Commit | Line | Data |
---|---|---|
20be272b CV |
1 | /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU |
2 | Debugger. | |
3 | ||
4 | Copyright 2000, 2004, 2005 Free Software Foundation, Inc. | |
5 | ||
6 | Contributed by Red Hat. | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, | |
23 | Boston, MA 02111-1307, USA. */ | |
24 | ||
25 | #include "defs.h" | |
26 | #include "frame.h" | |
27 | #include "frame-base.h" | |
28 | #include "frame-unwind.h" | |
29 | #include "dwarf2-frame.h" | |
30 | #include "gdbtypes.h" | |
31 | #include "value.h" | |
32 | #include "dis-asm.h" | |
33 | #include "gdb_string.h" | |
34 | #include "arch-utils.h" | |
35 | #include "regcache.h" | |
36 | #include "osabi.h" | |
37 | #include "gdbcore.h" | |
38 | ||
39 | enum gdb_regnum | |
40 | { | |
41 | E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM, | |
42 | E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM, | |
43 | E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM, | |
44 | E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM, | |
45 | E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM, | |
46 | E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM, | |
47 | E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM, | |
48 | E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM, | |
49 | E_PC_REGNUM, | |
50 | E_LR_REGNUM = E_R31_REGNUM, /* Link register. */ | |
51 | E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */ | |
52 | E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */ | |
53 | E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */ | |
54 | E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */ | |
55 | E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */ | |
56 | E_NUM_REGS = E_PC_REGNUM + 1 | |
57 | }; | |
58 | ||
59 | /* Use an invalid address value as 'not available' marker. */ | |
60 | enum { REG_UNAVAIL = (CORE_ADDR) -1 }; | |
61 | ||
62 | struct iq2000_frame_cache | |
63 | { | |
64 | /* Base address. */ | |
65 | CORE_ADDR base; | |
66 | CORE_ADDR pc; | |
67 | LONGEST framesize; | |
68 | int using_fp; | |
69 | CORE_ADDR saved_sp; | |
70 | CORE_ADDR saved_regs [E_NUM_REGS]; | |
71 | }; | |
72 | ||
73 | /* Harvard methods: */ | |
74 | ||
75 | static CORE_ADDR | |
76 | insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */ | |
77 | { | |
78 | return addr & 0x7fffffffL; | |
79 | } | |
80 | ||
81 | static CORE_ADDR | |
82 | insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */ | |
83 | { | |
84 | return (ptr & 0x7fffffffL) | 0x80000000L; | |
85 | } | |
86 | ||
87 | /* Function: pointer_to_address | |
88 | Convert a target pointer to an address in host (CORE_ADDR) format. */ | |
89 | ||
90 | static CORE_ADDR | |
91 | iq2000_pointer_to_address (struct type * type, const void * buf) | |
92 | { | |
93 | enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type)); | |
94 | CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type)); | |
95 | ||
96 | if (target == TYPE_CODE_FUNC | |
97 | || target == TYPE_CODE_METHOD | |
98 | || (TYPE_FLAGS (TYPE_TARGET_TYPE (type)) & TYPE_FLAG_CODE_SPACE) != 0) | |
99 | addr = insn_addr_from_ptr (addr); | |
100 | ||
101 | return addr; | |
102 | } | |
103 | ||
104 | /* Function: address_to_pointer | |
105 | Convert a host-format address (CORE_ADDR) into a target pointer. */ | |
106 | ||
107 | static void | |
108 | iq2000_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr) | |
109 | { | |
110 | enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type)); | |
111 | ||
112 | if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD) | |
113 | addr = insn_ptr_from_addr (addr); | |
114 | store_unsigned_integer (buf, TYPE_LENGTH (type), addr); | |
115 | } | |
116 | ||
117 | /* Real register methods: */ | |
118 | ||
119 | /* Function: register_name | |
120 | Returns the name of the iq2000 register number N. */ | |
121 | ||
122 | static const char * | |
