2012-01-24 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
0b302171 4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
c906108c
SS
58
59/* Prototypes for local functions */
60
96baa820 61static void signals_info (char *, int);
c906108c 62
96baa820 63static void handle_command (char *, int);
c906108c 64
96baa820 65static void sig_print_info (enum target_signal);
c906108c 66
96baa820 67static void sig_print_header (void);
c906108c 68
74b7792f 69static void resume_cleanups (void *);
c906108c 70
96baa820 71static int hook_stop_stub (void *);
c906108c 72
96baa820
JM
73static int restore_selected_frame (void *);
74
4ef3f3be 75static int follow_fork (void);
96baa820
JM
76
77static void set_schedlock_func (char *args, int from_tty,
488f131b 78 struct cmd_list_element *c);
96baa820 79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
b3444185
PA
82static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
a7212384 84
96baa820
JM
85static void xdb_handle_command (char *args, int from_tty);
86
6a6b96b9 87static int prepare_to_proceed (int);
ea67f13b 88
33d62d64
JK
89static void print_exited_reason (int exitstatus);
90
91static void print_signal_exited_reason (enum target_signal siggnal);
92
93static void print_no_history_reason (void);
94
95static void print_signal_received_reason (enum target_signal siggnal);
96
97static void print_end_stepping_range_reason (void);
98
96baa820 99void _initialize_infrun (void);
43ff13b4 100
e58b0e63
PA
101void nullify_last_target_wait_ptid (void);
102
2c03e5be 103static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
104
105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
2484c66b
UW
107static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
5fbbeb29
CF
109/* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112int step_stop_if_no_debug = 0;
920d2a44
AC
113static void
114show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118}
5fbbeb29 119
1777feb0 120/* In asynchronous mode, but simulating synchronous execution. */
96baa820 121
43ff13b4
JM
122int sync_execution = 0;
123
c906108c
SS
124/* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
96baa820
JM
126 running in. */
127
39f77062 128static ptid_t previous_inferior_ptid;
7a292a7a 129
6c95b8df
PA
130/* Default behavior is to detach newly forked processes (legacy). */
131int detach_fork = 1;
132
237fc4c9
PA
133int debug_displaced = 0;
134static void
135show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139}
140
628fe4e4 141int debug_infrun = 0;
920d2a44
AC
142static void
143show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147}
527159b7 148
03583c20
UW
149
150/* Support for disabling address space randomization. */
151
152int disable_randomization = 1;
153
154static void
155show_disable_randomization (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 if (target_supports_disable_randomization ())
159 fprintf_filtered (file,
160 _("Disabling randomization of debuggee's "
161 "virtual address space is %s.\n"),
162 value);
163 else
164 fputs_filtered (_("Disabling randomization of debuggee's "
165 "virtual address space is unsupported on\n"
166 "this platform.\n"), file);
167}
168
169static void
170set_disable_randomization (char *args, int from_tty,
171 struct cmd_list_element *c)
172{
173 if (!target_supports_disable_randomization ())
174 error (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform."));
177}
178
179
d4f3574e
SS
180/* If the program uses ELF-style shared libraries, then calls to
181 functions in shared libraries go through stubs, which live in a
182 table called the PLT (Procedure Linkage Table). The first time the
183 function is called, the stub sends control to the dynamic linker,
184 which looks up the function's real address, patches the stub so
185 that future calls will go directly to the function, and then passes
186 control to the function.
187
188 If we are stepping at the source level, we don't want to see any of
189 this --- we just want to skip over the stub and the dynamic linker.
190 The simple approach is to single-step until control leaves the
191 dynamic linker.
192
ca557f44
AC
193 However, on some systems (e.g., Red Hat's 5.2 distribution) the
194 dynamic linker calls functions in the shared C library, so you
195 can't tell from the PC alone whether the dynamic linker is still
196 running. In this case, we use a step-resume breakpoint to get us
197 past the dynamic linker, as if we were using "next" to step over a
198 function call.
d4f3574e 199
cfd8ab24 200 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
201 linker code or not. Normally, this means we single-step. However,
202 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
203 address where we can place a step-resume breakpoint to get past the
204 linker's symbol resolution function.
205
cfd8ab24 206 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
207 pretty portable way, by comparing the PC against the address ranges
208 of the dynamic linker's sections.
209
210 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
211 it depends on internal details of the dynamic linker. It's usually
212 not too hard to figure out where to put a breakpoint, but it
213 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
214 sanity checking. If it can't figure things out, returning zero and
215 getting the (possibly confusing) stepping behavior is better than
216 signalling an error, which will obscure the change in the
217 inferior's state. */
c906108c 218
c906108c
SS
219/* This function returns TRUE if pc is the address of an instruction
220 that lies within the dynamic linker (such as the event hook, or the
221 dld itself).
222
223 This function must be used only when a dynamic linker event has
224 been caught, and the inferior is being stepped out of the hook, or
225 undefined results are guaranteed. */
226
227#ifndef SOLIB_IN_DYNAMIC_LINKER
228#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
229#endif
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
235static int non_stop_1 = 0;
236
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
241set_observer_mode (char *args, int from_tty,
242 struct cmd_list_element *c)
243{
244 extern int pagination_enabled;
245
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
269 target_async_permitted = 1;
270 pagination_enabled = 0;
271 non_stop = non_stop_1 = 1;
272 }
273
274 if (from_tty)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (observer_mode ? "on" : "off"));
277}
278
279static void
280show_observer_mode (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282{
283 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
284}
285
286/* This updates the value of observer mode based on changes in
287 permissions. Note that we are deliberately ignoring the values of
288 may-write-registers and may-write-memory, since the user may have
289 reason to enable these during a session, for instance to turn on a
290 debugging-related global. */
291
292void
293update_observer_mode (void)
294{
295 int newval;
296
297 newval = (!may_insert_breakpoints
298 && !may_insert_tracepoints
299 && may_insert_fast_tracepoints
300 && !may_stop
301 && non_stop);
302
303 /* Let the user know if things change. */
304 if (newval != observer_mode)
305 printf_filtered (_("Observer mode is now %s.\n"),
306 (newval ? "on" : "off"));
307
308 observer_mode = observer_mode_1 = newval;
309}
c2c6d25f 310
c906108c
SS
311/* Tables of how to react to signals; the user sets them. */
312
313static unsigned char *signal_stop;
314static unsigned char *signal_print;
315static unsigned char *signal_program;
316
2455069d
UW
317/* Table of signals that the target may silently handle.
318 This is automatically determined from the flags above,
319 and simply cached here. */
320static unsigned char *signal_pass;
321
c906108c
SS
322#define SET_SIGS(nsigs,sigs,flags) \
323 do { \
324 int signum = (nsigs); \
325 while (signum-- > 0) \
326 if ((sigs)[signum]) \
327 (flags)[signum] = 1; \
328 } while (0)
329
330#define UNSET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 0; \
336 } while (0)
337
1777feb0 338/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 339
edb3359d 340#define RESUME_ALL minus_one_ptid
c906108c
SS
341
342/* Command list pointer for the "stop" placeholder. */
343
344static struct cmd_list_element *stop_command;
345
c906108c
SS
346/* Function inferior was in as of last step command. */
347
348static struct symbol *step_start_function;
349
c906108c
SS
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
628fe4e4 352int stop_on_solib_events;
920d2a44
AC
353static void
354show_stop_on_solib_events (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c, const char *value)
356{
357 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
358 value);
359}
c906108c 360
c906108c
SS
361/* Nonzero means expecting a trace trap
362 and should stop the inferior and return silently when it happens. */
363
364int stop_after_trap;
365
642fd101
DE
366/* Save register contents here when executing a "finish" command or are
367 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
368 Thus this contains the return value from the called function (assuming
369 values are returned in a register). */
370
72cec141 371struct regcache *stop_registers;
c906108c 372
c906108c
SS
373/* Nonzero after stop if current stack frame should be printed. */
374
375static int stop_print_frame;
376
e02bc4cc 377/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
378 returned by target_wait()/deprecated_target_wait_hook(). This
379 information is returned by get_last_target_status(). */
39f77062 380static ptid_t target_last_wait_ptid;
e02bc4cc
DS
381static struct target_waitstatus target_last_waitstatus;
382
0d1e5fa7
PA
383static void context_switch (ptid_t ptid);
384
4e1c45ea 385void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
386
387void init_infwait_state (void);
a474d7c2 388
53904c9e
AC
389static const char follow_fork_mode_child[] = "child";
390static const char follow_fork_mode_parent[] = "parent";
391
488f131b 392static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
393 follow_fork_mode_child,
394 follow_fork_mode_parent,
395 NULL
ef346e04 396};
c906108c 397
53904c9e 398static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
399static void
400show_follow_fork_mode_string (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c, const char *value)
402{
3e43a32a
MS
403 fprintf_filtered (file,
404 _("Debugger response to a program "
405 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
406 value);
407}
c906108c
SS
408\f
409
e58b0e63
PA
410/* Tell the target to follow the fork we're stopped at. Returns true
411 if the inferior should be resumed; false, if the target for some
412 reason decided it's best not to resume. */
413
6604731b 414static int
4ef3f3be 415follow_fork (void)
c906108c 416{
ea1dd7bc 417 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
418 int should_resume = 1;
419 struct thread_info *tp;
420
421 /* Copy user stepping state to the new inferior thread. FIXME: the
422 followed fork child thread should have a copy of most of the
4e3990f4
DE
423 parent thread structure's run control related fields, not just these.
424 Initialized to avoid "may be used uninitialized" warnings from gcc. */
425 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 426 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
427 CORE_ADDR step_range_start = 0;
428 CORE_ADDR step_range_end = 0;
429 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
430
431 if (!non_stop)
432 {
433 ptid_t wait_ptid;
434 struct target_waitstatus wait_status;
435
436 /* Get the last target status returned by target_wait(). */
437 get_last_target_status (&wait_ptid, &wait_status);
438
439 /* If not stopped at a fork event, then there's nothing else to
440 do. */
441 if (wait_status.kind != TARGET_WAITKIND_FORKED
442 && wait_status.kind != TARGET_WAITKIND_VFORKED)
443 return 1;
444
445 /* Check if we switched over from WAIT_PTID, since the event was
446 reported. */
447 if (!ptid_equal (wait_ptid, minus_one_ptid)
448 && !ptid_equal (inferior_ptid, wait_ptid))
449 {
450 /* We did. Switch back to WAIT_PTID thread, to tell the
451 target to follow it (in either direction). We'll
452 afterwards refuse to resume, and inform the user what
453 happened. */
454 switch_to_thread (wait_ptid);
455 should_resume = 0;
456 }
457 }
458
459 tp = inferior_thread ();
460
461 /* If there were any forks/vforks that were caught and are now to be
462 followed, then do so now. */
463 switch (tp->pending_follow.kind)
464 {
465 case TARGET_WAITKIND_FORKED:
466 case TARGET_WAITKIND_VFORKED:
467 {
468 ptid_t parent, child;
469
470 /* If the user did a next/step, etc, over a fork call,
471 preserve the stepping state in the fork child. */
472 if (follow_child && should_resume)
473 {
8358c15c
JK
474 step_resume_breakpoint = clone_momentary_breakpoint
475 (tp->control.step_resume_breakpoint);
16c381f0
JK
476 step_range_start = tp->control.step_range_start;
477 step_range_end = tp->control.step_range_end;
478 step_frame_id = tp->control.step_frame_id;
186c406b
TT
479 exception_resume_breakpoint
480 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
481
482 /* For now, delete the parent's sr breakpoint, otherwise,
483 parent/child sr breakpoints are considered duplicates,
484 and the child version will not be installed. Remove
485 this when the breakpoints module becomes aware of
486 inferiors and address spaces. */
487 delete_step_resume_breakpoint (tp);
16c381f0
JK
488 tp->control.step_range_start = 0;
489 tp->control.step_range_end = 0;
490 tp->control.step_frame_id = null_frame_id;
186c406b 491 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
492 }
493
494 parent = inferior_ptid;
495 child = tp->pending_follow.value.related_pid;
496
497 /* Tell the target to do whatever is necessary to follow
498 either parent or child. */
499 if (target_follow_fork (follow_child))
500 {
501 /* Target refused to follow, or there's some other reason
502 we shouldn't resume. */
503 should_resume = 0;
504 }
505 else
506 {
507 /* This pending follow fork event is now handled, one way
508 or another. The previous selected thread may be gone
509 from the lists by now, but if it is still around, need
510 to clear the pending follow request. */
e09875d4 511 tp = find_thread_ptid (parent);
e58b0e63
PA
512 if (tp)
513 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
514
515 /* This makes sure we don't try to apply the "Switched
516 over from WAIT_PID" logic above. */
517 nullify_last_target_wait_ptid ();
518
1777feb0 519 /* If we followed the child, switch to it... */
e58b0e63
PA
520 if (follow_child)
521 {
522 switch_to_thread (child);
523
524 /* ... and preserve the stepping state, in case the
525 user was stepping over the fork call. */
526 if (should_resume)
527 {
528 tp = inferior_thread ();
8358c15c
JK
529 tp->control.step_resume_breakpoint
530 = step_resume_breakpoint;
16c381f0
JK
531 tp->control.step_range_start = step_range_start;
532 tp->control.step_range_end = step_range_end;
533 tp->control.step_frame_id = step_frame_id;
186c406b
TT
534 tp->control.exception_resume_breakpoint
535 = exception_resume_breakpoint;
e58b0e63
PA
536 }
537 else
538 {
539 /* If we get here, it was because we're trying to
540 resume from a fork catchpoint, but, the user
541 has switched threads away from the thread that
542 forked. In that case, the resume command
543 issued is most likely not applicable to the
544 child, so just warn, and refuse to resume. */
3e43a32a
MS
545 warning (_("Not resuming: switched threads "
546 "before following fork child.\n"));
e58b0e63
PA
547 }
548
549 /* Reset breakpoints in the child as appropriate. */
550 follow_inferior_reset_breakpoints ();
551 }
552 else
553 switch_to_thread (parent);
554 }
555 }
556 break;
557 case TARGET_WAITKIND_SPURIOUS:
558 /* Nothing to follow. */
559 break;
560 default:
561 internal_error (__FILE__, __LINE__,
562 "Unexpected pending_follow.kind %d\n",
563 tp->pending_follow.kind);
564 break;
565 }
c906108c 566
e58b0e63 567 return should_resume;
c906108c
SS
568}
569
6604731b
DJ
570void
571follow_inferior_reset_breakpoints (void)
c906108c 572{
4e1c45ea
PA
573 struct thread_info *tp = inferior_thread ();
574
6604731b
DJ
575 /* Was there a step_resume breakpoint? (There was if the user
576 did a "next" at the fork() call.) If so, explicitly reset its
577 thread number.
578
579 step_resumes are a form of bp that are made to be per-thread.
580 Since we created the step_resume bp when the parent process
581 was being debugged, and now are switching to the child process,
582 from the breakpoint package's viewpoint, that's a switch of
583 "threads". We must update the bp's notion of which thread
584 it is for, or it'll be ignored when it triggers. */
585
8358c15c
JK
586 if (tp->control.step_resume_breakpoint)
587 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 588
186c406b
TT
589 if (tp->control.exception_resume_breakpoint)
590 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
591
6604731b
DJ
592 /* Reinsert all breakpoints in the child. The user may have set
593 breakpoints after catching the fork, in which case those
594 were never set in the child, but only in the parent. This makes
595 sure the inserted breakpoints match the breakpoint list. */
596
597 breakpoint_re_set ();
598 insert_breakpoints ();
c906108c 599}
c906108c 600
6c95b8df
PA
601/* The child has exited or execed: resume threads of the parent the
602 user wanted to be executing. */
603
604static int
605proceed_after_vfork_done (struct thread_info *thread,
606 void *arg)
607{
608 int pid = * (int *) arg;
609
610 if (ptid_get_pid (thread->ptid) == pid
611 && is_running (thread->ptid)
612 && !is_executing (thread->ptid)
613 && !thread->stop_requested
16c381f0 614 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
615 {
616 if (debug_infrun)
617 fprintf_unfiltered (gdb_stdlog,
618 "infrun: resuming vfork parent thread %s\n",
619 target_pid_to_str (thread->ptid));
620
621 switch_to_thread (thread->ptid);
622 clear_proceed_status ();
623 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
624 }
625
626 return 0;
627}
628
629/* Called whenever we notice an exec or exit event, to handle
630 detaching or resuming a vfork parent. */
631
632static void
633handle_vfork_child_exec_or_exit (int exec)
634{
635 struct inferior *inf = current_inferior ();
636
637 if (inf->vfork_parent)
638 {
639 int resume_parent = -1;
640
641 /* This exec or exit marks the end of the shared memory region
642 between the parent and the child. If the user wanted to
643 detach from the parent, now is the time. */
644
645 if (inf->vfork_parent->pending_detach)
646 {
647 struct thread_info *tp;
648 struct cleanup *old_chain;
649 struct program_space *pspace;
650 struct address_space *aspace;
651
1777feb0 652 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
653
654 old_chain = make_cleanup_restore_current_thread ();
655
656 /* We're letting loose of the parent. */
657 tp = any_live_thread_of_process (inf->vfork_parent->pid);
658 switch_to_thread (tp->ptid);
659
660 /* We're about to detach from the parent, which implicitly
661 removes breakpoints from its address space. There's a
662 catch here: we want to reuse the spaces for the child,
663 but, parent/child are still sharing the pspace at this
664 point, although the exec in reality makes the kernel give
665 the child a fresh set of new pages. The problem here is
666 that the breakpoints module being unaware of this, would
667 likely chose the child process to write to the parent
668 address space. Swapping the child temporarily away from
669 the spaces has the desired effect. Yes, this is "sort
670 of" a hack. */
671
672 pspace = inf->pspace;
673 aspace = inf->aspace;
674 inf->aspace = NULL;
675 inf->pspace = NULL;
676
677 if (debug_infrun || info_verbose)
678 {
679 target_terminal_ours ();
680
681 if (exec)
682 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
683 "Detaching vfork parent process "
684 "%d after child exec.\n",
6c95b8df
PA
685 inf->vfork_parent->pid);
686 else
687 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
688 "Detaching vfork parent process "
689 "%d after child exit.\n",
6c95b8df
PA
690 inf->vfork_parent->pid);
691 }
692
693 target_detach (NULL, 0);
694
695 /* Put it back. */
696 inf->pspace = pspace;
697 inf->aspace = aspace;
698
699 do_cleanups (old_chain);
700 }
701 else if (exec)
702 {
703 /* We're staying attached to the parent, so, really give the
704 child a new address space. */
705 inf->pspace = add_program_space (maybe_new_address_space ());
706 inf->aspace = inf->pspace->aspace;
707 inf->removable = 1;
708 set_current_program_space (inf->pspace);
709
710 resume_parent = inf->vfork_parent->pid;
711
712 /* Break the bonds. */
713 inf->vfork_parent->vfork_child = NULL;
714 }
715 else
716 {
717 struct cleanup *old_chain;
718 struct program_space *pspace;
719
720 /* If this is a vfork child exiting, then the pspace and
721 aspaces were shared with the parent. Since we're
722 reporting the process exit, we'll be mourning all that is
723 found in the address space, and switching to null_ptid,
724 preparing to start a new inferior. But, since we don't
725 want to clobber the parent's address/program spaces, we
726 go ahead and create a new one for this exiting
727 inferior. */
728
729 /* Switch to null_ptid, so that clone_program_space doesn't want
730 to read the selected frame of a dead process. */
731 old_chain = save_inferior_ptid ();
732 inferior_ptid = null_ptid;
733
734 /* This inferior is dead, so avoid giving the breakpoints
735 module the option to write through to it (cloning a
736 program space resets breakpoints). */
737 inf->aspace = NULL;
738 inf->pspace = NULL;
739 pspace = add_program_space (maybe_new_address_space ());
740 set_current_program_space (pspace);
741 inf->removable = 1;
742 clone_program_space (pspace, inf->vfork_parent->pspace);
743 inf->pspace = pspace;
744 inf->aspace = pspace->aspace;
745
746 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 747 inferior. */
6c95b8df
PA
748 do_cleanups (old_chain);
749
750 resume_parent = inf->vfork_parent->pid;
751 /* Break the bonds. */
752 inf->vfork_parent->vfork_child = NULL;
753 }
754
755 inf->vfork_parent = NULL;
756
757 gdb_assert (current_program_space == inf->pspace);
758
759 if (non_stop && resume_parent != -1)
760 {
761 /* If the user wanted the parent to be running, let it go
762 free now. */
763 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
764
765 if (debug_infrun)
3e43a32a
MS
766 fprintf_unfiltered (gdb_stdlog,
767 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
768 resume_parent);
769
770 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
771
772 do_cleanups (old_chain);
773 }
774 }
775}
776
777/* Enum strings for "set|show displaced-stepping". */
778
779static const char follow_exec_mode_new[] = "new";
780static const char follow_exec_mode_same[] = "same";
781static const char *follow_exec_mode_names[] =
782{
783 follow_exec_mode_new,
784 follow_exec_mode_same,
785 NULL,
786};
787
788static const char *follow_exec_mode_string = follow_exec_mode_same;
789static void
790show_follow_exec_mode_string (struct ui_file *file, int from_tty,
791 struct cmd_list_element *c, const char *value)
792{
793 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
794}
795
1777feb0 796/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 797
c906108c 798static void
3a3e9ee3 799follow_exec (ptid_t pid, char *execd_pathname)
c906108c 800{
4e1c45ea 801 struct thread_info *th = inferior_thread ();
6c95b8df 802 struct inferior *inf = current_inferior ();
7a292a7a 803
c906108c
SS
804 /* This is an exec event that we actually wish to pay attention to.
805 Refresh our symbol table to the newly exec'd program, remove any
806 momentary bp's, etc.
807
808 If there are breakpoints, they aren't really inserted now,
809 since the exec() transformed our inferior into a fresh set
810 of instructions.
811
812 We want to preserve symbolic breakpoints on the list, since
813 we have hopes that they can be reset after the new a.out's
814 symbol table is read.
815
816 However, any "raw" breakpoints must be removed from the list
817 (e.g., the solib bp's), since their address is probably invalid
818 now.
819
820 And, we DON'T want to call delete_breakpoints() here, since
821 that may write the bp's "shadow contents" (the instruction
822 value that was overwritten witha TRAP instruction). Since
1777feb0 823 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
824
825 mark_breakpoints_out ();
826
c906108c
SS
827 update_breakpoints_after_exec ();
828
829 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 830 statement through an exec(). */
8358c15c 831 th->control.step_resume_breakpoint = NULL;
186c406b 832 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
833 th->control.step_range_start = 0;
834 th->control.step_range_end = 0;
c906108c 835
a75724bc
PA
836 /* The target reports the exec event to the main thread, even if
837 some other thread does the exec, and even if the main thread was
838 already stopped --- if debugging in non-stop mode, it's possible
839 the user had the main thread held stopped in the previous image
840 --- release it now. This is the same behavior as step-over-exec
841 with scheduler-locking on in all-stop mode. */
842 th->stop_requested = 0;
843
1777feb0 844 /* What is this a.out's name? */
6c95b8df
PA
845 printf_unfiltered (_("%s is executing new program: %s\n"),
846 target_pid_to_str (inferior_ptid),
847 execd_pathname);
c906108c
SS
848
849 /* We've followed the inferior through an exec. Therefore, the
1777feb0 850 inferior has essentially been killed & reborn. */
7a292a7a 851
c906108c 852 gdb_flush (gdb_stdout);
6ca15a4b
PA
853
854 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
855
856 if (gdb_sysroot && *gdb_sysroot)
857 {
858 char *name = alloca (strlen (gdb_sysroot)
859 + strlen (execd_pathname)
860 + 1);
abbb1732 861
e85a822c
DJ
862 strcpy (name, gdb_sysroot);
863 strcat (name, execd_pathname);
864 execd_pathname = name;
865 }
c906108c 866
cce9b6bf
PA
867 /* Reset the shared library package. This ensures that we get a
868 shlib event when the child reaches "_start", at which point the
869 dld will have had a chance to initialize the child. */
870 /* Also, loading a symbol file below may trigger symbol lookups, and
871 we don't want those to be satisfied by the libraries of the
872 previous incarnation of this process. */
873 no_shared_libraries (NULL, 0);
874
6c95b8df
PA
875 if (follow_exec_mode_string == follow_exec_mode_new)
876 {
877 struct program_space *pspace;
6c95b8df
PA
878
879 /* The user wants to keep the old inferior and program spaces
880 around. Create a new fresh one, and switch to it. */
881
882 inf = add_inferior (current_inferior ()->pid);
883 pspace = add_program_space (maybe_new_address_space ());
884 inf->pspace = pspace;
885 inf->aspace = pspace->aspace;
886
887 exit_inferior_num_silent (current_inferior ()->num);
888
889 set_current_inferior (inf);
890 set_current_program_space (pspace);
891 }
892
893 gdb_assert (current_program_space == inf->pspace);
894
1777feb0 895 /* That a.out is now the one to use. */
6c95b8df
PA
896 exec_file_attach (execd_pathname, 0);
897
c1e56572
JK
898 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
899 (Position Independent Executable) main symbol file will get applied by
900 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
901 the breakpoints with the zero displacement. */
902
903 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
904 NULL, 0);
905
906 set_initial_language ();
c906108c 907
7a292a7a 908#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 909 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 910#else
268a4a75 911 solib_create_inferior_hook (0);
7a292a7a 912#endif
c906108c 913
4efc6507
DE
914 jit_inferior_created_hook ();
915
c1e56572
JK
916 breakpoint_re_set ();
917
c906108c
SS
918 /* Reinsert all breakpoints. (Those which were symbolic have
919 been reset to the proper address in the new a.out, thanks
1777feb0 920 to symbol_file_command...). */
c906108c
SS
921 insert_breakpoints ();
922
923 /* The next resume of this inferior should bring it to the shlib
924 startup breakpoints. (If the user had also set bp's on
925 "main" from the old (parent) process, then they'll auto-
1777feb0 926 matically get reset there in the new process.). */
c906108c
SS
927}
928
929/* Non-zero if we just simulating a single-step. This is needed
930 because we cannot remove the breakpoints in the inferior process
931 until after the `wait' in `wait_for_inferior'. */
932static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
933
934/* The thread we inserted single-step breakpoints for. */
935static ptid_t singlestep_ptid;
936
fd48f117
DJ
937/* PC when we started this single-step. */
938static CORE_ADDR singlestep_pc;
939
9f976b41
DJ
940/* If another thread hit the singlestep breakpoint, we save the original
941 thread here so that we can resume single-stepping it later. */
942static ptid_t saved_singlestep_ptid;
943static int stepping_past_singlestep_breakpoint;
6a6b96b9 944
ca67fcb8
VP
945/* If not equal to null_ptid, this means that after stepping over breakpoint
946 is finished, we need to switch to deferred_step_ptid, and step it.
947
948 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 949 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
950 breakpoint in the thread which hit the breakpoint, but then continue
951 stepping the thread user has selected. */
952static ptid_t deferred_step_ptid;
c906108c 953\f
237fc4c9
PA
954/* Displaced stepping. */
955
956/* In non-stop debugging mode, we must take special care to manage
957 breakpoints properly; in particular, the traditional strategy for
958 stepping a thread past a breakpoint it has hit is unsuitable.
959 'Displaced stepping' is a tactic for stepping one thread past a
960 breakpoint it has hit while ensuring that other threads running
961 concurrently will hit the breakpoint as they should.
962
963 The traditional way to step a thread T off a breakpoint in a
964 multi-threaded program in all-stop mode is as follows:
965
966 a0) Initially, all threads are stopped, and breakpoints are not
967 inserted.
968 a1) We single-step T, leaving breakpoints uninserted.
969 a2) We insert breakpoints, and resume all threads.
970
971 In non-stop debugging, however, this strategy is unsuitable: we
972 don't want to have to stop all threads in the system in order to
973 continue or step T past a breakpoint. Instead, we use displaced
974 stepping:
975
976 n0) Initially, T is stopped, other threads are running, and
977 breakpoints are inserted.
978 n1) We copy the instruction "under" the breakpoint to a separate
979 location, outside the main code stream, making any adjustments
980 to the instruction, register, and memory state as directed by
981 T's architecture.
982 n2) We single-step T over the instruction at its new location.
983 n3) We adjust the resulting register and memory state as directed
984 by T's architecture. This includes resetting T's PC to point
985 back into the main instruction stream.
986 n4) We resume T.
987
988 This approach depends on the following gdbarch methods:
989
990 - gdbarch_max_insn_length and gdbarch_displaced_step_location
991 indicate where to copy the instruction, and how much space must
992 be reserved there. We use these in step n1.
993
994 - gdbarch_displaced_step_copy_insn copies a instruction to a new
995 address, and makes any necessary adjustments to the instruction,
996 register contents, and memory. We use this in step n1.
997
998 - gdbarch_displaced_step_fixup adjusts registers and memory after
999 we have successfuly single-stepped the instruction, to yield the
1000 same effect the instruction would have had if we had executed it
1001 at its original address. We use this in step n3.
1002
1003 - gdbarch_displaced_step_free_closure provides cleanup.
1004
1005 The gdbarch_displaced_step_copy_insn and
1006 gdbarch_displaced_step_fixup functions must be written so that
1007 copying an instruction with gdbarch_displaced_step_copy_insn,
1008 single-stepping across the copied instruction, and then applying
1009 gdbarch_displaced_insn_fixup should have the same effects on the
1010 thread's memory and registers as stepping the instruction in place
1011 would have. Exactly which responsibilities fall to the copy and
1012 which fall to the fixup is up to the author of those functions.
1013
1014 See the comments in gdbarch.sh for details.
1015
1016 Note that displaced stepping and software single-step cannot
1017 currently be used in combination, although with some care I think
1018 they could be made to. Software single-step works by placing
1019 breakpoints on all possible subsequent instructions; if the
1020 displaced instruction is a PC-relative jump, those breakpoints
1021 could fall in very strange places --- on pages that aren't
1022 executable, or at addresses that are not proper instruction
1023 boundaries. (We do generally let other threads run while we wait
1024 to hit the software single-step breakpoint, and they might
1025 encounter such a corrupted instruction.) One way to work around
1026 this would be to have gdbarch_displaced_step_copy_insn fully
1027 simulate the effect of PC-relative instructions (and return NULL)
1028 on architectures that use software single-stepping.
