* Makefile.in (infrun.o): Add $(language_h)
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
7789c6f5 5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
8926118c 6 Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
c906108c
SS
47
48/* Prototypes for local functions */
49
96baa820 50static void signals_info (char *, int);
c906108c 51
96baa820 52static void handle_command (char *, int);
c906108c 53
96baa820 54static void sig_print_info (enum target_signal);
c906108c 55
96baa820 56static void sig_print_header (void);
c906108c 57
74b7792f 58static void resume_cleanups (void *);
c906108c 59
96baa820 60static int hook_stop_stub (void *);
c906108c 61
96baa820 62static void delete_breakpoint_current_contents (void *);
c906108c 63
96baa820 64static void set_follow_fork_mode_command (char *arg, int from_tty,
488f131b 65 struct cmd_list_element *c);
7a292a7a 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
96baa820
JM
76struct execution_control_state;
77
78static int currently_stepping (struct execution_control_state *ecs);
79
80static void xdb_handle_command (char *args, int from_tty);
81
82void _initialize_infrun (void);
43ff13b4 83
c906108c
SS
84int inferior_ignoring_startup_exec_events = 0;
85int inferior_ignoring_leading_exec_events = 0;
86
5fbbeb29
CF
87/* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90int step_stop_if_no_debug = 0;
91
43ff13b4 92/* In asynchronous mode, but simulating synchronous execution. */
96baa820 93
43ff13b4
JM
94int sync_execution = 0;
95
c906108c
SS
96/* wait_for_inferior and normal_stop use this to notify the user
97 when the inferior stopped in a different thread than it had been
96baa820
JM
98 running in. */
99
39f77062 100static ptid_t previous_inferior_ptid;
7a292a7a
SS
101
102/* This is true for configurations that may follow through execl() and
103 similar functions. At present this is only true for HP-UX native. */
104
105#ifndef MAY_FOLLOW_EXEC
106#define MAY_FOLLOW_EXEC (0)
c906108c
SS
107#endif
108
7a292a7a
SS
109static int may_follow_exec = MAY_FOLLOW_EXEC;
110
d4f3574e
SS
111/* If the program uses ELF-style shared libraries, then calls to
112 functions in shared libraries go through stubs, which live in a
113 table called the PLT (Procedure Linkage Table). The first time the
114 function is called, the stub sends control to the dynamic linker,
115 which looks up the function's real address, patches the stub so
116 that future calls will go directly to the function, and then passes
117 control to the function.
118
119 If we are stepping at the source level, we don't want to see any of
120 this --- we just want to skip over the stub and the dynamic linker.
121 The simple approach is to single-step until control leaves the
122 dynamic linker.
123
ca557f44
AC
124 However, on some systems (e.g., Red Hat's 5.2 distribution) the
125 dynamic linker calls functions in the shared C library, so you
126 can't tell from the PC alone whether the dynamic linker is still
127 running. In this case, we use a step-resume breakpoint to get us
128 past the dynamic linker, as if we were using "next" to step over a
129 function call.
d4f3574e
SS
130
131 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
132 linker code or not. Normally, this means we single-step. However,
133 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
134 address where we can place a step-resume breakpoint to get past the
135 linker's symbol resolution function.
136
137 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
138 pretty portable way, by comparing the PC against the address ranges
139 of the dynamic linker's sections.
140
141 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
142 it depends on internal details of the dynamic linker. It's usually
143 not too hard to figure out where to put a breakpoint, but it
144 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
145 sanity checking. If it can't figure things out, returning zero and
146 getting the (possibly confusing) stepping behavior is better than
147 signalling an error, which will obscure the change in the
148 inferior's state. */
c906108c
SS
149
150#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
151#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
152#endif
153
d4f3574e
SS
154#ifndef SKIP_SOLIB_RESOLVER
155#define SKIP_SOLIB_RESOLVER(pc) 0
156#endif
157
c906108c
SS
158/* This function returns TRUE if pc is the address of an instruction
159 that lies within the dynamic linker (such as the event hook, or the
160 dld itself).
161
162 This function must be used only when a dynamic linker event has
163 been caught, and the inferior is being stepped out of the hook, or
164 undefined results are guaranteed. */
165
166#ifndef SOLIB_IN_DYNAMIC_LINKER
167#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
168#endif
169
170/* On MIPS16, a function that returns a floating point value may call
171 a library helper function to copy the return value to a floating point
172 register. The IGNORE_HELPER_CALL macro returns non-zero if we
173 should ignore (i.e. step over) this function call. */
174#ifndef IGNORE_HELPER_CALL
175#define IGNORE_HELPER_CALL(pc) 0
176#endif
177
178/* On some systems, the PC may be left pointing at an instruction that won't
179 actually be executed. This is usually indicated by a bit in the PSW. If
180 we find ourselves in such a state, then we step the target beyond the
181 nullified instruction before returning control to the user so as to avoid
182 confusion. */
183
184#ifndef INSTRUCTION_NULLIFIED
185#define INSTRUCTION_NULLIFIED 0
186#endif
187
c2c6d25f
JM
188/* We can't step off a permanent breakpoint in the ordinary way, because we
189 can't remove it. Instead, we have to advance the PC to the next
190 instruction. This macro should expand to a pointer to a function that
191 does that, or zero if we have no such function. If we don't have a
192 definition for it, we have to report an error. */
488f131b 193#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
194#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
195static void
c2d11a7d 196default_skip_permanent_breakpoint (void)
c2c6d25f 197{
255e7dbf 198 error ("\
c2c6d25f
JM
199The program is stopped at a permanent breakpoint, but GDB does not know\n\
200how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 201a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
202}
203#endif
488f131b 204
c2c6d25f 205
7a292a7a
SS
206/* Convert the #defines into values. This is temporary until wfi control
207 flow is completely sorted out. */
208
209#ifndef HAVE_STEPPABLE_WATCHPOINT
210#define HAVE_STEPPABLE_WATCHPOINT 0
211#else
212#undef HAVE_STEPPABLE_WATCHPOINT
213#define HAVE_STEPPABLE_WATCHPOINT 1
214#endif
215
692590c1
MS
216#ifndef CANNOT_STEP_HW_WATCHPOINTS
217#define CANNOT_STEP_HW_WATCHPOINTS 0
218#else
219#undef CANNOT_STEP_HW_WATCHPOINTS
220#define CANNOT_STEP_HW_WATCHPOINTS 1
221#endif
222
c906108c
SS
223/* Tables of how to react to signals; the user sets them. */
224
225static unsigned char *signal_stop;
226static unsigned char *signal_print;
227static unsigned char *signal_program;
228
229#define SET_SIGS(nsigs,sigs,flags) \
230 do { \
231 int signum = (nsigs); \
232 while (signum-- > 0) \
233 if ((sigs)[signum]) \
234 (flags)[signum] = 1; \
235 } while (0)
236
237#define UNSET_SIGS(nsigs,sigs,flags) \
238 do { \
239 int signum = (nsigs); \
240 while (signum-- > 0) \
241 if ((sigs)[signum]) \
242 (flags)[signum] = 0; \
243 } while (0)
244
39f77062
KB
245/* Value to pass to target_resume() to cause all threads to resume */
246
247#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
248
249/* Command list pointer for the "stop" placeholder. */
250
251static struct cmd_list_element *stop_command;
252
253/* Nonzero if breakpoints are now inserted in the inferior. */
254
255static int breakpoints_inserted;
256
257/* Function inferior was in as of last step command. */
258
259static struct symbol *step_start_function;
260
261/* Nonzero if we are expecting a trace trap and should proceed from it. */
262
263static int trap_expected;
264
265#ifdef SOLIB_ADD
266/* Nonzero if we want to give control to the user when we're notified
267 of shared library events by the dynamic linker. */
268static int stop_on_solib_events;
269#endif
270
271#ifdef HP_OS_BUG
272/* Nonzero if the next time we try to continue the inferior, it will
273 step one instruction and generate a spurious trace trap.
274 This is used to compensate for a bug in HP-UX. */
275
276static int trap_expected_after_continue;
277#endif
278
279/* Nonzero means expecting a trace trap
280 and should stop the inferior and return silently when it happens. */
281
282int stop_after_trap;
283
284/* Nonzero means expecting a trap and caller will handle it themselves.
285 It is used after attach, due to attaching to a process;
286 when running in the shell before the child program has been exec'd;
287 and when running some kinds of remote stuff (FIXME?). */
288
289int stop_soon_quietly;
290
291/* Nonzero if proceed is being used for a "finish" command or a similar
292 situation when stop_registers should be saved. */
293
294int proceed_to_finish;
295
296/* Save register contents here when about to pop a stack dummy frame,
297 if-and-only-if proceed_to_finish is set.
298 Thus this contains the return value from the called function (assuming
299 values are returned in a register). */
300
72cec141 301struct regcache *stop_registers;
c906108c
SS
302
303/* Nonzero if program stopped due to error trying to insert breakpoints. */
304
305static int breakpoints_failed;
306
307/* Nonzero after stop if current stack frame should be printed. */
308
309static int stop_print_frame;
310
311static struct breakpoint *step_resume_breakpoint = NULL;
312static struct breakpoint *through_sigtramp_breakpoint = NULL;
313
314/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
315 interactions with an inferior that is running a kernel function
316 (aka, a system call or "syscall"). wait_for_inferior therefore
317 may have a need to know when the inferior is in a syscall. This
318 is a count of the number of inferior threads which are known to
319 currently be running in a syscall. */
320static int number_of_threads_in_syscalls;
321
e02bc4cc
DS
322/* This is a cached copy of the pid/waitstatus of the last event
323 returned by target_wait()/target_wait_hook(). This information is
324 returned by get_last_target_status(). */
39f77062 325static ptid_t target_last_wait_ptid;
e02bc4cc
DS
326static struct target_waitstatus target_last_waitstatus;
327
c906108c
SS
328/* This is used to remember when a fork, vfork or exec event
329 was caught by a catchpoint, and thus the event is to be
330 followed at the next resume of the inferior, and not
331 immediately. */
332static struct
488f131b
JB
333{
334 enum target_waitkind kind;
335 struct
c906108c 336 {
488f131b 337 int parent_pid;
488f131b 338 int child_pid;
c906108c 339 }
488f131b
JB
340 fork_event;
341 char *execd_pathname;
342}
c906108c
SS
343pending_follow;
344
53904c9e 345static const char follow_fork_mode_ask[] = "ask";
53904c9e
AC
346static const char follow_fork_mode_child[] = "child";
347static const char follow_fork_mode_parent[] = "parent";
348
488f131b 349static const char *follow_fork_mode_kind_names[] = {
53904c9e 350 follow_fork_mode_ask,
53904c9e
AC
351 follow_fork_mode_child,
352 follow_fork_mode_parent,
353 NULL
ef346e04 354};
c906108c 355
53904c9e 356static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
357\f
358
6604731b 359static int
4ef3f3be 360follow_fork (void)
c906108c 361{
53904c9e 362 const char *follow_mode = follow_fork_mode_string;
6604731b 363 int follow_child = (follow_mode == follow_fork_mode_child);
c906108c
SS
364
365 /* Or, did the user not know, and want us to ask? */
e28d556f 366 if (follow_fork_mode_string == follow_fork_mode_ask)
c906108c 367 {
8e65ff28
AC
368 internal_error (__FILE__, __LINE__,
369 "follow_inferior_fork: \"ask\" mode not implemented");
53904c9e 370 /* follow_mode = follow_fork_mode_...; */
c906108c
SS
371 }
372
6604731b 373 return target_follow_fork (follow_child);
c906108c
SS
374}
375
6604731b
DJ
376void
377follow_inferior_reset_breakpoints (void)
c906108c 378{
6604731b
DJ
379 /* Was there a step_resume breakpoint? (There was if the user
380 did a "next" at the fork() call.) If so, explicitly reset its
381 thread number.
382
383 step_resumes are a form of bp that are made to be per-thread.
384 Since we created the step_resume bp when the parent process
385 was being debugged, and now are switching to the child process,
386 from the breakpoint package's viewpoint, that's a switch of
387 "threads". We must update the bp's notion of which thread
388 it is for, or it'll be ignored when it triggers. */
389
390 if (step_resume_breakpoint)
391 breakpoint_re_set_thread (step_resume_breakpoint);
392
393 /* Reinsert all breakpoints in the child. The user may have set
394 breakpoints after catching the fork, in which case those
395 were never set in the child, but only in the parent. This makes
396 sure the inserted breakpoints match the breakpoint list. */
397
398 breakpoint_re_set ();
399 insert_breakpoints ();
c906108c 400}
c906108c 401
1adeb98a
FN
402/* EXECD_PATHNAME is assumed to be non-NULL. */
403
c906108c 404static void
96baa820 405follow_exec (int pid, char *execd_pathname)
c906108c 406{
c906108c 407 int saved_pid = pid;
7a292a7a
SS
408 struct target_ops *tgt;
409
410 if (!may_follow_exec)
411 return;
c906108c 412
c906108c
SS
413 /* This is an exec event that we actually wish to pay attention to.
414 Refresh our symbol table to the newly exec'd program, remove any
415 momentary bp's, etc.
416
417 If there are breakpoints, they aren't really inserted now,
418 since the exec() transformed our inferior into a fresh set
419 of instructions.
420
421 We want to preserve symbolic breakpoints on the list, since
422 we have hopes that they can be reset after the new a.out's
423 symbol table is read.
424
425 However, any "raw" breakpoints must be removed from the list
426 (e.g., the solib bp's), since their address is probably invalid
427 now.
428
429 And, we DON'T want to call delete_breakpoints() here, since
430 that may write the bp's "shadow contents" (the instruction
431 value that was overwritten witha TRAP instruction). Since
432 we now have a new a.out, those shadow contents aren't valid. */
433 update_breakpoints_after_exec ();
434
435 /* If there was one, it's gone now. We cannot truly step-to-next
436 statement through an exec(). */
437 step_resume_breakpoint = NULL;
438 step_range_start = 0;
439 step_range_end = 0;
440
441 /* If there was one, it's gone now. */
442 through_sigtramp_breakpoint = NULL;
443
444 /* What is this a.out's name? */
445 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
446
447 /* We've followed the inferior through an exec. Therefore, the
448 inferior has essentially been killed & reborn. */
7a292a7a
SS
449
450 /* First collect the run target in effect. */
451 tgt = find_run_target ();
452 /* If we can't find one, things are in a very strange state... */
453 if (tgt == NULL)
454 error ("Could find run target to save before following exec");
455
c906108c
SS
456 gdb_flush (gdb_stdout);
457 target_mourn_inferior ();
39f77062 458 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 459 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 460 push_target (tgt);
c906108c
SS
461
462 /* That a.out is now the one to use. */
463 exec_file_attach (execd_pathname, 0);
464
465 /* And also is where symbols can be found. */
1adeb98a 466 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
467
468 /* Reset the shared library package. This ensures that we get
469 a shlib event when the child reaches "_start", at which point
470 the dld will have had a chance to initialize the child. */
7a292a7a 471#if defined(SOLIB_RESTART)
c906108c 472 SOLIB_RESTART ();
7a292a7a
SS
473#endif
474#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 475 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 476#endif
c906108c
SS
477
478 /* Reinsert all breakpoints. (Those which were symbolic have
479 been reset to the proper address in the new a.out, thanks
480 to symbol_file_command...) */
481 insert_breakpoints ();
482
483 /* The next resume of this inferior should bring it to the shlib
484 startup breakpoints. (If the user had also set bp's on
485 "main" from the old (parent) process, then they'll auto-
486 matically get reset there in the new process.) */
c906108c
SS
487}
488
489/* Non-zero if we just simulating a single-step. This is needed
490 because we cannot remove the breakpoints in the inferior process
491 until after the `wait' in `wait_for_inferior'. */
492static int singlestep_breakpoints_inserted_p = 0;
493\f
494
495/* Things to clean up if we QUIT out of resume (). */
496/* ARGSUSED */
497static void
74b7792f 498resume_cleanups (void *ignore)
c906108c
SS
499{
500 normal_stop ();
501}
502
53904c9e
AC
503static const char schedlock_off[] = "off";
504static const char schedlock_on[] = "on";
505static const char schedlock_step[] = "step";
506static const char *scheduler_mode = schedlock_off;
488f131b 507static const char *scheduler_enums[] = {
ef346e04
AC
508 schedlock_off,
509 schedlock_on,
510 schedlock_step,
511 NULL
512};
c906108c
SS
513
514static void
96baa820 515set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 516{
1868c04e
AC
517 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
518 the set command passed as a parameter. The clone operation will
519 include (BUG?) any ``set'' command callback, if present.
520 Commands like ``info set'' call all the ``show'' command
521 callbacks. Unfortunatly, for ``show'' commands cloned from
522 ``set'', this includes callbacks belonging to ``set'' commands.
523 Making this worse, this only occures if add_show_from_set() is
524 called after add_cmd_sfunc() (BUG?). */
525 if (cmd_type (c) == set_cmd)
c906108c
SS
526 if (!target_can_lock_scheduler)
527 {
528 scheduler_mode = schedlock_off;
488f131b 529 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
530 }
531}
532
533
534/* Resume the inferior, but allow a QUIT. This is useful if the user
535 wants to interrupt some lengthy single-stepping operation
536 (for child processes, the SIGINT goes to the inferior, and so
537 we get a SIGINT random_signal, but for remote debugging and perhaps
538 other targets, that's not true).
