infrun.c:handle_inferior_event: Remove some more dead code.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820
JM
81
82static void set_schedlock_func (char *args, int from_tty,
488f131b 83 struct cmd_list_element *c);
96baa820 84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
b3444185
PA
87static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
a7212384 89
96baa820
JM
90static void xdb_handle_command (char *args, int from_tty);
91
6a6b96b9 92static int prepare_to_proceed (int);
ea67f13b 93
33d62d64
JK
94static void print_exited_reason (int exitstatus);
95
2ea28649 96static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
97
98static void print_no_history_reason (void);
99
2ea28649 100static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
101
102static void print_end_stepping_range_reason (void);
103
96baa820 104void _initialize_infrun (void);
43ff13b4 105
e58b0e63
PA
106void nullify_last_target_wait_ptid (void);
107
2c03e5be 108static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
109
110static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
2484c66b
UW
112static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
5fbbeb29
CF
114/* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117int step_stop_if_no_debug = 0;
920d2a44
AC
118static void
119show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123}
5fbbeb29 124
1777feb0 125/* In asynchronous mode, but simulating synchronous execution. */
96baa820 126
43ff13b4
JM
127int sync_execution = 0;
128
c906108c
SS
129/* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
96baa820
JM
131 running in. */
132
39f77062 133static ptid_t previous_inferior_ptid;
7a292a7a 134
07107ca6
LM
135/* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140static int detach_fork = 1;
6c95b8df 141
237fc4c9
PA
142int debug_displaced = 0;
143static void
144show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148}
149
ccce17b0 150unsigned int debug_infrun = 0;
920d2a44
AC
151static void
152show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156}
527159b7 157
03583c20
UW
158
159/* Support for disabling address space randomization. */
160
161int disable_randomization = 1;
162
163static void
164show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176}
177
178static void
179set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181{
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186}
187
d32dc48e
PA
188/* User interface for non-stop mode. */
189
190int non_stop = 0;
191static int non_stop_1 = 0;
192
193static void
194set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196{
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204}
205
206static void
207show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213}
214
d914c394
SS
215/* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
d914c394
SS
219int observer_mode = 0;
220static int observer_mode_1 = 0;
221
222static void
223set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
d914c394
SS
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257}
258
259static void
260show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264}
265
266/* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272void
273update_observer_mode (void)
274{
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289}
c2c6d25f 290
c906108c
SS
291/* Tables of how to react to signals; the user sets them. */
292
293static unsigned char *signal_stop;
294static unsigned char *signal_print;
295static unsigned char *signal_program;
296
ab04a2af
TT
297/* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301static unsigned char *signal_catch;
302
2455069d
UW
303/* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306static unsigned char *signal_pass;
307
c906108c
SS
308#define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316#define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
9b224c5e
PA
324/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327void
328update_signals_program_target (void)
329{
a493e3e2 330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
331}
332
1777feb0 333/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 334
edb3359d 335#define RESUME_ALL minus_one_ptid
c906108c
SS
336
337/* Command list pointer for the "stop" placeholder. */
338
339static struct cmd_list_element *stop_command;
340
c906108c
SS
341/* Function inferior was in as of last step command. */
342
343static struct symbol *step_start_function;
344
c906108c
SS
345/* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
628fe4e4 347int stop_on_solib_events;
f9e14852
GB
348
349/* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352static void
353set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354{
355 update_solib_breakpoints ();
356}
357
920d2a44
AC
358static void
359show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361{
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364}
c906108c 365
c906108c
SS
366/* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369int stop_after_trap;
370
642fd101
DE
371/* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
72cec141 376struct regcache *stop_registers;
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
0d1e5fa7
PA
388static void context_switch (ptid_t ptid);
389
4e1c45ea 390void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 391
7a76f5b8 392static void init_infwait_state (void);
a474d7c2 393
53904c9e
AC
394static const char follow_fork_mode_child[] = "child";
395static const char follow_fork_mode_parent[] = "parent";
396
40478521 397static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
ef346e04 401};
c906108c 402
53904c9e 403static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
404static void
405show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407{
3e43a32a
MS
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
411 value);
412}
c906108c
SS
413\f
414
e58b0e63
PA
415/* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
6604731b 419static int
4ef3f3be 420follow_fork (void)
c906108c 421{
ea1dd7bc 422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
4e3990f4
DE
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 431 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
8358c15c
JK
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
16c381f0
JK
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
186c406b
TT
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
16c381f0
JK
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
186c406b 496 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
07107ca6 504 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
e09875d4 516 tp = find_thread_ptid (parent);
e58b0e63
PA
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
1777feb0 524 /* If we followed the child, switch to it... */
e58b0e63
PA
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
8358c15c
JK
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
16c381f0
JK
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
186c406b
TT
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
e58b0e63
PA
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
3e43a32a
MS
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
e58b0e63
PA
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
c906108c 571
e58b0e63 572 return should_resume;
c906108c
SS
573}
574
6604731b
DJ
575void
576follow_inferior_reset_breakpoints (void)
c906108c 577{
4e1c45ea
PA
578 struct thread_info *tp = inferior_thread ();
579
6604731b
DJ
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
8358c15c
JK
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 593
186c406b
TT
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
6604731b
DJ
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
c906108c 604}
c906108c 605
6c95b8df
PA
606/* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609static int
610proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612{
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
a493e3e2 619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
a493e3e2 628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
629 }
630
631 return 0;
632}
633
634/* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637static void
638handle_vfork_child_exec_or_exit (int exec)
639{
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
1777feb0 657 /* follow-fork child, detach-on-fork on. */
6c95b8df 658
68c9da30
PA
659 inf->vfork_parent->pending_detach = 0;
660
f50f4e56
PA
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
6c95b8df
PA
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
6c95b8df
PA
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
6c95b8df
PA
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
7dcd53a0 758 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 764 inferior. */
6c95b8df
PA
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
3e43a32a
MS
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792}
793
eb6c553b 794/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
795
796static const char follow_exec_mode_new[] = "new";
797static const char follow_exec_mode_same[] = "same";
40478521 798static const char *const follow_exec_mode_names[] =
6c95b8df
PA
799{
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803};
804
805static const char *follow_exec_mode_string = follow_exec_mode_same;
806static void
807show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809{
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811}
812
1777feb0 813/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 814
c906108c 815static void
3a3e9ee3 816follow_exec (ptid_t pid, char *execd_pathname)
c906108c 817{
4e1c45ea 818 struct thread_info *th = inferior_thread ();
6c95b8df 819 struct inferior *inf = current_inferior ();
7a292a7a 820
c906108c
SS
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
1777feb0 840 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
841
842 mark_breakpoints_out ();
843
c906108c
SS
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 847 statement through an exec(). */
8358c15c 848 th->control.step_resume_breakpoint = NULL;
186c406b 849 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
c906108c 852
a75724bc
PA
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
1777feb0 861 /* What is this a.out's name? */
6c95b8df
PA
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
c906108c
SS
865
866 /* We've followed the inferior through an exec. Therefore, the
1777feb0 867 inferior has essentially been killed & reborn. */
7a292a7a 868
c906108c 869 gdb_flush (gdb_stdout);
6ca15a4b
PA
870
871 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
abbb1732 878
e85a822c
DJ
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
c906108c 883
cce9b6bf
PA
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
6c95b8df
PA
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
6c95b8df
PA
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
9107fc8d
PA
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
6c95b8df
PA
919
920 gdb_assert (current_program_space == inf->pspace);
921
1777feb0 922 /* That a.out is now the one to use. */
6c95b8df
PA
923 exec_file_attach (execd_pathname, 0);
924
c1e56572
JK
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
7dcd53a0
TT
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
933 NULL, 0);
934
7dcd53a0
TT
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
c906108c 937
9107fc8d
PA
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
268a4a75 946 solib_create_inferior_hook (0);
c906108c 947
4efc6507
DE
948 jit_inferior_created_hook ();
949
c1e56572
JK
950 breakpoint_re_set ();
951
c906108c
SS
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
1777feb0 954 to symbol_file_command...). */
c906108c
SS
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
1777feb0 960 matically get reset there in the new process.). */
c906108c
SS
961}
962
963/* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
967
968/* The thread we inserted single-step breakpoints for. */
969static ptid_t singlestep_ptid;
970
fd48f117
DJ
971/* PC when we started this single-step. */
972static CORE_ADDR singlestep_pc;
973
9f976b41
DJ
974/* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976static ptid_t saved_singlestep_ptid;
977static int stepping_past_singlestep_breakpoint;
6a6b96b9 978
ca67fcb8
VP
979/* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 983 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986static ptid_t deferred_step_ptid;
c906108c 987\f
237fc4c9
PA
988/* Displaced stepping. */
989
990/* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
237fc4c9
PA
1076struct displaced_step_request
1077{
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080};
1081
fc1cf338
PA
1082/* Per-inferior displaced stepping state. */
1083struct displaced_step_inferior_state
1084{
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113};
1114
1115/* The list of states of processes involved in displaced stepping
1116 presently. */
1117static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119/* Get the displaced stepping state of process PID. */
1120
1121static struct displaced_step_inferior_state *
1122get_displaced_stepping_state (int pid)
1123{
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133}
1134
1135/* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139static struct displaced_step_inferior_state *
1140add_displaced_stepping_state (int pid)
1141{
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
237fc4c9 1149
fc1cf338
PA
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
237fc4c9 1154
fc1cf338
PA
1155 return state;
1156}
1157
a42244db
YQ
1158/* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162struct displaced_step_closure*
1163get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164{
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174}
1175
fc1cf338 1176/* Remove the displaced stepping state of process PID. */
237fc4c9 1177
fc1cf338
PA
1178static void
1179remove_displaced_stepping_state (int pid)
1180{
1181 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1182
fc1cf338
PA
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199}
1200
1201static void
1202infrun_inferior_exit (struct inferior *inf)
1203{
1204 remove_displaced_stepping_state (inf->pid);
1205}
237fc4c9 1206
fff08868
HZ
1207/* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
72d0e2c5 1215static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1216
237fc4c9
PA
1217static void
1218show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221{
72d0e2c5 1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1226 value, non_stop ? "on" : "off");
1227 else
3e43a32a
MS
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1231}
1232
fff08868
HZ
1233/* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
237fc4c9
PA
1236static int
1237use_displaced_stepping (struct gdbarch *gdbarch)
1238{
72d0e2c5
YQ
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
237fc4c9
PA
1243}
1244
1245/* Clean out any stray displaced stepping state. */
1246static void
fc1cf338 1247displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1248{
1249 /* Indicate that there is no cleanup pending. */
fc1cf338 1250 displaced->step_ptid = null_ptid;
237fc4c9 1251
fc1cf338 1252 if (displaced->step_closure)
237fc4c9 1253 {
fc1cf338
PA
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
237fc4c9
PA
1257 }
1258}
1259
1260static void
fc1cf338 1261displaced_step_clear_cleanup (void *arg)
237fc4c9 1262{
fc1cf338
PA
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
237fc4c9
PA
1266}
1267
1268/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269void
1270displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273{
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279}
1280
1281/* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295static int
1296displaced_step_prepare (ptid_t ptid)
1297{
ad53cd71 1298 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1299 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
fc1cf338 1305 struct displaced_step_inferior_state *displaced;
9e529e1d 1306 int status;
237fc4c9
PA
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
c1e36e3e
PA
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
fc1cf338
PA
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
237fc4c9 1320
fc1cf338
PA
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
fc1cf338 1338 if (displaced->step_request_queue)
237fc4c9 1339 {
fc1cf338 1340 for (req = displaced->step_request_queue;
237fc4c9
PA
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
fc1cf338 1347 displaced->step_request_queue = new_req;
237fc4c9
PA
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
fc1cf338 1359 displaced_step_clear (displaced);
237fc4c9 1360
ad53cd71
PA
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
515630c5 1364 original = regcache_read_pc (regcache);
237fc4c9
PA
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
fc1cf338 1370 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1371 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1372 &displaced->step_saved_copy);
9e529e1d
JK
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1379 if (debug_displaced)
1380 {
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
fc1cf338
PA
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
237fc4c9
PA
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1389 original, copy, regcache);
237fc4c9
PA
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
9f5a595d
UW
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
fc1cf338
PA
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
9f5a595d 1401
fc1cf338 1402 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1403
1404 /* Resume execution at the copy. */
515630c5 1405 regcache_write_pc (regcache, copy);
237fc4c9 1406
ad53cd71
PA
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
237fc4c9
PA
1410
1411 if (debug_displaced)
5af949e3
UW
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
237fc4c9 1414
237fc4c9
PA
1415 return 1;
1416}
1417
237fc4c9 1418static void
3e43a32a
MS
1419write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
237fc4c9
PA
1421{
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1423
237fc4c9
PA
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427}
1428
e2d96639
YQ
1429/* Restore the contents of the copy area for thread PTID. */
1430
1431static void
1432displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434{
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444}
1445
237fc4c9 1446static void
2ea28649 1447displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1448{
1449 struct cleanup *old_cleanups;
fc1cf338
PA
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
237fc4c9
PA
1456
1457 /* Was this event for the pid we displaced? */
fc1cf338
PA
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1460 return;
1461
fc1cf338 1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1463
e2d96639 1464 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1465
1466 /* Did the instruction complete successfully? */
a493e3e2 1467 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1468 {
1469 /* Fix up the resulting state. */
fc1cf338
PA
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
515630c5
UW
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1482
fc1cf338 1483 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1484 regcache_write_pc (regcache, pc);
237fc4c9
PA
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
fc1cf338 1489 displaced->step_ptid = null_ptid;
1c5cfe86 1490
237fc4c9 1491 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
237fc4c9
PA
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
5af949e3 1498 struct regcache *regcache;
929dfd4f 1499 struct gdbarch *gdbarch;
1c5cfe86 1500 CORE_ADDR actual_pc;
6c95b8df 1501 struct address_space *aspace;
237fc4c9 1502
fc1cf338 1503 head = displaced->step_request_queue;
237fc4c9 1504 ptid = head->ptid;
fc1cf338 1505 displaced->step_request_queue = head->next;
237fc4c9
PA
1506 xfree (head);
1507
ad53cd71
PA
1508 context_switch (ptid);
1509
5af949e3
UW
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
6c95b8df 1512 aspace = get_regcache_aspace (regcache);
1c5cfe86 1513
6c95b8df 1514 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1515 {
1c5cfe86
PA
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
929dfd4f
JB
1523 gdbarch = get_regcache_arch (regcache);
1524
1c5cfe86
PA
1525 if (debug_displaced)
1526 {
929dfd4f 1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1528 gdb_byte buf[4];
1529
5af949e3
UW
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
fc1cf338
PA
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
a493e3e2 1538 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1539 else
a493e3e2 1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1541
1542 /* Done, we're stepping a thread. */
1543 break;
ad53cd71 1544 }
1c5cfe86
PA
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
16c381f0 1552 tp->control.trap_expected = 0;
1c5cfe86
PA
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
ad53cd71 1556
1c5cfe86 1557 if (debug_displaced)
3e43a32a 1558 fprintf_unfiltered (gdb_stdlog,
27d2932e 1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1560 target_pid_to_str (tp->ptid), step);
1561
a493e3e2
PA
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
237fc4c9
PA
1568 }
1569}
1570
5231c1fd
PA
1571/* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573static void
1574infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575{
1576 struct displaced_step_request *it;
fc1cf338 1577 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
5231c1fd
PA
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
fc1cf338
PA
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
5231c1fd
PA
1599}
1600
237fc4c9
PA
1601\f
1602/* Resuming. */
c906108c
SS
1603
1604/* Things to clean up if we QUIT out of resume (). */
c906108c 1605static void
74b7792f 1606resume_cleanups (void *ignore)
c906108c
SS
1607{
1608 normal_stop ();
1609}
1610
53904c9e
AC
1611static const char schedlock_off[] = "off";
1612static const char schedlock_on[] = "on";
1613static const char schedlock_step[] = "step";
40478521 1614static const char *const scheduler_enums[] = {
ef346e04
AC
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619};
920d2a44
AC
1620static const char *scheduler_mode = schedlock_off;
1621static void
1622show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624{
3e43a32a
MS
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
920d2a44
AC
1628 value);
1629}
c906108c
SS
1630
1631static void
96baa820 1632set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1633{
eefe576e
AC
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
c906108c
SS
1639}
1640
d4db2f36
PA
1641/* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644int sched_multi = 0;
1645
2facfe5c
DD
1646/* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652static int
1653maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654{
1655 int hw_step = 1;
1656
f02253f1
HZ
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
99e40580 1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1660 {
99e40580
UW
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1663 `wait_for_inferior'. */
99e40580
UW
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
2facfe5c
DD
1667 }
1668 return hw_step;
1669}
c906108c 1670
09cee04b
PA
1671/* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680ptid_t
1681user_visible_resume_ptid (int step)
1682{
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708}
1709
c906108c
SS
1710/* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718void
2ea28649 1719resume (int step, enum gdb_signal sig)
c906108c
SS
1720{
1721 int should_resume = 1;
74b7792f 1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1725 struct thread_info *tp = inferior_thread ();
515630c5 1726 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1727 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1728
c906108c
SS
1729 QUIT;
1730
74609e71
YQ
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
48f9886d
PA
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
74609e71
YQ
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
527159b7 1750 if (debug_infrun)
237fc4c9 1751 fprintf_unfiltered (gdb_stdlog,
c9737c08 1752 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1753 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
0d9a9a5f
PA
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
c906108c 1758
c2c6d25f
JM
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1764 {
515630c5
UW
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1767 else
ac74f770
MS
1768 error (_("\
1769The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770how to step past a permanent breakpoint on this architecture. Try using\n\
1771a command like `return' or `jump' to continue execution."));
6d350bb5 1772 }
c2c6d25f 1773
c1e36e3e
PA
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
237fc4c9
PA
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
515630c5 1790 if (use_displaced_stepping (gdbarch)
16c381f0 1791 && (tp->control.trap_expected
929dfd4f 1792 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1793 && sig == GDB_SIGNAL_0
74609e71 1794 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1795 {
fc1cf338
PA
1796 struct displaced_step_inferior_state *displaced;
1797
237fc4c9 1798 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
7f7efbd9
VP
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
d56b7306
VP
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
99e40580 1810
ca7781d2
LM
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
fc1cf338
PA
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
237fc4c9
PA
1818 }
1819
2facfe5c 1820 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1821 else if (step)
2facfe5c 1822 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1823
30852783
UW
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
a493e3e2 1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
2c03e5be 1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
c906108c
SS
1869 if (should_resume)
1870 {
39f77062 1871 ptid_t resume_ptid;
dfcd3bfb 1872
cd76b0b7
VP
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
d4db2f36
PA
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
09cee04b 1881 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1882
1883 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
c906108c 1886 {
cd76b0b7
VP
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
d4db2f36 1900 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1901 && tp->control.trap_expected)
cd76b0b7 1902 {
74960c60
VP
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
ef5cf84e 1913 resume_ptid = inferior_ptid;
c906108c 1914 }
ef5cf84e 1915
515630c5 1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
6c95b8df 1921 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1922 step = 0;
1923 }
237fc4c9
PA
1924
1925 if (debug_displaced
515630c5 1926 && use_displaced_stepping (gdbarch)
16c381f0 1927 && tp->control.trap_expected)
237fc4c9 1928 {
515630c5 1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1932 gdb_byte buf[4];
1933
5af949e3
UW
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
c1e36e3e
PA
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
e58b0e63
PA
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
2020b7ab
PA
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
a493e3e2 1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1956
2455069d
UW
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
a493e3e2 1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1968
607cecd2 1969 target_resume (resume_ptid, step, sig);
c906108c
SS
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973}
1974\f
237fc4c9 1975/* Proceeding. */
c906108c
SS
1976
1977/* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
a7212384
UW
1980static void
1981clear_proceed_status_thread (struct thread_info *tp)
c906108c 1982{
a7212384
UW
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
d6b48e9c 1987
16c381f0
JK
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
c1e36e3e 1991 tp->control.may_range_step = 0;
16c381f0
JK
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1995 tp->stop_requested = 0;
4e1c45ea 1996
16c381f0 1997 tp->control.stop_step = 0;
32400beb 1998
16c381f0 1999 tp->control.proceed_to_finish = 0;
414c69f7 2000
a7212384 2001 /* Discard any remaining commands or status from previous stop. */
16c381f0 2002 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2003}
32400beb 2004
a7212384
UW
2005static int
2006clear_proceed_status_callback (struct thread_info *tp, void *data)
2007{
2008 if (is_exited (tp->ptid))
2009 return 0;
d6b48e9c 2010
a7212384
UW
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013}
2014
2015void
2016clear_proceed_status (void)
2017{
6c95b8df
PA
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
a7212384
UW
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
6c95b8df
PA
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
a7212384
UW
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
6c95b8df 2037
d6b48e9c 2038 inferior = current_inferior ();
16c381f0 2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2040 }
2041
c906108c 2042 stop_after_trap = 0;
f3b1572e
PA
2043
2044 observer_notify_about_to_proceed ();
c906108c 2045
d5c31457
UW
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
c906108c
SS
2051}
2052
5a437975
DE
2053/* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
1777feb0 2057 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2058
2059static int
6a6b96b9 2060prepare_to_proceed (int step)
ea67f13b
DJ
2061{
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
5a437975
DE
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
ea67f13b
DJ
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
6a6b96b9 2072 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2078 {
2079 return 0;
2080 }
2081
5a437975
DE
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
d4db2f36
PA
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
6a6b96b9 2096 /* Switched over from WAIT_PID. */
ea67f13b 2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2098 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2099 {
515630c5
UW
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
6c95b8df
PA
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
ea67f13b 2104 {
515630c5
UW
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
ea67f13b 2108
515630c5
UW
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
6a6b96b9 2111
0d9a9a5f
PA
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
515630c5
UW
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
1777feb0 2120 hitting it straight away. */
515630c5
UW
2121 return 1;
2122 }
ea67f13b
DJ
2123 }
2124
2125 return 0;
ea67f13b 2126}
e4846b08 2127
c906108c
SS
2128/* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2132 or -1 for act according to how it stopped.