1029
1030 In non-stop mode, we can have independent and simultaneous step
1031 requests, so more than one thread may need to simultaneously step
1032 over a breakpoint. The current implementation assumes there is
1033 only one scratch space per process. In this case, we have to
1034 serialize access to the scratch space. If thread A wants to step
1035 over a breakpoint, but we are currently waiting for some other
1036 thread to complete a displaced step, we leave thread A stopped and
1037 place it in the displaced_step_request_queue. Whenever a displaced
1038 step finishes, we pick the next thread in the queue and start a new
1039 displaced step operation on it. See displaced_step_prepare and
1040 displaced_step_fixup for details. */
1041
237fc4c9
PA
1042struct displaced_step_request
1043{
1044 ptid_t ptid;
1045 struct displaced_step_request *next;
1046};
1047
fc1cf338
PA
1048/* Per-inferior displaced stepping state. */
1049struct displaced_step_inferior_state
1050{
1051 /* Pointer to next in linked list. */
1052 struct displaced_step_inferior_state *next;
1053
1054 /* The process this displaced step state refers to. */
1055 int pid;
1056
1057 /* A queue of pending displaced stepping requests. One entry per
1058 thread that needs to do a displaced step. */
1059 struct displaced_step_request *step_request_queue;
1060
1061 /* If this is not null_ptid, this is the thread carrying out a
1062 displaced single-step in process PID. This thread's state will
1063 require fixing up once it has completed its step. */
1064 ptid_t step_ptid;
1065
1066 /* The architecture the thread had when we stepped it. */
1067 struct gdbarch *step_gdbarch;
1068
1069 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1070 for post-step cleanup. */
1071 struct displaced_step_closure *step_closure;
1072
1073 /* The address of the original instruction, and the copy we
1074 made. */
1075 CORE_ADDR step_original, step_copy;
1076
1077 /* Saved contents of copy area. */
1078 gdb_byte *step_saved_copy;
1079};
1080
1081/* The list of states of processes involved in displaced stepping
1082 presently. */
1083static struct displaced_step_inferior_state *displaced_step_inferior_states;
1084
1085/* Get the displaced stepping state of process PID. */
1086
1087static struct displaced_step_inferior_state *
1088get_displaced_stepping_state (int pid)
1089{
1090 struct displaced_step_inferior_state *state;
1091
1092 for (state = displaced_step_inferior_states;
1093 state != NULL;
1094 state = state->next)
1095 if (state->pid == pid)
1096 return state;
1097
1098 return NULL;
1099}
1100
1101/* Add a new displaced stepping state for process PID to the displaced
1102 stepping state list, or return a pointer to an already existing
1103 entry, if it already exists. Never returns NULL. */
1104
1105static struct displaced_step_inferior_state *
1106add_displaced_stepping_state (int pid)
1107{
1108 struct displaced_step_inferior_state *state;
1109
1110 for (state = displaced_step_inferior_states;
1111 state != NULL;
1112 state = state->next)
1113 if (state->pid == pid)
1114 return state;
237fc4c9 1115
fc1cf338
PA
1116 state = xcalloc (1, sizeof (*state));
1117 state->pid = pid;
1118 state->next = displaced_step_inferior_states;
1119 displaced_step_inferior_states = state;
237fc4c9 1120
fc1cf338
PA
1121 return state;
1122}
1123
a42244db
YQ
1124/* If inferior is in displaced stepping, and ADDR equals to starting address
1125 of copy area, return corresponding displaced_step_closure. Otherwise,
1126 return NULL. */
1127
1128struct displaced_step_closure*
1129get_displaced_step_closure_by_addr (CORE_ADDR addr)
1130{
1131 struct displaced_step_inferior_state *displaced
1132 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1133
1134 /* If checking the mode of displaced instruction in copy area. */
1135 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1136 && (displaced->step_copy == addr))
1137 return displaced->step_closure;
1138
1139 return NULL;
1140}
1141
fc1cf338 1142/* Remove the displaced stepping state of process PID. */
237fc4c9 1143
fc1cf338
PA
1144static void
1145remove_displaced_stepping_state (int pid)
1146{
1147 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1148
fc1cf338
PA
1149 gdb_assert (pid != 0);
1150
1151 it = displaced_step_inferior_states;
1152 prev_next_p = &displaced_step_inferior_states;
1153 while (it)
1154 {
1155 if (it->pid == pid)
1156 {
1157 *prev_next_p = it->next;
1158 xfree (it);
1159 return;
1160 }
1161
1162 prev_next_p = &it->next;
1163 it = *prev_next_p;
1164 }
1165}
1166
1167static void
1168infrun_inferior_exit (struct inferior *inf)
1169{
1170 remove_displaced_stepping_state (inf->pid);
1171}
237fc4c9 1172
fff08868
HZ
1173/* Enum strings for "set|show displaced-stepping". */
1174
1175static const char can_use_displaced_stepping_auto[] = "auto";
1176static const char can_use_displaced_stepping_on[] = "on";
1177static const char can_use_displaced_stepping_off[] = "off";
1178static const char *can_use_displaced_stepping_enum[] =
1179{
1180 can_use_displaced_stepping_auto,
1181 can_use_displaced_stepping_on,
1182 can_use_displaced_stepping_off,
1183 NULL,
1184};
1185
1186/* If ON, and the architecture supports it, GDB will use displaced
1187 stepping to step over breakpoints. If OFF, or if the architecture
1188 doesn't support it, GDB will instead use the traditional
1189 hold-and-step approach. If AUTO (which is the default), GDB will
1190 decide which technique to use to step over breakpoints depending on
1191 which of all-stop or non-stop mode is active --- displaced stepping
1192 in non-stop mode; hold-and-step in all-stop mode. */
1193
1194static const char *can_use_displaced_stepping =
1195 can_use_displaced_stepping_auto;
1196
237fc4c9
PA
1197static void
1198show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1199 struct cmd_list_element *c,
1200 const char *value)
1201{
fff08868 1202 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1203 fprintf_filtered (file,
1204 _("Debugger's willingness to use displaced stepping "
1205 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1206 value, non_stop ? "on" : "off");
1207 else
3e43a32a
MS
1208 fprintf_filtered (file,
1209 _("Debugger's willingness to use displaced stepping "
1210 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1211}
1212
fff08868
HZ
1213/* Return non-zero if displaced stepping can/should be used to step
1214 over breakpoints. */
1215
237fc4c9
PA
1216static int
1217use_displaced_stepping (struct gdbarch *gdbarch)
1218{
fff08868
HZ
1219 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1220 && non_stop)
1221 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1222 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1223 && !RECORD_IS_USED);
237fc4c9
PA
1224}
1225
1226/* Clean out any stray displaced stepping state. */
1227static void
fc1cf338 1228displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1229{
1230 /* Indicate that there is no cleanup pending. */
fc1cf338 1231 displaced->step_ptid = null_ptid;
237fc4c9 1232
fc1cf338 1233 if (displaced->step_closure)
237fc4c9 1234 {
fc1cf338
PA
1235 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1236 displaced->step_closure);
1237 displaced->step_closure = NULL;
237fc4c9
PA
1238 }
1239}
1240
1241static void
fc1cf338 1242displaced_step_clear_cleanup (void *arg)
237fc4c9 1243{
fc1cf338
PA
1244 struct displaced_step_inferior_state *state = arg;
1245
1246 displaced_step_clear (state);
237fc4c9
PA
1247}
1248
1249/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1250void
1251displaced_step_dump_bytes (struct ui_file *file,
1252 const gdb_byte *buf,
1253 size_t len)
1254{
1255 int i;
1256
1257 for (i = 0; i < len; i++)
1258 fprintf_unfiltered (file, "%02x ", buf[i]);
1259 fputs_unfiltered ("\n", file);
1260}
1261
1262/* Prepare to single-step, using displaced stepping.
1263
1264 Note that we cannot use displaced stepping when we have a signal to
1265 deliver. If we have a signal to deliver and an instruction to step
1266 over, then after the step, there will be no indication from the
1267 target whether the thread entered a signal handler or ignored the
1268 signal and stepped over the instruction successfully --- both cases
1269 result in a simple SIGTRAP. In the first case we mustn't do a
1270 fixup, and in the second case we must --- but we can't tell which.
1271 Comments in the code for 'random signals' in handle_inferior_event
1272 explain how we handle this case instead.
1273
1274 Returns 1 if preparing was successful -- this thread is going to be
1275 stepped now; or 0 if displaced stepping this thread got queued. */
1276static int
1277displaced_step_prepare (ptid_t ptid)
1278{
ad53cd71 1279 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1280 struct regcache *regcache = get_thread_regcache (ptid);
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 CORE_ADDR original, copy;
1283 ULONGEST len;
1284 struct displaced_step_closure *closure;
fc1cf338 1285 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1286
1287 /* We should never reach this function if the architecture does not
1288 support displaced stepping. */
1289 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1290
fc1cf338
PA
1291 /* We have to displaced step one thread at a time, as we only have
1292 access to a single scratch space per inferior. */
237fc4c9 1293
fc1cf338
PA
1294 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1295
1296 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1297 {
1298 /* Already waiting for a displaced step to finish. Defer this
1299 request and place in queue. */
1300 struct displaced_step_request *req, *new_req;
1301
1302 if (debug_displaced)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "displaced: defering step of %s\n",
1305 target_pid_to_str (ptid));
1306
1307 new_req = xmalloc (sizeof (*new_req));
1308 new_req->ptid = ptid;
1309 new_req->next = NULL;
1310
fc1cf338 1311 if (displaced->step_request_queue)
237fc4c9 1312 {
fc1cf338 1313 for (req = displaced->step_request_queue;
237fc4c9
PA
1314 req && req->next;
1315 req = req->next)
1316 ;
1317 req->next = new_req;
1318 }
1319 else
fc1cf338 1320 displaced->step_request_queue = new_req;
237fc4c9
PA
1321
1322 return 0;
1323 }
1324 else
1325 {
1326 if (debug_displaced)
1327 fprintf_unfiltered (gdb_stdlog,
1328 "displaced: stepping %s now\n",
1329 target_pid_to_str (ptid));
1330 }
1331
fc1cf338 1332 displaced_step_clear (displaced);
237fc4c9 1333
ad53cd71
PA
1334 old_cleanups = save_inferior_ptid ();
1335 inferior_ptid = ptid;
1336
515630c5 1337 original = regcache_read_pc (regcache);
237fc4c9
PA
1338
1339 copy = gdbarch_displaced_step_location (gdbarch);
1340 len = gdbarch_max_insn_length (gdbarch);
1341
1342 /* Save the original contents of the copy area. */
fc1cf338 1343 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1344 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1345 &displaced->step_saved_copy);
1346 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1347 if (debug_displaced)
1348 {
5af949e3
UW
1349 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1350 paddress (gdbarch, copy));
fc1cf338
PA
1351 displaced_step_dump_bytes (gdb_stdlog,
1352 displaced->step_saved_copy,
1353 len);
237fc4c9
PA
1354 };
1355
1356 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1357 original, copy, regcache);
237fc4c9
PA
1358
1359 /* We don't support the fully-simulated case at present. */
1360 gdb_assert (closure);
1361
9f5a595d
UW
1362 /* Save the information we need to fix things up if the step
1363 succeeds. */
fc1cf338
PA
1364 displaced->step_ptid = ptid;
1365 displaced->step_gdbarch = gdbarch;
1366 displaced->step_closure = closure;
1367 displaced->step_original = original;
1368 displaced->step_copy = copy;
9f5a595d 1369
fc1cf338 1370 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1371
1372 /* Resume execution at the copy. */
515630c5 1373 regcache_write_pc (regcache, copy);
237fc4c9 1374
ad53cd71
PA
1375 discard_cleanups (ignore_cleanups);
1376
1377 do_cleanups (old_cleanups);
237fc4c9
PA
1378
1379 if (debug_displaced)
5af949e3
UW
1380 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1381 paddress (gdbarch, copy));
237fc4c9 1382
237fc4c9
PA
1383 return 1;
1384}
1385
237fc4c9 1386static void
3e43a32a
MS
1387write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1388 const gdb_byte *myaddr, int len)
237fc4c9
PA
1389{
1390 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1391
237fc4c9
PA
1392 inferior_ptid = ptid;
1393 write_memory (memaddr, myaddr, len);
1394 do_cleanups (ptid_cleanup);
1395}
1396
e2d96639
YQ
1397/* Restore the contents of the copy area for thread PTID. */
1398
1399static void
1400displaced_step_restore (struct displaced_step_inferior_state *displaced,
1401 ptid_t ptid)
1402{
1403 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1404
1405 write_memory_ptid (ptid, displaced->step_copy,
1406 displaced->step_saved_copy, len);
1407 if (debug_displaced)
1408 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1409 target_pid_to_str (ptid),
1410 paddress (displaced->step_gdbarch,
1411 displaced->step_copy));
1412}
1413
237fc4c9
PA
1414static void
1415displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1416{
1417 struct cleanup *old_cleanups;
fc1cf338
PA
1418 struct displaced_step_inferior_state *displaced
1419 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1420
1421 /* Was any thread of this process doing a displaced step? */
1422 if (displaced == NULL)
1423 return;
237fc4c9
PA
1424
1425 /* Was this event for the pid we displaced? */
fc1cf338
PA
1426 if (ptid_equal (displaced->step_ptid, null_ptid)
1427 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1428 return;
1429
fc1cf338 1430 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1431
e2d96639 1432 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1433
1434 /* Did the instruction complete successfully? */
1435 if (signal == TARGET_SIGNAL_TRAP)
1436 {
1437 /* Fix up the resulting state. */
fc1cf338
PA
1438 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1439 displaced->step_closure,
1440 displaced->step_original,
1441 displaced->step_copy,
1442 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1443 }
1444 else
1445 {
1446 /* Since the instruction didn't complete, all we can do is
1447 relocate the PC. */
515630c5
UW
1448 struct regcache *regcache = get_thread_regcache (event_ptid);
1449 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1450
fc1cf338 1451 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1452 regcache_write_pc (regcache, pc);
237fc4c9
PA
1453 }
1454
1455 do_cleanups (old_cleanups);
1456
fc1cf338 1457 displaced->step_ptid = null_ptid;
1c5cfe86 1458
237fc4c9 1459 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1460 one now. Leave the state object around, since we're likely to
1461 need it again soon. */
1462 while (displaced->step_request_queue)
237fc4c9
PA
1463 {
1464 struct displaced_step_request *head;
1465 ptid_t ptid;
5af949e3 1466 struct regcache *regcache;
929dfd4f 1467 struct gdbarch *gdbarch;
1c5cfe86 1468 CORE_ADDR actual_pc;
6c95b8df 1469 struct address_space *aspace;
237fc4c9 1470
fc1cf338 1471 head = displaced->step_request_queue;
237fc4c9 1472 ptid = head->ptid;
fc1cf338 1473 displaced->step_request_queue = head->next;
237fc4c9
PA
1474 xfree (head);
1475
ad53cd71
PA
1476 context_switch (ptid);
1477
5af949e3
UW
1478 regcache = get_thread_regcache (ptid);
1479 actual_pc = regcache_read_pc (regcache);
6c95b8df 1480 aspace = get_regcache_aspace (regcache);
1c5cfe86 1481
6c95b8df 1482 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1483 {
1c5cfe86
PA
1484 if (debug_displaced)
1485 fprintf_unfiltered (gdb_stdlog,
1486 "displaced: stepping queued %s now\n",
1487 target_pid_to_str (ptid));
1488
1489 displaced_step_prepare (ptid);
1490
929dfd4f
JB
1491 gdbarch = get_regcache_arch (regcache);
1492
1c5cfe86
PA
1493 if (debug_displaced)
1494 {
929dfd4f 1495 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1496 gdb_byte buf[4];
1497
5af949e3
UW
1498 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1499 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1500 read_memory (actual_pc, buf, sizeof (buf));
1501 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1502 }
1503
fc1cf338
PA
1504 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1505 displaced->step_closure))
929dfd4f 1506 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1507 else
1508 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1509
1510 /* Done, we're stepping a thread. */
1511 break;
ad53cd71 1512 }
1c5cfe86
PA
1513 else
1514 {
1515 int step;
1516 struct thread_info *tp = inferior_thread ();
1517
1518 /* The breakpoint we were sitting under has since been
1519 removed. */
16c381f0 1520 tp->control.trap_expected = 0;
1c5cfe86
PA
1521
1522 /* Go back to what we were trying to do. */
1523 step = currently_stepping (tp);
ad53cd71 1524
1c5cfe86 1525 if (debug_displaced)
3e43a32a
MS
1526 fprintf_unfiltered (gdb_stdlog,
1527 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1528 target_pid_to_str (tp->ptid), step);
1529
1530 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1531 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1532
1533 /* This request was discarded. See if there's any other
1534 thread waiting for its turn. */
1535 }
237fc4c9
PA
1536 }
1537}
1538
5231c1fd
PA
1539/* Update global variables holding ptids to hold NEW_PTID if they were
1540 holding OLD_PTID. */
1541static void
1542infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1543{
1544 struct displaced_step_request *it;
fc1cf338 1545 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1546
1547 if (ptid_equal (inferior_ptid, old_ptid))
1548 inferior_ptid = new_ptid;
1549
1550 if (ptid_equal (singlestep_ptid, old_ptid))
1551 singlestep_ptid = new_ptid;
1552
5231c1fd
PA
1553 if (ptid_equal (deferred_step_ptid, old_ptid))
1554 deferred_step_ptid = new_ptid;
1555
fc1cf338
PA
1556 for (displaced = displaced_step_inferior_states;
1557 displaced;
1558 displaced = displaced->next)
1559 {
1560 if (ptid_equal (displaced->step_ptid, old_ptid))
1561 displaced->step_ptid = new_ptid;
1562
1563 for (it = displaced->step_request_queue; it; it = it->next)
1564 if (ptid_equal (it->ptid, old_ptid))
1565 it->ptid = new_ptid;
1566 }
5231c1fd
PA
1567}
1568
237fc4c9
PA
1569\f
1570/* Resuming. */
c906108c
SS
1571
1572/* Things to clean up if we QUIT out of resume (). */
c906108c 1573static void
74b7792f 1574resume_cleanups (void *ignore)
c906108c
SS
1575{
1576 normal_stop ();
1577}
1578
53904c9e
AC
1579static const char schedlock_off[] = "off";
1580static const char schedlock_on[] = "on";
1581static const char schedlock_step[] = "step";
488f131b 1582static const char *scheduler_enums[] = {
ef346e04
AC
1583 schedlock_off,
1584 schedlock_on,
1585 schedlock_step,
1586 NULL
1587};
920d2a44
AC
1588static const char *scheduler_mode = schedlock_off;
1589static void
1590show_scheduler_mode (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c, const char *value)
1592{
3e43a32a
MS
1593 fprintf_filtered (file,
1594 _("Mode for locking scheduler "
1595 "during execution is \"%s\".\n"),
920d2a44
AC
1596 value);
1597}
c906108c
SS
1598
1599static void
96baa820 1600set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1601{
eefe576e
AC
1602 if (!target_can_lock_scheduler)
1603 {
1604 scheduler_mode = schedlock_off;
1605 error (_("Target '%s' cannot support this command."), target_shortname);
1606 }
c906108c
SS
1607}
1608
d4db2f36
PA
1609/* True if execution commands resume all threads of all processes by
1610 default; otherwise, resume only threads of the current inferior
1611 process. */
1612int sched_multi = 0;
1613
2facfe5c
DD
1614/* Try to setup for software single stepping over the specified location.
1615 Return 1 if target_resume() should use hardware single step.
1616
1617 GDBARCH the current gdbarch.
1618 PC the location to step over. */
1619
1620static int
1621maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1622{
1623 int hw_step = 1;
1624
f02253f1
HZ
1625 if (execution_direction == EXEC_FORWARD
1626 && gdbarch_software_single_step_p (gdbarch)
99e40580 1627 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1628 {
99e40580
UW
1629 hw_step = 0;
1630 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1631 `wait_for_inferior'. */
99e40580
UW
1632 singlestep_breakpoints_inserted_p = 1;
1633 singlestep_ptid = inferior_ptid;
1634 singlestep_pc = pc;
2facfe5c
DD
1635 }
1636 return hw_step;
1637}
c906108c 1638
09cee04b
PA
1639/* Return a ptid representing the set of threads that we will proceed,
1640 in the perspective of the user/frontend. We may actually resume
1641 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1642 breakpoint that needs stepping-off, but that should not be visible
1643 to the user/frontend, and neither should the frontend/user be
1644 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1645 internal run control handling, if a previous command wanted them
1646 resumed. */
1647
1648ptid_t
1649user_visible_resume_ptid (int step)
1650{
1651 /* By default, resume all threads of all processes. */
1652 ptid_t resume_ptid = RESUME_ALL;
1653
1654 /* Maybe resume only all threads of the current process. */
1655 if (!sched_multi && target_supports_multi_process ())
1656 {
1657 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1658 }
1659
1660 /* Maybe resume a single thread after all. */
1661 if (non_stop)
1662 {
1663 /* With non-stop mode on, threads are always handled
1664 individually. */
1665 resume_ptid = inferior_ptid;
1666 }
1667 else if ((scheduler_mode == schedlock_on)
1668 || (scheduler_mode == schedlock_step
1669 && (step || singlestep_breakpoints_inserted_p)))
1670 {
1671 /* User-settable 'scheduler' mode requires solo thread resume. */
1672 resume_ptid = inferior_ptid;
1673 }
1674
1675 return resume_ptid;
1676}
1677
c906108c
SS
1678/* Resume the inferior, but allow a QUIT. This is useful if the user
1679 wants to interrupt some lengthy single-stepping operation
1680 (for child processes, the SIGINT goes to the inferior, and so
1681 we get a SIGINT random_signal, but for remote debugging and perhaps
1682 other targets, that's not true).
1683
1684 STEP nonzero if we should step (zero to continue instead).
1685 SIG is the signal to give the inferior (zero for none). */
1686void
96baa820 1687resume (int step, enum target_signal sig)
c906108c
SS
1688{
1689 int should_resume = 1;
74b7792f 1690 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1691 struct regcache *regcache = get_current_regcache ();
1692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1693 struct thread_info *tp = inferior_thread ();
515630c5 1694 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1695 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1696
c906108c
SS
1697 QUIT;
1698
74609e71
YQ
1699 if (current_inferior ()->waiting_for_vfork_done)
1700 {
48f9886d
PA
1701 /* Don't try to single-step a vfork parent that is waiting for
1702 the child to get out of the shared memory region (by exec'ing
1703 or exiting). This is particularly important on software
1704 single-step archs, as the child process would trip on the
1705 software single step breakpoint inserted for the parent
1706 process. Since the parent will not actually execute any
1707 instruction until the child is out of the shared region (such
1708 are vfork's semantics), it is safe to simply continue it.
1709 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1710 the parent, and tell it to `keep_going', which automatically
1711 re-sets it stepping. */
74609e71
YQ
1712 if (debug_infrun)
1713 fprintf_unfiltered (gdb_stdlog,
1714 "infrun: resume : clear step\n");
1715 step = 0;
1716 }
1717
527159b7 1718 if (debug_infrun)
237fc4c9
PA
1719 fprintf_unfiltered (gdb_stdlog,
1720 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1721 "trap_expected=%d, current thread [%s] at %s\n",
1722 step, sig, tp->control.trap_expected,
1723 target_pid_to_str (inferior_ptid),
1724 paddress (gdbarch, pc));
c906108c 1725
c2c6d25f
JM
1726 /* Normally, by the time we reach `resume', the breakpoints are either
1727 removed or inserted, as appropriate. The exception is if we're sitting
1728 at a permanent breakpoint; we need to step over it, but permanent
1729 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1730 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1731 {
515630c5
UW
1732 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1733 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1734 else
ac74f770
MS
1735 error (_("\
1736The program is stopped at a permanent breakpoint, but GDB does not know\n\
1737how to step past a permanent breakpoint on this architecture. Try using\n\
1738a command like `return' or `jump' to continue execution."));
6d350bb5 1739 }
c2c6d25f 1740
237fc4c9
PA
1741 /* If enabled, step over breakpoints by executing a copy of the
1742 instruction at a different address.
1743
1744 We can't use displaced stepping when we have a signal to deliver;
1745 the comments for displaced_step_prepare explain why. The
1746 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1747 signals' explain what we do instead.
1748
1749 We can't use displaced stepping when we are waiting for vfork_done
1750 event, displaced stepping breaks the vfork child similarly as single
1751 step software breakpoint. */
515630c5 1752 if (use_displaced_stepping (gdbarch)
16c381f0 1753 && (tp->control.trap_expected
929dfd4f 1754 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1755 && sig == TARGET_SIGNAL_0
1756 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1757 {
fc1cf338
PA
1758 struct displaced_step_inferior_state *displaced;
1759
237fc4c9 1760 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1761 {
1762 /* Got placed in displaced stepping queue. Will be resumed
1763 later when all the currently queued displaced stepping
7f7efbd9
VP
1764 requests finish. The thread is not executing at this point,
1765 and the call to set_executing will be made later. But we
1766 need to call set_running here, since from frontend point of view,
1767 the thread is running. */
1768 set_running (inferior_ptid, 1);
d56b7306
VP
1769 discard_cleanups (old_cleanups);
1770 return;
1771 }
99e40580 1772
fc1cf338
PA
1773 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1774 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1775 displaced->step_closure);
237fc4c9
PA
1776 }
1777
2facfe5c 1778 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1779 else if (step)
2facfe5c 1780 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1781
30852783
UW
1782 /* Currently, our software single-step implementation leads to different
1783 results than hardware single-stepping in one situation: when stepping
1784 into delivering a signal which has an associated signal handler,
1785 hardware single-step will stop at the first instruction of the handler,
1786 while software single-step will simply skip execution of the handler.
1787
1788 For now, this difference in behavior is accepted since there is no
1789 easy way to actually implement single-stepping into a signal handler
1790 without kernel support.
1791
1792 However, there is one scenario where this difference leads to follow-on
1793 problems: if we're stepping off a breakpoint by removing all breakpoints
1794 and then single-stepping. In this case, the software single-step
1795 behavior means that even if there is a *breakpoint* in the signal
1796 handler, GDB still would not stop.
1797
1798 Fortunately, we can at least fix this particular issue. We detect
1799 here the case where we are about to deliver a signal while software
1800 single-stepping with breakpoints removed. In this situation, we
1801 revert the decisions to remove all breakpoints and insert single-
1802 step breakpoints, and instead we install a step-resume breakpoint
1803 at the current address, deliver the signal without stepping, and
1804 once we arrive back at the step-resume breakpoint, actually step
1805 over the breakpoint we originally wanted to step over. */
1806 if (singlestep_breakpoints_inserted_p
1807 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1808 {
1809 /* If we have nested signals or a pending signal is delivered
1810 immediately after a handler returns, might might already have
1811 a step-resume breakpoint set on the earlier handler. We cannot
1812 set another step-resume breakpoint; just continue on until the
1813 original breakpoint is hit. */
1814 if (tp->control.step_resume_breakpoint == NULL)
1815 {
2c03e5be 1816 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1817 tp->step_after_step_resume_breakpoint = 1;
1818 }
1819
1820 remove_single_step_breakpoints ();
1821 singlestep_breakpoints_inserted_p = 0;
1822
1823 insert_breakpoints ();
1824 tp->control.trap_expected = 0;
1825 }
1826
c906108c
SS
1827 if (should_resume)
1828 {
39f77062 1829 ptid_t resume_ptid;
dfcd3bfb 1830
cd76b0b7
VP
1831 /* If STEP is set, it's a request to use hardware stepping
1832 facilities. But in that case, we should never
1833 use singlestep breakpoint. */
1834 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1835
d4db2f36
PA
1836 /* Decide the set of threads to ask the target to resume. Start
1837 by assuming everything will be resumed, than narrow the set
1838 by applying increasingly restricting conditions. */
09cee04b 1839 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1840
1841 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1842 if (singlestep_breakpoints_inserted_p
1843 && stepping_past_singlestep_breakpoint)
c906108c 1844 {
cd76b0b7
VP
1845 /* The situation here is as follows. In thread T1 we wanted to
1846 single-step. Lacking hardware single-stepping we've
1847 set breakpoint at the PC of the next instruction -- call it
1848 P. After resuming, we've hit that breakpoint in thread T2.
1849 Now we've removed original breakpoint, inserted breakpoint
1850 at P+1, and try to step to advance T2 past breakpoint.
1851 We need to step only T2, as if T1 is allowed to freely run,
1852 it can run past P, and if other threads are allowed to run,
1853 they can hit breakpoint at P+1, and nested hits of single-step
1854 breakpoints is not something we'd want -- that's complicated
1855 to support, and has no value. */
1856 resume_ptid = inferior_ptid;
1857 }
d4db2f36 1858 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1859 && tp->control.trap_expected)
cd76b0b7 1860 {
74960c60
VP
1861 /* We're allowing a thread to run past a breakpoint it has
1862 hit, by single-stepping the thread with the breakpoint
1863 removed. In which case, we need to single-step only this
1864 thread, and keep others stopped, as they can miss this
1865 breakpoint if allowed to run.
1866
1867 The current code actually removes all breakpoints when
1868 doing this, not just the one being stepped over, so if we
1869 let other threads run, we can actually miss any
1870 breakpoint, not just the one at PC. */
ef5cf84e 1871 resume_ptid = inferior_ptid;
c906108c 1872 }
ef5cf84e 1873
515630c5 1874 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1875 {
1876 /* Most targets can step a breakpoint instruction, thus
1877 executing it normally. But if this one cannot, just
1878 continue and we will hit it anyway. */
6c95b8df 1879 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1880 step = 0;
1881 }
237fc4c9
PA
1882
1883 if (debug_displaced
515630c5 1884 && use_displaced_stepping (gdbarch)
16c381f0 1885 && tp->control.trap_expected)
237fc4c9 1886 {
515630c5 1887 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1888 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1889 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1890 gdb_byte buf[4];
1891
5af949e3
UW
1892 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1893 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1894 read_memory (actual_pc, buf, sizeof (buf));
1895 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1896 }
1897
e58b0e63
PA
1898 /* Install inferior's terminal modes. */
1899 target_terminal_inferior ();
1900
2020b7ab
PA
1901 /* Avoid confusing the next resume, if the next stop/resume
1902 happens to apply to another thread. */
16c381f0 1903 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1904
2455069d
UW
1905 /* Advise target which signals may be handled silently. If we have
1906 removed breakpoints because we are stepping over one (which can
1907 happen only if we are not using displaced stepping), we need to
1908 receive all signals to avoid accidentally skipping a breakpoint
1909 during execution of a signal handler. */
1910 if ((step || singlestep_breakpoints_inserted_p)
1911 && tp->control.trap_expected
1912 && !use_displaced_stepping (gdbarch))
1913 target_pass_signals (0, NULL);
1914 else
1915 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1916
607cecd2 1917 target_resume (resume_ptid, step, sig);
c906108c
SS
1918 }
1919
1920 discard_cleanups (old_cleanups);
1921}
1922\f
237fc4c9 1923/* Proceeding. */
c906108c
SS
1924
1925/* Clear out all variables saying what to do when inferior is continued.