539
540 STEP nonzero if we should step (zero to continue instead).
541 SIG is the signal to give the inferior (zero for none). */
542void
96baa820 543resume (int step, enum target_signal sig)
c906108c
SS
544{
545 int should_resume = 1;
74b7792f 546 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
547 QUIT;
548
ef5cf84e
MS
549 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
550
c906108c 551
692590c1
MS
552 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
553 over an instruction that causes a page fault without triggering
554 a hardware watchpoint. The kernel properly notices that it shouldn't
555 stop, because the hardware watchpoint is not triggered, but it forgets
556 the step request and continues the program normally.
557 Work around the problem by removing hardware watchpoints if a step is
558 requested, GDB will check for a hardware watchpoint trigger after the
559 step anyway. */
560 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
561 remove_hw_watchpoints ();
488f131b 562
692590c1 563
c2c6d25f
JM
564 /* Normally, by the time we reach `resume', the breakpoints are either
565 removed or inserted, as appropriate. The exception is if we're sitting
566 at a permanent breakpoint; we need to step over it, but permanent
567 breakpoints can't be removed. So we have to test for it here. */
568 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
569 SKIP_PERMANENT_BREAKPOINT ();
570
b0ed3589 571 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
572 {
573 /* Do it the hard way, w/temp breakpoints */
c5aa993b 574 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
575 /* ...and don't ask hardware to do it. */
576 step = 0;
577 /* and do not pull these breakpoints until after a `wait' in
578 `wait_for_inferior' */
579 singlestep_breakpoints_inserted_p = 1;
580 }
581
582 /* Handle any optimized stores to the inferior NOW... */
583#ifdef DO_DEFERRED_STORES
584 DO_DEFERRED_STORES;
585#endif
586
c906108c 587 /* If there were any forks/vforks/execs that were caught and are
6604731b 588 now to be followed, then do so. */
c906108c
SS
589 switch (pending_follow.kind)
590 {
6604731b
DJ
591 case TARGET_WAITKIND_FORKED:
592 case TARGET_WAITKIND_VFORKED:
c906108c 593 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
594 if (follow_fork ())
595 should_resume = 0;
c906108c
SS
596 break;
597
6604731b 598 case TARGET_WAITKIND_EXECD:
c906108c 599 /* follow_exec is called as soon as the exec event is seen. */
6604731b 600 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
601 break;
602
603 default:
604 break;
605 }
c906108c
SS
606
607 /* Install inferior's terminal modes. */
608 target_terminal_inferior ();
609
610 if (should_resume)
611 {
39f77062 612 ptid_t resume_ptid;
dfcd3bfb 613
488f131b 614 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
615
616 if ((step || singlestep_breakpoints_inserted_p) &&
617 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
c906108c 618 {
ef5cf84e
MS
619 /* Stepping past a breakpoint without inserting breakpoints.
620 Make sure only the current thread gets to step, so that
621 other threads don't sneak past breakpoints while they are
622 not inserted. */
c906108c 623
ef5cf84e 624 resume_ptid = inferior_ptid;
c906108c 625 }
ef5cf84e
MS
626
627 if ((scheduler_mode == schedlock_on) ||
488f131b 628 (scheduler_mode == schedlock_step &&
ef5cf84e 629 (step || singlestep_breakpoints_inserted_p)))
c906108c 630 {
ef5cf84e 631 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 632 resume_ptid = inferior_ptid;
c906108c 633 }
ef5cf84e 634
c4ed33b9
AC
635 if (CANNOT_STEP_BREAKPOINT)
636 {
637 /* Most targets can step a breakpoint instruction, thus
638 executing it normally. But if this one cannot, just
639 continue and we will hit it anyway. */
640 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
641 step = 0;
642 }
39f77062 643 target_resume (resume_ptid, step, sig);
c906108c
SS
644 }
645
646 discard_cleanups (old_cleanups);
647}
648\f
649
650/* Clear out all variables saying what to do when inferior is continued.
651 First do this, then set the ones you want, then call `proceed'. */
652
653void
96baa820 654clear_proceed_status (void)
c906108c
SS
655{
656 trap_expected = 0;
657 step_range_start = 0;
658 step_range_end = 0;
aa0cd9c1 659 step_frame_id = null_frame_id;
5fbbeb29 660 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c
SS
661 stop_after_trap = 0;
662 stop_soon_quietly = 0;
663 proceed_to_finish = 0;
664 breakpoint_proceeded = 1; /* We're about to proceed... */
665
666 /* Discard any remaining commands or status from previous stop. */
667 bpstat_clear (&stop_bpstat);
668}
669
670/* Basic routine for continuing the program in various fashions.
671
672 ADDR is the address to resume at, or -1 for resume where stopped.
673 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 674 or -1 for act according to how it stopped.
c906108c 675 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
676 -1 means return after that and print nothing.
677 You should probably set various step_... variables
678 before calling here, if you are stepping.
c906108c
SS
679
680 You should call clear_proceed_status before calling proceed. */
681
682void
96baa820 683proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
684{
685 int oneproc = 0;
686
687 if (step > 0)
688 step_start_function = find_pc_function (read_pc ());
689 if (step < 0)
690 stop_after_trap = 1;
691
2acceee2 692 if (addr == (CORE_ADDR) -1)
c906108c
SS
693 {
694 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
695 step one instruction before inserting breakpoints
696 so that we do not stop right away (and report a second
c906108c
SS
697 hit at this breakpoint). */
698
699 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
700 oneproc = 1;
701
702#ifndef STEP_SKIPS_DELAY
703#define STEP_SKIPS_DELAY(pc) (0)
704#define STEP_SKIPS_DELAY_P (0)
705#endif
706 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
707 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
708 is slow (it needs to read memory from the target). */
c906108c
SS
709 if (STEP_SKIPS_DELAY_P
710 && breakpoint_here_p (read_pc () + 4)
711 && STEP_SKIPS_DELAY (read_pc ()))
712 oneproc = 1;
713 }
714 else
715 {
716 write_pc (addr);
c906108c
SS
717 }
718
719#ifdef PREPARE_TO_PROCEED
720 /* In a multi-threaded task we may select another thread
721 and then continue or step.
722
723 But if the old thread was stopped at a breakpoint, it
724 will immediately cause another breakpoint stop without
725 any execution (i.e. it will report a breakpoint hit
726 incorrectly). So we must step over it first.
727
728 PREPARE_TO_PROCEED checks the current thread against the thread
729 that reported the most recent event. If a step-over is required
730 it returns TRUE and sets the current thread to the old thread. */
9e086581 731 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
c906108c
SS
732 {
733 oneproc = 1;
c906108c
SS
734 }
735
736#endif /* PREPARE_TO_PROCEED */
737
738#ifdef HP_OS_BUG
739 if (trap_expected_after_continue)
740 {
741 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
742 the first instruction is executed. Force step one
743 instruction to clear this condition. This should not occur
744 if step is nonzero, but it is harmless in that case. */
c906108c
SS
745 oneproc = 1;
746 trap_expected_after_continue = 0;
747 }
748#endif /* HP_OS_BUG */
749
750 if (oneproc)
751 /* We will get a trace trap after one instruction.
752 Continue it automatically and insert breakpoints then. */
753 trap_expected = 1;
754 else
755 {
81d0cc19
GS
756 insert_breakpoints ();
757 /* If we get here there was no call to error() in
758 insert breakpoints -- so they were inserted. */
c906108c
SS
759 breakpoints_inserted = 1;
760 }
761
762 if (siggnal != TARGET_SIGNAL_DEFAULT)
763 stop_signal = siggnal;
764 /* If this signal should not be seen by program,
765 give it zero. Used for debugging signals. */
766 else if (!signal_program[stop_signal])
767 stop_signal = TARGET_SIGNAL_0;
768
769 annotate_starting ();
770
771 /* Make sure that output from GDB appears before output from the
772 inferior. */
773 gdb_flush (gdb_stdout);
774
775 /* Resume inferior. */
776 resume (oneproc || step || bpstat_should_step (), stop_signal);
777
778 /* Wait for it to stop (if not standalone)
779 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
780 /* Do this only if we are not using the event loop, or if the target
781 does not support asynchronous execution. */
6426a772 782 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
783 {
784 wait_for_inferior ();
785 normal_stop ();
786 }
c906108c
SS
787}
788
789/* Record the pc and sp of the program the last time it stopped.
790 These are just used internally by wait_for_inferior, but need
791 to be preserved over calls to it and cleared when the inferior
792 is started. */
793static CORE_ADDR prev_pc;
794static CORE_ADDR prev_func_start;
795static char *prev_func_name;
796\f
797
798/* Start remote-debugging of a machine over a serial link. */
96baa820 799
c906108c 800void
96baa820 801start_remote (void)
c906108c
SS
802{
803 init_thread_list ();
804 init_wait_for_inferior ();
805 stop_soon_quietly = 1;
806 trap_expected = 0;
43ff13b4 807
6426a772
JM
808 /* Always go on waiting for the target, regardless of the mode. */
809 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 810 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
811 nothing is returned (instead of just blocking). Because of this,
812 targets expecting an immediate response need to, internally, set
813 things up so that the target_wait() is forced to eventually
814 timeout. */
815 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
816 differentiate to its caller what the state of the target is after
817 the initial open has been performed. Here we're assuming that
818 the target has stopped. It should be possible to eventually have
819 target_open() return to the caller an indication that the target
820 is currently running and GDB state should be set to the same as
821 for an async run. */
822 wait_for_inferior ();
823 normal_stop ();
c906108c
SS
824}
825
826/* Initialize static vars when a new inferior begins. */
827
828void
96baa820 829init_wait_for_inferior (void)
c906108c
SS
830{
831 /* These are meaningless until the first time through wait_for_inferior. */
832 prev_pc = 0;
833 prev_func_start = 0;
834 prev_func_name = NULL;
835
836#ifdef HP_OS_BUG
837 trap_expected_after_continue = 0;
838#endif
839 breakpoints_inserted = 0;
840 breakpoint_init_inferior (inf_starting);
841
842 /* Don't confuse first call to proceed(). */
843 stop_signal = TARGET_SIGNAL_0;
844
845 /* The first resume is not following a fork/vfork/exec. */
846 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
847
848 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
849 number_of_threads_in_syscalls = 0;
850
851 clear_proceed_status ();
852}
853
854static void
96baa820 855delete_breakpoint_current_contents (void *arg)
c906108c
SS
856{
857 struct breakpoint **breakpointp = (struct breakpoint **) arg;
858 if (*breakpointp != NULL)
859 {
860 delete_breakpoint (*breakpointp);
861 *breakpointp = NULL;
862 }
863}
864\f
b83266a0
SS
865/* This enum encodes possible reasons for doing a target_wait, so that
866 wfi can call target_wait in one place. (Ultimately the call will be
867 moved out of the infinite loop entirely.) */
868
c5aa993b
JM
869enum infwait_states
870{
cd0fc7c3
SS
871 infwait_normal_state,
872 infwait_thread_hop_state,
873 infwait_nullified_state,
874 infwait_nonstep_watch_state
b83266a0
SS
875};
876
11cf8741
JM
877/* Why did the inferior stop? Used to print the appropriate messages
878 to the interface from within handle_inferior_event(). */
879enum inferior_stop_reason
880{
881 /* We don't know why. */
882 STOP_UNKNOWN,
883 /* Step, next, nexti, stepi finished. */
884 END_STEPPING_RANGE,
885 /* Found breakpoint. */
886 BREAKPOINT_HIT,
887 /* Inferior terminated by signal. */
888 SIGNAL_EXITED,
889 /* Inferior exited. */
890 EXITED,
891 /* Inferior received signal, and user asked to be notified. */
892 SIGNAL_RECEIVED
893};
894
cd0fc7c3
SS
895/* This structure contains what used to be local variables in
896 wait_for_inferior. Probably many of them can return to being
897 locals in handle_inferior_event. */
898
c5aa993b 899struct execution_control_state
488f131b
JB
900{
901 struct target_waitstatus ws;
902 struct target_waitstatus *wp;
903 int another_trap;
904 int random_signal;
905 CORE_ADDR stop_func_start;
906 CORE_ADDR stop_func_end;
907 char *stop_func_name;
908 struct symtab_and_line sal;
909 int remove_breakpoints_on_following_step;
910 int current_line;
911 struct symtab *current_symtab;
912 int handling_longjmp; /* FIXME */
913 ptid_t ptid;
914 ptid_t saved_inferior_ptid;
915 int update_step_sp;
916 int stepping_through_solib_after_catch;
917 bpstat stepping_through_solib_catchpoints;
918 int enable_hw_watchpoints_after_wait;
919 int stepping_through_sigtramp;
920 int new_thread_event;
921 struct target_waitstatus tmpstatus;
922 enum infwait_states infwait_state;
923 ptid_t waiton_ptid;
924 int wait_some_more;
925};
926
927void init_execution_control_state (struct execution_control_state *ecs);
928
929void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 930
104c1213 931static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 932static void step_into_function (struct execution_control_state *ecs);
d4f3574e 933static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
934static void stop_stepping (struct execution_control_state *ecs);
935static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 936static void keep_going (struct execution_control_state *ecs);
488f131b
JB
937static void print_stop_reason (enum inferior_stop_reason stop_reason,
938 int stop_info);
104c1213 939
cd0fc7c3
SS
940/* Wait for control to return from inferior to debugger.
941 If inferior gets a signal, we may decide to start it up again
942 instead of returning. That is why there is a loop in this function.
943 When this function actually returns it means the inferior
944 should be left stopped and GDB should read more commands. */
945
946void
96baa820 947wait_for_inferior (void)
cd0fc7c3
SS
948{
949 struct cleanup *old_cleanups;
950 struct execution_control_state ecss;
951 struct execution_control_state *ecs;
c906108c 952
8601f500 953 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c
SS
954 &step_resume_breakpoint);
955 make_cleanup (delete_breakpoint_current_contents,
956 &through_sigtramp_breakpoint);
cd0fc7c3
SS
957
958 /* wfi still stays in a loop, so it's OK just to take the address of
959 a local to get the ecs pointer. */
960 ecs = &ecss;
961
962 /* Fill in with reasonable starting values. */
963 init_execution_control_state (ecs);
964
c906108c 965 /* We'll update this if & when we switch to a new thread. */
39f77062 966 previous_inferior_ptid = inferior_ptid;
c906108c 967
cd0fc7c3
SS
968 overlay_cache_invalid = 1;
969
970 /* We have to invalidate the registers BEFORE calling target_wait
971 because they can be loaded from the target while in target_wait.
972 This makes remote debugging a bit more efficient for those
973 targets that provide critical registers as part of their normal
974 status mechanism. */
975
976 registers_changed ();
b83266a0 977
c906108c
SS
978 while (1)
979 {
cd0fc7c3 980 if (target_wait_hook)
39f77062 981 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 982 else
39f77062 983 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 984
cd0fc7c3
SS
985 /* Now figure out what to do with the result of the result. */
986 handle_inferior_event (ecs);
c906108c 987
cd0fc7c3
SS
988 if (!ecs->wait_some_more)
989 break;
990 }
991 do_cleanups (old_cleanups);
992}
c906108c 993
43ff13b4
JM
994/* Asynchronous version of wait_for_inferior. It is called by the
995 event loop whenever a change of state is detected on the file
996 descriptor corresponding to the target. It can be called more than
997 once to complete a single execution command. In such cases we need
998 to keep the state in a global variable ASYNC_ECSS. If it is the
999 last time that this function is called for a single execution
1000 command, then report to the user that the inferior has stopped, and
1001 do the necessary cleanups. */
1002
1003struct execution_control_state async_ecss;
1004struct execution_control_state *async_ecs;
1005
1006void
fba45db2 1007fetch_inferior_event (void *client_data)
43ff13b4
JM
1008{
1009 static struct cleanup *old_cleanups;
1010
c5aa993b 1011 async_ecs = &async_ecss;
43ff13b4
JM
1012
1013 if (!async_ecs->wait_some_more)
1014 {
488f131b 1015 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1016 &step_resume_breakpoint);
43ff13b4 1017 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1018 &through_sigtramp_breakpoint);
43ff13b4
JM
1019
1020 /* Fill in with reasonable starting values. */
1021 init_execution_control_state (async_ecs);
1022
43ff13b4 1023 /* We'll update this if & when we switch to a new thread. */
39f77062 1024 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1025
1026 overlay_cache_invalid = 1;
1027
1028 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1029 because they can be loaded from the target while in target_wait.
