 && ecs->event_thread->control.trap_expected
4201 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4202 stopped_by_watchpoint = 0;
4203 else
4204 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4205
4206 /* If necessary, step over this watchpoint. We'll be back to display
4207 it in a moment. */
4208 if (stopped_by_watchpoint
d92524f1 4209 && (target_have_steppable_watchpoint
568d6575 4210 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4211 {
488f131b
JB
4212 /* At this point, we are stopped at an instruction which has
4213 attempted to write to a piece of memory under control of
4214 a watchpoint. The instruction hasn't actually executed
4215 yet. If we were to evaluate the watchpoint expression
4216 now, we would get the old value, and therefore no change
4217 would seem to have occurred.
4218
4219 In order to make watchpoints work `right', we really need
4220 to complete the memory write, and then evaluate the
d983da9c
DJ
4221 watchpoint expression. We do this by single-stepping the
4222 target.
4223
7f89fd65 4224 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4225 it. For example, the PA can (with some kernel cooperation)
4226 single step over a watchpoint without disabling the watchpoint.
4227
4228 It is far more common to need to disable a watchpoint to step
4229 the inferior over it. If we have non-steppable watchpoints,
4230 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4231 disable all watchpoints.
4232
4233 Any breakpoint at PC must also be stepped over -- if there's
4234 one, it will have already triggered before the watchpoint
4235 triggered, and we either already reported it to the user, or
4236 it didn't cause a stop and we called keep_going. In either
4237 case, if there was a breakpoint at PC, we must be trying to
4238 step past it. */
4239 ecs->event_thread->stepping_over_watchpoint = 1;
4240 keep_going (ecs);
488f131b
JB
4241 return;
4242 }
4243
4e1c45ea 4244 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4245 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4246 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4247 ecs->event_thread->control.stop_step = 0;
488f131b 4248 stop_print_frame = 1;
488f131b 4249 stopped_by_random_signal = 0;
488f131b 4250
edb3359d
DJ
4251 /* Hide inlined functions starting here, unless we just performed stepi or
4252 nexti. After stepi and nexti, always show the innermost frame (not any
4253 inline function call sites). */
16c381f0 4254 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4255 {
4256 struct address_space *aspace =
4257 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4258
4259 /* skip_inline_frames is expensive, so we avoid it if we can
4260 determine that the address is one where functions cannot have
4261 been inlined. This improves performance with inferiors that
4262 load a lot of shared libraries, because the solib event
4263 breakpoint is defined as the address of a function (i.e. not
4264 inline). Note that we have to check the previous PC as well
4265 as the current one to catch cases when we have just
4266 single-stepped off a breakpoint prior to reinstating it.
4267 Note that we're assuming that the code we single-step to is
4268 not inline, but that's not definitive: there's nothing
4269 preventing the event breakpoint function from containing
4270 inlined code, and the single-step ending up there. If the
4271 user had set a breakpoint on that inlined code, the missing
4272 skip_inline_frames call would break things. Fortunately
4273 that's an extremely unlikely scenario. */
09ac7c10 4274 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4275 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4276 && ecs->event_thread->control.trap_expected
4277 && pc_at_non_inline_function (aspace,
4278 ecs->event_thread->prev_pc,
09ac7c10 4279 &ecs->ws)))
1c5a993e
MR
4280 {
4281 skip_inline_frames (ecs->ptid);
4282
4283 /* Re-fetch current thread's frame in case that invalidated
4284 the frame cache. */
4285 frame = get_current_frame ();
4286 gdbarch = get_frame_arch (frame);
4287 }
0574c78f 4288 }
edb3359d 4289
a493e3e2 4290 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4291 && ecs->event_thread->control.trap_expected
568d6575 4292 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4293 && currently_stepping (ecs->event_thread))
3352ef37 4294 {
b50d7442 4295 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4296 also on an instruction that needs to be stepped multiple
1777feb0 4297 times before it's been fully executing. E.g., architectures
3352ef37
AC
4298 with a delay slot. It needs to be stepped twice, once for
4299 the instruction and once for the delay slot. */
4300 int step_through_delay
568d6575 4301 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4302
527159b7 4303 if (debug_infrun && step_through_delay)
8a9de0e4 4304 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4305 if (ecs->event_thread->control.step_range_end == 0
4306 && step_through_delay)
3352ef37
AC
4307 {
4308 /* The user issued a continue when stopped at a breakpoint.
4309 Set up for another trap and get out of here. */
4e1c45ea 4310 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4311 keep_going (ecs);
4312 return;
4313 }
4314 else if (step_through_delay)
4315 {
4316 /* The user issued a step when stopped at a breakpoint.
4317 Maybe we should stop, maybe we should not - the delay
4318 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4319 case, don't decide that here, just set
4320 ecs->stepping_over_breakpoint, making sure we
4321 single-step again before breakpoints are re-inserted. */
4e1c45ea 4322 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4323 }
4324 }
4325
ab04a2af
TT
4326 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4327 handles this event. */
4328 ecs->event_thread->control.stop_bpstat
4329 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4330 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4331
ab04a2af
TT
4332 /* Following in case break condition called a
4333 function. */
4334 stop_print_frame = 1;
73dd234f 4335
ab04a2af
TT
4336 /* This is where we handle "moribund" watchpoints. Unlike
4337 software breakpoints traps, hardware watchpoint traps are
4338 always distinguishable from random traps. If no high-level
4339 watchpoint is associated with the reported stop data address
4340 anymore, then the bpstat does not explain the signal ---
4341 simply make sure to ignore it if `stopped_by_watchpoint' is
4342 set. */
4343
4344 if (debug_infrun
4345 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4346 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4347 GDB_SIGNAL_TRAP)
ab04a2af
TT
4348 && stopped_by_watchpoint)
4349 fprintf_unfiltered (gdb_stdlog,
4350 "infrun: no user watchpoint explains "
4351 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4352
bac7d97b 4353 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4354 at one stage in the past included checks for an inferior
4355 function call's call dummy's return breakpoint. The original
4356 comment, that went with the test, read:
03cebad2 4357
ab04a2af
TT
4358 ``End of a stack dummy. Some systems (e.g. Sony news) give
4359 another signal besides SIGTRAP, so check here as well as
4360 above.''
73dd234f 4361
ab04a2af
TT
4362 If someone ever tries to get call dummys on a
4363 non-executable stack to work (where the target would stop
4364 with something like a SIGSEGV), then those tests might need
4365 to be re-instated. Given, however, that the tests were only
4366 enabled when momentary breakpoints were not being used, I
4367 suspect that it won't be the case.
488f131b 4368
ab04a2af
TT
4369 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4370 be necessary for call dummies on a non-executable stack on
4371 SPARC. */
488f131b 4372
bac7d97b 4373 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4374 random_signal
4375 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4376 ecs->event_thread->suspend.stop_signal);
bac7d97b
PA
4377
4378 /* If not, perhaps stepping/nexting can. */
4379 if (random_signal)
4380 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4381 && currently_stepping (ecs->event_thread));
ab04a2af 4382
2adfaa28
PA
4383 /* Perhaps the thread hit a single-step breakpoint of _another_
4384 thread. Single-step breakpoints are transparent to the
4385 breakpoints module. */
4386 if (random_signal)
4387 random_signal = !ecs->hit_singlestep_breakpoint;
4388
bac7d97b
PA
4389 /* No? Perhaps we got a moribund watchpoint. */
4390 if (random_signal)
4391 random_signal = !stopped_by_watchpoint;
ab04a2af 4392
488f131b
JB
4393 /* For the program's own signals, act according to
4394 the signal handling tables. */
4395
ce12b012 4396 if (random_signal)
488f131b
JB
4397 {
4398 /* Signal not for debugging purposes. */
24291992 4399 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4400 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4401
527159b7 4402 if (debug_infrun)
c9737c08
PA
4403 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4404 gdb_signal_to_symbol_string (stop_signal));
527159b7 4405
488f131b
JB
4406 stopped_by_random_signal = 1;
4407
252fbfc8
PA
4408 /* Always stop on signals if we're either just gaining control
4409 of the program, or the user explicitly requested this thread
4410 to remain stopped. */
d6b48e9c 4411 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4412 || ecs->event_thread->stop_requested
24291992 4413 || (!inf->detaching
16c381f0 4414 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4415 {
22bcd14b 4416 stop_waiting (ecs);
488f131b
JB
4417 return;
4418 }
b57bacec
PA
4419
4420 /* Notify observers the signal has "handle print" set. Note we
4421 returned early above if stopping; normal_stop handles the
4422 printing in that case. */
4423 if (signal_print[ecs->event_thread->suspend.stop_signal])
4424 {
4425 /* The signal table tells us to print about this signal. */
4426 target_terminal_ours_for_output ();
4427 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4428 target_terminal_inferior ();
4429 }
488f131b
JB
4430
4431 /* Clear the signal if it should not be passed. */
16c381f0 4432 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4433 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4434
fb14de7b 4435 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4436 && ecs->event_thread->control.trap_expected
8358c15c 4437 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4438 {
4439 /* We were just starting a new sequence, attempting to
4440 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4441 Instead this signal arrives. This signal will take us out
68f53502
AC
4442 of the stepping range so GDB needs to remember to, when
4443 the signal handler returns, resume stepping off that
4444 breakpoint. */
4445 /* To simplify things, "continue" is forced to use the same
4446 code paths as single-step - set a breakpoint at the
4447 signal return address and then, once hit, step off that
4448 breakpoint. */
237fc4c9
PA
4449 if (debug_infrun)
4450 fprintf_unfiltered (gdb_stdlog,
4451 "infrun: signal arrived while stepping over "
4452 "breakpoint\n");
d3169d93 4453
2c03e5be 4454 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4455 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4456 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4457 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4458
4459 /* If we were nexting/stepping some other thread, switch to
4460 it, so that we don't continue it, losing control. */
4461 if (!switch_back_to_stepped_thread (ecs))
4462 keep_going (ecs);
9d799f85 4463 return;
68f53502 4464 }
9d799f85 4465
e5f8a7cc
PA
4466 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4467 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4468 || ecs->event_thread->control.step_range_end == 1)
edb3359d 4469 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4470 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4471 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4472 {
4473 /* The inferior is about to take a signal that will take it
4474 out of the single step range. Set a breakpoint at the
4475 current PC (which is presumably where the signal handler
4476 will eventually return) and then allow the inferior to
4477 run free.
4478
4479 Note that this is only needed for a signal delivered
4480 while in the single-step range. Nested signals aren't a
4481 problem as they eventually all return. */
237fc4c9
PA
4482 if (debug_infrun)
4483 fprintf_unfiltered (gdb_stdlog,
4484 "infrun: signal may take us out of "
4485 "single-step range\n");
4486
2c03e5be 4487 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 4488 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4489 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4490 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4491 keep_going (ecs);
4492 return;
d303a6c7 4493 }
9d799f85
AC
4494
4495 /* Note: step_resume_breakpoint may be non-NULL. This occures
4496 when either there's a nested signal, or when there's a
4497 pending signal enabled just as the signal handler returns
4498 (leaving the inferior at the step-resume-breakpoint without
4499 actually executing it). Either way continue until the
4500 breakpoint is really hit. */
c447ac0b
PA
4501
4502 if (!switch_back_to_stepped_thread (ecs))
4503 {
4504 if (debug_infrun)
4505 fprintf_unfiltered (gdb_stdlog,
4506 "infrun: random signal, keep going\n");
4507
4508 keep_going (ecs);
4509 }
4510 return;
488f131b 4511 }
94c57d6a
PA
4512
4513 process_event_stop_test (ecs);
4514}
4515
4516/* Come here when we've got some debug event / signal we can explain
4517 (IOW, not a random signal), and test whether it should cause a
4518 stop, or whether we should resume the inferior (transparently).
4519 E.g., could be a breakpoint whose condition evaluates false; we
4520 could be still stepping within the line; etc. */
4521
4522static void
4523process_event_stop_test (struct execution_control_state *ecs)
4524{
4525 struct symtab_and_line stop_pc_sal;
4526 struct frame_info *frame;
4527 struct gdbarch *gdbarch;
cdaa5b73
PA
4528 CORE_ADDR jmp_buf_pc;
4529 struct bpstat_what what;
94c57d6a 4530
cdaa5b73 4531 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4532
cdaa5b73
PA
4533 frame = get_current_frame ();
4534 gdbarch = get_frame_arch (frame);
fcf3daef 4535
cdaa5b73 4536 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4537
cdaa5b73
PA
4538 if (what.call_dummy)
4539 {
4540 stop_stack_dummy = what.call_dummy;
4541 }
186c406b 4542
cdaa5b73
PA
4543 /* If we hit an internal event that triggers symbol changes, the
4544 current frame will be invalidated within bpstat_what (e.g., if we
4545 hit an internal solib event). Re-fetch it. */
4546 frame = get_current_frame ();
4547 gdbarch = get_frame_arch (frame);
e2e4d78b 4548
cdaa5b73
PA
4549 switch (what.main_action)
4550 {
4551 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4552 /* If we hit the breakpoint at longjmp while stepping, we
4553 install a momentary breakpoint at the target of the
4554 jmp_buf. */
186c406b 4555
cdaa5b73
PA
4556 if (debug_infrun)
4557 fprintf_unfiltered (gdb_stdlog,
4558 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4559
cdaa5b73 4560 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4561
cdaa5b73
PA
4562 if (what.is_longjmp)
4563 {
4564 struct value *arg_value;
4565
4566 /* If we set the longjmp breakpoint via a SystemTap probe,
4567 then use it to extract the arguments. The destination PC
4568 is the third argument to the probe. */
4569 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4570 if (arg_value)
8fa0c4f8
AA
4571 {
4572 jmp_buf_pc = value_as_address (arg_value);
4573 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4574 }
cdaa5b73
PA
4575 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4576 || !gdbarch_get_longjmp_target (gdbarch,
4577 frame, &jmp_buf_pc))
e2e4d78b 4578 {
cdaa5b73
PA
4579 if (debug_infrun)
4580 fprintf_unfiltered (gdb_stdlog,
4581 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4582 "(!gdbarch_get_longjmp_target)\n");
4583 keep_going (ecs);
4584 return;
e2e4d78b 4585 }
e2e4d78b 4586
cdaa5b73
PA
4587 /* Insert a breakpoint at resume address. */
4588 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4589 }
4590 else
4591 check_exception_resume (ecs, frame);
4592 keep_going (ecs);
4593 return;
e81a37f7 4594
cdaa5b73
PA
4595 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4596 {
4597 struct frame_info *init_frame;
e81a37f7 4598
cdaa5b73 4599 /* There are several cases to consider.
c906108c 4600
cdaa5b73
PA
4601 1. The initiating frame no longer exists. In this case we
4602 must stop, because the exception or longjmp has gone too
4603 far.
2c03e5be 4604
cdaa5b73
PA
4605 2. The initiating frame exists, and is the same as the
4606 current frame. We stop, because the exception or longjmp
4607 has been caught.
