Fix formatting
[deliverable/binutils-gdb.git] / gdb / irix5-nat.c
CommitLineData
c906108c
SS
1/* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "inferior.h"
28#include "gdbcore.h"
29#include "target.h"
30
31#include "gdb_string.h"
32#include <sys/time.h>
33#include <sys/procfs.h>
34#include <setjmp.h> /* For JB_XXX. */
35
c60c0f5f
MS
36/* Prototypes for supply_gregset etc. */
37#include "gregset.h"
38
a14ed312 39static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
c906108c
SS
40
41/* Size of elements in jmpbuf */
42
43#define JB_ELEMENT_SIZE 4
44
45/*
46 * See the comment in m68k-tdep.c regarding the utility of these functions.
47 *
48 * These definitions are from the MIPS SVR4 ABI, so they may work for
49 * any MIPS SVR4 target.
50 */
51
c5aa993b 52void
fba45db2 53supply_gregset (gregset_t *gregsetp)
c906108c
SS
54{
55 register int regi;
56 register greg_t *regp = &(*gregsetp)[0];
57 int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
c5aa993b
JM
58 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
59 {0};
c906108c 60
c5aa993b
JM
61 for (regi = 0; regi <= CTX_RA; regi++)
62 supply_register (regi, (char *) (regp + regi) + gregoff);
c906108c 63
c5aa993b
JM
64 supply_register (PC_REGNUM, (char *) (regp + CTX_EPC) + gregoff);
65 supply_register (HI_REGNUM, (char *) (regp + CTX_MDHI) + gregoff);
66 supply_register (LO_REGNUM, (char *) (regp + CTX_MDLO) + gregoff);
67 supply_register (CAUSE_REGNUM, (char *) (regp + CTX_CAUSE) + gregoff);
c906108c
SS
68
69 /* Fill inaccessible registers with zero. */
70 supply_register (BADVADDR_REGNUM, zerobuf);
71}
72
73void
fba45db2 74fill_gregset (gregset_t *gregsetp, int regno)
c906108c
SS
75{
76 int regi;
77 register greg_t *regp = &(*gregsetp)[0];
78
79 /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
80 executable, we have to sign extend the registers to 64 bits before
81 filling in the gregset structure. */
82
83 for (regi = 0; regi <= CTX_RA; regi++)
84 if ((regno == -1) || (regno == regi))
85 *(regp + regi) =
86 extract_signed_integer (&registers[REGISTER_BYTE (regi)],
87 REGISTER_RAW_SIZE (regi));
88
89 if ((regno == -1) || (regno == PC_REGNUM))
90 *(regp + CTX_EPC) =
91 extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
92 REGISTER_RAW_SIZE (PC_REGNUM));
93
94 if ((regno == -1) || (regno == CAUSE_REGNUM))
95 *(regp + CTX_CAUSE) =
96 extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
97 REGISTER_RAW_SIZE (CAUSE_REGNUM));
98
99 if ((regno == -1) || (regno == HI_REGNUM))
100 *(regp + CTX_MDHI) =
101 extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
102 REGISTER_RAW_SIZE (HI_REGNUM));
103
104 if ((regno == -1) || (regno == LO_REGNUM))
105 *(regp + CTX_MDLO) =
106 extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
107 REGISTER_RAW_SIZE (LO_REGNUM));
108}
109
110/*
111 * Now we do the same thing for floating-point registers.
112 * We don't bother to condition on FP0_REGNUM since any
113 * reasonable MIPS configuration has an R3010 in it.
114 *
115 * Again, see the comments in m68k-tdep.c.
116 */
117
118void
fba45db2 119supply_fpregset (fpregset_t *fpregsetp)
c906108c
SS
120{
121 register int regi;
c5aa993b
JM
122 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
123 {0};
c906108c
SS
124
125 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
126
127 for (regi = 0; regi < 32; regi++)
128 supply_register (FP0_REGNUM + regi,
c5aa993b 129 (char *) &fpregsetp->fp_r.fp_regs[regi]);
c906108c 130
c5aa993b 131 supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);
c906108c
SS
132
133 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
134 supply_register (FCRIR_REGNUM, zerobuf);
135}
136
137void
fba45db2 138fill_fpregset (fpregset_t *fpregsetp, int regno)
c906108c
SS
139{
140 int regi;
141 char *from, *to;
142
143 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
144
145 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
146 {
147 if ((regno == -1) || (regno == regi))
148 {
149 from = (char *) &registers[REGISTER_BYTE (regi)];
150 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
c5aa993b 151 memcpy (to, from, REGISTER_RAW_SIZE (regi));
c906108c
SS
152 }
153 }
154
155 if ((regno == -1) || (regno == FCRCS_REGNUM))
c5aa993b 156 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE (FCRCS_REGNUM)];
c906108c
SS
157}
158
159
160/* Figure out where the longjmp will land.