1926 First do this, then set the ones you want, then call `proceed'. */
1927
a7212384
UW
1928static void
1929clear_proceed_status_thread (struct thread_info *tp)
c906108c 1930{
a7212384
UW
1931 if (debug_infrun)
1932 fprintf_unfiltered (gdb_stdlog,
1933 "infrun: clear_proceed_status_thread (%s)\n",
1934 target_pid_to_str (tp->ptid));
d6b48e9c 1935
16c381f0
JK
1936 tp->control.trap_expected = 0;
1937 tp->control.step_range_start = 0;
1938 tp->control.step_range_end = 0;
1939 tp->control.step_frame_id = null_frame_id;
1940 tp->control.step_stack_frame_id = null_frame_id;
1941 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1942 tp->stop_requested = 0;
4e1c45ea 1943
16c381f0 1944 tp->control.stop_step = 0;
32400beb 1945
16c381f0 1946 tp->control.proceed_to_finish = 0;
414c69f7 1947
a7212384 1948 /* Discard any remaining commands or status from previous stop. */
16c381f0 1949 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1950}
32400beb 1951
a7212384
UW
1952static int
1953clear_proceed_status_callback (struct thread_info *tp, void *data)
1954{
1955 if (is_exited (tp->ptid))
1956 return 0;
d6b48e9c 1957
a7212384
UW
1958 clear_proceed_status_thread (tp);
1959 return 0;
1960}
1961
1962void
1963clear_proceed_status (void)
1964{
6c95b8df
PA
1965 if (!non_stop)
1966 {
1967 /* In all-stop mode, delete the per-thread status of all
1968 threads, even if inferior_ptid is null_ptid, there may be
1969 threads on the list. E.g., we may be launching a new
1970 process, while selecting the executable. */
1971 iterate_over_threads (clear_proceed_status_callback, NULL);
1972 }
1973
a7212384
UW
1974 if (!ptid_equal (inferior_ptid, null_ptid))
1975 {
1976 struct inferior *inferior;
1977
1978 if (non_stop)
1979 {
6c95b8df
PA
1980 /* If in non-stop mode, only delete the per-thread status of
1981 the current thread. */
a7212384
UW
1982 clear_proceed_status_thread (inferior_thread ());
1983 }
6c95b8df 1984
d6b48e9c 1985 inferior = current_inferior ();
16c381f0 1986 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1987 }
1988
c906108c 1989 stop_after_trap = 0;
f3b1572e
PA
1990
1991 observer_notify_about_to_proceed ();
c906108c 1992
d5c31457
UW
1993 if (stop_registers)
1994 {
1995 regcache_xfree (stop_registers);
1996 stop_registers = NULL;
1997 }
c906108c
SS
1998}
1999
5a437975
DE
2000/* Check the current thread against the thread that reported the most recent
2001 event. If a step-over is required return TRUE and set the current thread
2002 to the old thread. Otherwise return FALSE.
2003
1777feb0 2004 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2005
2006static int
6a6b96b9 2007prepare_to_proceed (int step)
ea67f13b
DJ
2008{
2009 ptid_t wait_ptid;
2010 struct target_waitstatus wait_status;
5a437975
DE
2011 int schedlock_enabled;
2012
2013 /* With non-stop mode on, threads are always handled individually. */
2014 gdb_assert (! non_stop);
ea67f13b
DJ
2015
2016 /* Get the last target status returned by target_wait(). */
2017 get_last_target_status (&wait_ptid, &wait_status);
2018
6a6b96b9 2019 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2020 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
2021 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2022 && wait_status.value.sig != TARGET_SIGNAL_ILL
2023 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2024 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
2025 {
2026 return 0;
2027 }
2028
5a437975
DE
2029 schedlock_enabled = (scheduler_mode == schedlock_on
2030 || (scheduler_mode == schedlock_step
2031 && step));
2032
d4db2f36
PA
2033 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2034 if (schedlock_enabled)
2035 return 0;
2036
2037 /* Don't switch over if we're about to resume some other process
2038 other than WAIT_PTID's, and schedule-multiple is off. */
2039 if (!sched_multi
2040 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2041 return 0;
2042
6a6b96b9 2043 /* Switched over from WAIT_PID. */
ea67f13b 2044 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2045 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2046 {
515630c5
UW
2047 struct regcache *regcache = get_thread_regcache (wait_ptid);
2048
6c95b8df
PA
2049 if (breakpoint_here_p (get_regcache_aspace (regcache),
2050 regcache_read_pc (regcache)))
ea67f13b 2051 {
515630c5
UW
2052 /* If stepping, remember current thread to switch back to. */
2053 if (step)
2054 deferred_step_ptid = inferior_ptid;
ea67f13b 2055
515630c5
UW
2056 /* Switch back to WAIT_PID thread. */
2057 switch_to_thread (wait_ptid);
6a6b96b9 2058
0d9a9a5f
PA
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: prepare_to_proceed (step=%d), "
2062 "switched to [%s]\n",
2063 step, target_pid_to_str (inferior_ptid));
2064
515630c5
UW
2065 /* We return 1 to indicate that there is a breakpoint here,
2066 so we need to step over it before continuing to avoid
1777feb0 2067 hitting it straight away. */
515630c5
UW
2068 return 1;
2069 }
ea67f13b
DJ
2070 }
2071
2072 return 0;
ea67f13b 2073}
e4846b08 2074
c906108c
SS
2075/* Basic routine for continuing the program in various fashions.
2076
2077 ADDR is the address to resume at, or -1 for resume where stopped.
2078 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2079 or -1 for act according to how it stopped.
c906108c 2080 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2081 -1 means return after that and print nothing.
2082 You should probably set various step_... variables
2083 before calling here, if you are stepping.
c906108c
SS
2084
2085 You should call clear_proceed_status before calling proceed. */
2086
2087void
96baa820 2088proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2089{
e58b0e63
PA
2090 struct regcache *regcache;
2091 struct gdbarch *gdbarch;
4e1c45ea 2092 struct thread_info *tp;
e58b0e63 2093 CORE_ADDR pc;
6c95b8df 2094 struct address_space *aspace;
c906108c
SS
2095 int oneproc = 0;
2096
e58b0e63
PA
2097 /* If we're stopped at a fork/vfork, follow the branch set by the
2098 "set follow-fork-mode" command; otherwise, we'll just proceed
2099 resuming the current thread. */
2100 if (!follow_fork ())
2101 {
2102 /* The target for some reason decided not to resume. */
2103 normal_stop ();
f148b27e
PA
2104 if (target_can_async_p ())
2105 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2106 return;
2107 }
2108
842951eb
PA
2109 /* We'll update this if & when we switch to a new thread. */
2110 previous_inferior_ptid = inferior_ptid;
2111
e58b0e63
PA
2112 regcache = get_current_regcache ();
2113 gdbarch = get_regcache_arch (regcache);
6c95b8df 2114 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2115 pc = regcache_read_pc (regcache);
2116
c906108c 2117 if (step > 0)
515630c5 2118 step_start_function = find_pc_function (pc);
c906108c
SS
2119 if (step < 0)
2120 stop_after_trap = 1;
2121
2acceee2 2122 if (addr == (CORE_ADDR) -1)
c906108c 2123 {
6c95b8df 2124 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2125 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2126 /* There is a breakpoint at the address we will resume at,
2127 step one instruction before inserting breakpoints so that
2128 we do not stop right away (and report a second hit at this
b2175913
MS
2129 breakpoint).
2130
2131 Note, we don't do this in reverse, because we won't
2132 actually be executing the breakpoint insn anyway.
2133 We'll be (un-)executing the previous instruction. */
2134
c906108c 2135 oneproc = 1;
515630c5
UW
2136 else if (gdbarch_single_step_through_delay_p (gdbarch)
2137 && gdbarch_single_step_through_delay (gdbarch,
2138 get_current_frame ()))
3352ef37
AC
2139 /* We stepped onto an instruction that needs to be stepped
2140 again before re-inserting the breakpoint, do so. */
c906108c
SS
2141 oneproc = 1;
2142 }
2143 else
2144 {
515630c5 2145 regcache_write_pc (regcache, addr);
c906108c
SS
2146 }
2147
527159b7 2148 if (debug_infrun)
8a9de0e4 2149 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2150 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2151 paddress (gdbarch, addr), siggnal, step);
527159b7 2152
94cc34af
PA
2153 if (non_stop)
2154 /* In non-stop, each thread is handled individually. The context
2155 must already be set to the right thread here. */
2156 ;
2157 else
2158 {
2159 /* In a multi-threaded task we may select another thread and
2160 then continue or step.
c906108c 2161
94cc34af
PA
2162 But if the old thread was stopped at a breakpoint, it will
2163 immediately cause another breakpoint stop without any
2164 execution (i.e. it will report a breakpoint hit incorrectly).
2165 So we must step over it first.
c906108c 2166
94cc34af
PA
2167 prepare_to_proceed checks the current thread against the
2168 thread that reported the most recent event. If a step-over
2169 is required it returns TRUE and sets the current thread to
1777feb0 2170 the old thread. */
94cc34af
PA
2171 if (prepare_to_proceed (step))
2172 oneproc = 1;
2173 }
c906108c 2174
4e1c45ea
PA
2175 /* prepare_to_proceed may change the current thread. */
2176 tp = inferior_thread ();
2177
30852783
UW
2178 if (oneproc)
2179 {
2180 tp->control.trap_expected = 1;
2181 /* If displaced stepping is enabled, we can step over the
2182 breakpoint without hitting it, so leave all breakpoints
2183 inserted. Otherwise we need to disable all breakpoints, step
2184 one instruction, and then re-add them when that step is
2185 finished. */
2186 if (!use_displaced_stepping (gdbarch))
2187 remove_breakpoints ();
2188 }
2189
2190 /* We can insert breakpoints if we're not trying to step over one,
2191 or if we are stepping over one but we're using displaced stepping
2192 to do so. */
2193 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2194 insert_breakpoints ();
2195
2020b7ab
PA
2196 if (!non_stop)
2197 {
2198 /* Pass the last stop signal to the thread we're resuming,
2199 irrespective of whether the current thread is the thread that
2200 got the last event or not. This was historically GDB's
2201 behaviour before keeping a stop_signal per thread. */
2202
2203 struct thread_info *last_thread;
2204 ptid_t last_ptid;
2205 struct target_waitstatus last_status;
2206
2207 get_last_target_status (&last_ptid, &last_status);
2208 if (!ptid_equal (inferior_ptid, last_ptid)
2209 && !ptid_equal (last_ptid, null_ptid)
2210 && !ptid_equal (last_ptid, minus_one_ptid))
2211 {
e09875d4 2212 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2213 if (last_thread)
2214 {
16c381f0
JK
2215 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2216 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2217 }
2218 }
2219 }
2220
c906108c 2221 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2222 tp->suspend.stop_signal = siggnal;
c906108c
SS
2223 /* If this signal should not be seen by program,
2224 give it zero. Used for debugging signals. */
16c381f0
JK
2225 else if (!signal_program[tp->suspend.stop_signal])
2226 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2227
2228 annotate_starting ();
2229
2230 /* Make sure that output from GDB appears before output from the
2231 inferior. */
2232 gdb_flush (gdb_stdout);
2233
e4846b08
JJ
2234 /* Refresh prev_pc value just prior to resuming. This used to be
2235 done in stop_stepping, however, setting prev_pc there did not handle
2236 scenarios such as inferior function calls or returning from
2237 a function via the return command. In those cases, the prev_pc
2238 value was not set properly for subsequent commands. The prev_pc value
2239 is used to initialize the starting line number in the ecs. With an
2240 invalid value, the gdb next command ends up stopping at the position
2241 represented by the next line table entry past our start position.
2242 On platforms that generate one line table entry per line, this
2243 is not a problem. However, on the ia64, the compiler generates
2244 extraneous line table entries that do not increase the line number.
2245 When we issue the gdb next command on the ia64 after an inferior call
2246 or a return command, we often end up a few instructions forward, still
2247 within the original line we started.
2248
d5cd6034
JB
2249 An attempt was made to refresh the prev_pc at the same time the
2250 execution_control_state is initialized (for instance, just before
2251 waiting for an inferior event). But this approach did not work
2252 because of platforms that use ptrace, where the pc register cannot
2253 be read unless the inferior is stopped. At that point, we are not
2254 guaranteed the inferior is stopped and so the regcache_read_pc() call
2255 can fail. Setting the prev_pc value here ensures the value is updated
2256 correctly when the inferior is stopped. */
4e1c45ea 2257 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2258
59f0d5d9 2259 /* Fill in with reasonable starting values. */
4e1c45ea 2260 init_thread_stepping_state (tp);
59f0d5d9 2261
59f0d5d9
PA
2262 /* Reset to normal state. */
2263 init_infwait_state ();
2264
c906108c 2265 /* Resume inferior. */
16c381f0 2266 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2267
2268 /* Wait for it to stop (if not standalone)
2269 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2270 /* Do this only if we are not using the event loop, or if the target
1777feb0 2271 does not support asynchronous execution. */
362646f5 2272 if (!target_can_async_p ())
43ff13b4 2273 {
e4c8541f 2274 wait_for_inferior ();
43ff13b4
JM
2275 normal_stop ();
2276 }
c906108c 2277}
c906108c
SS
2278\f
2279
2280/* Start remote-debugging of a machine over a serial link. */
96baa820 2281
c906108c 2282void
8621d6a9 2283start_remote (int from_tty)
c906108c 2284{
d6b48e9c 2285 struct inferior *inferior;
d6b48e9c
PA
2286
2287 inferior = current_inferior ();
16c381f0 2288 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2289
1777feb0 2290 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2291 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2292 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2293 nothing is returned (instead of just blocking). Because of this,
2294 targets expecting an immediate response need to, internally, set
2295 things up so that the target_wait() is forced to eventually
1777feb0 2296 timeout. */
6426a772
JM
2297 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2298 differentiate to its caller what the state of the target is after
2299 the initial open has been performed. Here we're assuming that
2300 the target has stopped. It should be possible to eventually have
2301 target_open() return to the caller an indication that the target
2302 is currently running and GDB state should be set to the same as
1777feb0 2303 for an async run. */
e4c8541f 2304 wait_for_inferior ();
8621d6a9
DJ
2305
2306 /* Now that the inferior has stopped, do any bookkeeping like
2307 loading shared libraries. We want to do this before normal_stop,
2308 so that the displayed frame is up to date. */
2309 post_create_inferior (&current_target, from_tty);
2310
6426a772 2311 normal_stop ();
c906108c
SS
2312}
2313
2314/* Initialize static vars when a new inferior begins. */
2315
2316void
96baa820 2317init_wait_for_inferior (void)
c906108c
SS
2318{
2319 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2320
c906108c
SS
2321 breakpoint_init_inferior (inf_starting);
2322
c906108c 2323 clear_proceed_status ();
9f976b41
DJ
2324
2325 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2326 deferred_step_ptid = null_ptid;
ca005067
DJ
2327
2328 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2329
842951eb 2330 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2331 init_infwait_state ();
2332
edb3359d
DJ
2333 /* Discard any skipped inlined frames. */
2334 clear_inline_frame_state (minus_one_ptid);
c906108c 2335}
237fc4c9 2336
c906108c 2337\f
b83266a0
SS
2338/* This enum encodes possible reasons for doing a target_wait, so that
2339 wfi can call target_wait in one place. (Ultimately the call will be
2340 moved out of the infinite loop entirely.) */
2341
c5aa993b
JM
2342enum infwait_states
2343{
cd0fc7c3
SS
2344 infwait_normal_state,
2345 infwait_thread_hop_state,
d983da9c 2346 infwait_step_watch_state,
cd0fc7c3 2347 infwait_nonstep_watch_state
b83266a0
SS
2348};
2349
0d1e5fa7
PA
2350/* The PTID we'll do a target_wait on.*/
2351ptid_t waiton_ptid;
2352
2353/* Current inferior wait state. */
2354enum infwait_states infwait_state;
cd0fc7c3 2355
0d1e5fa7
PA
2356/* Data to be passed around while handling an event. This data is
2357 discarded between events. */
c5aa993b 2358struct execution_control_state
488f131b 2359{
0d1e5fa7 2360 ptid_t ptid;
4e1c45ea
PA
2361 /* The thread that got the event, if this was a thread event; NULL
2362 otherwise. */
2363 struct thread_info *event_thread;
2364
488f131b 2365 struct target_waitstatus ws;
488f131b 2366 int random_signal;
7e324e48 2367 int stop_func_filled_in;
488f131b
JB
2368 CORE_ADDR stop_func_start;
2369 CORE_ADDR stop_func_end;
2370 char *stop_func_name;
488f131b 2371 int new_thread_event;
488f131b
JB
2372 int wait_some_more;
2373};
2374
ec9499be 2375static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2376
568d6575
UW
2377static void handle_step_into_function (struct gdbarch *gdbarch,
2378 struct execution_control_state *ecs);
2379static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2380 struct execution_control_state *ecs);
186c406b
TT
2381static void check_exception_resume (struct execution_control_state *,
2382 struct frame_info *, struct symbol *);
611c83ae 2383
104c1213
JM
2384static void stop_stepping (struct execution_control_state *ecs);
2385static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2386static void keep_going (struct execution_control_state *ecs);
104c1213 2387
252fbfc8
PA
2388/* Callback for iterate over threads. If the thread is stopped, but
2389 the user/frontend doesn't know about that yet, go through
2390 normal_stop, as if the thread had just stopped now. ARG points at
2391 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2392 ptid_is_pid(PTID) is true, applies to all threads of the process
2393 pointed at by PTID. Otherwise, apply only to the thread pointed by
2394 PTID. */
2395
2396static int
2397infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2398{
2399 ptid_t ptid = * (ptid_t *) arg;
2400
2401 if ((ptid_equal (info->ptid, ptid)
2402 || ptid_equal (minus_one_ptid, ptid)
2403 || (ptid_is_pid (ptid)
2404 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2405 && is_running (info->ptid)
2406 && !is_executing (info->ptid))
2407 {
2408 struct cleanup *old_chain;
2409 struct execution_control_state ecss;
2410 struct execution_control_state *ecs = &ecss;
2411
2412 memset (ecs, 0, sizeof (*ecs));
2413
2414 old_chain = make_cleanup_restore_current_thread ();
2415
2416 switch_to_thread (info->ptid);
2417
2418 /* Go through handle_inferior_event/normal_stop, so we always
2419 have consistent output as if the stop event had been
2420 reported. */
2421 ecs->ptid = info->ptid;
e09875d4 2422 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2423 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2424 ecs->ws.value.sig = TARGET_SIGNAL_0;
2425
2426 handle_inferior_event (ecs);
2427
2428 if (!ecs->wait_some_more)
2429 {
2430 struct thread_info *tp;
2431
2432 normal_stop ();
2433
fa4cd53f 2434 /* Finish off the continuations. */
252fbfc8 2435 tp = inferior_thread ();
fa4cd53f
PA
2436 do_all_intermediate_continuations_thread (tp, 1);
2437 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2438 }
2439
2440 do_cleanups (old_chain);
2441 }
2442
2443 return 0;
2444}
2445
2446/* This function is attached as a "thread_stop_requested" observer.
2447 Cleanup local state that assumed the PTID was to be resumed, and
2448 report the stop to the frontend. */
2449
2c0b251b 2450static void
252fbfc8
PA
2451infrun_thread_stop_requested (ptid_t ptid)
2452{
fc1cf338 2453 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2454
2455 /* PTID was requested to stop. Remove it from the displaced
2456 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2457
2458 for (displaced = displaced_step_inferior_states;
2459 displaced;
2460 displaced = displaced->next)
252fbfc8 2461 {
fc1cf338 2462 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2463
fc1cf338
PA
2464 it = displaced->step_request_queue;
2465 prev_next_p = &displaced->step_request_queue;
2466 while (it)
252fbfc8 2467 {
fc1cf338
PA
2468 if (ptid_match (it->ptid, ptid))
2469 {
2470 *prev_next_p = it->next;
2471 it->next = NULL;
2472 xfree (it);
2473 }
252fbfc8 2474 else
fc1cf338
PA
2475 {
2476 prev_next_p = &it->next;
2477 }
252fbfc8 2478
fc1cf338 2479 it = *prev_next_p;
252fbfc8 2480 }
252fbfc8
PA
2481 }
2482
2483 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2484}
2485
a07daef3
PA
2486static void
2487infrun_thread_thread_exit (struct thread_info *tp, int silent)
2488{
2489 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2490 nullify_last_target_wait_ptid ();
2491}
2492
4e1c45ea
PA
2493/* Callback for iterate_over_threads. */
2494
2495static int
2496delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2497{
2498 if (is_exited (info->ptid))
2499 return 0;
2500
2501 delete_step_resume_breakpoint (info);
186c406b 2502 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2503 return 0;
2504}
2505
2506/* In all-stop, delete the step resume breakpoint of any thread that
2507 had one. In non-stop, delete the step resume breakpoint of the
2508 thread that just stopped. */
2509
2510static void
2511delete_step_thread_step_resume_breakpoint (void)
2512{
2513 if (!target_has_execution
2514 || ptid_equal (inferior_ptid, null_ptid))
2515 /* If the inferior has exited, we have already deleted the step
2516 resume breakpoints out of GDB's lists. */
2517 return;
2518
2519 if (non_stop)
2520 {
2521 /* If in non-stop mode, only delete the step-resume or
2522 longjmp-resume breakpoint of the thread that just stopped
2523 stepping. */
2524 struct thread_info *tp = inferior_thread ();
abbb1732 2525
4e1c45ea 2526 delete_step_resume_breakpoint (tp);
186c406b 2527 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2528 }
2529 else
2530 /* In all-stop mode, delete all step-resume and longjmp-resume
2531 breakpoints of any thread that had them. */
2532 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2533}
2534
1777feb0 2535/* A cleanup wrapper. */
4e1c45ea
PA
2536
2537static void
2538delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2539{
2540 delete_step_thread_step_resume_breakpoint ();
2541}
2542
223698f8
DE
2543/* Pretty print the results of target_wait, for debugging purposes. */
2544
2545static void
2546print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2547 const struct target_waitstatus *ws)
2548{
2549 char *status_string = target_waitstatus_to_string (ws);
2550 struct ui_file *tmp_stream = mem_fileopen ();
2551 char *text;
223698f8
DE
2552
2553 /* The text is split over several lines because it was getting too long.
2554 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2555 output as a unit; we want only one timestamp printed if debug_timestamp
2556 is set. */
2557
2558 fprintf_unfiltered (tmp_stream,
2559 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2560 if (PIDGET (waiton_ptid) != -1)
2561 fprintf_unfiltered (tmp_stream,
2562 " [%s]", target_pid_to_str (waiton_ptid));
2563 fprintf_unfiltered (tmp_stream, ", status) =\n");
2564 fprintf_unfiltered (tmp_stream,
2565 "infrun: %d [%s],\n",
2566 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2567 fprintf_unfiltered (tmp_stream,
2568 "infrun: %s\n",
2569 status_string);
2570
759ef836 2571 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2572
2573 /* This uses %s in part to handle %'s in the text, but also to avoid
2574 a gcc error: the format attribute requires a string literal. */
2575 fprintf_unfiltered (gdb_stdlog, "%s", text);
2576
2577 xfree (status_string);
2578 xfree (text);
2579 ui_file_delete (tmp_stream);
2580}
2581
24291992
PA
2582/* Prepare and stabilize the inferior for detaching it. E.g.,
2583 detaching while a thread is displaced stepping is a recipe for
2584 crashing it, as nothing would readjust the PC out of the scratch
2585 pad. */
2586
2587void
2588prepare_for_detach (void)
2589{
2590 struct inferior *inf = current_inferior ();
2591 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2592 struct cleanup *old_chain_1;
2593 struct displaced_step_inferior_state *displaced;
2594
2595 displaced = get_displaced_stepping_state (inf->pid);
2596
2597 /* Is any thread of this process displaced stepping? If not,
2598 there's nothing else to do. */
2599 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2600 return;
2601
2602 if (debug_infrun)
2603 fprintf_unfiltered (gdb_stdlog,
2604 "displaced-stepping in-process while detaching");
2605
2606 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2607 inf->detaching = 1;
2608
2609 while (!ptid_equal (displaced->step_ptid, null_ptid))
2610 {
2611 struct cleanup *old_chain_2;
2612 struct execution_control_state ecss;
2613 struct execution_control_state *ecs;
2614
2615 ecs = &ecss;
2616 memset (ecs, 0, sizeof (*ecs));
2617
2618 overlay_cache_invalid = 1;
2619
24291992
PA
2620 if (deprecated_target_wait_hook)
2621 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2622 else
2623 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2624
2625 if (debug_infrun)
2626 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2627
2628 /* If an error happens while handling the event, propagate GDB's
2629 knowledge of the executing state to the frontend/user running
2630 state. */
3e43a32a
MS
2631 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2632 &minus_one_ptid);
24291992 2633
4d533103
PA
2634 /* In non-stop mode, each thread is handled individually.
2635 Switch early, so the global state is set correctly for this
2636 thread. */
2637 if (non_stop
2638 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2639 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2640 context_switch (ecs->ptid);
2641
24291992
PA
2642 /* Now figure out what to do with the result of the result. */
2643 handle_inferior_event (ecs);
2644
2645 /* No error, don't finish the state yet. */
2646 discard_cleanups (old_chain_2);
2647
2648 /* Breakpoints and watchpoints are not installed on the target
2649 at this point, and signals are passed directly to the
2650 inferior, so this must mean the process is gone. */
2651 if (!ecs->wait_some_more)
2652 {
2653 discard_cleanups (old_chain_1);
2654 error (_("Program exited while detaching"));
2655 }
2656 }
2657
2658 discard_cleanups (old_chain_1);
2659}
2660
cd0fc7c3 2661/* Wait for control to return from inferior to debugger.
ae123ec6 2662
cd0fc7c3
SS
2663 If inferior gets a signal, we may decide to start it up again
2664 instead of returning. That is why there is a loop in this function.
2665 When this function actually returns it means the inferior
2666 should be left stopped and GDB should read more commands. */
2667
2668void
e4c8541f 2669wait_for_inferior (void)
cd0fc7c3
SS
2670{
2671 struct cleanup *old_cleanups;
0d1e5fa7 2672 struct execution_control_state ecss;
cd0fc7c3 2673 struct execution_control_state *ecs;
c906108c 2674
527159b7 2675 if (debug_infrun)
ae123ec6 2676 fprintf_unfiltered
e4c8541f 2677 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2678
4e1c45ea
PA
2679 old_cleanups =
2680 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2681
cd0fc7c3 2682 ecs = &ecss;
0d1e5fa7
PA
2683 memset (ecs, 0, sizeof (*ecs));
2684
c906108c
SS
2685 while (1)
2686 {
29f49a6a
PA
2687 struct cleanup *old_chain;
2688
ec9499be 2689 overlay_cache_invalid = 1;
ec9499be 2690
9a4105ab 2691 if (deprecated_target_wait_hook)
47608cb1 2692 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2693 else
47608cb1 2694 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2695
f00150c9 2696 if (debug_infrun)
223698f8 2697 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2698
29f49a6a
PA
2699 /* If an error happens while handling the event, propagate GDB's
2700 knowledge of the executing state to the frontend/user running
2701 state. */
2702 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2703
cd0fc7c3
SS
2704 /* Now figure out what to do with the result of the result. */
2705 handle_inferior_event (ecs);
c906108c 2706
29f49a6a
PA
2707 /* No error, don't finish the state yet. */
2708 discard_cleanups (old_chain);
2709
cd0fc7c3
SS
2710 if (!ecs->wait_some_more)
2711 break;
2712 }
4e1c45ea 2713
cd0fc7c3
SS
2714 do_cleanups (old_cleanups);
2715}
c906108c 2716
1777feb0 2717/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2718 event loop whenever a change of state is detected on the file
1777feb0
MS
2719 descriptor corresponding to the target. It can be called more than
2720 once to complete a single execution command. In such cases we need
2721 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2722 that this function is called for a single execution command, then
2723 report to the user that the inferior has stopped, and do the
1777feb0 2724 necessary cleanups. */
43ff13b4
JM
2725
2726void
fba45db2 2727fetch_inferior_event (void *client_data)
43ff13b4 2728{
0d1e5fa7 2729 struct execution_control_state ecss;
a474d7c2 2730 struct execution_control_state *ecs = &ecss;
4f8d22e3 2731 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2732 struct cleanup *ts_old_chain;
4f8d22e3 2733 int was_sync = sync_execution;
0f641c01 2734 int cmd_done = 0;
43ff13b4 2735
0d1e5fa7
PA
2736 memset (ecs, 0, sizeof (*ecs));
2737
c5187ac6
PA
2738 /* We're handling a live event, so make sure we're doing live
2739 debugging. If we're looking at traceframes while the target is
2740 running, we're going to need to get back to that mode after
2741 handling the event. */
2742 if (non_stop)
2743 {
2744 make_cleanup_restore_current_traceframe ();
e6e4e701 2745 set_current_traceframe (-1);
c5187ac6
PA
2746 }
2747
4f8d22e3
PA
2748 if (non_stop)
2749 /* In non-stop mode, the user/frontend should not notice a thread
2750 switch due to internal events. Make sure we reverse to the
2751 user selected thread and frame after handling the event and
2752 running any breakpoint commands. */
2753 make_cleanup_restore_current_thread ();
2754
ec9499be 2755 overlay_cache_invalid = 1;
3dd5b83d 2756
32231432
PA
2757 make_cleanup_restore_integer (&execution_direction);
2758 execution_direction = target_execution_direction ();
2759
9a4105ab 2760 if (deprecated_target_wait_hook)
a474d7c2 2761 ecs->ptid =
47608cb1 2762 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2763 else
47608cb1 2764 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2765
f00150c9 2766 if (debug_infrun)
223698f8 2767 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2768
94cc34af
PA
2769 if (non_stop
2770 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
0e5bf2a8 2771 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
94cc34af
PA
2772 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2773 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2774 /* In non-stop mode, each thread is handled individually. Switch
2775 early, so the global state is set correctly for this
2776 thread. */
2777 context_switch (ecs->ptid);
2778
29f49a6a
PA
2779 /* If an error happens while handling the event, propagate GDB's
2780 knowledge of the executing state to the frontend/user running
2781 state. */
2782 if (!non_stop)
2783 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2784 else
2785 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2786
353d1d73
JK
2787 /* Get executed before make_cleanup_restore_current_thread above to apply
2788 still for the thread which has thrown the exception. */
2789 make_bpstat_clear_actions_cleanup ();
2790
43ff13b4 2791 /* Now figure out what to do with the result of the result. */
a474d7c2 2792 handle_inferior_event (ecs);
43ff13b4 2793
a474d7c2 2794 if (!ecs->wait_some_more)
43ff13b4 2795 {
d6b48e9c
PA
2796 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2797
4e1c45ea 2798 delete_step_thread_step_resume_breakpoint ();
f107f563 2799
d6b48e9c 2800 /* We may not find an inferior if this was a process exit. */
16c381f0 2801 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2802 normal_stop ();
2803
af679fd0 2804 if (target_has_execution
0e5bf2a8 2805 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2806 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2807 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2808 && ecs->event_thread->step_multi
16c381f0 2809 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2810 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2811 else
0f641c01
PA
2812 {
2813 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2814 cmd_done = 1;
2815 }
43ff13b4 2816 }
4f8d22e3 2817
29f49a6a
PA
2818 /* No error, don't finish the thread states yet. */
2819 discard_cleanups (ts_old_chain);
2820
4f8d22e3
PA
2821 /* Revert thread and frame. */
2822 do_cleanups (old_chain);
2823
2824 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2825 restore the prompt (a synchronous execution command has finished,
2826 and we're ready for input). */
b4a14fd0 2827 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2828 display_gdb_prompt (0);
0f641c01
PA
2829
2830 if (cmd_done
2831 && !was_sync
2832 && exec_done_display_p
2833 && (ptid_equal (inferior_ptid, null_ptid)
2834 || !is_running (inferior_ptid)))
2835 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2836}
2837
edb3359d
DJ
2838/* Record the frame and location we're currently stepping through. */
2839void
2840set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2841{
2842 struct thread_info *tp = inferior_thread ();
2843
16c381f0
JK
2844 tp->control.step_frame_id = get_frame_id (frame);
2845 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2846
2847 tp->current_symtab = sal.symtab;
2848 tp->current_line = sal.line;
2849}
2850
0d1e5fa7
PA
2851/* Clear context switchable stepping state. */
2852
2853void
4e1c45ea 2854init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2855{
2856 tss->stepping_over_breakpoint = 0;
2857 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2858}
2859
e02bc4cc 2860/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2861 target_wait()/deprecated_target_wait_hook(). The data is actually
2862 cached by handle_inferior_event(), which gets called immediately
2863 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2864
2865void
488f131b 2866get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2867{
39f77062 2868 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2869 *status = target_last_waitstatus;
2870}
2871
ac264b3b
MS
2872void
2873nullify_last_target_wait_ptid (void)
2874{
2875 target_last_wait_ptid = minus_one_ptid;
2876}
2877
dcf4fbde 2878/* Switch thread contexts. */
dd80620e
MS
2879
2880static void
0d1e5fa7 2881context_switch (ptid_t ptid)
dd80620e 2882{
4b51d87b 2883 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2884 {
2885 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2886 target_pid_to_str (inferior_ptid));
2887 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2888 target_pid_to_str (ptid));
fd48f117
DJ
2889 }
2890
0d1e5fa7 2891 switch_to_thread (ptid);
dd80620e
MS
2892}
2893
4fa8626c
DJ
2894static void
2895adjust_pc_after_break (struct execution_control_state *ecs)
2896{
24a73cce
UW
2897 struct regcache *regcache;
2898 struct gdbarch *gdbarch;
6c95b8df 2899 struct address_space *aspace;
8aad930b 2900 CORE_ADDR breakpoint_pc;
4fa8626c 2901
4fa8626c
DJ
2902 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2903 we aren't, just return.