2c03e5be 4608
cdaa5b73
PA
4609 3. The initiating frame exists and is different from the
4610 current frame. This means the exception or longjmp has
4611 been caught beneath the initiating frame, so keep going.
c906108c 4612
cdaa5b73
PA
4613 4. longjmp breakpoint has been placed just to protect
4614 against stale dummy frames and user is not interested in
4615 stopping around longjmps. */
c5aa993b 4616
cdaa5b73
PA
4617 if (debug_infrun)
4618 fprintf_unfiltered (gdb_stdlog,
4619 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4620
cdaa5b73
PA
4621 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4622 != NULL);
4623 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4624
cdaa5b73
PA
4625 if (what.is_longjmp)
4626 {
b67a2c6f 4627 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4628
cdaa5b73 4629 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4630 {
cdaa5b73
PA
4631 /* Case 4. */
4632 keep_going (ecs);
4633 return;
e5ef252a 4634 }
cdaa5b73 4635 }
c5aa993b 4636
cdaa5b73 4637 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4638
cdaa5b73
PA
4639 if (init_frame)
4640 {
4641 struct frame_id current_id
4642 = get_frame_id (get_current_frame ());
4643 if (frame_id_eq (current_id,
4644 ecs->event_thread->initiating_frame))
4645 {
4646 /* Case 2. Fall through. */
4647 }
4648 else
4649 {
4650 /* Case 3. */
4651 keep_going (ecs);
4652 return;
4653 }
68f53502 4654 }
488f131b 4655
cdaa5b73
PA
4656 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4657 exists. */
4658 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4659
bdc36728 4660 end_stepping_range (ecs);
cdaa5b73
PA
4661 }
4662 return;
e5ef252a 4663
cdaa5b73
PA
4664 case BPSTAT_WHAT_SINGLE:
4665 if (debug_infrun)
4666 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4667 ecs->event_thread->stepping_over_breakpoint = 1;
4668 /* Still need to check other stuff, at least the case where we
4669 are stepping and step out of the right range. */
4670 break;
e5ef252a 4671
cdaa5b73
PA
4672 case BPSTAT_WHAT_STEP_RESUME:
4673 if (debug_infrun)
4674 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4675
cdaa5b73
PA
4676 delete_step_resume_breakpoint (ecs->event_thread);
4677 if (ecs->event_thread->control.proceed_to_finish
4678 && execution_direction == EXEC_REVERSE)
4679 {
4680 struct thread_info *tp = ecs->event_thread;
4681
4682 /* We are finishing a function in reverse, and just hit the
4683 step-resume breakpoint at the start address of the
4684 function, and we're almost there -- just need to back up
4685 by one more single-step, which should take us back to the
4686 function call. */
4687 tp->control.step_range_start = tp->control.step_range_end = 1;
4688 keep_going (ecs);
e5ef252a 4689 return;
cdaa5b73
PA
4690 }
4691 fill_in_stop_func (gdbarch, ecs);
4692 if (stop_pc == ecs->stop_func_start
4693 && execution_direction == EXEC_REVERSE)
4694 {
4695 /* We are stepping over a function call in reverse, and just
4696 hit the step-resume breakpoint at the start address of
4697 the function. Go back to single-stepping, which should
4698 take us back to the function call. */
4699 ecs->event_thread->stepping_over_breakpoint = 1;
4700 keep_going (ecs);
4701 return;
4702 }
4703 break;
e5ef252a 4704
cdaa5b73
PA
4705 case BPSTAT_WHAT_STOP_NOISY:
4706 if (debug_infrun)
4707 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4708 stop_print_frame = 1;
e5ef252a 4709
99619bea
PA
4710 /* Assume the thread stopped for a breapoint. We'll still check
4711 whether a/the breakpoint is there when the thread is next
4712 resumed. */
4713 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4714
22bcd14b 4715 stop_waiting (ecs);
cdaa5b73 4716 return;
e5ef252a 4717
cdaa5b73
PA
4718 case BPSTAT_WHAT_STOP_SILENT:
4719 if (debug_infrun)
4720 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4721 stop_print_frame = 0;
e5ef252a 4722
99619bea
PA
4723 /* Assume the thread stopped for a breapoint. We'll still check
4724 whether a/the breakpoint is there when the thread is next
4725 resumed. */
4726 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4727 stop_waiting (ecs);
cdaa5b73
PA
4728 return;
4729
4730 case BPSTAT_WHAT_HP_STEP_RESUME:
4731 if (debug_infrun)
4732 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4733
4734 delete_step_resume_breakpoint (ecs->event_thread);
4735 if (ecs->event_thread->step_after_step_resume_breakpoint)
4736 {
4737 /* Back when the step-resume breakpoint was inserted, we
4738 were trying to single-step off a breakpoint. Go back to
4739 doing that. */
4740 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4741 ecs->event_thread->stepping_over_breakpoint = 1;
4742 keep_going (ecs);
4743 return;
e5ef252a 4744 }
cdaa5b73
PA
4745 break;
4746
4747 case BPSTAT_WHAT_KEEP_CHECKING:
4748 break;
e5ef252a 4749 }
c906108c 4750
cdaa5b73
PA
4751 /* We come here if we hit a breakpoint but should not stop for it.
4752 Possibly we also were stepping and should stop for that. So fall
4753 through and test for stepping. But, if not stepping, do not
4754 stop. */
c906108c 4755
a7212384
UW
4756 /* In all-stop mode, if we're currently stepping but have stopped in
4757 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4758 if (switch_back_to_stepped_thread (ecs))
4759 return;
776f04fa 4760
8358c15c 4761 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4762 {
527159b7 4763 if (debug_infrun)
d3169d93
DJ
4764 fprintf_unfiltered (gdb_stdlog,
4765 "infrun: step-resume breakpoint is inserted\n");
527159b7 4766
488f131b
JB
4767 /* Having a step-resume breakpoint overrides anything
4768 else having to do with stepping commands until
4769 that breakpoint is reached. */
488f131b
JB
4770 keep_going (ecs);
4771 return;
4772 }
c5aa993b 4773
16c381f0 4774 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4775 {
527159b7 4776 if (debug_infrun)
8a9de0e4 4777 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4778 /* Likewise if we aren't even stepping. */
488f131b
JB
4779 keep_going (ecs);
4780 return;
4781 }
c5aa993b 4782
4b7703ad
JB
4783 /* Re-fetch current thread's frame in case the code above caused
4784 the frame cache to be re-initialized, making our FRAME variable
4785 a dangling pointer. */
4786 frame = get_current_frame ();
628fe4e4 4787 gdbarch = get_frame_arch (frame);
7e324e48 4788 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4789
488f131b 4790 /* If stepping through a line, keep going if still within it.
c906108c 4791
488f131b
JB
4792 Note that step_range_end is the address of the first instruction
4793 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4794 within it!
4795
4796 Note also that during reverse execution, we may be stepping
4797 through a function epilogue and therefore must detect when
4798 the current-frame changes in the middle of a line. */
4799
ce4c476a 4800 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4801 && (execution_direction != EXEC_REVERSE
388a8562 4802 || frame_id_eq (get_frame_id (frame),
16c381f0 4803 ecs->event_thread->control.step_frame_id)))
488f131b 4804 {
527159b7 4805 if (debug_infrun)
5af949e3
UW
4806 fprintf_unfiltered
4807 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4808 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4809 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4810
c1e36e3e
PA
4811 /* Tentatively re-enable range stepping; `resume' disables it if
4812 necessary (e.g., if we're stepping over a breakpoint or we
4813 have software watchpoints). */
4814 ecs->event_thread->control.may_range_step = 1;
4815
b2175913
MS
4816 /* When stepping backward, stop at beginning of line range
4817 (unless it's the function entry point, in which case
4818 keep going back to the call point). */
16c381f0 4819 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4820 && stop_pc != ecs->stop_func_start
4821 && execution_direction == EXEC_REVERSE)
bdc36728 4822 end_stepping_range (ecs);
b2175913
MS
4823 else
4824 keep_going (ecs);
4825
488f131b
JB
4826 return;
4827 }
c5aa993b 4828
488f131b 4829 /* We stepped out of the stepping range. */
c906108c 4830
488f131b 4831 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4832 loader dynamic symbol resolution code...
4833
4834 EXEC_FORWARD: we keep on single stepping until we exit the run
4835 time loader code and reach the callee's address.
4836
4837 EXEC_REVERSE: we've already executed the callee (backward), and
4838 the runtime loader code is handled just like any other
4839 undebuggable function call. Now we need only keep stepping
4840 backward through the trampoline code, and that's handled further
4841 down, so there is nothing for us to do here. */
4842
4843 if (execution_direction != EXEC_REVERSE
16c381f0 4844 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4845 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4846 {
4c8c40e6 4847 CORE_ADDR pc_after_resolver =
568d6575 4848 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4849
527159b7 4850 if (debug_infrun)
3e43a32a
MS
4851 fprintf_unfiltered (gdb_stdlog,
4852 "infrun: stepped into dynsym resolve code\n");
527159b7 4853
488f131b
JB
4854 if (pc_after_resolver)
4855 {
4856 /* Set up a step-resume breakpoint at the address
4857 indicated by SKIP_SOLIB_RESOLVER. */
4858 struct symtab_and_line sr_sal;
abbb1732 4859
fe39c653 4860 init_sal (&sr_sal);
488f131b 4861 sr_sal.pc = pc_after_resolver;
6c95b8df 4862 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4863
a6d9a66e
UW
4864 insert_step_resume_breakpoint_at_sal (gdbarch,
4865 sr_sal, null_frame_id);
c5aa993b 4866 }
c906108c 4867
488f131b
JB
4868 keep_going (ecs);
4869 return;
4870 }
c906108c 4871
16c381f0
JK
4872 if (ecs->event_thread->control.step_range_end != 1
4873 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4874 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4875 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4876 {
527159b7 4877 if (debug_infrun)
3e43a32a
MS
4878 fprintf_unfiltered (gdb_stdlog,
4879 "infrun: stepped into signal trampoline\n");
42edda50 4880 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4881 a signal trampoline (either by a signal being delivered or by
4882 the signal handler returning). Just single-step until the
4883 inferior leaves the trampoline (either by calling the handler
4884 or returning). */
488f131b
JB
4885 keep_going (ecs);
4886 return;
4887 }
c906108c 4888
14132e89
MR
4889 /* If we're in the return path from a shared library trampoline,
4890 we want to proceed through the trampoline when stepping. */
4891 /* macro/2012-04-25: This needs to come before the subroutine
4892 call check below as on some targets return trampolines look
4893 like subroutine calls (MIPS16 return thunks). */
4894 if (gdbarch_in_solib_return_trampoline (gdbarch,
4895 stop_pc, ecs->stop_func_name)
4896 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4897 {
4898 /* Determine where this trampoline returns. */
4899 CORE_ADDR real_stop_pc;
4900
4901 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4902
4903 if (debug_infrun)
4904 fprintf_unfiltered (gdb_stdlog,
4905 "infrun: stepped into solib return tramp\n");
4906
4907 /* Only proceed through if we know where it's going. */
4908 if (real_stop_pc)
4909 {
4910 /* And put the step-breakpoint there and go until there. */
4911 struct symtab_and_line sr_sal;
4912
4913 init_sal (&sr_sal); /* initialize to zeroes */
4914 sr_sal.pc = real_stop_pc;
4915 sr_sal.section = find_pc_overlay (sr_sal.pc);
4916 sr_sal.pspace = get_frame_program_space (frame);
4917
4918 /* Do not specify what the fp should be when we stop since
4919 on some machines the prologue is where the new fp value
4920 is established. */
4921 insert_step_resume_breakpoint_at_sal (gdbarch,
4922 sr_sal, null_frame_id);
4923
4924 /* Restart without fiddling with the step ranges or
4925 other state. */
4926 keep_going (ecs);
4927 return;
4928 }
4929 }
4930
c17eaafe
DJ
4931 /* Check for subroutine calls. The check for the current frame
4932 equalling the step ID is not necessary - the check of the
4933 previous frame's ID is sufficient - but it is a common case and
4934 cheaper than checking the previous frame's ID.
14e60db5
DJ
4935
4936 NOTE: frame_id_eq will never report two invalid frame IDs as
4937 being equal, so to get into this block, both the current and
4938 previous frame must have valid frame IDs. */
005ca36a
JB
4939 /* The outer_frame_id check is a heuristic to detect stepping
4940 through startup code. If we step over an instruction which
4941 sets the stack pointer from an invalid value to a valid value,
4942 we may detect that as a subroutine call from the mythical
4943 "outermost" function. This could be fixed by marking
4944 outermost frames as !stack_p,code_p,special_p. Then the
4945 initial outermost frame, before sp was valid, would
ce6cca6d 4946 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4947 for more. */
edb3359d 4948 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4949 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4950 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4951 ecs->event_thread->control.step_stack_frame_id)
4952 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4953 outer_frame_id)
4954 || step_start_function != find_pc_function (stop_pc))))
488f131b 4955 {
95918acb 4956 CORE_ADDR real_stop_pc;
8fb3e588 4957
527159b7 4958 if (debug_infrun)
8a9de0e4 4959 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4960
16c381f0
JK
4961 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4962 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4963 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4964 ecs->stop_func_start)))
95918acb
AC
4965 {
4966 /* I presume that step_over_calls is only 0 when we're
4967 supposed to be stepping at the assembly language level
4968 ("stepi"). Just stop. */
4969 /* Also, maybe we just did a "nexti" inside a prolog, so we
4970 thought it was a subroutine call but it was not. Stop as
4971 well. FENN */
388a8562 4972 /* And this works the same backward as frontward. MVS */
bdc36728 4973 end_stepping_range (ecs);
95918acb
AC
4974 return;
4975 }
8fb3e588 4976
388a8562
MS
4977 /* Reverse stepping through solib trampolines. */
4978
4979 if (execution_direction == EXEC_REVERSE
16c381f0 4980 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4981 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4982 || (ecs->stop_func_start == 0
4983 && in_solib_dynsym_resolve_code (stop_pc))))
4984 {
4985 /* Any solib trampoline code can be handled in reverse
4986 by simply continuing to single-step. We have already
4987 executed the solib function (backwards), and a few
4988 steps will take us back through the trampoline to the
4989 caller. */
4990 keep_going (ecs);
4991 return;
4992 }
4993
16c381f0 4994 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4995 {
b2175913
MS
4996 /* We're doing a "next".
4997
4998 Normal (forward) execution: set a breakpoint at the
4999 callee's return address (the address at which the caller
5000 will resume).
5001
5002 Reverse (backward) execution. set the step-resume
5003 breakpoint at the start of the function that we just
5004 stepped into (backwards), and continue to there. When we
6130d0b7 5005 get there, we'll need to single-step back to the caller. */
b2175913
MS
5006
5007 if (execution_direction == EXEC_REVERSE)
5008 {
acf9414f
JK
5009 /* If we're already at the start of the function, we've either
5010 just stepped backward into a single instruction function,
5011 or stepped back out of a signal handler to the first instruction
5012 of the function. Just keep going, which will single-step back
5013 to the caller. */
58c48e72 5014 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5015 {
5016 struct symtab_and_line sr_sal;
5017
5018 /* Normal function call return (static or dynamic). */
5019 init_sal (&sr_sal);
5020 sr_sal.pc = ecs->stop_func_start;
5021 sr_sal.pspace = get_frame_program_space (frame);
5022 insert_step_resume_breakpoint_at_sal (gdbarch,
5023 sr_sal, null_frame_id);
5024 }
b2175913
MS
5025 }
5026 else
568d6575 5027 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5028
8567c30f
AC
5029 keep_going (ecs);
5030 return;
5031 }
a53c66de 5032
95918acb 5033 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5034 calling routine and the real function), locate the real
5035 function. That's what tells us (a) whether we want to step
5036 into it at all, and (b) what prologue we want to run to the
5037 end of, if we do step into it. */
568d6575 5038 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5039 if (real_stop_pc == 0)
568d6575 5040 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5041 if (real_stop_pc != 0)
5042 ecs->stop_func_start = real_stop_pc;
8fb3e588 5043
db5f024e 5044 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5045 {
5046 struct symtab_and_line sr_sal;
abbb1732 5047
1b2bfbb9
RC
5048 init_sal (&sr_sal);
5049 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5050 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5051
a6d9a66e
UW
5052 insert_step_resume_breakpoint_at_sal (gdbarch,
5053 sr_sal, null_frame_id);
8fb3e588
AC
5054 keep_going (ecs);
5055 return;
1b2bfbb9
RC
5056 }
5057
95918acb 5058 /* If we have line number information for the function we are
1bfeeb0f
JL
5059 thinking of stepping into and the function isn't on the skip
5060 list, step into it.