123 | iq2000_register_name (int regnum) | |
124 | { | |
125 | static const char * names[E_NUM_REGS] = | |
126 | { | |
127 | "r0", "r1", "r2", "r3", "r4", | |
128 | "r5", "r6", "r7", "r8", "r9", | |
129 | "r10", "r11", "r12", "r13", "r14", | |
130 | "r15", "r16", "r17", "r18", "r19", | |
131 | "r20", "r21", "r22", "r23", "r24", | |
132 | "r25", "r26", "r27", "r28", "r29", | |
133 | "r30", "r31", | |
134 | "pc" | |
135 | }; | |
136 | if (regnum < 0 || regnum >= E_NUM_REGS) | |
137 | return NULL; | |
138 | return names[regnum]; | |
139 | } | |
140 | ||
141 | /* Prologue analysis methods: */ | |
142 | ||
143 | /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */ | |
144 | #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000) | |
145 | #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21) | |
146 | #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16) | |
147 | #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff)) | |
148 | ||
149 | /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */ | |
150 | #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025) | |
151 | #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16) | |
152 | #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11) | |
153 | ||
154 | /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */ | |
155 | #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000) | |
156 | #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21) | |
157 | #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16) | |
158 | #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff)) | |
159 | ||
160 | /* Function: find_last_line_symbol | |
161 | ||
162 | Given an address range, first find a line symbol corresponding to | |
163 | the starting address. Then find the last line symbol within the | |
164 | range that has a line number less than or equal to the first line. | |
165 | ||
166 | For optimized code with code motion, this finds the last address | |
167 | for the lowest-numbered line within the address range. */ | |
168 | ||
169 | static struct symtab_and_line | |
170 | find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent) | |
171 | { | |
172 | struct symtab_and_line sal = find_pc_line (start, notcurrent); | |
173 | struct symtab_and_line best_sal = sal; | |
174 | ||
175 | if (sal.pc == 0 || sal.line == 0 || sal.end == 0) | |
176 | return sal; | |
177 | ||
178 | do | |
179 | { | |
180 | if (sal.line && sal.line <= best_sal.line) | |
181 | best_sal = sal; | |
182 | sal = find_pc_line (sal.end, notcurrent); | |
183 | } | |
184 | while (sal.pc && sal.pc < end); | |
185 | ||
186 | return best_sal; | |
187 | } | |
188 | ||
189 | /* Function: scan_prologue | |
190 | Decode the instructions within the given address range. | |
191 | Decide when we must have reached the end of the function prologue. | |
192 | If a frame_info pointer is provided, fill in its prologue information. | |
193 | ||
194 | Returns the address of the first instruction after the prologue. */ | |
195 | ||
196 | static CORE_ADDR | |
197 | iq2000_scan_prologue (CORE_ADDR scan_start, | |
198 | CORE_ADDR scan_end, | |
199 | struct frame_info *fi, | |
200 | struct iq2000_frame_cache *cache) | |
201 | { | |
202 | struct symtab_and_line sal; | |
203 | CORE_ADDR pc; | |
204 | CORE_ADDR loop_end; | |
205 | int found_store_lr = 0; | |
206 | int found_decr_sp = 0; | |
207 | int srcreg; | |
208 | int tgtreg; | |
209 | signed short offset; | |
210 | ||
211 | if (scan_end == (CORE_ADDR) 0) | |
212 | { | |
213 | loop_end = scan_start + 100; | |
214 | sal.end = sal.pc = 0; | |
215 | } | |
216 | else | |
217 | { | |
218 | loop_end = scan_end; | |
219 | if (fi) | |
220 | sal = find_last_line_symbol (scan_start, scan_end, 0); | |
221 | } | |
222 | ||
223 | /* Saved registers: | |
224 | We first have to save the saved register's offset, and | |
225 | only later do we compute its actual address. Since the | |