1030 This makes remote debugging a bit more efficient for those
1031 targets that provide critical registers as part of their normal
1032 status mechanism. */
43ff13b4
JM
1033
1034 registers_changed ();
1035 }
1036
1037 if (target_wait_hook)
488f131b
JB
1038 async_ecs->ptid =
1039 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1040 else
39f77062 1041 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1042
1043 /* Now figure out what to do with the result of the result. */
1044 handle_inferior_event (async_ecs);
1045
1046 if (!async_ecs->wait_some_more)
1047 {
adf40b2e 1048 /* Do only the cleanups that have been added by this
488f131b
JB
1049 function. Let the continuations for the commands do the rest,
1050 if there are any. */
43ff13b4
JM
1051 do_exec_cleanups (old_cleanups);
1052 normal_stop ();
c2d11a7d
JM
1053 if (step_multi && stop_step)
1054 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1055 else
1056 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1057 }
1058}
1059
cd0fc7c3
SS
1060/* Prepare an execution control state for looping through a
1061 wait_for_inferior-type loop. */
1062
1063void
96baa820 1064init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1065{
c2d11a7d 1066 /* ecs->another_trap? */
cd0fc7c3
SS
1067 ecs->random_signal = 0;
1068 ecs->remove_breakpoints_on_following_step = 0;
1069 ecs->handling_longjmp = 0; /* FIXME */
1070 ecs->update_step_sp = 0;
1071 ecs->stepping_through_solib_after_catch = 0;
1072 ecs->stepping_through_solib_catchpoints = NULL;
1073 ecs->enable_hw_watchpoints_after_wait = 0;
1074 ecs->stepping_through_sigtramp = 0;
1075 ecs->sal = find_pc_line (prev_pc, 0);
1076 ecs->current_line = ecs->sal.line;
1077 ecs->current_symtab = ecs->sal.symtab;
1078 ecs->infwait_state = infwait_normal_state;
39f77062 1079 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1080 ecs->wp = &(ecs->ws);
1081}
1082
a0b3c4fd 1083/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1084 sanity check. There should never be more than one step-resume
1085 breakpoint per thread, so we should never be setting a new
1086 step_resume_breakpoint when one is already active. */
a0b3c4fd 1087static void
96baa820 1088check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1089{
1090 if (step_resume_breakpoint)
488f131b
JB
1091 warning
1092 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1093}
1094
e02bc4cc
DS
1095/* Return the cached copy of the last pid/waitstatus returned by
1096 target_wait()/target_wait_hook(). The data is actually cached by
1097 handle_inferior_event(), which gets called immediately after
1098 target_wait()/target_wait_hook(). */
1099
1100void
488f131b 1101get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1102{
39f77062 1103 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1104 *status = target_last_waitstatus;
1105}
1106
dd80620e
MS
1107/* Switch thread contexts, maintaining "infrun state". */
1108
1109static void
1110context_switch (struct execution_control_state *ecs)
1111{
1112 /* Caution: it may happen that the new thread (or the old one!)
1113 is not in the thread list. In this case we must not attempt
1114 to "switch context", or we run the risk that our context may
1115 be lost. This may happen as a result of the target module
1116 mishandling thread creation. */
1117
1118 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1119 { /* Perform infrun state context switch: */
dd80620e 1120 /* Save infrun state for the old thread. */
488f131b
JB
1121 save_infrun_state (inferior_ptid, prev_pc,
1122 prev_func_start, prev_func_name,
dd80620e 1123 trap_expected, step_resume_breakpoint,
488f131b 1124 through_sigtramp_breakpoint, step_range_start,
aa0cd9c1 1125 step_range_end, &step_frame_id,
dd80620e
MS
1126 ecs->handling_longjmp, ecs->another_trap,
1127 ecs->stepping_through_solib_after_catch,
1128 ecs->stepping_through_solib_catchpoints,
1129 ecs->stepping_through_sigtramp,
488f131b 1130 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1131
1132 /* Load infrun state for the new thread. */
488f131b
JB
1133 load_infrun_state (ecs->ptid, &prev_pc,
1134 &prev_func_start, &prev_func_name,
dd80620e 1135 &trap_expected, &step_resume_breakpoint,
488f131b 1136 &through_sigtramp_breakpoint, &step_range_start,
aa0cd9c1 1137 &step_range_end, &step_frame_id,
dd80620e
MS
1138 &ecs->handling_longjmp, &ecs->another_trap,
1139 &ecs->stepping_through_solib_after_catch,
1140 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1141 &ecs->stepping_through_sigtramp,
1142 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1143 }
1144 inferior_ptid = ecs->ptid;
1145}
1146
1147
cd0fc7c3
SS
1148/* Given an execution control state that has been freshly filled in
1149 by an event from the inferior, figure out what it means and take
1150 appropriate action. */
c906108c 1151
cd0fc7c3 1152void
96baa820 1153handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1154{
d764a824 1155 CORE_ADDR real_stop_pc;
cd0fc7c3 1156 int stepped_after_stopped_by_watchpoint;
c8edd8b4 1157 int sw_single_step_trap_p = 0;
cd0fc7c3 1158
e02bc4cc 1159 /* Cache the last pid/waitstatus. */
39f77062 1160 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1161 target_last_waitstatus = *ecs->wp;
1162
488f131b
JB
1163 switch (ecs->infwait_state)
1164 {
1165 case infwait_thread_hop_state:
1166 /* Cancel the waiton_ptid. */
1167 ecs->waiton_ptid = pid_to_ptid (-1);
1168 /* Fall thru to the normal_state case. */
b83266a0 1169
488f131b
JB
1170 case infwait_normal_state:
1171 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1172 is serviced in this loop, below. */
1173 if (ecs->enable_hw_watchpoints_after_wait)
1174 {
1175 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1176 ecs->enable_hw_watchpoints_after_wait = 0;
1177 }
1178 stepped_after_stopped_by_watchpoint = 0;
1179 break;
b83266a0 1180
488f131b
JB
1181 case infwait_nullified_state:
1182 break;
b83266a0 1183
488f131b
JB
1184 case infwait_nonstep_watch_state:
1185 insert_breakpoints ();
c906108c 1186
488f131b
JB
1187 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1188 handle things like signals arriving and other things happening
1189 in combination correctly? */
1190 stepped_after_stopped_by_watchpoint = 1;
1191 break;
1192 }
1193 ecs->infwait_state = infwait_normal_state;
c906108c 1194
488f131b 1195 flush_cached_frames ();
c906108c 1196
488f131b 1197 /* If it's a new process, add it to the thread database */
c906108c 1198
488f131b
JB
1199 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1200 && !in_thread_list (ecs->ptid));
1201
1202 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1203 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1204 {
1205 add_thread (ecs->ptid);
c906108c 1206
488f131b
JB
1207 ui_out_text (uiout, "[New ");
1208 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1209 ui_out_text (uiout, "]\n");
c906108c
SS
1210
1211#if 0
488f131b
JB
1212 /* NOTE: This block is ONLY meant to be invoked in case of a
1213 "thread creation event"! If it is invoked for any other
1214 sort of event (such as a new thread landing on a breakpoint),
1215 the event will be discarded, which is almost certainly
1216 a bad thing!
1217
1218 To avoid this, the low-level module (eg. target_wait)
1219 should call in_thread_list and add_thread, so that the
1220 new thread is known by the time we get here. */
1221
1222 /* We may want to consider not doing a resume here in order
1223 to give the user a chance to play with the new thread.
1224 It might be good to make that a user-settable option. */
1225
1226 /* At this point, all threads are stopped (happens
1227 automatically in either the OS or the native code).
1228 Therefore we need to continue all threads in order to
1229 make progress. */
1230
1231 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1232 prepare_to_wait (ecs);
1233 return;
c906108c 1234#endif
488f131b 1235 }
c906108c 1236
488f131b
JB
1237 switch (ecs->ws.kind)
1238 {
1239 case TARGET_WAITKIND_LOADED:
1240 /* Ignore gracefully during startup of the inferior, as it
1241 might be the shell which has just loaded some objects,
1242 otherwise add the symbols for the newly loaded objects. */
c906108c 1243#ifdef SOLIB_ADD
488f131b
JB
1244 if (!stop_soon_quietly)
1245 {
1246 /* Remove breakpoints, SOLIB_ADD might adjust
1247 breakpoint addresses via breakpoint_re_set. */
1248 if (breakpoints_inserted)
1249 remove_breakpoints ();
c906108c 1250
488f131b
JB
1251 /* Check for any newly added shared libraries if we're
1252 supposed to be adding them automatically. Switch
1253 terminal for any messages produced by
1254 breakpoint_re_set. */
1255 target_terminal_ours_for_output ();
1256 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
1257 target_terminal_inferior ();
1258
1259 /* Reinsert breakpoints and continue. */
1260 if (breakpoints_inserted)
1261 insert_breakpoints ();
1262 }
c906108c 1263#endif
488f131b
JB
1264 resume (0, TARGET_SIGNAL_0);
1265 prepare_to_wait (ecs);
1266 return;
c5aa993b 1267
488f131b
JB
1268 case TARGET_WAITKIND_SPURIOUS:
1269 resume (0, TARGET_SIGNAL_0);
1270 prepare_to_wait (ecs);
1271 return;
c5aa993b 1272
488f131b
JB
1273 case TARGET_WAITKIND_EXITED:
1274 target_terminal_ours (); /* Must do this before mourn anyway */
1275 print_stop_reason (EXITED, ecs->ws.value.integer);
1276
1277 /* Record the exit code in the convenience variable $_exitcode, so
1278 that the user can inspect this again later. */
1279 set_internalvar (lookup_internalvar ("_exitcode"),
1280 value_from_longest (builtin_type_int,
1281 (LONGEST) ecs->ws.value.integer));
1282 gdb_flush (gdb_stdout);
1283 target_mourn_inferior ();
1284 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1285 stop_print_frame = 0;
1286 stop_stepping (ecs);
1287 return;
c5aa993b 1288
488f131b
JB
1289 case TARGET_WAITKIND_SIGNALLED:
1290 stop_print_frame = 0;
1291 stop_signal = ecs->ws.value.sig;
1292 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1293
488f131b
JB
1294 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1295 reach here unless the inferior is dead. However, for years
1296 target_kill() was called here, which hints that fatal signals aren't
1297 really fatal on some systems. If that's true, then some changes
1298 may be needed. */
1299 target_mourn_inferior ();
c906108c 1300
488f131b
JB
1301 print_stop_reason (SIGNAL_EXITED, stop_signal);
1302 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1303 stop_stepping (ecs);
1304 return;
c906108c 1305
488f131b
JB
1306 /* The following are the only cases in which we keep going;
1307 the above cases end in a continue or goto. */
1308 case TARGET_WAITKIND_FORKED:
deb3b17b 1309 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1310 stop_signal = TARGET_SIGNAL_TRAP;
1311 pending_follow.kind = ecs->ws.kind;
1312
8e7d2c16
DJ
1313 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1314 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1315
488f131b 1316 stop_pc = read_pc ();
675bf4cb
DJ
1317
1318 /* Assume that catchpoints are not really software breakpoints. If
1319 some future target implements them using software breakpoints then
1320 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1321 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1322 bpstat_stop_status will not decrement the PC. */
1323
1324 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1325
488f131b 1326 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1327
1328 /* If no catchpoint triggered for this, then keep going. */
1329 if (ecs->random_signal)
1330 {
1331 stop_signal = TARGET_SIGNAL_0;
1332 keep_going (ecs);
1333 return;
1334 }
488f131b
JB
1335 goto process_event_stop_test;
1336
1337 case TARGET_WAITKIND_EXECD:
1338 stop_signal = TARGET_SIGNAL_TRAP;
1339
7d2830a3
DJ
1340 /* NOTE drow/2002-12-05: This code should be pushed down into the
1341 target_wait function. Until then following vfork on HP/UX 10.20
1342 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1343 /* Is this a target which reports multiple exec events per actual
1344 call to exec()? (HP-UX using ptrace does, for example.) If so,
1345 ignore all but the last one. Just resume the exec'r, and wait
1346 for the next exec event. */
1347 if (inferior_ignoring_leading_exec_events)
1348 {
1349 inferior_ignoring_leading_exec_events--;
1350 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1351 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1352 parent_pid);
1353 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1354 prepare_to_wait (ecs);
1355 return;
1356 }
1357 inferior_ignoring_leading_exec_events =
1358 target_reported_exec_events_per_exec_call () - 1;
1359
1360 pending_follow.execd_pathname =
1361 savestring (ecs->ws.value.execd_pathname,
1362 strlen (ecs->ws.value.execd_pathname));
1363
488f131b
JB
1364 /* This causes the eventpoints and symbol table to be reset. Must
1365 do this now, before trying to determine whether to stop. */
1366 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1367 xfree (pending_follow.execd_pathname);
c906108c 1368
488f131b
JB
1369 stop_pc = read_pc_pid (ecs->ptid);
1370 ecs->saved_inferior_ptid = inferior_ptid;
1371 inferior_ptid = ecs->ptid;
675bf4cb
DJ
1372
1373 /* Assume that catchpoints are not really software breakpoints. If
1374 some future target implements them using software breakpoints then
1375 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1376 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1377 bpstat_stop_status will not decrement the PC. */
1378
1379 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1380
488f131b
JB
1381 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1382 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1383
1384 /* If no catchpoint triggered for this, then keep going. */
1385 if (ecs->random_signal)
1386 {
1387 stop_signal = TARGET_SIGNAL_0;
1388 keep_going (ecs);
1389 return;
1390 }
488f131b
JB
1391 goto process_event_stop_test;
1392
1393 /* These syscall events are returned on HP-UX, as part of its
1394 implementation of page-protection-based "hardware" watchpoints.
1395 HP-UX has unfortunate interactions between page-protections and
1396 some system calls. Our solution is to disable hardware watches
1397 when a system call is entered, and reenable them when the syscall
1398 completes. The downside of this is that we may miss the precise
1399 point at which a watched piece of memory is modified. "Oh well."
1400
1401 Note that we may have multiple threads running, which may each
1402 enter syscalls at roughly the same time. Since we don't have a
1403 good notion currently of whether a watched piece of memory is
1404 thread-private, we'd best not have any page-protections active
1405 when any thread is in a syscall. Thus, we only want to reenable
1406 hardware watches when no threads are in a syscall.
1407
1408 Also, be careful not to try to gather much state about a thread
1409 that's in a syscall. It's frequently a losing proposition. */
1410 case TARGET_WAITKIND_SYSCALL_ENTRY:
1411 number_of_threads_in_syscalls++;
1412 if (number_of_threads_in_syscalls == 1)
1413 {
1414 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1415 }
1416 resume (0, TARGET_SIGNAL_0);
1417 prepare_to_wait (ecs);
1418 return;
c906108c 1419
488f131b
JB
1420 /* Before examining the threads further, step this thread to
1421 get it entirely out of the syscall. (We get notice of the
1422 event when the thread is just on the verge of exiting a
1423 syscall. Stepping one instruction seems to get it back
1424 into user code.)
c906108c 1425
488f131b
JB
1426 Note that although the logical place to reenable h/w watches
1427 is here, we cannot. We cannot reenable them before stepping
1428 the thread (this causes the next wait on the thread to hang).
c4093a6a 1429
488f131b
JB
1430 Nor can we enable them after stepping until we've done a wait.
1431 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1432 here, which will be serviced immediately after the target
1433 is waited on. */
1434 case TARGET_WAITKIND_SYSCALL_RETURN:
1435 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1436
1437 if (number_of_threads_in_syscalls > 0)
1438 {
1439 number_of_threads_in_syscalls--;
1440 ecs->enable_hw_watchpoints_after_wait =
1441 (number_of_threads_in_syscalls == 0);
1442 }
1443 prepare_to_wait (ecs);
1444 return;
c906108c 1445
488f131b
JB
1446 case TARGET_WAITKIND_STOPPED:
1447 stop_signal = ecs->ws.value.sig;
1448 break;
c906108c 1449
488f131b
JB
1450 /* We had an event in the inferior, but we are not interested
1451 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1452 done what needs to be done, if anything.
1453
1454 One of the possible circumstances for this is when the
1455 inferior produces output for the console. The inferior has
1456 not stopped, and we are ignoring the event. Another possible
1457 circumstance is any event which the lower level knows will be
1458 reported multiple times without an intervening resume. */
488f131b 1459 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1460 prepare_to_wait (ecs);
488f131b
JB
1461 return;
1462 }
c906108c 1463
488f131b
JB
1464 /* We may want to consider not doing a resume here in order to give
1465 the user a chance to play with the new thread. It might be good
1466 to make that a user-settable option. */
c906108c 1467
488f131b
JB
1468 /* At this point, all threads are stopped (happens automatically in
1469 either the OS or the native code). Therefore we need to continue
1470 all threads in order to make progress. */
1471 if (ecs->new_thread_event)
1472 {
1473 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1474 prepare_to_wait (ecs);
1475 return;
1476 }
c906108c 1477
488f131b
JB
1478 stop_pc = read_pc_pid (ecs->ptid);
1479
1480 /* See if a thread hit a thread-specific breakpoint that was meant for
1481 another thread. If so, then step that thread past the breakpoint,
1482 and continue it. */
1483
1484 if (stop_signal == TARGET_SIGNAL_TRAP)
1485 {
f8d40ec8
JB
1486 /* Check if a regular breakpoint has been hit before checking
1487 for a potential single step breakpoint. Otherwise, GDB will
1488 not see this breakpoint hit when stepping onto breakpoints. */
1489 if (breakpoints_inserted
1490 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
488f131b 1491 {
c5aa993b 1492 ecs->random_signal = 0;
488f131b
JB
1493 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1494 ecs->ptid))
1495 {
1496 int remove_status;
1497
1498 /* Saw a breakpoint, but it was hit by the wrong thread.
1499 Just continue. */
1500 if (DECR_PC_AFTER_BREAK)
1501 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1502
1503 remove_status = remove_breakpoints ();
1504 /* Did we fail to remove breakpoints? If so, try
1505 to set the PC past the bp. (There's at least
1506 one situation in which we can fail to remove
1507 the bp's: On HP-UX's that use ttrace, we can't
1508 change the address space of a vforking child
1509 process until the child exits (well, okay, not
1510 then either :-) or execs. */
1511 if (remove_status != 0)
1512 {
1513 /* FIXME! This is obviously non-portable! */
1514 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->ptid);
1515 /* We need to restart all the threads now,
1516 * unles we're running in scheduler-locked mode.
1517 * Use currently_stepping to determine whether to
1518 * step or continue.