95918acb 5061
8fb3e588
AC
5062 If there are several symtabs at that PC (e.g. with include
5063 files), just want to know whether *any* of them have line
5064 numbers. find_pc_line handles this. */
95918acb
AC
5065 {
5066 struct symtab_and_line tmp_sal;
8fb3e588 5067
95918acb 5068 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5069 if (tmp_sal.line != 0
85817405
JK
5070 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5071 &tmp_sal))
95918acb 5072 {
b2175913 5073 if (execution_direction == EXEC_REVERSE)
568d6575 5074 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5075 else
568d6575 5076 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5077 return;
5078 }
5079 }
5080
5081 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5082 set, we stop the step so that the user has a chance to switch
5083 in assembly mode. */
16c381f0 5084 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5085 && step_stop_if_no_debug)
95918acb 5086 {
bdc36728 5087 end_stepping_range (ecs);
95918acb
AC
5088 return;
5089 }
5090
b2175913
MS
5091 if (execution_direction == EXEC_REVERSE)
5092 {
acf9414f
JK
5093 /* If we're already at the start of the function, we've either just
5094 stepped backward into a single instruction function without line
5095 number info, or stepped back out of a signal handler to the first
5096 instruction of the function without line number info. Just keep
5097 going, which will single-step back to the caller. */
5098 if (ecs->stop_func_start != stop_pc)
5099 {
5100 /* Set a breakpoint at callee's start address.
5101 From there we can step once and be back in the caller. */
5102 struct symtab_and_line sr_sal;
abbb1732 5103
acf9414f
JK
5104 init_sal (&sr_sal);
5105 sr_sal.pc = ecs->stop_func_start;
5106 sr_sal.pspace = get_frame_program_space (frame);
5107 insert_step_resume_breakpoint_at_sal (gdbarch,
5108 sr_sal, null_frame_id);
5109 }
b2175913
MS
5110 }
5111 else
5112 /* Set a breakpoint at callee's return address (the address
5113 at which the caller will resume). */
568d6575 5114 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5115
95918acb 5116 keep_going (ecs);
488f131b 5117 return;
488f131b 5118 }
c906108c 5119
fdd654f3
MS
5120 /* Reverse stepping through solib trampolines. */
5121
5122 if (execution_direction == EXEC_REVERSE
16c381f0 5123 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5124 {
5125 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5126 || (ecs->stop_func_start == 0
5127 && in_solib_dynsym_resolve_code (stop_pc)))
5128 {
5129 /* Any solib trampoline code can be handled in reverse
5130 by simply continuing to single-step. We have already
5131 executed the solib function (backwards), and a few
5132 steps will take us back through the trampoline to the
5133 caller. */
5134 keep_going (ecs);
5135 return;
5136 }
5137 else if (in_solib_dynsym_resolve_code (stop_pc))
5138 {
5139 /* Stepped backward into the solib dynsym resolver.
5140 Set a breakpoint at its start and continue, then
5141 one more step will take us out. */
5142 struct symtab_and_line sr_sal;
abbb1732 5143
fdd654f3
MS
5144 init_sal (&sr_sal);
5145 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5146 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5147 insert_step_resume_breakpoint_at_sal (gdbarch,
5148 sr_sal, null_frame_id);
5149 keep_going (ecs);
5150 return;
5151 }
5152 }
5153
2afb61aa 5154 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5155
1b2bfbb9
RC
5156 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5157 the trampoline processing logic, however, there are some trampolines
5158 that have no names, so we should do trampoline handling first. */
16c381f0 5159 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5160 && ecs->stop_func_name == NULL
2afb61aa 5161 && stop_pc_sal.line == 0)
1b2bfbb9 5162 {
527159b7 5163 if (debug_infrun)
3e43a32a
MS
5164 fprintf_unfiltered (gdb_stdlog,
5165 "infrun: stepped into undebuggable function\n");
527159b7 5166
1b2bfbb9 5167 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5168 undebuggable function (where there is no debugging information
5169 and no line number corresponding to the address where the
1b2bfbb9
RC
5170 inferior stopped). Since we want to skip this kind of code,
5171 we keep going until the inferior returns from this
14e60db5
DJ
5172 function - unless the user has asked us not to (via
5173 set step-mode) or we no longer know how to get back
5174 to the call site. */
5175 if (step_stop_if_no_debug
c7ce8faa 5176 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5177 {
5178 /* If we have no line number and the step-stop-if-no-debug
5179 is set, we stop the step so that the user has a chance to
5180 switch in assembly mode. */
bdc36728 5181 end_stepping_range (ecs);
1b2bfbb9
RC
5182 return;
5183 }
5184 else
5185 {
5186 /* Set a breakpoint at callee's return address (the address
5187 at which the caller will resume). */
568d6575 5188 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5189 keep_going (ecs);
5190 return;
5191 }
5192 }
5193
16c381f0 5194 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5195 {
5196 /* It is stepi or nexti. We always want to stop stepping after
5197 one instruction. */
527159b7 5198 if (debug_infrun)
8a9de0e4 5199 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5200 end_stepping_range (ecs);
1b2bfbb9
RC
5201 return;
5202 }
5203
2afb61aa 5204 if (stop_pc_sal.line == 0)
488f131b
JB
5205 {
5206 /* We have no line number information. That means to stop
5207 stepping (does this always happen right after one instruction,
5208 when we do "s" in a function with no line numbers,
5209 or can this happen as a result of a return or longjmp?). */
527159b7 5210 if (debug_infrun)
8a9de0e4 5211 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5212 end_stepping_range (ecs);
488f131b
JB
5213 return;
5214 }
c906108c 5215
edb3359d
DJ
5216 /* Look for "calls" to inlined functions, part one. If the inline
5217 frame machinery detected some skipped call sites, we have entered
5218 a new inline function. */
5219
5220 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5221 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5222 && inline_skipped_frames (ecs->ptid))
5223 {
5224 struct symtab_and_line call_sal;
5225
5226 if (debug_infrun)
5227 fprintf_unfiltered (gdb_stdlog,
5228 "infrun: stepped into inlined function\n");
5229
5230 find_frame_sal (get_current_frame (), &call_sal);
5231
16c381f0 5232 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5233 {
5234 /* For "step", we're going to stop. But if the call site
5235 for this inlined function is on the same source line as
5236 we were previously stepping, go down into the function
5237 first. Otherwise stop at the call site. */
5238
5239 if (call_sal.line == ecs->event_thread->current_line
5240 && call_sal.symtab == ecs->event_thread->current_symtab)
5241 step_into_inline_frame (ecs->ptid);
5242
bdc36728 5243 end_stepping_range (ecs);
edb3359d
DJ
5244 return;
5245 }
5246 else
5247 {
5248 /* For "next", we should stop at the call site if it is on a
5249 different source line. Otherwise continue through the
5250 inlined function. */
5251 if (call_sal.line == ecs->event_thread->current_line
5252 && call_sal.symtab == ecs->event_thread->current_symtab)
5253 keep_going (ecs);
5254 else
bdc36728 5255 end_stepping_range (ecs);
edb3359d
DJ
5256 return;
5257 }
5258 }
5259
5260 /* Look for "calls" to inlined functions, part two. If we are still
5261 in the same real function we were stepping through, but we have
5262 to go further up to find the exact frame ID, we are stepping
5263 through a more inlined call beyond its call site. */
5264
5265 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5266 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5267 ecs->event_thread->control.step_frame_id)
edb3359d 5268 && stepped_in_from (get_current_frame (),
16c381f0 5269 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5270 {
5271 if (debug_infrun)
5272 fprintf_unfiltered (gdb_stdlog,
5273 "infrun: stepping through inlined function\n");
5274
16c381f0 5275 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5276 keep_going (ecs);
5277 else
bdc36728 5278 end_stepping_range (ecs);
edb3359d
DJ
5279 return;
5280 }
5281
2afb61aa 5282 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5283 && (ecs->event_thread->current_line != stop_pc_sal.line
5284 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5285 {
5286 /* We are at the start of a different line. So stop. Note that
5287 we don't stop if we step into the middle of a different line.
5288 That is said to make things like for (;;) statements work
5289 better. */
527159b7 5290 if (debug_infrun)
3e43a32a
MS
5291 fprintf_unfiltered (gdb_stdlog,
5292 "infrun: stepped to a different line\n");
bdc36728 5293 end_stepping_range (ecs);
488f131b
JB
5294 return;
5295 }
c906108c 5296
488f131b 5297 /* We aren't done stepping.
c906108c 5298
488f131b
JB
5299 Optimize by setting the stepping range to the line.
5300 (We might not be in the original line, but if we entered a
5301 new line in mid-statement, we continue stepping. This makes
5302 things like for(;;) statements work better.) */
c906108c 5303
16c381f0
JK
5304 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5305 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5306 ecs->event_thread->control.may_range_step = 1;
edb3359d 5307 set_step_info (frame, stop_pc_sal);
488f131b 5308
527159b7 5309 if (debug_infrun)
8a9de0e4 5310 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5311 keep_going (ecs);
104c1213
JM
5312}
5313
c447ac0b
PA
5314/* In all-stop mode, if we're currently stepping but have stopped in
5315 some other thread, we may need to switch back to the stepped
5316 thread. Returns true we set the inferior running, false if we left
5317 it stopped (and the event needs further processing). */
5318
5319static int
5320switch_back_to_stepped_thread (struct execution_control_state *ecs)
5321{
5322 if (!non_stop)
5323 {
5324 struct thread_info *tp;
99619bea 5325 struct thread_info *stepping_thread;
483805cf 5326 struct thread_info *step_over;
99619bea
PA
5327
5328 /* If any thread is blocked on some internal breakpoint, and we
5329 simply need to step over that breakpoint to get it going
5330 again, do that first. */
5331
5332 /* However, if we see an event for the stepping thread, then we
5333 know all other threads have been moved past their breakpoints
5334 already. Let the caller check whether the step is finished,
5335 etc., before deciding to move it past a breakpoint. */
5336 if (ecs->event_thread->control.step_range_end != 0)
5337 return 0;
5338
5339 /* Check if the current thread is blocked on an incomplete
5340 step-over, interrupted by a random signal. */
5341 if (ecs->event_thread->control.trap_expected
5342 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5343 {
99619bea
PA
5344 if (debug_infrun)
5345 {
5346 fprintf_unfiltered (gdb_stdlog,
5347 "infrun: need to finish step-over of [%s]\n",
5348 target_pid_to_str (ecs->event_thread->ptid));
5349 }
5350 keep_going (ecs);
5351 return 1;
5352 }
2adfaa28 5353
99619bea
PA
5354 /* Check if the current thread is blocked by a single-step
5355 breakpoint of another thread. */
5356 if (ecs->hit_singlestep_breakpoint)
5357 {
5358 if (debug_infrun)
5359 {
5360 fprintf_unfiltered (gdb_stdlog,
5361 "infrun: need to step [%s] over single-step "
5362 "breakpoint\n",
5363 target_pid_to_str (ecs->ptid));
5364 }
5365 keep_going (ecs);
5366 return 1;
5367 }
5368
483805cf
PA
5369 /* Otherwise, we no longer expect a trap in the current thread.
5370 Clear the trap_expected flag before switching back -- this is
5371 what keep_going does as well, if we call it. */
5372 ecs->event_thread->control.trap_expected = 0;
5373
70509625
PA
5374 /* Likewise, clear the signal if it should not be passed. */
5375 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5376 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5377
483805cf
PA
5378 /* If scheduler locking applies even if not stepping, there's no
5379 need to walk over threads. Above we've checked whether the
5380 current thread is stepping. If some other thread not the
5381 event thread is stepping, then it must be that scheduler
5382 locking is not in effect. */
5383 if (schedlock_applies (0))
5384 return 0;
5385
5386 /* Look for the stepping/nexting thread, and check if any other
5387 thread other than the stepping thread needs to start a
5388 step-over. Do all step-overs before actually proceeding with
5389 step/next/etc. */
5390 stepping_thread = NULL;
5391 step_over = NULL;
034f788c 5392 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5393 {
5394 /* Ignore threads of processes we're not resuming. */
5395 if (!sched_multi
5396 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5397 continue;
5398
5399 /* When stepping over a breakpoint, we lock all threads
5400 except the one that needs to move past the breakpoint.
5401 If a non-event thread has this set, the "incomplete
5402 step-over" check above should have caught it earlier. */
5403 gdb_assert (!tp->control.trap_expected);
5404
5405 /* Did we find the stepping thread? */
5406 if (tp->control.step_range_end)
5407 {
5408 /* Yep. There should only one though. */
5409 gdb_assert (stepping_thread == NULL);
5410
5411 /* The event thread is handled at the top, before we
5412 enter this loop. */
5413 gdb_assert (tp != ecs->event_thread);
5414
5415 /* If some thread other than the event thread is
5416 stepping, then scheduler locking can't be in effect,
5417 otherwise we wouldn't have resumed the current event
5418 thread in the first place. */
5419 gdb_assert (!schedlock_applies (1));
5420
5421 stepping_thread = tp;
5422 }
5423 else if (thread_still_needs_step_over (tp))
5424 {
5425 step_over = tp;
5426
5427 /* At the top we've returned early if the event thread
5428 is stepping. If some other thread not the event
5429 thread is stepping, then scheduler locking can't be
5430 in effect, and we can resume this thread. No need to
5431 keep looking for the stepping thread then. */
5432 break;
5433 }
5434 }
99619bea 5435
483805cf 5436 if (step_over != NULL)
99619bea 5437 {
483805cf 5438 tp = step_over;
99619bea 5439 if (debug_infrun)
c447ac0b 5440 {
99619bea
PA
5441 fprintf_unfiltered (gdb_stdlog,
5442 "infrun: need to step-over [%s]\n",
5443 target_pid_to_str (tp->ptid));
c447ac0b
PA
5444 }
5445
483805cf 5446 /* Only the stepping thread should have this set. */
99619bea
PA
5447 gdb_assert (tp->control.step_range_end == 0);
5448
99619bea
PA
5449 ecs->ptid = tp->ptid;
5450 ecs->event_thread = tp;
5451 switch_to_thread (ecs->ptid);
5452 keep_going (ecs);
5453 return 1;
5454 }
5455
483805cf 5456 if (stepping_thread != NULL)
99619bea
PA
5457 {
5458 struct frame_info *frame;
5459 struct gdbarch *gdbarch;
5460
483805cf
PA
5461 tp = stepping_thread;
5462
c447ac0b
PA
5463 /* If the stepping thread exited, then don't try to switch
5464 back and resume it, which could fail in several different
5465 ways depending on the target. Instead, just keep going.
5466
5467 We can find a stepping dead thread in the thread list in
5468 two cases:
5469
5470 - The target supports thread exit events, and when the
5471 target tries to delete the thread from the thread list,
5472 inferior_ptid pointed at the exiting thread. In such
5473 case, calling delete_thread does not really remove the
5474 thread from the list; instead, the thread is left listed,
5475 with 'exited' state.