226 | offset can be zero, we must first initialize all the | |
227 | saved regs to minus one (so we can later distinguish | |
228 | between one that's not saved, and one that's saved at zero). */ | |
229 | for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++) | |
230 | cache->saved_regs[srcreg] = -1; | |
231 | cache->using_fp = 0; | |
232 | cache->framesize = 0; | |
233 | ||
234 | for (pc = scan_start; pc < loop_end; pc += 4) | |
235 | { | |
236 | LONGEST insn = read_memory_unsigned_integer (pc, 4); | |
237 | /* Skip any instructions writing to (sp) or decrementing the | |
238 | SP. */ | |
239 | if ((insn & 0xffe00000) == 0xac200000) | |
240 | { | |
241 | /* sw using SP/%1 as base. */ | |
242 | /* LEGACY -- from assembly-only port. */ | |
243 | tgtreg = ((insn >> 16) & 0x1f); | |
244 | if (tgtreg >= 0 && tgtreg < E_NUM_REGS) | |
245 | cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff)); | |
246 | ||
247 | if (tgtreg == E_LR_REGNUM) | |
248 | found_store_lr = 1; | |
249 | continue; | |
250 | } | |
251 | ||
252 | if ((insn & 0xffff8000) == 0x20218000) | |
253 | { | |
254 | /* addi %1, %1, -N == addi %sp, %sp, -N */ | |
255 | /* LEGACY -- from assembly-only port */ | |
256 | found_decr_sp = 1; | |
257 | cache->framesize = -((signed short) (insn & 0xffff)); | |
258 | continue; | |
259 | } | |
260 | ||
261 | if (INSN_IS_ADDIU (insn)) | |
262 | { | |
263 | srcreg = ADDIU_REG_SRC (insn); | |
264 | tgtreg = ADDIU_REG_TGT (insn); | |
265 | offset = ADDIU_IMMEDIATE (insn); | |
266 | if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM) | |
267 | cache->framesize = -offset; | |
268 | continue; | |
269 | } | |
270 | ||
271 | if (INSN_IS_STORE_WORD (insn)) | |
272 | { | |
273 | srcreg = SW_REG_SRC (insn); | |
274 | tgtreg = SW_REG_INDEX (insn); | |
275 | offset = SW_OFFSET (insn); | |
276 | ||
277 | if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM) | |
278 | { | |
279 | /* "push" to stack (via SP or FP reg) */ | |
280 | if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */ | |
281 | cache->saved_regs[srcreg] = offset; | |
282 | continue; | |
283 | } | |
284 | } | |
285 | ||
286 | if (INSN_IS_MOVE (insn)) | |
287 | { | |
288 | srcreg = MOVE_REG_SRC (insn); | |
289 | tgtreg = MOVE_REG_TGT (insn); | |
290 | ||
291 | if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM) | |
292 | { | |
293 | /* Copy sp to fp. */ | |
294 | cache->using_fp = 1; | |
295 | continue; | |
296 | } | |
297 | } | |
298 | ||
299 | /* Unknown instruction encountered in frame. Bail out? | |
300 | 1) If we have a subsequent line symbol, we can keep going. | |
301 | 2) If not, we need to bail out and quit scanning instructions. */ | |
302 | ||
303 | if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */ | |
304 | continue; | |
305 | else /* bail */ | |
306 | break; | |
307 | } | |
308 | ||
309 | return pc; | |
310 | } | |
311 | ||
312 | static void | |
313 | iq2000_init_frame_cache (struct iq2000_frame_cache *cache) | |
314 | { | |
315 | int i; | |
316 | ||
317 | cache->base = 0; | |
318 | cache->framesize = 0; | |
319 | cache->using_fp = 0; | |
320 | cache->saved_sp = 0; | |
321 | for (i = 0; i < E_NUM_REGS; i++) | |
322 | cache->saved_regs[i] = -1; | |
323 | } | |
324 | ||
325 | /* Function: iq2000_skip_prologue | |
326 | If the input address is in a function prologue, | |
327 | returns the address of the end of the prologue; | |
328 | else returns the input address. | |
329 | ||
330 | Note: the input address is likely to be the function start, | |
331 | since this function is mainly used for advancing a breakpoint | |
332 | to the first line, or stepping to the first line when we have | |
333 | stepped into a function call. */ | |
334 | ||
335 | static CORE_ADDR | |
336 | iq2000_skip_prologue (CORE_ADDR pc) | |
337 | { | |
338 | CORE_ADDR func_addr = 0 , func_end = 0; | |
339 | ||
340 | if (find_pc_partial_function (pc, NULL, & func_addr, & func_end)) | |
341 | { | |