9709f61c
DJ
2904
2905 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2906 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2907 implemented by software breakpoints should be handled through the normal
2908 breakpoint layer.
8fb3e588 2909
4fa8626c
DJ
2910 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2911 different signals (SIGILL or SIGEMT for instance), but it is less
2912 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2913 gdbarch_decr_pc_after_break. I don't know any specific target that
2914 generates these signals at breakpoints (the code has been in GDB since at
2915 least 1992) so I can not guess how to handle them here.
8fb3e588 2916
e6cf7916
UW
2917 In earlier versions of GDB, a target with
2918 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2919 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2920 target with both of these set in GDB history, and it seems unlikely to be
2921 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2922
2923 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2924 return;
2925
2926 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2927 return;
2928
4058b839
PA
2929 /* In reverse execution, when a breakpoint is hit, the instruction
2930 under it has already been de-executed. The reported PC always
2931 points at the breakpoint address, so adjusting it further would
2932 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2933 architecture:
2934
2935 B1 0x08000000 : INSN1
2936 B2 0x08000001 : INSN2
2937 0x08000002 : INSN3
2938 PC -> 0x08000003 : INSN4
2939
2940 Say you're stopped at 0x08000003 as above. Reverse continuing
2941 from that point should hit B2 as below. Reading the PC when the
2942 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2943 been de-executed already.
2944
2945 B1 0x08000000 : INSN1
2946 B2 PC -> 0x08000001 : INSN2
2947 0x08000002 : INSN3
2948 0x08000003 : INSN4
2949
2950 We can't apply the same logic as for forward execution, because
2951 we would wrongly adjust the PC to 0x08000000, since there's a
2952 breakpoint at PC - 1. We'd then report a hit on B1, although
2953 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2954 behaviour. */
2955 if (execution_direction == EXEC_REVERSE)
2956 return;
2957
24a73cce
UW
2958 /* If this target does not decrement the PC after breakpoints, then
2959 we have nothing to do. */
2960 regcache = get_thread_regcache (ecs->ptid);
2961 gdbarch = get_regcache_arch (regcache);
2962 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2963 return;
2964
6c95b8df
PA
2965 aspace = get_regcache_aspace (regcache);
2966
8aad930b
AC
2967 /* Find the location where (if we've hit a breakpoint) the
2968 breakpoint would be. */
515630c5
UW
2969 breakpoint_pc = regcache_read_pc (regcache)
2970 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2971
1c5cfe86
PA
2972 /* Check whether there actually is a software breakpoint inserted at
2973 that location.
2974
2975 If in non-stop mode, a race condition is possible where we've
2976 removed a breakpoint, but stop events for that breakpoint were
2977 already queued and arrive later. To suppress those spurious
2978 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2979 and retire them after a number of stop events are reported. */
6c95b8df
PA
2980 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2981 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2982 {
96429cc8 2983 struct cleanup *old_cleanups = NULL;
abbb1732 2984
96429cc8
HZ
2985 if (RECORD_IS_USED)
2986 old_cleanups = record_gdb_operation_disable_set ();
2987
1c0fdd0e
UW
2988 /* When using hardware single-step, a SIGTRAP is reported for both
2989 a completed single-step and a software breakpoint. Need to
2990 differentiate between the two, as the latter needs adjusting
2991 but the former does not.
2992
2993 The SIGTRAP can be due to a completed hardware single-step only if
2994 - we didn't insert software single-step breakpoints
2995 - the thread to be examined is still the current thread
2996 - this thread is currently being stepped
2997
2998 If any of these events did not occur, we must have stopped due
2999 to hitting a software breakpoint, and have to back up to the
3000 breakpoint address.
3001
3002 As a special case, we could have hardware single-stepped a
3003 software breakpoint. In this case (prev_pc == breakpoint_pc),
3004 we also need to back up to the breakpoint address. */
3005
3006 if (singlestep_breakpoints_inserted_p
3007 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3008 || !currently_stepping (ecs->event_thread)
3009 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3010 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3011
3012 if (RECORD_IS_USED)
3013 do_cleanups (old_cleanups);
8aad930b 3014 }
4fa8626c
DJ
3015}
3016
0d1e5fa7
PA
3017void
3018init_infwait_state (void)
3019{
3020 waiton_ptid = pid_to_ptid (-1);
3021 infwait_state = infwait_normal_state;
3022}
3023
94cc34af
PA
3024void
3025error_is_running (void)
3026{
3e43a32a
MS
3027 error (_("Cannot execute this command while "
3028 "the selected thread is running."));
94cc34af
PA
3029}
3030
3031void
3032ensure_not_running (void)
3033{
3034 if (is_running (inferior_ptid))
3035 error_is_running ();
3036}
3037
edb3359d
DJ
3038static int
3039stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3040{
3041 for (frame = get_prev_frame (frame);
3042 frame != NULL;
3043 frame = get_prev_frame (frame))
3044 {
3045 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3046 return 1;
3047 if (get_frame_type (frame) != INLINE_FRAME)
3048 break;
3049 }
3050
3051 return 0;
3052}
3053
a96d9b2e
SDJ
3054/* Auxiliary function that handles syscall entry/return events.
3055 It returns 1 if the inferior should keep going (and GDB
3056 should ignore the event), or 0 if the event deserves to be
3057 processed. */
ca2163eb 3058
a96d9b2e 3059static int
ca2163eb 3060handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3061{
ca2163eb
PA
3062 struct regcache *regcache;
3063 struct gdbarch *gdbarch;
3064 int syscall_number;
3065
3066 if (!ptid_equal (ecs->ptid, inferior_ptid))
3067 context_switch (ecs->ptid);
3068
3069 regcache = get_thread_regcache (ecs->ptid);
3070 gdbarch = get_regcache_arch (regcache);
f90263c1 3071 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3072 stop_pc = regcache_read_pc (regcache);
3073
a96d9b2e
SDJ
3074 if (catch_syscall_enabled () > 0
3075 && catching_syscall_number (syscall_number) > 0)
3076 {
3077 if (debug_infrun)
3078 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3079 syscall_number);
a96d9b2e 3080
16c381f0 3081 ecs->event_thread->control.stop_bpstat
6c95b8df 3082 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3083 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3084 ecs->random_signal
3085 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3086
ca2163eb
PA
3087 if (!ecs->random_signal)
3088 {
3089 /* Catchpoint hit. */
16c381f0 3090 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3091 return 0;
3092 }
a96d9b2e 3093 }
ca2163eb
PA
3094
3095 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3096 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3097 keep_going (ecs);
3098 return 1;
a96d9b2e
SDJ
3099}
3100
7e324e48
GB
3101/* Clear the supplied execution_control_state's stop_func_* fields. */
3102
3103static void
3104clear_stop_func (struct execution_control_state *ecs)
3105{
3106 ecs->stop_func_filled_in = 0;
3107 ecs->stop_func_start = 0;
3108 ecs->stop_func_end = 0;
3109 ecs->stop_func_name = NULL;
3110}
3111
3112/* Lazily fill in the execution_control_state's stop_func_* fields. */
3113
3114static void
3115fill_in_stop_func (struct gdbarch *gdbarch,
3116 struct execution_control_state *ecs)
3117{
3118 if (!ecs->stop_func_filled_in)
3119 {
3120 /* Don't care about return value; stop_func_start and stop_func_name
3121 will both be 0 if it doesn't work. */
3122 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3123 &ecs->stop_func_start, &ecs->stop_func_end);
3124 ecs->stop_func_start
3125 += gdbarch_deprecated_function_start_offset (gdbarch);
3126
3127 ecs->stop_func_filled_in = 1;
3128 }
3129}
3130
cd0fc7c3
SS
3131/* Given an execution control state that has been freshly filled in
3132 by an event from the inferior, figure out what it means and take
3133 appropriate action. */
c906108c 3134
ec9499be 3135static void
96baa820 3136handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3137{
568d6575
UW
3138 struct frame_info *frame;
3139 struct gdbarch *gdbarch;
d983da9c
DJ
3140 int stopped_by_watchpoint;
3141 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3142 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3143 enum stop_kind stop_soon;
3144
28736962
PA
3145 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3146 {
3147 /* We had an event in the inferior, but we are not interested in
3148 handling it at this level. The lower layers have already
3149 done what needs to be done, if anything.
3150
3151 One of the possible circumstances for this is when the
3152 inferior produces output for the console. The inferior has
3153 not stopped, and we are ignoring the event. Another possible
3154 circumstance is any event which the lower level knows will be
3155 reported multiple times without an intervening resume. */
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3158 prepare_to_wait (ecs);
3159 return;
3160 }
3161
0e5bf2a8
PA
3162 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3163 && target_can_async_p () && !sync_execution)
3164 {
3165 /* There were no unwaited-for children left in the target, but,
3166 we're not synchronously waiting for events either. Just
3167 ignore. Otherwise, if we were running a synchronous
3168 execution command, we need to cancel it and give the user
3169 back the terminal. */
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3173 prepare_to_wait (ecs);
3174 return;
3175 }
3176
d6b48e9c 3177 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3178 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3179 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3180 {
3181 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3182
d6b48e9c 3183 gdb_assert (inf);
16c381f0 3184 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3185 }
3186 else
3187 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3188
1777feb0 3189 /* Cache the last pid/waitstatus. */
39f77062 3190 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3191 target_last_waitstatus = ecs->ws;
e02bc4cc 3192
ca005067 3193 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3194 stop_stack_dummy = STOP_NONE;
ca005067 3195
0e5bf2a8
PA
3196 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3197 {
3198 /* No unwaited-for children left. IOW, all resumed children
3199 have exited. */
3200 if (debug_infrun)
3201 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3202
3203 stop_print_frame = 0;
3204 stop_stepping (ecs);
3205 return;
3206 }
3207
1777feb0 3208 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3209
3210 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3211 && !ptid_equal (ecs->ptid, minus_one_ptid)
3212 && !in_thread_list (ecs->ptid));
3213
3214 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3215 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3216 add_thread (ecs->ptid);
3217
e09875d4 3218 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3219
3220 /* Dependent on valid ECS->EVENT_THREAD. */
3221 adjust_pc_after_break (ecs);
3222
3223 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3224 reinit_frame_cache ();
3225
28736962
PA
3226 breakpoint_retire_moribund ();
3227
2b009048
DJ
3228 /* First, distinguish signals caused by the debugger from signals
3229 that have to do with the program's own actions. Note that
3230 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3231 on the operating system version. Here we detect when a SIGILL or
3232 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3233 something similar for SIGSEGV, since a SIGSEGV will be generated
3234 when we're trying to execute a breakpoint instruction on a
3235 non-executable stack. This happens for call dummy breakpoints
3236 for architectures like SPARC that place call dummies on the
3237 stack. */
2b009048
DJ
3238 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3239 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3240 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3241 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3242 {
de0a0249
UW
3243 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3244
3245 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3246 regcache_read_pc (regcache)))
3247 {
3248 if (debug_infrun)
3249 fprintf_unfiltered (gdb_stdlog,
3250 "infrun: Treating signal as SIGTRAP\n");
3251 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3252 }
2b009048
DJ
3253 }
3254
28736962
PA
3255 /* Mark the non-executing threads accordingly. In all-stop, all
3256 threads of all processes are stopped when we get any event
3257 reported. In non-stop mode, only the event thread stops. If
3258 we're handling a process exit in non-stop mode, there's nothing
3259 to do, as threads of the dead process are gone, and threads of
3260 any other process were left running. */
3261 if (!non_stop)
3262 set_executing (minus_one_ptid, 0);
3263 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3264 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3265 set_executing (ecs->ptid, 0);
8c90c137 3266
0d1e5fa7 3267 switch (infwait_state)
488f131b
JB
3268 {
3269 case infwait_thread_hop_state:
527159b7 3270 if (debug_infrun)
8a9de0e4 3271 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3272 break;
b83266a0 3273
488f131b 3274 case infwait_normal_state:
527159b7 3275 if (debug_infrun)
8a9de0e4 3276 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3277 break;
3278
3279 case infwait_step_watch_state:
3280 if (debug_infrun)
3281 fprintf_unfiltered (gdb_stdlog,
3282 "infrun: infwait_step_watch_state\n");
3283
3284 stepped_after_stopped_by_watchpoint = 1;
488f131b 3285 break;
b83266a0 3286
488f131b 3287 case infwait_nonstep_watch_state:
527159b7 3288 if (debug_infrun)
8a9de0e4
AC
3289 fprintf_unfiltered (gdb_stdlog,
3290 "infrun: infwait_nonstep_watch_state\n");
488f131b 3291 insert_breakpoints ();
c906108c 3292
488f131b
JB
3293 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3294 handle things like signals arriving and other things happening
3295 in combination correctly? */
3296 stepped_after_stopped_by_watchpoint = 1;
3297 break;
65e82032
AC
3298
3299 default:
e2e0b3e5 3300 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3301 }
ec9499be 3302
0d1e5fa7 3303 infwait_state = infwait_normal_state;
ec9499be 3304 waiton_ptid = pid_to_ptid (-1);
c906108c 3305
488f131b
JB
3306 switch (ecs->ws.kind)
3307 {
3308 case TARGET_WAITKIND_LOADED:
527159b7 3309 if (debug_infrun)
8a9de0e4 3310 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3311 /* Ignore gracefully during startup of the inferior, as it might
3312 be the shell which has just loaded some objects, otherwise
3313 add the symbols for the newly loaded objects. Also ignore at
3314 the beginning of an attach or remote session; we will query
3315 the full list of libraries once the connection is
3316 established. */
c0236d92 3317 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3318 {
488f131b
JB
3319 /* Check for any newly added shared libraries if we're
3320 supposed to be adding them automatically. Switch
3321 terminal for any messages produced by
3322 breakpoint_re_set. */
3323 target_terminal_ours_for_output ();
aff6338a 3324 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3325 stack's section table is kept up-to-date. Architectures,
3326 (e.g., PPC64), use the section table to perform
3327 operations such as address => section name and hence
3328 require the table to contain all sections (including
3329 those found in shared libraries). */
b0f4b84b 3330#ifdef SOLIB_ADD
aff6338a 3331 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3332#else
3333 solib_add (NULL, 0, &current_target, auto_solib_add);
3334#endif
488f131b
JB
3335 target_terminal_inferior ();
3336
b0f4b84b
DJ
3337 /* If requested, stop when the dynamic linker notifies
3338 gdb of events. This allows the user to get control
3339 and place breakpoints in initializer routines for
3340 dynamically loaded objects (among other things). */
3341 if (stop_on_solib_events)
3342 {
55409f9d
DJ
3343 /* Make sure we print "Stopped due to solib-event" in
3344 normal_stop. */
3345 stop_print_frame = 1;
3346
b0f4b84b
DJ
3347 stop_stepping (ecs);
3348 return;
3349 }
3350
3351 /* NOTE drow/2007-05-11: This might be a good place to check
3352 for "catch load". */
488f131b 3353 }
b0f4b84b
DJ
3354
3355 /* If we are skipping through a shell, or through shared library
3356 loading that we aren't interested in, resume the program. If
3357 we're running the program normally, also resume. But stop if
3358 we're attaching or setting up a remote connection. */
3359 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3360 {
74960c60
VP
3361 /* Loading of shared libraries might have changed breakpoint
3362 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3363 if (stop_soon == NO_STOP_QUIETLY
3364 && !breakpoints_always_inserted_mode ())
74960c60 3365 insert_breakpoints ();
b0f4b84b
DJ
3366 resume (0, TARGET_SIGNAL_0);
3367 prepare_to_wait (ecs);
3368 return;
3369 }
3370
3371 break;
c5aa993b 3372
488f131b 3373 case TARGET_WAITKIND_SPURIOUS:
527159b7 3374 if (debug_infrun)
8a9de0e4 3375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3376 resume (0, TARGET_SIGNAL_0);
3377 prepare_to_wait (ecs);
3378 return;
c5aa993b 3379
488f131b 3380 case TARGET_WAITKIND_EXITED:
527159b7 3381 if (debug_infrun)
8a9de0e4 3382 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3383 inferior_ptid = ecs->ptid;
6c95b8df
PA
3384 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3385 set_current_program_space (current_inferior ()->pspace);
3386 handle_vfork_child_exec_or_exit (0);
1777feb0 3387 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3388 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3389
3390 /* Record the exit code in the convenience variable $_exitcode, so
3391 that the user can inspect this again later. */
4fa62494
UW
3392 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3393 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3394
3395 /* Also record this in the inferior itself. */
3396 current_inferior ()->has_exit_code = 1;
3397 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3398
488f131b
JB
3399 gdb_flush (gdb_stdout);
3400 target_mourn_inferior ();
1c0fdd0e 3401 singlestep_breakpoints_inserted_p = 0;
d03285ec 3402 cancel_single_step_breakpoints ();
488f131b
JB
3403 stop_print_frame = 0;
3404 stop_stepping (ecs);
3405 return;
c5aa993b 3406
488f131b 3407 case TARGET_WAITKIND_SIGNALLED:
527159b7 3408 if (debug_infrun)
8a9de0e4 3409 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3410 inferior_ptid = ecs->ptid;
6c95b8df
PA
3411 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3412 set_current_program_space (current_inferior ()->pspace);
3413 handle_vfork_child_exec_or_exit (0);
488f131b 3414 stop_print_frame = 0;
1777feb0 3415 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3416
488f131b
JB
3417 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3418 reach here unless the inferior is dead. However, for years
3419 target_kill() was called here, which hints that fatal signals aren't
3420 really fatal on some systems. If that's true, then some changes
1777feb0 3421 may be needed. */
488f131b 3422 target_mourn_inferior ();
c906108c 3423
33d62d64 3424 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3425 singlestep_breakpoints_inserted_p = 0;
d03285ec 3426 cancel_single_step_breakpoints ();
488f131b
JB
3427 stop_stepping (ecs);
3428 return;
c906108c 3429
488f131b 3430 /* The following are the only cases in which we keep going;
1777feb0 3431 the above cases end in a continue or goto. */
488f131b 3432 case TARGET_WAITKIND_FORKED:
deb3b17b 3433 case TARGET_WAITKIND_VFORKED:
527159b7 3434 if (debug_infrun)
8a9de0e4 3435 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3436
e2d96639
YQ
3437 /* Check whether the inferior is displaced stepping. */
3438 {
3439 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3441 struct displaced_step_inferior_state *displaced
3442 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3443
3444 /* If checking displaced stepping is supported, and thread
3445 ecs->ptid is displaced stepping. */
3446 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3447 {
3448 struct inferior *parent_inf
3449 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3450 struct regcache *child_regcache;
3451 CORE_ADDR parent_pc;
3452
3453 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3454 indicating that the displaced stepping of syscall instruction
3455 has been done. Perform cleanup for parent process here. Note
3456 that this operation also cleans up the child process for vfork,
3457 because their pages are shared. */
3458 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3459
3460 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3461 {
3462 /* Restore scratch pad for child process. */
3463 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3464 }
3465
3466 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3467 the child's PC is also within the scratchpad. Set the child's PC
3468 to the parent's PC value, which has already been fixed up.
3469 FIXME: we use the parent's aspace here, although we're touching
3470 the child, because the child hasn't been added to the inferior
3471 list yet at this point. */
3472
3473 child_regcache
3474 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3475 gdbarch,
3476 parent_inf->aspace);
3477 /* Read PC value of parent process. */
3478 parent_pc = regcache_read_pc (regcache);
3479
3480 if (debug_displaced)
3481 fprintf_unfiltered (gdb_stdlog,
3482 "displaced: write child pc from %s to %s\n",
3483 paddress (gdbarch,
3484 regcache_read_pc (child_regcache)),
3485 paddress (gdbarch, parent_pc));
3486
3487 regcache_write_pc (child_regcache, parent_pc);
3488 }
3489 }
3490
5a2901d9
DJ
3491 if (!ptid_equal (ecs->ptid, inferior_ptid))
3492 {
0d1e5fa7 3493 context_switch (ecs->ptid);
35f196d9 3494 reinit_frame_cache ();
5a2901d9
DJ
3495 }
3496
b242c3c2
PA
3497 /* Immediately detach breakpoints from the child before there's
3498 any chance of letting the user delete breakpoints from the
3499 breakpoint lists. If we don't do this early, it's easy to
3500 leave left over traps in the child, vis: "break foo; catch
3501 fork; c; <fork>; del; c; <child calls foo>". We only follow
3502 the fork on the last `continue', and by that time the
3503 breakpoint at "foo" is long gone from the breakpoint table.
3504 If we vforked, then we don't need to unpatch here, since both
3505 parent and child are sharing the same memory pages; we'll
3506 need to unpatch at follow/detach time instead to be certain
3507 that new breakpoints added between catchpoint hit time and
3508 vfork follow are detached. */
3509 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3510 {
3511 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3512
3513 /* This won't actually modify the breakpoint list, but will
3514 physically remove the breakpoints from the child. */
3515 detach_breakpoints (child_pid);
3516 }
3517
d03285ec
UW
3518 if (singlestep_breakpoints_inserted_p)
3519 {
1777feb0 3520 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3521 remove_single_step_breakpoints ();
3522 singlestep_breakpoints_inserted_p = 0;
3523 }
3524
e58b0e63
PA
3525 /* In case the event is caught by a catchpoint, remember that
3526 the event is to be followed at the next resume of the thread,
3527 and not immediately. */
3528 ecs->event_thread->pending_follow = ecs->ws;
3529
fb14de7b 3530 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3531
16c381f0 3532 ecs->event_thread->control.stop_bpstat
6c95b8df 3533 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3534 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3535
67822962
PA
3536 /* Note that we're interested in knowing the bpstat actually
3537 causes a stop, not just if it may explain the signal.
3538 Software watchpoints, for example, always appear in the
3539 bpstat. */
16c381f0
JK
3540 ecs->random_signal
3541 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3542
3543 /* If no catchpoint triggered for this, then keep going. */
3544 if (ecs->random_signal)
3545 {
6c95b8df
PA
3546 ptid_t parent;
3547 ptid_t child;
e58b0e63 3548 int should_resume;
3e43a32a
MS
3549 int follow_child
3550 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3551
16c381f0 3552 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3553
3554 should_resume = follow_fork ();
3555
6c95b8df
PA
3556 parent = ecs->ptid;
3557 child = ecs->ws.value.related_pid;
3558
3559 /* In non-stop mode, also resume the other branch. */
3560 if (non_stop && !detach_fork)
3561 {
3562 if (follow_child)
3563 switch_to_thread (parent);
3564 else
3565 switch_to_thread (child);
3566
3567 ecs->event_thread = inferior_thread ();
3568 ecs->ptid = inferior_ptid;
3569 keep_going (ecs);
3570 }
3571
3572 if (follow_child)
3573 switch_to_thread (child);
3574 else
3575 switch_to_thread (parent);
3576
e58b0e63
PA
3577 ecs->event_thread = inferior_thread ();
3578 ecs->ptid = inferior_ptid;
3579
3580 if (should_resume)
3581 keep_going (ecs);
3582 else
3583 stop_stepping (ecs);
04e68871
DJ
3584 return;
3585 }
16c381f0 3586 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3587 goto process_event_stop_test;
3588
6c95b8df
PA
3589 case TARGET_WAITKIND_VFORK_DONE:
3590 /* Done with the shared memory region. Re-insert breakpoints in
3591 the parent, and keep going. */
3592
3593 if (debug_infrun)
3e43a32a
MS
3594 fprintf_unfiltered (gdb_stdlog,
3595 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3596
3597 if (!ptid_equal (ecs->ptid, inferior_ptid))
3598 context_switch (ecs->ptid);
3599
3600 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3601 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3602 /* This also takes care of reinserting breakpoints in the
3603 previously locked inferior. */
3604 keep_going (ecs);
3605 return;
3606
488f131b 3607 case TARGET_WAITKIND_EXECD:
527159b7 3608 if (debug_infrun)
fc5261f2 3609 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3610
5a2901d9
DJ
3611 if (!ptid_equal (ecs->ptid, inferior_ptid))
3612 {
0d1e5fa7 3613 context_switch (ecs->ptid);
35f196d9 3614 reinit_frame_cache ();
5a2901d9
DJ
3615 }
3616
d03285ec
UW
3617 singlestep_breakpoints_inserted_p = 0;
3618 cancel_single_step_breakpoints ();
3619
fb14de7b 3620 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3621
6c95b8df
PA
3622 /* Do whatever is necessary to the parent branch of the vfork. */
3623 handle_vfork_child_exec_or_exit (1);
3624
795e548f
PA
3625 /* This causes the eventpoints and symbol table to be reset.