5476
5477 - The target's debug interface does not support thread
5478 exit events, and so we have no idea whatsoever if the
5479 previously stepping thread is still alive. For that
5480 reason, we need to synchronously query the target
5481 now. */
5482 if (is_exited (tp->ptid)
5483 || !target_thread_alive (tp->ptid))
5484 {
5485 if (debug_infrun)
5486 fprintf_unfiltered (gdb_stdlog,
5487 "infrun: not switching back to "
5488 "stepped thread, it has vanished\n");
5489
5490 delete_thread (tp->ptid);
5491 keep_going (ecs);
5492 return 1;
5493 }
5494
c447ac0b
PA
5495 if (debug_infrun)
5496 fprintf_unfiltered (gdb_stdlog,
5497 "infrun: switching back to stepped thread\n");
5498
5499 ecs->event_thread = tp;
5500 ecs->ptid = tp->ptid;
5501 context_switch (ecs->ptid);
2adfaa28
PA
5502
5503 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5504 frame = get_current_frame ();
5505 gdbarch = get_frame_arch (frame);
5506
5507 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5508 changed, then that thread has trapped or been signaled,
5509 but the event has not been reported to GDB yet. Re-poll
5510 the target looking for this particular thread's event
5511 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5512
5513 - setting a break at the current PC
5514 - resuming that particular thread, only (by setting
5515 trap expected)
5516
5517 This prevents us continuously moving the single-step
5518 breakpoint forward, one instruction at a time,
5519 overstepping. */
5520
5521 if (gdbarch_software_single_step_p (gdbarch)
5522 && stop_pc != tp->prev_pc)
5523 {
5524 if (debug_infrun)
5525 fprintf_unfiltered (gdb_stdlog,
5526 "infrun: expected thread advanced also\n");
5527
7c16b83e
PA
5528 /* Clear the info of the previous step-over, as it's no
5529 longer valid. It's what keep_going would do too, if
5530 we called it. Must do this before trying to insert
5531 the sss breakpoint, otherwise if we were previously
5532 trying to step over this exact address in another
5533 thread, the breakpoint ends up not installed. */
5534 clear_step_over_info ();
5535
2adfaa28
PA
5536 insert_single_step_breakpoint (get_frame_arch (frame),
5537 get_frame_address_space (frame),
5538 stop_pc);
2adfaa28 5539 ecs->event_thread->control.trap_expected = 1;
2adfaa28
PA
5540
5541 resume (0, GDB_SIGNAL_0);
5542 prepare_to_wait (ecs);
5543 }
5544 else
5545 {
5546 if (debug_infrun)
5547 fprintf_unfiltered (gdb_stdlog,
5548 "infrun: expected thread still "
5549 "hasn't advanced\n");
5550 keep_going (ecs);
5551 }
5552
c447ac0b
PA
5553 return 1;
5554 }
5555 }
5556 return 0;
5557}
5558
b3444185 5559/* Is thread TP in the middle of single-stepping? */
104c1213 5560
a289b8f6 5561static int
b3444185 5562currently_stepping (struct thread_info *tp)
a7212384 5563{
8358c15c
JK
5564 return ((tp->control.step_range_end
5565 && tp->control.step_resume_breakpoint == NULL)
5566 || tp->control.trap_expected
8358c15c 5567 || bpstat_should_step ());
a7212384
UW
5568}
5569
b2175913
MS
5570/* Inferior has stepped into a subroutine call with source code that
5571 we should not step over. Do step to the first line of code in
5572 it. */
c2c6d25f
JM
5573
5574static void
568d6575
UW
5575handle_step_into_function (struct gdbarch *gdbarch,
5576 struct execution_control_state *ecs)
c2c6d25f
JM
5577{
5578 struct symtab *s;
2afb61aa 5579 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5580
7e324e48
GB
5581 fill_in_stop_func (gdbarch, ecs);
5582
c2c6d25f
JM
5583 s = find_pc_symtab (stop_pc);
5584 if (s && s->language != language_asm)
568d6575 5585 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5586 ecs->stop_func_start);
c2c6d25f 5587
2afb61aa 5588 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5589 /* Use the step_resume_break to step until the end of the prologue,
5590 even if that involves jumps (as it seems to on the vax under
5591 4.2). */
5592 /* If the prologue ends in the middle of a source line, continue to
5593 the end of that source line (if it is still within the function).
5594 Otherwise, just go to end of prologue. */
2afb61aa
PA
5595 if (stop_func_sal.end
5596 && stop_func_sal.pc != ecs->stop_func_start
5597 && stop_func_sal.end < ecs->stop_func_end)
5598 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5599
2dbd5e30
KB
5600 /* Architectures which require breakpoint adjustment might not be able
5601 to place a breakpoint at the computed address. If so, the test
5602 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5603 ecs->stop_func_start to an address at which a breakpoint may be
5604 legitimately placed.
8fb3e588 5605
2dbd5e30
KB
5606 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5607 made, GDB will enter an infinite loop when stepping through
5608 optimized code consisting of VLIW instructions which contain
5609 subinstructions corresponding to different source lines. On
5610 FR-V, it's not permitted to place a breakpoint on any but the
5611 first subinstruction of a VLIW instruction. When a breakpoint is
5612 set, GDB will adjust the breakpoint address to the beginning of
5613 the VLIW instruction. Thus, we need to make the corresponding
5614 adjustment here when computing the stop address. */
8fb3e588 5615
568d6575 5616 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5617 {
5618 ecs->stop_func_start
568d6575 5619 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5620 ecs->stop_func_start);
2dbd5e30
KB
5621 }
5622
c2c6d25f
JM
5623 if (ecs->stop_func_start == stop_pc)
5624 {
5625 /* We are already there: stop now. */
bdc36728 5626 end_stepping_range (ecs);
c2c6d25f
JM
5627 return;
5628 }
5629 else
5630 {
5631 /* Put the step-breakpoint there and go until there. */
fe39c653 5632 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5633 sr_sal.pc = ecs->stop_func_start;
5634 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5635 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5636
c2c6d25f 5637 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5638 some machines the prologue is where the new fp value is
5639 established. */
a6d9a66e 5640 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5641
5642 /* And make sure stepping stops right away then. */
16c381f0
JK
5643 ecs->event_thread->control.step_range_end
5644 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5645 }
5646 keep_going (ecs);
5647}
d4f3574e 5648
b2175913
MS
5649/* Inferior has stepped backward into a subroutine call with source
5650 code that we should not step over. Do step to the beginning of the
5651 last line of code in it. */
5652
5653static void
568d6575
UW
5654handle_step_into_function_backward (struct gdbarch *gdbarch,
5655 struct execution_control_state *ecs)
b2175913
MS
5656{
5657 struct symtab *s;
167e4384 5658 struct symtab_and_line stop_func_sal;
b2175913 5659
7e324e48
GB
5660 fill_in_stop_func (gdbarch, ecs);
5661
b2175913
MS
5662 s = find_pc_symtab (stop_pc);
5663 if (s && s->language != language_asm)
568d6575 5664 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5665 ecs->stop_func_start);
5666
5667 stop_func_sal = find_pc_line (stop_pc, 0);
5668
5669 /* OK, we're just going to keep stepping here. */
5670 if (stop_func_sal.pc == stop_pc)
5671 {
5672 /* We're there already. Just stop stepping now. */
bdc36728 5673 end_stepping_range (ecs);
b2175913
MS
5674 }
5675 else
5676 {
5677 /* Else just reset the step range and keep going.
5678 No step-resume breakpoint, they don't work for
5679 epilogues, which can have multiple entry paths. */
16c381f0
JK
5680 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5681 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5682 keep_going (ecs);
5683 }
5684 return;
5685}
5686
d3169d93 5687/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5688 This is used to both functions and to skip over code. */
5689
5690static void
2c03e5be
PA
5691insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5692 struct symtab_and_line sr_sal,
5693 struct frame_id sr_id,
5694 enum bptype sr_type)
44cbf7b5 5695{
611c83ae
PA
5696 /* There should never be more than one step-resume or longjmp-resume
5697 breakpoint per thread, so we should never be setting a new
44cbf7b5 5698 step_resume_breakpoint when one is already active. */
8358c15c 5699 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5700 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5701
5702 if (debug_infrun)
5703 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5704 "infrun: inserting step-resume breakpoint at %s\n",
5705 paddress (gdbarch, sr_sal.pc));
d3169d93 5706
8358c15c 5707 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5708 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5709}
5710
9da8c2a0 5711void
2c03e5be
PA
5712insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5713 struct symtab_and_line sr_sal,
5714 struct frame_id sr_id)
5715{
5716 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5717 sr_sal, sr_id,
5718 bp_step_resume);
44cbf7b5 5719}
7ce450bd 5720
2c03e5be
PA
5721/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5722 This is used to skip a potential signal handler.
7ce450bd 5723
14e60db5
DJ
5724 This is called with the interrupted function's frame. The signal
5725 handler, when it returns, will resume the interrupted function at
5726 RETURN_FRAME.pc. */
d303a6c7
AC
5727
5728static void
2c03e5be 5729insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5730{
5731 struct symtab_and_line sr_sal;
a6d9a66e 5732 struct gdbarch *gdbarch;
d303a6c7 5733
f4c1edd8 5734 gdb_assert (return_frame != NULL);
d303a6c7
AC
5735 init_sal (&sr_sal); /* initialize to zeros */
5736
a6d9a66e 5737 gdbarch = get_frame_arch (return_frame);
568d6575 5738 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5739 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5740 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5741
2c03e5be
PA
5742 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5743 get_stack_frame_id (return_frame),
5744 bp_hp_step_resume);
d303a6c7
AC
5745}
5746
2c03e5be
PA
5747/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5748 is used to skip a function after stepping into it (for "next" or if
5749 the called function has no debugging information).
14e60db5
DJ
5750
5751 The current function has almost always been reached by single
5752 stepping a call or return instruction. NEXT_FRAME belongs to the
5753 current function, and the breakpoint will be set at the caller's
5754 resume address.
5755
5756 This is a separate function rather than reusing
2c03e5be 5757 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5758 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5759 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5760
5761static void
5762insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5763{
5764 struct symtab_and_line sr_sal;
a6d9a66e 5765 struct gdbarch *gdbarch;
14e60db5
DJ
5766
5767 /* We shouldn't have gotten here if we don't know where the call site
5768 is. */
c7ce8faa 5769 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5770
5771 init_sal (&sr_sal); /* initialize to zeros */
5772
a6d9a66e 5773 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5774 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5775 frame_unwind_caller_pc (next_frame));
14e60db5 5776 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5777 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5778
a6d9a66e 5779 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5780 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5781}
5782
611c83ae
PA
5783/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5784 new breakpoint at the target of a jmp_buf. The handling of
5785 longjmp-resume uses the same mechanisms used for handling
5786 "step-resume" breakpoints. */
5787
5788static void
a6d9a66e 5789insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5790{
e81a37f7
TT
5791 /* There should never be more than one longjmp-resume breakpoint per
5792 thread, so we should never be setting a new
611c83ae 5793 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5794 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5795
5796 if (debug_infrun)
5797 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5798 "infrun: inserting longjmp-resume breakpoint at %s\n",
5799 paddress (gdbarch, pc));
611c83ae 5800
e81a37f7 5801 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5802 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5803}
5804
186c406b
TT
5805/* Insert an exception resume breakpoint. TP is the thread throwing
5806 the exception. The block B is the block of the unwinder debug hook
5807 function. FRAME is the frame corresponding to the call to this
5808 function. SYM is the symbol of the function argument holding the
5809 target PC of the exception. */
5810
5811static void
5812insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 5813 const struct block *b,
186c406b
TT
5814 struct frame_info *frame,
5815 struct symbol *sym)
5816{
bfd189b1 5817 volatile struct gdb_exception e;
186c406b
TT
5818
5819 /* We want to ignore errors here. */
5820 TRY_CATCH (e, RETURN_MASK_ERROR)
5821 {
5822 struct symbol *vsym;
5823 struct value *value;
5824 CORE_ADDR handler;
5825 struct breakpoint *bp;
5826
5827 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5828 value = read_var_value (vsym, frame);
5829 /* If the value was optimized out, revert to the old behavior. */
5830 if (! value_optimized_out (value))
5831 {
5832 handler = value_as_address (value);
5833
5834 if (debug_infrun)
5835 fprintf_unfiltered (gdb_stdlog,
5836 "infrun: exception resume at %lx\n",
5837 (unsigned long) handler);
5838
5839 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5840 handler, bp_exception_resume);
c70a6932
JK
5841
5842 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5843 frame = NULL;
5844
186c406b
TT
5845 bp->thread = tp->num;
5846 inferior_thread ()->control.exception_resume_breakpoint = bp;
5847 }
5848 }
5849}
5850
28106bc2
SDJ
5851/* A helper for check_exception_resume that sets an
5852 exception-breakpoint based on a SystemTap probe. */
5853
5854static void
5855insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 5856 const struct bound_probe *probe,
28106bc2
SDJ
5857 struct frame_info *frame)
5858{
5859 struct value *arg_value;
5860 CORE_ADDR handler;
5861 struct breakpoint *bp;
5862
5863 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5864 if (!arg_value)
5865 return;
5866
5867 handler = value_as_address (arg_value);
5868
5869 if (debug_infrun)
5870 fprintf_unfiltered (gdb_stdlog,
5871 "infrun: exception resume at %s\n",
6bac7473 5872 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5873 handler));
5874
5875 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5876 handler, bp_exception_resume);
5877 bp->thread = tp->num;
5878 inferior_thread ()->control.exception_resume_breakpoint = bp;
5879}
5880
186c406b
TT
5881/* This is called when an exception has been intercepted. Check to
5882 see whether the exception's destination is of interest, and if so,
5883 set an exception resume breakpoint there. */
5884
5885static void
5886check_exception_resume (struct execution_control_state *ecs,
28106bc2 5887 struct frame_info *frame)
186c406b 5888{
bfd189b1 5889 volatile struct gdb_exception e;
729662a5 5890 struct bound_probe probe;
28106bc2
SDJ
5891 struct symbol *func;
5892
5893 /* First see if this exception unwinding breakpoint was set via a
5894 SystemTap probe point. If so, the probe has two arguments: the
5895 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5896 set a breakpoint there. */
6bac7473 5897 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 5898 if (probe.probe)
28106bc2 5899 {
729662a5 5900 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
5901 return;
5902 }
5903
5904 func = get_frame_function (frame);
5905 if (!func)
5906 return;
186c406b
TT
5907
5908 TRY_CATCH (e, RETURN_MASK_ERROR)
5909 {
3977b71f 5910 const struct block *b;
8157b174 5911 struct block_iterator iter;
186c406b
TT
5912 struct symbol *sym;
5913 int argno = 0;
5914
5915 /* The exception breakpoint is a thread-specific breakpoint on
5916 the unwinder's debug hook, declared as:
5917
5918 void _Unwind_DebugHook (void *cfa, void *handler);
5919
5920 The CFA argument indicates the frame to which control is
5921 about to be transferred. HANDLER is the destination PC.