342 | struct symtab_and_line sal; | |
343 | struct iq2000_frame_cache cache; | |
344 | ||
345 | /* Found a function. */ | |
346 | sal = find_pc_line (func_addr, 0); | |
347 | if (sal.end && sal.end < func_end) | |
348 | /* Found a line number, use it as end of prologue. */ | |
349 | return sal.end; | |
350 | ||
351 | /* No useable line symbol. Use prologue parsing method. */ | |
352 | iq2000_init_frame_cache (&cache); | |
353 | return iq2000_scan_prologue (func_addr, func_end, NULL, &cache); | |
354 | } | |
355 | ||
356 | /* No function symbol -- just return the PC. */ | |
357 | return (CORE_ADDR) pc; | |
358 | } | |
359 | ||
360 | static struct iq2000_frame_cache * | |
361 | iq2000_frame_cache (struct frame_info *next_frame, void **this_cache) | |
362 | { | |
363 | struct iq2000_frame_cache *cache; | |
364 | CORE_ADDR current_pc; | |
365 | int i; | |
366 | ||
367 | if (*this_cache) | |
368 | return *this_cache; | |
369 | ||
370 | cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache); | |
371 | iq2000_init_frame_cache (cache); | |
372 | *this_cache = cache; | |
373 | ||
374 | cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM); | |
375 | //if (cache->base == 0) | |
376 | //return cache; | |
377 | ||
378 | current_pc = frame_pc_unwind (next_frame); | |
379 | find_pc_partial_function (current_pc, NULL, &cache->pc, NULL); | |
380 | if (cache->pc != 0) | |
381 | iq2000_scan_prologue (cache->pc, current_pc, next_frame, cache); | |
382 | if (!cache->using_fp) | |
383 | cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM); | |
384 | ||
385 | cache->saved_sp = cache->base + cache->framesize; | |
386 | ||
387 | for (i = 0; i < E_NUM_REGS; i++) | |
388 | if (cache->saved_regs[i] != -1) | |
389 | cache->saved_regs[i] += cache->base; | |
390 | ||
391 | return cache; | |
392 | } | |
393 | ||
394 | static void | |
395 | iq2000_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
396 | int regnum, int *optimizedp, | |
397 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
398 | int *realnump, void *valuep) | |
399 | { | |
400 | struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache); | |
401 | if (regnum == E_SP_REGNUM && cache->saved_sp) | |
402 | { | |
403 | *optimizedp = 0; | |
404 | *lvalp = not_lval; | |
405 | *addrp = 0; | |
406 | *realnump = -1; | |
407 | if (valuep) | |
408 | store_unsigned_integer (valuep, 4, cache->saved_sp); | |
409 | return; | |
410 | } | |
411 | ||
412 | if (regnum == E_PC_REGNUM) | |
413 | regnum = E_LR_REGNUM; | |
414 | ||
415 | if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1) | |
416 | { | |
417 | *optimizedp = 0; | |
418 | *lvalp = lval_memory; | |
419 | *addrp = cache->saved_regs[regnum]; | |
420 | *realnump = -1; | |
421 | if (valuep) | |
422 | read_memory (*addrp, valuep, register_size (current_gdbarch, regnum)); | |
423 | return; | |
424 | } | |
425 | ||
426 | *optimizedp = 0; | |
427 | *lvalp = lval_register; | |
428 | *addrp = 0; | |
429 | *realnump = regnum; | |
430 | if (valuep) | |
431 | frame_unwind_register (next_frame, (*realnump), valuep); | |
432 | } | |
433 | ||
434 | static void | |
435 | iq2000_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
436 | struct frame_id *this_id) | |
437 | { | |
438 | struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache); | |
439 | ||
440 | /* This marks the outermost frame. */ | |
441 | if (cache->base == 0) | |
442 | return; | |
443 | ||
444 | *this_id = frame_id_build (cache->saved_sp, cache->pc); | |
445 | } | |
446 | ||
447 | static const struct frame_unwind iq2000_frame_unwind = { | |
448 | NORMAL_FRAME, | |
449 | iq2000_frame_this_id, | |
450 | iq2000_frame_prev_register | |
451 | }; | |
452 | ||
453 | static const struct frame_unwind * | |
454 | iq2000_frame_sniffer (struct frame_info *next_frame) | |
455 | { | |
456 | return &iq2000_frame_unwind; | |
457 | } | |
458 | ||
459 | static CORE_ADDR | |
460 | iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