c906108c 2133 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
c906108c
SS
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140void
2ea28649 2141proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2142{
e58b0e63
PA
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
4e1c45ea 2145 struct thread_info *tp;
e58b0e63 2146 CORE_ADDR pc;
6c95b8df 2147 struct address_space *aspace;
0de5618e
YQ
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
c906108c 2150
e58b0e63
PA
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
f148b27e
PA
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2160 return;
2161 }
2162
842951eb
PA
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
e58b0e63
PA
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
6c95b8df 2168 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2169 pc = regcache_read_pc (regcache);
2170
c906108c 2171 if (step > 0)
515630c5 2172 step_start_function = find_pc_function (pc);
c906108c
SS
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2acceee2 2176 if (addr == (CORE_ADDR) -1)
c906108c 2177 {
6c95b8df 2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2179 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
b2175913
MS
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
0de5618e 2189 force_step = 1;
515630c5
UW
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
3352ef37
AC
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
0de5618e 2195 force_step = 1;
c906108c
SS
2196 }
2197 else
2198 {
515630c5 2199 regcache_write_pc (regcache, addr);
c906108c
SS
2200 }
2201
527159b7 2202 if (debug_infrun)
8a9de0e4 2203 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2207
94cc34af
PA
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
c906108c 2216
94cc34af
PA
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
c906108c 2221
94cc34af
PA
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
1777feb0 2225 the old thread. */
94cc34af 2226 if (prepare_to_proceed (step))
0de5618e 2227 force_step = 1;
94cc34af 2228 }
c906108c 2229
4e1c45ea
PA
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
0de5618e 2233 if (force_step)
30852783
UW
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2020b7ab
PA
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
e09875d4 2267 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2268 if (last_thread)
2269 {
16c381f0 2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2272 }
2273 }
2274 }
2275
a493e3e2 2276 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2277 tp->suspend.stop_signal = siggnal;
c906108c
SS
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
16c381f0 2280 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
e4846b08
JJ
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
d5cd6034
JB
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
4e1c45ea 2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2313
59f0d5d9 2314 /* Fill in with reasonable starting values. */
4e1c45ea 2315 init_thread_stepping_state (tp);
59f0d5d9 2316
59f0d5d9
PA
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
c906108c 2320 /* Resume inferior. */
0de5618e
YQ
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
c906108c
SS
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2326 /* Do this only if we are not using the event loop, or if the target
1777feb0 2327 does not support asynchronous execution. */
362646f5 2328 if (!target_can_async_p ())
43ff13b4 2329 {
e4c8541f 2330 wait_for_inferior ();
43ff13b4
JM
2331 normal_stop ();
2332 }
c906108c 2333}
c906108c
SS
2334\f
2335
2336/* Start remote-debugging of a machine over a serial link. */
96baa820 2337
c906108c 2338void
8621d6a9 2339start_remote (int from_tty)
c906108c 2340{
d6b48e9c 2341 struct inferior *inferior;
d6b48e9c
PA
2342
2343 inferior = current_inferior ();
16c381f0 2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2345
1777feb0 2346 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2348 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
1777feb0 2352 timeout. */
6426a772
JM
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
1777feb0 2359 for an async run. */
e4c8541f 2360 wait_for_inferior ();
8621d6a9
DJ
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
6426a772 2367 normal_stop ();
c906108c
SS
2368}
2369
2370/* Initialize static vars when a new inferior begins. */
2371
2372void
96baa820 2373init_wait_for_inferior (void)
c906108c
SS
2374{
2375 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2376
c906108c
SS
2377 breakpoint_init_inferior (inf_starting);
2378
c906108c 2379 clear_proceed_status ();
9f976b41
DJ
2380
2381 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2382 deferred_step_ptid = null_ptid;
ca005067
DJ
2383
2384 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2385
842951eb 2386 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2387 init_infwait_state ();
2388
edb3359d
DJ
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
c906108c 2391}
237fc4c9 2392
c906108c 2393\f
b83266a0
SS
2394/* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
c5aa993b
JM
2398enum infwait_states
2399{
cd0fc7c3
SS
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
d983da9c 2402 infwait_step_watch_state,
cd0fc7c3 2403 infwait_nonstep_watch_state
b83266a0
SS
2404};
2405
0d1e5fa7
PA
2406/* The PTID we'll do a target_wait on.*/
2407ptid_t waiton_ptid;
2408
2409/* Current inferior wait state. */
8870954f 2410static enum infwait_states infwait_state;
cd0fc7c3 2411
0d1e5fa7
PA
2412/* Data to be passed around while handling an event. This data is
2413 discarded between events. */
c5aa993b 2414struct execution_control_state
488f131b 2415{
0d1e5fa7 2416 ptid_t ptid;
4e1c45ea
PA
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
488f131b 2421 struct target_waitstatus ws;
488f131b 2422 int random_signal;
7e324e48 2423 int stop_func_filled_in;
488f131b
JB
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2c02bd72 2426 const char *stop_func_name;
488f131b
JB
2427 int wait_some_more;
2428};
2429
ec9499be 2430static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2431
568d6575
UW
2432static void handle_step_into_function (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2435 struct execution_control_state *ecs);
186c406b 2436static void check_exception_resume (struct execution_control_state *,
28106bc2 2437 struct frame_info *);
611c83ae 2438
104c1213
JM
2439static void stop_stepping (struct execution_control_state *ecs);
2440static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2441static void keep_going (struct execution_control_state *ecs);
104c1213 2442
252fbfc8
PA
2443/* Callback for iterate over threads. If the thread is stopped, but
2444 the user/frontend doesn't know about that yet, go through
2445 normal_stop, as if the thread had just stopped now. ARG points at
2446 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2447 ptid_is_pid(PTID) is true, applies to all threads of the process
2448 pointed at by PTID. Otherwise, apply only to the thread pointed by
2449 PTID. */
2450
2451static int
2452infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2453{
2454 ptid_t ptid = * (ptid_t *) arg;
2455
2456 if ((ptid_equal (info->ptid, ptid)
2457 || ptid_equal (minus_one_ptid, ptid)
2458 || (ptid_is_pid (ptid)
2459 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2460 && is_running (info->ptid)
2461 && !is_executing (info->ptid))
2462 {
2463 struct cleanup *old_chain;
2464 struct execution_control_state ecss;
2465 struct execution_control_state *ecs = &ecss;
2466
2467 memset (ecs, 0, sizeof (*ecs));
2468
2469 old_chain = make_cleanup_restore_current_thread ();
2470
252fbfc8
PA
2471 /* Go through handle_inferior_event/normal_stop, so we always
2472 have consistent output as if the stop event had been
2473 reported. */
2474 ecs->ptid = info->ptid;
e09875d4 2475 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2476 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2477 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2478
2479 handle_inferior_event (ecs);
2480
2481 if (!ecs->wait_some_more)
2482 {
2483 struct thread_info *tp;
2484
2485 normal_stop ();
2486
fa4cd53f 2487 /* Finish off the continuations. */
252fbfc8 2488 tp = inferior_thread ();
fa4cd53f
PA
2489 do_all_intermediate_continuations_thread (tp, 1);
2490 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2491 }
2492
2493 do_cleanups (old_chain);
2494 }
2495
2496 return 0;
2497}
2498
2499/* This function is attached as a "thread_stop_requested" observer.
2500 Cleanup local state that assumed the PTID was to be resumed, and
2501 report the stop to the frontend. */
2502
2c0b251b 2503static void
252fbfc8
PA
2504infrun_thread_stop_requested (ptid_t ptid)
2505{
fc1cf338 2506 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2507
2508 /* PTID was requested to stop. Remove it from the displaced
2509 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2510
2511 for (displaced = displaced_step_inferior_states;
2512 displaced;
2513 displaced = displaced->next)
252fbfc8 2514 {
fc1cf338 2515 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2516
fc1cf338
PA
2517 it = displaced->step_request_queue;
2518 prev_next_p = &displaced->step_request_queue;
2519 while (it)
252fbfc8 2520 {
fc1cf338
PA
2521 if (ptid_match (it->ptid, ptid))
2522 {
2523 *prev_next_p = it->next;
2524 it->next = NULL;
2525 xfree (it);
2526 }
252fbfc8 2527 else
fc1cf338
PA
2528 {
2529 prev_next_p = &it->next;
2530 }
252fbfc8 2531
fc1cf338 2532 it = *prev_next_p;
252fbfc8 2533 }
252fbfc8
PA
2534 }
2535
2536 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2537}
2538
a07daef3
PA
2539static void
2540infrun_thread_thread_exit (struct thread_info *tp, int silent)
2541{
2542 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2543 nullify_last_target_wait_ptid ();
2544}
2545
4e1c45ea
PA
2546/* Callback for iterate_over_threads. */
2547
2548static int
2549delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2550{
2551 if (is_exited (info->ptid))
2552 return 0;
2553
2554 delete_step_resume_breakpoint (info);
186c406b 2555 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2556 return 0;
2557}
2558
2559/* In all-stop, delete the step resume breakpoint of any thread that
2560 had one. In non-stop, delete the step resume breakpoint of the
2561 thread that just stopped. */
2562
2563static void
2564delete_step_thread_step_resume_breakpoint (void)
2565{
2566 if (!target_has_execution
2567 || ptid_equal (inferior_ptid, null_ptid))
2568 /* If the inferior has exited, we have already deleted the step
2569 resume breakpoints out of GDB's lists. */
2570 return;
2571
2572 if (non_stop)
2573 {
2574 /* If in non-stop mode, only delete the step-resume or
2575 longjmp-resume breakpoint of the thread that just stopped
2576 stepping. */
2577 struct thread_info *tp = inferior_thread ();
abbb1732 2578
4e1c45ea 2579 delete_step_resume_breakpoint (tp);
186c406b 2580 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2581 }
2582 else
2583 /* In all-stop mode, delete all step-resume and longjmp-resume
2584 breakpoints of any thread that had them. */
2585 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2586}
2587
1777feb0 2588/* A cleanup wrapper. */
4e1c45ea
PA
2589
2590static void
2591delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2592{
2593 delete_step_thread_step_resume_breakpoint ();
2594}
2595
223698f8
DE
2596/* Pretty print the results of target_wait, for debugging purposes. */
2597
2598static void
2599print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2600 const struct target_waitstatus *ws)
2601{
2602 char *status_string = target_waitstatus_to_string (ws);
2603 struct ui_file *tmp_stream = mem_fileopen ();
2604 char *text;
223698f8
DE
2605
2606 /* The text is split over several lines because it was getting too long.
2607 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2608 output as a unit; we want only one timestamp printed if debug_timestamp
2609 is set. */
2610
2611 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2612 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2613 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2614 fprintf_unfiltered (tmp_stream,
2615 " [%s]", target_pid_to_str (waiton_ptid));
2616 fprintf_unfiltered (tmp_stream, ", status) =\n");
2617 fprintf_unfiltered (tmp_stream,
2618 "infrun: %d [%s],\n",
dfd4cc63
LM
2619 ptid_get_pid (result_ptid),
2620 target_pid_to_str (result_ptid));
223698f8
DE
2621 fprintf_unfiltered (tmp_stream,
2622 "infrun: %s\n",
2623 status_string);
2624
759ef836 2625 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2626
2627 /* This uses %s in part to handle %'s in the text, but also to avoid
2628 a gcc error: the format attribute requires a string literal. */
2629 fprintf_unfiltered (gdb_stdlog, "%s", text);
2630
2631 xfree (status_string);
2632 xfree (text);
2633 ui_file_delete (tmp_stream);
2634}
2635
24291992
PA
2636/* Prepare and stabilize the inferior for detaching it. E.g.,
2637 detaching while a thread is displaced stepping is a recipe for
2638 crashing it, as nothing would readjust the PC out of the scratch
2639 pad. */
2640
2641void
2642prepare_for_detach (void)
2643{
2644 struct inferior *inf = current_inferior ();
2645 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2646 struct cleanup *old_chain_1;
2647 struct displaced_step_inferior_state *displaced;
2648
2649 displaced = get_displaced_stepping_state (inf->pid);
2650
2651 /* Is any thread of this process displaced stepping? If not,
2652 there's nothing else to do. */
2653 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2654 return;
2655
2656 if (debug_infrun)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "displaced-stepping in-process while detaching");
2659
2660 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2661 inf->detaching = 1;
2662
2663 while (!ptid_equal (displaced->step_ptid, null_ptid))
2664 {
2665 struct cleanup *old_chain_2;
2666 struct execution_control_state ecss;
2667 struct execution_control_state *ecs;
2668
2669 ecs = &ecss;
2670 memset (ecs, 0, sizeof (*ecs));
2671
2672 overlay_cache_invalid = 1;
2673
24291992
PA
2674 if (deprecated_target_wait_hook)
2675 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2676 else
2677 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2678
2679 if (debug_infrun)
2680 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2681
2682 /* If an error happens while handling the event, propagate GDB's
2683 knowledge of the executing state to the frontend/user running
2684 state. */
3e43a32a
MS
2685 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2686 &minus_one_ptid);
24291992
PA
2687
2688 /* Now figure out what to do with the result of the result. */
2689 handle_inferior_event (ecs);
2690
2691 /* No error, don't finish the state yet. */
2692 discard_cleanups (old_chain_2);
2693
2694 /* Breakpoints and watchpoints are not installed on the target
2695 at this point, and signals are passed directly to the
2696 inferior, so this must mean the process is gone. */
2697 if (!ecs->wait_some_more)
2698 {
2699 discard_cleanups (old_chain_1);
2700 error (_("Program exited while detaching"));
2701 }
2702 }
2703
2704 discard_cleanups (old_chain_1);
2705}
2706
cd0fc7c3 2707/* Wait for control to return from inferior to debugger.
ae123ec6 2708
cd0fc7c3
SS
2709 If inferior gets a signal, we may decide to start it up again
2710 instead of returning. That is why there is a loop in this function.
2711 When this function actually returns it means the inferior
2712 should be left stopped and GDB should read more commands. */
2713
2714void
e4c8541f 2715wait_for_inferior (void)
cd0fc7c3
SS
2716{
2717 struct cleanup *old_cleanups;
c906108c 2718
527159b7 2719 if (debug_infrun)
ae123ec6 2720 fprintf_unfiltered
e4c8541f 2721 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2722
4e1c45ea
PA
2723 old_cleanups =
2724 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2725
c906108c
SS
2726 while (1)
2727 {
ae25568b
PA
2728 struct execution_control_state ecss;
2729 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2730 struct cleanup *old_chain;
2731
ae25568b
PA
2732 memset (ecs, 0, sizeof (*ecs));
2733
ec9499be 2734 overlay_cache_invalid = 1;
ec9499be 2735
9a4105ab 2736 if (deprecated_target_wait_hook)
47608cb1 2737 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2738 else
47608cb1 2739 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2740
f00150c9 2741 if (debug_infrun)
223698f8 2742 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2743
29f49a6a
PA
2744 /* If an error happens while handling the event, propagate GDB's
2745 knowledge of the executing state to the frontend/user running
2746 state. */
2747 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2748
cd0fc7c3
SS
2749 /* Now figure out what to do with the result of the result. */
2750 handle_inferior_event (ecs);
c906108c 2751
29f49a6a
PA
2752 /* No error, don't finish the state yet. */
2753 discard_cleanups (old_chain);
2754
cd0fc7c3
SS
2755 if (!ecs->wait_some_more)
2756 break;
2757 }
4e1c45ea 2758
cd0fc7c3
SS
2759 do_cleanups (old_cleanups);
2760}
c906108c 2761
1777feb0 2762/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2763 event loop whenever a change of state is detected on the file
1777feb0
MS
2764 descriptor corresponding to the target. It can be called more than
2765 once to complete a single execution command. In such cases we need
2766 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2767 that this function is called for a single execution command, then
2768 report to the user that the inferior has stopped, and do the
1777feb0 2769 necessary cleanups. */
43ff13b4
JM
2770
2771void
fba45db2 2772fetch_inferior_event (void *client_data)
43ff13b4 2773{
0d1e5fa7 2774 struct execution_control_state ecss;
a474d7c2 2775 struct execution_control_state *ecs = &ecss;
4f8d22e3 2776 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2777 struct cleanup *ts_old_chain;
4f8d22e3 2778 int was_sync = sync_execution;
0f641c01 2779 int cmd_done = 0;
43ff13b4 2780
0d1e5fa7
PA
2781 memset (ecs, 0, sizeof (*ecs));
2782
c5187ac6
PA
2783 /* We're handling a live event, so make sure we're doing live
2784 debugging. If we're looking at traceframes while the target is
2785 running, we're going to need to get back to that mode after
2786 handling the event. */
2787 if (non_stop)
2788 {
2789 make_cleanup_restore_current_traceframe ();
e6e4e701 2790 set_current_traceframe (-1);
c5187ac6
PA
2791 }
2792
4f8d22e3
PA
2793 if (non_stop)
2794 /* In non-stop mode, the user/frontend should not notice a thread
2795 switch due to internal events. Make sure we reverse to the
2796 user selected thread and frame after handling the event and
2797 running any breakpoint commands. */
2798 make_cleanup_restore_current_thread ();
2799
ec9499be 2800 overlay_cache_invalid = 1;
3dd5b83d 2801
32231432
PA
2802 make_cleanup_restore_integer (&execution_direction);
2803 execution_direction = target_execution_direction ();
2804
9a4105ab 2805 if (deprecated_target_wait_hook)
a474d7c2 2806 ecs->ptid =
47608cb1 2807 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2808 else
47608cb1 2809 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2810
f00150c9 2811 if (debug_infrun)
223698f8 2812 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2813
29f49a6a
PA
2814 /* If an error happens while handling the event, propagate GDB's
2815 knowledge of the executing state to the frontend/user running
2816 state. */
2817 if (!non_stop)
2818 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2819 else
2820 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2821
353d1d73
JK
2822 /* Get executed before make_cleanup_restore_current_thread above to apply
2823 still for the thread which has thrown the exception. */
2824 make_bpstat_clear_actions_cleanup ();
2825
43ff13b4 2826 /* Now figure out what to do with the result of the result. */
a474d7c2 2827 handle_inferior_event (ecs);
43ff13b4 2828
a474d7c2 2829 if (!ecs->wait_some_more)
43ff13b4 2830 {
d6b48e9c
PA
2831 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2832
4e1c45ea 2833 delete_step_thread_step_resume_breakpoint ();
f107f563 2834
d6b48e9c 2835 /* We may not find an inferior if this was a process exit. */
16c381f0 2836 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2837 normal_stop ();
2838
af679fd0 2839 if (target_has_execution
0e5bf2a8 2840 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2841 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2842 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2843 && ecs->event_thread->step_multi
16c381f0 2844 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2845 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2846 else
0f641c01
PA
2847 {
2848 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2849 cmd_done = 1;
2850 }
43ff13b4 2851 }
4f8d22e3 2852
29f49a6a
PA
2853 /* No error, don't finish the thread states yet. */
2854 discard_cleanups (ts_old_chain);
2855
4f8d22e3
PA
2856 /* Revert thread and frame. */
2857 do_cleanups (old_chain);
2858
2859 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2860 restore the prompt (a synchronous execution command has finished,
2861 and we're ready for input). */
b4a14fd0 2862 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2863 display_gdb_prompt (0);
0f641c01
PA
2864
2865 if (cmd_done
2866 && !was_sync
2867 && exec_done_display_p
2868 && (ptid_equal (inferior_ptid, null_ptid)
2869 || !is_running (inferior_ptid)))
2870 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2871}
2872
edb3359d
DJ
2873/* Record the frame and location we're currently stepping through. */
2874void
2875set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2876{
2877 struct thread_info *tp = inferior_thread ();
2878
16c381f0
JK
2879 tp->control.step_frame_id = get_frame_id (frame);
2880 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2881
2882 tp->current_symtab = sal.symtab;
2883 tp->current_line = sal.line;
2884}
2885
0d1e5fa7
PA
2886/* Clear context switchable stepping state. */
2887
2888void
4e1c45ea 2889init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2890{
2891 tss->stepping_over_breakpoint = 0;
2892 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2893}
2894
e02bc4cc 2895/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2896 target_wait()/deprecated_target_wait_hook(). The data is actually
2897 cached by handle_inferior_event(), which gets called immediately
2898 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2899
2900void
488f131b 2901get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2902{
39f77062 2903 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2904 *status = target_last_waitstatus;
2905}
2906
ac264b3b
MS
2907void
2908nullify_last_target_wait_ptid (void)
2909{
2910 target_last_wait_ptid = minus_one_ptid;
2911}
2912
dcf4fbde 2913/* Switch thread contexts. */
dd80620e
MS
2914
2915static void
0d1e5fa7 2916context_switch (ptid_t ptid)
dd80620e 2917{
4b51d87b 2918 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2919 {
2920 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2921 target_pid_to_str (inferior_ptid));
2922 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2923 target_pid_to_str (ptid));
fd48f117
DJ
2924 }
2925
0d1e5fa7 2926 switch_to_thread (ptid);
dd80620e
MS
2927}
2928
4fa8626c
DJ
2929static void
2930adjust_pc_after_break (struct execution_control_state *ecs)
2931{
24a73cce
UW
2932 struct regcache *regcache;
2933 struct gdbarch *gdbarch;
6c95b8df 2934 struct address_space *aspace;
8aad930b 2935 CORE_ADDR breakpoint_pc;
4fa8626c 2936
4fa8626c
DJ
2937 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2938 we aren't, just return.
9709f61c
DJ
2939
2940 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2941 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2942 implemented by software breakpoints should be handled through the normal
2943 breakpoint layer.
8fb3e588 2944
4fa8626c
DJ
2945 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2946 different signals (SIGILL or SIGEMT for instance), but it is less
2947 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2948 gdbarch_decr_pc_after_break. I don't know any specific target that
2949 generates these signals at breakpoints (the code has been in GDB since at
2950 least 1992) so I can not guess how to handle them here.
8fb3e588 2951
e6cf7916
UW
2952 In earlier versions of GDB, a target with
2953 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2954 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2955 target with both of these set in GDB history, and it seems unlikely to be
2956 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2957
2958 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2959 return;
2960
a493e3e2 2961 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2962 return;
2963
4058b839
PA
2964 /* In reverse execution, when a breakpoint is hit, the instruction
2965 under it has already been de-executed. The reported PC always
2966 points at the breakpoint address, so adjusting it further would
2967 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2968 architecture:
2969
2970 B1 0x08000000 : INSN1
2971 B2 0x08000001 : INSN2
2972 0x08000002 : INSN3
2973 PC -> 0x08000003 : INSN4
2974
2975 Say you're stopped at 0x08000003 as above. Reverse continuing
2976 from that point should hit B2 as below. Reading the PC when the
2977 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2978 been de-executed already.
2979
2980 B1 0x08000000 : INSN1
2981 B2 PC -> 0x08000001 : INSN2
2982 0x08000002 : INSN3
2983 0x08000003 : INSN4
2984
2985 We can't apply the same logic as for forward execution, because
2986 we would wrongly adjust the PC to 0x08000000, since there's a
2987 breakpoint at PC - 1. We'd then report a hit on B1, although
2988 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2989 behaviour. */
2990 if (execution_direction == EXEC_REVERSE)
2991 return;
2992
24a73cce
UW
2993 /* If this target does not decrement the PC after breakpoints, then
2994 we have nothing to do. */
2995 regcache = get_thread_regcache (ecs->ptid);
2996 gdbarch = get_regcache_arch (regcache);
2997 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2998 return;
2999
6c95b8df
PA
3000 aspace = get_regcache_aspace (regcache);
3001
8aad930b
AC
3002 /* Find the location where (if we've hit a breakpoint) the
3003 breakpoint would be. */
515630c5
UW
3004 breakpoint_pc = regcache_read_pc (regcache)
3005 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 3006
1c5cfe86
PA
3007 /* Check whether there actually is a software breakpoint inserted at
3008 that location.
3009
3010 If in non-stop mode, a race condition is possible where we've
3011 removed a breakpoint, but stop events for that breakpoint were
3012 already queued and arrive later. To suppress those spurious
3013 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3014 and retire them after a number of stop events are reported. */
6c95b8df
PA
3015 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3016 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3017 {
77f9e713 3018 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3019
96429cc8 3020 if (RECORD_IS_USED)
77f9e713 3021 record_full_gdb_operation_disable_set ();
96429cc8 3022
1c0fdd0e
UW
3023 /* When using hardware single-step, a SIGTRAP is reported for both
3024 a completed single-step and a software breakpoint. Need to
3025 differentiate between the two, as the latter needs adjusting
3026 but the former does not.
3027
3028 The SIGTRAP can be due to a completed hardware single-step only if
3029 - we didn't insert software single-step breakpoints
3030 - the thread to be examined is still the current thread
3031 - this thread is currently being stepped
3032
3033 If any of these events did not occur, we must have stopped due
3034 to hitting a software breakpoint, and have to back up to the
3035 breakpoint address.
3036
3037 As a special case, we could have hardware single-stepped a
3038 software breakpoint. In this case (prev_pc == breakpoint_pc),
3039 we also need to back up to the breakpoint address. */
3040
3041 if (singlestep_breakpoints_inserted_p
3042 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3043 || !currently_stepping (ecs->event_thread)
3044 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3045 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3046
77f9e713 3047 do_cleanups (old_cleanups);
8aad930b 3048 }
4fa8626c
DJ
3049}
3050
7a76f5b8 3051static void
0d1e5fa7
PA
3052init_infwait_state (void)
3053{
3054 waiton_ptid = pid_to_ptid (-1);
3055 infwait_state = infwait_normal_state;
3056}
3057
edb3359d
DJ
3058static int
3059stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3060{
3061 for (frame = get_prev_frame (frame);
3062 frame != NULL;
3063 frame = get_prev_frame (frame))
3064 {
3065 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3066 return 1;
3067 if (get_frame_type (frame) != INLINE_FRAME)
3068 break;
3069 }
3070
3071 return 0;
3072}
3073
a96d9b2e
SDJ
3074/* Auxiliary function that handles syscall entry/return events.
3075 It returns 1 if the inferior should keep going (and GDB
3076 should ignore the event), or 0 if the event deserves to be
3077 processed. */
ca2163eb 3078
a96d9b2e 3079static int
ca2163eb 3080handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3081{
ca2163eb 3082 struct regcache *regcache;
ca2163eb
PA
3083 int syscall_number;
3084
3085 if (!ptid_equal (ecs->ptid, inferior_ptid))
3086 context_switch (ecs->ptid);
3087
3088 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3089 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3090 stop_pc = regcache_read_pc (regcache);
3091
a96d9b2e
SDJ
3092 if (catch_syscall_enabled () > 0
3093 && catching_syscall_number (syscall_number) > 0)
3094 {
ab04a2af
TT
3095 enum bpstat_signal_value sval;
3096
a96d9b2e
SDJ
3097 if (debug_infrun)
3098 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3099 syscall_number);
a96d9b2e 3100
16c381f0 3101 ecs->event_thread->control.stop_bpstat
6c95b8df 3102 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3103 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3104
427cd150
TT
3105 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3106 GDB_SIGNAL_TRAP);
ab04a2af 3107 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
a96d9b2e 3108
ca2163eb
PA
3109 if (!ecs->random_signal)
3110 {
3111 /* Catchpoint hit. */
a493e3e2 3112 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3113 return 0;
3114 }
a96d9b2e 3115 }
ca2163eb
PA
3116
3117 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3118 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3119 keep_going (ecs);
3120 return 1;
a96d9b2e
SDJ
3121}
3122
7e324e48
GB
3123/* Lazily fill in the execution_control_state's stop_func_* fields. */
3124
3125static void
3126fill_in_stop_func (struct gdbarch *gdbarch,
3127 struct execution_control_state *ecs)
3128{
3129 if (!ecs->stop_func_filled_in)
3130 {
3131 /* Don't care about return value; stop_func_start and stop_func_name
3132 will both be 0 if it doesn't work. */
3133 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3134 &ecs->stop_func_start, &ecs->stop_func_end);
3135 ecs->stop_func_start
3136 += gdbarch_deprecated_function_start_offset (gdbarch);
3137
3138 ecs->stop_func_filled_in = 1;
3139 }
3140}
3141
cd0fc7c3
SS
3142/* Given an execution control state that has been freshly filled in
3143 by an event from the inferior, figure out what it means and take
3144 appropriate action. */
c906108c 3145
ec9499be 3146static void
96baa820 3147handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3148{
568d6575
UW
3149 struct frame_info *frame;
3150 struct gdbarch *gdbarch;
d983da9c
DJ
3151 int stopped_by_watchpoint;
3152 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3153 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3154 enum stop_kind stop_soon;
3155
28736962
PA
3156 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3157 {
3158 /* We had an event in the inferior, but we are not interested in
3159 handling it at this level. The lower layers have already
3160 done what needs to be done, if anything.