5922
5923 We ignore the CFA and set a temporary breakpoint at HANDLER.
5924 This is not extremely efficient but it avoids issues in gdb
5925 with computing the DWARF CFA, and it also works even in weird
5926 cases such as throwing an exception from inside a signal
5927 handler. */
5928
5929 b = SYMBOL_BLOCK_VALUE (func);
5930 ALL_BLOCK_SYMBOLS (b, iter, sym)
5931 {
5932 if (!SYMBOL_IS_ARGUMENT (sym))
5933 continue;
5934
5935 if (argno == 0)
5936 ++argno;
5937 else
5938 {
5939 insert_exception_resume_breakpoint (ecs->event_thread,
5940 b, frame, sym);
5941 break;
5942 }
5943 }
5944 }
5945}
5946
104c1213 5947static void
22bcd14b 5948stop_waiting (struct execution_control_state *ecs)
104c1213 5949{
527159b7 5950 if (debug_infrun)
22bcd14b 5951 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 5952
31e77af2
PA
5953 clear_step_over_info ();
5954
cd0fc7c3
SS
5955 /* Let callers know we don't want to wait for the inferior anymore. */
5956 ecs->wait_some_more = 0;
5957}
5958
a9ba6bae
PA
5959/* Called when we should continue running the inferior, because the
5960 current event doesn't cause a user visible stop. This does the
5961 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5962
5963static void
5964keep_going (struct execution_control_state *ecs)
5965{
c4dbc9af
PA
5966 /* Make sure normal_stop is called if we get a QUIT handled before
5967 reaching resume. */
5968 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5969
d4f3574e 5970 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5971 ecs->event_thread->prev_pc
5972 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5973
16c381f0 5974 if (ecs->event_thread->control.trap_expected
a493e3e2 5975 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5976 {
a9ba6bae
PA
5977 /* We haven't yet gotten our trap, and either: intercepted a
5978 non-signal event (e.g., a fork); or took a signal which we
5979 are supposed to pass through to the inferior. Simply
5980 continue. */
c4dbc9af 5981 discard_cleanups (old_cleanups);
2020b7ab 5982 resume (currently_stepping (ecs->event_thread),
16c381f0 5983 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5984 }
5985 else
5986 {
31e77af2
PA
5987 volatile struct gdb_exception e;
5988 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
5989 int remove_bp;
5990 int remove_wps;
31e77af2 5991
d4f3574e 5992 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5993 anyway (if we got a signal, the user asked it be passed to
5994 the child)
5995 -- or --
5996 We got our expected trap, but decided we should resume from
5997 it.
d4f3574e 5998
a9ba6bae 5999 We're going to run this baby now!
d4f3574e 6000
c36b740a
VP
6001 Note that insert_breakpoints won't try to re-insert
6002 already inserted breakpoints. Therefore, we don't
6003 care if breakpoints were already inserted, or not. */
a9ba6bae 6004
31e77af2
PA
6005 /* If we need to step over a breakpoint, and we're not using
6006 displaced stepping to do so, insert all breakpoints
6007 (watchpoints, etc.) but the one we're stepping over, step one
6008 instruction, and then re-insert the breakpoint when that step
6009 is finished. */
963f9c80
PA
6010
6011 remove_bp = (ecs->hit_singlestep_breakpoint
6012 || thread_still_needs_step_over (ecs->event_thread));
6013 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6014 && !target_have_steppable_watchpoint);
6015
6016 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
45e8c884 6017 {
31e77af2 6018 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6019 regcache_read_pc (regcache), remove_wps);
45e8c884 6020 }
963f9c80
PA
6021 else if (remove_wps)
6022 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6023 else
31e77af2 6024 clear_step_over_info ();
abbb1732 6025
31e77af2
PA
6026 /* Stop stepping if inserting breakpoints fails. */
6027 TRY_CATCH (e, RETURN_MASK_ERROR)
6028 {
6029 insert_breakpoints ();
6030 }
6031 if (e.reason < 0)
6032 {
6033 exception_print (gdb_stderr, e);
22bcd14b 6034 stop_waiting (ecs);
31e77af2 6035 return;
d4f3574e
SS
6036 }
6037
963f9c80 6038 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6039
a9ba6bae
PA
6040 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6041 explicitly specifies that such a signal should be delivered
6042 to the target program). Typically, that would occur when a
6043 user is debugging a target monitor on a simulator: the target
6044 monitor sets a breakpoint; the simulator encounters this
6045 breakpoint and halts the simulation handing control to GDB;
6046 GDB, noting that the stop address doesn't map to any known
6047 breakpoint, returns control back to the simulator; the
6048 simulator then delivers the hardware equivalent of a
6049 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6050 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6051 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6052 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6053
c4dbc9af 6054 discard_cleanups (old_cleanups);
2020b7ab 6055 resume (currently_stepping (ecs->event_thread),
16c381f0 6056 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6057 }
6058
488f131b 6059 prepare_to_wait (ecs);
d4f3574e
SS
6060}
6061
104c1213
JM
6062/* This function normally comes after a resume, before
6063 handle_inferior_event exits. It takes care of any last bits of
6064 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6065
104c1213
JM
6066static void
6067prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6068{
527159b7 6069 if (debug_infrun)
8a9de0e4 6070 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6071
104c1213
JM
6072 /* This is the old end of the while loop. Let everybody know we
6073 want to wait for the inferior some more and get called again
6074 soon. */
6075 ecs->wait_some_more = 1;
c906108c 6076}
11cf8741 6077
fd664c91 6078/* We are done with the step range of a step/next/si/ni command.
b57bacec 6079 Called once for each n of a "step n" operation. */
fd664c91
PA
6080
6081static void
bdc36728 6082end_stepping_range (struct execution_control_state *ecs)
fd664c91 6083{
bdc36728 6084 ecs->event_thread->control.stop_step = 1;
bdc36728 6085 stop_waiting (ecs);
fd664c91
PA
6086}
6087
33d62d64
JK
6088/* Several print_*_reason functions to print why the inferior has stopped.
6089 We always print something when the inferior exits, or receives a signal.
6090 The rest of the cases are dealt with later on in normal_stop and
6091 print_it_typical. Ideally there should be a call to one of these
6092 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6093 stop_waiting is called.
33d62d64 6094
fd664c91
PA
6095 Note that we don't call these directly, instead we delegate that to
6096 the interpreters, through observers. Interpreters then call these
6097 with whatever uiout is right. */
33d62d64 6098
fd664c91
PA
6099void
6100print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6101{
fd664c91 6102 /* For CLI-like interpreters, print nothing. */
33d62d64 6103
fd664c91
PA
6104 if (ui_out_is_mi_like_p (uiout))
6105 {
6106 ui_out_field_string (uiout, "reason",
6107 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6108 }
6109}
33d62d64 6110
fd664c91
PA
6111void
6112print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6113{
33d62d64
JK
6114 annotate_signalled ();
6115 if (ui_out_is_mi_like_p (uiout))
6116 ui_out_field_string
6117 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6118 ui_out_text (uiout, "\nProgram terminated with signal ");
6119 annotate_signal_name ();
6120 ui_out_field_string (uiout, "signal-name",
2ea28649 6121 gdb_signal_to_name (siggnal));
33d62d64
JK
6122 annotate_signal_name_end ();
6123 ui_out_text (uiout, ", ");
6124 annotate_signal_string ();
6125 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6126 gdb_signal_to_string (siggnal));
33d62d64
JK
6127 annotate_signal_string_end ();
6128 ui_out_text (uiout, ".\n");
6129 ui_out_text (uiout, "The program no longer exists.\n");
6130}
6131
fd664c91
PA
6132void
6133print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6134{
fda326dd
TT
6135 struct inferior *inf = current_inferior ();
6136 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6137
33d62d64
JK
6138 annotate_exited (exitstatus);
6139 if (exitstatus)
6140 {
6141 if (ui_out_is_mi_like_p (uiout))
6142 ui_out_field_string (uiout, "reason",
6143 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6144 ui_out_text (uiout, "[Inferior ");
6145 ui_out_text (uiout, plongest (inf->num));
6146 ui_out_text (uiout, " (");
6147 ui_out_text (uiout, pidstr);
6148 ui_out_text (uiout, ") exited with code ");
33d62d64 6149 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6150 ui_out_text (uiout, "]\n");
33d62d64
JK
6151 }
6152 else
11cf8741 6153 {
9dc5e2a9 6154 if (ui_out_is_mi_like_p (uiout))
034dad6f 6155 ui_out_field_string
33d62d64 6156 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6157 ui_out_text (uiout, "[Inferior ");
6158 ui_out_text (uiout, plongest (inf->num));
6159 ui_out_text (uiout, " (");
6160 ui_out_text (uiout, pidstr);
6161 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6162 }
33d62d64
JK
6163}
6164
fd664c91
PA
6165void
6166print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6167{
6168 annotate_signal ();
6169
a493e3e2 6170 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6171 {
6172 struct thread_info *t = inferior_thread ();
6173
6174 ui_out_text (uiout, "\n[");
6175 ui_out_field_string (uiout, "thread-name",
6176 target_pid_to_str (t->ptid));
6177 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6178 ui_out_text (uiout, " stopped");
6179 }
6180 else
6181 {
6182 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6183 annotate_signal_name ();
33d62d64
JK
6184 if (ui_out_is_mi_like_p (uiout))
6185 ui_out_field_string
6186 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6187 ui_out_field_string (uiout, "signal-name",
2ea28649 6188 gdb_signal_to_name (siggnal));
8b93c638
JM
6189 annotate_signal_name_end ();
6190 ui_out_text (uiout, ", ");
6191 annotate_signal_string ();
488f131b 6192 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6193 gdb_signal_to_string (siggnal));
8b93c638 6194 annotate_signal_string_end ();
33d62d64
JK
6195 }
6196 ui_out_text (uiout, ".\n");
6197}
252fbfc8 6198
fd664c91
PA
6199void
6200print_no_history_reason (struct ui_out *uiout)
33d62d64 6201{
fd664c91 6202 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6203}
43ff13b4 6204
0c7e1a46
PA
6205/* Print current location without a level number, if we have changed
6206 functions or hit a breakpoint. Print source line if we have one.
6207 bpstat_print contains the logic deciding in detail what to print,
6208 based on the event(s) that just occurred. */
6209
6210void
6211print_stop_event (struct target_waitstatus *ws)
6212{
6213 int bpstat_ret;
6214 int source_flag;
6215 int do_frame_printing = 1;
6216 struct thread_info *tp = inferior_thread ();
6217
6218 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6219 switch (bpstat_ret)
6220 {
6221 case PRINT_UNKNOWN:
6222 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6223 should) carry around the function and does (or should) use
6224 that when doing a frame comparison. */
6225 if (tp->control.stop_step
6226 && frame_id_eq (tp->control.step_frame_id,
6227 get_frame_id (get_current_frame ()))
6228 && step_start_function == find_pc_function (stop_pc))
6229 {
6230 /* Finished step, just print source line. */
6231 source_flag = SRC_LINE;
6232 }
6233 else
6234 {
6235 /* Print location and source line. */
6236 source_flag = SRC_AND_LOC;
6237 }
6238 break;
6239 case PRINT_SRC_AND_LOC:
6240 /* Print location and source line. */
6241 source_flag = SRC_AND_LOC;
6242 break;
6243 case PRINT_SRC_ONLY:
6244 source_flag = SRC_LINE;
6245 break;
6246 case PRINT_NOTHING:
6247 /* Something bogus. */
6248 source_flag = SRC_LINE;
6249 do_frame_printing = 0;
6250 break;
6251 default:
6252 internal_error (__FILE__, __LINE__, _("Unknown value."));
6253 }
6254
6255 /* The behavior of this routine with respect to the source
6256 flag is:
6257 SRC_LINE: Print only source line
6258 LOCATION: Print only location
6259 SRC_AND_LOC: Print location and source line. */
6260 if (do_frame_printing)
6261 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6262
6263 /* Display the auto-display expressions. */
6264 do_displays ();
6265}
6266
c906108c
SS
6267/* Here to return control to GDB when the inferior stops for real.
6268 Print appropriate messages, remove breakpoints, give terminal our modes.
6269
6270 STOP_PRINT_FRAME nonzero means print the executing frame
6271 (pc, function, args, file, line number and line text).
6272 BREAKPOINTS_FAILED nonzero means stop was due to error
6273 attempting to insert breakpoints. */
6274
6275void
96baa820 6276normal_stop (void)
c906108c 6277{
73b65bb0
DJ
6278 struct target_waitstatus last;
6279 ptid_t last_ptid;
29f49a6a 6280 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6281
6282 get_last_target_status (&last_ptid, &last);
6283
29f49a6a
PA
6284 /* If an exception is thrown from this point on, make sure to
6285 propagate GDB's knowledge of the executing state to the
6286 frontend/user running state. A QUIT is an easy exception to see
6287 here, so do this before any filtered output. */
c35b1492
PA
6288 if (!non_stop)
6289 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6290 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6291 && last.kind != TARGET_WAITKIND_EXITED
6292 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6293 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6294
b57bacec
PA
6295 /* As we're presenting a stop, and potentially removing breakpoints,
6296 update the thread list so we can tell whether there are threads
6297 running on the target. With target remote, for example, we can
6298 only learn about new threads when we explicitly update the thread
6299 list. Do this before notifying the interpreters about signal
6300 stops, end of stepping ranges, etc., so that the "new thread"
6301 output is emitted before e.g., "Program received signal FOO",
6302 instead of after. */
6303 update_thread_list ();
6304
6305 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6306 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6307
c906108c
SS
6308 /* As with the notification of thread events, we want to delay
6309 notifying the user that we've switched thread context until
6310 the inferior actually stops.
6311
73b65bb0
DJ
6312 There's no point in saying anything if the inferior has exited.
6313 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6314 "received a signal".
6315
6316 Also skip saying anything in non-stop mode. In that mode, as we
6317 don't want GDB to switch threads behind the user's back, to avoid
6318 races where the user is typing a command to apply to thread x,
6319 but GDB switches to thread y before the user finishes entering
6320 the command, fetch_inferior_event installs a cleanup to restore
6321 the current thread back to the thread the user had selected right
6322 after this event is handled, so we're not really switching, only
6323 informing of a stop. */
4f8d22e3
PA
6324 if (!non_stop
6325 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6326 && target_has_execution
6327 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6328 && last.kind != TARGET_WAITKIND_EXITED
6329 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6330 {
6331 target_terminal_ours_for_output ();
a3f17187 6332 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6333 target_pid_to_str (inferior_ptid));
b8fa951a 6334 annotate_thread_changed ();
39f77062 6335 previous_inferior_ptid = inferior_ptid;
c906108c 6336 }
c906108c 6337
0e5bf2a8
PA
6338 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6339 {
6340 gdb_assert (sync_execution || !target_can_async_p ());
6341
6342 target_terminal_ours_for_output ();
6343 printf_filtered (_("No unwaited-for children left.\n"));
6344 }
6345
b57bacec 6346 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6347 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6348 {
6349 if (remove_breakpoints ())
6350 {
6351 target_terminal_ours_for_output ();
3e43a32a
MS
6352 printf_filtered (_("Cannot remove breakpoints because "
6353 "program is no longer writable.\nFurther "
6354 "execution is probably impossible.\n"));
c906108c
SS
6355 }
6356 }
c906108c 6357
c906108c
SS
6358 /* If an auto-display called a function and that got a signal,
6359 delete that auto-display to avoid an infinite recursion. */
6360
6361 if (stopped_by_random_signal)
6362 disable_current_display ();
6363
b57bacec 6364 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6365 if (target_has_execution
6366 && last.kind != TARGET_WAITKIND_SIGNALLED
6367 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6368 && inferior_thread ()->control.stop_step)
b57bacec 6369 {
31cc0b80 6370 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6371 n > 1 */
6372 if (inferior_thread ()->step_multi)
6373 goto done;
6374
6375 observer_notify_end_stepping_range ();
6376 }
c906108c
SS
6377
6378 target_terminal_ours ();
0f641c01 6379 async_enable_stdin ();
c906108c 6380
7abfe014
DJ
6381 /* Set the current source location. This will also happen if we
6382 display the frame below, but the current SAL will be incorrect
6383 during a user hook-stop function. */
d729566a 6384 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6385 set_current_sal_from_frame (get_current_frame ());
7abfe014 6386
251bde03
PA
6387 /* Let the user/frontend see the threads as stopped, but do nothing
6388 if the thread was running an infcall. We may be e.g., evaluating
6389 a breakpoint condition. In that case, the thread had state
6390 THREAD_RUNNING before the infcall, and shall remain set to
6391 running, all without informing the user/frontend about state
6392 transition changes. If this is actually a call command, then the
6393 thread was originally already stopped, so there's no state to
6394 finish either. */
6395 if (target_has_execution && inferior_thread ()->control.in_infcall)
6396 discard_cleanups (old_chain);
6397 else
6398 do_cleanups (old_chain);
dd7e2d2b
PA
6399
6400 /* Look up the hook_stop and run it (CLI internally handles problem
6401 of stop_command's pre-hook not existing). */
6402 if (stop_command)
6403 catch_errors (hook_stop_stub, stop_command,
6404 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6405
d729566a 6406 if (!has_stack_frames ())
d51fd4c8 6407 goto done;
c906108c 6408
32400beb
PA
6409 if (last.kind == TARGET_WAITKIND_SIGNALLED
6410 || last.kind == TARGET_WAITKIND_EXITED)
6411 goto done;
6412
c906108c
SS
6413 /* Select innermost stack frame - i.e., current frame is frame 0,
6414 and current location is based on that.