461 | { | |
462 | return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM); | |
463 | } | |
464 | ||
465 | static CORE_ADDR | |
466 | iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
467 | { | |
468 | return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM); | |
469 | } | |
470 | ||
471 | static struct frame_id | |
472 | iq2000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
473 | { | |
474 | return frame_id_build (iq2000_unwind_sp (gdbarch, next_frame), | |
475 | frame_pc_unwind (next_frame)); | |
476 | } | |
477 | ||
478 | static CORE_ADDR | |
479 | iq2000_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
480 | { | |
481 | struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache); | |
482 | ||
483 | return cache->base; | |
484 | } | |
485 | ||
486 | static const struct frame_base iq2000_frame_base = { | |
487 | &iq2000_frame_unwind, | |
488 | iq2000_frame_base_address, | |
489 | iq2000_frame_base_address, | |
490 | iq2000_frame_base_address | |
491 | }; | |
492 | ||
493 | static const unsigned char * | |
494 | iq2000_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) | |
495 | { | |
496 | static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d }; | |
497 | static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 }; | |
498 | ||
499 | if ((*pcptr & 3) != 0) | |
500 | error ("breakpoint_from_pc: invalid breakpoint address 0x%lx", | |
501 | (long) *pcptr); | |
502 | ||
503 | *lenptr = 4; | |
504 | return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? big_breakpoint | |
505 | : little_breakpoint; | |
506 | } | |
507 | ||
508 | /* Target function return value methods: */ | |
509 | ||
510 | /* Function: store_return_value | |
511 | Copy the function return value from VALBUF into the | |
512 | proper location for a function return. */ | |
513 | ||
514 | static void | |
515 | iq2000_store_return_value (struct type *type, struct regcache *regcache, | |
516 | const void *valbuf) | |
517 | { | |
518 | int len = TYPE_LENGTH (type); | |
519 | int regno = E_FN_RETURN_REGNUM; | |
520 | ||
521 | while (len > 0) | |
522 | { | |
523 | char buf[4]; | |
524 | int size = len % 4 ?: 4; | |
525 | ||
526 | memset (buf, 0, 4); | |
527 | memcpy (buf + 4 - size, valbuf, size); | |
528 | regcache_raw_write (regcache, regno++, buf); | |
529 | len -= size; | |
530 | valbuf = ((char *) valbuf) + size; | |
531 | } | |
532 | } | |
533 | ||
534 | /* Function: use_struct_convention | |
535 | Returns non-zero if the given struct type will be returned using | |
536 | a special convention, rather than the normal function return method. */ | |
537 | ||
538 | static int | |
539 | iq2000_use_struct_convention (struct type *type) | |
540 | { | |
541 | return ((TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
542 | || (TYPE_CODE (type) == TYPE_CODE_UNION)) | |
543 | && TYPE_LENGTH (type) > 8; | |
544 | } | |
545 | ||
546 | /* Function: extract_return_value | |
547 | Copy the function's return value into VALBUF. | |
548 | This function is called only in the context of "target function calls", | |
549 | ie. when the debugger forces a function to be called in the child, and | |
550 | when the debugger forces a function to return prematurely via the | |
551 | "return" command. */ | |
552 | ||
553 | static void | |
554 | iq2000_extract_return_value (struct type *type, struct regcache *regcache, | |
555 | void *valbuf) | |
556 | { | |
557 | /* If the function's return value is 8 bytes or less, it is | |
558 | returned in a register, and if larger than 8 bytes, it is | |
559 | returned in a stack location which is pointed to by the same | |
560 | register. */ | |
561 | CORE_ADDR return_buffer; | |
562 | int len = TYPE_LENGTH (type); | |
563 | ||
564 | if (len <= (2 * 4)) | |
565 | { | |
566 | int regno = E_FN_RETURN_REGNUM; | |
567 | ||
568 | /* Return values of <= 8 bytes are returned in | |