161 We expect the first arg to be a pointer to the jmp_buf structure from which
162 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
163 This routine returns true on success. */
164
165int
fba45db2 166get_longjmp_target (CORE_ADDR *pc)
c906108c 167{
35fc8285 168 char *buf;
c906108c
SS
169 CORE_ADDR jb_addr;
170
35fc8285 171 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
c906108c
SS
172 jb_addr = read_register (A0_REGNUM);
173
174 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
175 TARGET_PTR_BIT / TARGET_CHAR_BIT))
176 return 0;
177
178 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
179
180 return 1;
181}
182
183static void
184fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
185 char *core_reg_sect;
186 unsigned core_reg_size;
187 int which; /* Unused */
188 CORE_ADDR reg_addr; /* Unused */
189{
190 if (core_reg_size == REGISTER_BYTES)
191 {
c5aa993b 192 memcpy ((char *) registers, core_reg_sect, core_reg_size);
c906108c
SS
193 }
194 else if (MIPS_REGSIZE == 4 &&
195 core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
196 {
197 /* This is a core file from a N32 executable, 64 bits are saved
c5aa993b 198 for all registers. */
c906108c
SS
199 char *srcp = core_reg_sect;
200 char *dstp = registers;
201 int regno;
202
203 for (regno = 0; regno < NUM_REGS; regno++)
204 {
205 if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
206 {
207 /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
c5aa993b 208 currently assumes that they are 32 bit. */
c906108c
SS
209 *dstp++ = *srcp++;
210 *dstp++ = *srcp++;
211 *dstp++ = *srcp++;
212 *dstp++ = *srcp++;
c5aa993b 213 if (REGISTER_RAW_SIZE (regno) == 4)
c906108c
SS
214 {
215 /* copying 4 bytes from eight bytes?
216 I don't see how this can be right... */
c5aa993b 217 srcp += 4;
c906108c
SS
218 }
219 else
220 {
221 /* copy all 8 bytes (sizeof(double)) */
222 *dstp++ = *srcp++;
223 *dstp++ = *srcp++;
224 *dstp++ = *srcp++;
225 *dstp++ = *srcp++;
226 }
227 }
228 else
229 {
230 srcp += 4;
231 *dstp++ = *srcp++;
232 *dstp++ = *srcp++;
233 *dstp++ = *srcp++;
234 *dstp++ = *srcp++;
235 }
236 }
237 }
238 else
239 {
240 warning ("wrong size gregset struct in core file");
241 return;
242 }
243
244 registers_fetched ();
245}
246\f
247/* Irix 5 uses what appears to be a unique form of shared library
248 support. This is a copy of solib.c modified for Irix 5. */
249/* FIXME: Most of this code could be merged with osfsolib.c and solib.c
250 by using next_link_map_member and xfer_link_map_member in solib.c. */
251
252#include <sys/types.h>
253#include <signal.h>
254#include <sys/param.h>
255#include <fcntl.h>
256
257/* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
258 with our versions of those files included by tm-mips.h. Prevent
259 <obj.h> from including them with some appropriate defines. */
260#define __SYM_H__
261#define __SYMCONST_H__
262#include <obj.h>
263#ifdef HAVE_OBJLIST_H
264#include <objlist.h>
265#endif
266
267#ifdef NEW_OBJ_INFO_MAGIC
268#define HANDLE_NEW_OBJ_LIST
269#endif
270
271#include "symtab.h"
272#include "bfd.h"
273#include "symfile.h"
274#include "objfiles.h"
275#include "command.h"
276#include "frame.h"
88987551 277#include "gdb_regex.h"
c906108c
SS
278#include "inferior.h"
279#include "language.h"
280#include "gdbcmd.h"
281
282/* The symbol which starts off the list of shared libraries. */
283#define DEBUG_BASE "__rld_obj_head"
284
285/* Irix 6.x introduces a new variant of object lists.
286 To be able to debug O32 executables under Irix 6, we have to handle both
287 variants. */
288
289typedef enum
290{
c5aa993b
JM
291 OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
292 OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
293 OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
294}
295obj_list_variant;
c906108c
SS
296
297/* Define our own link_map structure.
298 This will help to share code with osfsolib.c and solib.c. */
299
c5aa993b
JM
300struct link_map
301 {
302 obj_list_variant l_variant; /* which variant of object list */
303 CORE_ADDR l_lladdr; /* addr in inferior list was read from */
304 CORE_ADDR l_next; /* address of next object list entry */
305 };
c906108c
SS
306
307/* Irix 5 shared objects are pre-linked to particular addresses
308 although the dynamic linker may have to relocate them if the
309 address ranges of the libraries used by the main program clash.