6415 Don't do this on return from a stack dummy routine,
1777feb0 6416 or if the program has exited. */
c906108c
SS
6417
6418 if (!stop_stack_dummy)
6419 {
0f7d239c 6420 select_frame (get_current_frame ());
c906108c 6421
d01a8610
AS
6422 /* If --batch-silent is enabled then there's no need to print the current
6423 source location, and to try risks causing an error message about
6424 missing source files. */
6425 if (stop_print_frame && !batch_silent)
0c7e1a46 6426 print_stop_event (&last);
c906108c
SS
6427 }
6428
6429 /* Save the function value return registers, if we care.
6430 We might be about to restore their previous contents. */
9da8c2a0
PA
6431 if (inferior_thread ()->control.proceed_to_finish
6432 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6433 {
6434 /* This should not be necessary. */
6435 if (stop_registers)
6436 regcache_xfree (stop_registers);
6437
6438 /* NB: The copy goes through to the target picking up the value of
6439 all the registers. */
6440 stop_registers = regcache_dup (get_current_regcache ());
6441 }
c906108c 6442
aa7d318d 6443 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6444 {
b89667eb
DE
6445 /* Pop the empty frame that contains the stack dummy.
6446 This also restores inferior state prior to the call
16c381f0 6447 (struct infcall_suspend_state). */
b89667eb 6448 struct frame_info *frame = get_current_frame ();
abbb1732 6449
b89667eb
DE
6450 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6451 frame_pop (frame);
3e43a32a
MS
6452 /* frame_pop() calls reinit_frame_cache as the last thing it
6453 does which means there's currently no selected frame. We
6454 don't need to re-establish a selected frame if the dummy call
6455 returns normally, that will be done by
6456 restore_infcall_control_state. However, we do have to handle
6457 the case where the dummy call is returning after being
6458 stopped (e.g. the dummy call previously hit a breakpoint).
6459 We can't know which case we have so just always re-establish
6460 a selected frame here. */
0f7d239c 6461 select_frame (get_current_frame ());
c906108c
SS
6462 }
6463
c906108c
SS
6464done:
6465 annotate_stopped ();
41d2bdb4
PA
6466
6467 /* Suppress the stop observer if we're in the middle of:
6468
6469 - a step n (n > 1), as there still more steps to be done.
6470
6471 - a "finish" command, as the observer will be called in
6472 finish_command_continuation, so it can include the inferior
6473 function's return value.
6474
6475 - calling an inferior function, as we pretend we inferior didn't
6476 run at all. The return value of the call is handled by the
6477 expression evaluator, through call_function_by_hand. */
6478
6479 if (!target_has_execution
6480 || last.kind == TARGET_WAITKIND_SIGNALLED
6481 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6482 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6483 || (!(inferior_thread ()->step_multi
6484 && inferior_thread ()->control.stop_step)
16c381f0
JK
6485 && !(inferior_thread ()->control.stop_bpstat
6486 && inferior_thread ()->control.proceed_to_finish)
6487 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6488 {
6489 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6490 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6491 stop_print_frame);
347bddb7 6492 else
1d33d6ba 6493 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6494 }
347bddb7 6495
48844aa6
PA
6496 if (target_has_execution)
6497 {
6498 if (last.kind != TARGET_WAITKIND_SIGNALLED
6499 && last.kind != TARGET_WAITKIND_EXITED)
6500 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6501 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6502 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6503 }
6c95b8df
PA
6504
6505 /* Try to get rid of automatically added inferiors that are no
6506 longer needed. Keeping those around slows down things linearly.
6507 Note that this never removes the current inferior. */
6508 prune_inferiors ();
c906108c
SS
6509}
6510
6511static int
96baa820 6512hook_stop_stub (void *cmd)
c906108c 6513{
5913bcb0 6514 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6515 return (0);
6516}
6517\f
c5aa993b 6518int
96baa820 6519signal_stop_state (int signo)
c906108c 6520{
d6b48e9c 6521 return signal_stop[signo];
c906108c
SS
6522}
6523
c5aa993b 6524int
96baa820 6525signal_print_state (int signo)
c906108c
SS
6526{
6527 return signal_print[signo];
6528}
6529
c5aa993b 6530int
96baa820 6531signal_pass_state (int signo)
c906108c
SS
6532{
6533 return signal_program[signo];
6534}
6535
2455069d
UW
6536static void
6537signal_cache_update (int signo)
6538{
6539 if (signo == -1)
6540 {
a493e3e2 6541 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6542 signal_cache_update (signo);
6543
6544 return;
6545 }
6546
6547 signal_pass[signo] = (signal_stop[signo] == 0
6548 && signal_print[signo] == 0
ab04a2af
TT
6549 && signal_program[signo] == 1
6550 && signal_catch[signo] == 0);
2455069d
UW
6551}
6552
488f131b 6553int
7bda5e4a 6554signal_stop_update (int signo, int state)
d4f3574e
SS
6555{
6556 int ret = signal_stop[signo];
abbb1732 6557
d4f3574e 6558 signal_stop[signo] = state;
2455069d 6559 signal_cache_update (signo);
d4f3574e
SS
6560 return ret;
6561}
6562
488f131b 6563int
7bda5e4a 6564signal_print_update (int signo, int state)
d4f3574e
SS
6565{
6566 int ret = signal_print[signo];
abbb1732 6567
d4f3574e 6568 signal_print[signo] = state;
2455069d 6569 signal_cache_update (signo);
d4f3574e
SS
6570 return ret;
6571}
6572
488f131b 6573int
7bda5e4a 6574signal_pass_update (int signo, int state)
d4f3574e
SS
6575{
6576 int ret = signal_program[signo];
abbb1732 6577
d4f3574e 6578 signal_program[signo] = state;
2455069d 6579 signal_cache_update (signo);
d4f3574e
SS
6580 return ret;
6581}
6582
ab04a2af
TT
6583/* Update the global 'signal_catch' from INFO and notify the
6584 target. */
6585
6586void
6587signal_catch_update (const unsigned int *info)
6588{
6589 int i;
6590
6591 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6592 signal_catch[i] = info[i] > 0;
6593 signal_cache_update (-1);
6594 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6595}
6596
c906108c 6597static void
96baa820 6598sig_print_header (void)
c906108c 6599{
3e43a32a
MS
6600 printf_filtered (_("Signal Stop\tPrint\tPass "
6601 "to program\tDescription\n"));
c906108c
SS
6602}
6603
6604static void
2ea28649 6605sig_print_info (enum gdb_signal oursig)
c906108c 6606{
2ea28649 6607 const char *name = gdb_signal_to_name (oursig);
c906108c 6608 int name_padding = 13 - strlen (name);
96baa820 6609
c906108c
SS
6610 if (name_padding <= 0)
6611 name_padding = 0;
6612
6613 printf_filtered ("%s", name);
488f131b 6614 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6615 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6616 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6617 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6618 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6619}
6620
6621/* Specify how various signals in the inferior should be handled. */
6622
6623static void
96baa820 6624handle_command (char *args, int from_tty)
c906108c
SS
6625{
6626 char **argv;
6627 int digits, wordlen;
6628 int sigfirst, signum, siglast;
2ea28649 6629 enum gdb_signal oursig;
c906108c
SS
6630 int allsigs;
6631 int nsigs;
6632 unsigned char *sigs;
6633 struct cleanup *old_chain;
6634
6635 if (args == NULL)
6636 {
e2e0b3e5 6637 error_no_arg (_("signal to handle"));
c906108c
SS
6638 }
6639
1777feb0 6640 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6641
a493e3e2 6642 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6643 sigs = (unsigned char *) alloca (nsigs);
6644 memset (sigs, 0, nsigs);
6645
1777feb0 6646 /* Break the command line up into args. */
c906108c 6647
d1a41061 6648 argv = gdb_buildargv (args);
7a292a7a 6649 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6650
6651 /* Walk through the args, looking for signal oursigs, signal names, and
6652 actions. Signal numbers and signal names may be interspersed with
6653 actions, with the actions being performed for all signals cumulatively
1777feb0 6654 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6655
6656 while (*argv != NULL)
6657 {
6658 wordlen = strlen (*argv);
6659 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6660 {;
6661 }
6662 allsigs = 0;
6663 sigfirst = siglast = -1;
6664
6665 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6666 {
6667 /* Apply action to all signals except those used by the
1777feb0 6668 debugger. Silently skip those. */
c906108c
SS
6669 allsigs = 1;
6670 sigfirst = 0;
6671 siglast = nsigs - 1;
6672 }
6673 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6674 {
6675 SET_SIGS (nsigs, sigs, signal_stop);
6676 SET_SIGS (nsigs, sigs, signal_print);
6677 }
6678 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6679 {
6680 UNSET_SIGS (nsigs, sigs, signal_program);
6681 }
6682 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6683 {
6684 SET_SIGS (nsigs, sigs, signal_print);
6685 }
6686 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6687 {
6688 SET_SIGS (nsigs, sigs, signal_program);
6689 }
6690 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6691 {
6692 UNSET_SIGS (nsigs, sigs, signal_stop);
6693 }
6694 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6695 {
6696 SET_SIGS (nsigs, sigs, signal_program);
6697 }
6698 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6699 {
6700 UNSET_SIGS (nsigs, sigs, signal_print);
6701 UNSET_SIGS (nsigs, sigs, signal_stop);
6702 }
6703 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6704 {
6705 UNSET_SIGS (nsigs, sigs, signal_program);
6706 }
6707 else if (digits > 0)
6708 {
6709 /* It is numeric. The numeric signal refers to our own
6710 internal signal numbering from target.h, not to host/target
6711 signal number. This is a feature; users really should be
6712 using symbolic names anyway, and the common ones like
6713 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6714
6715 sigfirst = siglast = (int)
2ea28649 6716 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6717 if ((*argv)[digits] == '-')
6718 {
6719 siglast = (int)
2ea28649 6720 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6721 }
6722 if (sigfirst > siglast)
6723 {
1777feb0 6724 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6725 signum = sigfirst;
6726 sigfirst = siglast;
6727 siglast = signum;
6728 }
6729 }
6730 else
6731 {
2ea28649 6732 oursig = gdb_signal_from_name (*argv);
a493e3e2 6733 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6734 {
6735 sigfirst = siglast = (int) oursig;
6736 }
6737 else
6738 {
6739 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6740 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6741 }
6742 }
6743
6744 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6745 which signals to apply actions to. */
c906108c
SS
6746
6747 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6748 {
2ea28649 6749 switch ((enum gdb_signal) signum)
c906108c 6750 {
a493e3e2
PA
6751 case GDB_SIGNAL_TRAP:
6752 case GDB_SIGNAL_INT:
c906108c
SS
6753 if (!allsigs && !sigs[signum])
6754 {
9e2f0ad4 6755 if (query (_("%s is used by the debugger.\n\
3e43a32a 6756Are you sure you want to change it? "),
2ea28649 6757 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6758 {
6759 sigs[signum] = 1;
6760 }
6761 else
6762 {
a3f17187 6763 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6764 gdb_flush (gdb_stdout);
6765 }
6766 }
6767 break;
a493e3e2
PA
6768 case GDB_SIGNAL_0:
6769 case GDB_SIGNAL_DEFAULT:
6770 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6771 /* Make sure that "all" doesn't print these. */
6772 break;
6773 default:
6774 sigs[signum] = 1;
6775 break;
6776 }
6777 }
6778
6779 argv++;
6780 }
6781
3a031f65
PA
6782 for (signum = 0; signum < nsigs; signum++)
6783 if (sigs[signum])
6784 {
2455069d 6785 signal_cache_update (-1);
a493e3e2
PA
6786 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6787 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6788
3a031f65
PA
6789 if (from_tty)
6790 {
6791 /* Show the results. */
6792 sig_print_header ();
6793 for (; signum < nsigs; signum++)
6794 if (sigs[signum])
6795 sig_print_info (signum);
6796 }
6797
6798 break;
6799 }
c906108c
SS
6800
6801 do_cleanups (old_chain);
6802}
6803
de0bea00
MF
6804/* Complete the "handle" command. */
6805
6806static VEC (char_ptr) *
6807handle_completer (struct cmd_list_element *ignore,
6f937416 6808 const char *text, const char *word)
de0bea00
MF
6809{
6810 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6811 static const char * const keywords[] =
6812 {
6813 "all",
6814 "stop",
6815 "ignore",
6816 "print",
6817 "pass",
6818 "nostop",
6819 "noignore",
6820 "noprint",
6821 "nopass",
6822 NULL,
6823 };
6824
6825 vec_signals = signal_completer (ignore, text, word);
6826 vec_keywords = complete_on_enum (keywords, word, word);
6827
6828 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6829 VEC_free (char_ptr, vec_signals);
6830 VEC_free (char_ptr, vec_keywords);
6831 return return_val;
6832}
6833
c906108c 6834static void
96baa820 6835xdb_handle_command (char *args, int from_tty)
c906108c
SS
6836{
6837 char **argv;
6838 struct cleanup *old_chain;
6839
d1a41061
PP
6840 if (args == NULL)
6841 error_no_arg (_("xdb command"));
6842
1777feb0 6843 /* Break the command line up into args. */
c906108c 6844
d1a41061 6845 argv = gdb_buildargv (args);
7a292a7a 6846 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6847 if (argv[1] != (char *) NULL)
6848 {
6849 char *argBuf;
6850 int bufLen;
6851
6852 bufLen = strlen (argv[0]) + 20;
6853 argBuf = (char *) xmalloc (bufLen);
6854 if (argBuf)
6855 {
6856 int validFlag = 1;
2ea28649 6857 enum gdb_signal oursig;
c906108c 6858
2ea28649 6859 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6860 memset (argBuf, 0, bufLen);
6861 if (strcmp (argv[1], "Q") == 0)
6862 sprintf (argBuf, "%s %s", argv[0], "noprint");
6863 else
6864 {
6865 if (strcmp (argv[1], "s") == 0)
6866 {
6867 if (!signal_stop[oursig])
6868 sprintf (argBuf, "%s %s", argv[0], "stop");
6869 else
6870 sprintf (argBuf, "%s %s", argv[0], "nostop");
6871 }
6872 else if (strcmp (argv[1], "i") == 0)
6873 {
6874 if (!signal_program[oursig])
6875 sprintf (argBuf, "%s %s", argv[0], "pass");
6876 else
6877 sprintf (argBuf, "%s %s", argv[0], "nopass");
6878 }
6879 else if (strcmp (argv[1], "r") == 0)
6880 {
6881 if (!signal_print[oursig])
6882 sprintf (argBuf, "%s %s", argv[0], "print");
6883 else
6884 sprintf (argBuf, "%s %s", argv[0], "noprint");
6885 }
6886 else
6887 validFlag = 0;
6888 }
6889 if (validFlag)
6890 handle_command (argBuf, from_tty);
6891 else
a3f17187 6892 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6893 if (argBuf)
b8c9b27d 6894 xfree (argBuf);
c906108c
SS
6895 }
6896 }
6897 do_cleanups (old_chain);
6898}
6899
2ea28649
PA
6900enum gdb_signal
6901gdb_signal_from_command (int num)
ed01b82c
PA
6902{
6903 if (num >= 1 && num <= 15)
2ea28649 6904 return (enum gdb_signal) num;
ed01b82c
PA
6905 error (_("Only signals 1-15 are valid as numeric signals.\n\
6906Use \"info signals\" for a list of symbolic signals."));
6907}
6908
c906108c
SS
6909/* Print current contents of the tables set by the handle command.