3626 Must do this now, before trying to determine whether to
3627 stop. */
71b43ef8 3628 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3629
16c381f0 3630 ecs->event_thread->control.stop_bpstat
6c95b8df 3631 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3632 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3633 ecs->random_signal
3634 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3635
71b43ef8
PA
3636 /* Note that this may be referenced from inside
3637 bpstat_stop_status above, through inferior_has_execd. */
3638 xfree (ecs->ws.value.execd_pathname);
3639 ecs->ws.value.execd_pathname = NULL;
3640
04e68871
DJ
3641 /* If no catchpoint triggered for this, then keep going. */
3642 if (ecs->random_signal)
3643 {
16c381f0 3644 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3645 keep_going (ecs);
3646 return;
3647 }
16c381f0 3648 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3649 goto process_event_stop_test;
3650
b4dc5ffa
MK
3651 /* Be careful not to try to gather much state about a thread
3652 that's in a syscall. It's frequently a losing proposition. */
488f131b 3653 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3654 if (debug_infrun)
3e43a32a
MS
3655 fprintf_unfiltered (gdb_stdlog,
3656 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3657 /* Getting the current syscall number. */
ca2163eb 3658 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3659 return;
3660 goto process_event_stop_test;
c906108c 3661
488f131b
JB
3662 /* Before examining the threads further, step this thread to
3663 get it entirely out of the syscall. (We get notice of the
3664 event when the thread is just on the verge of exiting a
3665 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3666 into user code.) */
488f131b 3667 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3668 if (debug_infrun)
3e43a32a
MS
3669 fprintf_unfiltered (gdb_stdlog,
3670 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3671 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3672 return;
3673 goto process_event_stop_test;
c906108c 3674
488f131b 3675 case TARGET_WAITKIND_STOPPED:
527159b7 3676 if (debug_infrun)
8a9de0e4 3677 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3678 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3679 break;
c906108c 3680
b2175913 3681 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3682 if (debug_infrun)
3683 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3684 /* Reverse execution: target ran out of history info. */
fb14de7b 3685 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3686 print_no_history_reason ();
b2175913
MS
3687 stop_stepping (ecs);
3688 return;
488f131b 3689 }
c906108c 3690
488f131b
JB
3691 if (ecs->new_thread_event)
3692 {
94cc34af
PA
3693 if (non_stop)
3694 /* Non-stop assumes that the target handles adding new threads
3695 to the thread list. */
3e43a32a
MS
3696 internal_error (__FILE__, __LINE__,
3697 "targets should add new threads to the thread "
3698 "list themselves in non-stop mode.");
94cc34af
PA
3699
3700 /* We may want to consider not doing a resume here in order to
3701 give the user a chance to play with the new thread. It might
3702 be good to make that a user-settable option. */
3703
3704 /* At this point, all threads are stopped (happens automatically
3705 in either the OS or the native code). Therefore we need to
3706 continue all threads in order to make progress. */
3707
173853dc
PA
3708 if (!ptid_equal (ecs->ptid, inferior_ptid))
3709 context_switch (ecs->ptid);
488f131b
JB
3710 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3711 prepare_to_wait (ecs);
3712 return;
3713 }
c906108c 3714
2020b7ab 3715 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3716 {
3717 /* Do we need to clean up the state of a thread that has
3718 completed a displaced single-step? (Doing so usually affects
3719 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3720 displaced_step_fixup (ecs->ptid,
3721 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3722
3723 /* If we either finished a single-step or hit a breakpoint, but
3724 the user wanted this thread to be stopped, pretend we got a
3725 SIG0 (generic unsignaled stop). */
3726
3727 if (ecs->event_thread->stop_requested
16c381f0
JK
3728 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3729 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3730 }
237fc4c9 3731
515630c5 3732 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3733
527159b7 3734 if (debug_infrun)
237fc4c9 3735 {
5af949e3
UW
3736 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3737 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3738 struct cleanup *old_chain = save_inferior_ptid ();
3739
3740 inferior_ptid = ecs->ptid;
5af949e3
UW
3741
3742 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3743 paddress (gdbarch, stop_pc));
d92524f1 3744 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3745 {
3746 CORE_ADDR addr;
abbb1732 3747
237fc4c9
PA
3748 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3749
3750 if (target_stopped_data_address (&current_target, &addr))
3751 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3752 "infrun: stopped data address = %s\n",
3753 paddress (gdbarch, addr));
237fc4c9
PA
3754 else
3755 fprintf_unfiltered (gdb_stdlog,
3756 "infrun: (no data address available)\n");
3757 }
7f82dfc7
JK
3758
3759 do_cleanups (old_chain);
237fc4c9 3760 }
527159b7 3761
9f976b41
DJ
3762 if (stepping_past_singlestep_breakpoint)
3763 {
1c0fdd0e 3764 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3765 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3766 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3767
3768 stepping_past_singlestep_breakpoint = 0;
3769
3770 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3771 breakpoint, or stopped for some other reason. It would be nice if
3772 we could tell, but we can't reliably. */
16c381f0 3773 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3774 {
527159b7 3775 if (debug_infrun)
3e43a32a
MS
3776 fprintf_unfiltered (gdb_stdlog,
3777 "infrun: stepping_past_"
3778 "singlestep_breakpoint\n");
9f976b41 3779 /* Pull the single step breakpoints out of the target. */
e0cd558a 3780 remove_single_step_breakpoints ();
9f976b41
DJ
3781 singlestep_breakpoints_inserted_p = 0;
3782
3783 ecs->random_signal = 0;
16c381f0 3784 ecs->event_thread->control.trap_expected = 0;
9f976b41 3785
0d1e5fa7 3786 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3787 if (deprecated_context_hook)
3788 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3789
3790 resume (1, TARGET_SIGNAL_0);
3791 prepare_to_wait (ecs);
3792 return;
3793 }
3794 }
3795
ca67fcb8 3796 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3797 {
94cc34af
PA
3798 /* In non-stop mode, there's never a deferred_step_ptid set. */
3799 gdb_assert (!non_stop);
3800
6a6b96b9
UW
3801 /* If we stopped for some other reason than single-stepping, ignore
3802 the fact that we were supposed to switch back. */
16c381f0 3803 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3804 {
3805 if (debug_infrun)
3806 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3807 "infrun: handling deferred step\n");
6a6b96b9
UW
3808
3809 /* Pull the single step breakpoints out of the target. */
3810 if (singlestep_breakpoints_inserted_p)
3811 {
3812 remove_single_step_breakpoints ();
3813 singlestep_breakpoints_inserted_p = 0;
3814 }
3815
cd3da28e
PA
3816 ecs->event_thread->control.trap_expected = 0;
3817
6a6b96b9
UW
3818 /* Note: We do not call context_switch at this point, as the
3819 context is already set up for stepping the original thread. */
ca67fcb8
VP
3820 switch_to_thread (deferred_step_ptid);
3821 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3822 /* Suppress spurious "Switching to ..." message. */
3823 previous_inferior_ptid = inferior_ptid;
3824
3825 resume (1, TARGET_SIGNAL_0);
3826 prepare_to_wait (ecs);
3827 return;
3828 }
ca67fcb8
VP
3829
3830 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3831 }
3832
488f131b
JB
3833 /* See if a thread hit a thread-specific breakpoint that was meant for
3834 another thread. If so, then step that thread past the breakpoint,
3835 and continue it. */
3836
16c381f0 3837 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3838 {
9f976b41 3839 int thread_hop_needed = 0;
cf00dfa7
VP
3840 struct address_space *aspace =
3841 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3842
f8d40ec8 3843 /* Check if a regular breakpoint has been hit before checking
1777feb0 3844 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3845 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3846 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3847 {
c5aa993b 3848 ecs->random_signal = 0;
6c95b8df 3849 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3850 thread_hop_needed = 1;
3851 }
1c0fdd0e 3852 else if (singlestep_breakpoints_inserted_p)
9f976b41 3853 {
fd48f117
DJ
3854 /* We have not context switched yet, so this should be true
3855 no matter which thread hit the singlestep breakpoint. */
3856 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3857 if (debug_infrun)
3858 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3859 "trap for %s\n",
3860 target_pid_to_str (ecs->ptid));
3861
9f976b41
DJ
3862 ecs->random_signal = 0;
3863 /* The call to in_thread_list is necessary because PTIDs sometimes
3864 change when we go from single-threaded to multi-threaded. If
3865 the singlestep_ptid is still in the list, assume that it is
3866 really different from ecs->ptid. */
3867 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3868 && in_thread_list (singlestep_ptid))
3869 {
fd48f117
DJ
3870 /* If the PC of the thread we were trying to single-step
3871 has changed, discard this event (which we were going
3872 to ignore anyway), and pretend we saw that thread
3873 trap. This prevents us continuously moving the
3874 single-step breakpoint forward, one instruction at a
3875 time. If the PC has changed, then the thread we were
3876 trying to single-step has trapped or been signalled,
3877 but the event has not been reported to GDB yet.
3878
3879 There might be some cases where this loses signal
3880 information, if a signal has arrived at exactly the
3881 same time that the PC changed, but this is the best
3882 we can do with the information available. Perhaps we
3883 should arrange to report all events for all threads
3884 when they stop, or to re-poll the remote looking for
3885 this particular thread (i.e. temporarily enable
3886 schedlock). */
515630c5
UW
3887
3888 CORE_ADDR new_singlestep_pc
3889 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3890
3891 if (new_singlestep_pc != singlestep_pc)
fd48f117 3892 {
2020b7ab
PA
3893 enum target_signal stop_signal;
3894
fd48f117
DJ
3895 if (debug_infrun)
3896 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3897 " but expected thread advanced also\n");
3898
3899 /* The current context still belongs to
3900 singlestep_ptid. Don't swap here, since that's
3901 the context we want to use. Just fudge our
3902 state and continue. */
16c381f0
JK
3903 stop_signal = ecs->event_thread->suspend.stop_signal;
3904 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3905 ecs->ptid = singlestep_ptid;
e09875d4 3906 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3907 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3908 stop_pc = new_singlestep_pc;
fd48f117
DJ
3909 }
3910 else
3911 {
3912 if (debug_infrun)
3913 fprintf_unfiltered (gdb_stdlog,
3914 "infrun: unexpected thread\n");
3915
3916 thread_hop_needed = 1;
3917 stepping_past_singlestep_breakpoint = 1;
3918 saved_singlestep_ptid = singlestep_ptid;
3919 }
9f976b41
DJ
3920 }
3921 }
3922
3923 if (thread_hop_needed)
8fb3e588 3924 {
9f5a595d 3925 struct regcache *thread_regcache;
237fc4c9 3926 int remove_status = 0;
8fb3e588 3927
527159b7 3928 if (debug_infrun)
8a9de0e4 3929 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3930
b3444185
PA
3931 /* Switch context before touching inferior memory, the
3932 previous thread may have exited. */
3933 if (!ptid_equal (inferior_ptid, ecs->ptid))
3934 context_switch (ecs->ptid);
3935
8fb3e588 3936 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3937 Just continue. */
8fb3e588 3938
1c0fdd0e 3939 if (singlestep_breakpoints_inserted_p)
488f131b 3940 {
1777feb0 3941 /* Pull the single step breakpoints out of the target. */
e0cd558a 3942 remove_single_step_breakpoints ();
8fb3e588
AC
3943 singlestep_breakpoints_inserted_p = 0;
3944 }
3945
237fc4c9
PA
3946 /* If the arch can displace step, don't remove the
3947 breakpoints. */
9f5a595d
UW
3948 thread_regcache = get_thread_regcache (ecs->ptid);
3949 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3950 remove_status = remove_breakpoints ();
3951
8fb3e588
AC
3952 /* Did we fail to remove breakpoints? If so, try
3953 to set the PC past the bp. (There's at least
3954 one situation in which we can fail to remove
3955 the bp's: On HP-UX's that use ttrace, we can't
3956 change the address space of a vforking child
3957 process until the child exits (well, okay, not
1777feb0 3958 then either :-) or execs. */
8fb3e588 3959 if (remove_status != 0)
9d9cd7ac 3960 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3961 else
3962 { /* Single step */
94cc34af
PA
3963 if (!non_stop)
3964 {
3965 /* Only need to require the next event from this
3966 thread in all-stop mode. */
3967 waiton_ptid = ecs->ptid;
3968 infwait_state = infwait_thread_hop_state;
3969 }
8fb3e588 3970
4e1c45ea 3971 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3972 keep_going (ecs);
8fb3e588
AC
3973 return;
3974 }
488f131b 3975 }
1c0fdd0e 3976 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3977 {
8fb3e588
AC
3978 ecs->random_signal = 0;
3979 }
488f131b
JB
3980 }
3981 else
3982 ecs->random_signal = 1;
c906108c 3983
488f131b 3984 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3985 so, then switch to that thread. */
3986 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3987 {
527159b7 3988 if (debug_infrun)
8a9de0e4 3989 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3990
0d1e5fa7 3991 context_switch (ecs->ptid);
c5aa993b 3992
9a4105ab
AC
3993 if (deprecated_context_hook)
3994 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3995 }
c906108c 3996
568d6575
UW
3997 /* At this point, get hold of the now-current thread's frame. */
3998 frame = get_current_frame ();
3999 gdbarch = get_frame_arch (frame);
4000
1c0fdd0e 4001 if (singlestep_breakpoints_inserted_p)
488f131b 4002 {
1777feb0 4003 /* Pull the single step breakpoints out of the target. */
e0cd558a 4004 remove_single_step_breakpoints ();
488f131b
JB
4005 singlestep_breakpoints_inserted_p = 0;
4006 }
c906108c 4007
d983da9c
DJ
4008 if (stepped_after_stopped_by_watchpoint)
4009 stopped_by_watchpoint = 0;
4010 else
4011 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4012
4013 /* If necessary, step over this watchpoint. We'll be back to display
4014 it in a moment. */
4015 if (stopped_by_watchpoint
d92524f1 4016 && (target_have_steppable_watchpoint
568d6575 4017 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4018 {
488f131b
JB
4019 /* At this point, we are stopped at an instruction which has
4020 attempted to write to a piece of memory under control of
4021 a watchpoint. The instruction hasn't actually executed
4022 yet. If we were to evaluate the watchpoint expression
4023 now, we would get the old value, and therefore no change
4024 would seem to have occurred.
4025
4026 In order to make watchpoints work `right', we really need
4027 to complete the memory write, and then evaluate the
d983da9c
DJ
4028 watchpoint expression. We do this by single-stepping the
4029 target.
4030
4031 It may not be necessary to disable the watchpoint to stop over
4032 it. For example, the PA can (with some kernel cooperation)
4033 single step over a watchpoint without disabling the watchpoint.
4034
4035 It is far more common to need to disable a watchpoint to step
4036 the inferior over it. If we have non-steppable watchpoints,
4037 we must disable the current watchpoint; it's simplest to
4038 disable all watchpoints and breakpoints. */
2facfe5c
DD
4039 int hw_step = 1;
4040
d92524f1 4041 if (!target_have_steppable_watchpoint)
2455069d
UW
4042 {
4043 remove_breakpoints ();
4044 /* See comment in resume why we need to stop bypassing signals
4045 while breakpoints have been removed. */
4046 target_pass_signals (0, NULL);
4047 }
2facfe5c 4048 /* Single step */
568d6575 4049 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 4050 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 4051 waiton_ptid = ecs->ptid;
d92524f1 4052 if (target_have_steppable_watchpoint)
0d1e5fa7 4053 infwait_state = infwait_step_watch_state;
d983da9c 4054 else
0d1e5fa7 4055 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4056 prepare_to_wait (ecs);
4057 return;
4058 }
4059
7e324e48 4060 clear_stop_func (ecs);
4e1c45ea 4061 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4062 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4063 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4064 stop_print_frame = 1;
4065 ecs->random_signal = 0;
4066 stopped_by_random_signal = 0;
488f131b 4067
edb3359d
DJ
4068 /* Hide inlined functions starting here, unless we just performed stepi or
4069 nexti. After stepi and nexti, always show the innermost frame (not any
4070 inline function call sites). */
16c381f0 4071 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4072 {
4073 struct address_space *aspace =
4074 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4075
4076 /* skip_inline_frames is expensive, so we avoid it if we can
4077 determine that the address is one where functions cannot have
4078 been inlined. This improves performance with inferiors that
4079 load a lot of shared libraries, because the solib event
4080 breakpoint is defined as the address of a function (i.e. not
4081 inline). Note that we have to check the previous PC as well
4082 as the current one to catch cases when we have just
4083 single-stepped off a breakpoint prior to reinstating it.
4084 Note that we're assuming that the code we single-step to is
4085 not inline, but that's not definitive: there's nothing
4086 preventing the event breakpoint function from containing
4087 inlined code, and the single-step ending up there. If the
4088 user had set a breakpoint on that inlined code, the missing
4089 skip_inline_frames call would break things. Fortunately
4090 that's an extremely unlikely scenario. */
09ac7c10 4091 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
0574c78f
GB
4092 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4093 && ecs->event_thread->control.trap_expected
4094 && pc_at_non_inline_function (aspace,
09ac7c10
TT
4095 ecs->event_thread->prev_pc,
4096 &ecs->ws)))
0574c78f
GB
4097 skip_inline_frames (ecs->ptid);
4098 }
edb3359d 4099
16c381f0
JK
4100 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4101 && ecs->event_thread->control.trap_expected
568d6575 4102 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4103 && currently_stepping (ecs->event_thread))
3352ef37 4104 {
b50d7442 4105 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4106 also on an instruction that needs to be stepped multiple
1777feb0 4107 times before it's been fully executing. E.g., architectures
3352ef37
AC
4108 with a delay slot. It needs to be stepped twice, once for
4109 the instruction and once for the delay slot. */
4110 int step_through_delay
568d6575 4111 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4112
527159b7 4113 if (debug_infrun && step_through_delay)
8a9de0e4 4114 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4115 if (ecs->event_thread->control.step_range_end == 0
4116 && step_through_delay)
3352ef37
AC
4117 {
4118 /* The user issued a continue when stopped at a breakpoint.
4119 Set up for another trap and get out of here. */
4e1c45ea 4120 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4121 keep_going (ecs);
4122 return;
4123 }
4124 else if (step_through_delay)
4125 {
4126 /* The user issued a step when stopped at a breakpoint.
4127 Maybe we should stop, maybe we should not - the delay
4128 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4129 case, don't decide that here, just set
4130 ecs->stepping_over_breakpoint, making sure we
4131 single-step again before breakpoints are re-inserted. */
4e1c45ea 4132 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4133 }
4134 }
4135
488f131b
JB
4136 /* Look at the cause of the stop, and decide what to do.
4137 The alternatives are:
0d1e5fa7
PA
4138 1) stop_stepping and return; to really stop and return to the debugger,
4139 2) keep_going and return to start up again
4e1c45ea 4140 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4141 3) set ecs->random_signal to 1, and the decision between 1 and 2
4142 will be made according to the signal handling tables. */
4143
16c381f0 4144 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4145 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4146 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4147 {
16c381f0
JK
4148 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4149 && stop_after_trap)
488f131b 4150 {
527159b7 4151 if (debug_infrun)
8a9de0e4 4152 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4153 stop_print_frame = 0;
4154 stop_stepping (ecs);
4155 return;
4156 }
c54cfec8
EZ
4157
4158 /* This is originated from start_remote(), start_inferior() and
4159 shared libraries hook functions. */
b0f4b84b 4160 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4161 {
527159b7 4162 if (debug_infrun)
8a9de0e4 4163 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4164 stop_stepping (ecs);
4165 return;
4166 }
4167
c54cfec8 4168 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4169 the stop_signal here, because some kernels don't ignore a
4170 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4171 See more comments in inferior.h. On the other hand, if we
a0ef4274 4172 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4173 will handle the SIGSTOP if it should show up later.
4174
4175 Also consider that the attach is complete when we see a
4176 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4177 target extended-remote report it instead of a SIGSTOP
4178 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4179 signal, so this is no exception.
4180
4181 Also consider that the attach is complete when we see a
4182 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4183 the target to stop all threads of the inferior, in case the
4184 low level attach operation doesn't stop them implicitly. If
4185 they weren't stopped implicitly, then the stub will report a
4186 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4187 other than GDB's request. */
a0ef4274 4188 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4189 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4190 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4191 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4192 {
4193 stop_stepping (ecs);
16c381f0 4194 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4195 return;
4196 }
4197
09ac7c10
TT
4198 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4199 handles this event. */
16c381f0 4200 ecs->event_thread->control.stop_bpstat
6c95b8df 4201 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4202 stop_pc, ecs->ptid, &ecs->ws);
6c95b8df 4203
fba57f8f
VP
4204 /* Following in case break condition called a
4205 function. */
4206 stop_print_frame = 1;
488f131b 4207
db82e815
PA
4208 /* This is where we handle "moribund" watchpoints. Unlike
4209 software breakpoints traps, hardware watchpoint traps are
4210 always distinguishable from random traps. If no high-level
4211 watchpoint is associated with the reported stop data address
4212 anymore, then the bpstat does not explain the signal ---
4213 simply make sure to ignore it if `stopped_by_watchpoint' is
4214 set. */
4215
4216 if (debug_infrun
16c381f0
JK
4217 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4218 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4219 && stopped_by_watchpoint)
3e43a32a
MS
4220 fprintf_unfiltered (gdb_stdlog,
4221 "infrun: no user watchpoint explains "
4222 "watchpoint SIGTRAP, ignoring\n");
db82e815 4223
73dd234f 4224 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4225 at one stage in the past included checks for an inferior
4226 function call's call dummy's return breakpoint. The original
4227 comment, that went with the test, read:
73dd234f 4228
8fb3e588
AC
4229 ``End of a stack dummy. Some systems (e.g. Sony news) give
4230 another signal besides SIGTRAP, so check here as well as
4231 above.''
73dd234f 4232
8002d778 4233 If someone ever tries to get call dummys on a
73dd234f 4234 non-executable stack to work (where the target would stop
03cebad2
MK
4235 with something like a SIGSEGV), then those tests might need
4236 to be re-instated. Given, however, that the tests were only
73dd234f 4237 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4238 suspect that it won't be the case.
4239
8fb3e588
AC
4240 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4241 be necessary for call dummies on a non-executable stack on
4242 SPARC. */
73dd234f 4243
16c381f0 4244 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4245 ecs->random_signal
16c381f0 4246 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4247 || stopped_by_watchpoint
16c381f0
JK
4248 || ecs->event_thread->control.trap_expected
4249 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4250 && (ecs->event_thread->control.step_resume_breakpoint
4251 == NULL)));
488f131b
JB
4252 else
4253 {
16c381f0
JK
4254 ecs->random_signal = !bpstat_explains_signal
4255 (ecs->event_thread->control.stop_bpstat);
488f131b 4256 if (!ecs->random_signal)
16c381f0 4257 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4258 }
4259 }
4260
4261 /* When we reach this point, we've pretty much decided
4262 that the reason for stopping must've been a random
1777feb0 4263 (unexpected) signal. */
488f131b
JB
4264
4265 else
4266 ecs->random_signal = 1;
488f131b 4267
04e68871 4268process_event_stop_test:
568d6575
UW
4269
4270 /* Re-fetch current thread's frame in case we did a
4271 "goto process_event_stop_test" above. */
4272 frame = get_current_frame ();
4273 gdbarch = get_frame_arch (frame);
4274
488f131b
JB
4275 /* For the program's own signals, act according to
4276 the signal handling tables. */
4277
4278 if (ecs->random_signal)
4279 {
4280 /* Signal not for debugging purposes. */
4281 int printed = 0;
24291992 4282 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4283
527159b7 4284 if (debug_infrun)
2020b7ab 4285 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4286 ecs->event_thread->suspend.stop_signal);
527159b7 4287
488f131b
JB
4288 stopped_by_random_signal = 1;
4289
16c381f0 4290 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4291 {
4292 printed = 1;
4293 target_terminal_ours_for_output ();
16c381f0
JK
4294 print_signal_received_reason
4295 (ecs->event_thread->suspend.stop_signal);
488f131b 4296 }
252fbfc8
PA
4297 /* Always stop on signals if we're either just gaining control
4298 of the program, or the user explicitly requested this thread
4299 to remain stopped. */
d6b48e9c 4300 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4301 || ecs->event_thread->stop_requested
24291992 4302 || (!inf->detaching
16c381f0 4303 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4304 {
4305 stop_stepping (ecs);
4306 return;
4307 }
4308 /* If not going to stop, give terminal back
4309 if we took it away. */
4310 else if (printed)
4311 target_terminal_inferior ();
4312
4313 /* Clear the signal if it should not be passed. */
16c381f0
JK
4314 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4315 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4316
fb14de7b 4317 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4318 && ecs->event_thread->control.trap_expected
8358c15c 4319 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4320 {
4321 /* We were just starting a new sequence, attempting to
4322 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4323 Instead this signal arrives. This signal will take us out
68f53502
AC
4324 of the stepping range so GDB needs to remember to, when
4325 the signal handler returns, resume stepping off that
4326 breakpoint. */
4327 /* To simplify things, "continue" is forced to use the same
4328 code paths as single-step - set a breakpoint at the
4329 signal return address and then, once hit, step off that
4330 breakpoint. */
237fc4c9
PA
4331 if (debug_infrun)
4332 fprintf_unfiltered (gdb_stdlog,
4333 "infrun: signal arrived while stepping over "
4334 "breakpoint\n");
d3169d93 4335
2c03e5be 4336 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4337 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4338 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4339 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4340 keep_going (ecs);
4341 return;
68f53502 4342 }
9d799f85 4343
16c381f0
JK
4344 if (ecs->event_thread->control.step_range_end != 0
4345 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4346 && (ecs->event_thread->control.step_range_start <= stop_pc
4347 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4348 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4349 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4350 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4351 {
4352 /* The inferior is about to take a signal that will take it
4353 out of the single step range. Set a breakpoint at the
4354 current PC (which is presumably where the signal handler
4355 will eventually return) and then allow the inferior to
4356 run free.
4357
4358 Note that this is only needed for a signal delivered
4359 while in the single-step range. Nested signals aren't a
4360 problem as they eventually all return. */
237fc4c9
PA
4361 if (debug_infrun)
4362 fprintf_unfiltered (gdb_stdlog,
4363 "infrun: signal may take us out of "
4364 "single-step range\n");
4365
2c03e5be 4366 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4367 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4368 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4369 keep_going (ecs);
4370 return;
d303a6c7 4371 }
9d799f85
AC
4372
4373 /* Note: step_resume_breakpoint may be non-NULL. This occures
4374 when either there's a nested signal, or when there's a
4375 pending signal enabled just as the signal handler returns
4376 (leaving the inferior at the step-resume-breakpoint without
4377 actually executing it). Either way continue until the
4378 breakpoint is really hit. */
488f131b
JB
4379 keep_going (ecs);
4380 return;
4381 }
4382
4383 /* Handle cases caused by hitting a breakpoint. */
4384 {
4385 CORE_ADDR jmp_buf_pc;
4386 struct bpstat_what what;
4387
16c381f0 4388 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4389
4390 if (what.call_dummy)
4391 {
aa7d318d 4392 stop_stack_dummy = what.call_dummy;
c5aa993b 4393 }
c906108c 4394
628fe4e4
JK
4395 /* If we hit an internal event that triggers symbol changes, the
4396 current frame will be invalidated within bpstat_what (e.g., if
4397 we hit an internal solib event). Re-fetch it. */
4398 frame = get_current_frame ();
4399 gdbarch = get_frame_arch (frame);
4400
488f131b 4401 switch (what.main_action)
c5aa993b 4402 {
488f131b 4403 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4404 /* If we hit the breakpoint at longjmp while stepping, we
4405 install a momentary breakpoint at the target of the
4406 jmp_buf. */
4407
4408 if (debug_infrun)
4409 fprintf_unfiltered (gdb_stdlog,
4410 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4411
4e1c45ea 4412 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4413
186c406b 4414 if (what.is_longjmp)
c5aa993b 4415 {
186c406b
TT
4416 if (!gdbarch_get_longjmp_target_p (gdbarch)
4417 || !gdbarch_get_longjmp_target (gdbarch,
4418 frame, &jmp_buf_pc))
4419 {
4420 if (debug_infrun)
3e43a32a
MS
4421 fprintf_unfiltered (gdb_stdlog,
4422 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4423 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4424 keep_going (ecs);
4425 return;
4426 }
488f131b 4427
186c406b
TT
4428 /* We're going to replace the current step-resume breakpoint
4429 with a longjmp-resume breakpoint. */
4430 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4431
186c406b
TT
4432 /* Insert a breakpoint at resume address. */
4433 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4434 }
4435 else
4436 {
4437 struct symbol *func = get_frame_function (frame);
c906108c 4438
186c406b
TT
4439 if (func)
4440 check_exception_resume (ecs, frame, func);
4441 }
488f131b
JB
4442 keep_going (ecs);
4443 return;
c906108c 4444
488f131b 4445 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4446 if (debug_infrun)
611c83ae
PA
4447 fprintf_unfiltered (gdb_stdlog,
4448 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4449
186c406b
TT
4450 if (what.is_longjmp)
4451 {
4452 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4453 != NULL);
4454 delete_step_resume_breakpoint (ecs->event_thread);
4455 }
4456 else
4457 {
4458 /* There are several cases to consider.
4459
4460 1. The initiating frame no longer exists. In this case
4461 we must stop, because the exception has gone too far.
4462
4463 2. The initiating frame exists, and is the same as the
4464 current frame. We stop, because the exception has been
4465 caught.
4466
4467 3. The initiating frame exists and is different from
4468 the current frame. This means the exception has been
4469 caught beneath the initiating frame, so keep going. */
4470 struct frame_info *init_frame
4471 = frame_find_by_id (ecs->event_thread->initiating_frame);
4472
4473 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4474 != NULL);
4475 delete_exception_resume_breakpoint (ecs->event_thread);
4476
4477 if (init_frame)
4478 {
4479 struct frame_id current_id
4480 = get_frame_id (get_current_frame ());
4481 if (frame_id_eq (current_id,
4482 ecs->event_thread->initiating_frame))
4483 {
4484 /* Case 2. Fall through. */
4485 }
4486 else
4487 {
4488 /* Case 3. */
4489 keep_going (ecs);
4490 return;
4491 }
4492 }
4493
4494 /* For Cases 1 and 2, remove the step-resume breakpoint,
4495 if it exists. */
4496 delete_step_resume_breakpoint (ecs->event_thread);
4497 }
611c83ae 4498
16c381f0 4499 ecs->event_thread->control.stop_step = 1;
33d62d64 4500 print_end_stepping_range_reason ();
611c83ae
PA
4501 stop_stepping (ecs);
4502 return;
488f131b
JB
4503
4504 case BPSTAT_WHAT_SINGLE:
527159b7 4505 if (debug_infrun)
8802d8ed 4506 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4507 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4508 /* Still need to check other stuff, at least the case
4509 where we are stepping and step out of the right range. */
4510 break;
c906108c 4511
2c03e5be
PA
4512 case BPSTAT_WHAT_STEP_RESUME:
4513 if (debug_infrun)
4514 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4515
4516 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4517 if (ecs->event_thread->control.proceed_to_finish
4518 && execution_direction == EXEC_REVERSE)
4519 {
4520 struct thread_info *tp = ecs->event_thread;
4521
4522 /* We are finishing a function in reverse, and just hit
4523 the step-resume breakpoint at the start address of the
4524 function, and we're almost there -- just need to back
4525 up by one more single-step, which should take us back
4526 to the function call. */
4527 tp->control.step_range_start = tp->control.step_range_end = 1;
4528 keep_going (ecs);
4529 return;
4530 }
7e324e48 4531 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4532 if (stop_pc == ecs->stop_func_start
4533 && execution_direction == EXEC_REVERSE)
4534 {
4535 /* We are stepping over a function call in reverse, and
4536 just hit the step-resume breakpoint at the start
4537 address of the function. Go back to single-stepping,
4538 which should take us back to the function call. */
4539 ecs->event_thread->stepping_over_breakpoint = 1;
4540 keep_going (ecs);
4541 return;
4542 }
4543 break;
4544
488f131b 4545 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4546 if (debug_infrun)
8802d8ed 4547 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4548 stop_print_frame = 1;
c906108c 4549
d303a6c7
AC
4550 /* We are about to nuke the step_resume_breakpointt via the
4551 cleanup chain, so no need to worry about it here. */
c5aa993b 4552
488f131b
JB
4553 stop_stepping (ecs);
4554 return;
c5aa993b 4555
488f131b 4556 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4557 if (debug_infrun)
8802d8ed 4558 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4559 stop_print_frame = 0;
c5aa993b 4560
d303a6c7
AC
4561 /* We are about to nuke the step_resume_breakpoin via the
4562 cleanup chain, so no need to worry about it here. */
c5aa993b 4563
488f131b 4564 stop_stepping (ecs);
e441088d 4565 return;
c5aa993b 4566
2c03e5be 4567 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4568 if (debug_infrun)
2c03e5be 4569 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4570
4e1c45ea
PA
4571 delete_step_resume_breakpoint (ecs->event_thread);
4572 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4573 {
4574 /* Back when the step-resume breakpoint was inserted, we
4575 were trying to single-step off a breakpoint. Go back
4576 to doing that. */
4e1c45ea
PA
4577 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4578 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4579 keep_going (ecs);
4580 return;
4581 }
488f131b
JB
4582 break;
4583
488f131b
JB
4584 case BPSTAT_WHAT_KEEP_CHECKING:
4585 break;
4586 }
4587 }
c906108c 4588
488f131b
JB
4589 /* We come here if we hit a breakpoint but should not
4590 stop for it. Possibly we also were stepping
4591 and should stop for that. So fall through and
4592 test for stepping. But, if not stepping,
4593 do not stop. */
c906108c 4594
a7212384
UW
4595 /* In all-stop mode, if we're currently stepping but have stopped in
4596 some other thread, we need to switch back to the stepped thread. */
4597 if (!non_stop)
4598 {
4599 struct thread_info *tp;
abbb1732 4600
b3444185 4601 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4602 ecs->event_thread);
4603 if (tp)
4604 {
4605 /* However, if the current thread is blocked on some internal
4606 breakpoint, and we simply need to step over that breakpoint
4607 to get it going again, do that first. */
16c381f0
JK
4608 if ((ecs->event_thread->control.trap_expected
4609 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4610 || ecs->event_thread->stepping_over_breakpoint)
4611 {
4612 keep_going (ecs);
4613 return;
4614 }
4615
66852e9c
PA
4616 /* If the stepping thread exited, then don't try to switch
4617 back and resume it, which could fail in several different
4618 ways depending on the target. Instead, just keep going.
4619
4620 We can find a stepping dead thread in the thread list in
4621 two cases:
4622
4623 - The target supports thread exit events, and when the
4624 target tries to delete the thread from the thread list,
4625 inferior_ptid pointed at the exiting thread. In such
4626 case, calling delete_thread does not really remove the
4627 thread from the list; instead, the thread is left listed,
4628 with 'exited' state.