1519 */
1520 /* FIXME MVS: is there any reason not to call resume()? */
1521 if (scheduler_mode == schedlock_on)
1522 target_resume (ecs->ptid,
1523 currently_stepping (ecs), TARGET_SIGNAL_0);
1524 else
1525 target_resume (RESUME_ALL,
1526 currently_stepping (ecs), TARGET_SIGNAL_0);
1527 prepare_to_wait (ecs);
1528 return;
1529 }
1530 else
1531 { /* Single step */
1532 breakpoints_inserted = 0;
1533 if (!ptid_equal (inferior_ptid, ecs->ptid))
1534 context_switch (ecs);
1535 ecs->waiton_ptid = ecs->ptid;
1536 ecs->wp = &(ecs->ws);
1537 ecs->another_trap = 1;
1538
1539 ecs->infwait_state = infwait_thread_hop_state;
1540 keep_going (ecs);
1541 registers_changed ();
1542 return;
1543 }
1544 }
1545 }
f8d40ec8
JB
1546 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1547 {
c8edd8b4
JB
1548 /* Readjust the stop_pc as it is off by DECR_PC_AFTER_BREAK
1549 compared to the value it would have if the system stepping
1550 capability was used. This allows the rest of the code in
1551 this function to use this address without having to worry
1552 whether software single step is in use or not. */
1553 if (DECR_PC_AFTER_BREAK)
1554 {
1555 stop_pc -= DECR_PC_AFTER_BREAK;
1556 write_pc_pid (stop_pc, ecs->ptid);
1557 }
1558
1559 sw_single_step_trap_p = 1;
f8d40ec8
JB
1560 ecs->random_signal = 0;
1561 }
488f131b
JB
1562 }
1563 else
1564 ecs->random_signal = 1;
c906108c 1565
488f131b
JB
1566 /* See if something interesting happened to the non-current thread. If
1567 so, then switch to that thread, and eventually give control back to
1568 the user.
1569
1570 Note that if there's any kind of pending follow (i.e., of a fork,
1571 vfork or exec), we don't want to do this now. Rather, we'll let
1572 the next resume handle it. */
1573 if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1574 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1575 {
1576 int printed = 0;
1577
1578 /* If it's a random signal for a non-current thread, notify user
1579 if he's expressed an interest. */
1580 if (ecs->random_signal && signal_print[stop_signal])
1581 {
c906108c
SS
1582/* ??rehrauer: I don't understand the rationale for this code. If the
1583 inferior will stop as a result of this signal, then the act of handling
1584 the stop ought to print a message that's couches the stoppage in user
1585 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1586 won't stop as a result of the signal -- i.e., if the signal is merely
1587 a side-effect of something GDB's doing "under the covers" for the
1588 user, such as stepping threads over a breakpoint they shouldn't stop
1589 for -- then the message seems to be a serious annoyance at best.
1590
1591 For now, remove the message altogether. */
1592#if 0
488f131b
JB
1593 printed = 1;
1594 target_terminal_ours_for_output ();
1595 printf_filtered ("\nProgram received signal %s, %s.\n",
1596 target_signal_to_name (stop_signal),
1597 target_signal_to_string (stop_signal));
1598 gdb_flush (gdb_stdout);
c906108c 1599#endif
488f131b 1600 }
c906108c 1601
488f131b
JB
1602 /* If it's not SIGTRAP and not a signal we want to stop for, then
1603 continue the thread. */
c906108c 1604
488f131b
JB
1605 if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1606 {
1607 if (printed)
1608 target_terminal_inferior ();
c906108c 1609
488f131b
JB
1610 /* Clear the signal if it should not be passed. */
1611 if (signal_program[stop_signal] == 0)
1612 stop_signal = TARGET_SIGNAL_0;
c906108c 1613
488f131b
JB
1614 target_resume (ecs->ptid, 0, stop_signal);
1615 prepare_to_wait (ecs);
1616 return;
1617 }
c906108c 1618
488f131b
JB
1619 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1620 and fall into the rest of wait_for_inferior(). */
c5aa993b 1621
488f131b 1622 context_switch (ecs);
c5aa993b 1623
488f131b
JB
1624 if (context_hook)
1625 context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1626
488f131b
JB
1627 flush_cached_frames ();
1628 }
c906108c 1629
488f131b
JB
1630 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1631 {
1632 /* Pull the single step breakpoints out of the target. */
1633 SOFTWARE_SINGLE_STEP (0, 0);
1634 singlestep_breakpoints_inserted_p = 0;
1635 }
c906108c 1636
488f131b
JB
1637 /* If PC is pointing at a nullified instruction, then step beyond
1638 it so that the user won't be confused when GDB appears to be ready
1639 to execute it. */
c906108c 1640
488f131b
JB
1641 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1642 if (INSTRUCTION_NULLIFIED)
1643 {
1644 registers_changed ();
1645 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1646
488f131b
JB
1647 /* We may have received a signal that we want to pass to
1648 the inferior; therefore, we must not clobber the waitstatus
1649 in WS. */
c906108c 1650
488f131b
JB
1651 ecs->infwait_state = infwait_nullified_state;
1652 ecs->waiton_ptid = ecs->ptid;
1653 ecs->wp = &(ecs->tmpstatus);
1654 prepare_to_wait (ecs);
1655 return;
1656 }
c906108c 1657
488f131b
JB
1658 /* It may not be necessary to disable the watchpoint to stop over
1659 it. For example, the PA can (with some kernel cooperation)
1660 single step over a watchpoint without disabling the watchpoint. */
1661 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1662 {
1663 resume (1, 0);
1664 prepare_to_wait (ecs);
1665 return;
1666 }
c906108c 1667
488f131b
JB
1668 /* It is far more common to need to disable a watchpoint to step
1669 the inferior over it. FIXME. What else might a debug
1670 register or page protection watchpoint scheme need here? */
1671 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1672 {
1673 /* At this point, we are stopped at an instruction which has
1674 attempted to write to a piece of memory under control of
1675 a watchpoint. The instruction hasn't actually executed
1676 yet. If we were to evaluate the watchpoint expression
1677 now, we would get the old value, and therefore no change
1678 would seem to have occurred.
1679
1680 In order to make watchpoints work `right', we really need
1681 to complete the memory write, and then evaluate the
1682 watchpoint expression. The following code does that by
1683 removing the watchpoint (actually, all watchpoints and
1684 breakpoints), single-stepping the target, re-inserting
1685 watchpoints, and then falling through to let normal
1686 single-step processing handle proceed. Since this
1687 includes evaluating watchpoints, things will come to a
1688 stop in the correct manner. */
1689
1690 if (DECR_PC_AFTER_BREAK)
1691 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b 1692
488f131b
JB
1693 remove_breakpoints ();
1694 registers_changed ();
1695 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1696
488f131b
JB
1697 ecs->waiton_ptid = ecs->ptid;
1698 ecs->wp = &(ecs->ws);
1699 ecs->infwait_state = infwait_nonstep_watch_state;
1700 prepare_to_wait (ecs);
1701 return;
1702 }
1703
1704 /* It may be possible to simply continue after a watchpoint. */
1705 if (HAVE_CONTINUABLE_WATCHPOINT)
1706 STOPPED_BY_WATCHPOINT (ecs->ws);
1707
1708 ecs->stop_func_start = 0;
1709 ecs->stop_func_end = 0;
1710 ecs->stop_func_name = 0;
1711 /* Don't care about return value; stop_func_start and stop_func_name
1712 will both be 0 if it doesn't work. */
1713 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1714 &ecs->stop_func_start, &ecs->stop_func_end);
1715 ecs->stop_func_start += FUNCTION_START_OFFSET;
1716 ecs->another_trap = 0;
1717 bpstat_clear (&stop_bpstat);
1718 stop_step = 0;
1719 stop_stack_dummy = 0;
1720 stop_print_frame = 1;
1721 ecs->random_signal = 0;
1722 stopped_by_random_signal = 0;
1723 breakpoints_failed = 0;
1724
1725 /* Look at the cause of the stop, and decide what to do.
1726 The alternatives are:
1727 1) break; to really stop and return to the debugger,
1728 2) drop through to start up again
1729 (set ecs->another_trap to 1 to single step once)
1730 3) set ecs->random_signal to 1, and the decision between 1 and 2
1731 will be made according to the signal handling tables. */
1732
1733 /* First, distinguish signals caused by the debugger from signals
1734 that have to do with the program's own actions.
1735 Note that breakpoint insns may cause SIGTRAP or SIGILL
1736 or SIGEMT, depending on the operating system version.
1737 Here we detect when a SIGILL or SIGEMT is really a breakpoint
1738 and change it to SIGTRAP. */
1739
1740 if (stop_signal == TARGET_SIGNAL_TRAP
1741 || (breakpoints_inserted &&
1742 (stop_signal == TARGET_SIGNAL_ILL
1743 || stop_signal == TARGET_SIGNAL_EMT)) || stop_soon_quietly)
1744 {
1745 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1746 {
1747 stop_print_frame = 0;
1748 stop_stepping (ecs);
1749 return;
1750 }
1751 if (stop_soon_quietly)
1752 {
1753 stop_stepping (ecs);
1754 return;
1755 }
1756
1757 /* Don't even think about breakpoints
1758 if just proceeded over a breakpoint.
1759
1760 However, if we are trying to proceed over a breakpoint
1761 and end up in sigtramp, then through_sigtramp_breakpoint
1762 will be set and we should check whether we've hit the
1763 step breakpoint. */
1764 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
1765 && through_sigtramp_breakpoint == NULL)
1766 bpstat_clear (&stop_bpstat);
1767 else
1768 {
1769 /* See if there is a breakpoint at the current PC. */
1770
1771 /* The second argument of bpstat_stop_status is meant to help
1772 distinguish between a breakpoint trap and a singlestep trap.
1773 This is only important on targets where DECR_PC_AFTER_BREAK
1774 is non-zero. The prev_pc test is meant to distinguish between
1775 singlestepping a trap instruction, and singlestepping thru a
3e6564e1
JB
1776 jump to the instruction following a trap instruction.
1777
1778 Therefore, pass TRUE if our reason for stopping is
1779 something other than hitting a breakpoint. We do this by
1780 checking that either: we detected earlier a software single
1781 step trap or, 1) stepping is going on and 2) we didn't hit
1782 a breakpoint in a signal handler without an intervening stop
1783 in sigtramp, which is detected by a new stack pointer value
1784 below any usual function calling stack adjustments. */
238617f6
JB
1785 stop_bpstat =
1786 bpstat_stop_status
1787 (&stop_pc,
c8edd8b4
JB
1788 sw_single_step_trap_p
1789 || (currently_stepping (ecs)
1790 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
1791 && !(step_range_end
1792 && INNER_THAN (read_sp (), (step_sp - 16)))));
488f131b
JB
1793 /* Following in case break condition called a
1794 function. */
1795 stop_print_frame = 1;
1796 }
1797
1798 if (stop_signal == TARGET_SIGNAL_TRAP)
1799 ecs->random_signal
1800 = !(bpstat_explains_signal (stop_bpstat)
1801 || trap_expected
1802 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
ae45cd16 1803 && DEPRECATED_PC_IN_CALL_DUMMY (stop_pc, read_sp (),
c193f6ac 1804 get_frame_base (get_current_frame ())))
488f131b
JB
1805 || (step_range_end && step_resume_breakpoint == NULL));
1806
1807 else
1808 {
1809 ecs->random_signal = !(bpstat_explains_signal (stop_bpstat)
1810 /* End of a stack dummy. Some systems (e.g. Sony
1811 news) give another signal besides SIGTRAP, so
1812 check here as well as above. */
1813 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
ae45cd16 1814 && DEPRECATED_PC_IN_CALL_DUMMY (stop_pc, read_sp (),
c193f6ac 1815 get_frame_base
488f131b
JB
1816 (get_current_frame
1817 ()))));
1818 if (!ecs->random_signal)
1819 stop_signal = TARGET_SIGNAL_TRAP;
1820 }
1821 }
1822
1823 /* When we reach this point, we've pretty much decided
1824 that the reason for stopping must've been a random
1825 (unexpected) signal. */
1826
1827 else
1828 ecs->random_signal = 1;
488f131b 1829
04e68871 1830process_event_stop_test:
488f131b
JB
1831 /* For the program's own signals, act according to
1832 the signal handling tables. */
1833
1834 if (ecs->random_signal)
1835 {
1836 /* Signal not for debugging purposes. */
1837 int printed = 0;
1838
1839 stopped_by_random_signal = 1;
1840
1841 if (signal_print[stop_signal])
1842 {
1843 printed = 1;
1844 target_terminal_ours_for_output ();
1845 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1846 }
1847 if (signal_stop[stop_signal])
1848 {
1849 stop_stepping (ecs);
1850 return;
1851 }
1852 /* If not going to stop, give terminal back
1853 if we took it away. */
1854 else if (printed)
1855 target_terminal_inferior ();
1856
1857 /* Clear the signal if it should not be passed. */
1858 if (signal_program[stop_signal] == 0)
1859 stop_signal = TARGET_SIGNAL_0;
1860
1861 /* I'm not sure whether this needs to be check_sigtramp2 or
1862 whether it could/should be keep_going.
1863
1864 This used to jump to step_over_function if we are stepping,
1865 which is wrong.
1866
1867 Suppose the user does a `next' over a function call, and while
1868 that call is in progress, the inferior receives a signal for
1869 which GDB does not stop (i.e., signal_stop[SIG] is false). In
1870 that case, when we reach this point, there is already a
1871 step-resume breakpoint established, right where it should be:
1872 immediately after the function call the user is "next"-ing
1873 over. If we call step_over_function now, two bad things
1874 happen:
1875
1876 - we'll create a new breakpoint, at wherever the current
1877 frame's return address happens to be. That could be
1878 anywhere, depending on what function call happens to be on
1879 the top of the stack at that point. Point is, it's probably
1880 not where we need it.
1881
1882 - the existing step-resume breakpoint (which is at the correct
1883 address) will get orphaned: step_resume_breakpoint will point
1884 to the new breakpoint, and the old step-resume breakpoint
1885 will never be cleaned up.
1886
1887 The old behavior was meant to help HP-UX single-step out of
1888 sigtramps. It would place the new breakpoint at prev_pc, which
1889 was certainly wrong. I don't know the details there, so fixing
1890 this probably breaks that. As with anything else, it's up to
1891 the HP-UX maintainer to furnish a fix that doesn't break other
1892 platforms. --JimB, 20 May 1999 */
1893 check_sigtramp2 (ecs);
1894 keep_going (ecs);
1895 return;
1896 }
1897
1898 /* Handle cases caused by hitting a breakpoint. */
1899 {
1900 CORE_ADDR jmp_buf_pc;
1901 struct bpstat_what what;
1902
1903 what = bpstat_what (stop_bpstat);
1904
1905 if (what.call_dummy)
1906 {
1907 stop_stack_dummy = 1;
1908#ifdef HP_OS_BUG
1909 trap_expected_after_continue = 1;
1910#endif
c5aa993b 1911 }
c906108c 1912
488f131b 1913 switch (what.main_action)
c5aa993b 1914 {
488f131b
JB
1915 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1916 /* If we hit the breakpoint at longjmp, disable it for the
1917 duration of this command. Then, install a temporary
1918 breakpoint at the target of the jmp_buf. */
1919 disable_longjmp_breakpoint ();
1920 remove_breakpoints ();
1921 breakpoints_inserted = 0;
1922 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 1923 {
488f131b 1924 keep_going (ecs);
104c1213 1925 return;
c5aa993b 1926 }
488f131b
JB
1927
1928 /* Need to blow away step-resume breakpoint, as it
1929 interferes with us */
1930 if (step_resume_breakpoint != NULL)
104c1213 1931 {
488f131b 1932 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 1933 }
488f131b
JB
1934 /* Not sure whether we need to blow this away too, but probably
1935 it is like the step-resume breakpoint. */
1936 if (through_sigtramp_breakpoint != NULL)
c5aa993b 1937 {
488f131b
JB
1938 delete_breakpoint (through_sigtramp_breakpoint);
1939 through_sigtramp_breakpoint = NULL;
c5aa993b 1940 }
c906108c 1941
488f131b
JB
1942#if 0
1943 /* FIXME - Need to implement nested temporary breakpoints */
1944 if (step_over_calls > 0)
1945 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 1946 else
488f131b 1947#endif /* 0 */
818dd999 1948 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
1949 ecs->handling_longjmp = 1; /* FIXME */
1950 keep_going (ecs);
1951 return;
c906108c 1952
488f131b
JB
1953 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
1954 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
1955 remove_breakpoints ();
1956 breakpoints_inserted = 0;
1957#if 0
1958 /* FIXME - Need to implement nested temporary breakpoints */
1959 if (step_over_calls
aa0cd9c1
AC
1960 && (frame_id_inner (get_frame_id (get_current_frame ()),
1961 step_frame_id)))
c5aa993b 1962 {
488f131b 1963 ecs->another_trap = 1;
d4f3574e
SS
1964 keep_going (ecs);
1965 return;
c5aa993b 1966 }
488f131b
JB
1967#endif /* 0 */
1968 disable_longjmp_breakpoint ();
1969 ecs->handling_longjmp = 0; /* FIXME */
1970 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
1971 break;
1972 /* else fallthrough */
1973
1974 case BPSTAT_WHAT_SINGLE:
1975 if (breakpoints_inserted)
c5aa993b 1976 {
488f131b 1977 remove_breakpoints ();
c5aa993b 1978 }
488f131b
JB
1979 breakpoints_inserted = 0;
1980 ecs->another_trap = 1;
1981 /* Still need to check other stuff, at least the case
1982 where we are stepping and step out of the right range. */
1983 break;
c906108c 1984
488f131b
JB
1985 case BPSTAT_WHAT_STOP_NOISY:
1986 stop_print_frame = 1;
c906108c 1987
488f131b
JB
1988 /* We are about to nuke the step_resume_breakpoint and
1989 through_sigtramp_breakpoint via the cleanup chain, so
1990 no need to worry about it here. */
c5aa993b 1991
488f131b
JB
1992 stop_stepping (ecs);
1993 return;
c5aa993b 1994
488f131b
JB
1995 case BPSTAT_WHAT_STOP_SILENT:
1996 stop_print_frame = 0;
c5aa993b 1997
488f131b
JB
1998 /* We are about to nuke the step_resume_breakpoint and
1999 through_sigtramp_breakpoint via the cleanup chain, so
2000 no need to worry about it here. */
c5aa993b 2001
488f131b 2002 stop_stepping (ecs);
e441088d 2003 return;
c5aa993b 2004
488f131b
JB
2005 case BPSTAT_WHAT_STEP_RESUME:
2006 /* This proably demands a more elegant solution, but, yeah
2007 right...
c5aa993b 2008
488f131b
JB
2009 This function's use of the simple variable
2010 step_resume_breakpoint doesn't seem to accomodate
2011 simultaneously active step-resume bp's, although the
2012 breakpoint list certainly can.
c5aa993b 2013
488f131b
JB
2014 If we reach here and step_resume_breakpoint is already
2015 NULL, then apparently we have multiple active
2016 step-resume bp's. We'll just delete the breakpoint we
2017 stopped at, and carry on.