3161
3162 One of the possible circumstances for this is when the
3163 inferior produces output for the console. The inferior has
3164 not stopped, and we are ignoring the event. Another possible
3165 circumstance is any event which the lower level knows will be
3166 reported multiple times without an intervening resume. */
3167 if (debug_infrun)
3168 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3169 prepare_to_wait (ecs);
3170 return;
3171 }
3172
0e5bf2a8
PA
3173 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3174 && target_can_async_p () && !sync_execution)
3175 {
3176 /* There were no unwaited-for children left in the target, but,
3177 we're not synchronously waiting for events either. Just
3178 ignore. Otherwise, if we were running a synchronous
3179 execution command, we need to cancel it and give the user
3180 back the terminal. */
3181 if (debug_infrun)
3182 fprintf_unfiltered (gdb_stdlog,
3183 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3184 prepare_to_wait (ecs);
3185 return;
3186 }
3187
d6b48e9c 3188 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3189 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3190 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3191 {
3192 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3193
d6b48e9c 3194 gdb_assert (inf);
16c381f0 3195 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3196 }
3197 else
3198 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3199
1777feb0 3200 /* Cache the last pid/waitstatus. */
39f77062 3201 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3202 target_last_waitstatus = ecs->ws;
e02bc4cc 3203
ca005067 3204 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3205 stop_stack_dummy = STOP_NONE;
ca005067 3206
0e5bf2a8
PA
3207 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3208 {
3209 /* No unwaited-for children left. IOW, all resumed children
3210 have exited. */
3211 if (debug_infrun)
3212 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3213
3214 stop_print_frame = 0;
3215 stop_stepping (ecs);
3216 return;
3217 }
3218
8c90c137 3219 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3220 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3221 {
3222 ecs->event_thread = find_thread_ptid (ecs->ptid);
3223 /* If it's a new thread, add it to the thread database. */
3224 if (ecs->event_thread == NULL)
3225 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3226
3227 /* Disable range stepping. If the next step request could use a
3228 range, this will be end up re-enabled then. */
3229 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3230 }
88ed393a
JK
3231
3232 /* Dependent on valid ECS->EVENT_THREAD. */
3233 adjust_pc_after_break (ecs);
3234
3235 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3236 reinit_frame_cache ();
3237
28736962
PA
3238 breakpoint_retire_moribund ();
3239
2b009048
DJ
3240 /* First, distinguish signals caused by the debugger from signals
3241 that have to do with the program's own actions. Note that
3242 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3243 on the operating system version. Here we detect when a SIGILL or
3244 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3245 something similar for SIGSEGV, since a SIGSEGV will be generated
3246 when we're trying to execute a breakpoint instruction on a
3247 non-executable stack. This happens for call dummy breakpoints
3248 for architectures like SPARC that place call dummies on the
3249 stack. */
2b009048 3250 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3251 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3252 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3253 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3254 {
de0a0249
UW
3255 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3256
3257 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3258 regcache_read_pc (regcache)))
3259 {
3260 if (debug_infrun)
3261 fprintf_unfiltered (gdb_stdlog,
3262 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3263 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3264 }
2b009048
DJ
3265 }
3266
28736962
PA
3267 /* Mark the non-executing threads accordingly. In all-stop, all
3268 threads of all processes are stopped when we get any event
3269 reported. In non-stop mode, only the event thread stops. If
3270 we're handling a process exit in non-stop mode, there's nothing
3271 to do, as threads of the dead process are gone, and threads of
3272 any other process were left running. */
3273 if (!non_stop)
3274 set_executing (minus_one_ptid, 0);
3275 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3276 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3277 set_executing (ecs->ptid, 0);
8c90c137 3278
0d1e5fa7 3279 switch (infwait_state)
488f131b
JB
3280 {
3281 case infwait_thread_hop_state:
527159b7 3282 if (debug_infrun)
8a9de0e4 3283 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3284 break;
b83266a0 3285
488f131b 3286 case infwait_normal_state:
527159b7 3287 if (debug_infrun)
8a9de0e4 3288 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3289 break;
3290
3291 case infwait_step_watch_state:
3292 if (debug_infrun)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "infrun: infwait_step_watch_state\n");
3295
3296 stepped_after_stopped_by_watchpoint = 1;
488f131b 3297 break;
b83266a0 3298
488f131b 3299 case infwait_nonstep_watch_state:
527159b7 3300 if (debug_infrun)
8a9de0e4
AC
3301 fprintf_unfiltered (gdb_stdlog,
3302 "infrun: infwait_nonstep_watch_state\n");
488f131b 3303 insert_breakpoints ();
c906108c 3304
488f131b
JB
3305 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3306 handle things like signals arriving and other things happening
3307 in combination correctly? */
3308 stepped_after_stopped_by_watchpoint = 1;
3309 break;
65e82032
AC
3310
3311 default:
e2e0b3e5 3312 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3313 }
ec9499be 3314
0d1e5fa7 3315 infwait_state = infwait_normal_state;
ec9499be 3316 waiton_ptid = pid_to_ptid (-1);
c906108c 3317
488f131b
JB
3318 switch (ecs->ws.kind)
3319 {
3320 case TARGET_WAITKIND_LOADED:
527159b7 3321 if (debug_infrun)
8a9de0e4 3322 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3323 /* Ignore gracefully during startup of the inferior, as it might
3324 be the shell which has just loaded some objects, otherwise
3325 add the symbols for the newly loaded objects. Also ignore at
3326 the beginning of an attach or remote session; we will query
3327 the full list of libraries once the connection is
3328 established. */
c0236d92 3329 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3330 {
edcc5120 3331 struct regcache *regcache;
ab04a2af 3332 enum bpstat_signal_value sval;
edcc5120
TT
3333
3334 if (!ptid_equal (ecs->ptid, inferior_ptid))
3335 context_switch (ecs->ptid);
3336 regcache = get_thread_regcache (ecs->ptid);
3337
3338 handle_solib_event ();
3339
3340 ecs->event_thread->control.stop_bpstat
3341 = bpstat_stop_status (get_regcache_aspace (regcache),
3342 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3343
3344 sval
427cd150
TT
3345 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3346 GDB_SIGNAL_TRAP);
ab04a2af 3347 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
edcc5120
TT
3348
3349 if (!ecs->random_signal)
3350 {
3351 /* A catchpoint triggered. */
a493e3e2 3352 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3353 goto process_event_stop_test;
3354 }
488f131b 3355
b0f4b84b
DJ
3356 /* If requested, stop when the dynamic linker notifies
3357 gdb of events. This allows the user to get control
3358 and place breakpoints in initializer routines for
3359 dynamically loaded objects (among other things). */
a493e3e2 3360 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3361 if (stop_on_solib_events)
3362 {
55409f9d
DJ
3363 /* Make sure we print "Stopped due to solib-event" in
3364 normal_stop. */
3365 stop_print_frame = 1;
3366
b0f4b84b
DJ
3367 stop_stepping (ecs);
3368 return;
3369 }
488f131b 3370 }
b0f4b84b
DJ
3371
3372 /* If we are skipping through a shell, or through shared library
3373 loading that we aren't interested in, resume the program. If
3374 we're running the program normally, also resume. But stop if
3375 we're attaching or setting up a remote connection. */
3376 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3377 {
8b3ee56d
PA
3378 if (!ptid_equal (ecs->ptid, inferior_ptid))
3379 context_switch (ecs->ptid);
3380
74960c60
VP
3381 /* Loading of shared libraries might have changed breakpoint
3382 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3383 if (stop_soon == NO_STOP_QUIETLY
3384 && !breakpoints_always_inserted_mode ())
74960c60 3385 insert_breakpoints ();
a493e3e2 3386 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3387 prepare_to_wait (ecs);
3388 return;
3389 }
3390
3391 break;
c5aa993b 3392
488f131b 3393 case TARGET_WAITKIND_SPURIOUS:
527159b7 3394 if (debug_infrun)
8a9de0e4 3395 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3396 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3397 context_switch (ecs->ptid);
a493e3e2 3398 resume (0, GDB_SIGNAL_0);
488f131b
JB
3399 prepare_to_wait (ecs);
3400 return;
c5aa993b 3401
488f131b 3402 case TARGET_WAITKIND_EXITED:
940c3c06 3403 case TARGET_WAITKIND_SIGNALLED:
527159b7 3404 if (debug_infrun)
940c3c06
PA
3405 {
3406 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3407 fprintf_unfiltered (gdb_stdlog,
3408 "infrun: TARGET_WAITKIND_EXITED\n");
3409 else
3410 fprintf_unfiltered (gdb_stdlog,
3411 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3412 }
3413
fb66883a 3414 inferior_ptid = ecs->ptid;
6c95b8df
PA
3415 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3416 set_current_program_space (current_inferior ()->pspace);
3417 handle_vfork_child_exec_or_exit (0);
1777feb0 3418 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3419
0c557179
SDJ
3420 /* Clearing any previous state of convenience variables. */
3421 clear_exit_convenience_vars ();
3422
940c3c06
PA
3423 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3424 {
3425 /* Record the exit code in the convenience variable $_exitcode, so
3426 that the user can inspect this again later. */
3427 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3428 (LONGEST) ecs->ws.value.integer);
3429
3430 /* Also record this in the inferior itself. */
3431 current_inferior ()->has_exit_code = 1;
3432 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3433
940c3c06
PA
3434 print_exited_reason (ecs->ws.value.integer);
3435 }
3436 else
0c557179
SDJ
3437 {
3438 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3439 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3440
3441 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3442 {
3443 /* Set the value of the internal variable $_exitsignal,
3444 which holds the signal uncaught by the inferior. */
3445 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3446 gdbarch_gdb_signal_to_target (gdbarch,
3447 ecs->ws.value.sig));
3448 }
3449 else
3450 {
3451 /* We don't have access to the target's method used for
3452 converting between signal numbers (GDB's internal
3453 representation <-> target's representation).
3454 Therefore, we cannot do a good job at displaying this
3455 information to the user. It's better to just warn
3456 her about it (if infrun debugging is enabled), and
3457 give up. */
3458 if (debug_infrun)
3459 fprintf_filtered (gdb_stdlog, _("\
3460Cannot fill $_exitsignal with the correct signal number.\n"));
3461 }
3462
3463 print_signal_exited_reason (ecs->ws.value.sig);
3464 }
8cf64490 3465
488f131b
JB
3466 gdb_flush (gdb_stdout);
3467 target_mourn_inferior ();
1c0fdd0e 3468 singlestep_breakpoints_inserted_p = 0;
d03285ec 3469 cancel_single_step_breakpoints ();
488f131b
JB
3470 stop_print_frame = 0;
3471 stop_stepping (ecs);
3472 return;
c5aa993b 3473
488f131b 3474 /* The following are the only cases in which we keep going;
1777feb0 3475 the above cases end in a continue or goto. */
488f131b 3476 case TARGET_WAITKIND_FORKED:
deb3b17b 3477 case TARGET_WAITKIND_VFORKED:
527159b7 3478 if (debug_infrun)
fed708ed
PA
3479 {
3480 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3481 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3482 else
3483 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3484 }
c906108c 3485
e2d96639
YQ
3486 /* Check whether the inferior is displaced stepping. */
3487 {
3488 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3489 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3490 struct displaced_step_inferior_state *displaced
3491 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3492
3493 /* If checking displaced stepping is supported, and thread
3494 ecs->ptid is displaced stepping. */
3495 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3496 {
3497 struct inferior *parent_inf
3498 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3499 struct regcache *child_regcache;
3500 CORE_ADDR parent_pc;
3501
3502 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3503 indicating that the displaced stepping of syscall instruction
3504 has been done. Perform cleanup for parent process here. Note
3505 that this operation also cleans up the child process for vfork,
3506 because their pages are shared. */
a493e3e2 3507 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3508
3509 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3510 {
3511 /* Restore scratch pad for child process. */
3512 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3513 }
3514
3515 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3516 the child's PC is also within the scratchpad. Set the child's PC
3517 to the parent's PC value, which has already been fixed up.
3518 FIXME: we use the parent's aspace here, although we're touching
3519 the child, because the child hasn't been added to the inferior
3520 list yet at this point. */
3521
3522 child_regcache
3523 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3524 gdbarch,
3525 parent_inf->aspace);
3526 /* Read PC value of parent process. */
3527 parent_pc = regcache_read_pc (regcache);
3528
3529 if (debug_displaced)
3530 fprintf_unfiltered (gdb_stdlog,
3531 "displaced: write child pc from %s to %s\n",
3532 paddress (gdbarch,
3533 regcache_read_pc (child_regcache)),
3534 paddress (gdbarch, parent_pc));
3535
3536 regcache_write_pc (child_regcache, parent_pc);
3537 }
3538 }
3539
5a2901d9 3540 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3541 context_switch (ecs->ptid);
5a2901d9 3542
b242c3c2
PA
3543 /* Immediately detach breakpoints from the child before there's
3544 any chance of letting the user delete breakpoints from the
3545 breakpoint lists. If we don't do this early, it's easy to
3546 leave left over traps in the child, vis: "break foo; catch
3547 fork; c; <fork>; del; c; <child calls foo>". We only follow
3548 the fork on the last `continue', and by that time the
3549 breakpoint at "foo" is long gone from the breakpoint table.
3550 If we vforked, then we don't need to unpatch here, since both
3551 parent and child are sharing the same memory pages; we'll
3552 need to unpatch at follow/detach time instead to be certain
3553 that new breakpoints added between catchpoint hit time and
3554 vfork follow are detached. */
3555 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3556 {
b242c3c2
PA
3557 /* This won't actually modify the breakpoint list, but will
3558 physically remove the breakpoints from the child. */
d80ee84f 3559 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3560 }
3561
d03285ec
UW
3562 if (singlestep_breakpoints_inserted_p)
3563 {
1777feb0 3564 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3565 remove_single_step_breakpoints ();
3566 singlestep_breakpoints_inserted_p = 0;
3567 }
3568
e58b0e63
PA
3569 /* In case the event is caught by a catchpoint, remember that
3570 the event is to be followed at the next resume of the thread,
3571 and not immediately. */
3572 ecs->event_thread->pending_follow = ecs->ws;
3573
fb14de7b 3574 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3575
16c381f0 3576 ecs->event_thread->control.stop_bpstat
6c95b8df 3577 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3578 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3579
67822962
PA
3580 /* Note that we're interested in knowing the bpstat actually
3581 causes a stop, not just if it may explain the signal.
3582 Software watchpoints, for example, always appear in the
3583 bpstat. */
16c381f0
JK
3584 ecs->random_signal
3585 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3586
3587 /* If no catchpoint triggered for this, then keep going. */
3588 if (ecs->random_signal)
3589 {
6c95b8df
PA
3590 ptid_t parent;
3591 ptid_t child;
e58b0e63 3592 int should_resume;
3e43a32a
MS
3593 int follow_child
3594 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3595
a493e3e2 3596 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3597
3598 should_resume = follow_fork ();
3599
6c95b8df
PA
3600 parent = ecs->ptid;
3601 child = ecs->ws.value.related_pid;
3602
3603 /* In non-stop mode, also resume the other branch. */
3604 if (non_stop && !detach_fork)
3605 {
3606 if (follow_child)
3607 switch_to_thread (parent);
3608 else
3609 switch_to_thread (child);
3610
3611 ecs->event_thread = inferior_thread ();
3612 ecs->ptid = inferior_ptid;
3613 keep_going (ecs);
3614 }
3615
3616 if (follow_child)
3617 switch_to_thread (child);
3618 else
3619 switch_to_thread (parent);
3620
e58b0e63
PA
3621 ecs->event_thread = inferior_thread ();
3622 ecs->ptid = inferior_ptid;
3623
3624 if (should_resume)
3625 keep_going (ecs);
3626 else
3627 stop_stepping (ecs);
04e68871
DJ
3628 return;
3629 }
a493e3e2 3630 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3631 goto process_event_stop_test;
3632
6c95b8df
PA
3633 case TARGET_WAITKIND_VFORK_DONE:
3634 /* Done with the shared memory region. Re-insert breakpoints in
3635 the parent, and keep going. */
3636
3637 if (debug_infrun)
3e43a32a
MS
3638 fprintf_unfiltered (gdb_stdlog,
3639 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3640
3641 if (!ptid_equal (ecs->ptid, inferior_ptid))
3642 context_switch (ecs->ptid);
3643
3644 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3645 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3646 /* This also takes care of reinserting breakpoints in the
3647 previously locked inferior. */
3648 keep_going (ecs);
3649 return;
3650
488f131b 3651 case TARGET_WAITKIND_EXECD:
527159b7 3652 if (debug_infrun)
fc5261f2 3653 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3654
5a2901d9 3655 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3656 context_switch (ecs->ptid);
5a2901d9 3657
d03285ec
UW
3658 singlestep_breakpoints_inserted_p = 0;
3659 cancel_single_step_breakpoints ();
3660
fb14de7b 3661 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3662
6c95b8df
PA
3663 /* Do whatever is necessary to the parent branch of the vfork. */
3664 handle_vfork_child_exec_or_exit (1);
3665
795e548f
PA
3666 /* This causes the eventpoints and symbol table to be reset.
3667 Must do this now, before trying to determine whether to
3668 stop. */
71b43ef8 3669 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3670
16c381f0 3671 ecs->event_thread->control.stop_bpstat
6c95b8df 3672 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3673 stop_pc, ecs->ptid, &ecs->ws);
16c381f0 3674 ecs->random_signal
427cd150
TT
3675 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3676 GDB_SIGNAL_TRAP)
ab04a2af 3677 == BPSTAT_SIGNAL_NO);
795e548f 3678
71b43ef8
PA
3679 /* Note that this may be referenced from inside
3680 bpstat_stop_status above, through inferior_has_execd. */
3681 xfree (ecs->ws.value.execd_pathname);
3682 ecs->ws.value.execd_pathname = NULL;
3683
04e68871
DJ
3684 /* If no catchpoint triggered for this, then keep going. */
3685 if (ecs->random_signal)
3686 {
a493e3e2 3687 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3688 keep_going (ecs);
3689 return;
3690 }
a493e3e2 3691 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3692 goto process_event_stop_test;
3693
b4dc5ffa
MK
3694 /* Be careful not to try to gather much state about a thread
3695 that's in a syscall. It's frequently a losing proposition. */
488f131b 3696 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3697 if (debug_infrun)
3e43a32a
MS
3698 fprintf_unfiltered (gdb_stdlog,
3699 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3700 /* Getting the current syscall number. */
ca2163eb 3701 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3702 return;
3703 goto process_event_stop_test;
c906108c 3704
488f131b
JB
3705 /* Before examining the threads further, step this thread to
3706 get it entirely out of the syscall. (We get notice of the
3707 event when the thread is just on the verge of exiting a
3708 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3709 into user code.) */
488f131b 3710 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3711 if (debug_infrun)
3e43a32a
MS
3712 fprintf_unfiltered (gdb_stdlog,
3713 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3714 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3715 return;
3716 goto process_event_stop_test;
c906108c 3717
488f131b 3718 case TARGET_WAITKIND_STOPPED:
527159b7 3719 if (debug_infrun)
8a9de0e4 3720 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3721 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3722 break;
c906108c 3723
b2175913 3724 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3725 if (debug_infrun)
3726 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3727 /* Reverse execution: target ran out of history info. */
eab402df
PA
3728
3729 /* Pull the single step breakpoints out of the target. */
3730 if (singlestep_breakpoints_inserted_p)
3731 {
3732 if (!ptid_equal (ecs->ptid, inferior_ptid))
3733 context_switch (ecs->ptid);
3734 remove_single_step_breakpoints ();
3735 singlestep_breakpoints_inserted_p = 0;
3736 }
fb14de7b 3737 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3738 print_no_history_reason ();
b2175913
MS
3739 stop_stepping (ecs);
3740 return;
488f131b 3741 }
c906108c 3742
2020b7ab 3743 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3744 {
3745 /* Do we need to clean up the state of a thread that has
3746 completed a displaced single-step? (Doing so usually affects
3747 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3748 displaced_step_fixup (ecs->ptid,
3749 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3750
3751 /* If we either finished a single-step or hit a breakpoint, but
3752 the user wanted this thread to be stopped, pretend we got a
3753 SIG0 (generic unsignaled stop). */
3754
3755 if (ecs->event_thread->stop_requested
a493e3e2
PA
3756 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3757 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3758 }
237fc4c9 3759
515630c5 3760 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3761
527159b7 3762 if (debug_infrun)
237fc4c9 3763 {
5af949e3
UW
3764 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3765 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3766 struct cleanup *old_chain = save_inferior_ptid ();
3767
3768 inferior_ptid = ecs->ptid;
5af949e3
UW
3769
3770 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3771 paddress (gdbarch, stop_pc));
d92524f1 3772 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3773 {
3774 CORE_ADDR addr;
abbb1732 3775
237fc4c9
PA
3776 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3777
3778 if (target_stopped_data_address (&current_target, &addr))
3779 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3780 "infrun: stopped data address = %s\n",
3781 paddress (gdbarch, addr));
237fc4c9
PA
3782 else
3783 fprintf_unfiltered (gdb_stdlog,
3784 "infrun: (no data address available)\n");
3785 }
7f82dfc7
JK
3786
3787 do_cleanups (old_chain);
237fc4c9 3788 }
527159b7 3789
9f976b41
DJ
3790 if (stepping_past_singlestep_breakpoint)
3791 {
1c0fdd0e 3792 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3793 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3794 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3795
3796 stepping_past_singlestep_breakpoint = 0;
3797
3798 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3799 breakpoint, or stopped for some other reason. It would be nice if
3800 we could tell, but we can't reliably. */
a493e3e2 3801 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3802 {
527159b7 3803 if (debug_infrun)
3e43a32a
MS
3804 fprintf_unfiltered (gdb_stdlog,
3805 "infrun: stepping_past_"
3806 "singlestep_breakpoint\n");
9f976b41 3807 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3808 if (!ptid_equal (ecs->ptid, inferior_ptid))
3809 context_switch (ecs->ptid);
e0cd558a 3810 remove_single_step_breakpoints ();
9f976b41
DJ
3811 singlestep_breakpoints_inserted_p = 0;
3812
16c381f0 3813 ecs->event_thread->control.trap_expected = 0;
9f976b41 3814
0d1e5fa7 3815 context_switch (saved_singlestep_ptid);
9a4105ab 3816 if (deprecated_context_hook)
de9f1b68 3817 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3818
a493e3e2 3819 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3820 prepare_to_wait (ecs);
3821 return;
3822 }
3823 }
3824
ca67fcb8 3825 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3826 {
94cc34af
PA
3827 /* In non-stop mode, there's never a deferred_step_ptid set. */
3828 gdb_assert (!non_stop);
3829
6a6b96b9
UW
3830 /* If we stopped for some other reason than single-stepping, ignore
3831 the fact that we were supposed to switch back. */
a493e3e2 3832 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3833 {
3834 if (debug_infrun)
3835 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3836 "infrun: handling deferred step\n");
6a6b96b9
UW
3837
3838 /* Pull the single step breakpoints out of the target. */
3839 if (singlestep_breakpoints_inserted_p)
3840 {
8b3ee56d
PA
3841 if (!ptid_equal (ecs->ptid, inferior_ptid))
3842 context_switch (ecs->ptid);
6a6b96b9
UW
3843 remove_single_step_breakpoints ();
3844 singlestep_breakpoints_inserted_p = 0;
3845 }
3846
cd3da28e
PA
3847 ecs->event_thread->control.trap_expected = 0;
3848
d25f45d9 3849 context_switch (deferred_step_ptid);
ca67fcb8 3850 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3851 /* Suppress spurious "Switching to ..." message. */
3852 previous_inferior_ptid = inferior_ptid;
3853
a493e3e2 3854 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3855 prepare_to_wait (ecs);
3856 return;
3857 }
ca67fcb8
VP
3858
3859 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3860 }
3861
488f131b
JB
3862 /* See if a thread hit a thread-specific breakpoint that was meant for
3863 another thread. If so, then step that thread past the breakpoint,
3864 and continue it. */
3865
a493e3e2 3866 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3867 {
9f976b41 3868 int thread_hop_needed = 0;
cf00dfa7
VP
3869 struct address_space *aspace =
3870 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3871
f8d40ec8 3872 /* Check if a regular breakpoint has been hit before checking
1777feb0 3873 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3874 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3875 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3876 {
6c95b8df 3877 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3878 thread_hop_needed = 1;
3879 }
1c0fdd0e 3880 else if (singlestep_breakpoints_inserted_p)
9f976b41 3881 {
fd48f117
DJ
3882 /* We have not context switched yet, so this should be true
3883 no matter which thread hit the singlestep breakpoint. */
3884 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3885 if (debug_infrun)
3886 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3887 "trap for %s\n",
3888 target_pid_to_str (ecs->ptid));
3889
9f976b41
DJ
3890 /* The call to in_thread_list is necessary because PTIDs sometimes
3891 change when we go from single-threaded to multi-threaded. If
3892 the singlestep_ptid is still in the list, assume that it is
3893 really different from ecs->ptid. */
3894 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3895 && in_thread_list (singlestep_ptid))
3896 {
fd48f117
DJ
3897 /* If the PC of the thread we were trying to single-step
3898 has changed, discard this event (which we were going
3899 to ignore anyway), and pretend we saw that thread
3900 trap. This prevents us continuously moving the
3901 single-step breakpoint forward, one instruction at a
3902 time. If the PC has changed, then the thread we were
3903 trying to single-step has trapped or been signalled,
3904 but the event has not been reported to GDB yet.