4629
4630 - The target's debug interface does not support thread
4631 exit events, and so we have no idea whatsoever if the
4632 previously stepping thread is still alive. For that
4633 reason, we need to synchronously query the target
4634 now. */
b3444185
PA
4635 if (is_exited (tp->ptid)
4636 || !target_thread_alive (tp->ptid))
4637 {
4638 if (debug_infrun)
3e43a32a
MS
4639 fprintf_unfiltered (gdb_stdlog,
4640 "infrun: not switching back to "
4641 "stepped thread, it has vanished\n");
b3444185
PA
4642
4643 delete_thread (tp->ptid);
4644 keep_going (ecs);
4645 return;
4646 }
4647
a7212384
UW
4648 /* Otherwise, we no longer expect a trap in the current thread.
4649 Clear the trap_expected flag before switching back -- this is
4650 what keep_going would do as well, if we called it. */
16c381f0 4651 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4652
4653 if (debug_infrun)
4654 fprintf_unfiltered (gdb_stdlog,
4655 "infrun: switching back to stepped thread\n");
4656
4657 ecs->event_thread = tp;
4658 ecs->ptid = tp->ptid;
4659 context_switch (ecs->ptid);
4660 keep_going (ecs);
4661 return;
4662 }
4663 }
4664
8358c15c 4665 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4666 {
527159b7 4667 if (debug_infrun)
d3169d93
DJ
4668 fprintf_unfiltered (gdb_stdlog,
4669 "infrun: step-resume breakpoint is inserted\n");
527159b7 4670
488f131b
JB
4671 /* Having a step-resume breakpoint overrides anything
4672 else having to do with stepping commands until
4673 that breakpoint is reached. */
488f131b
JB
4674 keep_going (ecs);
4675 return;
4676 }
c5aa993b 4677
16c381f0 4678 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4679 {
527159b7 4680 if (debug_infrun)
8a9de0e4 4681 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4682 /* Likewise if we aren't even stepping. */
488f131b
JB
4683 keep_going (ecs);
4684 return;
4685 }
c5aa993b 4686
4b7703ad
JB
4687 /* Re-fetch current thread's frame in case the code above caused
4688 the frame cache to be re-initialized, making our FRAME variable
4689 a dangling pointer. */
4690 frame = get_current_frame ();
628fe4e4 4691 gdbarch = get_frame_arch (frame);
7e324e48 4692 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4693
488f131b 4694 /* If stepping through a line, keep going if still within it.
c906108c 4695
488f131b
JB
4696 Note that step_range_end is the address of the first instruction
4697 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4698 within it!
4699
4700 Note also that during reverse execution, we may be stepping
4701 through a function epilogue and therefore must detect when
4702 the current-frame changes in the middle of a line. */
4703
16c381f0
JK
4704 if (stop_pc >= ecs->event_thread->control.step_range_start
4705 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4706 && (execution_direction != EXEC_REVERSE
388a8562 4707 || frame_id_eq (get_frame_id (frame),
16c381f0 4708 ecs->event_thread->control.step_frame_id)))
488f131b 4709 {
527159b7 4710 if (debug_infrun)
5af949e3
UW
4711 fprintf_unfiltered
4712 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4713 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4714 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4715
4716 /* When stepping backward, stop at beginning of line range
4717 (unless it's the function entry point, in which case
4718 keep going back to the call point). */
16c381f0 4719 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4720 && stop_pc != ecs->stop_func_start
4721 && execution_direction == EXEC_REVERSE)
4722 {
16c381f0 4723 ecs->event_thread->control.stop_step = 1;
33d62d64 4724 print_end_stepping_range_reason ();
b2175913
MS
4725 stop_stepping (ecs);
4726 }
4727 else
4728 keep_going (ecs);
4729
488f131b
JB
4730 return;
4731 }
c5aa993b 4732
488f131b 4733 /* We stepped out of the stepping range. */
c906108c 4734
488f131b 4735 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4736 loader dynamic symbol resolution code...
4737
4738 EXEC_FORWARD: we keep on single stepping until we exit the run
4739 time loader code and reach the callee's address.
4740
4741 EXEC_REVERSE: we've already executed the callee (backward), and
4742 the runtime loader code is handled just like any other
4743 undebuggable function call. Now we need only keep stepping
4744 backward through the trampoline code, and that's handled further
4745 down, so there is nothing for us to do here. */
4746
4747 if (execution_direction != EXEC_REVERSE
16c381f0 4748 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4749 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4750 {
4c8c40e6 4751 CORE_ADDR pc_after_resolver =
568d6575 4752 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4753
527159b7 4754 if (debug_infrun)
3e43a32a
MS
4755 fprintf_unfiltered (gdb_stdlog,
4756 "infrun: stepped into dynsym resolve code\n");
527159b7 4757
488f131b
JB
4758 if (pc_after_resolver)
4759 {
4760 /* Set up a step-resume breakpoint at the address
4761 indicated by SKIP_SOLIB_RESOLVER. */
4762 struct symtab_and_line sr_sal;
abbb1732 4763
fe39c653 4764 init_sal (&sr_sal);
488f131b 4765 sr_sal.pc = pc_after_resolver;
6c95b8df 4766 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4767
a6d9a66e
UW
4768 insert_step_resume_breakpoint_at_sal (gdbarch,
4769 sr_sal, null_frame_id);
c5aa993b 4770 }
c906108c 4771
488f131b
JB
4772 keep_going (ecs);
4773 return;
4774 }
c906108c 4775
16c381f0
JK
4776 if (ecs->event_thread->control.step_range_end != 1
4777 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4778 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4779 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4780 {
527159b7 4781 if (debug_infrun)
3e43a32a
MS
4782 fprintf_unfiltered (gdb_stdlog,
4783 "infrun: stepped into signal trampoline\n");
42edda50 4784 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4785 a signal trampoline (either by a signal being delivered or by
4786 the signal handler returning). Just single-step until the
4787 inferior leaves the trampoline (either by calling the handler
4788 or returning). */
488f131b
JB
4789 keep_going (ecs);
4790 return;
4791 }
c906108c 4792
c17eaafe
DJ
4793 /* Check for subroutine calls. The check for the current frame
4794 equalling the step ID is not necessary - the check of the
4795 previous frame's ID is sufficient - but it is a common case and
4796 cheaper than checking the previous frame's ID.
14e60db5
DJ
4797
4798 NOTE: frame_id_eq will never report two invalid frame IDs as
4799 being equal, so to get into this block, both the current and
4800 previous frame must have valid frame IDs. */
005ca36a
JB
4801 /* The outer_frame_id check is a heuristic to detect stepping
4802 through startup code. If we step over an instruction which
4803 sets the stack pointer from an invalid value to a valid value,
4804 we may detect that as a subroutine call from the mythical
4805 "outermost" function. This could be fixed by marking
4806 outermost frames as !stack_p,code_p,special_p. Then the
4807 initial outermost frame, before sp was valid, would
ce6cca6d 4808 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4809 for more. */
edb3359d 4810 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4811 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4812 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4813 ecs->event_thread->control.step_stack_frame_id)
4814 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4815 outer_frame_id)
4816 || step_start_function != find_pc_function (stop_pc))))
488f131b 4817 {
95918acb 4818 CORE_ADDR real_stop_pc;
8fb3e588 4819
527159b7 4820 if (debug_infrun)
8a9de0e4 4821 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4822
16c381f0
JK
4823 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4824 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4825 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4826 ecs->stop_func_start)))
95918acb
AC
4827 {
4828 /* I presume that step_over_calls is only 0 when we're
4829 supposed to be stepping at the assembly language level
4830 ("stepi"). Just stop. */
4831 /* Also, maybe we just did a "nexti" inside a prolog, so we
4832 thought it was a subroutine call but it was not. Stop as
4833 well. FENN */
388a8562 4834 /* And this works the same backward as frontward. MVS */
16c381f0 4835 ecs->event_thread->control.stop_step = 1;
33d62d64 4836 print_end_stepping_range_reason ();
95918acb
AC
4837 stop_stepping (ecs);
4838 return;
4839 }
8fb3e588 4840
388a8562
MS
4841 /* Reverse stepping through solib trampolines. */
4842
4843 if (execution_direction == EXEC_REVERSE
16c381f0 4844 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4845 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4846 || (ecs->stop_func_start == 0
4847 && in_solib_dynsym_resolve_code (stop_pc))))
4848 {
4849 /* Any solib trampoline code can be handled in reverse
4850 by simply continuing to single-step. We have already
4851 executed the solib function (backwards), and a few
4852 steps will take us back through the trampoline to the
4853 caller. */
4854 keep_going (ecs);
4855 return;
4856 }
4857
16c381f0 4858 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4859 {
b2175913
MS
4860 /* We're doing a "next".
4861
4862 Normal (forward) execution: set a breakpoint at the
4863 callee's return address (the address at which the caller
4864 will resume).
4865
4866 Reverse (backward) execution. set the step-resume
4867 breakpoint at the start of the function that we just
4868 stepped into (backwards), and continue to there. When we
6130d0b7 4869 get there, we'll need to single-step back to the caller. */
b2175913
MS
4870
4871 if (execution_direction == EXEC_REVERSE)
4872 {
4873 struct symtab_and_line sr_sal;
3067f6e5 4874
388a8562
MS
4875 /* Normal function call return (static or dynamic). */
4876 init_sal (&sr_sal);
4877 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4878 sr_sal.pspace = get_frame_program_space (frame);
4879 insert_step_resume_breakpoint_at_sal (gdbarch,
4880 sr_sal, null_frame_id);
b2175913
MS
4881 }
4882 else
568d6575 4883 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4884
8567c30f
AC
4885 keep_going (ecs);
4886 return;
4887 }
a53c66de 4888
95918acb 4889 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4890 calling routine and the real function), locate the real
4891 function. That's what tells us (a) whether we want to step
4892 into it at all, and (b) what prologue we want to run to the
4893 end of, if we do step into it. */
568d6575 4894 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4895 if (real_stop_pc == 0)
568d6575 4896 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4897 if (real_stop_pc != 0)
4898 ecs->stop_func_start = real_stop_pc;
8fb3e588 4899
db5f024e 4900 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4901 {
4902 struct symtab_and_line sr_sal;
abbb1732 4903
1b2bfbb9
RC
4904 init_sal (&sr_sal);
4905 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4906 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4907
a6d9a66e
UW
4908 insert_step_resume_breakpoint_at_sal (gdbarch,
4909 sr_sal, null_frame_id);
8fb3e588
AC
4910 keep_going (ecs);
4911 return;
1b2bfbb9
RC
4912 }
4913
95918acb 4914 /* If we have line number information for the function we are
1bfeeb0f
JL
4915 thinking of stepping into and the function isn't on the skip
4916 list, step into it.
95918acb 4917
8fb3e588
AC
4918 If there are several symtabs at that PC (e.g. with include
4919 files), just want to know whether *any* of them have line
4920 numbers. find_pc_line handles this. */
95918acb
AC
4921 {
4922 struct symtab_and_line tmp_sal;
8fb3e588 4923
95918acb 4924 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52
JB
4925 if (tmp_sal.line != 0
4926 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4927 {
b2175913 4928 if (execution_direction == EXEC_REVERSE)
568d6575 4929 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4930 else
568d6575 4931 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4932 return;
4933 }
4934 }
4935
4936 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4937 set, we stop the step so that the user has a chance to switch
4938 in assembly mode. */
16c381f0 4939 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4940 && step_stop_if_no_debug)
95918acb 4941 {
16c381f0 4942 ecs->event_thread->control.stop_step = 1;
33d62d64 4943 print_end_stepping_range_reason ();
95918acb
AC
4944 stop_stepping (ecs);
4945 return;
4946 }
4947
b2175913
MS
4948 if (execution_direction == EXEC_REVERSE)
4949 {
4950 /* Set a breakpoint at callee's start address.
4951 From there we can step once and be back in the caller. */
4952 struct symtab_and_line sr_sal;
abbb1732 4953
b2175913
MS
4954 init_sal (&sr_sal);
4955 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4956 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4957 insert_step_resume_breakpoint_at_sal (gdbarch,
4958 sr_sal, null_frame_id);
b2175913
MS
4959 }
4960 else
4961 /* Set a breakpoint at callee's return address (the address
4962 at which the caller will resume). */
568d6575 4963 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4964
95918acb 4965 keep_going (ecs);
488f131b 4966 return;
488f131b 4967 }
c906108c 4968
fdd654f3
MS
4969 /* Reverse stepping through solib trampolines. */
4970
4971 if (execution_direction == EXEC_REVERSE
16c381f0 4972 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4973 {
4974 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4975 || (ecs->stop_func_start == 0
4976 && in_solib_dynsym_resolve_code (stop_pc)))
4977 {
4978 /* Any solib trampoline code can be handled in reverse
4979 by simply continuing to single-step. We have already
4980 executed the solib function (backwards), and a few
4981 steps will take us back through the trampoline to the
4982 caller. */
4983 keep_going (ecs);
4984 return;
4985 }
4986 else if (in_solib_dynsym_resolve_code (stop_pc))
4987 {
4988 /* Stepped backward into the solib dynsym resolver.
4989 Set a breakpoint at its start and continue, then
4990 one more step will take us out. */
4991 struct symtab_and_line sr_sal;
abbb1732 4992
fdd654f3
MS
4993 init_sal (&sr_sal);
4994 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4995 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4996 insert_step_resume_breakpoint_at_sal (gdbarch,
4997 sr_sal, null_frame_id);
4998 keep_going (ecs);
4999 return;
5000 }
5001 }
5002
488f131b
JB
5003 /* If we're in the return path from a shared library trampoline,
5004 we want to proceed through the trampoline when stepping. */
568d6575 5005 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 5006 stop_pc, ecs->stop_func_name))
488f131b 5007 {
488f131b 5008 /* Determine where this trampoline returns. */
52f729a7 5009 CORE_ADDR real_stop_pc;
abbb1732 5010
568d6575 5011 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 5012
527159b7 5013 if (debug_infrun)
3e43a32a
MS
5014 fprintf_unfiltered (gdb_stdlog,
5015 "infrun: stepped into solib return tramp\n");
527159b7 5016
488f131b 5017 /* Only proceed through if we know where it's going. */
d764a824 5018 if (real_stop_pc)
488f131b 5019 {
1777feb0 5020 /* And put the step-breakpoint there and go until there. */
488f131b
JB
5021 struct symtab_and_line sr_sal;
5022
fe39c653 5023 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 5024 sr_sal.pc = real_stop_pc;
488f131b 5025 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5026 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
5027
5028 /* Do not specify what the fp should be when we stop since
5029 on some machines the prologue is where the new fp value
5030 is established. */
a6d9a66e
UW
5031 insert_step_resume_breakpoint_at_sal (gdbarch,
5032 sr_sal, null_frame_id);
c906108c 5033
488f131b
JB
5034 /* Restart without fiddling with the step ranges or
5035 other state. */
5036 keep_going (ecs);
5037 return;
5038 }
5039 }
c906108c 5040
2afb61aa 5041 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5042
1b2bfbb9
RC
5043 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5044 the trampoline processing logic, however, there are some trampolines
5045 that have no names, so we should do trampoline handling first. */
16c381f0 5046 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5047 && ecs->stop_func_name == NULL
2afb61aa 5048 && stop_pc_sal.line == 0)
1b2bfbb9 5049 {
527159b7 5050 if (debug_infrun)
3e43a32a
MS
5051 fprintf_unfiltered (gdb_stdlog,
5052 "infrun: stepped into undebuggable function\n");
527159b7 5053
1b2bfbb9 5054 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5055 undebuggable function (where there is no debugging information
5056 and no line number corresponding to the address where the
1b2bfbb9
RC
5057 inferior stopped). Since we want to skip this kind of code,
5058 we keep going until the inferior returns from this
14e60db5
DJ
5059 function - unless the user has asked us not to (via
5060 set step-mode) or we no longer know how to get back
5061 to the call site. */
5062 if (step_stop_if_no_debug
c7ce8faa 5063 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5064 {
5065 /* If we have no line number and the step-stop-if-no-debug
5066 is set, we stop the step so that the user has a chance to
5067 switch in assembly mode. */
16c381f0 5068 ecs->event_thread->control.stop_step = 1;
33d62d64 5069 print_end_stepping_range_reason ();
1b2bfbb9
RC
5070 stop_stepping (ecs);
5071 return;
5072 }
5073 else
5074 {
5075 /* Set a breakpoint at callee's return address (the address
5076 at which the caller will resume). */
568d6575 5077 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5078 keep_going (ecs);
5079 return;
5080 }
5081 }
5082
16c381f0 5083 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5084 {
5085 /* It is stepi or nexti. We always want to stop stepping after
5086 one instruction. */
527159b7 5087 if (debug_infrun)
8a9de0e4 5088 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5089 ecs->event_thread->control.stop_step = 1;
33d62d64 5090 print_end_stepping_range_reason ();
1b2bfbb9
RC
5091 stop_stepping (ecs);
5092 return;
5093 }
5094
2afb61aa 5095 if (stop_pc_sal.line == 0)
488f131b
JB
5096 {
5097 /* We have no line number information. That means to stop
5098 stepping (does this always happen right after one instruction,
5099 when we do "s" in a function with no line numbers,
5100 or can this happen as a result of a return or longjmp?). */
527159b7 5101 if (debug_infrun)
8a9de0e4 5102 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5103 ecs->event_thread->control.stop_step = 1;
33d62d64 5104 print_end_stepping_range_reason ();
488f131b
JB
5105 stop_stepping (ecs);
5106 return;
5107 }
c906108c 5108
edb3359d
DJ
5109 /* Look for "calls" to inlined functions, part one. If the inline
5110 frame machinery detected some skipped call sites, we have entered
5111 a new inline function. */
5112
5113 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5114 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5115 && inline_skipped_frames (ecs->ptid))
5116 {
5117 struct symtab_and_line call_sal;
5118
5119 if (debug_infrun)
5120 fprintf_unfiltered (gdb_stdlog,
5121 "infrun: stepped into inlined function\n");
5122
5123 find_frame_sal (get_current_frame (), &call_sal);
5124
16c381f0 5125 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5126 {
5127 /* For "step", we're going to stop. But if the call site
5128 for this inlined function is on the same source line as
5129 we were previously stepping, go down into the function
5130 first. Otherwise stop at the call site. */
5131
5132 if (call_sal.line == ecs->event_thread->current_line
5133 && call_sal.symtab == ecs->event_thread->current_symtab)
5134 step_into_inline_frame (ecs->ptid);
5135
16c381f0 5136 ecs->event_thread->control.stop_step = 1;
33d62d64 5137 print_end_stepping_range_reason ();
edb3359d
DJ
5138 stop_stepping (ecs);
5139 return;
5140 }
5141 else
5142 {
5143 /* For "next", we should stop at the call site if it is on a
5144 different source line. Otherwise continue through the
5145 inlined function. */
5146 if (call_sal.line == ecs->event_thread->current_line
5147 && call_sal.symtab == ecs->event_thread->current_symtab)
5148 keep_going (ecs);
5149 else
5150 {
16c381f0 5151 ecs->event_thread->control.stop_step = 1;
33d62d64 5152 print_end_stepping_range_reason ();
edb3359d
DJ
5153 stop_stepping (ecs);
5154 }
5155 return;
5156 }
5157 }
5158
5159 /* Look for "calls" to inlined functions, part two. If we are still
5160 in the same real function we were stepping through, but we have
5161 to go further up to find the exact frame ID, we are stepping
5162 through a more inlined call beyond its call site. */
5163
5164 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5165 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5166 ecs->event_thread->control.step_frame_id)
edb3359d 5167 && stepped_in_from (get_current_frame (),
16c381f0 5168 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5169 {
5170 if (debug_infrun)
5171 fprintf_unfiltered (gdb_stdlog,
5172 "infrun: stepping through inlined function\n");
5173
16c381f0 5174 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5175 keep_going (ecs);
5176 else
5177 {
16c381f0 5178 ecs->event_thread->control.stop_step = 1;
33d62d64 5179 print_end_stepping_range_reason ();
edb3359d
DJ
5180 stop_stepping (ecs);
5181 }
5182 return;
5183 }
5184
2afb61aa 5185 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5186 && (ecs->event_thread->current_line != stop_pc_sal.line
5187 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5188 {
5189 /* We are at the start of a different line. So stop. Note that
5190 we don't stop if we step into the middle of a different line.
5191 That is said to make things like for (;;) statements work
5192 better. */
527159b7 5193 if (debug_infrun)
3e43a32a
MS
5194 fprintf_unfiltered (gdb_stdlog,
5195 "infrun: stepped to a different line\n");
16c381f0 5196 ecs->event_thread->control.stop_step = 1;
33d62d64 5197 print_end_stepping_range_reason ();
488f131b
JB
5198 stop_stepping (ecs);
5199 return;
5200 }
c906108c 5201
488f131b 5202 /* We aren't done stepping.
c906108c 5203
488f131b
JB
5204 Optimize by setting the stepping range to the line.
5205 (We might not be in the original line, but if we entered a
5206 new line in mid-statement, we continue stepping. This makes
5207 things like for(;;) statements work better.) */
c906108c 5208
16c381f0
JK
5209 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5210 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5211 set_step_info (frame, stop_pc_sal);
488f131b 5212
527159b7 5213 if (debug_infrun)
8a9de0e4 5214 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5215 keep_going (ecs);
104c1213
JM
5216}
5217
b3444185 5218/* Is thread TP in the middle of single-stepping? */
104c1213 5219
a289b8f6 5220static int
b3444185 5221currently_stepping (struct thread_info *tp)
a7212384 5222{
8358c15c
JK
5223 return ((tp->control.step_range_end
5224 && tp->control.step_resume_breakpoint == NULL)
5225 || tp->control.trap_expected
8358c15c 5226 || bpstat_should_step ());
a7212384
UW
5227}
5228
b3444185
PA
5229/* Returns true if any thread *but* the one passed in "data" is in the
5230 middle of stepping or of handling a "next". */
a7212384 5231
104c1213 5232static int
b3444185 5233currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5234{
b3444185
PA
5235 if (tp == data)
5236 return 0;
5237
16c381f0 5238 return (tp->control.step_range_end
ede1849f 5239 || tp->control.trap_expected);
104c1213 5240}
c906108c 5241
b2175913
MS
5242/* Inferior has stepped into a subroutine call with source code that
5243 we should not step over. Do step to the first line of code in
5244 it. */
c2c6d25f
JM
5245
5246static void
568d6575
UW
5247handle_step_into_function (struct gdbarch *gdbarch,
5248 struct execution_control_state *ecs)
c2c6d25f
JM
5249{
5250 struct symtab *s;
2afb61aa 5251 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5252
7e324e48
GB
5253 fill_in_stop_func (gdbarch, ecs);
5254
c2c6d25f
JM
5255 s = find_pc_symtab (stop_pc);
5256 if (s && s->language != language_asm)
568d6575 5257 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5258 ecs->stop_func_start);
c2c6d25f 5259
2afb61aa 5260 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5261 /* Use the step_resume_break to step until the end of the prologue,
5262 even if that involves jumps (as it seems to on the vax under
5263 4.2). */
5264 /* If the prologue ends in the middle of a source line, continue to
5265 the end of that source line (if it is still within the function).
5266 Otherwise, just go to end of prologue. */
2afb61aa
PA
5267 if (stop_func_sal.end
5268 && stop_func_sal.pc != ecs->stop_func_start
5269 && stop_func_sal.end < ecs->stop_func_end)
5270 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5271
2dbd5e30
KB
5272 /* Architectures which require breakpoint adjustment might not be able
5273 to place a breakpoint at the computed address. If so, the test
5274 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5275 ecs->stop_func_start to an address at which a breakpoint may be
5276 legitimately placed.
8fb3e588 5277
2dbd5e30
KB
5278 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5279 made, GDB will enter an infinite loop when stepping through
5280 optimized code consisting of VLIW instructions which contain
5281 subinstructions corresponding to different source lines. On
5282 FR-V, it's not permitted to place a breakpoint on any but the
5283 first subinstruction of a VLIW instruction. When a breakpoint is
5284 set, GDB will adjust the breakpoint address to the beginning of
5285 the VLIW instruction. Thus, we need to make the corresponding
5286 adjustment here when computing the stop address. */
8fb3e588 5287
568d6575 5288 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5289 {
5290 ecs->stop_func_start
568d6575 5291 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5292 ecs->stop_func_start);
2dbd5e30
KB
5293 }
5294
c2c6d25f
JM
5295 if (ecs->stop_func_start == stop_pc)
5296 {
5297 /* We are already there: stop now. */
16c381f0 5298 ecs->event_thread->control.stop_step = 1;
33d62d64 5299 print_end_stepping_range_reason ();
c2c6d25f
JM
5300 stop_stepping (ecs);
5301 return;
5302 }
5303 else
5304 {
5305 /* Put the step-breakpoint there and go until there. */
fe39c653 5306 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5307 sr_sal.pc = ecs->stop_func_start;
5308 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5309 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5310
c2c6d25f 5311 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5312 some machines the prologue is where the new fp value is
5313 established. */
a6d9a66e 5314 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5315
5316 /* And make sure stepping stops right away then. */
16c381f0
JK
5317 ecs->event_thread->control.step_range_end
5318 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5319 }
5320 keep_going (ecs);
5321}
d4f3574e 5322
b2175913
MS
5323/* Inferior has stepped backward into a subroutine call with source
5324 code that we should not step over. Do step to the beginning of the
5325 last line of code in it. */
5326
5327static void
568d6575
UW
5328handle_step_into_function_backward (struct gdbarch *gdbarch,
5329 struct execution_control_state *ecs)
b2175913
MS
5330{
5331 struct symtab *s;
167e4384 5332 struct symtab_and_line stop_func_sal;
b2175913 5333
7e324e48
GB
5334 fill_in_stop_func (gdbarch, ecs);
5335
b2175913
MS
5336 s = find_pc_symtab (stop_pc);
5337 if (s && s->language != language_asm)
568d6575 5338 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5339 ecs->stop_func_start);
5340
5341 stop_func_sal = find_pc_line (stop_pc, 0);
5342
5343 /* OK, we're just going to keep stepping here. */
5344 if (stop_func_sal.pc == stop_pc)
5345 {
5346 /* We're there already. Just stop stepping now. */
16c381f0 5347 ecs->event_thread->control.stop_step = 1;
33d62d64 5348 print_end_stepping_range_reason ();
b2175913
MS
5349 stop_stepping (ecs);
5350 }
5351 else
5352 {
5353 /* Else just reset the step range and keep going.
5354 No step-resume breakpoint, they don't work for
5355 epilogues, which can have multiple entry paths. */
16c381f0
JK
5356 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5357 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5358 keep_going (ecs);
5359 }
5360 return;
5361}
5362
d3169d93 5363/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5364 This is used to both functions and to skip over code. */
5365
5366static void
2c03e5be
PA
5367insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5368 struct symtab_and_line sr_sal,
5369 struct frame_id sr_id,
5370 enum bptype sr_type)
44cbf7b5 5371{
611c83ae
PA
5372 /* There should never be more than one step-resume or longjmp-resume
5373 breakpoint per thread, so we should never be setting a new
44cbf7b5 5374 step_resume_breakpoint when one is already active. */
8358c15c 5375 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5376 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5377
5378 if (debug_infrun)
5379 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5380 "infrun: inserting step-resume breakpoint at %s\n",
5381 paddress (gdbarch, sr_sal.pc));
d3169d93 5382
8358c15c 5383 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5384 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5385}
5386
9da8c2a0 5387void
2c03e5be
PA
5388insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5389 struct symtab_and_line sr_sal,
5390 struct frame_id sr_id)
5391{
5392 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5393 sr_sal, sr_id,
5394 bp_step_resume);
44cbf7b5 5395}
7ce450bd 5396
2c03e5be
PA
5397/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5398 This is used to skip a potential signal handler.
7ce450bd 5399
14e60db5
DJ
5400 This is called with the interrupted function's frame. The signal
5401 handler, when it returns, will resume the interrupted function at
5402 RETURN_FRAME.pc. */
d303a6c7
AC
5403
5404static void
2c03e5be 5405insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5406{
5407 struct symtab_and_line sr_sal;
a6d9a66e 5408 struct gdbarch *gdbarch;
d303a6c7 5409
f4c1edd8 5410 gdb_assert (return_frame != NULL);
d303a6c7
AC
5411 init_sal (&sr_sal); /* initialize to zeros */
5412
a6d9a66e 5413 gdbarch = get_frame_arch (return_frame);
568d6575 5414 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5415 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5416 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5417
2c03e5be
PA
5418 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5419 get_stack_frame_id (return_frame),
5420 bp_hp_step_resume);
d303a6c7
AC
5421}
5422
2c03e5be
PA
5423/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5424 is used to skip a function after stepping into it (for "next" or if
5425 the called function has no debugging information).
14e60db5
DJ
5426
5427 The current function has almost always been reached by single
5428 stepping a call or return instruction. NEXT_FRAME belongs to the
5429 current function, and the breakpoint will be set at the caller's
5430 resume address.
5431
5432 This is a separate function rather than reusing
2c03e5be 5433 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5434 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5435 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5436
5437static void
5438insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5439{
5440 struct symtab_and_line sr_sal;
a6d9a66e 5441 struct gdbarch *gdbarch;
14e60db5
DJ
5442
5443 /* We shouldn't have gotten here if we don't know where the call site
5444 is. */
c7ce8faa 5445 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5446
5447 init_sal (&sr_sal); /* initialize to zeros */
5448
a6d9a66e 5449 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5450 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5451 frame_unwind_caller_pc (next_frame));
14e60db5 5452 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5453 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5454
a6d9a66e 5455 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5456 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5457}
5458
611c83ae
PA
5459/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5460 new breakpoint at the target of a jmp_buf. The handling of
5461 longjmp-resume uses the same mechanisms used for handling
5462 "step-resume" breakpoints. */
5463
5464static void
a6d9a66e 5465insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5466{
5467 /* There should never be more than one step-resume or longjmp-resume
5468 breakpoint per thread, so we should never be setting a new
5469 longjmp_resume_breakpoint when one is already active. */
8358c15c 5470 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5471
5472 if (debug_infrun)
5473 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5474 "infrun: inserting longjmp-resume breakpoint at %s\n",
5475 paddress (gdbarch, pc));
611c83ae 5476
8358c15c 5477 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5478 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5479}
5480
186c406b
TT
5481/* Insert an exception resume breakpoint. TP is the thread throwing
5482 the exception. The block B is the block of the unwinder debug hook
5483 function. FRAME is the frame corresponding to the call to this
5484 function. SYM is the symbol of the function argument holding the
5485 target PC of the exception. */
5486
5487static void
5488insert_exception_resume_breakpoint (struct thread_info *tp,
5489 struct block *b,
5490 struct frame_info *frame,
5491 struct symbol *sym)
5492{
bfd189b1 5493 volatile struct gdb_exception e;
186c406b
TT
5494
5495 /* We want to ignore errors here. */
5496 TRY_CATCH (e, RETURN_MASK_ERROR)
5497 {
5498 struct symbol *vsym;
5499 struct value *value;
5500 CORE_ADDR handler;
5501 struct breakpoint *bp;
5502
5503 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5504 value = read_var_value (vsym, frame);
5505 /* If the value was optimized out, revert to the old behavior. */
5506 if (! value_optimized_out (value))
5507 {
5508 handler = value_as_address (value);
5509
5510 if (debug_infrun)
5511 fprintf_unfiltered (gdb_stdlog,
5512 "infrun: exception resume at %lx\n",
5513 (unsigned long) handler);
5514
5515 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5516 handler, bp_exception_resume);
5517 bp->thread = tp->num;
5518 inferior_thread ()->control.exception_resume_breakpoint = bp;
5519 }
5520 }
5521}
5522
5523/* This is called when an exception has been intercepted. Check to
5524 see whether the exception's destination is of interest, and if so,
5525 set an exception resume breakpoint there. */
5526
5527static void
5528check_exception_resume (struct execution_control_state *ecs,
5529 struct frame_info *frame, struct symbol *func)
5530{
bfd189b1 5531 volatile struct gdb_exception e;
186c406b
TT
5532
5533 TRY_CATCH (e, RETURN_MASK_ERROR)
5534 {
5535 struct block *b;
5536 struct dict_iterator iter;
5537 struct symbol *sym;
5538 int argno = 0;
5539
5540 /* The exception breakpoint is a thread-specific breakpoint on
5541 the unwinder's debug hook, declared as:
5542
5543 void _Unwind_DebugHook (void *cfa, void *handler);
5544
5545 The CFA argument indicates the frame to which control is
5546 about to be transferred. HANDLER is the destination PC.