6910 It is possible we should just be printing signals actually used
6911 by the current target (but for things to work right when switching
6912 targets, all signals should be in the signal tables). */
6913
6914static void
96baa820 6915signals_info (char *signum_exp, int from_tty)
c906108c 6916{
2ea28649 6917 enum gdb_signal oursig;
abbb1732 6918
c906108c
SS
6919 sig_print_header ();
6920
6921 if (signum_exp)
6922 {
6923 /* First see if this is a symbol name. */
2ea28649 6924 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6925 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6926 {
6927 /* No, try numeric. */
6928 oursig =
2ea28649 6929 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6930 }
6931 sig_print_info (oursig);
6932 return;
6933 }
6934
6935 printf_filtered ("\n");
6936 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6937 for (oursig = GDB_SIGNAL_FIRST;
6938 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6939 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6940 {
6941 QUIT;
6942
a493e3e2
PA
6943 if (oursig != GDB_SIGNAL_UNKNOWN
6944 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6945 sig_print_info (oursig);
6946 }
6947
3e43a32a
MS
6948 printf_filtered (_("\nUse the \"handle\" command "
6949 "to change these tables.\n"));
c906108c 6950}
4aa995e1 6951
c709acd1
PA
6952/* Check if it makes sense to read $_siginfo from the current thread
6953 at this point. If not, throw an error. */
6954
6955static void
6956validate_siginfo_access (void)
6957{
6958 /* No current inferior, no siginfo. */
6959 if (ptid_equal (inferior_ptid, null_ptid))
6960 error (_("No thread selected."));
6961
6962 /* Don't try to read from a dead thread. */
6963 if (is_exited (inferior_ptid))
6964 error (_("The current thread has terminated"));
6965
6966 /* ... or from a spinning thread. */
6967 if (is_running (inferior_ptid))
6968 error (_("Selected thread is running."));
6969}
6970
4aa995e1
PA
6971/* The $_siginfo convenience variable is a bit special. We don't know
6972 for sure the type of the value until we actually have a chance to
7a9dd1b2 6973 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6974 also dependent on which thread you have selected.
6975
6976 1. making $_siginfo be an internalvar that creates a new value on
6977 access.
6978
6979 2. making the value of $_siginfo be an lval_computed value. */
6980
6981/* This function implements the lval_computed support for reading a
6982 $_siginfo value. */
6983
6984static void
6985siginfo_value_read (struct value *v)
6986{
6987 LONGEST transferred;
6988
c709acd1
PA
6989 validate_siginfo_access ();
6990
4aa995e1
PA
6991 transferred =
6992 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6993 NULL,
6994 value_contents_all_raw (v),
6995 value_offset (v),
6996 TYPE_LENGTH (value_type (v)));
6997
6998 if (transferred != TYPE_LENGTH (value_type (v)))
6999 error (_("Unable to read siginfo"));
7000}
7001
7002/* This function implements the lval_computed support for writing a
7003 $_siginfo value. */
7004
7005static void
7006siginfo_value_write (struct value *v, struct value *fromval)
7007{
7008 LONGEST transferred;
7009
c709acd1
PA
7010 validate_siginfo_access ();
7011
4aa995e1
PA
7012 transferred = target_write (&current_target,
7013 TARGET_OBJECT_SIGNAL_INFO,
7014 NULL,
7015 value_contents_all_raw (fromval),
7016 value_offset (v),
7017 TYPE_LENGTH (value_type (fromval)));
7018
7019 if (transferred != TYPE_LENGTH (value_type (fromval)))
7020 error (_("Unable to write siginfo"));
7021}
7022
c8f2448a 7023static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7024 {
7025 siginfo_value_read,
7026 siginfo_value_write
7027 };
7028
7029/* Return a new value with the correct type for the siginfo object of
78267919
UW
7030 the current thread using architecture GDBARCH. Return a void value
7031 if there's no object available. */
4aa995e1 7032
2c0b251b 7033static struct value *
22d2b532
SDJ
7034siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7035 void *ignore)
4aa995e1 7036{
4aa995e1 7037 if (target_has_stack
78267919
UW
7038 && !ptid_equal (inferior_ptid, null_ptid)
7039 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7040 {
78267919 7041 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7042
78267919 7043 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7044 }
7045
78267919 7046 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7047}
7048
c906108c 7049\f
16c381f0
JK
7050/* infcall_suspend_state contains state about the program itself like its
7051 registers and any signal it received when it last stopped.
7052 This state must be restored regardless of how the inferior function call
7053 ends (either successfully, or after it hits a breakpoint or signal)
7054 if the program is to properly continue where it left off. */
7055
7056struct infcall_suspend_state
7a292a7a 7057{
16c381f0 7058 struct thread_suspend_state thread_suspend;
dd80ea3c 7059#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7060 struct inferior_suspend_state inferior_suspend;
dd80ea3c 7061#endif
16c381f0
JK
7062
7063 /* Other fields: */
7a292a7a 7064 CORE_ADDR stop_pc;
b89667eb 7065 struct regcache *registers;
1736ad11 7066
35515841 7067 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7068 struct gdbarch *siginfo_gdbarch;
7069
7070 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7071 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7072 content would be invalid. */
7073 gdb_byte *siginfo_data;
b89667eb
DE
7074};
7075
16c381f0
JK
7076struct infcall_suspend_state *
7077save_infcall_suspend_state (void)
b89667eb 7078{
16c381f0 7079 struct infcall_suspend_state *inf_state;
b89667eb 7080 struct thread_info *tp = inferior_thread ();
974a734b 7081#if 0
16c381f0 7082 struct inferior *inf = current_inferior ();
974a734b 7083#endif
1736ad11
JK
7084 struct regcache *regcache = get_current_regcache ();
7085 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7086 gdb_byte *siginfo_data = NULL;
7087
7088 if (gdbarch_get_siginfo_type_p (gdbarch))
7089 {
7090 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7091 size_t len = TYPE_LENGTH (type);
7092 struct cleanup *back_to;
7093
7094 siginfo_data = xmalloc (len);
7095 back_to = make_cleanup (xfree, siginfo_data);
7096
7097 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7098 siginfo_data, 0, len) == len)
7099 discard_cleanups (back_to);
7100 else
7101 {
7102 /* Errors ignored. */
7103 do_cleanups (back_to);
7104 siginfo_data = NULL;
7105 }
7106 }
7107
41bf6aca 7108 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7109
7110 if (siginfo_data)
7111 {
7112 inf_state->siginfo_gdbarch = gdbarch;
7113 inf_state->siginfo_data = siginfo_data;
7114 }
b89667eb 7115
16c381f0 7116 inf_state->thread_suspend = tp->suspend;
dd80ea3c 7117#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7118 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 7119#endif
16c381f0 7120
35515841 7121 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7122 GDB_SIGNAL_0 anyway. */
7123 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7124
b89667eb
DE
7125 inf_state->stop_pc = stop_pc;
7126
1736ad11 7127 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7128
7129 return inf_state;
7130}
7131
7132/* Restore inferior session state to INF_STATE. */
7133
7134void
16c381f0 7135restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7136{
7137 struct thread_info *tp = inferior_thread ();
974a734b 7138#if 0
16c381f0 7139 struct inferior *inf = current_inferior ();
974a734b 7140#endif
1736ad11
JK
7141 struct regcache *regcache = get_current_regcache ();
7142 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7143
16c381f0 7144 tp->suspend = inf_state->thread_suspend;
dd80ea3c 7145#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7146 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 7147#endif
16c381f0 7148
b89667eb
DE
7149 stop_pc = inf_state->stop_pc;
7150
1736ad11
JK
7151 if (inf_state->siginfo_gdbarch == gdbarch)
7152 {
7153 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7154
7155 /* Errors ignored. */
7156 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7157 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7158 }
7159
b89667eb
DE
7160 /* The inferior can be gone if the user types "print exit(0)"
7161 (and perhaps other times). */
7162 if (target_has_execution)
7163 /* NB: The register write goes through to the target. */
1736ad11 7164 regcache_cpy (regcache, inf_state->registers);
803b5f95 7165
16c381f0 7166 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7167}
7168
7169static void
16c381f0 7170do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7171{
16c381f0 7172 restore_infcall_suspend_state (state);
b89667eb
DE
7173}
7174
7175struct cleanup *
16c381f0
JK
7176make_cleanup_restore_infcall_suspend_state
7177 (struct infcall_suspend_state *inf_state)
b89667eb 7178{
16c381f0 7179 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7180}
7181
7182void
16c381f0 7183discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7184{
7185 regcache_xfree (inf_state->registers);
803b5f95 7186 xfree (inf_state->siginfo_data);
b89667eb
DE
7187 xfree (inf_state);
7188}
7189
7190struct regcache *
16c381f0 7191get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7192{
7193 return inf_state->registers;
7194}
7195
16c381f0
JK
7196/* infcall_control_state contains state regarding gdb's control of the
7197 inferior itself like stepping control. It also contains session state like
7198 the user's currently selected frame. */
b89667eb 7199
16c381f0 7200struct infcall_control_state
b89667eb 7201{
16c381f0
JK
7202 struct thread_control_state thread_control;
7203 struct inferior_control_state inferior_control;
d82142e2
JK
7204
7205 /* Other fields: */
7206 enum stop_stack_kind stop_stack_dummy;
7207 int stopped_by_random_signal;
7a292a7a 7208 int stop_after_trap;
7a292a7a 7209
b89667eb 7210 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7211 struct frame_id selected_frame_id;
7a292a7a
SS
7212};
7213
c906108c 7214/* Save all of the information associated with the inferior<==>gdb
b89667eb 7215 connection. */
c906108c 7216
16c381f0
JK
7217struct infcall_control_state *
7218save_infcall_control_state (void)
c906108c 7219{
16c381f0 7220 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7221 struct thread_info *tp = inferior_thread ();
d6b48e9c 7222 struct inferior *inf = current_inferior ();
7a292a7a 7223
16c381f0
JK
7224 inf_status->thread_control = tp->control;
7225 inf_status->inferior_control = inf->control;
d82142e2 7226
8358c15c 7227 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7228 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7229
16c381f0
JK
7230 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7231 chain. If caller's caller is walking the chain, they'll be happier if we
7232 hand them back the original chain when restore_infcall_control_state is
7233 called. */
7234 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7235
7236 /* Other fields: */
7237 inf_status->stop_stack_dummy = stop_stack_dummy;
7238 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7239 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7240
206415a3 7241 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7242
7a292a7a 7243 return inf_status;
c906108c
SS
7244}
7245
c906108c 7246static int
96baa820 7247restore_selected_frame (void *args)
c906108c 7248{
488f131b 7249 struct frame_id *fid = (struct frame_id *) args;
c906108c 7250 struct frame_info *frame;
c906108c 7251
101dcfbe 7252 frame = frame_find_by_id (*fid);
c906108c 7253
aa0cd9c1
AC
7254 /* If inf_status->selected_frame_id is NULL, there was no previously
7255 selected frame. */
101dcfbe 7256 if (frame == NULL)
c906108c 7257 {
8a3fe4f8 7258 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7259 return 0;
7260 }
7261
0f7d239c 7262 select_frame (frame);
c906108c
SS
7263
7264 return (1);
7265}
7266
b89667eb
DE
7267/* Restore inferior session state to INF_STATUS. */
7268
c906108c 7269void
16c381f0 7270restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7271{
4e1c45ea 7272 struct thread_info *tp = inferior_thread ();
d6b48e9c 7273 struct inferior *inf = current_inferior ();
4e1c45ea 7274
8358c15c
JK
7275 if (tp->control.step_resume_breakpoint)
7276 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7277
5b79abe7
TT
7278 if (tp->control.exception_resume_breakpoint)
7279 tp->control.exception_resume_breakpoint->disposition
7280 = disp_del_at_next_stop;
7281
d82142e2 7282 /* Handle the bpstat_copy of the chain. */
16c381f0 7283 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7284
16c381f0
JK
7285 tp->control = inf_status->thread_control;
7286 inf->control = inf_status->inferior_control;
d82142e2
JK
7287
7288 /* Other fields: */
7289 stop_stack_dummy = inf_status->stop_stack_dummy;
7290 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7291 stop_after_trap = inf_status->stop_after_trap;
c906108c 7292
b89667eb 7293 if (target_has_stack)
c906108c 7294 {
c906108c 7295 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7296 walking the stack might encounter a garbage pointer and
7297 error() trying to dereference it. */
488f131b
JB
7298 if (catch_errors
7299 (restore_selected_frame, &inf_status->selected_frame_id,
7300 "Unable to restore previously selected frame:\n",
7301 RETURN_MASK_ERROR) == 0)
c906108c
SS
7302 /* Error in restoring the selected frame. Select the innermost
7303 frame. */
0f7d239c 7304 select_frame (get_current_frame ());
c906108c 7305 }
c906108c 7306
72cec141 7307 xfree (inf_status);
7a292a7a 7308}
c906108c 7309
74b7792f 7310static void
16c381f0 7311do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7312{
16c381f0 7313 restore_infcall_control_state (sts);
74b7792f
AC
7314}
7315
7316struct cleanup *
16c381f0
JK
7317make_cleanup_restore_infcall_control_state
7318 (struct infcall_control_state *inf_status)
74b7792f 7319{
16c381f0 7320 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7321}
7322
c906108c 7323void
16c381f0 7324discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7325{
8358c15c
JK
7326 if (inf_status->thread_control.step_resume_breakpoint)
7327 inf_status->thread_control.step_resume_breakpoint->disposition
7328 = disp_del_at_next_stop;
7329
5b79abe7
TT
7330 if (inf_status->thread_control.exception_resume_breakpoint)
7331 inf_status->thread_control.exception_resume_breakpoint->disposition
7332 = disp_del_at_next_stop;
7333
1777feb0 7334 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7335 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7336
72cec141 7337 xfree (inf_status);
7a292a7a 7338}
b89667eb 7339\f
ca6724c1
KB
7340/* restore_inferior_ptid() will be used by the cleanup machinery
7341 to restore the inferior_ptid value saved in a call to
7342 save_inferior_ptid(). */
ce696e05
KB
7343
7344static void
7345restore_inferior_ptid (void *arg)
7346{
7347 ptid_t *saved_ptid_ptr = arg;
abbb1732 7348
ce696e05
KB
7349 inferior_ptid = *saved_ptid_ptr;
7350 xfree (arg);
7351}
7352
7353/* Save the value of inferior_ptid so that it may be restored by a
7354 later call to do_cleanups(). Returns the struct cleanup pointer
7355 needed for later doing the cleanup. */
7356
7357struct cleanup *
7358save_inferior_ptid (void)
7359{
7360 ptid_t *saved_ptid_ptr;
7361
7362 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7363 *saved_ptid_ptr = inferior_ptid;
7364 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7365}
0c557179 7366
7f89fd65 7367/* See infrun.h. */
0c557179
SDJ
7368
7369void
7370clear_exit_convenience_vars (void)
7371{
7372 clear_internalvar (lookup_internalvar ("_exitsignal"));
7373 clear_internalvar (lookup_internalvar ("_exitcode"));
7374}
c5aa993b 7375\f
488f131b 7376
b2175913
MS
7377/* User interface for reverse debugging:
7378 Set exec-direction / show exec-direction commands
7379 (returns error unless target implements to_set_exec_direction method). */
7380
32231432 7381int execution_direction = EXEC_FORWARD;
b2175913
MS
7382static const char exec_forward[] = "forward";
7383static const char exec_reverse[] = "reverse";
7384static const char *exec_direction = exec_forward;
40478521 7385static const char *const exec_direction_names[] = {
b2175913
MS
7386 exec_forward,
7387 exec_reverse,
7388 NULL
7389};
7390
7391static void
7392set_exec_direction_func (char *args, int from_tty,
7393 struct cmd_list_element *cmd)