3905
3906 There might be some cases where this loses signal
3907 information, if a signal has arrived at exactly the
3908 same time that the PC changed, but this is the best
3909 we can do with the information available. Perhaps we
3910 should arrange to report all events for all threads
3911 when they stop, or to re-poll the remote looking for
3912 this particular thread (i.e. temporarily enable
3913 schedlock). */
515630c5
UW
3914
3915 CORE_ADDR new_singlestep_pc
3916 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3917
3918 if (new_singlestep_pc != singlestep_pc)
fd48f117 3919 {
2ea28649 3920 enum gdb_signal stop_signal;
2020b7ab 3921
fd48f117
DJ
3922 if (debug_infrun)
3923 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3924 " but expected thread advanced also\n");
3925
3926 /* The current context still belongs to
3927 singlestep_ptid. Don't swap here, since that's
3928 the context we want to use. Just fudge our
3929 state and continue. */
16c381f0 3930 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3931 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3932 ecs->ptid = singlestep_ptid;
e09875d4 3933 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3934 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3935 stop_pc = new_singlestep_pc;
fd48f117
DJ
3936 }
3937 else
3938 {
3939 if (debug_infrun)
3940 fprintf_unfiltered (gdb_stdlog,
3941 "infrun: unexpected thread\n");
3942
3943 thread_hop_needed = 1;
3944 stepping_past_singlestep_breakpoint = 1;
3945 saved_singlestep_ptid = singlestep_ptid;
3946 }
9f976b41
DJ
3947 }
3948 }
3949
3950 if (thread_hop_needed)
8fb3e588 3951 {
9f5a595d 3952 struct regcache *thread_regcache;
237fc4c9 3953 int remove_status = 0;
8fb3e588 3954
527159b7 3955 if (debug_infrun)
8a9de0e4 3956 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3957
b3444185
PA
3958 /* Switch context before touching inferior memory, the
3959 previous thread may have exited. */
3960 if (!ptid_equal (inferior_ptid, ecs->ptid))
3961 context_switch (ecs->ptid);
3962
8fb3e588 3963 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3964 Just continue. */
8fb3e588 3965
1c0fdd0e 3966 if (singlestep_breakpoints_inserted_p)
488f131b 3967 {
1777feb0 3968 /* Pull the single step breakpoints out of the target. */
e0cd558a 3969 remove_single_step_breakpoints ();
8fb3e588
AC
3970 singlestep_breakpoints_inserted_p = 0;
3971 }
3972
237fc4c9
PA
3973 /* If the arch can displace step, don't remove the
3974 breakpoints. */
9f5a595d
UW
3975 thread_regcache = get_thread_regcache (ecs->ptid);
3976 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3977 remove_status = remove_breakpoints ();
3978
8fb3e588
AC
3979 /* Did we fail to remove breakpoints? If so, try
3980 to set the PC past the bp. (There's at least
3981 one situation in which we can fail to remove
3982 the bp's: On HP-UX's that use ttrace, we can't
3983 change the address space of a vforking child
3984 process until the child exits (well, okay, not
1777feb0 3985 then either :-) or execs. */
8fb3e588 3986 if (remove_status != 0)
9d9cd7ac 3987 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3988 else
3989 { /* Single step */
94cc34af
PA
3990 if (!non_stop)
3991 {
3992 /* Only need to require the next event from this
3993 thread in all-stop mode. */
3994 waiton_ptid = ecs->ptid;
3995 infwait_state = infwait_thread_hop_state;
3996 }
8fb3e588 3997
4e1c45ea 3998 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3999 keep_going (ecs);
8fb3e588
AC
4000 return;
4001 }
488f131b
JB
4002 }
4003 }
c906108c 4004
488f131b 4005 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4006 so, then switch to that thread. */
4007 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4008 {
527159b7 4009 if (debug_infrun)
8a9de0e4 4010 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4011
0d1e5fa7 4012 context_switch (ecs->ptid);
c5aa993b 4013
9a4105ab
AC
4014 if (deprecated_context_hook)
4015 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4016 }
c906108c 4017
568d6575
UW
4018 /* At this point, get hold of the now-current thread's frame. */
4019 frame = get_current_frame ();
4020 gdbarch = get_frame_arch (frame);
4021
1c0fdd0e 4022 if (singlestep_breakpoints_inserted_p)
488f131b 4023 {
1777feb0 4024 /* Pull the single step breakpoints out of the target. */
e0cd558a 4025 remove_single_step_breakpoints ();
488f131b
JB
4026 singlestep_breakpoints_inserted_p = 0;
4027 }
c906108c 4028
d983da9c
DJ
4029 if (stepped_after_stopped_by_watchpoint)
4030 stopped_by_watchpoint = 0;
4031 else
4032 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4033
4034 /* If necessary, step over this watchpoint. We'll be back to display
4035 it in a moment. */
4036 if (stopped_by_watchpoint
d92524f1 4037 && (target_have_steppable_watchpoint
568d6575 4038 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4039 {
488f131b
JB
4040 /* At this point, we are stopped at an instruction which has
4041 attempted to write to a piece of memory under control of
4042 a watchpoint. The instruction hasn't actually executed
4043 yet. If we were to evaluate the watchpoint expression
4044 now, we would get the old value, and therefore no change
4045 would seem to have occurred.
4046
4047 In order to make watchpoints work `right', we really need
4048 to complete the memory write, and then evaluate the
d983da9c
DJ
4049 watchpoint expression. We do this by single-stepping the
4050 target.
4051
4052 It may not be necessary to disable the watchpoint to stop over
4053 it. For example, the PA can (with some kernel cooperation)
4054 single step over a watchpoint without disabling the watchpoint.
4055
4056 It is far more common to need to disable a watchpoint to step
4057 the inferior over it. If we have non-steppable watchpoints,
4058 we must disable the current watchpoint; it's simplest to
4059 disable all watchpoints and breakpoints. */
2facfe5c
DD
4060 int hw_step = 1;
4061
d92524f1 4062 if (!target_have_steppable_watchpoint)
2455069d
UW
4063 {
4064 remove_breakpoints ();
4065 /* See comment in resume why we need to stop bypassing signals
4066 while breakpoints have been removed. */
4067 target_pass_signals (0, NULL);
4068 }
2facfe5c 4069 /* Single step */
568d6575 4070 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4071 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4072 waiton_ptid = ecs->ptid;
d92524f1 4073 if (target_have_steppable_watchpoint)
0d1e5fa7 4074 infwait_state = infwait_step_watch_state;
d983da9c 4075 else
0d1e5fa7 4076 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4077 prepare_to_wait (ecs);
4078 return;
4079 }
4080
4e1c45ea 4081 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4082 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4083 ecs->event_thread->control.stop_step = 0;
488f131b 4084 stop_print_frame = 1;
488f131b 4085 stopped_by_random_signal = 0;
488f131b 4086
edb3359d
DJ
4087 /* Hide inlined functions starting here, unless we just performed stepi or
4088 nexti. After stepi and nexti, always show the innermost frame (not any
4089 inline function call sites). */
16c381f0 4090 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4091 {
4092 struct address_space *aspace =
4093 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4094
4095 /* skip_inline_frames is expensive, so we avoid it if we can
4096 determine that the address is one where functions cannot have
4097 been inlined. This improves performance with inferiors that
4098 load a lot of shared libraries, because the solib event
4099 breakpoint is defined as the address of a function (i.e. not
4100 inline). Note that we have to check the previous PC as well
4101 as the current one to catch cases when we have just
4102 single-stepped off a breakpoint prior to reinstating it.
4103 Note that we're assuming that the code we single-step to is
4104 not inline, but that's not definitive: there's nothing
4105 preventing the event breakpoint function from containing
4106 inlined code, and the single-step ending up there. If the
4107 user had set a breakpoint on that inlined code, the missing
4108 skip_inline_frames call would break things. Fortunately
4109 that's an extremely unlikely scenario. */
09ac7c10 4110 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4111 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4112 && ecs->event_thread->control.trap_expected
4113 && pc_at_non_inline_function (aspace,
4114 ecs->event_thread->prev_pc,
09ac7c10 4115 &ecs->ws)))
1c5a993e
MR
4116 {
4117 skip_inline_frames (ecs->ptid);
4118
4119 /* Re-fetch current thread's frame in case that invalidated
4120 the frame cache. */
4121 frame = get_current_frame ();
4122 gdbarch = get_frame_arch (frame);
4123 }
0574c78f 4124 }
edb3359d 4125
a493e3e2 4126 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4127 && ecs->event_thread->control.trap_expected
568d6575 4128 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4129 && currently_stepping (ecs->event_thread))
3352ef37 4130 {
b50d7442 4131 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4132 also on an instruction that needs to be stepped multiple
1777feb0 4133 times before it's been fully executing. E.g., architectures
3352ef37
AC
4134 with a delay slot. It needs to be stepped twice, once for
4135 the instruction and once for the delay slot. */
4136 int step_through_delay
568d6575 4137 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4138
527159b7 4139 if (debug_infrun && step_through_delay)
8a9de0e4 4140 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4141 if (ecs->event_thread->control.step_range_end == 0
4142 && step_through_delay)
3352ef37
AC
4143 {
4144 /* The user issued a continue when stopped at a breakpoint.
4145 Set up for another trap and get out of here. */
4e1c45ea 4146 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4147 keep_going (ecs);
4148 return;
4149 }
4150 else if (step_through_delay)
4151 {
4152 /* The user issued a step when stopped at a breakpoint.
4153 Maybe we should stop, maybe we should not - the delay
4154 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4155 case, don't decide that here, just set
4156 ecs->stepping_over_breakpoint, making sure we
4157 single-step again before breakpoints are re-inserted. */
4e1c45ea 4158 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4159 }
4160 }
4161
488f131b
JB
4162 /* Look at the cause of the stop, and decide what to do.
4163 The alternatives are:
0d1e5fa7
PA
4164 1) stop_stepping and return; to really stop and return to the debugger,
4165 2) keep_going and return to start up again
4e1c45ea 4166 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4167 3) set ecs->random_signal to 1, and the decision between 1 and 2
4168 will be made according to the signal handling tables. */
4169
a493e3e2 4170 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4171 && stop_after_trap)
488f131b 4172 {
ab04a2af
TT
4173 if (debug_infrun)
4174 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4175 stop_print_frame = 0;
4176 stop_stepping (ecs);
4177 return;
4178 }
488f131b 4179
ab04a2af
TT
4180 /* This is originated from start_remote(), start_inferior() and
4181 shared libraries hook functions. */
4182 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4183 {
4184 if (debug_infrun)
4185 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4186 stop_stepping (ecs);
4187 return;
4188 }
c54cfec8 4189
ab04a2af
TT
4190 /* This originates from attach_command(). We need to overwrite
4191 the stop_signal here, because some kernels don't ignore a
4192 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4193 See more comments in inferior.h. On the other hand, if we
4194 get a non-SIGSTOP, report it to the user - assume the backend
4195 will handle the SIGSTOP if it should show up later.
4196
4197 Also consider that the attach is complete when we see a
4198 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4199 target extended-remote report it instead of a SIGSTOP
4200 (e.g. gdbserver). We already rely on SIGTRAP being our
4201 signal, so this is no exception.
4202
4203 Also consider that the attach is complete when we see a
4204 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4205 the target to stop all threads of the inferior, in case the
4206 low level attach operation doesn't stop them implicitly. If
4207 they weren't stopped implicitly, then the stub will report a
4208 GDB_SIGNAL_0, meaning: stopped for no particular reason
4209 other than GDB's request. */
4210 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4211 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4212 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4213 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4214 {
4215 stop_stepping (ecs);
4216 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4217 return;
4218 }
6c95b8df 4219
ab04a2af
TT
4220 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4221 handles this event. */
4222 ecs->event_thread->control.stop_bpstat
4223 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4224 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4225
ab04a2af
TT
4226 /* Following in case break condition called a
4227 function. */
4228 stop_print_frame = 1;
73dd234f 4229
ab04a2af
TT
4230 /* This is where we handle "moribund" watchpoints. Unlike
4231 software breakpoints traps, hardware watchpoint traps are
4232 always distinguishable from random traps. If no high-level
4233 watchpoint is associated with the reported stop data address
4234 anymore, then the bpstat does not explain the signal ---
4235 simply make sure to ignore it if `stopped_by_watchpoint' is
4236 set. */
4237
4238 if (debug_infrun
4239 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
427cd150
TT
4240 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4241 GDB_SIGNAL_TRAP)
ab04a2af
TT
4242 == BPSTAT_SIGNAL_NO)
4243 && stopped_by_watchpoint)
4244 fprintf_unfiltered (gdb_stdlog,
4245 "infrun: no user watchpoint explains "
4246 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4247
ab04a2af
TT
4248 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4249 at one stage in the past included checks for an inferior
4250 function call's call dummy's return breakpoint. The original
4251 comment, that went with the test, read:
03cebad2 4252
ab04a2af
TT
4253 ``End of a stack dummy. Some systems (e.g. Sony news) give
4254 another signal besides SIGTRAP, so check here as well as
4255 above.''
73dd234f 4256
ab04a2af
TT
4257 If someone ever tries to get call dummys on a
4258 non-executable stack to work (where the target would stop
4259 with something like a SIGSEGV), then those tests might need
4260 to be re-instated. Given, however, that the tests were only
4261 enabled when momentary breakpoints were not being used, I
4262 suspect that it won't be the case.
488f131b 4263
ab04a2af
TT
4264 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4265 be necessary for call dummies on a non-executable stack on
4266 SPARC. */
488f131b 4267
ab04a2af
TT
4268 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4269 ecs->random_signal
427cd150
TT
4270 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4271 GDB_SIGNAL_TRAP)
ab04a2af
TT
4272 != BPSTAT_SIGNAL_NO)
4273 || stopped_by_watchpoint
4274 || ecs->event_thread->control.trap_expected
4275 || (ecs->event_thread->control.step_range_end
4276 && (ecs->event_thread->control.step_resume_breakpoint
4277 == NULL)));
488f131b 4278 else
ab04a2af
TT
4279 {
4280 enum bpstat_signal_value sval;
4281
427cd150
TT
4282 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4283 ecs->event_thread->suspend.stop_signal);
ab04a2af
TT
4284 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4285
4286 if (sval == BPSTAT_SIGNAL_HIDE)
4287 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4288 }
488f131b 4289
04e68871 4290process_event_stop_test:
568d6575
UW
4291
4292 /* Re-fetch current thread's frame in case we did a
4293 "goto process_event_stop_test" above. */
4294 frame = get_current_frame ();
4295 gdbarch = get_frame_arch (frame);
4296
488f131b
JB
4297 /* For the program's own signals, act according to
4298 the signal handling tables. */
4299
4300 if (ecs->random_signal)
4301 {
4302 /* Signal not for debugging purposes. */
4303 int printed = 0;
24291992 4304 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4305 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4306
527159b7 4307 if (debug_infrun)
c9737c08
PA
4308 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4309 gdb_signal_to_symbol_string (stop_signal));
527159b7 4310
488f131b
JB
4311 stopped_by_random_signal = 1;
4312
16c381f0 4313 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4314 {
4315 printed = 1;
4316 target_terminal_ours_for_output ();
16c381f0
JK
4317 print_signal_received_reason
4318 (ecs->event_thread->suspend.stop_signal);
488f131b 4319 }
252fbfc8
PA
4320 /* Always stop on signals if we're either just gaining control
4321 of the program, or the user explicitly requested this thread
4322 to remain stopped. */
d6b48e9c 4323 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4324 || ecs->event_thread->stop_requested
24291992 4325 || (!inf->detaching
16c381f0 4326 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4327 {
4328 stop_stepping (ecs);
4329 return;
4330 }
4331 /* If not going to stop, give terminal back
4332 if we took it away. */
4333 else if (printed)
4334 target_terminal_inferior ();
4335
4336 /* Clear the signal if it should not be passed. */
16c381f0 4337 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4338 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4339
fb14de7b 4340 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4341 && ecs->event_thread->control.trap_expected
8358c15c 4342 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4343 {
4344 /* We were just starting a new sequence, attempting to
4345 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4346 Instead this signal arrives. This signal will take us out
68f53502
AC
4347 of the stepping range so GDB needs to remember to, when
4348 the signal handler returns, resume stepping off that
4349 breakpoint. */
4350 /* To simplify things, "continue" is forced to use the same
4351 code paths as single-step - set a breakpoint at the
4352 signal return address and then, once hit, step off that
4353 breakpoint. */
237fc4c9
PA
4354 if (debug_infrun)
4355 fprintf_unfiltered (gdb_stdlog,
4356 "infrun: signal arrived while stepping over "
4357 "breakpoint\n");
d3169d93 4358
2c03e5be 4359 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4360 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4361 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4362 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4363 keep_going (ecs);
4364 return;
68f53502 4365 }
9d799f85 4366
16c381f0 4367 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4368 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4369 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4370 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4371 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4372 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4373 {
4374 /* The inferior is about to take a signal that will take it
4375 out of the single step range. Set a breakpoint at the
4376 current PC (which is presumably where the signal handler
4377 will eventually return) and then allow the inferior to
4378 run free.
4379
4380 Note that this is only needed for a signal delivered
4381 while in the single-step range. Nested signals aren't a
4382 problem as they eventually all return. */
237fc4c9
PA
4383 if (debug_infrun)
4384 fprintf_unfiltered (gdb_stdlog,
4385 "infrun: signal may take us out of "
4386 "single-step range\n");
4387
2c03e5be 4388 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4389 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4390 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4391 keep_going (ecs);
4392 return;
d303a6c7 4393 }
9d799f85
AC
4394
4395 /* Note: step_resume_breakpoint may be non-NULL. This occures
4396 when either there's a nested signal, or when there's a
4397 pending signal enabled just as the signal handler returns
4398 (leaving the inferior at the step-resume-breakpoint without
4399 actually executing it). Either way continue until the
4400 breakpoint is really hit. */
488f131b 4401 }
e5ef252a
PA
4402 else
4403 {
4404 /* Handle cases caused by hitting a breakpoint. */
488f131b 4405
e5ef252a
PA
4406 CORE_ADDR jmp_buf_pc;
4407 struct bpstat_what what;
611c83ae 4408
e5ef252a 4409 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4410
e5ef252a 4411 if (what.call_dummy)
e81a37f7 4412 {
e5ef252a
PA
4413 stop_stack_dummy = what.call_dummy;
4414 }
186c406b 4415
e5ef252a
PA
4416 /* If we hit an internal event that triggers symbol changes, the
4417 current frame will be invalidated within bpstat_what (e.g.,
4418 if we hit an internal solib event). Re-fetch it. */
4419 frame = get_current_frame ();
4420 gdbarch = get_frame_arch (frame);
e2e4d78b 4421
e5ef252a
PA
4422 switch (what.main_action)
4423 {
4424 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4425 /* If we hit the breakpoint at longjmp while stepping, we
4426 install a momentary breakpoint at the target of the
4427 jmp_buf. */
186c406b 4428
e81a37f7
TT
4429 if (debug_infrun)
4430 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4431 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4432
e5ef252a 4433 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4434
e2e4d78b
JK
4435 if (what.is_longjmp)
4436 {
e5ef252a
PA
4437 struct value *arg_value;
4438
4439 /* If we set the longjmp breakpoint via a SystemTap
4440 probe, then use it to extract the arguments. The
4441 destination PC is the third argument to the
4442 probe. */
4443 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4444 if (arg_value)
4445 jmp_buf_pc = value_as_address (arg_value);
4446 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4447 || !gdbarch_get_longjmp_target (gdbarch,
4448 frame, &jmp_buf_pc))
e2e4d78b 4449 {
e5ef252a
PA
4450 if (debug_infrun)
4451 fprintf_unfiltered (gdb_stdlog,
4452 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4453 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4454 keep_going (ecs);
4455 return;
4456 }
e5ef252a
PA
4457
4458 /* Insert a breakpoint at resume address. */
4459 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4460 }
e5ef252a
PA
4461 else
4462 check_exception_resume (ecs, frame);
4463 keep_going (ecs);
4464 return;
e2e4d78b 4465
e5ef252a
PA
4466 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4467 {
4468 struct frame_info *init_frame;
e2e4d78b 4469
e5ef252a 4470 /* There are several cases to consider.
e81a37f7 4471
e5ef252a
PA
4472 1. The initiating frame no longer exists. In this case
4473 we must stop, because the exception or longjmp has gone
4474 too far.
e81a37f7 4475
e5ef252a
PA
4476 2. The initiating frame exists, and is the same as the
4477 current frame. We stop, because the exception or
4478 longjmp has been caught.
c906108c 4479
e5ef252a
PA
4480 3. The initiating frame exists and is different from
4481 the current frame. This means the exception or longjmp
4482 has been caught beneath the initiating frame, so keep
4483 going.
2c03e5be 4484
e5ef252a
PA
4485 4. longjmp breakpoint has been placed just to protect
4486 against stale dummy frames and user is not interested
4487 in stopping around longjmps. */
2c03e5be 4488
e5ef252a
PA
4489 if (debug_infrun)
4490 fprintf_unfiltered (gdb_stdlog,
4491 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4492
e5ef252a
PA
4493 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4494 != NULL);
4495 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4496
e5ef252a
PA
4497 if (what.is_longjmp)
4498 {
4499 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4500
e5ef252a
PA
4501 if (!frame_id_p (ecs->event_thread->initiating_frame))
4502 {
4503 /* Case 4. */
4504 keep_going (ecs);
4505 return;
4506 }
4507 }
c5aa993b 4508
e5ef252a 4509 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4510
e5ef252a
PA
4511 if (init_frame)
4512 {
4513 struct frame_id current_id
4514 = get_frame_id (get_current_frame ());
4515 if (frame_id_eq (current_id,
4516 ecs->event_thread->initiating_frame))
4517 {
4518 /* Case 2. Fall through. */
4519 }
4520 else
4521 {
4522 /* Case 3. */
4523 keep_going (ecs);
4524 return;
4525 }
4526 }
c5aa993b 4527
e5ef252a
PA
4528 /* For Cases 1 and 2, remove the step-resume breakpoint,
4529 if it exists. */
4530 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4531
e5ef252a
PA
4532 ecs->event_thread->control.stop_step = 1;
4533 print_end_stepping_range_reason ();
4534 stop_stepping (ecs);
68f53502 4535 }
e5ef252a 4536 return;
488f131b 4537
e5ef252a
PA
4538 case BPSTAT_WHAT_SINGLE:
4539 if (debug_infrun)
4540 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4541 ecs->event_thread->stepping_over_breakpoint = 1;
4542 /* Still need to check other stuff, at least the case where
4543 we are stepping and step out of the right range. */
4544 break;
4545
4546 case BPSTAT_WHAT_STEP_RESUME:
4547 if (debug_infrun)
4548 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4549
4550 delete_step_resume_breakpoint (ecs->event_thread);
4551 if (ecs->event_thread->control.proceed_to_finish
4552 && execution_direction == EXEC_REVERSE)
4553 {
4554 struct thread_info *tp = ecs->event_thread;
4555
4556 /* We are finishing a function in reverse, and just hit
4557 the step-resume breakpoint at the start address of
4558 the function, and we're almost there -- just need to
4559 back up by one more single-step, which should take us
4560 back to the function call. */
4561 tp->control.step_range_start = tp->control.step_range_end = 1;
4562 keep_going (ecs);
4563 return;
4564 }
4565 fill_in_stop_func (gdbarch, ecs);
4566 if (stop_pc == ecs->stop_func_start
4567 && execution_direction == EXEC_REVERSE)
4568 {
4569 /* We are stepping over a function call in reverse, and
4570 just hit the step-resume breakpoint at the start
4571 address of the function. Go back to single-stepping,
4572 which should take us back to the function call. */
4573 ecs->event_thread->stepping_over_breakpoint = 1;
4574 keep_going (ecs);
4575 return;
4576 }
4577 break;
4578
4579 case BPSTAT_WHAT_STOP_NOISY:
4580 if (debug_infrun)
4581 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4582 stop_print_frame = 1;
4583
4584 /* We are about to nuke the step_resume_breakpointt via the
4585 cleanup chain, so no need to worry about it here. */
4586
4587 stop_stepping (ecs);
4588 return;
4589
4590 case BPSTAT_WHAT_STOP_SILENT:
4591 if (debug_infrun)
4592 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4593 stop_print_frame = 0;
4594
4595 /* We are about to nuke the step_resume_breakpoin via the
4596 cleanup chain, so no need to worry about it here. */
4597
4598 stop_stepping (ecs);
4599 return;
4600
4601 case BPSTAT_WHAT_HP_STEP_RESUME:
4602 if (debug_infrun)
4603 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4604
4605 delete_step_resume_breakpoint (ecs->event_thread);
4606 if (ecs->event_thread->step_after_step_resume_breakpoint)
4607 {
4608 /* Back when the step-resume breakpoint was inserted, we
4609 were trying to single-step off a breakpoint. Go back
4610 to doing that. */
4611 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4612 ecs->event_thread->stepping_over_breakpoint = 1;
4613 keep_going (ecs);
4614 return;
4615 }
4616 break;
4617
4618 case BPSTAT_WHAT_KEEP_CHECKING:
4619 break;
4620 }
4621 }
c906108c 4622
488f131b
JB
4623 /* We come here if we hit a breakpoint but should not
4624 stop for it. Possibly we also were stepping
4625 and should stop for that. So fall through and
4626 test for stepping. But, if not stepping,
4627 do not stop. */
c906108c 4628
a7212384
UW
4629 /* In all-stop mode, if we're currently stepping but have stopped in
4630 some other thread, we need to switch back to the stepped thread. */
4631 if (!non_stop)
4632 {
4633 struct thread_info *tp;
abbb1732 4634
b3444185 4635 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4636 ecs->event_thread);
4637 if (tp)
4638 {
4639 /* However, if the current thread is blocked on some internal
4640 breakpoint, and we simply need to step over that breakpoint
4641 to get it going again, do that first. */
16c381f0 4642 if ((ecs->event_thread->control.trap_expected
a493e3e2 4643 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4644 || ecs->event_thread->stepping_over_breakpoint)
4645 {
4646 keep_going (ecs);
4647 return;
4648 }
4649
66852e9c
PA
4650 /* If the stepping thread exited, then don't try to switch
4651 back and resume it, which could fail in several different
4652 ways depending on the target. Instead, just keep going.