2018
2019 Correction: what the code currently does is delete a
2020 step-resume bp, but it makes no effort to ensure that
2021 the one deleted is the one currently stopped at. MVS */
c5aa993b 2022
488f131b
JB
2023 if (step_resume_breakpoint == NULL)
2024 {
2025 step_resume_breakpoint =
2026 bpstat_find_step_resume_breakpoint (stop_bpstat);
2027 }
2028 delete_step_resume_breakpoint (&step_resume_breakpoint);
2029 break;
2030
2031 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2032 if (through_sigtramp_breakpoint)
2033 delete_breakpoint (through_sigtramp_breakpoint);
2034 through_sigtramp_breakpoint = NULL;
2035
2036 /* If were waiting for a trap, hitting the step_resume_break
2037 doesn't count as getting it. */
2038 if (trap_expected)
2039 ecs->another_trap = 1;
2040 break;
2041
2042 case BPSTAT_WHAT_CHECK_SHLIBS:
2043 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2044#ifdef SOLIB_ADD
c906108c 2045 {
488f131b
JB
2046 /* Remove breakpoints, we eventually want to step over the
2047 shlib event breakpoint, and SOLIB_ADD might adjust
2048 breakpoint addresses via breakpoint_re_set. */
2049 if (breakpoints_inserted)
2050 remove_breakpoints ();
c5aa993b 2051 breakpoints_inserted = 0;
488f131b
JB
2052
2053 /* Check for any newly added shared libraries if we're
2054 supposed to be adding them automatically. Switch
2055 terminal for any messages produced by
2056 breakpoint_re_set. */
2057 target_terminal_ours_for_output ();
2058 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
2059 target_terminal_inferior ();
2060
2061 /* Try to reenable shared library breakpoints, additional
2062 code segments in shared libraries might be mapped in now. */
2063 re_enable_breakpoints_in_shlibs ();
2064
2065 /* If requested, stop when the dynamic linker notifies
2066 gdb of events. This allows the user to get control
2067 and place breakpoints in initializer routines for
2068 dynamically loaded objects (among other things). */
2069 if (stop_on_solib_events)
d4f3574e 2070 {
488f131b 2071 stop_stepping (ecs);
d4f3574e
SS
2072 return;
2073 }
c5aa993b 2074
488f131b
JB
2075 /* If we stopped due to an explicit catchpoint, then the
2076 (see above) call to SOLIB_ADD pulled in any symbols
2077 from a newly-loaded library, if appropriate.
2078
2079 We do want the inferior to stop, but not where it is
2080 now, which is in the dynamic linker callback. Rather,
2081 we would like it stop in the user's program, just after
2082 the call that caused this catchpoint to trigger. That
2083 gives the user a more useful vantage from which to
2084 examine their program's state. */
2085 else if (what.main_action ==
2086 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2087 {
488f131b
JB
2088 /* ??rehrauer: If I could figure out how to get the
2089 right return PC from here, we could just set a temp
2090 breakpoint and resume. I'm not sure we can without
2091 cracking open the dld's shared libraries and sniffing
2092 their unwind tables and text/data ranges, and that's
2093 not a terribly portable notion.
2094
2095 Until that time, we must step the inferior out of the
2096 dld callback, and also out of the dld itself (and any
2097 code or stubs in libdld.sl, such as "shl_load" and
2098 friends) until we reach non-dld code. At that point,
2099 we can stop stepping. */
2100 bpstat_get_triggered_catchpoints (stop_bpstat,
2101 &ecs->
2102 stepping_through_solib_catchpoints);
2103 ecs->stepping_through_solib_after_catch = 1;
2104
2105 /* Be sure to lift all breakpoints, so the inferior does
2106 actually step past this point... */
2107 ecs->another_trap = 1;
2108 break;
c906108c 2109 }
c5aa993b 2110 else
c5aa993b 2111 {
488f131b 2112 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2113 ecs->another_trap = 1;
488f131b 2114 break;
c5aa993b 2115 }
488f131b
JB
2116 }
2117#endif
2118 break;
c906108c 2119
488f131b
JB
2120 case BPSTAT_WHAT_LAST:
2121 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2122
488f131b
JB
2123 case BPSTAT_WHAT_KEEP_CHECKING:
2124 break;
2125 }
2126 }
c906108c 2127
488f131b
JB
2128 /* We come here if we hit a breakpoint but should not
2129 stop for it. Possibly we also were stepping
2130 and should stop for that. So fall through and
2131 test for stepping. But, if not stepping,
2132 do not stop. */
c906108c 2133
488f131b
JB
2134 /* Are we stepping to get the inferior out of the dynamic
2135 linker's hook (and possibly the dld itself) after catching
2136 a shlib event? */
2137 if (ecs->stepping_through_solib_after_catch)
2138 {
2139#if defined(SOLIB_ADD)
2140 /* Have we reached our destination? If not, keep going. */
2141 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2142 {
2143 ecs->another_trap = 1;
2144 keep_going (ecs);
104c1213 2145 return;
488f131b
JB
2146 }
2147#endif
2148 /* Else, stop and report the catchpoint(s) whose triggering
2149 caused us to begin stepping. */
2150 ecs->stepping_through_solib_after_catch = 0;
2151 bpstat_clear (&stop_bpstat);
2152 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2153 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2154 stop_print_frame = 1;
2155 stop_stepping (ecs);
2156 return;
2157 }
c906108c 2158
488f131b
JB
2159 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2160 {
2161 /* This is the old way of detecting the end of the stack dummy.
2162 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2163 handled above. As soon as we can test it on all of them, all
2164 architectures should define it. */
2165
2166 /* If this is the breakpoint at the end of a stack dummy,
2167 just stop silently, unless the user was doing an si/ni, in which
2168 case she'd better know what she's doing. */
2169
2170 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
c193f6ac 2171 get_frame_base (get_current_frame ()))
488f131b
JB
2172 && !step_range_end)
2173 {
c5aa993b 2174 stop_print_frame = 0;
488f131b
JB
2175 stop_stack_dummy = 1;
2176#ifdef HP_OS_BUG
2177 trap_expected_after_continue = 1;
2178#endif
104c1213
JM
2179 stop_stepping (ecs);
2180 return;
488f131b
JB
2181 }
2182 }
c906108c 2183
488f131b
JB
2184 if (step_resume_breakpoint)
2185 {
2186 /* Having a step-resume breakpoint overrides anything
2187 else having to do with stepping commands until
2188 that breakpoint is reached. */
2189 /* I'm not sure whether this needs to be check_sigtramp2 or
2190 whether it could/should be keep_going. */
2191 check_sigtramp2 (ecs);
2192 keep_going (ecs);
2193 return;
2194 }
c5aa993b 2195
488f131b
JB
2196 if (step_range_end == 0)
2197 {
2198 /* Likewise if we aren't even stepping. */
2199 /* I'm not sure whether this needs to be check_sigtramp2 or
2200 whether it could/should be keep_going. */
2201 check_sigtramp2 (ecs);
2202 keep_going (ecs);
2203 return;
2204 }
c5aa993b 2205
488f131b 2206 /* If stepping through a line, keep going if still within it.
c906108c 2207
488f131b
JB
2208 Note that step_range_end is the address of the first instruction
2209 beyond the step range, and NOT the address of the last instruction
2210 within it! */
2211 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2212 {
2213 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2214 So definately need to check for sigtramp here. */
2215 check_sigtramp2 (ecs);
2216 keep_going (ecs);
2217 return;
2218 }
c5aa993b 2219
488f131b 2220 /* We stepped out of the stepping range. */
c906108c 2221
488f131b
JB
2222 /* If we are stepping at the source level and entered the runtime
2223 loader dynamic symbol resolution code, we keep on single stepping
2224 until we exit the run time loader code and reach the callee's
2225 address. */
2226 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2227 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2228 {
2229 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
c906108c 2230
488f131b
JB
2231 if (pc_after_resolver)
2232 {
2233 /* Set up a step-resume breakpoint at the address
2234 indicated by SKIP_SOLIB_RESOLVER. */
2235 struct symtab_and_line sr_sal;
fe39c653 2236 init_sal (&sr_sal);
488f131b
JB
2237 sr_sal.pc = pc_after_resolver;
2238
2239 check_for_old_step_resume_breakpoint ();
2240 step_resume_breakpoint =
818dd999 2241 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2242 if (breakpoints_inserted)
2243 insert_breakpoints ();
c5aa993b 2244 }
c906108c 2245
488f131b
JB
2246 keep_going (ecs);
2247 return;
2248 }
c906108c 2249
488f131b
JB
2250 /* We can't update step_sp every time through the loop, because
2251 reading the stack pointer would slow down stepping too much.
2252 But we can update it every time we leave the step range. */
2253 ecs->update_step_sp = 1;
c906108c 2254
488f131b
JB
2255 /* Did we just take a signal? */
2256 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2257 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2258 && INNER_THAN (read_sp (), step_sp))
2259 {
2260 /* We've just taken a signal; go until we are back to
2261 the point where we took it and one more. */
c906108c 2262
488f131b
JB
2263 /* Note: The test above succeeds not only when we stepped
2264 into a signal handler, but also when we step past the last
2265 statement of a signal handler and end up in the return stub
2266 of the signal handler trampoline. To distinguish between
2267 these two cases, check that the frame is INNER_THAN the
2268 previous one below. pai/1997-09-11 */
c5aa993b 2269
c5aa993b 2270
c5aa993b 2271 {
aa0cd9c1 2272 struct frame_id current_frame = get_frame_id (get_current_frame ());
c906108c 2273
aa0cd9c1 2274 if (frame_id_inner (current_frame, step_frame_id))
488f131b
JB
2275 {
2276 /* We have just taken a signal; go until we are back to
2277 the point where we took it and one more. */
c906108c 2278
488f131b
JB
2279 /* This code is needed at least in the following case:
2280 The user types "next" and then a signal arrives (before
2281 the "next" is done). */
d4f3574e 2282
488f131b
JB
2283 /* Note that if we are stopped at a breakpoint, then we need
2284 the step_resume breakpoint to override any breakpoints at
2285 the same location, so that we will still step over the
2286 breakpoint even though the signal happened. */
d4f3574e 2287 struct symtab_and_line sr_sal;
d4f3574e 2288
fe39c653 2289 init_sal (&sr_sal);
488f131b
JB
2290 sr_sal.symtab = NULL;
2291 sr_sal.line = 0;
2292 sr_sal.pc = prev_pc;
2293 /* We could probably be setting the frame to
aa0cd9c1 2294 step_frame_id; I don't think anyone thought to try it. */
d4f3574e
SS
2295 check_for_old_step_resume_breakpoint ();
2296 step_resume_breakpoint =
818dd999 2297 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
d4f3574e
SS
2298 if (breakpoints_inserted)
2299 insert_breakpoints ();
2300 }
488f131b
JB
2301 else
2302 {
2303 /* We just stepped out of a signal handler and into
2304 its calling trampoline.
2305
2306 Normally, we'd call step_over_function from
2307 here, but for some reason GDB can't unwind the
2308 stack correctly to find the real PC for the point
2309 user code where the signal trampoline will return
2310 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2311 But signal trampolines are pretty small stubs of
2312 code, anyway, so it's OK instead to just
2313 single-step out. Note: assuming such trampolines
2314 don't exhibit recursion on any platform... */
2315 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2316 &ecs->stop_func_start,
2317 &ecs->stop_func_end);
2318 /* Readjust stepping range */
2319 step_range_start = ecs->stop_func_start;
2320 step_range_end = ecs->stop_func_end;
2321 ecs->stepping_through_sigtramp = 1;
2322 }
d4f3574e 2323 }
c906108c 2324
c906108c 2325
488f131b
JB
2326 /* If this is stepi or nexti, make sure that the stepping range
2327 gets us past that instruction. */
2328 if (step_range_end == 1)
2329 /* FIXME: Does this run afoul of the code below which, if
2330 we step into the middle of a line, resets the stepping
2331 range? */
2332 step_range_end = (step_range_start = prev_pc) + 1;
2333
2334 ecs->remove_breakpoints_on_following_step = 1;
2335 keep_going (ecs);
2336 return;
2337 }
c906108c 2338
488f131b
JB
2339 if (stop_pc == ecs->stop_func_start /* Quick test */
2340 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2341 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2342 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2343 || ecs->stop_func_name == 0)
2344 {
2345 /* It's a subroutine call. */
c906108c 2346
488f131b
JB
2347 if ((step_over_calls == STEP_OVER_NONE)
2348 || ((step_range_end == 1)
2349 && in_prologue (prev_pc, ecs->stop_func_start)))
2350 {
2351 /* I presume that step_over_calls is only 0 when we're
2352 supposed to be stepping at the assembly language level
2353 ("stepi"). Just stop. */
2354 /* Also, maybe we just did a "nexti" inside a prolog,
2355 so we thought it was a subroutine call but it was not.
2356 Stop as well. FENN */
2357 stop_step = 1;
2358 print_stop_reason (END_STEPPING_RANGE, 0);
2359 stop_stepping (ecs);
2360 return;
2361 }
c906108c 2362
488f131b 2363 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
c5aa993b 2364 {
488f131b
JB
2365 /* We're doing a "next". */
2366
2367 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
aa0cd9c1
AC
2368 && frame_id_inner (step_frame_id,
2369 frame_id_build (read_sp (), 0)))
488f131b
JB
2370 /* We stepped out of a signal handler, and into its
2371 calling trampoline. This is misdetected as a
2372 subroutine call, but stepping over the signal
aa0cd9c1
AC
2373 trampoline isn't such a bad idea. In order to do that,
2374 we have to ignore the value in step_frame_id, since
2375 that doesn't represent the frame that'll reach when we
2376 return from the signal trampoline. Otherwise we'll
2377 probably continue to the end of the program. */
2378 step_frame_id = null_frame_id;
488f131b
JB
2379
2380 step_over_function (ecs);
2381 keep_going (ecs);
2382 return;
2383 }
c906108c 2384
488f131b
JB
2385 /* If we are in a function call trampoline (a stub between
2386 the calling routine and the real function), locate the real
2387 function. That's what tells us (a) whether we want to step
2388 into it at all, and (b) what prologue we want to run to
2389 the end of, if we do step into it. */
f636b87d
AF
2390 real_stop_pc = skip_language_trampoline (stop_pc);
2391 if (real_stop_pc == 0)
2392 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
d764a824
AF
2393 if (real_stop_pc != 0)
2394 ecs->stop_func_start = real_stop_pc;
c906108c 2395
488f131b
JB
2396 /* If we have line number information for the function we
2397 are thinking of stepping into, step into it.
c906108c 2398
488f131b
JB
2399 If there are several symtabs at that PC (e.g. with include
2400 files), just want to know whether *any* of them have line
2401 numbers. find_pc_line handles this. */
c5aa993b 2402 {
488f131b 2403 struct symtab_and_line tmp_sal;
c906108c 2404
488f131b
JB
2405 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2406 if (tmp_sal.line != 0)
d4f3574e 2407 {
488f131b 2408 step_into_function (ecs);
d4f3574e
SS
2409 return;
2410 }
488f131b 2411 }
c5aa993b 2412
488f131b
JB
2413 /* If we have no line number and the step-stop-if-no-debug
2414 is set, we stop the step so that the user has a chance to
2415 switch in assembly mode. */
2416 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
c5aa993b 2417 {
488f131b
JB
2418 stop_step = 1;
2419 print_stop_reason (END_STEPPING_RANGE, 0);
2420 stop_stepping (ecs);
2421 return;
c906108c 2422 }
5fbbeb29 2423
488f131b
JB
2424 step_over_function (ecs);
2425 keep_going (ecs);
2426 return;
c906108c 2427
488f131b 2428 }
c906108c 2429
488f131b 2430 /* We've wandered out of the step range. */
c906108c 2431
488f131b 2432 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2433
488f131b
JB
2434 if (step_range_end == 1)
2435 {
2436 /* It is stepi or nexti. We always want to stop stepping after
2437 one instruction. */
2438 stop_step = 1;
2439 print_stop_reason (END_STEPPING_RANGE, 0);
2440 stop_stepping (ecs);
2441 return;
2442 }
c906108c 2443
488f131b
JB
2444 /* If we're in the return path from a shared library trampoline,
2445 we want to proceed through the trampoline when stepping. */
2446 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2447 {
488f131b 2448 /* Determine where this trampoline returns. */
d764a824 2449 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2450
488f131b 2451 /* Only proceed through if we know where it's going. */
d764a824 2452 if (real_stop_pc)
488f131b
JB
2453 {
2454 /* And put the step-breakpoint there and go until there. */
2455 struct symtab_and_line sr_sal;
2456
fe39c653 2457 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2458 sr_sal.pc = real_stop_pc;
488f131b
JB
2459 sr_sal.section = find_pc_overlay (sr_sal.pc);
2460 /* Do not specify what the fp should be when we stop
2461 since on some machines the prologue
2462 is where the new fp value is established. */
2463 check_for_old_step_resume_breakpoint ();
2464 step_resume_breakpoint =
818dd999 2465 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2466 if (breakpoints_inserted)
2467 insert_breakpoints ();
c906108c 2468
488f131b
JB
2469 /* Restart without fiddling with the step ranges or
2470 other state. */
2471 keep_going (ecs);
2472 return;
2473 }
2474 }
c906108c 2475
488f131b
JB
2476 if (ecs->sal.line == 0)
2477 {
2478 /* We have no line number information. That means to stop
2479 stepping (does this always happen right after one instruction,
2480 when we do "s" in a function with no line numbers,
2481 or can this happen as a result of a return or longjmp?). */
2482 stop_step = 1;
2483 print_stop_reason (END_STEPPING_RANGE, 0);
2484 stop_stepping (ecs);
2485 return;
2486 }
c906108c 2487
488f131b
JB
2488 if ((stop_pc == ecs->sal.pc)
2489 && (ecs->current_line != ecs->sal.line
2490 || ecs->current_symtab != ecs->sal.symtab))
2491 {
2492 /* We are at the start of a different line. So stop. Note that
2493 we don't stop if we step into the middle of a different line.