569 | FN_RETURN_REGNUM. */ | |
570 | while (len > 0) | |
571 | { | |
572 | ULONGEST tmp; | |
573 | int size = len % 4 ?: 4; | |
574 | ||
575 | /* By using store_unsigned_integer we avoid having to | |
576 | do anything special for small big-endian values. */ | |
577 | regcache_cooked_read_unsigned (regcache, regno++, &tmp); | |
578 | store_unsigned_integer (valbuf, size, tmp); | |
579 | len -= size; | |
580 | valbuf = ((char *) valbuf) + size; | |
581 | } | |
582 | } | |
583 | else | |
584 | { | |
585 | /* Return values > 8 bytes are returned in memory, | |
586 | pointed to by FN_RETURN_REGNUM. */ | |
587 | regcache_cooked_read (regcache, E_FN_RETURN_REGNUM, & return_buffer); | |
588 | read_memory (return_buffer, valbuf, TYPE_LENGTH (type)); | |
589 | } | |
590 | } | |
591 | ||
592 | static enum return_value_convention | |
593 | iq2000_return_value (struct gdbarch *gdbarch, struct type *type, | |
594 | struct regcache *regcache, | |
595 | void *readbuf, const void *writebuf) | |
596 | { | |
597 | if (iq2000_use_struct_convention (type)) | |
598 | return RETURN_VALUE_STRUCT_CONVENTION; | |
599 | if (writebuf) | |
600 | iq2000_store_return_value (type, regcache, writebuf); | |
601 | else if (readbuf) | |
602 | iq2000_extract_return_value (type, regcache, readbuf); | |
603 | return RETURN_VALUE_REGISTER_CONVENTION; | |
604 | } | |
605 | ||
606 | /* Function: register_virtual_type | |
607 | Returns the default type for register N. */ | |
608 | ||
609 | static struct type * | |
610 | iq2000_register_type (struct gdbarch *gdbarch, int regnum) | |
611 | { | |
612 | return builtin_type_int32; | |
613 | } | |
614 | ||
615 | static CORE_ADDR | |
616 | iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp) | |
617 | { | |
618 | /* This is the same frame alignment used by gcc. */ | |
619 | return ((sp + 7) & ~7); | |
620 | } | |
621 | ||
622 | /* Convenience function to check 8-byte types for being a scalar type | |
623 | or a struct with only one long long or double member. */ | |
624 | static int | |
625 | iq2000_pass_8bytetype_by_address (struct type *type) | |
626 | { | |
627 | struct type *ftype; | |
628 | ||
629 | /* Skip typedefs. */ | |
630 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
631 | type = TYPE_TARGET_TYPE (type); | |
632 | /* Non-struct and non-union types are always passed by value. */ | |
633 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
634 | && TYPE_CODE (type) != TYPE_CODE_UNION) | |
635 | return 0; | |
636 | /* Structs with more than 1 field are always passed by address. */ | |
637 | if (TYPE_NFIELDS (type) != 1) | |
638 | return 1; | |
639 | /* Get field type. */ | |
640 | ftype = (TYPE_FIELDS (type))[0].type; | |
641 | /* The field type must have size 8, otherwise pass by address. */ | |
642 | if (TYPE_LENGTH (ftype) != 8) | |
643 | return 1; | |
644 | /* Skip typedefs of field type. */ | |
645 | while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF) | |
646 | ftype = TYPE_TARGET_TYPE (ftype); | |
647 | /* If field is int or float, pass by value. */ | |
648 | if (TYPE_CODE (ftype) == TYPE_CODE_FLT | |
649 | || TYPE_CODE (ftype) == TYPE_CODE_INT) | |
650 | return 0; | |
651 | /* Everything else, pass by address. */ | |
652 | return 1; | |
653 | } | |
654 | ||
655 | static CORE_ADDR | |
656 | iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
657 | struct regcache *regcache, CORE_ADDR bp_addr, | |
658 | int nargs, struct value **args, CORE_ADDR sp, | |
659 | int struct_return, CORE_ADDR struct_addr) | |
660 | { | |
661 | const bfd_byte *val; | |
662 | bfd_byte buf[4]; | |
663 | struct type *type; | |
664 | int i, argreg, typelen, slacklen; | |
665 | int stackspace = 0; | |
666 | /* Used to copy struct arguments into the stack. */ | |
667 | CORE_ADDR struct_ptr; | |
668 | ||
669 | /* First determine how much stack space we will need. */ | |
670 | for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++) | |
671 | { | |