4653
4654 We can find a stepping dead thread in the thread list in
4655 two cases:
4656
4657 - The target supports thread exit events, and when the
4658 target tries to delete the thread from the thread list,
4659 inferior_ptid pointed at the exiting thread. In such
4660 case, calling delete_thread does not really remove the
4661 thread from the list; instead, the thread is left listed,
4662 with 'exited' state.
4663
4664 - The target's debug interface does not support thread
4665 exit events, and so we have no idea whatsoever if the
4666 previously stepping thread is still alive. For that
4667 reason, we need to synchronously query the target
4668 now. */
b3444185
PA
4669 if (is_exited (tp->ptid)
4670 || !target_thread_alive (tp->ptid))
4671 {
4672 if (debug_infrun)
3e43a32a
MS
4673 fprintf_unfiltered (gdb_stdlog,
4674 "infrun: not switching back to "
4675 "stepped thread, it has vanished\n");
b3444185
PA
4676
4677 delete_thread (tp->ptid);
4678 keep_going (ecs);
4679 return;
4680 }
4681
a7212384
UW
4682 /* Otherwise, we no longer expect a trap in the current thread.
4683 Clear the trap_expected flag before switching back -- this is
4684 what keep_going would do as well, if we called it. */
16c381f0 4685 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4686
4687 if (debug_infrun)
4688 fprintf_unfiltered (gdb_stdlog,
4689 "infrun: switching back to stepped thread\n");
4690
4691 ecs->event_thread = tp;
4692 ecs->ptid = tp->ptid;
4693 context_switch (ecs->ptid);
4694 keep_going (ecs);
4695 return;
4696 }
4697 }
4698
776f04fa
PA
4699 if (ecs->random_signal)
4700 {
4701 if (debug_infrun)
4702 fprintf_unfiltered (gdb_stdlog,
4703 "infrun: random signal, keep going\n");
4704
4705 /* Signal not stepping related. */
4706 keep_going (ecs);
4707 return;
4708 }
4709
8358c15c 4710 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4711 {
527159b7 4712 if (debug_infrun)
d3169d93
DJ
4713 fprintf_unfiltered (gdb_stdlog,
4714 "infrun: step-resume breakpoint is inserted\n");
527159b7 4715
488f131b
JB
4716 /* Having a step-resume breakpoint overrides anything
4717 else having to do with stepping commands until
4718 that breakpoint is reached. */
488f131b
JB
4719 keep_going (ecs);
4720 return;
4721 }
c5aa993b 4722
16c381f0 4723 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4724 {
527159b7 4725 if (debug_infrun)
8a9de0e4 4726 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4727 /* Likewise if we aren't even stepping. */
488f131b
JB
4728 keep_going (ecs);
4729 return;
4730 }
c5aa993b 4731
4b7703ad
JB
4732 /* Re-fetch current thread's frame in case the code above caused
4733 the frame cache to be re-initialized, making our FRAME variable
4734 a dangling pointer. */
4735 frame = get_current_frame ();
628fe4e4 4736 gdbarch = get_frame_arch (frame);
7e324e48 4737 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4738
488f131b 4739 /* If stepping through a line, keep going if still within it.
c906108c 4740
488f131b
JB
4741 Note that step_range_end is the address of the first instruction
4742 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4743 within it!
4744
4745 Note also that during reverse execution, we may be stepping
4746 through a function epilogue and therefore must detect when
4747 the current-frame changes in the middle of a line. */
4748
ce4c476a 4749 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4750 && (execution_direction != EXEC_REVERSE
388a8562 4751 || frame_id_eq (get_frame_id (frame),
16c381f0 4752 ecs->event_thread->control.step_frame_id)))
488f131b 4753 {
527159b7 4754 if (debug_infrun)
5af949e3
UW
4755 fprintf_unfiltered
4756 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4757 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4758 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4759
c1e36e3e
PA
4760 /* Tentatively re-enable range stepping; `resume' disables it if
4761 necessary (e.g., if we're stepping over a breakpoint or we
4762 have software watchpoints). */
4763 ecs->event_thread->control.may_range_step = 1;
4764
b2175913
MS
4765 /* When stepping backward, stop at beginning of line range
4766 (unless it's the function entry point, in which case
4767 keep going back to the call point). */
16c381f0 4768 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4769 && stop_pc != ecs->stop_func_start
4770 && execution_direction == EXEC_REVERSE)
4771 {
16c381f0 4772 ecs->event_thread->control.stop_step = 1;
33d62d64 4773 print_end_stepping_range_reason ();
b2175913
MS
4774 stop_stepping (ecs);
4775 }
4776 else
4777 keep_going (ecs);
4778
488f131b
JB
4779 return;
4780 }
c5aa993b 4781
488f131b 4782 /* We stepped out of the stepping range. */
c906108c 4783
488f131b 4784 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4785 loader dynamic symbol resolution code...
4786
4787 EXEC_FORWARD: we keep on single stepping until we exit the run
4788 time loader code and reach the callee's address.
4789
4790 EXEC_REVERSE: we've already executed the callee (backward), and
4791 the runtime loader code is handled just like any other
4792 undebuggable function call. Now we need only keep stepping
4793 backward through the trampoline code, and that's handled further
4794 down, so there is nothing for us to do here. */
4795
4796 if (execution_direction != EXEC_REVERSE
16c381f0 4797 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4798 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4799 {
4c8c40e6 4800 CORE_ADDR pc_after_resolver =
568d6575 4801 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4802
527159b7 4803 if (debug_infrun)
3e43a32a
MS
4804 fprintf_unfiltered (gdb_stdlog,
4805 "infrun: stepped into dynsym resolve code\n");
527159b7 4806
488f131b
JB
4807 if (pc_after_resolver)
4808 {
4809 /* Set up a step-resume breakpoint at the address
4810 indicated by SKIP_SOLIB_RESOLVER. */
4811 struct symtab_and_line sr_sal;
abbb1732 4812
fe39c653 4813 init_sal (&sr_sal);
488f131b 4814 sr_sal.pc = pc_after_resolver;
6c95b8df 4815 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4816
a6d9a66e
UW
4817 insert_step_resume_breakpoint_at_sal (gdbarch,
4818 sr_sal, null_frame_id);
c5aa993b 4819 }
c906108c 4820
488f131b
JB
4821 keep_going (ecs);
4822 return;
4823 }
c906108c 4824
16c381f0
JK
4825 if (ecs->event_thread->control.step_range_end != 1
4826 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4827 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4828 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4829 {
527159b7 4830 if (debug_infrun)
3e43a32a
MS
4831 fprintf_unfiltered (gdb_stdlog,
4832 "infrun: stepped into signal trampoline\n");
42edda50 4833 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4834 a signal trampoline (either by a signal being delivered or by
4835 the signal handler returning). Just single-step until the
4836 inferior leaves the trampoline (either by calling the handler
4837 or returning). */
488f131b
JB
4838 keep_going (ecs);
4839 return;
4840 }
c906108c 4841
14132e89
MR
4842 /* If we're in the return path from a shared library trampoline,
4843 we want to proceed through the trampoline when stepping. */
4844 /* macro/2012-04-25: This needs to come before the subroutine
4845 call check below as on some targets return trampolines look
4846 like subroutine calls (MIPS16 return thunks). */
4847 if (gdbarch_in_solib_return_trampoline (gdbarch,
4848 stop_pc, ecs->stop_func_name)
4849 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4850 {
4851 /* Determine where this trampoline returns. */
4852 CORE_ADDR real_stop_pc;
4853
4854 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4855
4856 if (debug_infrun)
4857 fprintf_unfiltered (gdb_stdlog,
4858 "infrun: stepped into solib return tramp\n");
4859
4860 /* Only proceed through if we know where it's going. */
4861 if (real_stop_pc)
4862 {
4863 /* And put the step-breakpoint there and go until there. */
4864 struct symtab_and_line sr_sal;
4865
4866 init_sal (&sr_sal); /* initialize to zeroes */
4867 sr_sal.pc = real_stop_pc;
4868 sr_sal.section = find_pc_overlay (sr_sal.pc);
4869 sr_sal.pspace = get_frame_program_space (frame);
4870
4871 /* Do not specify what the fp should be when we stop since
4872 on some machines the prologue is where the new fp value
4873 is established. */
4874 insert_step_resume_breakpoint_at_sal (gdbarch,
4875 sr_sal, null_frame_id);
4876
4877 /* Restart without fiddling with the step ranges or
4878 other state. */
4879 keep_going (ecs);
4880 return;
4881 }
4882 }
4883
c17eaafe
DJ
4884 /* Check for subroutine calls. The check for the current frame
4885 equalling the step ID is not necessary - the check of the
4886 previous frame's ID is sufficient - but it is a common case and
4887 cheaper than checking the previous frame's ID.
14e60db5
DJ
4888
4889 NOTE: frame_id_eq will never report two invalid frame IDs as
4890 being equal, so to get into this block, both the current and
4891 previous frame must have valid frame IDs. */
005ca36a
JB
4892 /* The outer_frame_id check is a heuristic to detect stepping
4893 through startup code. If we step over an instruction which
4894 sets the stack pointer from an invalid value to a valid value,
4895 we may detect that as a subroutine call from the mythical
4896 "outermost" function. This could be fixed by marking
4897 outermost frames as !stack_p,code_p,special_p. Then the
4898 initial outermost frame, before sp was valid, would
ce6cca6d 4899 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4900 for more. */
edb3359d 4901 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4902 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4903 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4904 ecs->event_thread->control.step_stack_frame_id)
4905 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4906 outer_frame_id)
4907 || step_start_function != find_pc_function (stop_pc))))
488f131b 4908 {
95918acb 4909 CORE_ADDR real_stop_pc;
8fb3e588 4910
527159b7 4911 if (debug_infrun)
8a9de0e4 4912 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4913
16c381f0
JK
4914 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4915 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4916 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4917 ecs->stop_func_start)))
95918acb
AC
4918 {
4919 /* I presume that step_over_calls is only 0 when we're
4920 supposed to be stepping at the assembly language level
4921 ("stepi"). Just stop. */
4922 /* Also, maybe we just did a "nexti" inside a prolog, so we
4923 thought it was a subroutine call but it was not. Stop as
4924 well. FENN */
388a8562 4925 /* And this works the same backward as frontward. MVS */
16c381f0 4926 ecs->event_thread->control.stop_step = 1;
33d62d64 4927 print_end_stepping_range_reason ();
95918acb
AC
4928 stop_stepping (ecs);
4929 return;
4930 }
8fb3e588 4931
388a8562
MS
4932 /* Reverse stepping through solib trampolines. */
4933
4934 if (execution_direction == EXEC_REVERSE
16c381f0 4935 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4936 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4937 || (ecs->stop_func_start == 0
4938 && in_solib_dynsym_resolve_code (stop_pc))))
4939 {
4940 /* Any solib trampoline code can be handled in reverse
4941 by simply continuing to single-step. We have already
4942 executed the solib function (backwards), and a few
4943 steps will take us back through the trampoline to the
4944 caller. */
4945 keep_going (ecs);
4946 return;
4947 }
4948
16c381f0 4949 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4950 {
b2175913
MS
4951 /* We're doing a "next".
4952
4953 Normal (forward) execution: set a breakpoint at the
4954 callee's return address (the address at which the caller
4955 will resume).
4956
4957 Reverse (backward) execution. set the step-resume
4958 breakpoint at the start of the function that we just
4959 stepped into (backwards), and continue to there. When we
6130d0b7 4960 get there, we'll need to single-step back to the caller. */
b2175913
MS
4961
4962 if (execution_direction == EXEC_REVERSE)
4963 {
acf9414f
JK
4964 /* If we're already at the start of the function, we've either
4965 just stepped backward into a single instruction function,
4966 or stepped back out of a signal handler to the first instruction
4967 of the function. Just keep going, which will single-step back
4968 to the caller. */
58c48e72 4969 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4970 {
4971 struct symtab_and_line sr_sal;
4972
4973 /* Normal function call return (static or dynamic). */
4974 init_sal (&sr_sal);
4975 sr_sal.pc = ecs->stop_func_start;
4976 sr_sal.pspace = get_frame_program_space (frame);
4977 insert_step_resume_breakpoint_at_sal (gdbarch,
4978 sr_sal, null_frame_id);
4979 }
b2175913
MS
4980 }
4981 else
568d6575 4982 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4983
8567c30f
AC
4984 keep_going (ecs);
4985 return;
4986 }
a53c66de 4987
95918acb 4988 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4989 calling routine and the real function), locate the real
4990 function. That's what tells us (a) whether we want to step
4991 into it at all, and (b) what prologue we want to run to the
4992 end of, if we do step into it. */
568d6575 4993 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4994 if (real_stop_pc == 0)
568d6575 4995 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4996 if (real_stop_pc != 0)
4997 ecs->stop_func_start = real_stop_pc;
8fb3e588 4998
db5f024e 4999 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5000 {
5001 struct symtab_and_line sr_sal;
abbb1732 5002
1b2bfbb9
RC
5003 init_sal (&sr_sal);
5004 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5005 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5006
a6d9a66e
UW
5007 insert_step_resume_breakpoint_at_sal (gdbarch,
5008 sr_sal, null_frame_id);
8fb3e588
AC
5009 keep_going (ecs);
5010 return;
1b2bfbb9
RC
5011 }
5012
95918acb 5013 /* If we have line number information for the function we are
1bfeeb0f
JL
5014 thinking of stepping into and the function isn't on the skip
5015 list, step into it.
95918acb 5016
8fb3e588
AC
5017 If there are several symtabs at that PC (e.g. with include
5018 files), just want to know whether *any* of them have line
5019 numbers. find_pc_line handles this. */
95918acb
AC
5020 {
5021 struct symtab_and_line tmp_sal;
8fb3e588 5022
95918acb 5023 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5024 if (tmp_sal.line != 0
85817405
JK
5025 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5026 &tmp_sal))
95918acb 5027 {
b2175913 5028 if (execution_direction == EXEC_REVERSE)
568d6575 5029 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5030 else
568d6575 5031 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5032 return;
5033 }
5034 }
5035
5036 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5037 set, we stop the step so that the user has a chance to switch
5038 in assembly mode. */
16c381f0 5039 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5040 && step_stop_if_no_debug)
95918acb 5041 {
16c381f0 5042 ecs->event_thread->control.stop_step = 1;
33d62d64 5043 print_end_stepping_range_reason ();
95918acb
AC
5044 stop_stepping (ecs);
5045 return;
5046 }
5047
b2175913
MS
5048 if (execution_direction == EXEC_REVERSE)
5049 {
acf9414f
JK
5050 /* If we're already at the start of the function, we've either just
5051 stepped backward into a single instruction function without line
5052 number info, or stepped back out of a signal handler to the first
5053 instruction of the function without line number info. Just keep
5054 going, which will single-step back to the caller. */
5055 if (ecs->stop_func_start != stop_pc)
5056 {
5057 /* Set a breakpoint at callee's start address.
5058 From there we can step once and be back in the caller. */
5059 struct symtab_and_line sr_sal;
abbb1732 5060
acf9414f
JK
5061 init_sal (&sr_sal);
5062 sr_sal.pc = ecs->stop_func_start;
5063 sr_sal.pspace = get_frame_program_space (frame);
5064 insert_step_resume_breakpoint_at_sal (gdbarch,
5065 sr_sal, null_frame_id);
5066 }
b2175913
MS
5067 }
5068 else
5069 /* Set a breakpoint at callee's return address (the address
5070 at which the caller will resume). */
568d6575 5071 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5072
95918acb 5073 keep_going (ecs);
488f131b 5074 return;
488f131b 5075 }
c906108c 5076
fdd654f3
MS
5077 /* Reverse stepping through solib trampolines. */
5078
5079 if (execution_direction == EXEC_REVERSE
16c381f0 5080 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5081 {
5082 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5083 || (ecs->stop_func_start == 0
5084 && in_solib_dynsym_resolve_code (stop_pc)))
5085 {
5086 /* Any solib trampoline code can be handled in reverse
5087 by simply continuing to single-step. We have already
5088 executed the solib function (backwards), and a few
5089 steps will take us back through the trampoline to the
5090 caller. */
5091 keep_going (ecs);
5092 return;
5093 }
5094 else if (in_solib_dynsym_resolve_code (stop_pc))
5095 {
5096 /* Stepped backward into the solib dynsym resolver.
5097 Set a breakpoint at its start and continue, then
5098 one more step will take us out. */
5099 struct symtab_and_line sr_sal;
abbb1732 5100
fdd654f3
MS
5101 init_sal (&sr_sal);
5102 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5103 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5104 insert_step_resume_breakpoint_at_sal (gdbarch,
5105 sr_sal, null_frame_id);
5106 keep_going (ecs);
5107 return;
5108 }
5109 }
5110
2afb61aa 5111 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5112
1b2bfbb9
RC
5113 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5114 the trampoline processing logic, however, there are some trampolines
5115 that have no names, so we should do trampoline handling first. */
16c381f0 5116 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5117 && ecs->stop_func_name == NULL
2afb61aa 5118 && stop_pc_sal.line == 0)
1b2bfbb9 5119 {
527159b7 5120 if (debug_infrun)
3e43a32a
MS
5121 fprintf_unfiltered (gdb_stdlog,
5122 "infrun: stepped into undebuggable function\n");
527159b7 5123
1b2bfbb9 5124 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5125 undebuggable function (where there is no debugging information
5126 and no line number corresponding to the address where the
1b2bfbb9
RC
5127 inferior stopped). Since we want to skip this kind of code,
5128 we keep going until the inferior returns from this
14e60db5
DJ
5129 function - unless the user has asked us not to (via
5130 set step-mode) or we no longer know how to get back
5131 to the call site. */
5132 if (step_stop_if_no_debug
c7ce8faa 5133 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5134 {
5135 /* If we have no line number and the step-stop-if-no-debug
5136 is set, we stop the step so that the user has a chance to
5137 switch in assembly mode. */
16c381f0 5138 ecs->event_thread->control.stop_step = 1;
33d62d64 5139 print_end_stepping_range_reason ();
1b2bfbb9
RC
5140 stop_stepping (ecs);
5141 return;
5142 }
5143 else
5144 {
5145 /* Set a breakpoint at callee's return address (the address
5146 at which the caller will resume). */
568d6575 5147 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5148 keep_going (ecs);
5149 return;
5150 }
5151 }
5152
16c381f0 5153 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5154 {
5155 /* It is stepi or nexti. We always want to stop stepping after
5156 one instruction. */
527159b7 5157 if (debug_infrun)
8a9de0e4 5158 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5159 ecs->event_thread->control.stop_step = 1;
33d62d64 5160 print_end_stepping_range_reason ();
1b2bfbb9
RC
5161 stop_stepping (ecs);
5162 return;
5163 }
5164
2afb61aa 5165 if (stop_pc_sal.line == 0)
488f131b
JB
5166 {
5167 /* We have no line number information. That means to stop
5168 stepping (does this always happen right after one instruction,
5169 when we do "s" in a function with no line numbers,
5170 or can this happen as a result of a return or longjmp?). */
527159b7 5171 if (debug_infrun)
8a9de0e4 5172 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5173 ecs->event_thread->control.stop_step = 1;
33d62d64 5174 print_end_stepping_range_reason ();
488f131b
JB
5175 stop_stepping (ecs);
5176 return;
5177 }
c906108c 5178
edb3359d
DJ
5179 /* Look for "calls" to inlined functions, part one. If the inline
5180 frame machinery detected some skipped call sites, we have entered
5181 a new inline function. */
5182
5183 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5184 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5185 && inline_skipped_frames (ecs->ptid))
5186 {
5187 struct symtab_and_line call_sal;
5188
5189 if (debug_infrun)
5190 fprintf_unfiltered (gdb_stdlog,
5191 "infrun: stepped into inlined function\n");
5192
5193 find_frame_sal (get_current_frame (), &call_sal);
5194
16c381f0 5195 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5196 {
5197 /* For "step", we're going to stop. But if the call site
5198 for this inlined function is on the same source line as
5199 we were previously stepping, go down into the function
5200 first. Otherwise stop at the call site. */
5201
5202 if (call_sal.line == ecs->event_thread->current_line
5203 && call_sal.symtab == ecs->event_thread->current_symtab)
5204 step_into_inline_frame (ecs->ptid);
5205
16c381f0 5206 ecs->event_thread->control.stop_step = 1;
33d62d64 5207 print_end_stepping_range_reason ();
edb3359d
DJ
5208 stop_stepping (ecs);
5209 return;
5210 }
5211 else
5212 {
5213 /* For "next", we should stop at the call site if it is on a
5214 different source line. Otherwise continue through the
5215 inlined function. */
5216 if (call_sal.line == ecs->event_thread->current_line
5217 && call_sal.symtab == ecs->event_thread->current_symtab)
5218 keep_going (ecs);
5219 else
5220 {
16c381f0 5221 ecs->event_thread->control.stop_step = 1;
33d62d64 5222 print_end_stepping_range_reason ();
edb3359d
DJ
5223 stop_stepping (ecs);
5224 }
5225 return;
5226 }
5227 }
5228
5229 /* Look for "calls" to inlined functions, part two. If we are still
5230 in the same real function we were stepping through, but we have
5231 to go further up to find the exact frame ID, we are stepping
5232 through a more inlined call beyond its call site. */
5233
5234 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5235 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5236 ecs->event_thread->control.step_frame_id)
edb3359d 5237 && stepped_in_from (get_current_frame (),
16c381f0 5238 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5239 {
5240 if (debug_infrun)
5241 fprintf_unfiltered (gdb_stdlog,
5242 "infrun: stepping through inlined function\n");
5243
16c381f0 5244 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5245 keep_going (ecs);
5246 else
5247 {
16c381f0 5248 ecs->event_thread->control.stop_step = 1;
33d62d64 5249 print_end_stepping_range_reason ();
edb3359d
DJ
5250 stop_stepping (ecs);
5251 }
5252 return;
5253 }
5254
2afb61aa 5255 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5256 && (ecs->event_thread->current_line != stop_pc_sal.line
5257 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5258 {
5259 /* We are at the start of a different line. So stop. Note that
5260 we don't stop if we step into the middle of a different line.