7394{
7395 if (target_can_execute_reverse)
7396 {
7397 if (!strcmp (exec_direction, exec_forward))
7398 execution_direction = EXEC_FORWARD;
7399 else if (!strcmp (exec_direction, exec_reverse))
7400 execution_direction = EXEC_REVERSE;
7401 }
8bbed405
MS
7402 else
7403 {
7404 exec_direction = exec_forward;
7405 error (_("Target does not support this operation."));
7406 }
b2175913
MS
7407}
7408
7409static void
7410show_exec_direction_func (struct ui_file *out, int from_tty,
7411 struct cmd_list_element *cmd, const char *value)
7412{
7413 switch (execution_direction) {
7414 case EXEC_FORWARD:
7415 fprintf_filtered (out, _("Forward.\n"));
7416 break;
7417 case EXEC_REVERSE:
7418 fprintf_filtered (out, _("Reverse.\n"));
7419 break;
b2175913 7420 default:
d8b34453
PA
7421 internal_error (__FILE__, __LINE__,
7422 _("bogus execution_direction value: %d"),
7423 (int) execution_direction);
b2175913
MS
7424 }
7425}
7426
d4db2f36
PA
7427static void
7428show_schedule_multiple (struct ui_file *file, int from_tty,
7429 struct cmd_list_element *c, const char *value)
7430{
3e43a32a
MS
7431 fprintf_filtered (file, _("Resuming the execution of threads "
7432 "of all processes is %s.\n"), value);
d4db2f36 7433}
ad52ddc6 7434
22d2b532
SDJ
7435/* Implementation of `siginfo' variable. */
7436
7437static const struct internalvar_funcs siginfo_funcs =
7438{
7439 siginfo_make_value,
7440 NULL,
7441 NULL
7442};
7443
c906108c 7444void
96baa820 7445_initialize_infrun (void)
c906108c 7446{
52f0bd74
AC
7447 int i;
7448 int numsigs;
de0bea00 7449 struct cmd_list_element *c;
c906108c 7450
1bedd215
AC
7451 add_info ("signals", signals_info, _("\
7452What debugger does when program gets various signals.\n\
7453Specify a signal as argument to print info on that signal only."));
c906108c
SS
7454 add_info_alias ("handle", "signals", 0);
7455
de0bea00 7456 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7457Specify how to handle signals.\n\
486c7739 7458Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7459Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7460If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7461will be displayed instead.\n\
7462\n\
c906108c
SS
7463Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7464from 1-15 are allowed for compatibility with old versions of GDB.\n\
7465Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7466The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7467used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7468\n\
1bedd215 7469Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7470\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7471Stop means reenter debugger if this signal happens (implies print).\n\
7472Print means print a message if this signal happens.\n\
7473Pass means let program see this signal; otherwise program doesn't know.\n\
7474Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7475Pass and Stop may be combined.\n\
7476\n\
7477Multiple signals may be specified. Signal numbers and signal names\n\
7478may be interspersed with actions, with the actions being performed for\n\
7479all signals cumulatively specified."));
de0bea00 7480 set_cmd_completer (c, handle_completer);
486c7739 7481
c906108c
SS
7482 if (xdb_commands)
7483 {
1bedd215
AC
7484 add_com ("lz", class_info, signals_info, _("\
7485What debugger does when program gets various signals.\n\
7486Specify a signal as argument to print info on that signal only."));
7487 add_com ("z", class_run, xdb_handle_command, _("\
7488Specify how to handle a signal.\n\
c906108c
SS
7489Args are signals and actions to apply to those signals.\n\
7490Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7491from 1-15 are allowed for compatibility with old versions of GDB.\n\
7492Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7493The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7494used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7495Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7496\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7497nopass), \"Q\" (noprint)\n\
7498Stop means reenter debugger if this signal happens (implies print).\n\
7499Print means print a message if this signal happens.\n\
7500Pass means let program see this signal; otherwise program doesn't know.\n\
7501Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7502Pass and Stop may be combined."));
c906108c
SS
7503 }
7504
7505 if (!dbx_commands)
1a966eab
AC
7506 stop_command = add_cmd ("stop", class_obscure,
7507 not_just_help_class_command, _("\
7508There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7509This allows you to set a list of commands to be run each time execution\n\
1a966eab 7510of the program stops."), &cmdlist);
c906108c 7511
ccce17b0 7512 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7513Set inferior debugging."), _("\
7514Show inferior debugging."), _("\
7515When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7516 NULL,
7517 show_debug_infrun,
7518 &setdebuglist, &showdebuglist);
527159b7 7519
3e43a32a
MS
7520 add_setshow_boolean_cmd ("displaced", class_maintenance,
7521 &debug_displaced, _("\
237fc4c9
PA
7522Set displaced stepping debugging."), _("\
7523Show displaced stepping debugging."), _("\
7524When non-zero, displaced stepping specific debugging is enabled."),
7525 NULL,
7526 show_debug_displaced,
7527 &setdebuglist, &showdebuglist);
7528
ad52ddc6
PA
7529 add_setshow_boolean_cmd ("non-stop", no_class,
7530 &non_stop_1, _("\
7531Set whether gdb controls the inferior in non-stop mode."), _("\
7532Show whether gdb controls the inferior in non-stop mode."), _("\
7533When debugging a multi-threaded program and this setting is\n\
7534off (the default, also called all-stop mode), when one thread stops\n\
7535(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7536all other threads in the program while you interact with the thread of\n\
7537interest. When you continue or step a thread, you can allow the other\n\
7538threads to run, or have them remain stopped, but while you inspect any\n\
7539thread's state, all threads stop.\n\
7540\n\
7541In non-stop mode, when one thread stops, other threads can continue\n\
7542to run freely. You'll be able to step each thread independently,\n\
7543leave it stopped or free to run as needed."),
7544 set_non_stop,
7545 show_non_stop,
7546 &setlist,
7547 &showlist);
7548
a493e3e2 7549 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7550 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7551 signal_print = (unsigned char *)
7552 xmalloc (sizeof (signal_print[0]) * numsigs);
7553 signal_program = (unsigned char *)
7554 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7555 signal_catch = (unsigned char *)
7556 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7557 signal_pass = (unsigned char *)
4395285e 7558 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7559 for (i = 0; i < numsigs; i++)
7560 {
7561 signal_stop[i] = 1;
7562 signal_print[i] = 1;
7563 signal_program[i] = 1;
ab04a2af 7564 signal_catch[i] = 0;
c906108c
SS
7565 }
7566
7567 /* Signals caused by debugger's own actions
7568 should not be given to the program afterwards. */
a493e3e2
PA
7569 signal_program[GDB_SIGNAL_TRAP] = 0;
7570 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7571
7572 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7573 signal_stop[GDB_SIGNAL_ALRM] = 0;
7574 signal_print[GDB_SIGNAL_ALRM] = 0;
7575 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7576 signal_print[GDB_SIGNAL_VTALRM] = 0;
7577 signal_stop[GDB_SIGNAL_PROF] = 0;
7578 signal_print[GDB_SIGNAL_PROF] = 0;
7579 signal_stop[GDB_SIGNAL_CHLD] = 0;
7580 signal_print[GDB_SIGNAL_CHLD] = 0;
7581 signal_stop[GDB_SIGNAL_IO] = 0;
7582 signal_print[GDB_SIGNAL_IO] = 0;
7583 signal_stop[GDB_SIGNAL_POLL] = 0;
7584 signal_print[GDB_SIGNAL_POLL] = 0;
7585 signal_stop[GDB_SIGNAL_URG] = 0;
7586 signal_print[GDB_SIGNAL_URG] = 0;
7587 signal_stop[GDB_SIGNAL_WINCH] = 0;
7588 signal_print[GDB_SIGNAL_WINCH] = 0;
7589 signal_stop[GDB_SIGNAL_PRIO] = 0;
7590 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7591
cd0fc7c3
SS
7592 /* These signals are used internally by user-level thread
7593 implementations. (See signal(5) on Solaris.) Like the above
7594 signals, a healthy program receives and handles them as part of
7595 its normal operation. */
a493e3e2
PA
7596 signal_stop[GDB_SIGNAL_LWP] = 0;
7597 signal_print[GDB_SIGNAL_LWP] = 0;
7598 signal_stop[GDB_SIGNAL_WAITING] = 0;
7599 signal_print[GDB_SIGNAL_WAITING] = 0;
7600 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7601 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7602
2455069d
UW
7603 /* Update cached state. */
7604 signal_cache_update (-1);
7605
85c07804
AC
7606 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7607 &stop_on_solib_events, _("\
7608Set stopping for shared library events."), _("\
7609Show stopping for shared library events."), _("\
c906108c
SS
7610If nonzero, gdb will give control to the user when the dynamic linker\n\
7611notifies gdb of shared library events. The most common event of interest\n\
85c07804 7612to the user would be loading/unloading of a new library."),
f9e14852 7613 set_stop_on_solib_events,
920d2a44 7614 show_stop_on_solib_events,
85c07804 7615 &setlist, &showlist);
c906108c 7616
7ab04401
AC
7617 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7618 follow_fork_mode_kind_names,
7619 &follow_fork_mode_string, _("\
7620Set debugger response to a program call of fork or vfork."), _("\
7621Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7622A fork or vfork creates a new process. follow-fork-mode can be:\n\
7623 parent - the original process is debugged after a fork\n\
7624 child - the new process is debugged after a fork\n\
ea1dd7bc 7625The unfollowed process will continue to run.\n\
7ab04401
AC
7626By default, the debugger will follow the parent process."),
7627 NULL,
920d2a44 7628 show_follow_fork_mode_string,
7ab04401
AC
7629 &setlist, &showlist);
7630
6c95b8df
PA
7631 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7632 follow_exec_mode_names,
7633 &follow_exec_mode_string, _("\
7634Set debugger response to a program call of exec."), _("\
7635Show debugger response to a program call of exec."), _("\
7636An exec call replaces the program image of a process.\n\
7637\n\
7638follow-exec-mode can be:\n\
7639\n\
cce7e648 7640 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7641to this new inferior. The program the process was running before\n\
7642the exec call can be restarted afterwards by restarting the original\n\
7643inferior.\n\
7644\n\
7645 same - the debugger keeps the process bound to the same inferior.\n\
7646The new executable image replaces the previous executable loaded in\n\
7647the inferior. Restarting the inferior after the exec call restarts\n\
7648the executable the process was running after the exec call.\n\
7649\n\
7650By default, the debugger will use the same inferior."),
7651 NULL,
7652 show_follow_exec_mode_string,
7653 &setlist, &showlist);
7654
7ab04401
AC
7655 add_setshow_enum_cmd ("scheduler-locking", class_run,
7656 scheduler_enums, &scheduler_mode, _("\
7657Set mode for locking scheduler during execution."), _("\
7658Show mode for locking scheduler during execution."), _("\
c906108c
SS
7659off == no locking (threads may preempt at any time)\n\
7660on == full locking (no thread except the current thread may run)\n\
7661step == scheduler locked during every single-step operation.\n\
7662 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7663 Other threads may run while stepping over a function call ('next')."),
7664 set_schedlock_func, /* traps on target vector */
920d2a44 7665 show_scheduler_mode,
7ab04401 7666 &setlist, &showlist);
5fbbeb29 7667
d4db2f36
PA
7668 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7669Set mode for resuming threads of all processes."), _("\
7670Show mode for resuming threads of all processes."), _("\
7671When on, execution commands (such as 'continue' or 'next') resume all\n\
7672threads of all processes. When off (which is the default), execution\n\
7673commands only resume the threads of the current process. The set of\n\
7674threads that are resumed is further refined by the scheduler-locking\n\
7675mode (see help set scheduler-locking)."),
7676 NULL,
7677 show_schedule_multiple,
7678 &setlist, &showlist);
7679
5bf193a2
AC
7680 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7681Set mode of the step operation."), _("\
7682Show mode of the step operation."), _("\
7683When set, doing a step over a function without debug line information\n\
7684will stop at the first instruction of that function. Otherwise, the\n\
7685function is skipped and the step command stops at a different source line."),
7686 NULL,
920d2a44 7687 show_step_stop_if_no_debug,
5bf193a2 7688 &setlist, &showlist);
ca6724c1 7689
72d0e2c5
YQ
7690 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7691 &can_use_displaced_stepping, _("\
237fc4c9
PA
7692Set debugger's willingness to use displaced stepping."), _("\
7693Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7694If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7695supported by the target architecture. If off, gdb will not use displaced\n\
7696stepping to step over breakpoints, even if such is supported by the target\n\
7697architecture. If auto (which is the default), gdb will use displaced stepping\n\
7698if the target architecture supports it and non-stop mode is active, but will not\n\
7699use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7700 NULL,
7701 show_can_use_displaced_stepping,
7702 &setlist, &showlist);
237fc4c9 7703
b2175913
MS
7704 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7705 &exec_direction, _("Set direction of execution.\n\
7706Options are 'forward' or 'reverse'."),
7707 _("Show direction of execution (forward/reverse)."),
7708 _("Tells gdb whether to execute forward or backward."),
7709 set_exec_direction_func, show_exec_direction_func,
7710 &setlist, &showlist);
7711
6c95b8df
PA
7712 /* Set/show detach-on-fork: user-settable mode. */
7713
7714 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7715Set whether gdb will detach the child of a fork."), _("\
7716Show whether gdb will detach the child of a fork."), _("\
7717Tells gdb whether to detach the child of a fork."),
7718 NULL, NULL, &setlist, &showlist);
7719
03583c20
UW
7720 /* Set/show disable address space randomization mode. */
7721
7722 add_setshow_boolean_cmd ("disable-randomization", class_support,
7723 &disable_randomization, _("\
7724Set disabling of debuggee's virtual address space randomization."), _("\
7725Show disabling of debuggee's virtual address space randomization."), _("\
7726When this mode is on (which is the default), randomization of the virtual\n\
7727address space is disabled. Standalone programs run with the randomization\n\
7728enabled by default on some platforms."),
7729 &set_disable_randomization,
7730 &show_disable_randomization,
7731 &setlist, &showlist);
7732
ca6724c1 7733 /* ptid initializations */
ca6724c1
KB
7734 inferior_ptid = null_ptid;
7735 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7736
7737 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7738 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7739 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7740 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7741
7742 /* Explicitly create without lookup, since that tries to create a
7743 value with a void typed value, and when we get here, gdbarch
7744 isn't initialized yet. At this point, we're quite sure there
7745 isn't another convenience variable of the same name. */
22d2b532 7746 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7747
7748 add_setshow_boolean_cmd ("observer", no_class,
7749 &observer_mode_1, _("\
7750Set whether gdb controls the inferior in observer mode."), _("\
7751Show whether gdb controls the inferior in observer mode."), _("\
7752In observer mode, GDB can get data from the inferior, but not\n\
7753affect its execution. Registers and memory may not be changed,\n\
7754breakpoints may not be set, and the program cannot be interrupted\n\
7755or signalled."),
7756 set_observer_mode,
7757 show_observer_mode,
7758 &setlist,
7759 &showlist);
c906108c 7760}
This page took 1.96423 seconds and 4 git commands to generate.