672 | type = value_type (args[i]); | |
673 | typelen = TYPE_LENGTH (type); | |
674 | if (typelen <= 4) | |
675 | { | |
676 | /* Scalars of up to 4 bytes, | |
677 | structs of up to 4 bytes, and | |
678 | pointers. */ | |
679 | if (argreg <= E_LAST_ARGREG) | |
680 | argreg++; | |
681 | else | |
682 | stackspace += 4; | |
683 | } | |
684 | else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type)) | |
685 | { | |
686 | /* long long, | |
687 | double, and possibly | |
688 | structs with a single field of long long or double. */ | |
689 | if (argreg <= E_LAST_ARGREG - 1) | |
690 | { | |
691 | /* 8-byte arg goes into a register pair | |
692 | (must start with an even-numbered reg) */ | |
693 | if (((argreg - E_1ST_ARGREG) % 2) != 0) | |
694 | argreg ++; | |
695 | argreg += 2; | |
696 | } | |
697 | else | |
698 | { | |
699 | argreg = E_LAST_ARGREG + 1; /* no more argregs. */ | |
700 | /* 8-byte arg goes on stack, must be 8-byte aligned. */ | |
701 | stackspace = ((stackspace + 7) & ~7); | |
702 | stackspace += 8; | |
703 | } | |
704 | } | |
705 | else | |
706 | { | |
707 | /* Structs are passed as pointer to a copy of the struct. | |
708 | So we need room on the stack for a copy of the struct | |
709 | plus for the argument pointer. */ | |
710 | if (argreg <= E_LAST_ARGREG) | |
711 | argreg++; | |
712 | else | |
713 | stackspace += 4; | |
714 | /* Care for 8-byte alignment of structs saved on stack. */ | |
715 | stackspace += ((typelen + 7) & ~7); | |
716 | } | |
717 | } | |
718 | ||
719 | /* Now copy params, in ascending order, into their assigned location | |
720 | (either in a register or on the stack). */ | |
721 | ||
722 | sp -= (sp % 8); /* align */ | |
723 | struct_ptr = sp; | |
724 | sp -= stackspace; | |
725 | sp -= (sp % 8); /* align again */ | |
726 | stackspace = 0; | |
727 | ||
728 | argreg = E_1ST_ARGREG; | |
729 | if (struct_return) | |
730 | { | |
731 | /* A function that returns a struct will consume one argreg to do so. | |
732 | */ | |
733 | regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); | |
734 | } | |
735 | ||
736 | for (i = 0; i < nargs; i++) | |
737 | { | |
738 | type = value_type (args[i]); | |
739 | typelen = TYPE_LENGTH (type); | |
740 | val = value_contents (args[i]); | |
741 | if (typelen <= 4) | |
742 | { | |
743 | /* Char, short, int, float, pointer, and structs <= four bytes. */ | |
744 | slacklen = (4 - (typelen % 4)) % 4; | |
745 | memset (buf, 0, sizeof (buf)); | |
746 | memcpy (buf + slacklen, val, typelen); | |
747 | if (argreg <= E_LAST_ARGREG) | |
748 | { | |
749 | /* Passed in a register. */ | |
750 | regcache_raw_write (regcache, argreg++, buf); | |
751 | } | |
752 | else | |
753 | { | |
754 | /* Passed on the stack. */ | |
755 | write_memory (sp + stackspace, buf, 4); | |
756 | stackspace += 4; | |
757 | } | |
758 | } | |
759 | else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type)) | |
760 | { | |
761 | /* (long long), (double), or struct consisting of | |
762 | a single (long long) or (double). */ | |
763 | if (argreg <= E_LAST_ARGREG - 1) | |
764 | { | |
765 | /* 8-byte arg goes into a register pair | |
766 | (must start with an even-numbered reg) */ | |
767 | if (((argreg - E_1ST_ARGREG) % 2) != 0) | |
768 | argreg++; | |
769 | regcache_raw_write (regcache, argreg++, val); | |
770 | regcache_raw_write (regcache, argreg++, val + 4); | |
771 | } | |
772 | else | |
773 | { | |
774 | /* 8-byte arg goes on stack, must be 8-byte aligned. */ | |
775 | argreg = E_LAST_ARGREG + 1; /* no more argregs. */ | |
776 | stackspace = ((stackspace + 7) & ~7); | |
777 | write_memory (sp + stackspace, val, typelen); | |
778 | stackspace += 8; | |
779 | } | |
780 | } | |
781 | else | |
782 | { | |
783 | /* Store struct beginning at the upper end of the previously | |
784 | computed stack space. Then store the address of the struct | |
785 | using the usual rules for a 4 byte value. */ | |