5261 That is said to make things like for (;;) statements work
5262 better. */
527159b7 5263 if (debug_infrun)
3e43a32a
MS
5264 fprintf_unfiltered (gdb_stdlog,
5265 "infrun: stepped to a different line\n");
16c381f0 5266 ecs->event_thread->control.stop_step = 1;
33d62d64 5267 print_end_stepping_range_reason ();
488f131b
JB
5268 stop_stepping (ecs);
5269 return;
5270 }
c906108c 5271
488f131b 5272 /* We aren't done stepping.
c906108c 5273
488f131b
JB
5274 Optimize by setting the stepping range to the line.
5275 (We might not be in the original line, but if we entered a
5276 new line in mid-statement, we continue stepping. This makes
5277 things like for(;;) statements work better.) */
c906108c 5278
16c381f0
JK
5279 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5280 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5281 ecs->event_thread->control.may_range_step = 1;
edb3359d 5282 set_step_info (frame, stop_pc_sal);
488f131b 5283
527159b7 5284 if (debug_infrun)
8a9de0e4 5285 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5286 keep_going (ecs);
104c1213
JM
5287}
5288
b3444185 5289/* Is thread TP in the middle of single-stepping? */
104c1213 5290
a289b8f6 5291static int
b3444185 5292currently_stepping (struct thread_info *tp)
a7212384 5293{
8358c15c
JK
5294 return ((tp->control.step_range_end
5295 && tp->control.step_resume_breakpoint == NULL)
5296 || tp->control.trap_expected
8358c15c 5297 || bpstat_should_step ());
a7212384
UW
5298}
5299
b3444185
PA
5300/* Returns true if any thread *but* the one passed in "data" is in the
5301 middle of stepping or of handling a "next". */
a7212384 5302
104c1213 5303static int
b3444185 5304currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5305{
b3444185
PA
5306 if (tp == data)
5307 return 0;
5308
16c381f0 5309 return (tp->control.step_range_end
ede1849f 5310 || tp->control.trap_expected);
104c1213 5311}
c906108c 5312
b2175913
MS
5313/* Inferior has stepped into a subroutine call with source code that
5314 we should not step over. Do step to the first line of code in
5315 it. */
c2c6d25f
JM
5316
5317static void
568d6575
UW
5318handle_step_into_function (struct gdbarch *gdbarch,
5319 struct execution_control_state *ecs)
c2c6d25f
JM
5320{
5321 struct symtab *s;
2afb61aa 5322 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5323
7e324e48
GB
5324 fill_in_stop_func (gdbarch, ecs);
5325
c2c6d25f
JM
5326 s = find_pc_symtab (stop_pc);
5327 if (s && s->language != language_asm)
568d6575 5328 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5329 ecs->stop_func_start);
c2c6d25f 5330
2afb61aa 5331 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5332 /* Use the step_resume_break to step until the end of the prologue,
5333 even if that involves jumps (as it seems to on the vax under
5334 4.2). */
5335 /* If the prologue ends in the middle of a source line, continue to
5336 the end of that source line (if it is still within the function).
5337 Otherwise, just go to end of prologue. */
2afb61aa
PA
5338 if (stop_func_sal.end
5339 && stop_func_sal.pc != ecs->stop_func_start
5340 && stop_func_sal.end < ecs->stop_func_end)
5341 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5342
2dbd5e30
KB
5343 /* Architectures which require breakpoint adjustment might not be able
5344 to place a breakpoint at the computed address. If so, the test
5345 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5346 ecs->stop_func_start to an address at which a breakpoint may be
5347 legitimately placed.
8fb3e588 5348
2dbd5e30
KB
5349 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5350 made, GDB will enter an infinite loop when stepping through
5351 optimized code consisting of VLIW instructions which contain
5352 subinstructions corresponding to different source lines. On
5353 FR-V, it's not permitted to place a breakpoint on any but the
5354 first subinstruction of a VLIW instruction. When a breakpoint is
5355 set, GDB will adjust the breakpoint address to the beginning of
5356 the VLIW instruction. Thus, we need to make the corresponding
5357 adjustment here when computing the stop address. */
8fb3e588 5358
568d6575 5359 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5360 {
5361 ecs->stop_func_start
568d6575 5362 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5363 ecs->stop_func_start);
2dbd5e30
KB
5364 }
5365
c2c6d25f
JM
5366 if (ecs->stop_func_start == stop_pc)
5367 {
5368 /* We are already there: stop now. */
16c381f0 5369 ecs->event_thread->control.stop_step = 1;
33d62d64 5370 print_end_stepping_range_reason ();
c2c6d25f
JM
5371 stop_stepping (ecs);
5372 return;
5373 }
5374 else
5375 {
5376 /* Put the step-breakpoint there and go until there. */
fe39c653 5377 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5378 sr_sal.pc = ecs->stop_func_start;
5379 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5380 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5381
c2c6d25f 5382 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5383 some machines the prologue is where the new fp value is
5384 established. */
a6d9a66e 5385 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5386
5387 /* And make sure stepping stops right away then. */
16c381f0
JK
5388 ecs->event_thread->control.step_range_end
5389 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5390 }
5391 keep_going (ecs);
5392}
d4f3574e 5393
b2175913
MS
5394/* Inferior has stepped backward into a subroutine call with source
5395 code that we should not step over. Do step to the beginning of the
5396 last line of code in it. */
5397
5398static void
568d6575
UW
5399handle_step_into_function_backward (struct gdbarch *gdbarch,
5400 struct execution_control_state *ecs)
b2175913
MS
5401{
5402 struct symtab *s;
167e4384 5403 struct symtab_and_line stop_func_sal;
b2175913 5404
7e324e48
GB
5405 fill_in_stop_func (gdbarch, ecs);
5406
b2175913
MS
5407 s = find_pc_symtab (stop_pc);
5408 if (s && s->language != language_asm)
568d6575 5409 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5410 ecs->stop_func_start);
5411
5412 stop_func_sal = find_pc_line (stop_pc, 0);
5413
5414 /* OK, we're just going to keep stepping here. */
5415 if (stop_func_sal.pc == stop_pc)
5416 {
5417 /* We're there already. Just stop stepping now. */
16c381f0 5418 ecs->event_thread->control.stop_step = 1;
33d62d64 5419 print_end_stepping_range_reason ();
b2175913
MS
5420 stop_stepping (ecs);
5421 }
5422 else
5423 {
5424 /* Else just reset the step range and keep going.
5425 No step-resume breakpoint, they don't work for
5426 epilogues, which can have multiple entry paths. */
16c381f0
JK
5427 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5428 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5429 keep_going (ecs);
5430 }
5431 return;
5432}
5433
d3169d93 5434/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5435 This is used to both functions and to skip over code. */
5436
5437static void
2c03e5be
PA
5438insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5439 struct symtab_and_line sr_sal,
5440 struct frame_id sr_id,
5441 enum bptype sr_type)
44cbf7b5 5442{
611c83ae
PA
5443 /* There should never be more than one step-resume or longjmp-resume
5444 breakpoint per thread, so we should never be setting a new
44cbf7b5 5445 step_resume_breakpoint when one is already active. */
8358c15c 5446 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5447 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5448
5449 if (debug_infrun)
5450 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5451 "infrun: inserting step-resume breakpoint at %s\n",
5452 paddress (gdbarch, sr_sal.pc));
d3169d93 5453
8358c15c 5454 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5455 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5456}
5457
9da8c2a0 5458void
2c03e5be
PA
5459insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5460 struct symtab_and_line sr_sal,
5461 struct frame_id sr_id)
5462{
5463 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5464 sr_sal, sr_id,
5465 bp_step_resume);
44cbf7b5 5466}
7ce450bd 5467
2c03e5be
PA
5468/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5469 This is used to skip a potential signal handler.
7ce450bd 5470
14e60db5
DJ
5471 This is called with the interrupted function's frame. The signal
5472 handler, when it returns, will resume the interrupted function at
5473 RETURN_FRAME.pc. */
d303a6c7
AC
5474
5475static void
2c03e5be 5476insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5477{
5478 struct symtab_and_line sr_sal;
a6d9a66e 5479 struct gdbarch *gdbarch;
d303a6c7 5480
f4c1edd8 5481 gdb_assert (return_frame != NULL);
d303a6c7
AC
5482 init_sal (&sr_sal); /* initialize to zeros */
5483
a6d9a66e 5484 gdbarch = get_frame_arch (return_frame);
568d6575 5485 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5486 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5487 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5488
2c03e5be
PA
5489 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5490 get_stack_frame_id (return_frame),
5491 bp_hp_step_resume);
d303a6c7
AC
5492}
5493
2c03e5be
PA
5494/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5495 is used to skip a function after stepping into it (for "next" or if
5496 the called function has no debugging information).
14e60db5
DJ
5497
5498 The current function has almost always been reached by single
5499 stepping a call or return instruction. NEXT_FRAME belongs to the
5500 current function, and the breakpoint will be set at the caller's
5501 resume address.
5502
5503 This is a separate function rather than reusing
2c03e5be 5504 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5505 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5506 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5507
5508static void
5509insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5510{
5511 struct symtab_and_line sr_sal;
a6d9a66e 5512 struct gdbarch *gdbarch;
14e60db5
DJ
5513
5514 /* We shouldn't have gotten here if we don't know where the call site
5515 is. */
c7ce8faa 5516 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5517
5518 init_sal (&sr_sal); /* initialize to zeros */
5519
a6d9a66e 5520 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5521 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5522 frame_unwind_caller_pc (next_frame));
14e60db5 5523 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5524 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5525
a6d9a66e 5526 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5527 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5528}
5529
611c83ae
PA
5530/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5531 new breakpoint at the target of a jmp_buf. The handling of
5532 longjmp-resume uses the same mechanisms used for handling
5533 "step-resume" breakpoints. */
5534
5535static void
a6d9a66e 5536insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5537{
e81a37f7
TT
5538 /* There should never be more than one longjmp-resume breakpoint per
5539 thread, so we should never be setting a new
611c83ae 5540 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5541 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5542
5543 if (debug_infrun)
5544 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5545 "infrun: inserting longjmp-resume breakpoint at %s\n",
5546 paddress (gdbarch, pc));
611c83ae 5547
e81a37f7 5548 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5549 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5550}
5551
186c406b
TT
5552/* Insert an exception resume breakpoint. TP is the thread throwing
5553 the exception. The block B is the block of the unwinder debug hook
5554 function. FRAME is the frame corresponding to the call to this
5555 function. SYM is the symbol of the function argument holding the
5556 target PC of the exception. */
5557
5558static void
5559insert_exception_resume_breakpoint (struct thread_info *tp,
5560 struct block *b,
5561 struct frame_info *frame,
5562 struct symbol *sym)
5563{
bfd189b1 5564 volatile struct gdb_exception e;
186c406b
TT
5565
5566 /* We want to ignore errors here. */
5567 TRY_CATCH (e, RETURN_MASK_ERROR)
5568 {
5569 struct symbol *vsym;
5570 struct value *value;
5571 CORE_ADDR handler;
5572 struct breakpoint *bp;
5573
5574 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5575 value = read_var_value (vsym, frame);
5576 /* If the value was optimized out, revert to the old behavior. */
5577 if (! value_optimized_out (value))
5578 {
5579 handler = value_as_address (value);
5580
5581 if (debug_infrun)
5582 fprintf_unfiltered (gdb_stdlog,
5583 "infrun: exception resume at %lx\n",
5584 (unsigned long) handler);
5585
5586 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5587 handler, bp_exception_resume);
c70a6932
JK
5588
5589 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5590 frame = NULL;
5591
186c406b
TT
5592 bp->thread = tp->num;
5593 inferior_thread ()->control.exception_resume_breakpoint = bp;
5594 }
5595 }
5596}
5597
28106bc2
SDJ
5598/* A helper for check_exception_resume that sets an
5599 exception-breakpoint based on a SystemTap probe. */
5600
5601static void
5602insert_exception_resume_from_probe (struct thread_info *tp,
5603 const struct probe *probe,
28106bc2
SDJ
5604 struct frame_info *frame)
5605{
5606 struct value *arg_value;
5607 CORE_ADDR handler;
5608 struct breakpoint *bp;
5609
5610 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5611 if (!arg_value)
5612 return;
5613
5614 handler = value_as_address (arg_value);
5615
5616 if (debug_infrun)
5617 fprintf_unfiltered (gdb_stdlog,
5618 "infrun: exception resume at %s\n",
6bac7473 5619 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5620 handler));
5621
5622 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5623 handler, bp_exception_resume);
5624 bp->thread = tp->num;
5625 inferior_thread ()->control.exception_resume_breakpoint = bp;
5626}
5627
186c406b
TT
5628/* This is called when an exception has been intercepted. Check to
5629 see whether the exception's destination is of interest, and if so,
5630 set an exception resume breakpoint there. */
5631
5632static void
5633check_exception_resume (struct execution_control_state *ecs,
28106bc2 5634 struct frame_info *frame)
186c406b 5635{
bfd189b1 5636 volatile struct gdb_exception e;
28106bc2
SDJ
5637 const struct probe *probe;
5638 struct symbol *func;
5639
5640 /* First see if this exception unwinding breakpoint was set via a
5641 SystemTap probe point. If so, the probe has two arguments: the
5642 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5643 set a breakpoint there. */
6bac7473 5644 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5645 if (probe)
5646 {
6bac7473 5647 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5648 return;
5649 }
5650
5651 func = get_frame_function (frame);
5652 if (!func)
5653 return;
186c406b
TT
5654
5655 TRY_CATCH (e, RETURN_MASK_ERROR)
5656 {
5657 struct block *b;
8157b174 5658 struct block_iterator iter;
186c406b
TT
5659 struct symbol *sym;
5660 int argno = 0;
5661
5662 /* The exception breakpoint is a thread-specific breakpoint on
5663 the unwinder's debug hook, declared as:
5664
5665 void _Unwind_DebugHook (void *cfa, void *handler);
5666
5667 The CFA argument indicates the frame to which control is
5668 about to be transferred. HANDLER is the destination PC.
5669
5670 We ignore the CFA and set a temporary breakpoint at HANDLER.
5671 This is not extremely efficient but it avoids issues in gdb
5672 with computing the DWARF CFA, and it also works even in weird
5673 cases such as throwing an exception from inside a signal
5674 handler. */
5675
5676 b = SYMBOL_BLOCK_VALUE (func);
5677 ALL_BLOCK_SYMBOLS (b, iter, sym)
5678 {
5679 if (!SYMBOL_IS_ARGUMENT (sym))
5680 continue;
5681
5682 if (argno == 0)
5683 ++argno;
5684 else
5685 {
5686 insert_exception_resume_breakpoint (ecs->event_thread,
5687 b, frame, sym);
5688 break;
5689 }
5690 }
5691 }
5692}
5693
104c1213
JM
5694static void
5695stop_stepping (struct execution_control_state *ecs)
5696{
527159b7 5697 if (debug_infrun)
8a9de0e4 5698 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5699
cd0fc7c3
SS
5700 /* Let callers know we don't want to wait for the inferior anymore. */
5701 ecs->wait_some_more = 0;
5702}
5703
a9ba6bae
PA
5704/* Called when we should continue running the inferior, because the
5705 current event doesn't cause a user visible stop. This does the
5706 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5707
5708static void
5709keep_going (struct execution_control_state *ecs)
5710{
c4dbc9af
PA
5711 /* Make sure normal_stop is called if we get a QUIT handled before
5712 reaching resume. */
5713 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5714
d4f3574e 5715 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5716 ecs->event_thread->prev_pc
5717 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5718
16c381f0 5719 if (ecs->event_thread->control.trap_expected
a493e3e2 5720 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5721 {
a9ba6bae
PA
5722 /* We haven't yet gotten our trap, and either: intercepted a
5723 non-signal event (e.g., a fork); or took a signal which we
5724 are supposed to pass through to the inferior. Simply
5725 continue. */
c4dbc9af 5726 discard_cleanups (old_cleanups);
2020b7ab 5727 resume (currently_stepping (ecs->event_thread),
16c381f0 5728 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5729 }
5730 else
5731 {
5732 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5733 anyway (if we got a signal, the user asked it be passed to
5734 the child)
5735 -- or --
5736 We got our expected trap, but decided we should resume from
5737 it.
d4f3574e 5738
a9ba6bae 5739 We're going to run this baby now!
d4f3574e 5740
c36b740a
VP
5741 Note that insert_breakpoints won't try to re-insert
5742 already inserted breakpoints. Therefore, we don't
5743 care if breakpoints were already inserted, or not. */
a9ba6bae 5744
4e1c45ea 5745 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5746 {
9f5a595d 5747 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5748
9f5a595d 5749 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5750 {
5751 /* Since we can't do a displaced step, we have to remove
5752 the breakpoint while we step it. To keep things
5753 simple, we remove them all. */
5754 remove_breakpoints ();
5755 }
45e8c884
VP
5756 }
5757 else
d4f3574e 5758 {
bfd189b1 5759 volatile struct gdb_exception e;
abbb1732 5760
a9ba6bae 5761 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5762 TRY_CATCH (e, RETURN_MASK_ERROR)
5763 {
5764 insert_breakpoints ();
5765 }
5766 if (e.reason < 0)
d4f3574e 5767 {
97bd5475 5768 exception_print (gdb_stderr, e);
d4f3574e
SS
5769 stop_stepping (ecs);
5770 return;
5771 }
d4f3574e
SS
5772 }
5773
16c381f0
JK
5774 ecs->event_thread->control.trap_expected
5775 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5776
a9ba6bae
PA
5777 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5778 explicitly specifies that such a signal should be delivered
5779 to the target program). Typically, that would occur when a
5780 user is debugging a target monitor on a simulator: the target
5781 monitor sets a breakpoint; the simulator encounters this
5782 breakpoint and halts the simulation handing control to GDB;
5783 GDB, noting that the stop address doesn't map to any known
5784 breakpoint, returns control back to the simulator; the
5785 simulator then delivers the hardware equivalent of a
5786 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5787 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5788 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5789 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5790
c4dbc9af 5791 discard_cleanups (old_cleanups);
2020b7ab 5792 resume (currently_stepping (ecs->event_thread),
16c381f0 5793 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5794 }
5795
488f131b 5796 prepare_to_wait (ecs);
d4f3574e
SS
5797}
5798
104c1213
JM
5799/* This function normally comes after a resume, before
5800 handle_inferior_event exits. It takes care of any last bits of
5801 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5802
104c1213
JM
5803static void
5804prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5805{
527159b7 5806 if (debug_infrun)
8a9de0e4 5807 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5808
104c1213
JM
5809 /* This is the old end of the while loop. Let everybody know we
5810 want to wait for the inferior some more and get called again
5811 soon. */
5812 ecs->wait_some_more = 1;
c906108c 5813}
11cf8741 5814
33d62d64
JK
5815/* Several print_*_reason functions to print why the inferior has stopped.
5816 We always print something when the inferior exits, or receives a signal.
5817 The rest of the cases are dealt with later on in normal_stop and
5818 print_it_typical. Ideally there should be a call to one of these
5819 print_*_reason functions functions from handle_inferior_event each time
5820 stop_stepping is called. */
5821
5822/* Print why the inferior has stopped.
5823 We are done with a step/next/si/ni command, print why the inferior has
5824 stopped. For now print nothing. Print a message only if not in the middle
5825 of doing a "step n" operation for n > 1. */
5826
5827static void
5828print_end_stepping_range_reason (void)
5829{
16c381f0
JK
5830 if ((!inferior_thread ()->step_multi
5831 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5832 && ui_out_is_mi_like_p (current_uiout))
5833 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5834 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5835}
5836
5837/* The inferior was terminated by a signal, print why it stopped. */
5838
11cf8741 5839static void
2ea28649 5840print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5841{
79a45e25
PA
5842 struct ui_out *uiout = current_uiout;
5843
33d62d64
JK
5844 annotate_signalled ();
5845 if (ui_out_is_mi_like_p (uiout))
5846 ui_out_field_string
5847 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5848 ui_out_text (uiout, "\nProgram terminated with signal ");
5849 annotate_signal_name ();
5850 ui_out_field_string (uiout, "signal-name",
2ea28649 5851 gdb_signal_to_name (siggnal));
33d62d64
JK
5852 annotate_signal_name_end ();
5853 ui_out_text (uiout, ", ");
5854 annotate_signal_string ();
5855 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5856 gdb_signal_to_string (siggnal));
33d62d64
JK
5857 annotate_signal_string_end ();
5858 ui_out_text (uiout, ".\n");
5859 ui_out_text (uiout, "The program no longer exists.\n");
5860}
5861
5862/* The inferior program is finished, print why it stopped. */
5863
5864static void
5865print_exited_reason (int exitstatus)
5866{
fda326dd
TT
5867 struct inferior *inf = current_inferior ();
5868 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5869 struct ui_out *uiout = current_uiout;
fda326dd 5870
33d62d64
JK
5871 annotate_exited (exitstatus);
5872 if (exitstatus)
5873 {
5874 if (ui_out_is_mi_like_p (uiout))
5875 ui_out_field_string (uiout, "reason",
5876 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5877 ui_out_text (uiout, "[Inferior ");
5878 ui_out_text (uiout, plongest (inf->num));
5879 ui_out_text (uiout, " (");
5880 ui_out_text (uiout, pidstr);
5881 ui_out_text (uiout, ") exited with code ");
33d62d64 5882 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5883 ui_out_text (uiout, "]\n");
33d62d64
JK
5884 }
5885 else
11cf8741 5886 {
9dc5e2a9 5887 if (ui_out_is_mi_like_p (uiout))
034dad6f 5888 ui_out_field_string
33d62d64 5889 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5890 ui_out_text (uiout, "[Inferior ");
5891 ui_out_text (uiout, plongest (inf->num));
5892 ui_out_text (uiout, " (");
5893 ui_out_text (uiout, pidstr);
5894 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5895 }
5896 /* Support the --return-child-result option. */
5897 return_child_result_value = exitstatus;
5898}
5899
5900/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5901 tells us to print about it. */
33d62d64
JK
5902
5903static void
2ea28649 5904print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5905{
79a45e25
PA
5906 struct ui_out *uiout = current_uiout;
5907
33d62d64
JK
5908 annotate_signal ();
5909
a493e3e2 5910 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5911 {
5912 struct thread_info *t = inferior_thread ();
5913
5914 ui_out_text (uiout, "\n[");
5915 ui_out_field_string (uiout, "thread-name",
5916 target_pid_to_str (t->ptid));
5917 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5918 ui_out_text (uiout, " stopped");
5919 }
5920 else
5921 {
5922 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5923 annotate_signal_name ();
33d62d64
JK
5924 if (ui_out_is_mi_like_p (uiout))
5925 ui_out_field_string
5926 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5927 ui_out_field_string (uiout, "signal-name",
2ea28649 5928 gdb_signal_to_name (siggnal));
8b93c638
JM
5929 annotate_signal_name_end ();
5930 ui_out_text (uiout, ", ");
5931 annotate_signal_string ();
488f131b 5932 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5933 gdb_signal_to_string (siggnal));
8b93c638 5934 annotate_signal_string_end ();
33d62d64
JK
5935 }
5936 ui_out_text (uiout, ".\n");
5937}
252fbfc8 5938
33d62d64
JK
5939/* Reverse execution: target ran out of history info, print why the inferior
5940 has stopped. */
252fbfc8 5941
33d62d64
JK
5942static void
5943print_no_history_reason (void)
5944{
79a45e25 5945 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5946}
43ff13b4 5947
c906108c
SS
5948/* Here to return control to GDB when the inferior stops for real.
5949 Print appropriate messages, remove breakpoints, give terminal our modes.
5950
5951 STOP_PRINT_FRAME nonzero means print the executing frame
5952 (pc, function, args, file, line number and line text).
5953 BREAKPOINTS_FAILED nonzero means stop was due to error
5954 attempting to insert breakpoints. */
5955
5956void
96baa820 5957normal_stop (void)
c906108c 5958{
73b65bb0
DJ
5959 struct target_waitstatus last;
5960 ptid_t last_ptid;
29f49a6a 5961 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5962
5963 get_last_target_status (&last_ptid, &last);
5964
29f49a6a
PA
5965 /* If an exception is thrown from this point on, make sure to
5966 propagate GDB's knowledge of the executing state to the
5967 frontend/user running state. A QUIT is an easy exception to see
5968 here, so do this before any filtered output. */
c35b1492
PA
5969 if (!non_stop)
5970 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5971 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5972 && last.kind != TARGET_WAITKIND_EXITED
5973 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5974 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5975
4f8d22e3
PA
5976 /* In non-stop mode, we don't want GDB to switch threads behind the
5977 user's back, to avoid races where the user is typing a command to
5978 apply to thread x, but GDB switches to thread y before the user
5979 finishes entering the command. */
5980
c906108c
SS
5981 /* As with the notification of thread events, we want to delay
5982 notifying the user that we've switched thread context until
5983 the inferior actually stops.