5547
5548 We ignore the CFA and set a temporary breakpoint at HANDLER.
5549 This is not extremely efficient but it avoids issues in gdb
5550 with computing the DWARF CFA, and it also works even in weird
5551 cases such as throwing an exception from inside a signal
5552 handler. */
5553
5554 b = SYMBOL_BLOCK_VALUE (func);
5555 ALL_BLOCK_SYMBOLS (b, iter, sym)
5556 {
5557 if (!SYMBOL_IS_ARGUMENT (sym))
5558 continue;
5559
5560 if (argno == 0)
5561 ++argno;
5562 else
5563 {
5564 insert_exception_resume_breakpoint (ecs->event_thread,
5565 b, frame, sym);
5566 break;
5567 }
5568 }
5569 }
5570}
5571
104c1213
JM
5572static void
5573stop_stepping (struct execution_control_state *ecs)
5574{
527159b7 5575 if (debug_infrun)
8a9de0e4 5576 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5577
cd0fc7c3
SS
5578 /* Let callers know we don't want to wait for the inferior anymore. */
5579 ecs->wait_some_more = 0;
5580}
5581
d4f3574e
SS
5582/* This function handles various cases where we need to continue
5583 waiting for the inferior. */
1777feb0 5584/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5585
5586static void
5587keep_going (struct execution_control_state *ecs)
5588{
c4dbc9af
PA
5589 /* Make sure normal_stop is called if we get a QUIT handled before
5590 reaching resume. */
5591 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5592
d4f3574e 5593 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5594 ecs->event_thread->prev_pc
5595 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5596
d4f3574e
SS
5597 /* If we did not do break;, it means we should keep running the
5598 inferior and not return to debugger. */
5599
16c381f0
JK
5600 if (ecs->event_thread->control.trap_expected
5601 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5602 {
5603 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5604 the inferior, else we'd not get here) and we haven't yet
5605 gotten our trap. Simply continue. */
c4dbc9af
PA
5606
5607 discard_cleanups (old_cleanups);
2020b7ab 5608 resume (currently_stepping (ecs->event_thread),
16c381f0 5609 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5610 }
5611 else
5612 {
5613 /* Either the trap was not expected, but we are continuing
488f131b
JB
5614 anyway (the user asked that this signal be passed to the
5615 child)
5616 -- or --
5617 The signal was SIGTRAP, e.g. it was our signal, but we
5618 decided we should resume from it.
d4f3574e 5619
c36b740a 5620 We're going to run this baby now!
d4f3574e 5621
c36b740a
VP
5622 Note that insert_breakpoints won't try to re-insert
5623 already inserted breakpoints. Therefore, we don't
5624 care if breakpoints were already inserted, or not. */
5625
4e1c45ea 5626 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5627 {
9f5a595d 5628 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5629
9f5a595d 5630 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5631 /* Since we can't do a displaced step, we have to remove
5632 the breakpoint while we step it. To keep things
5633 simple, we remove them all. */
5634 remove_breakpoints ();
45e8c884
VP
5635 }
5636 else
d4f3574e 5637 {
bfd189b1 5638 volatile struct gdb_exception e;
abbb1732 5639
569631c6
UW
5640 /* Stop stepping when inserting breakpoints
5641 has failed. */
e236ba44
VP
5642 TRY_CATCH (e, RETURN_MASK_ERROR)
5643 {
5644 insert_breakpoints ();
5645 }
5646 if (e.reason < 0)
d4f3574e 5647 {
97bd5475 5648 exception_print (gdb_stderr, e);
d4f3574e
SS
5649 stop_stepping (ecs);
5650 return;
5651 }
d4f3574e
SS
5652 }
5653
16c381f0
JK
5654 ecs->event_thread->control.trap_expected
5655 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5656
5657 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5658 specifies that such a signal should be delivered to the
5659 target program).
5660
5661 Typically, this would occure when a user is debugging a
5662 target monitor on a simulator: the target monitor sets a
5663 breakpoint; the simulator encounters this break-point and
5664 halts the simulation handing control to GDB; GDB, noteing
5665 that the break-point isn't valid, returns control back to the
5666 simulator; the simulator then delivers the hardware
1777feb0 5667 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5668
16c381f0
JK
5669 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5670 && !signal_program[ecs->event_thread->suspend.stop_signal])
5671 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5672
c4dbc9af 5673 discard_cleanups (old_cleanups);
2020b7ab 5674 resume (currently_stepping (ecs->event_thread),
16c381f0 5675 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5676 }
5677
488f131b 5678 prepare_to_wait (ecs);
d4f3574e
SS
5679}
5680
104c1213
JM
5681/* This function normally comes after a resume, before
5682 handle_inferior_event exits. It takes care of any last bits of
5683 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5684
104c1213
JM
5685static void
5686prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5687{
527159b7 5688 if (debug_infrun)
8a9de0e4 5689 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5690
104c1213
JM
5691 /* This is the old end of the while loop. Let everybody know we
5692 want to wait for the inferior some more and get called again
5693 soon. */
5694 ecs->wait_some_more = 1;
c906108c 5695}
11cf8741 5696
33d62d64
JK
5697/* Several print_*_reason functions to print why the inferior has stopped.
5698 We always print something when the inferior exits, or receives a signal.
5699 The rest of the cases are dealt with later on in normal_stop and
5700 print_it_typical. Ideally there should be a call to one of these
5701 print_*_reason functions functions from handle_inferior_event each time
5702 stop_stepping is called. */
5703
5704/* Print why the inferior has stopped.
5705 We are done with a step/next/si/ni command, print why the inferior has
5706 stopped. For now print nothing. Print a message only if not in the middle
5707 of doing a "step n" operation for n > 1. */
5708
5709static void
5710print_end_stepping_range_reason (void)
5711{
16c381f0
JK
5712 if ((!inferior_thread ()->step_multi
5713 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5714 && ui_out_is_mi_like_p (current_uiout))
5715 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5716 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5717}
5718
5719/* The inferior was terminated by a signal, print why it stopped. */
5720
11cf8741 5721static void
33d62d64 5722print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5723{
79a45e25
PA
5724 struct ui_out *uiout = current_uiout;
5725
33d62d64
JK
5726 annotate_signalled ();
5727 if (ui_out_is_mi_like_p (uiout))
5728 ui_out_field_string
5729 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5730 ui_out_text (uiout, "\nProgram terminated with signal ");
5731 annotate_signal_name ();
5732 ui_out_field_string (uiout, "signal-name",
5733 target_signal_to_name (siggnal));
5734 annotate_signal_name_end ();
5735 ui_out_text (uiout, ", ");
5736 annotate_signal_string ();
5737 ui_out_field_string (uiout, "signal-meaning",
5738 target_signal_to_string (siggnal));
5739 annotate_signal_string_end ();
5740 ui_out_text (uiout, ".\n");
5741 ui_out_text (uiout, "The program no longer exists.\n");
5742}
5743
5744/* The inferior program is finished, print why it stopped. */
5745
5746static void
5747print_exited_reason (int exitstatus)
5748{
fda326dd
TT
5749 struct inferior *inf = current_inferior ();
5750 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5751 struct ui_out *uiout = current_uiout;
fda326dd 5752
33d62d64
JK
5753 annotate_exited (exitstatus);
5754 if (exitstatus)
5755 {
5756 if (ui_out_is_mi_like_p (uiout))
5757 ui_out_field_string (uiout, "reason",
5758 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5759 ui_out_text (uiout, "[Inferior ");
5760 ui_out_text (uiout, plongest (inf->num));
5761 ui_out_text (uiout, " (");
5762 ui_out_text (uiout, pidstr);
5763 ui_out_text (uiout, ") exited with code ");
33d62d64 5764 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5765 ui_out_text (uiout, "]\n");
33d62d64
JK
5766 }
5767 else
11cf8741 5768 {
9dc5e2a9 5769 if (ui_out_is_mi_like_p (uiout))
034dad6f 5770 ui_out_field_string
33d62d64 5771 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5772 ui_out_text (uiout, "[Inferior ");
5773 ui_out_text (uiout, plongest (inf->num));
5774 ui_out_text (uiout, " (");
5775 ui_out_text (uiout, pidstr);
5776 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5777 }
5778 /* Support the --return-child-result option. */
5779 return_child_result_value = exitstatus;
5780}
5781
5782/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5783 tells us to print about it. */
33d62d64
JK
5784
5785static void
5786print_signal_received_reason (enum target_signal siggnal)
5787{
79a45e25
PA
5788 struct ui_out *uiout = current_uiout;
5789
33d62d64
JK
5790 annotate_signal ();
5791
5792 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5793 {
5794 struct thread_info *t = inferior_thread ();
5795
5796 ui_out_text (uiout, "\n[");
5797 ui_out_field_string (uiout, "thread-name",
5798 target_pid_to_str (t->ptid));
5799 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5800 ui_out_text (uiout, " stopped");
5801 }
5802 else
5803 {
5804 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5805 annotate_signal_name ();
33d62d64
JK
5806 if (ui_out_is_mi_like_p (uiout))
5807 ui_out_field_string
5808 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5809 ui_out_field_string (uiout, "signal-name",
33d62d64 5810 target_signal_to_name (siggnal));
8b93c638
JM
5811 annotate_signal_name_end ();
5812 ui_out_text (uiout, ", ");
5813 annotate_signal_string ();
488f131b 5814 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5815 target_signal_to_string (siggnal));
8b93c638 5816 annotate_signal_string_end ();
33d62d64
JK
5817 }
5818 ui_out_text (uiout, ".\n");
5819}
252fbfc8 5820
33d62d64
JK
5821/* Reverse execution: target ran out of history info, print why the inferior
5822 has stopped. */
252fbfc8 5823
33d62d64
JK
5824static void
5825print_no_history_reason (void)
5826{
79a45e25 5827 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5828}
43ff13b4 5829
c906108c
SS
5830/* Here to return control to GDB when the inferior stops for real.
5831 Print appropriate messages, remove breakpoints, give terminal our modes.
5832
5833 STOP_PRINT_FRAME nonzero means print the executing frame
5834 (pc, function, args, file, line number and line text).
5835 BREAKPOINTS_FAILED nonzero means stop was due to error
5836 attempting to insert breakpoints. */
5837
5838void
96baa820 5839normal_stop (void)
c906108c 5840{
73b65bb0
DJ
5841 struct target_waitstatus last;
5842 ptid_t last_ptid;
29f49a6a 5843 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5844
5845 get_last_target_status (&last_ptid, &last);
5846
29f49a6a
PA
5847 /* If an exception is thrown from this point on, make sure to
5848 propagate GDB's knowledge of the executing state to the
5849 frontend/user running state. A QUIT is an easy exception to see
5850 here, so do this before any filtered output. */
c35b1492
PA
5851 if (!non_stop)
5852 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5853 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5854 && last.kind != TARGET_WAITKIND_EXITED
5855 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5856 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5857
4f8d22e3
PA
5858 /* In non-stop mode, we don't want GDB to switch threads behind the
5859 user's back, to avoid races where the user is typing a command to
5860 apply to thread x, but GDB switches to thread y before the user
5861 finishes entering the command. */
5862
c906108c
SS
5863 /* As with the notification of thread events, we want to delay
5864 notifying the user that we've switched thread context until
5865 the inferior actually stops.
5866
73b65bb0
DJ
5867 There's no point in saying anything if the inferior has exited.
5868 Note that SIGNALLED here means "exited with a signal", not
5869 "received a signal". */
4f8d22e3
PA
5870 if (!non_stop
5871 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5872 && target_has_execution
5873 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5874 && last.kind != TARGET_WAITKIND_EXITED
5875 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5876 {
5877 target_terminal_ours_for_output ();
a3f17187 5878 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5879 target_pid_to_str (inferior_ptid));
b8fa951a 5880 annotate_thread_changed ();
39f77062 5881 previous_inferior_ptid = inferior_ptid;
c906108c 5882 }
c906108c 5883
0e5bf2a8
PA
5884 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5885 {
5886 gdb_assert (sync_execution || !target_can_async_p ());
5887
5888 target_terminal_ours_for_output ();
5889 printf_filtered (_("No unwaited-for children left.\n"));
5890 }
5891
74960c60 5892 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5893 {
5894 if (remove_breakpoints ())
5895 {
5896 target_terminal_ours_for_output ();
3e43a32a
MS
5897 printf_filtered (_("Cannot remove breakpoints because "
5898 "program is no longer writable.\nFurther "
5899 "execution is probably impossible.\n"));
c906108c
SS
5900 }
5901 }
c906108c 5902
c906108c
SS
5903 /* If an auto-display called a function and that got a signal,
5904 delete that auto-display to avoid an infinite recursion. */
5905
5906 if (stopped_by_random_signal)
5907 disable_current_display ();
5908
5909 /* Don't print a message if in the middle of doing a "step n"
5910 operation for n > 1 */
af679fd0
PA
5911 if (target_has_execution
5912 && last.kind != TARGET_WAITKIND_SIGNALLED
5913 && last.kind != TARGET_WAITKIND_EXITED
5914 && inferior_thread ()->step_multi
16c381f0 5915 && inferior_thread ()->control.stop_step)
c906108c
SS
5916 goto done;
5917
5918 target_terminal_ours ();
0f641c01 5919 async_enable_stdin ();
c906108c 5920
7abfe014
DJ
5921 /* Set the current source location. This will also happen if we
5922 display the frame below, but the current SAL will be incorrect
5923 during a user hook-stop function. */
d729566a 5924 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5925 set_current_sal_from_frame (get_current_frame (), 1);
5926
dd7e2d2b
PA
5927 /* Let the user/frontend see the threads as stopped. */
5928 do_cleanups (old_chain);
5929
5930 /* Look up the hook_stop and run it (CLI internally handles problem
5931 of stop_command's pre-hook not existing). */
5932 if (stop_command)
5933 catch_errors (hook_stop_stub, stop_command,
5934 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5935
d729566a 5936 if (!has_stack_frames ())
d51fd4c8 5937 goto done;
c906108c 5938
32400beb
PA
5939 if (last.kind == TARGET_WAITKIND_SIGNALLED
5940 || last.kind == TARGET_WAITKIND_EXITED)
5941 goto done;
5942
c906108c
SS
5943 /* Select innermost stack frame - i.e., current frame is frame 0,
5944 and current location is based on that.
5945 Don't do this on return from a stack dummy routine,
1777feb0 5946 or if the program has exited. */
c906108c
SS
5947
5948 if (!stop_stack_dummy)
5949 {
0f7d239c 5950 select_frame (get_current_frame ());
c906108c
SS
5951
5952 /* Print current location without a level number, if
c5aa993b
JM
5953 we have changed functions or hit a breakpoint.
5954 Print source line if we have one.
5955 bpstat_print() contains the logic deciding in detail
1777feb0 5956 what to print, based on the event(s) that just occurred. */
c906108c 5957
d01a8610
AS
5958 /* If --batch-silent is enabled then there's no need to print the current
5959 source location, and to try risks causing an error message about
5960 missing source files. */
5961 if (stop_print_frame && !batch_silent)
c906108c
SS
5962 {
5963 int bpstat_ret;
5964 int source_flag;
917317f4 5965 int do_frame_printing = 1;
347bddb7 5966 struct thread_info *tp = inferior_thread ();
c906108c 5967
36dfb11c 5968 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
5969 switch (bpstat_ret)
5970 {
5971 case PRINT_UNKNOWN:
aa0cd9c1 5972 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5973 (or should) carry around the function and does (or
5974 should) use that when doing a frame comparison. */
16c381f0
JK
5975 if (tp->control.stop_step
5976 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5977 get_frame_id (get_current_frame ()))
917317f4 5978 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5979 source_flag = SRC_LINE; /* Finished step, just
5980 print source line. */
917317f4 5981 else
1777feb0
MS
5982 source_flag = SRC_AND_LOC; /* Print location and
5983 source line. */
917317f4
JM
5984 break;
5985 case PRINT_SRC_AND_LOC:
1777feb0
MS
5986 source_flag = SRC_AND_LOC; /* Print location and
5987 source line. */
917317f4
JM
5988 break;
5989 case PRINT_SRC_ONLY:
c5394b80 5990 source_flag = SRC_LINE;
917317f4
JM
5991 break;
5992 case PRINT_NOTHING:
488f131b 5993 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5994 do_frame_printing = 0;
5995 break;
5996 default:
e2e0b3e5 5997 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5998 }
c906108c
SS
5999
6000 /* The behavior of this routine with respect to the source
6001 flag is:
c5394b80
JM
6002 SRC_LINE: Print only source line
6003 LOCATION: Print only location
1777feb0 6004 SRC_AND_LOC: Print location and source line. */
917317f4 6005 if (do_frame_printing)
b04f3ab4 6006 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6007
6008 /* Display the auto-display expressions. */
6009 do_displays ();
6010 }
6011 }
6012
6013 /* Save the function value return registers, if we care.
6014 We might be about to restore their previous contents. */
9da8c2a0
PA
6015 if (inferior_thread ()->control.proceed_to_finish
6016 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6017 {
6018 /* This should not be necessary. */
6019 if (stop_registers)
6020 regcache_xfree (stop_registers);
6021
6022 /* NB: The copy goes through to the target picking up the value of
6023 all the registers. */
6024 stop_registers = regcache_dup (get_current_regcache ());
6025 }
c906108c 6026
aa7d318d 6027 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6028 {
b89667eb
DE
6029 /* Pop the empty frame that contains the stack dummy.
6030 This also restores inferior state prior to the call
16c381f0 6031 (struct infcall_suspend_state). */
b89667eb 6032 struct frame_info *frame = get_current_frame ();
abbb1732 6033
b89667eb
DE
6034 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6035 frame_pop (frame);
3e43a32a
MS
6036 /* frame_pop() calls reinit_frame_cache as the last thing it
6037 does which means there's currently no selected frame. We
6038 don't need to re-establish a selected frame if the dummy call
6039 returns normally, that will be done by
6040 restore_infcall_control_state. However, we do have to handle
6041 the case where the dummy call is returning after being
6042 stopped (e.g. the dummy call previously hit a breakpoint).
6043 We can't know which case we have so just always re-establish
6044 a selected frame here. */
0f7d239c 6045 select_frame (get_current_frame ());
c906108c
SS
6046 }
6047
c906108c
SS
6048done:
6049 annotate_stopped ();
41d2bdb4
PA
6050
6051 /* Suppress the stop observer if we're in the middle of:
6052
6053 - a step n (n > 1), as there still more steps to be done.
6054
6055 - a "finish" command, as the observer will be called in
6056 finish_command_continuation, so it can include the inferior
6057 function's return value.
6058
6059 - calling an inferior function, as we pretend we inferior didn't
6060 run at all. The return value of the call is handled by the
6061 expression evaluator, through call_function_by_hand. */
6062
6063 if (!target_has_execution
6064 || last.kind == TARGET_WAITKIND_SIGNALLED
6065 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6066 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6067 || (!(inferior_thread ()->step_multi
6068 && inferior_thread ()->control.stop_step)
16c381f0
JK
6069 && !(inferior_thread ()->control.stop_bpstat
6070 && inferior_thread ()->control.proceed_to_finish)
6071 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6072 {
6073 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6074 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6075 stop_print_frame);
347bddb7 6076 else
1d33d6ba 6077 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6078 }
347bddb7 6079
48844aa6
PA
6080 if (target_has_execution)
6081 {
6082 if (last.kind != TARGET_WAITKIND_SIGNALLED
6083 && last.kind != TARGET_WAITKIND_EXITED)
6084 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6085 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6086 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6087 }
6c95b8df
PA
6088
6089 /* Try to get rid of automatically added inferiors that are no
6090 longer needed. Keeping those around slows down things linearly.
6091 Note that this never removes the current inferior. */
6092 prune_inferiors ();
c906108c
SS
6093}
6094
6095static int
96baa820 6096hook_stop_stub (void *cmd)
c906108c 6097{
5913bcb0 6098 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6099 return (0);
6100}
6101\f
c5aa993b 6102int
96baa820 6103signal_stop_state (int signo)
c906108c 6104{
d6b48e9c 6105 return signal_stop[signo];
c906108c
SS
6106}
6107
c5aa993b 6108int
96baa820 6109signal_print_state (int signo)
c906108c
SS
6110{
6111 return signal_print[signo];
6112}
6113
c5aa993b 6114int
96baa820 6115signal_pass_state (int signo)
c906108c
SS
6116{
6117 return signal_program[signo];
6118}
6119
2455069d
UW
6120static void
6121signal_cache_update (int signo)
6122{
6123 if (signo == -1)
6124 {
6125 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6126 signal_cache_update (signo);
6127
6128 return;
6129 }
6130
6131 signal_pass[signo] = (signal_stop[signo] == 0
6132 && signal_print[signo] == 0
6133 && signal_program[signo] == 1);
6134}
6135
488f131b 6136int
7bda5e4a 6137signal_stop_update (int signo, int state)
d4f3574e
SS
6138{
6139 int ret = signal_stop[signo];
abbb1732 6140
d4f3574e 6141 signal_stop[signo] = state;
2455069d 6142 signal_cache_update (signo);
d4f3574e
SS
6143 return ret;
6144}
6145
488f131b 6146int
7bda5e4a 6147signal_print_update (int signo, int state)
d4f3574e
SS
6148{
6149 int ret = signal_print[signo];
abbb1732 6150
d4f3574e 6151 signal_print[signo] = state;
2455069d 6152 signal_cache_update (signo);
d4f3574e
SS
6153 return ret;
6154}
6155
488f131b 6156int
7bda5e4a 6157signal_pass_update (int signo, int state)
d4f3574e
SS
6158{
6159 int ret = signal_program[signo];
abbb1732 6160
d4f3574e 6161 signal_program[signo] = state;
2455069d 6162 signal_cache_update (signo);
d4f3574e
SS
6163 return ret;
6164}
6165
c906108c 6166static void
96baa820 6167sig_print_header (void)
c906108c 6168{
3e43a32a
MS
6169 printf_filtered (_("Signal Stop\tPrint\tPass "
6170 "to program\tDescription\n"));
c906108c
SS
6171}
6172
6173static void
96baa820 6174sig_print_info (enum target_signal oursig)
c906108c 6175{
54363045 6176 const char *name = target_signal_to_name (oursig);
c906108c 6177 int name_padding = 13 - strlen (name);
96baa820 6178
c906108c
SS
6179 if (name_padding <= 0)
6180 name_padding = 0;
6181
6182 printf_filtered ("%s", name);
488f131b 6183 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6184 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6185 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6186 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6187 printf_filtered ("%s\n", target_signal_to_string (oursig));
6188}
6189
6190/* Specify how various signals in the inferior should be handled. */
6191
6192static void
96baa820 6193handle_command (char *args, int from_tty)
c906108c
SS
6194{
6195 char **argv;
6196 int digits, wordlen;
6197 int sigfirst, signum, siglast;
6198 enum target_signal oursig;
6199 int allsigs;
6200 int nsigs;
6201 unsigned char *sigs;
6202 struct cleanup *old_chain;
6203
6204 if (args == NULL)
6205 {
e2e0b3e5 6206 error_no_arg (_("signal to handle"));
c906108c
SS
6207 }
6208
1777feb0 6209 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6210
6211 nsigs = (int) TARGET_SIGNAL_LAST;
6212 sigs = (unsigned char *) alloca (nsigs);
6213 memset (sigs, 0, nsigs);
6214
1777feb0 6215 /* Break the command line up into args. */
c906108c 6216
d1a41061 6217 argv = gdb_buildargv (args);
7a292a7a 6218 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6219
6220 /* Walk through the args, looking for signal oursigs, signal names, and
6221 actions. Signal numbers and signal names may be interspersed with
6222 actions, with the actions being performed for all signals cumulatively
1777feb0 6223 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6224
6225 while (*argv != NULL)
6226 {
6227 wordlen = strlen (*argv);
6228 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6229 {;
6230 }
6231 allsigs = 0;
6232 sigfirst = siglast = -1;
6233
6234 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6235 {
6236 /* Apply action to all signals except those used by the
1777feb0 6237 debugger. Silently skip those. */
c906108c
SS
6238 allsigs = 1;
6239 sigfirst = 0;
6240 siglast = nsigs - 1;
6241 }
6242 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6243 {
6244 SET_SIGS (nsigs, sigs, signal_stop);
6245 SET_SIGS (nsigs, sigs, signal_print);
6246 }
6247 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6248 {
6249 UNSET_SIGS (nsigs, sigs, signal_program);
6250 }
6251 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6252 {
6253 SET_SIGS (nsigs, sigs, signal_print);
6254 }
6255 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6256 {
6257 SET_SIGS (nsigs, sigs, signal_program);
6258 }
6259 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6260 {
6261 UNSET_SIGS (nsigs, sigs, signal_stop);
6262 }
6263 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6264 {
6265 SET_SIGS (nsigs, sigs, signal_program);
6266 }
6267 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6268 {
6269 UNSET_SIGS (nsigs, sigs, signal_print);
6270 UNSET_SIGS (nsigs, sigs, signal_stop);
6271 }
6272 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6273 {
6274 UNSET_SIGS (nsigs, sigs, signal_program);
6275 }
6276 else if (digits > 0)
6277 {
6278 /* It is numeric. The numeric signal refers to our own
6279 internal signal numbering from target.h, not to host/target
6280 signal number. This is a feature; users really should be
6281 using symbolic names anyway, and the common ones like
6282 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6283
6284 sigfirst = siglast = (int)
6285 target_signal_from_command (atoi (*argv));
6286 if ((*argv)[digits] == '-')
6287 {
6288 siglast = (int)
6289 target_signal_from_command (atoi ((*argv) + digits + 1));
6290 }
6291 if (sigfirst > siglast)
6292 {
1777feb0 6293 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6294 signum = sigfirst;
6295 sigfirst = siglast;
6296 siglast = signum;
6297 }
6298 }
6299 else
6300 {
6301 oursig = target_signal_from_name (*argv);
6302 if (oursig != TARGET_SIGNAL_UNKNOWN)
6303 {
6304 sigfirst = siglast = (int) oursig;
6305 }
6306 else
6307 {
6308 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6309 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6310 }
6311 }
6312
6313 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6314 which signals to apply actions to. */
c906108c
SS
6315
6316 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6317 {
6318 switch ((enum target_signal) signum)
6319 {
6320 case TARGET_SIGNAL_TRAP:
6321 case TARGET_SIGNAL_INT:
6322 if (!allsigs && !sigs[signum])
6323 {
9e2f0ad4 6324 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6325Are you sure you want to change it? "),
6326 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6327 {
6328 sigs[signum] = 1;
6329 }
6330 else
6331 {
a3f17187 6332 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6333 gdb_flush (gdb_stdout);
6334 }
6335 }
6336 break;
6337 case TARGET_SIGNAL_0:
6338 case TARGET_SIGNAL_DEFAULT:
6339 case TARGET_SIGNAL_UNKNOWN:
6340 /* Make sure that "all" doesn't print these. */
6341 break;
6342 default:
6343 sigs[signum] = 1;
6344 break;
6345 }
6346 }
6347
6348 argv++;
6349 }
6350
3a031f65
PA
6351 for (signum = 0; signum < nsigs; signum++)
6352 if (sigs[signum])
6353 {
2455069d
UW
6354 signal_cache_update (-1);
6355 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6356
3a031f65
PA
6357 if (from_tty)
6358 {
6359 /* Show the results. */
6360 sig_print_header ();
6361 for (; signum < nsigs; signum++)
6362 if (sigs[signum])
6363 sig_print_info (signum);
6364 }
6365
6366 break;
6367 }
c906108c
SS
6368
6369 do_cleanups (old_chain);
6370}
6371
6372static void
96baa820 6373xdb_handle_command (char *args, int from_tty)
c906108c
SS
6374{
6375 char **argv;
6376 struct cleanup *old_chain;
6377
d1a41061
PP
6378 if (args == NULL)
6379 error_no_arg (_("xdb command"));
6380
1777feb0 6381 /* Break the command line up into args. */
c906108c 6382
d1a41061 6383 argv = gdb_buildargv (args);
7a292a7a 6384 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6385 if (argv[1] != (char *) NULL)
6386 {
6387 char *argBuf;
6388 int bufLen;
6389
6390 bufLen = strlen (argv[0]) + 20;
6391 argBuf = (char *) xmalloc (bufLen);
6392 if (argBuf)
6393 {
6394 int validFlag = 1;
6395 enum target_signal oursig;
6396
6397 oursig = target_signal_from_name (argv[0]);
6398 memset (argBuf, 0, bufLen);
6399 if (strcmp (argv[1], "Q") == 0)
6400 sprintf (argBuf, "%s %s", argv[0], "noprint");
6401 else
6402 {
6403 if (strcmp (argv[1], "s") == 0)
6404 {
6405 if (!signal_stop[oursig])
6406 sprintf (argBuf, "%s %s", argv[0], "stop");
6407 else
6408 sprintf (argBuf, "%s %s", argv[0], "nostop");
6409 }
6410 else if (strcmp (argv[1], "i") == 0)
6411 {
6412 if (!signal_program[oursig])
6413 sprintf (argBuf, "%s %s", argv[0], "pass");
6414 else
6415 sprintf (argBuf, "%s %s", argv[0], "nopass");
6416 }
6417 else if (strcmp (argv[1], "r") == 0)
6418 {
6419 if (!signal_print[oursig])
6420 sprintf (argBuf, "%s %s", argv[0], "print");
6421 else
6422 sprintf (argBuf, "%s %s", argv[0], "noprint");
6423 }
6424 else
6425 validFlag = 0;
6426 }
6427 if (validFlag)
6428 handle_command (argBuf, from_tty);
6429 else
a3f17187 6430 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6431 if (argBuf)
b8c9b27d 6432 xfree (argBuf);
c906108c
SS
6433 }
6434 }
6435 do_cleanups (old_chain);
6436}
6437
6438/* Print current contents of the tables set by the handle command.