786 | struct_ptr -= ((typelen + 7) & ~7); | |
787 | write_memory (struct_ptr, val, typelen); | |
788 | if (argreg <= E_LAST_ARGREG) | |
789 | regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr); | |
790 | else | |
791 | { | |
792 | store_unsigned_integer (buf, 4, struct_ptr); | |
793 | write_memory (sp + stackspace, buf, 4); | |
794 | stackspace += 4; | |
795 | } | |
796 | } | |
797 | } | |
798 | ||
799 | /* Store return address. */ | |
800 | regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr); | |
801 | ||
802 | /* Update stack pointer. */ | |
803 | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); | |
804 | ||
805 | /* And that should do it. Return the new stack pointer. */ | |
806 | return sp; | |
807 | } | |
808 | ||
809 | /* Function: gdbarch_init | |
810 | Initializer function for the iq2000 gdbarch vector. | |
811 | Called by gdbarch. Sets up the gdbarch vector(s) for this target. */ | |
812 | ||
813 | static struct gdbarch * | |
814 | iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
815 | { | |
816 | struct gdbarch *gdbarch; | |
817 | ||
818 | /* Look up list for candidates - only one. */ | |
819 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
820 | if (arches != NULL) | |
821 | return arches->gdbarch; | |
822 | ||
823 | gdbarch = gdbarch_alloc (&info, NULL); | |
824 | ||
825 | set_gdbarch_num_regs (gdbarch, E_NUM_REGS); | |
826 | set_gdbarch_num_pseudo_regs (gdbarch, 0); | |
827 | set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | |
828 | set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); | |
829 | set_gdbarch_register_name (gdbarch, iq2000_register_name); | |
830 | set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer); | |
831 | set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address); | |
832 | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
833 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
834 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
835 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
836 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
837 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
838 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
839 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
840 | set_gdbarch_float_format (gdbarch, & floatformat_ieee_single_big); | |
841 | set_gdbarch_double_format (gdbarch, & floatformat_ieee_double_big); | |
842 | set_gdbarch_long_double_format (gdbarch, & floatformat_ieee_double_big); | |
843 | set_gdbarch_return_value (gdbarch, iq2000_return_value); | |
844 | set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc); | |
845 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
846 | set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue); | |
847 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
848 | set_gdbarch_print_insn (gdbarch, print_insn_iq2000); | |
849 | set_gdbarch_register_type (gdbarch, iq2000_register_type); | |
850 | set_gdbarch_frame_align (gdbarch, iq2000_frame_align); | |
851 | set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp); | |
852 | set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc); | |
853 | set_gdbarch_unwind_dummy_id (gdbarch, iq2000_unwind_dummy_id); | |
854 | frame_base_set_default (gdbarch, &iq2000_frame_base); | |
855 | set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call); | |
856 | ||
857 | gdbarch_init_osabi (info, gdbarch); | |
858 | ||
859 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); | |
860 | frame_unwind_append_sniffer (gdbarch, iq2000_frame_sniffer); | |
861 | ||
862 | return gdbarch; | |
863 | } | |
864 | ||
865 | /* Function: _initialize_iq2000_tdep | |
866 | Initializer function for the iq2000 module. | |
867 | Called by gdb at start-up. */ | |
868 | ||
869 | void | |
870 | _initialize_iq2000_tdep (void) | |
871 | { | |
872 | register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init); | |
873 | } |