2494 That is said to make things like for (;;) statements work
2495 better. */
2496 stop_step = 1;
2497 print_stop_reason (END_STEPPING_RANGE, 0);
2498 stop_stepping (ecs);
2499 return;
2500 }
c906108c 2501
488f131b 2502 /* We aren't done stepping.
c906108c 2503
488f131b
JB
2504 Optimize by setting the stepping range to the line.
2505 (We might not be in the original line, but if we entered a
2506 new line in mid-statement, we continue stepping. This makes
2507 things like for(;;) statements work better.) */
c906108c 2508
488f131b 2509 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2510 {
488f131b
JB
2511 /* If this is the last line of the function, don't keep stepping
2512 (it would probably step us out of the function).
2513 This is particularly necessary for a one-line function,
2514 in which after skipping the prologue we better stop even though
2515 we will be in mid-line. */
2516 stop_step = 1;
2517 print_stop_reason (END_STEPPING_RANGE, 0);
2518 stop_stepping (ecs);
2519 return;
c5aa993b 2520 }
488f131b
JB
2521 step_range_start = ecs->sal.pc;
2522 step_range_end = ecs->sal.end;
aa0cd9c1 2523 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2524 ecs->current_line = ecs->sal.line;
2525 ecs->current_symtab = ecs->sal.symtab;
2526
aa0cd9c1
AC
2527 /* In the case where we just stepped out of a function into the
2528 middle of a line of the caller, continue stepping, but
2529 step_frame_id must be modified to current frame */
488f131b 2530 {
aa0cd9c1
AC
2531 struct frame_id current_frame = get_frame_id (get_current_frame ());
2532 if (!(frame_id_inner (current_frame, step_frame_id)))
2533 step_frame_id = current_frame;
488f131b 2534 }
c906108c 2535
488f131b 2536 keep_going (ecs);
104c1213
JM
2537}
2538
2539/* Are we in the middle of stepping? */
2540
2541static int
2542currently_stepping (struct execution_control_state *ecs)
2543{
2544 return ((through_sigtramp_breakpoint == NULL
2545 && !ecs->handling_longjmp
2546 && ((step_range_end && step_resume_breakpoint == NULL)
2547 || trap_expected))
2548 || ecs->stepping_through_solib_after_catch
2549 || bpstat_should_step ());
2550}
c906108c 2551
104c1213
JM
2552static void
2553check_sigtramp2 (struct execution_control_state *ecs)
2554{
2555 if (trap_expected
d7bd68ca
AC
2556 && PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2557 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
104c1213
JM
2558 && INNER_THAN (read_sp (), step_sp))
2559 {
2560 /* What has happened here is that we have just stepped the
488f131b
JB
2561 inferior with a signal (because it is a signal which
2562 shouldn't make us stop), thus stepping into sigtramp.
104c1213 2563
488f131b
JB
2564 So we need to set a step_resume_break_address breakpoint and
2565 continue until we hit it, and then step. FIXME: This should
2566 be more enduring than a step_resume breakpoint; we should
2567 know that we will later need to keep going rather than
2568 re-hitting the breakpoint here (see the testsuite,
2569 gdb.base/signals.exp where it says "exceedingly difficult"). */
104c1213
JM
2570
2571 struct symtab_and_line sr_sal;
2572
fe39c653 2573 init_sal (&sr_sal); /* initialize to zeroes */
104c1213
JM
2574 sr_sal.pc = prev_pc;
2575 sr_sal.section = find_pc_overlay (sr_sal.pc);
2576 /* We perhaps could set the frame if we kept track of what the
488f131b 2577 frame corresponding to prev_pc was. But we don't, so don't. */
104c1213 2578 through_sigtramp_breakpoint =
818dd999 2579 set_momentary_breakpoint (sr_sal, null_frame_id, bp_through_sigtramp);
104c1213
JM
2580 if (breakpoints_inserted)
2581 insert_breakpoints ();
cd0fc7c3 2582
104c1213
JM
2583 ecs->remove_breakpoints_on_following_step = 1;
2584 ecs->another_trap = 1;
2585 }
2586}
2587
c2c6d25f
JM
2588/* Subroutine call with source code we should not step over. Do step
2589 to the first line of code in it. */
2590
2591static void
2592step_into_function (struct execution_control_state *ecs)
2593{
2594 struct symtab *s;
2595 struct symtab_and_line sr_sal;
2596
2597 s = find_pc_symtab (stop_pc);
2598 if (s && s->language != language_asm)
2599 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2600
2601 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2602 /* Use the step_resume_break to step until the end of the prologue,
2603 even if that involves jumps (as it seems to on the vax under
2604 4.2). */
2605 /* If the prologue ends in the middle of a source line, continue to
2606 the end of that source line (if it is still within the function).
2607 Otherwise, just go to end of prologue. */
2608#ifdef PROLOGUE_FIRSTLINE_OVERLAP
2609 /* no, don't either. It skips any code that's legitimately on the
2610 first line. */
2611#else
2612 if (ecs->sal.end
2613 && ecs->sal.pc != ecs->stop_func_start
2614 && ecs->sal.end < ecs->stop_func_end)
2615 ecs->stop_func_start = ecs->sal.end;
2616#endif
2617
2618 if (ecs->stop_func_start == stop_pc)
2619 {
2620 /* We are already there: stop now. */
2621 stop_step = 1;
488f131b 2622 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2623 stop_stepping (ecs);
2624 return;
2625 }
2626 else
2627 {
2628 /* Put the step-breakpoint there and go until there. */
fe39c653 2629 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2630 sr_sal.pc = ecs->stop_func_start;
2631 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2632 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2633 some machines the prologue is where the new fp value is
2634 established. */
c2c6d25f
JM
2635 check_for_old_step_resume_breakpoint ();
2636 step_resume_breakpoint =
818dd999 2637 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2638 if (breakpoints_inserted)
2639 insert_breakpoints ();
2640
2641 /* And make sure stepping stops right away then. */
2642 step_range_end = step_range_start;
2643 }
2644 keep_going (ecs);
2645}
d4f3574e
SS
2646
2647/* We've just entered a callee, and we wish to resume until it returns
2648 to the caller. Setting a step_resume breakpoint on the return
2649 address will catch a return from the callee.
2650
2651 However, if the callee is recursing, we want to be careful not to
2652 catch returns of those recursive calls, but only of THIS instance
2653 of the call.
2654
2655 To do this, we set the step_resume bp's frame to our current
aa0cd9c1 2656 caller's frame (step_frame_id, which is set by the "next" or
d4f3574e
SS
2657 "until" command, before execution begins). */
2658
2659static void
2660step_over_function (struct execution_control_state *ecs)
2661{
2662 struct symtab_and_line sr_sal;
2663
fe39c653 2664 init_sal (&sr_sal); /* initialize to zeros */
d4f3574e
SS
2665 sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
2666 sr_sal.section = find_pc_overlay (sr_sal.pc);
2667
2668 check_for_old_step_resume_breakpoint ();
2669 step_resume_breakpoint =
818dd999
AC
2670 set_momentary_breakpoint (sr_sal, get_frame_id (get_current_frame ()),
2671 bp_step_resume);
d4f3574e 2672
aa0cd9c1
AC
2673 if (frame_id_p (step_frame_id)
2674 && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
818dd999 2675 step_resume_breakpoint->frame_id = step_frame_id;
d4f3574e
SS
2676
2677 if (breakpoints_inserted)
2678 insert_breakpoints ();
2679}
2680
104c1213
JM
2681static void
2682stop_stepping (struct execution_control_state *ecs)
2683{
c906108c
SS
2684 if (target_has_execution)
2685 {
c906108c 2686 /* Assuming the inferior still exists, set these up for next
c5aa993b
JM
2687 time, just like we did above if we didn't break out of the
2688 loop. */
c906108c 2689 prev_pc = read_pc ();
cd0fc7c3
SS
2690 prev_func_start = ecs->stop_func_start;
2691 prev_func_name = ecs->stop_func_name;
c906108c 2692 }
104c1213 2693
cd0fc7c3
SS
2694 /* Let callers know we don't want to wait for the inferior anymore. */
2695 ecs->wait_some_more = 0;
2696}
2697
d4f3574e
SS
2698/* This function handles various cases where we need to continue
2699 waiting for the inferior. */
2700/* (Used to be the keep_going: label in the old wait_for_inferior) */
2701
2702static void
2703keep_going (struct execution_control_state *ecs)
2704{
d4f3574e 2705 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2706 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e
SS
2707 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
2708 BREAK is defined, the
2709 original pc would not have
2710 been at the start of a
2711 function. */
2712 prev_func_name = ecs->stop_func_name;
2713
2714 if (ecs->update_step_sp)
2715 step_sp = read_sp ();
2716 ecs->update_step_sp = 0;
2717
2718 /* If we did not do break;, it means we should keep running the
2719 inferior and not return to debugger. */
2720
2721 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2722 {
2723 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2724 the inferior, else we'd have done a break above) and we
2725 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2726 resume (currently_stepping (ecs), stop_signal);
2727 }
2728 else
2729 {
2730 /* Either the trap was not expected, but we are continuing
488f131b
JB
2731 anyway (the user asked that this signal be passed to the
2732 child)
2733 -- or --
2734 The signal was SIGTRAP, e.g. it was our signal, but we
2735 decided we should resume from it.
d4f3574e 2736
488f131b 2737 We're going to run this baby now!
d4f3574e 2738
488f131b
JB
2739 Insert breakpoints now, unless we are trying to one-proceed
2740 past a breakpoint. */
d4f3574e 2741 /* If we've just finished a special step resume and we don't
488f131b 2742 want to hit a breakpoint, pull em out. */
d4f3574e
SS
2743 if (step_resume_breakpoint == NULL
2744 && through_sigtramp_breakpoint == NULL
2745 && ecs->remove_breakpoints_on_following_step)
2746 {
2747 ecs->remove_breakpoints_on_following_step = 0;
2748 remove_breakpoints ();
2749 breakpoints_inserted = 0;
2750 }
2751 else if (!breakpoints_inserted &&
2752 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
2753 {
2754 breakpoints_failed = insert_breakpoints ();
2755 if (breakpoints_failed)
2756 {
2757 stop_stepping (ecs);
2758 return;
2759 }
2760 breakpoints_inserted = 1;
2761 }
2762
2763 trap_expected = ecs->another_trap;
2764
2765 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2766 specifies that such a signal should be delivered to the
2767 target program).
2768
2769 Typically, this would occure when a user is debugging a
2770 target monitor on a simulator: the target monitor sets a
2771 breakpoint; the simulator encounters this break-point and
2772 halts the simulation handing control to GDB; GDB, noteing
2773 that the break-point isn't valid, returns control back to the
2774 simulator; the simulator then delivers the hardware
2775 equivalent of a SIGNAL_TRAP to the program being debugged. */
2776
2777 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2778 stop_signal = TARGET_SIGNAL_0;
2779
2780#ifdef SHIFT_INST_REGS
2781 /* I'm not sure when this following segment applies. I do know,
488f131b
JB
2782 now, that we shouldn't rewrite the regs when we were stopped
2783 by a random signal from the inferior process. */
d4f3574e 2784 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
488f131b 2785 (this is only used on the 88k). */
d4f3574e
SS
2786
2787 if (!bpstat_explains_signal (stop_bpstat)
488f131b 2788 && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
d4f3574e
SS
2789 SHIFT_INST_REGS ();
2790#endif /* SHIFT_INST_REGS */
2791
2792 resume (currently_stepping (ecs), stop_signal);
2793 }
2794
488f131b 2795 prepare_to_wait (ecs);
d4f3574e
SS
2796}
2797
104c1213
JM
2798/* This function normally comes after a resume, before
2799 handle_inferior_event exits. It takes care of any last bits of
2800 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2801
104c1213
JM
2802static void
2803prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2804{
104c1213
JM
2805 if (ecs->infwait_state == infwait_normal_state)
2806 {
2807 overlay_cache_invalid = 1;
2808
2809 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2810 target_wait because they can be loaded from the target while
2811 in target_wait. This makes remote debugging a bit more
2812 efficient for those targets that provide critical registers
2813 as part of their normal status mechanism. */
104c1213
JM
2814
2815 registers_changed ();
39f77062 2816 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2817 ecs->wp = &(ecs->ws);
2818 }
2819 /* This is the old end of the while loop. Let everybody know we
2820 want to wait for the inferior some more and get called again
2821 soon. */
2822 ecs->wait_some_more = 1;
c906108c 2823}
11cf8741
JM
2824
2825/* Print why the inferior has stopped. We always print something when
2826 the inferior exits, or receives a signal. The rest of the cases are
2827 dealt with later on in normal_stop() and print_it_typical(). Ideally
2828 there should be a call to this function from handle_inferior_event()
2829 each time stop_stepping() is called.*/
2830static void
2831print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2832{
2833 switch (stop_reason)
2834 {
2835 case STOP_UNKNOWN:
2836 /* We don't deal with these cases from handle_inferior_event()
2837 yet. */
2838 break;
2839 case END_STEPPING_RANGE:
2840 /* We are done with a step/next/si/ni command. */
2841 /* For now print nothing. */
fb40c209 2842 /* Print a message only if not in the middle of doing a "step n"
488f131b 2843 operation for n > 1 */
fb40c209 2844 if (!step_multi || !stop_step)
9dc5e2a9 2845 if (ui_out_is_mi_like_p (uiout))
fb40c209 2846 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2847 break;
2848 case BREAKPOINT_HIT:
2849 /* We found a breakpoint. */
2850 /* For now print nothing. */
2851 break;
2852 case SIGNAL_EXITED:
2853 /* The inferior was terminated by a signal. */
8b93c638 2854 annotate_signalled ();
9dc5e2a9 2855 if (ui_out_is_mi_like_p (uiout))
fb40c209 2856 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2857 ui_out_text (uiout, "\nProgram terminated with signal ");
2858 annotate_signal_name ();
488f131b
JB
2859 ui_out_field_string (uiout, "signal-name",
2860 target_signal_to_name (stop_info));
8b93c638
JM
2861 annotate_signal_name_end ();
2862 ui_out_text (uiout, ", ");
2863 annotate_signal_string ();
488f131b
JB
2864 ui_out_field_string (uiout, "signal-meaning",
2865 target_signal_to_string (stop_info));
8b93c638
JM
2866 annotate_signal_string_end ();
2867 ui_out_text (uiout, ".\n");
2868 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2869 break;
2870 case EXITED:
2871 /* The inferior program is finished. */
8b93c638
JM
2872 annotate_exited (stop_info);
2873 if (stop_info)
2874 {
9dc5e2a9 2875 if (ui_out_is_mi_like_p (uiout))
fb40c209 2876 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2877 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2878 ui_out_field_fmt (uiout, "exit-code", "0%o",
2879 (unsigned int) stop_info);
8b93c638
JM
2880 ui_out_text (uiout, ".\n");
2881 }
2882 else
2883 {
9dc5e2a9 2884 if (ui_out_is_mi_like_p (uiout))
fb40c209 2885 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2886 ui_out_text (uiout, "\nProgram exited normally.\n");
2887 }
11cf8741
JM
2888 break;
2889 case SIGNAL_RECEIVED:
2890 /* Signal received. The signal table tells us to print about
2891 it. */
8b93c638
JM
2892 annotate_signal ();
2893 ui_out_text (uiout, "\nProgram received signal ");
2894 annotate_signal_name ();
84c6c83c
KS
2895 if (ui_out_is_mi_like_p (uiout))
2896 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
2897 ui_out_field_string (uiout, "signal-name",
2898 target_signal_to_name (stop_info));
8b93c638
JM
2899 annotate_signal_name_end ();
2900 ui_out_text (uiout, ", ");
2901 annotate_signal_string ();
488f131b
JB
2902 ui_out_field_string (uiout, "signal-meaning",
2903 target_signal_to_string (stop_info));
8b93c638
JM
2904 annotate_signal_string_end ();
2905 ui_out_text (uiout, ".\n");
11cf8741
JM
2906 break;
2907 default:
8e65ff28
AC
2908 internal_error (__FILE__, __LINE__,
2909 "print_stop_reason: unrecognized enum value");
11cf8741
JM
2910 break;
2911 }
2912}
c906108c 2913\f
43ff13b4 2914
c906108c
SS
2915/* Here to return control to GDB when the inferior stops for real.