5984
73b65bb0
DJ
5985 There's no point in saying anything if the inferior has exited.
5986 Note that SIGNALLED here means "exited with a signal", not
5987 "received a signal". */
4f8d22e3
PA
5988 if (!non_stop
5989 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5990 && target_has_execution
5991 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5992 && last.kind != TARGET_WAITKIND_EXITED
5993 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5994 {
5995 target_terminal_ours_for_output ();
a3f17187 5996 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5997 target_pid_to_str (inferior_ptid));
b8fa951a 5998 annotate_thread_changed ();
39f77062 5999 previous_inferior_ptid = inferior_ptid;
c906108c 6000 }
c906108c 6001
0e5bf2a8
PA
6002 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6003 {
6004 gdb_assert (sync_execution || !target_can_async_p ());
6005
6006 target_terminal_ours_for_output ();
6007 printf_filtered (_("No unwaited-for children left.\n"));
6008 }
6009
74960c60 6010 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6011 {
6012 if (remove_breakpoints ())
6013 {
6014 target_terminal_ours_for_output ();
3e43a32a
MS
6015 printf_filtered (_("Cannot remove breakpoints because "
6016 "program is no longer writable.\nFurther "
6017 "execution is probably impossible.\n"));
c906108c
SS
6018 }
6019 }
c906108c 6020
c906108c
SS
6021 /* If an auto-display called a function and that got a signal,
6022 delete that auto-display to avoid an infinite recursion. */
6023
6024 if (stopped_by_random_signal)
6025 disable_current_display ();
6026
6027 /* Don't print a message if in the middle of doing a "step n"
6028 operation for n > 1 */
af679fd0
PA
6029 if (target_has_execution
6030 && last.kind != TARGET_WAITKIND_SIGNALLED
6031 && last.kind != TARGET_WAITKIND_EXITED
6032 && inferior_thread ()->step_multi
16c381f0 6033 && inferior_thread ()->control.stop_step)
c906108c
SS
6034 goto done;
6035
6036 target_terminal_ours ();
0f641c01 6037 async_enable_stdin ();
c906108c 6038
7abfe014
DJ
6039 /* Set the current source location. This will also happen if we
6040 display the frame below, but the current SAL will be incorrect
6041 during a user hook-stop function. */
d729566a 6042 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6043 set_current_sal_from_frame (get_current_frame (), 1);
6044
dd7e2d2b
PA
6045 /* Let the user/frontend see the threads as stopped. */
6046 do_cleanups (old_chain);
6047
6048 /* Look up the hook_stop and run it (CLI internally handles problem
6049 of stop_command's pre-hook not existing). */
6050 if (stop_command)
6051 catch_errors (hook_stop_stub, stop_command,
6052 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6053
d729566a 6054 if (!has_stack_frames ())
d51fd4c8 6055 goto done;
c906108c 6056
32400beb
PA
6057 if (last.kind == TARGET_WAITKIND_SIGNALLED
6058 || last.kind == TARGET_WAITKIND_EXITED)
6059 goto done;
6060
c906108c
SS
6061 /* Select innermost stack frame - i.e., current frame is frame 0,
6062 and current location is based on that.
6063 Don't do this on return from a stack dummy routine,
1777feb0 6064 or if the program has exited. */
c906108c
SS
6065
6066 if (!stop_stack_dummy)
6067 {
0f7d239c 6068 select_frame (get_current_frame ());
c906108c
SS
6069
6070 /* Print current location without a level number, if
c5aa993b
JM
6071 we have changed functions or hit a breakpoint.
6072 Print source line if we have one.
6073 bpstat_print() contains the logic deciding in detail
1777feb0 6074 what to print, based on the event(s) that just occurred. */
c906108c 6075
d01a8610
AS
6076 /* If --batch-silent is enabled then there's no need to print the current
6077 source location, and to try risks causing an error message about
6078 missing source files. */
6079 if (stop_print_frame && !batch_silent)
c906108c
SS
6080 {
6081 int bpstat_ret;
6082 int source_flag;
917317f4 6083 int do_frame_printing = 1;
347bddb7 6084 struct thread_info *tp = inferior_thread ();
c906108c 6085
36dfb11c 6086 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6087 switch (bpstat_ret)
6088 {
6089 case PRINT_UNKNOWN:
aa0cd9c1 6090 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6091 (or should) carry around the function and does (or
6092 should) use that when doing a frame comparison. */
16c381f0
JK
6093 if (tp->control.stop_step
6094 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6095 get_frame_id (get_current_frame ()))
917317f4 6096 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6097 source_flag = SRC_LINE; /* Finished step, just
6098 print source line. */
917317f4 6099 else
1777feb0
MS
6100 source_flag = SRC_AND_LOC; /* Print location and
6101 source line. */
917317f4
JM
6102 break;
6103 case PRINT_SRC_AND_LOC:
1777feb0
MS
6104 source_flag = SRC_AND_LOC; /* Print location and
6105 source line. */
917317f4
JM
6106 break;
6107 case PRINT_SRC_ONLY:
c5394b80 6108 source_flag = SRC_LINE;
917317f4
JM
6109 break;
6110 case PRINT_NOTHING:
488f131b 6111 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6112 do_frame_printing = 0;
6113 break;
6114 default:
e2e0b3e5 6115 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6116 }
c906108c
SS
6117
6118 /* The behavior of this routine with respect to the source
6119 flag is:
c5394b80
JM
6120 SRC_LINE: Print only source line
6121 LOCATION: Print only location
1777feb0 6122 SRC_AND_LOC: Print location and source line. */
917317f4 6123 if (do_frame_printing)
08d72866 6124 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
c906108c
SS
6125
6126 /* Display the auto-display expressions. */
6127 do_displays ();
6128 }
6129 }
6130
6131 /* Save the function value return registers, if we care.
6132 We might be about to restore their previous contents. */
9da8c2a0
PA
6133 if (inferior_thread ()->control.proceed_to_finish
6134 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6135 {
6136 /* This should not be necessary. */
6137 if (stop_registers)
6138 regcache_xfree (stop_registers);
6139
6140 /* NB: The copy goes through to the target picking up the value of
6141 all the registers. */
6142 stop_registers = regcache_dup (get_current_regcache ());
6143 }
c906108c 6144
aa7d318d 6145 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6146 {
b89667eb
DE
6147 /* Pop the empty frame that contains the stack dummy.
6148 This also restores inferior state prior to the call
16c381f0 6149 (struct infcall_suspend_state). */
b89667eb 6150 struct frame_info *frame = get_current_frame ();
abbb1732 6151
b89667eb
DE
6152 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6153 frame_pop (frame);
3e43a32a
MS
6154 /* frame_pop() calls reinit_frame_cache as the last thing it
6155 does which means there's currently no selected frame. We
6156 don't need to re-establish a selected frame if the dummy call
6157 returns normally, that will be done by
6158 restore_infcall_control_state. However, we do have to handle
6159 the case where the dummy call is returning after being
6160 stopped (e.g. the dummy call previously hit a breakpoint).
6161 We can't know which case we have so just always re-establish
6162 a selected frame here. */
0f7d239c 6163 select_frame (get_current_frame ());
c906108c
SS
6164 }
6165
c906108c
SS
6166done:
6167 annotate_stopped ();
41d2bdb4
PA
6168
6169 /* Suppress the stop observer if we're in the middle of:
6170
6171 - a step n (n > 1), as there still more steps to be done.
6172
6173 - a "finish" command, as the observer will be called in
6174 finish_command_continuation, so it can include the inferior
6175 function's return value.
6176
6177 - calling an inferior function, as we pretend we inferior didn't
6178 run at all. The return value of the call is handled by the
6179 expression evaluator, through call_function_by_hand. */
6180
6181 if (!target_has_execution
6182 || last.kind == TARGET_WAITKIND_SIGNALLED
6183 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6184 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6185 || (!(inferior_thread ()->step_multi
6186 && inferior_thread ()->control.stop_step)
16c381f0
JK
6187 && !(inferior_thread ()->control.stop_bpstat
6188 && inferior_thread ()->control.proceed_to_finish)
6189 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6190 {
6191 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6192 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6193 stop_print_frame);
347bddb7 6194 else
1d33d6ba 6195 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6196 }
347bddb7 6197
48844aa6
PA
6198 if (target_has_execution)
6199 {
6200 if (last.kind != TARGET_WAITKIND_SIGNALLED
6201 && last.kind != TARGET_WAITKIND_EXITED)
6202 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6203 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6204 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6205 }
6c95b8df
PA
6206
6207 /* Try to get rid of automatically added inferiors that are no
6208 longer needed. Keeping those around slows down things linearly.
6209 Note that this never removes the current inferior. */
6210 prune_inferiors ();
c906108c
SS
6211}
6212
6213static int
96baa820 6214hook_stop_stub (void *cmd)
c906108c 6215{
5913bcb0 6216 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6217 return (0);
6218}
6219\f
c5aa993b 6220int
96baa820 6221signal_stop_state (int signo)
c906108c 6222{
d6b48e9c 6223 return signal_stop[signo];
c906108c
SS
6224}
6225
c5aa993b 6226int
96baa820 6227signal_print_state (int signo)
c906108c
SS
6228{
6229 return signal_print[signo];
6230}
6231
c5aa993b 6232int
96baa820 6233signal_pass_state (int signo)
c906108c
SS
6234{
6235 return signal_program[signo];
6236}
6237
2455069d
UW
6238static void
6239signal_cache_update (int signo)
6240{
6241 if (signo == -1)
6242 {
a493e3e2 6243 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6244 signal_cache_update (signo);
6245
6246 return;
6247 }
6248
6249 signal_pass[signo] = (signal_stop[signo] == 0
6250 && signal_print[signo] == 0
ab04a2af
TT
6251 && signal_program[signo] == 1
6252 && signal_catch[signo] == 0);
2455069d
UW
6253}
6254
488f131b 6255int
7bda5e4a 6256signal_stop_update (int signo, int state)
d4f3574e
SS
6257{
6258 int ret = signal_stop[signo];
abbb1732 6259
d4f3574e 6260 signal_stop[signo] = state;
2455069d 6261 signal_cache_update (signo);
d4f3574e
SS
6262 return ret;
6263}
6264
488f131b 6265int
7bda5e4a 6266signal_print_update (int signo, int state)
d4f3574e
SS
6267{
6268 int ret = signal_print[signo];
abbb1732 6269
d4f3574e 6270 signal_print[signo] = state;
2455069d 6271 signal_cache_update (signo);
d4f3574e
SS
6272 return ret;
6273}
6274
488f131b 6275int
7bda5e4a 6276signal_pass_update (int signo, int state)
d4f3574e
SS
6277{
6278 int ret = signal_program[signo];
abbb1732 6279
d4f3574e 6280 signal_program[signo] = state;
2455069d 6281 signal_cache_update (signo);
d4f3574e
SS
6282 return ret;
6283}
6284
ab04a2af
TT
6285/* Update the global 'signal_catch' from INFO and notify the
6286 target. */
6287
6288void
6289signal_catch_update (const unsigned int *info)
6290{
6291 int i;
6292
6293 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6294 signal_catch[i] = info[i] > 0;
6295 signal_cache_update (-1);
6296 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6297}
6298
c906108c 6299static void
96baa820 6300sig_print_header (void)
c906108c 6301{
3e43a32a
MS
6302 printf_filtered (_("Signal Stop\tPrint\tPass "
6303 "to program\tDescription\n"));
c906108c
SS
6304}
6305
6306static void
2ea28649 6307sig_print_info (enum gdb_signal oursig)
c906108c 6308{
2ea28649 6309 const char *name = gdb_signal_to_name (oursig);
c906108c 6310 int name_padding = 13 - strlen (name);
96baa820 6311
c906108c
SS
6312 if (name_padding <= 0)
6313 name_padding = 0;
6314
6315 printf_filtered ("%s", name);
488f131b 6316 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6317 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6318 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6319 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6320 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6321}
6322
6323/* Specify how various signals in the inferior should be handled. */
6324
6325static void
96baa820 6326handle_command (char *args, int from_tty)
c906108c
SS
6327{
6328 char **argv;
6329 int digits, wordlen;
6330 int sigfirst, signum, siglast;
2ea28649 6331 enum gdb_signal oursig;
c906108c
SS
6332 int allsigs;
6333 int nsigs;
6334 unsigned char *sigs;
6335 struct cleanup *old_chain;
6336
6337 if (args == NULL)
6338 {
e2e0b3e5 6339 error_no_arg (_("signal to handle"));
c906108c
SS
6340 }
6341
1777feb0 6342 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6343
a493e3e2 6344 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6345 sigs = (unsigned char *) alloca (nsigs);
6346 memset (sigs, 0, nsigs);
6347
1777feb0 6348 /* Break the command line up into args. */
c906108c 6349
d1a41061 6350 argv = gdb_buildargv (args);
7a292a7a 6351 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6352
6353 /* Walk through the args, looking for signal oursigs, signal names, and
6354 actions. Signal numbers and signal names may be interspersed with
6355 actions, with the actions being performed for all signals cumulatively
1777feb0 6356 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6357
6358 while (*argv != NULL)
6359 {
6360 wordlen = strlen (*argv);
6361 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6362 {;
6363 }
6364 allsigs = 0;
6365 sigfirst = siglast = -1;
6366
6367 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6368 {
6369 /* Apply action to all signals except those used by the
1777feb0 6370 debugger. Silently skip those. */
c906108c
SS
6371 allsigs = 1;
6372 sigfirst = 0;
6373 siglast = nsigs - 1;
6374 }
6375 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6376 {
6377 SET_SIGS (nsigs, sigs, signal_stop);
6378 SET_SIGS (nsigs, sigs, signal_print);
6379 }
6380 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6381 {
6382 UNSET_SIGS (nsigs, sigs, signal_program);
6383 }
6384 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6385 {
6386 SET_SIGS (nsigs, sigs, signal_print);
6387 }
6388 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6389 {
6390 SET_SIGS (nsigs, sigs, signal_program);
6391 }
6392 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6393 {
6394 UNSET_SIGS (nsigs, sigs, signal_stop);
6395 }
6396 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6397 {
6398 SET_SIGS (nsigs, sigs, signal_program);
6399 }
6400 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6401 {
6402 UNSET_SIGS (nsigs, sigs, signal_print);
6403 UNSET_SIGS (nsigs, sigs, signal_stop);
6404 }
6405 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6406 {
6407 UNSET_SIGS (nsigs, sigs, signal_program);
6408 }
6409 else if (digits > 0)
6410 {
6411 /* It is numeric. The numeric signal refers to our own
6412 internal signal numbering from target.h, not to host/target
6413 signal number. This is a feature; users really should be
6414 using symbolic names anyway, and the common ones like
6415 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6416
6417 sigfirst = siglast = (int)
2ea28649 6418 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6419 if ((*argv)[digits] == '-')
6420 {
6421 siglast = (int)
2ea28649 6422 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6423 }
6424 if (sigfirst > siglast)
6425 {
1777feb0 6426 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6427 signum = sigfirst;
6428 sigfirst = siglast;
6429 siglast = signum;
6430 }
6431 }
6432 else
6433 {
2ea28649 6434 oursig = gdb_signal_from_name (*argv);
a493e3e2 6435 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6436 {
6437 sigfirst = siglast = (int) oursig;
6438 }
6439 else
6440 {
6441 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6442 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6443 }
6444 }
6445
6446 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6447 which signals to apply actions to. */
c906108c
SS
6448
6449 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6450 {
2ea28649 6451 switch ((enum gdb_signal) signum)
c906108c 6452 {
a493e3e2
PA
6453 case GDB_SIGNAL_TRAP:
6454 case GDB_SIGNAL_INT:
c906108c
SS
6455 if (!allsigs && !sigs[signum])
6456 {
9e2f0ad4 6457 if (query (_("%s is used by the debugger.\n\
3e43a32a 6458Are you sure you want to change it? "),
2ea28649 6459 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6460 {
6461 sigs[signum] = 1;
6462 }
6463 else
6464 {
a3f17187 6465 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6466 gdb_flush (gdb_stdout);
6467 }
6468 }
6469 break;
a493e3e2
PA
6470 case GDB_SIGNAL_0:
6471 case GDB_SIGNAL_DEFAULT:
6472 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6473 /* Make sure that "all" doesn't print these. */
6474 break;
6475 default:
6476 sigs[signum] = 1;
6477 break;
6478 }
6479 }
6480
6481 argv++;
6482 }
6483
3a031f65
PA
6484 for (signum = 0; signum < nsigs; signum++)
6485 if (sigs[signum])
6486 {
2455069d 6487 signal_cache_update (-1);
a493e3e2
PA
6488 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6489 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6490
3a031f65
PA
6491 if (from_tty)
6492 {
6493 /* Show the results. */
6494 sig_print_header ();
6495 for (; signum < nsigs; signum++)
6496 if (sigs[signum])
6497 sig_print_info (signum);
6498 }
6499
6500 break;
6501 }
c906108c
SS
6502
6503 do_cleanups (old_chain);
6504}
6505
de0bea00
MF
6506/* Complete the "handle" command. */
6507
6508static VEC (char_ptr) *
6509handle_completer (struct cmd_list_element *ignore,
6f937416 6510 const char *text, const char *word)
de0bea00
MF
6511{
6512 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6513 static const char * const keywords[] =
6514 {
6515 "all",
6516 "stop",
6517 "ignore",
6518 "print",
6519 "pass",
6520 "nostop",
6521 "noignore",
6522 "noprint",
6523 "nopass",
6524 NULL,
6525 };
6526
6527 vec_signals = signal_completer (ignore, text, word);
6528 vec_keywords = complete_on_enum (keywords, word, word);
6529
6530 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6531 VEC_free (char_ptr, vec_signals);
6532 VEC_free (char_ptr, vec_keywords);
6533 return return_val;
6534}
6535
c906108c 6536static void
96baa820 6537xdb_handle_command (char *args, int from_tty)
c906108c
SS
6538{
6539 char **argv;
6540 struct cleanup *old_chain;
6541
d1a41061
PP
6542 if (args == NULL)
6543 error_no_arg (_("xdb command"));
6544
1777feb0 6545 /* Break the command line up into args. */
c906108c 6546
d1a41061 6547 argv = gdb_buildargv (args);
7a292a7a 6548 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6549 if (argv[1] != (char *) NULL)
6550 {
6551 char *argBuf;
6552 int bufLen;
6553
6554 bufLen = strlen (argv[0]) + 20;
6555 argBuf = (char *) xmalloc (bufLen);
6556 if (argBuf)
6557 {
6558 int validFlag = 1;
2ea28649 6559 enum gdb_signal oursig;
c906108c 6560
2ea28649 6561 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6562 memset (argBuf, 0, bufLen);
6563 if (strcmp (argv[1], "Q") == 0)
6564 sprintf (argBuf, "%s %s", argv[0], "noprint");
6565 else
6566 {
6567 if (strcmp (argv[1], "s") == 0)
6568 {
6569 if (!signal_stop[oursig])
6570 sprintf (argBuf, "%s %s", argv[0], "stop");
6571 else
6572 sprintf (argBuf, "%s %s", argv[0], "nostop");
6573 }
6574 else if (strcmp (argv[1], "i") == 0)
6575 {
6576 if (!signal_program[oursig])
6577 sprintf (argBuf, "%s %s", argv[0], "pass");
6578 else
6579 sprintf (argBuf, "%s %s", argv[0], "nopass");
6580 }
6581 else if (strcmp (argv[1], "r") == 0)
6582 {
6583 if (!signal_print[oursig])
6584 sprintf (argBuf, "%s %s", argv[0], "print");
6585 else
6586 sprintf (argBuf, "%s %s", argv[0], "noprint");
6587 }
6588 else
6589 validFlag = 0;
6590 }
6591 if (validFlag)
6592 handle_command (argBuf, from_tty);
6593 else
a3f17187 6594 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6595 if (argBuf)
b8c9b27d 6596 xfree (argBuf);
c906108c
SS
6597 }
6598 }
6599 do_cleanups (old_chain);
6600}
6601
2ea28649
PA
6602enum gdb_signal
6603gdb_signal_from_command (int num)
ed01b82c
PA
6604{
6605 if (num >= 1 && num <= 15)
2ea28649 6606 return (enum gdb_signal) num;
ed01b82c
PA
6607 error (_("Only signals 1-15 are valid as numeric signals.\n\
6608Use \"info signals\" for a list of symbolic signals."));
6609}
6610
c906108c
SS
6611/* Print current contents of the tables set by the handle command.
6612 It is possible we should just be printing signals actually used
6613 by the current target (but for things to work right when switching
6614 targets, all signals should be in the signal tables). */
6615
6616static void
96baa820 6617signals_info (char *signum_exp, int from_tty)
c906108c 6618{
2ea28649 6619 enum gdb_signal oursig;
abbb1732 6620
c906108c
SS
6621 sig_print_header ();
6622
6623 if (signum_exp)
6624 {
6625 /* First see if this is a symbol name. */
2ea28649 6626 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6627 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6628 {
6629 /* No, try numeric. */
6630 oursig =
2ea28649 6631 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6632 }
6633 sig_print_info (oursig);
6634 return;
6635 }
6636
6637 printf_filtered ("\n");
6638 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6639 for (oursig = GDB_SIGNAL_FIRST;
6640 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6641 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6642 {
6643 QUIT;
6644
a493e3e2
PA
6645 if (oursig != GDB_SIGNAL_UNKNOWN
6646 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6647 sig_print_info (oursig);
6648 }
6649
3e43a32a
MS
6650 printf_filtered (_("\nUse the \"handle\" command "
6651 "to change these tables.\n"));
c906108c 6652}
4aa995e1 6653
c709acd1
PA
6654/* Check if it makes sense to read $_siginfo from the current thread
6655 at this point. If not, throw an error. */
6656
6657static void
6658validate_siginfo_access (void)
6659{
6660 /* No current inferior, no siginfo. */
6661 if (ptid_equal (inferior_ptid, null_ptid))
6662 error (_("No thread selected."));
6663
6664 /* Don't try to read from a dead thread. */
6665 if (is_exited (inferior_ptid))
6666 error (_("The current thread has terminated"));
6667
6668 /* ... or from a spinning thread. */
6669 if (is_running (inferior_ptid))
6670 error (_("Selected thread is running."));
6671}
6672
4aa995e1
PA
6673/* The $_siginfo convenience variable is a bit special. We don't know
6674 for sure the type of the value until we actually have a chance to
7a9dd1b2 6675 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6676 also dependent on which thread you have selected.
6677
6678 1. making $_siginfo be an internalvar that creates a new value on
6679 access.
6680
6681 2. making the value of $_siginfo be an lval_computed value. */
6682
6683/* This function implements the lval_computed support for reading a
6684 $_siginfo value. */
6685
6686static void
6687siginfo_value_read (struct value *v)
6688{
6689 LONGEST transferred;
6690
c709acd1
PA
6691 validate_siginfo_access ();
6692
4aa995e1
PA
6693 transferred =
6694 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6695 NULL,
6696 value_contents_all_raw (v),
6697 value_offset (v),
6698 TYPE_LENGTH (value_type (v)));
6699
6700 if (transferred != TYPE_LENGTH (value_type (v)))
6701 error (_("Unable to read siginfo"));
6702}
6703
6704/* This function implements the lval_computed support for writing a
6705 $_siginfo value. */
6706
6707static void
6708siginfo_value_write (struct value *v, struct value *fromval)
6709{
6710 LONGEST transferred;
6711
c709acd1
PA
6712 validate_siginfo_access ();
6713
4aa995e1
PA
6714 transferred = target_write (&current_target,
6715 TARGET_OBJECT_SIGNAL_INFO,
6716 NULL,
6717 value_contents_all_raw (fromval),
6718 value_offset (v),
6719 TYPE_LENGTH (value_type (fromval)));
6720
6721 if (transferred != TYPE_LENGTH (value_type (fromval)))
6722 error (_("Unable to write siginfo"));
6723}
6724
c8f2448a 6725static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6726 {
6727 siginfo_value_read,
6728 siginfo_value_write
6729 };
6730
6731/* Return a new value with the correct type for the siginfo object of
78267919
UW
6732 the current thread using architecture GDBARCH. Return a void value
6733 if there's no object available. */
4aa995e1 6734
2c0b251b 6735static struct value *
22d2b532
SDJ
6736siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6737 void *ignore)
4aa995e1 6738{
4aa995e1 6739 if (target_has_stack
78267919
UW
6740 && !ptid_equal (inferior_ptid, null_ptid)
6741 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6742 {
78267919 6743 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6744
78267919 6745 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6746 }
6747
78267919 6748 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6749}
6750
c906108c 6751\f
16c381f0
JK
6752/* infcall_suspend_state contains state about the program itself like its
6753 registers and any signal it received when it last stopped.