6439 It is possible we should just be printing signals actually used
6440 by the current target (but for things to work right when switching
6441 targets, all signals should be in the signal tables). */
6442
6443static void
96baa820 6444signals_info (char *signum_exp, int from_tty)
c906108c
SS
6445{
6446 enum target_signal oursig;
abbb1732 6447
c906108c
SS
6448 sig_print_header ();
6449
6450 if (signum_exp)
6451 {
6452 /* First see if this is a symbol name. */
6453 oursig = target_signal_from_name (signum_exp);
6454 if (oursig == TARGET_SIGNAL_UNKNOWN)
6455 {
6456 /* No, try numeric. */
6457 oursig =
bb518678 6458 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6459 }
6460 sig_print_info (oursig);
6461 return;
6462 }
6463
6464 printf_filtered ("\n");
6465 /* These ugly casts brought to you by the native VAX compiler. */
6466 for (oursig = TARGET_SIGNAL_FIRST;
6467 (int) oursig < (int) TARGET_SIGNAL_LAST;
6468 oursig = (enum target_signal) ((int) oursig + 1))
6469 {
6470 QUIT;
6471
6472 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6473 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6474 sig_print_info (oursig);
6475 }
6476
3e43a32a
MS
6477 printf_filtered (_("\nUse the \"handle\" command "
6478 "to change these tables.\n"));
c906108c 6479}
4aa995e1 6480
c709acd1
PA
6481/* Check if it makes sense to read $_siginfo from the current thread
6482 at this point. If not, throw an error. */
6483
6484static void
6485validate_siginfo_access (void)
6486{
6487 /* No current inferior, no siginfo. */
6488 if (ptid_equal (inferior_ptid, null_ptid))
6489 error (_("No thread selected."));
6490
6491 /* Don't try to read from a dead thread. */
6492 if (is_exited (inferior_ptid))
6493 error (_("The current thread has terminated"));
6494
6495 /* ... or from a spinning thread. */
6496 if (is_running (inferior_ptid))
6497 error (_("Selected thread is running."));
6498}
6499
4aa995e1
PA
6500/* The $_siginfo convenience variable is a bit special. We don't know
6501 for sure the type of the value until we actually have a chance to
7a9dd1b2 6502 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6503 also dependent on which thread you have selected.
6504
6505 1. making $_siginfo be an internalvar that creates a new value on
6506 access.
6507
6508 2. making the value of $_siginfo be an lval_computed value. */
6509
6510/* This function implements the lval_computed support for reading a
6511 $_siginfo value. */
6512
6513static void
6514siginfo_value_read (struct value *v)
6515{
6516 LONGEST transferred;
6517
c709acd1
PA
6518 validate_siginfo_access ();
6519
4aa995e1
PA
6520 transferred =
6521 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6522 NULL,
6523 value_contents_all_raw (v),
6524 value_offset (v),
6525 TYPE_LENGTH (value_type (v)));
6526
6527 if (transferred != TYPE_LENGTH (value_type (v)))
6528 error (_("Unable to read siginfo"));
6529}
6530
6531/* This function implements the lval_computed support for writing a
6532 $_siginfo value. */
6533
6534static void
6535siginfo_value_write (struct value *v, struct value *fromval)
6536{
6537 LONGEST transferred;
6538
c709acd1
PA
6539 validate_siginfo_access ();
6540
4aa995e1
PA
6541 transferred = target_write (&current_target,
6542 TARGET_OBJECT_SIGNAL_INFO,
6543 NULL,
6544 value_contents_all_raw (fromval),
6545 value_offset (v),
6546 TYPE_LENGTH (value_type (fromval)));
6547
6548 if (transferred != TYPE_LENGTH (value_type (fromval)))
6549 error (_("Unable to write siginfo"));
6550}
6551
c8f2448a 6552static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6553 {
6554 siginfo_value_read,
6555 siginfo_value_write
6556 };
6557
6558/* Return a new value with the correct type for the siginfo object of
78267919
UW
6559 the current thread using architecture GDBARCH. Return a void value
6560 if there's no object available. */
4aa995e1 6561
2c0b251b 6562static struct value *
78267919 6563siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6564{
4aa995e1 6565 if (target_has_stack
78267919
UW
6566 && !ptid_equal (inferior_ptid, null_ptid)
6567 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6568 {
78267919 6569 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6570
78267919 6571 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6572 }
6573
78267919 6574 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6575}
6576
c906108c 6577\f
16c381f0
JK
6578/* infcall_suspend_state contains state about the program itself like its
6579 registers and any signal it received when it last stopped.
6580 This state must be restored regardless of how the inferior function call
6581 ends (either successfully, or after it hits a breakpoint or signal)
6582 if the program is to properly continue where it left off. */
6583
6584struct infcall_suspend_state
7a292a7a 6585{
16c381f0
JK
6586 struct thread_suspend_state thread_suspend;
6587 struct inferior_suspend_state inferior_suspend;
6588
6589 /* Other fields: */
7a292a7a 6590 CORE_ADDR stop_pc;
b89667eb 6591 struct regcache *registers;
1736ad11 6592
35515841 6593 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6594 struct gdbarch *siginfo_gdbarch;
6595
6596 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6597 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6598 content would be invalid. */
6599 gdb_byte *siginfo_data;
b89667eb
DE
6600};
6601
16c381f0
JK
6602struct infcall_suspend_state *
6603save_infcall_suspend_state (void)
b89667eb 6604{
16c381f0 6605 struct infcall_suspend_state *inf_state;
b89667eb 6606 struct thread_info *tp = inferior_thread ();
16c381f0 6607 struct inferior *inf = current_inferior ();
1736ad11
JK
6608 struct regcache *regcache = get_current_regcache ();
6609 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6610 gdb_byte *siginfo_data = NULL;
6611
6612 if (gdbarch_get_siginfo_type_p (gdbarch))
6613 {
6614 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6615 size_t len = TYPE_LENGTH (type);
6616 struct cleanup *back_to;
6617
6618 siginfo_data = xmalloc (len);
6619 back_to = make_cleanup (xfree, siginfo_data);
6620
6621 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6622 siginfo_data, 0, len) == len)
6623 discard_cleanups (back_to);
6624 else
6625 {
6626 /* Errors ignored. */
6627 do_cleanups (back_to);
6628 siginfo_data = NULL;
6629 }
6630 }
6631
16c381f0 6632 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6633
6634 if (siginfo_data)
6635 {
6636 inf_state->siginfo_gdbarch = gdbarch;
6637 inf_state->siginfo_data = siginfo_data;
6638 }
b89667eb 6639
16c381f0
JK
6640 inf_state->thread_suspend = tp->suspend;
6641 inf_state->inferior_suspend = inf->suspend;
6642
35515841
JK
6643 /* run_inferior_call will not use the signal due to its `proceed' call with
6644 TARGET_SIGNAL_0 anyway. */
16c381f0 6645 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6646
b89667eb
DE
6647 inf_state->stop_pc = stop_pc;
6648
1736ad11 6649 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6650
6651 return inf_state;
6652}
6653
6654/* Restore inferior session state to INF_STATE. */
6655
6656void
16c381f0 6657restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6658{
6659 struct thread_info *tp = inferior_thread ();
16c381f0 6660 struct inferior *inf = current_inferior ();
1736ad11
JK
6661 struct regcache *regcache = get_current_regcache ();
6662 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6663
16c381f0
JK
6664 tp->suspend = inf_state->thread_suspend;
6665 inf->suspend = inf_state->inferior_suspend;
6666
b89667eb
DE
6667 stop_pc = inf_state->stop_pc;
6668
1736ad11
JK
6669 if (inf_state->siginfo_gdbarch == gdbarch)
6670 {
6671 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6672 size_t len = TYPE_LENGTH (type);
6673
6674 /* Errors ignored. */
6675 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6676 inf_state->siginfo_data, 0, len);
6677 }
6678
b89667eb
DE
6679 /* The inferior can be gone if the user types "print exit(0)"
6680 (and perhaps other times). */
6681 if (target_has_execution)
6682 /* NB: The register write goes through to the target. */
1736ad11 6683 regcache_cpy (regcache, inf_state->registers);
803b5f95 6684
16c381f0 6685 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6686}
6687
6688static void
16c381f0 6689do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6690{
16c381f0 6691 restore_infcall_suspend_state (state);
b89667eb
DE
6692}
6693
6694struct cleanup *
16c381f0
JK
6695make_cleanup_restore_infcall_suspend_state
6696 (struct infcall_suspend_state *inf_state)
b89667eb 6697{
16c381f0 6698 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6699}
6700
6701void
16c381f0 6702discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6703{
6704 regcache_xfree (inf_state->registers);
803b5f95 6705 xfree (inf_state->siginfo_data);
b89667eb
DE
6706 xfree (inf_state);
6707}
6708
6709struct regcache *
16c381f0 6710get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6711{
6712 return inf_state->registers;
6713}
6714
16c381f0
JK
6715/* infcall_control_state contains state regarding gdb's control of the
6716 inferior itself like stepping control. It also contains session state like
6717 the user's currently selected frame. */
b89667eb 6718
16c381f0 6719struct infcall_control_state
b89667eb 6720{
16c381f0
JK
6721 struct thread_control_state thread_control;
6722 struct inferior_control_state inferior_control;
d82142e2
JK
6723
6724 /* Other fields: */
6725 enum stop_stack_kind stop_stack_dummy;
6726 int stopped_by_random_signal;
7a292a7a 6727 int stop_after_trap;
7a292a7a 6728
b89667eb 6729 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6730 struct frame_id selected_frame_id;
7a292a7a
SS
6731};
6732
c906108c 6733/* Save all of the information associated with the inferior<==>gdb
b89667eb 6734 connection. */
c906108c 6735
16c381f0
JK
6736struct infcall_control_state *
6737save_infcall_control_state (void)
c906108c 6738{
16c381f0 6739 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6740 struct thread_info *tp = inferior_thread ();
d6b48e9c 6741 struct inferior *inf = current_inferior ();
7a292a7a 6742
16c381f0
JK
6743 inf_status->thread_control = tp->control;
6744 inf_status->inferior_control = inf->control;
d82142e2 6745
8358c15c 6746 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6747 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6748
16c381f0
JK
6749 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6750 chain. If caller's caller is walking the chain, they'll be happier if we
6751 hand them back the original chain when restore_infcall_control_state is
6752 called. */
6753 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6754
6755 /* Other fields: */
6756 inf_status->stop_stack_dummy = stop_stack_dummy;
6757 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6758 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6759
206415a3 6760 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6761
7a292a7a 6762 return inf_status;
c906108c
SS
6763}
6764
c906108c 6765static int
96baa820 6766restore_selected_frame (void *args)
c906108c 6767{
488f131b 6768 struct frame_id *fid = (struct frame_id *) args;
c906108c 6769 struct frame_info *frame;
c906108c 6770
101dcfbe 6771 frame = frame_find_by_id (*fid);
c906108c 6772
aa0cd9c1
AC
6773 /* If inf_status->selected_frame_id is NULL, there was no previously
6774 selected frame. */
101dcfbe 6775 if (frame == NULL)
c906108c 6776 {
8a3fe4f8 6777 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6778 return 0;
6779 }
6780
0f7d239c 6781 select_frame (frame);
c906108c
SS
6782
6783 return (1);
6784}
6785
b89667eb
DE
6786/* Restore inferior session state to INF_STATUS. */
6787
c906108c 6788void
16c381f0 6789restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6790{
4e1c45ea 6791 struct thread_info *tp = inferior_thread ();
d6b48e9c 6792 struct inferior *inf = current_inferior ();
4e1c45ea 6793
8358c15c
JK
6794 if (tp->control.step_resume_breakpoint)
6795 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6796
5b79abe7
TT
6797 if (tp->control.exception_resume_breakpoint)
6798 tp->control.exception_resume_breakpoint->disposition
6799 = disp_del_at_next_stop;
6800
d82142e2 6801 /* Handle the bpstat_copy of the chain. */
16c381f0 6802 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6803
16c381f0
JK
6804 tp->control = inf_status->thread_control;
6805 inf->control = inf_status->inferior_control;
d82142e2
JK
6806
6807 /* Other fields: */
6808 stop_stack_dummy = inf_status->stop_stack_dummy;
6809 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6810 stop_after_trap = inf_status->stop_after_trap;
c906108c 6811
b89667eb 6812 if (target_has_stack)
c906108c 6813 {
c906108c 6814 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6815 walking the stack might encounter a garbage pointer and
6816 error() trying to dereference it. */
488f131b
JB
6817 if (catch_errors
6818 (restore_selected_frame, &inf_status->selected_frame_id,
6819 "Unable to restore previously selected frame:\n",
6820 RETURN_MASK_ERROR) == 0)
c906108c
SS
6821 /* Error in restoring the selected frame. Select the innermost
6822 frame. */
0f7d239c 6823 select_frame (get_current_frame ());
c906108c 6824 }
c906108c 6825
72cec141 6826 xfree (inf_status);
7a292a7a 6827}
c906108c 6828
74b7792f 6829static void
16c381f0 6830do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6831{
16c381f0 6832 restore_infcall_control_state (sts);
74b7792f
AC
6833}
6834
6835struct cleanup *
16c381f0
JK
6836make_cleanup_restore_infcall_control_state
6837 (struct infcall_control_state *inf_status)
74b7792f 6838{
16c381f0 6839 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6840}
6841
c906108c 6842void
16c381f0 6843discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6844{
8358c15c
JK
6845 if (inf_status->thread_control.step_resume_breakpoint)
6846 inf_status->thread_control.step_resume_breakpoint->disposition
6847 = disp_del_at_next_stop;
6848
5b79abe7
TT
6849 if (inf_status->thread_control.exception_resume_breakpoint)
6850 inf_status->thread_control.exception_resume_breakpoint->disposition
6851 = disp_del_at_next_stop;
6852
1777feb0 6853 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6854 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6855
72cec141 6856 xfree (inf_status);
7a292a7a 6857}
b89667eb 6858\f
0723dbf5
PA
6859int
6860ptid_match (ptid_t ptid, ptid_t filter)
6861{
0723dbf5
PA
6862 if (ptid_equal (filter, minus_one_ptid))
6863 return 1;
6864 if (ptid_is_pid (filter)
6865 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6866 return 1;
6867 else if (ptid_equal (ptid, filter))
6868 return 1;
6869
6870 return 0;
6871}
6872
ca6724c1
KB
6873/* restore_inferior_ptid() will be used by the cleanup machinery
6874 to restore the inferior_ptid value saved in a call to
6875 save_inferior_ptid(). */
ce696e05
KB
6876
6877static void
6878restore_inferior_ptid (void *arg)
6879{
6880 ptid_t *saved_ptid_ptr = arg;
abbb1732 6881
ce696e05
KB
6882 inferior_ptid = *saved_ptid_ptr;
6883 xfree (arg);
6884}
6885
6886/* Save the value of inferior_ptid so that it may be restored by a
6887 later call to do_cleanups(). Returns the struct cleanup pointer
6888 needed for later doing the cleanup. */
6889
6890struct cleanup *
6891save_inferior_ptid (void)
6892{
6893 ptid_t *saved_ptid_ptr;
6894
6895 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6896 *saved_ptid_ptr = inferior_ptid;
6897 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6898}
c5aa993b 6899\f
488f131b 6900
b2175913
MS
6901/* User interface for reverse debugging:
6902 Set exec-direction / show exec-direction commands
6903 (returns error unless target implements to_set_exec_direction method). */
6904
32231432 6905int execution_direction = EXEC_FORWARD;
b2175913
MS
6906static const char exec_forward[] = "forward";
6907static const char exec_reverse[] = "reverse";
6908static const char *exec_direction = exec_forward;
6909static const char *exec_direction_names[] = {
6910 exec_forward,
6911 exec_reverse,
6912 NULL
6913};
6914
6915static void
6916set_exec_direction_func (char *args, int from_tty,
6917 struct cmd_list_element *cmd)
6918{
6919 if (target_can_execute_reverse)
6920 {
6921 if (!strcmp (exec_direction, exec_forward))
6922 execution_direction = EXEC_FORWARD;
6923 else if (!strcmp (exec_direction, exec_reverse))
6924 execution_direction = EXEC_REVERSE;
6925 }
8bbed405
MS
6926 else
6927 {
6928 exec_direction = exec_forward;
6929 error (_("Target does not support this operation."));
6930 }
b2175913
MS
6931}
6932
6933static void
6934show_exec_direction_func (struct ui_file *out, int from_tty,
6935 struct cmd_list_element *cmd, const char *value)
6936{
6937 switch (execution_direction) {
6938 case EXEC_FORWARD:
6939 fprintf_filtered (out, _("Forward.\n"));
6940 break;
6941 case EXEC_REVERSE:
6942 fprintf_filtered (out, _("Reverse.\n"));
6943 break;
b2175913 6944 default:
d8b34453
PA
6945 internal_error (__FILE__, __LINE__,
6946 _("bogus execution_direction value: %d"),
6947 (int) execution_direction);
b2175913
MS
6948 }
6949}
6950
6951/* User interface for non-stop mode. */
6952
ad52ddc6 6953int non_stop = 0;
ad52ddc6
PA
6954
6955static void
6956set_non_stop (char *args, int from_tty,
6957 struct cmd_list_element *c)
6958{
6959 if (target_has_execution)
6960 {
6961 non_stop_1 = non_stop;
6962 error (_("Cannot change this setting while the inferior is running."));
6963 }
6964
6965 non_stop = non_stop_1;
6966}
6967
6968static void
6969show_non_stop (struct ui_file *file, int from_tty,
6970 struct cmd_list_element *c, const char *value)
6971{
6972 fprintf_filtered (file,
6973 _("Controlling the inferior in non-stop mode is %s.\n"),
6974 value);
6975}
6976
d4db2f36
PA
6977static void
6978show_schedule_multiple (struct ui_file *file, int from_tty,
6979 struct cmd_list_element *c, const char *value)
6980{
3e43a32a
MS
6981 fprintf_filtered (file, _("Resuming the execution of threads "
6982 "of all processes is %s.\n"), value);
d4db2f36 6983}
ad52ddc6 6984
c906108c 6985void
96baa820 6986_initialize_infrun (void)
c906108c 6987{
52f0bd74
AC
6988 int i;
6989 int numsigs;
c906108c 6990
1bedd215
AC
6991 add_info ("signals", signals_info, _("\
6992What debugger does when program gets various signals.\n\
6993Specify a signal as argument to print info on that signal only."));
c906108c
SS
6994 add_info_alias ("handle", "signals", 0);
6995
1bedd215
AC
6996 add_com ("handle", class_run, handle_command, _("\
6997Specify how to handle a signal.\n\
c906108c
SS
6998Args are signals and actions to apply to those signals.\n\
6999Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7000from 1-15 are allowed for compatibility with old versions of GDB.\n\
7001Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7002The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7003used by the debugger, typically SIGTRAP and SIGINT.\n\
7004Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7005\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7006Stop means reenter debugger if this signal happens (implies print).\n\
7007Print means print a message if this signal happens.\n\
7008Pass means let program see this signal; otherwise program doesn't know.\n\
7009Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7010Pass and Stop may be combined."));
c906108c
SS
7011 if (xdb_commands)
7012 {
1bedd215
AC
7013 add_com ("lz", class_info, signals_info, _("\
7014What debugger does when program gets various signals.\n\
7015Specify a signal as argument to print info on that signal only."));
7016 add_com ("z", class_run, xdb_handle_command, _("\
7017Specify how to handle a signal.\n\
c906108c
SS
7018Args are signals and actions to apply to those signals.\n\
7019Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7020from 1-15 are allowed for compatibility with old versions of GDB.\n\
7021Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7022The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7023used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7024Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7025\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7026nopass), \"Q\" (noprint)\n\
7027Stop means reenter debugger if this signal happens (implies print).\n\
7028Print means print a message if this signal happens.\n\
7029Pass means let program see this signal; otherwise program doesn't know.\n\
7030Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7031Pass and Stop may be combined."));
c906108c
SS
7032 }
7033
7034 if (!dbx_commands)
1a966eab
AC
7035 stop_command = add_cmd ("stop", class_obscure,
7036 not_just_help_class_command, _("\
7037There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7038This allows you to set a list of commands to be run each time execution\n\
1a966eab 7039of the program stops."), &cmdlist);
c906108c 7040
85c07804
AC
7041 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7042Set inferior debugging."), _("\
7043Show inferior debugging."), _("\
7044When non-zero, inferior specific debugging is enabled."),
7045 NULL,
920d2a44 7046 show_debug_infrun,
85c07804 7047 &setdebuglist, &showdebuglist);
527159b7 7048
3e43a32a
MS
7049 add_setshow_boolean_cmd ("displaced", class_maintenance,
7050 &debug_displaced, _("\
237fc4c9
PA
7051Set displaced stepping debugging."), _("\
7052Show displaced stepping debugging."), _("\
7053When non-zero, displaced stepping specific debugging is enabled."),
7054 NULL,
7055 show_debug_displaced,
7056 &setdebuglist, &showdebuglist);
7057
ad52ddc6
PA
7058 add_setshow_boolean_cmd ("non-stop", no_class,
7059 &non_stop_1, _("\
7060Set whether gdb controls the inferior in non-stop mode."), _("\
7061Show whether gdb controls the inferior in non-stop mode."), _("\
7062When debugging a multi-threaded program and this setting is\n\
7063off (the default, also called all-stop mode), when one thread stops\n\
7064(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7065all other threads in the program while you interact with the thread of\n\
7066interest. When you continue or step a thread, you can allow the other\n\
7067threads to run, or have them remain stopped, but while you inspect any\n\
7068thread's state, all threads stop.\n\
7069\n\
7070In non-stop mode, when one thread stops, other threads can continue\n\
7071to run freely. You'll be able to step each thread independently,\n\
7072leave it stopped or free to run as needed."),
7073 set_non_stop,
7074 show_non_stop,
7075 &setlist,
7076 &showlist);
7077
c906108c 7078 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7079 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7080 signal_print = (unsigned char *)
7081 xmalloc (sizeof (signal_print[0]) * numsigs);
7082 signal_program = (unsigned char *)
7083 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7084 signal_pass = (unsigned char *)
7085 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7086 for (i = 0; i < numsigs; i++)
7087 {
7088 signal_stop[i] = 1;
7089 signal_print[i] = 1;
7090 signal_program[i] = 1;
7091 }
7092
7093 /* Signals caused by debugger's own actions
7094 should not be given to the program afterwards. */
7095 signal_program[TARGET_SIGNAL_TRAP] = 0;
7096 signal_program[TARGET_SIGNAL_INT] = 0;
7097
7098 /* Signals that are not errors should not normally enter the debugger. */
7099 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7100 signal_print[TARGET_SIGNAL_ALRM] = 0;
7101 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7102 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7103 signal_stop[TARGET_SIGNAL_PROF] = 0;
7104 signal_print[TARGET_SIGNAL_PROF] = 0;
7105 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7106 signal_print[TARGET_SIGNAL_CHLD] = 0;
7107 signal_stop[TARGET_SIGNAL_IO] = 0;
7108 signal_print[TARGET_SIGNAL_IO] = 0;
7109 signal_stop[TARGET_SIGNAL_POLL] = 0;
7110 signal_print[TARGET_SIGNAL_POLL] = 0;
7111 signal_stop[TARGET_SIGNAL_URG] = 0;
7112 signal_print[TARGET_SIGNAL_URG] = 0;
7113 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7114 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7115 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7116 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7117
cd0fc7c3
SS
7118 /* These signals are used internally by user-level thread
7119 implementations. (See signal(5) on Solaris.) Like the above
7120 signals, a healthy program receives and handles them as part of
7121 its normal operation. */
7122 signal_stop[TARGET_SIGNAL_LWP] = 0;
7123 signal_print[TARGET_SIGNAL_LWP] = 0;
7124 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7125 signal_print[TARGET_SIGNAL_WAITING] = 0;
7126 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7127 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7128
2455069d
UW
7129 /* Update cached state. */
7130 signal_cache_update (-1);
7131
85c07804
AC
7132 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7133 &stop_on_solib_events, _("\
7134Set stopping for shared library events."), _("\
7135Show stopping for shared library events."), _("\
c906108c
SS
7136If nonzero, gdb will give control to the user when the dynamic linker\n\
7137notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7138to the user would be loading/unloading of a new library."),
7139 NULL,
920d2a44 7140 show_stop_on_solib_events,
85c07804 7141 &setlist, &showlist);
c906108c 7142
7ab04401
AC
7143 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7144 follow_fork_mode_kind_names,
7145 &follow_fork_mode_string, _("\
7146Set debugger response to a program call of fork or vfork."), _("\
7147Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7148A fork or vfork creates a new process. follow-fork-mode can be:\n\
7149 parent - the original process is debugged after a fork\n\
7150 child - the new process is debugged after a fork\n\
ea1dd7bc 7151The unfollowed process will continue to run.\n\
7ab04401
AC
7152By default, the debugger will follow the parent process."),
7153 NULL,
920d2a44 7154 show_follow_fork_mode_string,
7ab04401
AC
7155 &setlist, &showlist);
7156
6c95b8df
PA
7157 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7158 follow_exec_mode_names,
7159 &follow_exec_mode_string, _("\
7160Set debugger response to a program call of exec."), _("\
7161Show debugger response to a program call of exec."), _("\
7162An exec call replaces the program image of a process.\n\
7163\n\
7164follow-exec-mode can be:\n\
7165\n\
cce7e648 7166 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7167to this new inferior. The program the process was running before\n\
7168the exec call can be restarted afterwards by restarting the original\n\
7169inferior.\n\
7170\n\
7171 same - the debugger keeps the process bound to the same inferior.\n\
7172The new executable image replaces the previous executable loaded in\n\
7173the inferior. Restarting the inferior after the exec call restarts\n\
7174the executable the process was running after the exec call.\n\
7175\n\
7176By default, the debugger will use the same inferior."),
7177 NULL,
7178 show_follow_exec_mode_string,
7179 &setlist, &showlist);
7180
7ab04401
AC
7181 add_setshow_enum_cmd ("scheduler-locking", class_run,
7182 scheduler_enums, &scheduler_mode, _("\
7183Set mode for locking scheduler during execution."), _("\
7184Show mode for locking scheduler during execution."), _("\
c906108c
SS
7185off == no locking (threads may preempt at any time)\n\
7186on == full locking (no thread except the current thread may run)\n\
7187step == scheduler locked during every single-step operation.\n\
7188 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7189 Other threads may run while stepping over a function call ('next')."),
7190 set_schedlock_func, /* traps on target vector */
920d2a44 7191 show_scheduler_mode,
7ab04401 7192 &setlist, &showlist);
5fbbeb29 7193
d4db2f36
PA
7194 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7195Set mode for resuming threads of all processes."), _("\
7196Show mode for resuming threads of all processes."), _("\
7197When on, execution commands (such as 'continue' or 'next') resume all\n\
7198threads of all processes. When off (which is the default), execution\n\
7199commands only resume the threads of the current process. The set of\n\
7200threads that are resumed is further refined by the scheduler-locking\n\
7201mode (see help set scheduler-locking)."),
7202 NULL,
7203 show_schedule_multiple,
7204 &setlist, &showlist);
7205
5bf193a2
AC
7206 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7207Set mode of the step operation."), _("\
7208Show mode of the step operation."), _("\
7209When set, doing a step over a function without debug line information\n\
7210will stop at the first instruction of that function. Otherwise, the\n\
7211function is skipped and the step command stops at a different source line."),
7212 NULL,
920d2a44 7213 show_step_stop_if_no_debug,
5bf193a2 7214 &setlist, &showlist);
ca6724c1 7215
fff08868
HZ
7216 add_setshow_enum_cmd ("displaced-stepping", class_run,
7217 can_use_displaced_stepping_enum,
7218 &can_use_displaced_stepping, _("\
237fc4c9
PA
7219Set debugger's willingness to use displaced stepping."), _("\
7220Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7221If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7222supported by the target architecture. If off, gdb will not use displaced\n\
7223stepping to step over breakpoints, even if such is supported by the target\n\
7224architecture. If auto (which is the default), gdb will use displaced stepping\n\
7225if the target architecture supports it and non-stop mode is active, but will not\n\
7226use it in all-stop mode (see help set non-stop)."),
7227 NULL,
7228 show_can_use_displaced_stepping,
7229 &setlist, &showlist);
237fc4c9 7230
b2175913
MS
7231 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7232 &exec_direction, _("Set direction of execution.\n\
7233Options are 'forward' or 'reverse'."),
7234 _("Show direction of execution (forward/reverse)."),
7235 _("Tells gdb whether to execute forward or backward."),
7236 set_exec_direction_func, show_exec_direction_func,
7237 &setlist, &showlist);
7238
6c95b8df
PA
7239 /* Set/show detach-on-fork: user-settable mode. */
7240
7241 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7242Set whether gdb will detach the child of a fork."), _("\
7243Show whether gdb will detach the child of a fork."), _("\
7244Tells gdb whether to detach the child of a fork."),
7245 NULL, NULL, &setlist, &showlist);
7246
03583c20
UW
7247 /* Set/show disable address space randomization mode. */
7248
7249 add_setshow_boolean_cmd ("disable-randomization", class_support,
7250 &disable_randomization, _("\
7251Set disabling of debuggee's virtual address space randomization."), _("\
7252Show disabling of debuggee's virtual address space randomization."), _("\
7253When this mode is on (which is the default), randomization of the virtual\n\
7254address space is disabled. Standalone programs run with the randomization\n\
7255enabled by default on some platforms."),
7256 &set_disable_randomization,
7257 &show_disable_randomization,
7258 &setlist, &showlist);
7259
ca6724c1 7260 /* ptid initializations */
ca6724c1
KB
7261 inferior_ptid = null_ptid;
7262 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7263
7264 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7265 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7266 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7267 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7268
7269 /* Explicitly create without lookup, since that tries to create a
7270 value with a void typed value, and when we get here, gdbarch
7271 isn't initialized yet. At this point, we're quite sure there
7272 isn't another convenience variable of the same name. */
7273 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7274
7275 add_setshow_boolean_cmd ("observer", no_class,
7276 &observer_mode_1, _("\
7277Set whether gdb controls the inferior in observer mode."), _("\
7278Show whether gdb controls the inferior in observer mode."), _("\
7279In observer mode, GDB can get data from the inferior, but not\n\
7280affect its execution. Registers and memory may not be changed,\n\
7281breakpoints may not be set, and the program cannot be interrupted\n\
7282or signalled."),
7283 set_observer_mode,
7284 show_observer_mode,
7285 &setlist,
7286 &showlist);
c906108c 7287}
This page took 1.567511 seconds and 4 git commands to generate.