2916 Print appropriate messages, remove breakpoints, give terminal our modes.
2917
2918 STOP_PRINT_FRAME nonzero means print the executing frame
2919 (pc, function, args, file, line number and line text).
2920 BREAKPOINTS_FAILED nonzero means stop was due to error
2921 attempting to insert breakpoints. */
2922
2923void
96baa820 2924normal_stop (void)
c906108c 2925{
c906108c
SS
2926 /* As with the notification of thread events, we want to delay
2927 notifying the user that we've switched thread context until
2928 the inferior actually stops.
2929
2930 (Note that there's no point in saying anything if the inferior
2931 has exited!) */
488f131b 2932 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
7a292a7a 2933 && target_has_execution)
c906108c
SS
2934 {
2935 target_terminal_ours_for_output ();
c3f6f71d 2936 printf_filtered ("[Switching to %s]\n",
39f77062
KB
2937 target_pid_or_tid_to_str (inferior_ptid));
2938 previous_inferior_ptid = inferior_ptid;
c906108c 2939 }
c906108c
SS
2940
2941 /* Make sure that the current_frame's pc is correct. This
2942 is a correction for setting up the frame info before doing
2943 DECR_PC_AFTER_BREAK */
b87efeee
AC
2944 if (target_has_execution)
2945 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2946 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2947 frame code to check for this and sort out any resultant mess.
2948 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 2949 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 2950
c906108c
SS
2951 if (target_has_execution && breakpoints_inserted)
2952 {
2953 if (remove_breakpoints ())
2954 {
2955 target_terminal_ours_for_output ();
2956 printf_filtered ("Cannot remove breakpoints because ");
2957 printf_filtered ("program is no longer writable.\n");
2958 printf_filtered ("It might be running in another process.\n");
2959 printf_filtered ("Further execution is probably impossible.\n");
2960 }
2961 }
2962 breakpoints_inserted = 0;
2963
2964 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2965 Delete any breakpoint that is to be deleted at the next stop. */
2966
2967 breakpoint_auto_delete (stop_bpstat);
2968
2969 /* If an auto-display called a function and that got a signal,
2970 delete that auto-display to avoid an infinite recursion. */
2971
2972 if (stopped_by_random_signal)
2973 disable_current_display ();
2974
2975 /* Don't print a message if in the middle of doing a "step n"
2976 operation for n > 1 */
2977 if (step_multi && stop_step)
2978 goto done;
2979
2980 target_terminal_ours ();
2981
5913bcb0
AC
2982 /* Look up the hook_stop and run it (CLI internally handles problem
2983 of stop_command's pre-hook not existing). */
2984 if (stop_command)
2985 catch_errors (hook_stop_stub, stop_command,
2986 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
2987
2988 if (!target_has_stack)
2989 {
2990
2991 goto done;
2992 }
2993
2994 /* Select innermost stack frame - i.e., current frame is frame 0,
2995 and current location is based on that.
2996 Don't do this on return from a stack dummy routine,
2997 or if the program has exited. */
2998
2999 if (!stop_stack_dummy)
3000 {
0f7d239c 3001 select_frame (get_current_frame ());
c906108c
SS
3002
3003 /* Print current location without a level number, if
c5aa993b
JM
3004 we have changed functions or hit a breakpoint.
3005 Print source line if we have one.
3006 bpstat_print() contains the logic deciding in detail
3007 what to print, based on the event(s) that just occurred. */
c906108c 3008
6e7f8b9c 3009 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3010 {
3011 int bpstat_ret;
3012 int source_flag;
917317f4 3013 int do_frame_printing = 1;
c906108c
SS
3014
3015 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3016 switch (bpstat_ret)
3017 {
3018 case PRINT_UNKNOWN:
aa0cd9c1
AC
3019 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3020 (or should) carry around the function and does (or
3021 should) use that when doing a frame comparison. */
917317f4 3022 if (stop_step
aa0cd9c1
AC
3023 && frame_id_eq (step_frame_id,
3024 get_frame_id (get_current_frame ()))
917317f4 3025 && step_start_function == find_pc_function (stop_pc))
488f131b 3026 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3027 else
488f131b 3028 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3029 break;
3030 case PRINT_SRC_AND_LOC:
488f131b 3031 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3032 break;
3033 case PRINT_SRC_ONLY:
c5394b80 3034 source_flag = SRC_LINE;
917317f4
JM
3035 break;
3036 case PRINT_NOTHING:
488f131b 3037 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3038 do_frame_printing = 0;
3039 break;
3040 default:
488f131b 3041 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3042 }
fb40c209 3043 /* For mi, have the same behavior every time we stop:
488f131b 3044 print everything but the source line. */
9dc5e2a9 3045 if (ui_out_is_mi_like_p (uiout))
fb40c209 3046 source_flag = LOC_AND_ADDRESS;
c906108c 3047
9dc5e2a9 3048 if (ui_out_is_mi_like_p (uiout))
39f77062 3049 ui_out_field_int (uiout, "thread-id",
488f131b 3050 pid_to_thread_id (inferior_ptid));
c906108c
SS
3051 /* The behavior of this routine with respect to the source
3052 flag is:
c5394b80
JM
3053 SRC_LINE: Print only source line
3054 LOCATION: Print only location
3055 SRC_AND_LOC: Print location and source line */
917317f4 3056 if (do_frame_printing)
7789c6f5 3057 print_stack_frame (deprecated_selected_frame, -1, source_flag);
c906108c
SS
3058
3059 /* Display the auto-display expressions. */
3060 do_displays ();
3061 }
3062 }
3063
3064 /* Save the function value return registers, if we care.
3065 We might be about to restore their previous contents. */
3066 if (proceed_to_finish)
72cec141
AC
3067 /* NB: The copy goes through to the target picking up the value of
3068 all the registers. */
3069 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3070
3071 if (stop_stack_dummy)
3072 {
dbe9fe58
AC
3073 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3074 ends with a setting of the current frame, so we can use that
3075 next. */
3076 frame_pop (get_current_frame ());
c906108c 3077 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3078 Can't rely on restore_inferior_status because that only gets
3079 called if we don't stop in the called function. */
c906108c 3080 stop_pc = read_pc ();
0f7d239c 3081 select_frame (get_current_frame ());
c906108c
SS
3082 }
3083
c906108c
SS
3084done:
3085 annotate_stopped ();
06600e06 3086 observer_notify_normal_stop ();
c906108c
SS
3087}
3088
3089static int
96baa820 3090hook_stop_stub (void *cmd)
c906108c 3091{
5913bcb0 3092 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3093 return (0);
3094}
3095\f
c5aa993b 3096int
96baa820 3097signal_stop_state (int signo)
c906108c
SS
3098{
3099 return signal_stop[signo];
3100}
3101
c5aa993b 3102int
96baa820 3103signal_print_state (int signo)
c906108c
SS
3104{
3105 return signal_print[signo];
3106}
3107
c5aa993b 3108int
96baa820 3109signal_pass_state (int signo)
c906108c
SS
3110{
3111 return signal_program[signo];
3112}
3113
488f131b 3114int
7bda5e4a 3115signal_stop_update (int signo, int state)
d4f3574e
SS
3116{
3117 int ret = signal_stop[signo];
3118 signal_stop[signo] = state;
3119 return ret;
3120}
3121
488f131b 3122int
7bda5e4a 3123signal_print_update (int signo, int state)
d4f3574e
SS
3124{
3125 int ret = signal_print[signo];
3126 signal_print[signo] = state;
3127 return ret;
3128}
3129
488f131b 3130int
7bda5e4a 3131signal_pass_update (int signo, int state)
d4f3574e
SS
3132{
3133 int ret = signal_program[signo];
3134 signal_program[signo] = state;
3135 return ret;
3136}
3137
c906108c 3138static void
96baa820 3139sig_print_header (void)
c906108c
SS
3140{
3141 printf_filtered ("\
3142Signal Stop\tPrint\tPass to program\tDescription\n");
3143}
3144
3145static void
96baa820 3146sig_print_info (enum target_signal oursig)
c906108c
SS
3147{
3148 char *name = target_signal_to_name (oursig);
3149 int name_padding = 13 - strlen (name);
96baa820 3150
c906108c
SS
3151 if (name_padding <= 0)
3152 name_padding = 0;
3153
3154 printf_filtered ("%s", name);
488f131b 3155 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3156 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3157 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3158 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3159 printf_filtered ("%s\n", target_signal_to_string (oursig));
3160}
3161
3162/* Specify how various signals in the inferior should be handled. */
3163
3164static void
96baa820 3165handle_command (char *args, int from_tty)
c906108c
SS
3166{
3167 char **argv;
3168 int digits, wordlen;
3169 int sigfirst, signum, siglast;
3170 enum target_signal oursig;
3171 int allsigs;
3172 int nsigs;
3173 unsigned char *sigs;
3174 struct cleanup *old_chain;
3175
3176 if (args == NULL)
3177 {
3178 error_no_arg ("signal to handle");
3179 }
3180
3181 /* Allocate and zero an array of flags for which signals to handle. */
3182
3183 nsigs = (int) TARGET_SIGNAL_LAST;
3184 sigs = (unsigned char *) alloca (nsigs);
3185 memset (sigs, 0, nsigs);
3186
3187 /* Break the command line up into args. */
3188
3189 argv = buildargv (args);
3190 if (argv == NULL)
3191 {
3192 nomem (0);
3193 }
7a292a7a 3194 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3195
3196 /* Walk through the args, looking for signal oursigs, signal names, and
3197 actions. Signal numbers and signal names may be interspersed with
3198 actions, with the actions being performed for all signals cumulatively
3199 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3200
3201 while (*argv != NULL)
3202 {
3203 wordlen = strlen (*argv);
3204 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3205 {;
3206 }
3207 allsigs = 0;
3208 sigfirst = siglast = -1;
3209
3210 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3211 {
3212 /* Apply action to all signals except those used by the
3213 debugger. Silently skip those. */
3214 allsigs = 1;
3215 sigfirst = 0;
3216 siglast = nsigs - 1;
3217 }
3218 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3219 {
3220 SET_SIGS (nsigs, sigs, signal_stop);
3221 SET_SIGS (nsigs, sigs, signal_print);
3222 }
3223 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3224 {
3225 UNSET_SIGS (nsigs, sigs, signal_program);
3226 }
3227 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3228 {
3229 SET_SIGS (nsigs, sigs, signal_print);
3230 }
3231 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3232 {
3233 SET_SIGS (nsigs, sigs, signal_program);
3234 }
3235 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3236 {
3237 UNSET_SIGS (nsigs, sigs, signal_stop);
3238 }
3239 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3240 {
3241 SET_SIGS (nsigs, sigs, signal_program);
3242 }
3243 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3244 {
3245 UNSET_SIGS (nsigs, sigs, signal_print);
3246 UNSET_SIGS (nsigs, sigs, signal_stop);
3247 }
3248 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3249 {
3250 UNSET_SIGS (nsigs, sigs, signal_program);
3251 }
3252 else if (digits > 0)
3253 {
3254 /* It is numeric. The numeric signal refers to our own
3255 internal signal numbering from target.h, not to host/target
3256 signal number. This is a feature; users really should be
3257 using symbolic names anyway, and the common ones like
3258 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3259
3260 sigfirst = siglast = (int)
3261 target_signal_from_command (atoi (*argv));
3262 if ((*argv)[digits] == '-')
3263 {
3264 siglast = (int)
3265 target_signal_from_command (atoi ((*argv) + digits + 1));
3266 }
3267 if (sigfirst > siglast)
3268 {
3269 /* Bet he didn't figure we'd think of this case... */
3270 signum = sigfirst;
3271 sigfirst = siglast;
3272 siglast = signum;
3273 }
3274 }
3275 else
3276 {
3277 oursig = target_signal_from_name (*argv);
3278 if (oursig != TARGET_SIGNAL_UNKNOWN)
3279 {
3280 sigfirst = siglast = (int) oursig;
3281 }
3282 else
3283 {
3284 /* Not a number and not a recognized flag word => complain. */
3285 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3286 }
3287 }
3288
3289 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3290 which signals to apply actions to. */
c906108c
SS
3291
3292 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3293 {
3294 switch ((enum target_signal) signum)
3295 {
3296 case TARGET_SIGNAL_TRAP:
3297 case TARGET_SIGNAL_INT:
3298 if (!allsigs && !sigs[signum])
3299 {
3300 if (query ("%s is used by the debugger.\n\
488f131b 3301Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3302 {
3303 sigs[signum] = 1;
3304 }
3305 else
3306 {
3307 printf_unfiltered ("Not confirmed, unchanged.\n");
3308 gdb_flush (gdb_stdout);
3309 }
3310 }
3311 break;
3312 case TARGET_SIGNAL_0:
3313 case TARGET_SIGNAL_DEFAULT:
3314 case TARGET_SIGNAL_UNKNOWN:
3315 /* Make sure that "all" doesn't print these. */
3316 break;
3317 default:
3318 sigs[signum] = 1;
3319 break;
3320 }
3321 }
3322
3323 argv++;
3324 }
3325
39f77062 3326 target_notice_signals (inferior_ptid);
c906108c
SS
3327
3328 if (from_tty)
3329 {
3330 /* Show the results. */
3331 sig_print_header ();
3332 for (signum = 0; signum < nsigs; signum++)
3333 {
3334 if (sigs[signum])
3335 {
3336 sig_print_info (signum);
3337 }
3338 }
3339 }
3340
3341 do_cleanups (old_chain);
3342}
3343
3344static void
96baa820 3345xdb_handle_command (char *args, int from_tty)
c906108c
SS
3346{
3347 char **argv;
3348 struct cleanup *old_chain;
3349
3350 /* Break the command line up into args. */
3351
3352 argv = buildargv (args);
3353 if (argv == NULL)
3354 {
3355 nomem (0);
3356 }
7a292a7a 3357 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3358 if (argv[1] != (char *) NULL)
3359 {
3360 char *argBuf;
3361 int bufLen;
3362
3363 bufLen = strlen (argv[0]) + 20;
3364 argBuf = (char *) xmalloc (bufLen);
3365 if (argBuf)
3366 {
3367 int validFlag = 1;
3368 enum target_signal oursig;
3369
3370 oursig = target_signal_from_name (argv[0]);
3371 memset (argBuf, 0, bufLen);
3372 if (strcmp (argv[1], "Q") == 0)
3373 sprintf (argBuf, "%s %s", argv[0], "noprint");
3374 else
3375 {
3376 if (strcmp (argv[1], "s") == 0)
3377 {
3378 if (!signal_stop[oursig])
3379 sprintf (argBuf, "%s %s", argv[0], "stop");
3380 else
3381 sprintf (argBuf, "%s %s", argv[0], "nostop");
3382 }
3383 else if (strcmp (argv[1], "i") == 0)
3384 {
3385 if (!signal_program[oursig])
3386 sprintf (argBuf, "%s %s", argv[0], "pass");
3387 else
3388 sprintf (argBuf, "%s %s", argv[0], "nopass");
3389 }
3390 else if (strcmp (argv[1], "r") == 0)
3391 {
3392 if (!signal_print[oursig])
3393 sprintf (argBuf, "%s %s", argv[0], "print");
3394 else
3395 sprintf (argBuf, "%s %s", argv[0], "noprint");
3396 }
3397 else
3398 validFlag = 0;
3399 }
3400 if (validFlag)
3401 handle_command (argBuf, from_tty);
3402 else
3403 printf_filtered ("Invalid signal handling flag.\n");
3404 if (argBuf)
b8c9b27d 3405 xfree (argBuf);
c906108c
SS
3406 }
3407 }
3408 do_cleanups (old_chain);
3409}
3410
3411/* Print current contents of the tables set by the handle command.