6754 This state must be restored regardless of how the inferior function call
6755 ends (either successfully, or after it hits a breakpoint or signal)
6756 if the program is to properly continue where it left off. */
6757
6758struct infcall_suspend_state
7a292a7a 6759{
16c381f0 6760 struct thread_suspend_state thread_suspend;
dd80ea3c 6761#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6762 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6763#endif
16c381f0
JK
6764
6765 /* Other fields: */
7a292a7a 6766 CORE_ADDR stop_pc;
b89667eb 6767 struct regcache *registers;
1736ad11 6768
35515841 6769 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6770 struct gdbarch *siginfo_gdbarch;
6771
6772 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6773 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6774 content would be invalid. */
6775 gdb_byte *siginfo_data;
b89667eb
DE
6776};
6777
16c381f0
JK
6778struct infcall_suspend_state *
6779save_infcall_suspend_state (void)
b89667eb 6780{
16c381f0 6781 struct infcall_suspend_state *inf_state;
b89667eb 6782 struct thread_info *tp = inferior_thread ();
974a734b 6783#if 0
16c381f0 6784 struct inferior *inf = current_inferior ();
974a734b 6785#endif
1736ad11
JK
6786 struct regcache *regcache = get_current_regcache ();
6787 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6788 gdb_byte *siginfo_data = NULL;
6789
6790 if (gdbarch_get_siginfo_type_p (gdbarch))
6791 {
6792 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6793 size_t len = TYPE_LENGTH (type);
6794 struct cleanup *back_to;
6795
6796 siginfo_data = xmalloc (len);
6797 back_to = make_cleanup (xfree, siginfo_data);
6798
6799 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6800 siginfo_data, 0, len) == len)
6801 discard_cleanups (back_to);
6802 else
6803 {
6804 /* Errors ignored. */
6805 do_cleanups (back_to);
6806 siginfo_data = NULL;
6807 }
6808 }
6809
16c381f0 6810 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6811
6812 if (siginfo_data)
6813 {
6814 inf_state->siginfo_gdbarch = gdbarch;
6815 inf_state->siginfo_data = siginfo_data;
6816 }
b89667eb 6817
16c381f0 6818 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6819#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6820 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6821#endif
16c381f0 6822
35515841 6823 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6824 GDB_SIGNAL_0 anyway. */
6825 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6826
b89667eb
DE
6827 inf_state->stop_pc = stop_pc;
6828
1736ad11 6829 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6830
6831 return inf_state;
6832}
6833
6834/* Restore inferior session state to INF_STATE. */
6835
6836void
16c381f0 6837restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6838{
6839 struct thread_info *tp = inferior_thread ();
974a734b 6840#if 0
16c381f0 6841 struct inferior *inf = current_inferior ();
974a734b 6842#endif
1736ad11
JK
6843 struct regcache *regcache = get_current_regcache ();
6844 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6845
16c381f0 6846 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6847#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6848 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6849#endif
16c381f0 6850
b89667eb
DE
6851 stop_pc = inf_state->stop_pc;
6852
1736ad11
JK
6853 if (inf_state->siginfo_gdbarch == gdbarch)
6854 {
6855 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6856
6857 /* Errors ignored. */
6858 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6859 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6860 }
6861
b89667eb
DE
6862 /* The inferior can be gone if the user types "print exit(0)"
6863 (and perhaps other times). */
6864 if (target_has_execution)
6865 /* NB: The register write goes through to the target. */
1736ad11 6866 regcache_cpy (regcache, inf_state->registers);
803b5f95 6867
16c381f0 6868 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6869}
6870
6871static void
16c381f0 6872do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6873{
16c381f0 6874 restore_infcall_suspend_state (state);
b89667eb
DE
6875}
6876
6877struct cleanup *
16c381f0
JK
6878make_cleanup_restore_infcall_suspend_state
6879 (struct infcall_suspend_state *inf_state)
b89667eb 6880{
16c381f0 6881 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6882}
6883
6884void
16c381f0 6885discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6886{
6887 regcache_xfree (inf_state->registers);
803b5f95 6888 xfree (inf_state->siginfo_data);
b89667eb
DE
6889 xfree (inf_state);
6890}
6891
6892struct regcache *
16c381f0 6893get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6894{
6895 return inf_state->registers;
6896}
6897
16c381f0
JK
6898/* infcall_control_state contains state regarding gdb's control of the
6899 inferior itself like stepping control. It also contains session state like
6900 the user's currently selected frame. */
b89667eb 6901
16c381f0 6902struct infcall_control_state
b89667eb 6903{
16c381f0
JK
6904 struct thread_control_state thread_control;
6905 struct inferior_control_state inferior_control;
d82142e2
JK
6906
6907 /* Other fields: */
6908 enum stop_stack_kind stop_stack_dummy;
6909 int stopped_by_random_signal;
7a292a7a 6910 int stop_after_trap;
7a292a7a 6911
b89667eb 6912 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6913 struct frame_id selected_frame_id;
7a292a7a
SS
6914};
6915
c906108c 6916/* Save all of the information associated with the inferior<==>gdb
b89667eb 6917 connection. */
c906108c 6918
16c381f0
JK
6919struct infcall_control_state *
6920save_infcall_control_state (void)
c906108c 6921{
16c381f0 6922 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6923 struct thread_info *tp = inferior_thread ();
d6b48e9c 6924 struct inferior *inf = current_inferior ();
7a292a7a 6925
16c381f0
JK
6926 inf_status->thread_control = tp->control;
6927 inf_status->inferior_control = inf->control;
d82142e2 6928
8358c15c 6929 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6930 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6931
16c381f0
JK
6932 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6933 chain. If caller's caller is walking the chain, they'll be happier if we
6934 hand them back the original chain when restore_infcall_control_state is
6935 called. */
6936 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6937
6938 /* Other fields: */
6939 inf_status->stop_stack_dummy = stop_stack_dummy;
6940 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6941 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6942
206415a3 6943 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6944
7a292a7a 6945 return inf_status;
c906108c
SS
6946}
6947
c906108c 6948static int
96baa820 6949restore_selected_frame (void *args)
c906108c 6950{
488f131b 6951 struct frame_id *fid = (struct frame_id *) args;
c906108c 6952 struct frame_info *frame;
c906108c 6953
101dcfbe 6954 frame = frame_find_by_id (*fid);
c906108c 6955
aa0cd9c1
AC
6956 /* If inf_status->selected_frame_id is NULL, there was no previously
6957 selected frame. */
101dcfbe 6958 if (frame == NULL)
c906108c 6959 {
8a3fe4f8 6960 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6961 return 0;
6962 }
6963
0f7d239c 6964 select_frame (frame);
c906108c
SS
6965
6966 return (1);
6967}
6968
b89667eb
DE
6969/* Restore inferior session state to INF_STATUS. */
6970
c906108c 6971void
16c381f0 6972restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6973{
4e1c45ea 6974 struct thread_info *tp = inferior_thread ();
d6b48e9c 6975 struct inferior *inf = current_inferior ();
4e1c45ea 6976
8358c15c
JK
6977 if (tp->control.step_resume_breakpoint)
6978 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6979
5b79abe7
TT
6980 if (tp->control.exception_resume_breakpoint)
6981 tp->control.exception_resume_breakpoint->disposition
6982 = disp_del_at_next_stop;
6983
d82142e2 6984 /* Handle the bpstat_copy of the chain. */
16c381f0 6985 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6986
16c381f0
JK
6987 tp->control = inf_status->thread_control;
6988 inf->control = inf_status->inferior_control;
d82142e2
JK
6989
6990 /* Other fields: */
6991 stop_stack_dummy = inf_status->stop_stack_dummy;
6992 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6993 stop_after_trap = inf_status->stop_after_trap;
c906108c 6994
b89667eb 6995 if (target_has_stack)
c906108c 6996 {
c906108c 6997 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6998 walking the stack might encounter a garbage pointer and
6999 error() trying to dereference it. */
488f131b
JB
7000 if (catch_errors
7001 (restore_selected_frame, &inf_status->selected_frame_id,
7002 "Unable to restore previously selected frame:\n",
7003 RETURN_MASK_ERROR) == 0)
c906108c
SS
7004 /* Error in restoring the selected frame. Select the innermost
7005 frame. */
0f7d239c 7006 select_frame (get_current_frame ());
c906108c 7007 }
c906108c 7008
72cec141 7009 xfree (inf_status);
7a292a7a 7010}
c906108c 7011
74b7792f 7012static void
16c381f0 7013do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7014{
16c381f0 7015 restore_infcall_control_state (sts);
74b7792f
AC
7016}
7017
7018struct cleanup *
16c381f0
JK
7019make_cleanup_restore_infcall_control_state
7020 (struct infcall_control_state *inf_status)
74b7792f 7021{
16c381f0 7022 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7023}
7024
c906108c 7025void
16c381f0 7026discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7027{
8358c15c
JK
7028 if (inf_status->thread_control.step_resume_breakpoint)
7029 inf_status->thread_control.step_resume_breakpoint->disposition
7030 = disp_del_at_next_stop;
7031
5b79abe7
TT
7032 if (inf_status->thread_control.exception_resume_breakpoint)
7033 inf_status->thread_control.exception_resume_breakpoint->disposition
7034 = disp_del_at_next_stop;
7035
1777feb0 7036 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7037 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7038
72cec141 7039 xfree (inf_status);
7a292a7a 7040}
b89667eb 7041\f
0723dbf5
PA
7042int
7043ptid_match (ptid_t ptid, ptid_t filter)
7044{
0723dbf5
PA
7045 if (ptid_equal (filter, minus_one_ptid))
7046 return 1;
7047 if (ptid_is_pid (filter)
7048 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7049 return 1;
7050 else if (ptid_equal (ptid, filter))
7051 return 1;
7052
7053 return 0;
7054}
7055
ca6724c1
KB
7056/* restore_inferior_ptid() will be used by the cleanup machinery
7057 to restore the inferior_ptid value saved in a call to
7058 save_inferior_ptid(). */
ce696e05
KB
7059
7060static void
7061restore_inferior_ptid (void *arg)
7062{
7063 ptid_t *saved_ptid_ptr = arg;
abbb1732 7064
ce696e05
KB
7065 inferior_ptid = *saved_ptid_ptr;
7066 xfree (arg);
7067}
7068
7069/* Save the value of inferior_ptid so that it may be restored by a
7070 later call to do_cleanups(). Returns the struct cleanup pointer
7071 needed for later doing the cleanup. */
7072
7073struct cleanup *
7074save_inferior_ptid (void)
7075{
7076 ptid_t *saved_ptid_ptr;
7077
7078 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7079 *saved_ptid_ptr = inferior_ptid;
7080 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7081}
0c557179
SDJ
7082
7083/* See inferior.h. */
7084
7085void
7086clear_exit_convenience_vars (void)
7087{
7088 clear_internalvar (lookup_internalvar ("_exitsignal"));
7089 clear_internalvar (lookup_internalvar ("_exitcode"));
7090}
c5aa993b 7091\f
488f131b 7092
b2175913
MS
7093/* User interface for reverse debugging:
7094 Set exec-direction / show exec-direction commands
7095 (returns error unless target implements to_set_exec_direction method). */
7096
32231432 7097int execution_direction = EXEC_FORWARD;
b2175913
MS
7098static const char exec_forward[] = "forward";
7099static const char exec_reverse[] = "reverse";
7100static const char *exec_direction = exec_forward;
40478521 7101static const char *const exec_direction_names[] = {
b2175913
MS
7102 exec_forward,
7103 exec_reverse,
7104 NULL
7105};
7106
7107static void
7108set_exec_direction_func (char *args, int from_tty,
7109 struct cmd_list_element *cmd)
7110{
7111 if (target_can_execute_reverse)
7112 {
7113 if (!strcmp (exec_direction, exec_forward))
7114 execution_direction = EXEC_FORWARD;
7115 else if (!strcmp (exec_direction, exec_reverse))
7116 execution_direction = EXEC_REVERSE;
7117 }
8bbed405
MS
7118 else
7119 {
7120 exec_direction = exec_forward;
7121 error (_("Target does not support this operation."));
7122 }
b2175913
MS
7123}
7124
7125static void
7126show_exec_direction_func (struct ui_file *out, int from_tty,
7127 struct cmd_list_element *cmd, const char *value)
7128{
7129 switch (execution_direction) {
7130 case EXEC_FORWARD:
7131 fprintf_filtered (out, _("Forward.\n"));
7132 break;
7133 case EXEC_REVERSE:
7134 fprintf_filtered (out, _("Reverse.\n"));
7135 break;
b2175913 7136 default:
d8b34453
PA
7137 internal_error (__FILE__, __LINE__,
7138 _("bogus execution_direction value: %d"),
7139 (int) execution_direction);
b2175913
MS
7140 }
7141}
7142
d4db2f36
PA
7143static void
7144show_schedule_multiple (struct ui_file *file, int from_tty,
7145 struct cmd_list_element *c, const char *value)
7146{
3e43a32a
MS
7147 fprintf_filtered (file, _("Resuming the execution of threads "
7148 "of all processes is %s.\n"), value);
d4db2f36 7149}
ad52ddc6 7150
22d2b532
SDJ
7151/* Implementation of `siginfo' variable. */
7152
7153static const struct internalvar_funcs siginfo_funcs =
7154{
7155 siginfo_make_value,
7156 NULL,
7157 NULL
7158};
7159
c906108c 7160void
96baa820 7161_initialize_infrun (void)
c906108c 7162{
52f0bd74
AC
7163 int i;
7164 int numsigs;
de0bea00 7165 struct cmd_list_element *c;
c906108c 7166
1bedd215
AC
7167 add_info ("signals", signals_info, _("\
7168What debugger does when program gets various signals.\n\
7169Specify a signal as argument to print info on that signal only."));
c906108c
SS
7170 add_info_alias ("handle", "signals", 0);
7171
de0bea00 7172 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7173Specify how to handle signals.\n\
486c7739 7174Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7175Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7176If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7177will be displayed instead.\n\
7178\n\
c906108c
SS
7179Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7180from 1-15 are allowed for compatibility with old versions of GDB.\n\
7181Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7182The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7183used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7184\n\
1bedd215 7185Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7186\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7187Stop means reenter debugger if this signal happens (implies print).\n\
7188Print means print a message if this signal happens.\n\
7189Pass means let program see this signal; otherwise program doesn't know.\n\
7190Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7191Pass and Stop may be combined.\n\
7192\n\
7193Multiple signals may be specified. Signal numbers and signal names\n\
7194may be interspersed with actions, with the actions being performed for\n\
7195all signals cumulatively specified."));
de0bea00 7196 set_cmd_completer (c, handle_completer);
486c7739 7197
c906108c
SS
7198 if (xdb_commands)
7199 {
1bedd215
AC
7200 add_com ("lz", class_info, signals_info, _("\
7201What debugger does when program gets various signals.\n\
7202Specify a signal as argument to print info on that signal only."));
7203 add_com ("z", class_run, xdb_handle_command, _("\
7204Specify how to handle a signal.\n\
c906108c
SS
7205Args are signals and actions to apply to those signals.\n\
7206Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7207from 1-15 are allowed for compatibility with old versions of GDB.\n\
7208Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7209The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7210used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7211Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7212\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7213nopass), \"Q\" (noprint)\n\
7214Stop means reenter debugger if this signal happens (implies print).\n\
7215Print means print a message if this signal happens.\n\
7216Pass means let program see this signal; otherwise program doesn't know.\n\
7217Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7218Pass and Stop may be combined."));
c906108c
SS
7219 }
7220
7221 if (!dbx_commands)
1a966eab
AC
7222 stop_command = add_cmd ("stop", class_obscure,
7223 not_just_help_class_command, _("\
7224There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7225This allows you to set a list of commands to be run each time execution\n\
1a966eab 7226of the program stops."), &cmdlist);
c906108c 7227
ccce17b0 7228 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7229Set inferior debugging."), _("\
7230Show inferior debugging."), _("\
7231When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7232 NULL,
7233 show_debug_infrun,
7234 &setdebuglist, &showdebuglist);
527159b7 7235
3e43a32a
MS
7236 add_setshow_boolean_cmd ("displaced", class_maintenance,
7237 &debug_displaced, _("\
237fc4c9
PA
7238Set displaced stepping debugging."), _("\
7239Show displaced stepping debugging."), _("\
7240When non-zero, displaced stepping specific debugging is enabled."),
7241 NULL,
7242 show_debug_displaced,
7243 &setdebuglist, &showdebuglist);
7244
ad52ddc6
PA
7245 add_setshow_boolean_cmd ("non-stop", no_class,
7246 &non_stop_1, _("\
7247Set whether gdb controls the inferior in non-stop mode."), _("\
7248Show whether gdb controls the inferior in non-stop mode."), _("\
7249When debugging a multi-threaded program and this setting is\n\
7250off (the default, also called all-stop mode), when one thread stops\n\
7251(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7252all other threads in the program while you interact with the thread of\n\
7253interest. When you continue or step a thread, you can allow the other\n\
7254threads to run, or have them remain stopped, but while you inspect any\n\
7255thread's state, all threads stop.\n\
7256\n\
7257In non-stop mode, when one thread stops, other threads can continue\n\
7258to run freely. You'll be able to step each thread independently,\n\
7259leave it stopped or free to run as needed."),
7260 set_non_stop,
7261 show_non_stop,
7262 &setlist,
7263 &showlist);
7264
a493e3e2 7265 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7266 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7267 signal_print = (unsigned char *)
7268 xmalloc (sizeof (signal_print[0]) * numsigs);
7269 signal_program = (unsigned char *)
7270 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7271 signal_catch = (unsigned char *)
7272 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7273 signal_pass = (unsigned char *)
7274 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7275 for (i = 0; i < numsigs; i++)
7276 {
7277 signal_stop[i] = 1;
7278 signal_print[i] = 1;
7279 signal_program[i] = 1;
ab04a2af 7280 signal_catch[i] = 0;
c906108c
SS
7281 }
7282
7283 /* Signals caused by debugger's own actions
7284 should not be given to the program afterwards. */
a493e3e2
PA
7285 signal_program[GDB_SIGNAL_TRAP] = 0;
7286 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7287
7288 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7289 signal_stop[GDB_SIGNAL_ALRM] = 0;
7290 signal_print[GDB_SIGNAL_ALRM] = 0;
7291 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7292 signal_print[GDB_SIGNAL_VTALRM] = 0;
7293 signal_stop[GDB_SIGNAL_PROF] = 0;
7294 signal_print[GDB_SIGNAL_PROF] = 0;
7295 signal_stop[GDB_SIGNAL_CHLD] = 0;
7296 signal_print[GDB_SIGNAL_CHLD] = 0;
7297 signal_stop[GDB_SIGNAL_IO] = 0;
7298 signal_print[GDB_SIGNAL_IO] = 0;
7299 signal_stop[GDB_SIGNAL_POLL] = 0;
7300 signal_print[GDB_SIGNAL_POLL] = 0;
7301 signal_stop[GDB_SIGNAL_URG] = 0;
7302 signal_print[GDB_SIGNAL_URG] = 0;
7303 signal_stop[GDB_SIGNAL_WINCH] = 0;
7304 signal_print[GDB_SIGNAL_WINCH] = 0;
7305 signal_stop[GDB_SIGNAL_PRIO] = 0;
7306 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7307
cd0fc7c3
SS
7308 /* These signals are used internally by user-level thread
7309 implementations. (See signal(5) on Solaris.) Like the above
7310 signals, a healthy program receives and handles them as part of
7311 its normal operation. */
a493e3e2
PA
7312 signal_stop[GDB_SIGNAL_LWP] = 0;
7313 signal_print[GDB_SIGNAL_LWP] = 0;
7314 signal_stop[GDB_SIGNAL_WAITING] = 0;
7315 signal_print[GDB_SIGNAL_WAITING] = 0;
7316 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7317 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7318
2455069d
UW
7319 /* Update cached state. */
7320 signal_cache_update (-1);
7321
85c07804
AC
7322 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7323 &stop_on_solib_events, _("\
7324Set stopping for shared library events."), _("\
7325Show stopping for shared library events."), _("\
c906108c
SS
7326If nonzero, gdb will give control to the user when the dynamic linker\n\
7327notifies gdb of shared library events. The most common event of interest\n\
85c07804 7328to the user would be loading/unloading of a new library."),
f9e14852 7329 set_stop_on_solib_events,
920d2a44 7330 show_stop_on_solib_events,
85c07804 7331 &setlist, &showlist);
c906108c 7332
7ab04401
AC
7333 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7334 follow_fork_mode_kind_names,
7335 &follow_fork_mode_string, _("\
7336Set debugger response to a program call of fork or vfork."), _("\
7337Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7338A fork or vfork creates a new process. follow-fork-mode can be:\n\
7339 parent - the original process is debugged after a fork\n\
7340 child - the new process is debugged after a fork\n\
ea1dd7bc 7341The unfollowed process will continue to run.\n\
7ab04401
AC
7342By default, the debugger will follow the parent process."),
7343 NULL,
920d2a44 7344 show_follow_fork_mode_string,
7ab04401
AC
7345 &setlist, &showlist);
7346
6c95b8df
PA
7347 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7348 follow_exec_mode_names,
7349 &follow_exec_mode_string, _("\
7350Set debugger response to a program call of exec."), _("\
7351Show debugger response to a program call of exec."), _("\
7352An exec call replaces the program image of a process.\n\
7353\n\
7354follow-exec-mode can be:\n\
7355\n\
cce7e648 7356 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7357to this new inferior. The program the process was running before\n\
7358the exec call can be restarted afterwards by restarting the original\n\
7359inferior.\n\
7360\n\
7361 same - the debugger keeps the process bound to the same inferior.\n\
7362The new executable image replaces the previous executable loaded in\n\
7363the inferior. Restarting the inferior after the exec call restarts\n\
7364the executable the process was running after the exec call.\n\
7365\n\
7366By default, the debugger will use the same inferior."),
7367 NULL,
7368 show_follow_exec_mode_string,
7369 &setlist, &showlist);
7370
7ab04401
AC
7371 add_setshow_enum_cmd ("scheduler-locking", class_run,
7372 scheduler_enums, &scheduler_mode, _("\
7373Set mode for locking scheduler during execution."), _("\
7374Show mode for locking scheduler during execution."), _("\
c906108c
SS
7375off == no locking (threads may preempt at any time)\n\
7376on == full locking (no thread except the current thread may run)\n\
7377step == scheduler locked during every single-step operation.\n\
7378 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7379 Other threads may run while stepping over a function call ('next')."),
7380 set_schedlock_func, /* traps on target vector */
920d2a44 7381 show_scheduler_mode,
7ab04401 7382 &setlist, &showlist);
5fbbeb29 7383
d4db2f36
PA
7384 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7385Set mode for resuming threads of all processes."), _("\
7386Show mode for resuming threads of all processes."), _("\
7387When on, execution commands (such as 'continue' or 'next') resume all\n\
7388threads of all processes. When off (which is the default), execution\n\
7389commands only resume the threads of the current process. The set of\n\
7390threads that are resumed is further refined by the scheduler-locking\n\
7391mode (see help set scheduler-locking)."),
7392 NULL,
7393 show_schedule_multiple,
7394 &setlist, &showlist);
7395
5bf193a2
AC
7396 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7397Set mode of the step operation."), _("\
7398Show mode of the step operation."), _("\
7399When set, doing a step over a function without debug line information\n\
7400will stop at the first instruction of that function. Otherwise, the\n\
7401function is skipped and the step command stops at a different source line."),
7402 NULL,
920d2a44 7403 show_step_stop_if_no_debug,
5bf193a2 7404 &setlist, &showlist);
ca6724c1 7405
72d0e2c5
YQ
7406 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7407 &can_use_displaced_stepping, _("\
237fc4c9
PA
7408Set debugger's willingness to use displaced stepping."), _("\
7409Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7410If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7411supported by the target architecture. If off, gdb will not use displaced\n\
7412stepping to step over breakpoints, even if such is supported by the target\n\
7413architecture. If auto (which is the default), gdb will use displaced stepping\n\
7414if the target architecture supports it and non-stop mode is active, but will not\n\
7415use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7416 NULL,
7417 show_can_use_displaced_stepping,
7418 &setlist, &showlist);
237fc4c9 7419
b2175913
MS
7420 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7421 &exec_direction, _("Set direction of execution.\n\
7422Options are 'forward' or 'reverse'."),
7423 _("Show direction of execution (forward/reverse)."),
7424 _("Tells gdb whether to execute forward or backward."),
7425 set_exec_direction_func, show_exec_direction_func,
7426 &setlist, &showlist);
7427
6c95b8df
PA
7428 /* Set/show detach-on-fork: user-settable mode. */
7429
7430 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7431Set whether gdb will detach the child of a fork."), _("\
7432Show whether gdb will detach the child of a fork."), _("\
7433Tells gdb whether to detach the child of a fork."),
7434 NULL, NULL, &setlist, &showlist);
7435
03583c20
UW
7436 /* Set/show disable address space randomization mode. */
7437
7438 add_setshow_boolean_cmd ("disable-randomization", class_support,
7439 &disable_randomization, _("\
7440Set disabling of debuggee's virtual address space randomization."), _("\
7441Show disabling of debuggee's virtual address space randomization."), _("\
7442When this mode is on (which is the default), randomization of the virtual\n\
7443address space is disabled. Standalone programs run with the randomization\n\
7444enabled by default on some platforms."),
7445 &set_disable_randomization,
7446 &show_disable_randomization,
7447 &setlist, &showlist);
7448
ca6724c1 7449 /* ptid initializations */
ca6724c1
KB
7450 inferior_ptid = null_ptid;
7451 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7452
7453 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7454 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7455 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7456 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7457
7458 /* Explicitly create without lookup, since that tries to create a
7459 value with a void typed value, and when we get here, gdbarch
7460 isn't initialized yet. At this point, we're quite sure there
7461 isn't another convenience variable of the same name. */
22d2b532 7462 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7463
7464 add_setshow_boolean_cmd ("observer", no_class,
7465 &observer_mode_1, _("\
7466Set whether gdb controls the inferior in observer mode."), _("\
7467Show whether gdb controls the inferior in observer mode."), _("\
7468In observer mode, GDB can get data from the inferior, but not\n\
7469affect its execution. Registers and memory may not be changed,\n\
7470breakpoints may not be set, and the program cannot be interrupted\n\
7471or signalled."),
7472 set_observer_mode,
7473 show_observer_mode,
7474 &setlist,
7475 &showlist);
c906108c 7476}
This page took 2.320115 seconds and 4 git commands to generate.