3412 It is possible we should just be printing signals actually used
3413 by the current target (but for things to work right when switching
3414 targets, all signals should be in the signal tables). */
3415
3416static void
96baa820 3417signals_info (char *signum_exp, int from_tty)
c906108c
SS
3418{
3419 enum target_signal oursig;
3420 sig_print_header ();
3421
3422 if (signum_exp)
3423 {
3424 /* First see if this is a symbol name. */
3425 oursig = target_signal_from_name (signum_exp);
3426 if (oursig == TARGET_SIGNAL_UNKNOWN)
3427 {
3428 /* No, try numeric. */
3429 oursig =
bb518678 3430 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3431 }
3432 sig_print_info (oursig);
3433 return;
3434 }
3435
3436 printf_filtered ("\n");
3437 /* These ugly casts brought to you by the native VAX compiler. */
3438 for (oursig = TARGET_SIGNAL_FIRST;
3439 (int) oursig < (int) TARGET_SIGNAL_LAST;
3440 oursig = (enum target_signal) ((int) oursig + 1))
3441 {
3442 QUIT;
3443
3444 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3445 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3446 sig_print_info (oursig);
3447 }
3448
3449 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3450}
3451\f
7a292a7a
SS
3452struct inferior_status
3453{
3454 enum target_signal stop_signal;
3455 CORE_ADDR stop_pc;
3456 bpstat stop_bpstat;
3457 int stop_step;
3458 int stop_stack_dummy;
3459 int stopped_by_random_signal;
3460 int trap_expected;
3461 CORE_ADDR step_range_start;
3462 CORE_ADDR step_range_end;
aa0cd9c1 3463 struct frame_id step_frame_id;
5fbbeb29 3464 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3465 CORE_ADDR step_resume_break_address;
3466 int stop_after_trap;
3467 int stop_soon_quietly;
72cec141 3468 struct regcache *stop_registers;
7a292a7a
SS
3469
3470 /* These are here because if call_function_by_hand has written some
3471 registers and then decides to call error(), we better not have changed
3472 any registers. */
72cec141 3473 struct regcache *registers;
7a292a7a 3474
101dcfbe
AC
3475 /* A frame unique identifier. */
3476 struct frame_id selected_frame_id;
3477
7a292a7a
SS
3478 int breakpoint_proceeded;
3479 int restore_stack_info;
3480 int proceed_to_finish;
3481};
3482
7a292a7a 3483void
96baa820
JM
3484write_inferior_status_register (struct inferior_status *inf_status, int regno,
3485 LONGEST val)
7a292a7a 3486{
c5aa993b 3487 int size = REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3488 void *buf = alloca (size);
3489 store_signed_integer (buf, size, val);
0818c12a 3490 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3491}
3492
c906108c
SS
3493/* Save all of the information associated with the inferior<==>gdb
3494 connection. INF_STATUS is a pointer to a "struct inferior_status"
3495 (defined in inferior.h). */
3496
7a292a7a 3497struct inferior_status *
96baa820 3498save_inferior_status (int restore_stack_info)
c906108c 3499{
72cec141 3500 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3501
c906108c
SS
3502 inf_status->stop_signal = stop_signal;
3503 inf_status->stop_pc = stop_pc;
3504 inf_status->stop_step = stop_step;
3505 inf_status->stop_stack_dummy = stop_stack_dummy;
3506 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3507 inf_status->trap_expected = trap_expected;
3508 inf_status->step_range_start = step_range_start;
3509 inf_status->step_range_end = step_range_end;
aa0cd9c1 3510 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3511 inf_status->step_over_calls = step_over_calls;
3512 inf_status->stop_after_trap = stop_after_trap;
3513 inf_status->stop_soon_quietly = stop_soon_quietly;
3514 /* Save original bpstat chain here; replace it with copy of chain.
3515 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3516 hand them back the original chain when restore_inferior_status is
3517 called. */
c906108c
SS
3518 inf_status->stop_bpstat = stop_bpstat;
3519 stop_bpstat = bpstat_copy (stop_bpstat);
3520 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3521 inf_status->restore_stack_info = restore_stack_info;
3522 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3523
72cec141 3524 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3525
72cec141 3526 inf_status->registers = regcache_dup (current_regcache);
c906108c 3527
7a424e99 3528 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3529 return inf_status;
c906108c
SS
3530}
3531
c906108c 3532static int
96baa820 3533restore_selected_frame (void *args)
c906108c 3534{
488f131b 3535 struct frame_id *fid = (struct frame_id *) args;
c906108c 3536 struct frame_info *frame;
c906108c 3537
101dcfbe 3538 frame = frame_find_by_id (*fid);
c906108c 3539
aa0cd9c1
AC
3540 /* If inf_status->selected_frame_id is NULL, there was no previously
3541 selected frame. */
101dcfbe 3542 if (frame == NULL)
c906108c
SS
3543 {
3544 warning ("Unable to restore previously selected frame.\n");
3545 return 0;
3546 }
3547
0f7d239c 3548 select_frame (frame);
c906108c
SS
3549
3550 return (1);
3551}
3552
3553void
96baa820 3554restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3555{
3556 stop_signal = inf_status->stop_signal;
3557 stop_pc = inf_status->stop_pc;
3558 stop_step = inf_status->stop_step;
3559 stop_stack_dummy = inf_status->stop_stack_dummy;
3560 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3561 trap_expected = inf_status->trap_expected;
3562 step_range_start = inf_status->step_range_start;
3563 step_range_end = inf_status->step_range_end;
aa0cd9c1 3564 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3565 step_over_calls = inf_status->step_over_calls;
3566 stop_after_trap = inf_status->stop_after_trap;
3567 stop_soon_quietly = inf_status->stop_soon_quietly;
3568 bpstat_clear (&stop_bpstat);
3569 stop_bpstat = inf_status->stop_bpstat;
3570 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3571 proceed_to_finish = inf_status->proceed_to_finish;
3572
72cec141
AC
3573 /* FIXME: Is the restore of stop_registers always needed. */
3574 regcache_xfree (stop_registers);
3575 stop_registers = inf_status->stop_registers;
c906108c
SS
3576
3577 /* The inferior can be gone if the user types "print exit(0)"
3578 (and perhaps other times). */
3579 if (target_has_execution)
72cec141
AC
3580 /* NB: The register write goes through to the target. */
3581 regcache_cpy (current_regcache, inf_status->registers);
3582 regcache_xfree (inf_status->registers);
c906108c 3583
c906108c
SS
3584 /* FIXME: If we are being called after stopping in a function which
3585 is called from gdb, we should not be trying to restore the
3586 selected frame; it just prints a spurious error message (The
3587 message is useful, however, in detecting bugs in gdb (like if gdb
3588 clobbers the stack)). In fact, should we be restoring the
3589 inferior status at all in that case? . */
3590
3591 if (target_has_stack && inf_status->restore_stack_info)
3592 {
c906108c 3593 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3594 walking the stack might encounter a garbage pointer and
3595 error() trying to dereference it. */
488f131b
JB
3596 if (catch_errors
3597 (restore_selected_frame, &inf_status->selected_frame_id,
3598 "Unable to restore previously selected frame:\n",
3599 RETURN_MASK_ERROR) == 0)
c906108c
SS
3600 /* Error in restoring the selected frame. Select the innermost
3601 frame. */
0f7d239c 3602 select_frame (get_current_frame ());
c906108c
SS
3603
3604 }
c906108c 3605
72cec141 3606 xfree (inf_status);
7a292a7a 3607}
c906108c 3608
74b7792f
AC
3609static void
3610do_restore_inferior_status_cleanup (void *sts)
3611{
3612 restore_inferior_status (sts);
3613}
3614
3615struct cleanup *
3616make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3617{
3618 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3619}
3620
c906108c 3621void
96baa820 3622discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3623{
3624 /* See save_inferior_status for info on stop_bpstat. */
3625 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3626 regcache_xfree (inf_status->registers);
3627 regcache_xfree (inf_status->stop_registers);
3628 xfree (inf_status);
7a292a7a
SS
3629}
3630
47932f85
DJ
3631int
3632inferior_has_forked (int pid, int *child_pid)
3633{
3634 struct target_waitstatus last;
3635 ptid_t last_ptid;
3636
3637 get_last_target_status (&last_ptid, &last);
3638
3639 if (last.kind != TARGET_WAITKIND_FORKED)
3640 return 0;
3641
3642 if (ptid_get_pid (last_ptid) != pid)
3643 return 0;
3644
3645 *child_pid = last.value.related_pid;
3646 return 1;
3647}
3648
3649int
3650inferior_has_vforked (int pid, int *child_pid)
3651{
3652 struct target_waitstatus last;
3653 ptid_t last_ptid;
3654
3655 get_last_target_status (&last_ptid, &last);
3656
3657 if (last.kind != TARGET_WAITKIND_VFORKED)
3658 return 0;
3659
3660 if (ptid_get_pid (last_ptid) != pid)
3661 return 0;
3662
3663 *child_pid = last.value.related_pid;
3664 return 1;
3665}
3666
3667int
3668inferior_has_execd (int pid, char **execd_pathname)
3669{
3670 struct target_waitstatus last;
3671 ptid_t last_ptid;
3672
3673 get_last_target_status (&last_ptid, &last);
3674
3675 if (last.kind != TARGET_WAITKIND_EXECD)
3676 return 0;
3677
3678 if (ptid_get_pid (last_ptid) != pid)
3679 return 0;
3680
3681 *execd_pathname = xstrdup (last.value.execd_pathname);
3682 return 1;
3683}
3684
ca6724c1
KB
3685/* Oft used ptids */
3686ptid_t null_ptid;
3687ptid_t minus_one_ptid;
3688
3689/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3690
ca6724c1
KB
3691ptid_t
3692ptid_build (int pid, long lwp, long tid)
3693{
3694 ptid_t ptid;
3695
3696 ptid.pid = pid;
3697 ptid.lwp = lwp;
3698 ptid.tid = tid;
3699 return ptid;
3700}
3701
3702/* Create a ptid from just a pid. */
3703
3704ptid_t
3705pid_to_ptid (int pid)
3706{
3707 return ptid_build (pid, 0, 0);
3708}
3709
3710/* Fetch the pid (process id) component from a ptid. */
3711
3712int
3713ptid_get_pid (ptid_t ptid)
3714{
3715 return ptid.pid;
3716}
3717
3718/* Fetch the lwp (lightweight process) component from a ptid. */
3719
3720long
3721ptid_get_lwp (ptid_t ptid)
3722{
3723 return ptid.lwp;
3724}
3725
3726/* Fetch the tid (thread id) component from a ptid. */
3727
3728long
3729ptid_get_tid (ptid_t ptid)
3730{
3731 return ptid.tid;
3732}
3733
3734/* ptid_equal() is used to test equality of two ptids. */
3735
3736int
3737ptid_equal (ptid_t ptid1, ptid_t ptid2)
3738{
3739 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3740 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3741}
3742
3743/* restore_inferior_ptid() will be used by the cleanup machinery
3744 to restore the inferior_ptid value saved in a call to
3745 save_inferior_ptid(). */
ce696e05
KB
3746
3747static void
3748restore_inferior_ptid (void *arg)
3749{
3750 ptid_t *saved_ptid_ptr = arg;
3751 inferior_ptid = *saved_ptid_ptr;
3752 xfree (arg);
3753}
3754
3755/* Save the value of inferior_ptid so that it may be restored by a
3756 later call to do_cleanups(). Returns the struct cleanup pointer
3757 needed for later doing the cleanup. */
3758
3759struct cleanup *
3760save_inferior_ptid (void)
3761{
3762 ptid_t *saved_ptid_ptr;
3763
3764 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3765 *saved_ptid_ptr = inferior_ptid;
3766 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3767}
c5aa993b 3768\f
488f131b 3769
7a292a7a 3770static void
96baa820 3771build_infrun (void)
7a292a7a 3772{
72cec141 3773 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3774}
c906108c 3775
c906108c 3776void
96baa820 3777_initialize_infrun (void)
c906108c
SS
3778{
3779 register int i;
3780 register int numsigs;
3781 struct cmd_list_element *c;
3782
0f71a2f6
JM
3783 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
3784 register_gdbarch_swap (NULL, 0, build_infrun);
3785
c906108c
SS
3786 add_info ("signals", signals_info,
3787 "What debugger does when program gets various signals.\n\
3788Specify a signal as argument to print info on that signal only.");
3789 add_info_alias ("handle", "signals", 0);
3790
3791 add_com ("handle", class_run, handle_command,
3792 concat ("Specify how to handle a signal.\n\
3793Args are signals and actions to apply to those signals.\n\
3794Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3795from 1-15 are allowed for compatibility with old versions of GDB.\n\
3796Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3797The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3798used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3799\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3800Stop means reenter debugger if this signal happens (implies print).\n\
3801Print means print a message if this signal happens.\n\
3802Pass means let program see this signal; otherwise program doesn't know.\n\
3803Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3804Pass and Stop may be combined.", NULL));
3805 if (xdb_commands)
3806 {
3807 add_com ("lz", class_info, signals_info,
3808 "What debugger does when program gets various signals.\n\
3809Specify a signal as argument to print info on that signal only.");
3810 add_com ("z", class_run, xdb_handle_command,
3811 concat ("Specify how to handle a signal.\n\
3812Args are signals and actions to apply to those signals.\n\
3813Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3814from 1-15 are allowed for compatibility with old versions of GDB.\n\
3815Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3816The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3817used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3818\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3819nopass), \"Q\" (noprint)\n\
3820Stop means reenter debugger if this signal happens (implies print).\n\
3821Print means print a message if this signal happens.\n\
3822Pass means let program see this signal; otherwise program doesn't know.\n\
3823Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3824Pass and Stop may be combined.", NULL));
3825 }
3826
3827 if (!dbx_commands)
488f131b
JB
3828 stop_command =
3829 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3830This allows you to set a list of commands to be run each time execution\n\
3831of the program stops.", &cmdlist);
3832
3833 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3834 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3835 signal_print = (unsigned char *)
3836 xmalloc (sizeof (signal_print[0]) * numsigs);
3837 signal_program = (unsigned char *)
3838 xmalloc (sizeof (signal_program[0]) * numsigs);
3839 for (i = 0; i < numsigs; i++)
3840 {
3841 signal_stop[i] = 1;
3842 signal_print[i] = 1;
3843 signal_program[i] = 1;
3844 }
3845
3846 /* Signals caused by debugger's own actions
3847 should not be given to the program afterwards. */
3848 signal_program[TARGET_SIGNAL_TRAP] = 0;
3849 signal_program[TARGET_SIGNAL_INT] = 0;
3850
3851 /* Signals that are not errors should not normally enter the debugger. */
3852 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3853 signal_print[TARGET_SIGNAL_ALRM] = 0;
3854 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3855 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3856 signal_stop[TARGET_SIGNAL_PROF] = 0;
3857 signal_print[TARGET_SIGNAL_PROF] = 0;
3858 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3859 signal_print[TARGET_SIGNAL_CHLD] = 0;
3860 signal_stop[TARGET_SIGNAL_IO] = 0;
3861 signal_print[TARGET_SIGNAL_IO] = 0;
3862 signal_stop[TARGET_SIGNAL_POLL] = 0;
3863 signal_print[TARGET_SIGNAL_POLL] = 0;
3864 signal_stop[TARGET_SIGNAL_URG] = 0;
3865 signal_print[TARGET_SIGNAL_URG] = 0;
3866 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3867 signal_print[TARGET_SIGNAL_WINCH] = 0;
3868
cd0fc7c3
SS
3869 /* These signals are used internally by user-level thread
3870 implementations. (See signal(5) on Solaris.) Like the above
3871 signals, a healthy program receives and handles them as part of
3872 its normal operation. */
3873 signal_stop[TARGET_SIGNAL_LWP] = 0;
3874 signal_print[TARGET_SIGNAL_LWP] = 0;
3875 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3876 signal_print[TARGET_SIGNAL_WAITING] = 0;
3877 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3878 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3879
c906108c
SS
3880#ifdef SOLIB_ADD
3881 add_show_from_set
3882 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3883 (char *) &stop_on_solib_events,
3884 "Set stopping for shared library events.\n\
3885If nonzero, gdb will give control to the user when the dynamic linker\n\
3886notifies gdb of shared library events. The most common event of interest\n\
488f131b 3887to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
3888#endif
3889
3890 c = add_set_enum_cmd ("follow-fork-mode",
3891 class_run,
488f131b 3892 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
3893/* ??rehrauer: The "both" option is broken, by what may be a 10.20
3894 kernel problem. It's also not terribly useful without a GUI to
3895 help the user drive two debuggers. So for now, I'm disabling
3896 the "both" option. */
c5aa993b
JM
3897/* "Set debugger response to a program call of fork \
3898 or vfork.\n\
3899 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3900 parent - the original process is debugged after a fork\n\
3901 child - the new process is debugged after a fork\n\
3902 both - both the parent and child are debugged after a fork\n\
3903 ask - the debugger will ask for one of the above choices\n\
3904 For \"both\", another copy of the debugger will be started to follow\n\
3905 the new child process. The original debugger will continue to follow\n\
3906 the original parent process. To distinguish their prompts, the\n\
3907 debugger copy's prompt will be changed.\n\
3908 For \"parent\" or \"child\", the unfollowed process will run free.\n\
3909 By default, the debugger will follow the parent process.",
3910 */
c906108c
SS
3911 "Set debugger response to a program call of fork \
3912or vfork.\n\
3913A fork or vfork creates a new process. follow-fork-mode can be:\n\
3914 parent - the original process is debugged after a fork\n\
3915 child - the new process is debugged after a fork\n\
3916 ask - the debugger will ask for one of the above choices\n\
3917For \"parent\" or \"child\", the unfollowed process will run free.\n\
488f131b 3918By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
3919 add_show_from_set (c, &showlist);
3920
488f131b 3921 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 3922 &scheduler_mode, /* current mode */
c906108c
SS
3923 "Set mode for locking scheduler during execution.\n\
3924off == no locking (threads may preempt at any time)\n\
3925on == full locking (no thread except the current thread may run)\n\
3926step == scheduler locked during every single-step operation.\n\
3927 In this mode, no other thread may run during a step command.\n\
488f131b 3928 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 3929
9f60d481 3930 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 3931 add_show_from_set (c, &showlist);
5fbbeb29
CF
3932
3933 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
3934 var_boolean, (char *) &step_stop_if_no_debug,
3935 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
3936function without debug line information will stop at the first\n\
3937instruction of that function. Otherwise, the function is skipped and\n\
488f131b 3938the step command stops at a different source line.", &setlist);
5fbbeb29 3939 add_show_from_set (c, &showlist);
ca6724c1
KB
3940
3941 /* ptid initializations */
3942 null_ptid = ptid_build (0, 0, 0);
3943 minus_one_ptid = ptid_build (-1, 0, 0);
3944 inferior_ptid = null_ptid;
3945 target_last_wait_ptid = minus_one_ptid;
c906108c 3946}
This page took 0.885101 seconds and 4 git commands to generate.