310 The offset is the difference between the address where the object
311 is mapped and the binding address of the shared library. */
312#define LM_OFFSET(so) ((so) -> offset)
313/* Loaded address of shared library. */
314#define LM_ADDR(so) ((so) -> lmstart)
315
316char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
317
c5aa993b
JM
318struct so_list
319 {
320 struct so_list *next; /* next structure in linked list */
321 struct link_map lm;
322 CORE_ADDR offset; /* prelink to load address offset */
323 char *so_name; /* shared object lib name */
324 CORE_ADDR lmstart; /* lower addr bound of mapped object */
325 CORE_ADDR lmend; /* upper addr bound of mapped object */
326 char symbols_loaded; /* flag: symbols read in yet? */
327 char from_tty; /* flag: print msgs? */
328 struct objfile *objfile; /* objfile for loaded lib */
329 struct section_table *sections;
330 struct section_table *sections_end;
331 struct section_table *textsection;
332 bfd *abfd;
333 };
c906108c
SS
334
335static struct so_list *so_list_head; /* List of known shared objects */
c5aa993b 336static CORE_ADDR debug_base; /* Base of dynamic linker structures */
c906108c
SS
337static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
338
339/* Local function prototypes */
340
a14ed312 341static void sharedlibrary_command (char *, int);
c906108c 342
a14ed312 343static int enable_break (void);
c906108c 344
a14ed312 345static int disable_break (void);
c906108c 346
a14ed312 347static void info_sharedlibrary_command (char *, int);
c906108c 348
ac2e2ef7 349static int symbol_add_stub (void *);
c906108c 350
a14ed312 351static struct so_list *find_solib (struct so_list *);
c906108c 352
a14ed312 353static struct link_map *first_link_map_member (void);
c906108c 354
a14ed312 355static struct link_map *next_link_map_member (struct so_list *);
c906108c 356
a14ed312 357static void xfer_link_map_member (struct so_list *, struct link_map *);
c906108c 358
a14ed312 359static CORE_ADDR locate_base (void);
c906108c 360
ac2e2ef7 361static int solib_map_sections (void *);
c906108c
SS
362
363/*
364
c5aa993b 365 LOCAL FUNCTION
c906108c 366
c5aa993b 367 solib_map_sections -- open bfd and build sections for shared lib
c906108c 368
c5aa993b 369 SYNOPSIS
c906108c 370
c5aa993b 371 static int solib_map_sections (struct so_list *so)
c906108c 372
c5aa993b 373 DESCRIPTION
c906108c 374
c5aa993b
JM
375 Given a pointer to one of the shared objects in our list
376 of mapped objects, use the recorded name to open a bfd
377 descriptor for the object, build a section table, and then
378 relocate all the section addresses by the base address at
379 which the shared object was mapped.
c906108c 380
c5aa993b 381 FIXMES
c906108c 382
c5aa993b
JM
383 In most (all?) cases the shared object file name recorded in the
384 dynamic linkage tables will be a fully qualified pathname. For
385 cases where it isn't, do we really mimic the systems search
386 mechanism correctly in the below code (particularly the tilde
387 expansion stuff?).
c906108c
SS
388 */
389
390static int
ac2e2ef7 391solib_map_sections (void *arg)
c906108c
SS
392{
393 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
394 char *filename;
395 char *scratch_pathname;
396 int scratch_chan;
397 struct section_table *p;
398 struct cleanup *old_chain;
399 bfd *abfd;
c5aa993b
JM
400
401 filename = tilde_expand (so->so_name);
c906108c 402 old_chain = make_cleanup (free, filename);
c5aa993b 403
c906108c
SS
404 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
405 &scratch_pathname);
406 if (scratch_chan < 0)
407 {
408 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
409 O_RDONLY, 0, &scratch_pathname);
410 }
411 if (scratch_chan < 0)
412 {
413 perror_with_name (filename);
414 }
415 /* Leave scratch_pathname allocated. abfd->name will point to it. */
416
417 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
418 if (!abfd)
419 {
420 close (scratch_chan);
421 error ("Could not open `%s' as an executable file: %s",
422 scratch_pathname, bfd_errmsg (bfd_get_error ()));
423 }
424 /* Leave bfd open, core_xfer_memory and "info files" need it. */
c5aa993b
JM
425 so->abfd = abfd;
426 abfd->cacheable = true;
c906108c
SS
427
428 if (!bfd_check_format (abfd, bfd_object))
429 {
430 error ("\"%s\": not in executable format: %s.",
431 scratch_pathname, bfd_errmsg (bfd_get_error ()));
432 }
c5aa993b 433 if (build_section_table (abfd, &so->sections, &so->sections_end))
c906108c 434 {
c5aa993b 435 error ("Can't find the file sections in `%s': %s",
c906108c
SS
436 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
437 }
438
c5aa993b 439 for (p = so->sections; p < so->sections_end; p++)
c906108c
SS
440 {
441 /* Relocate the section binding addresses as recorded in the shared
c5aa993b
JM
442 object's file by the offset to get the address to which the
443 object was actually mapped. */
444 p->addr += LM_OFFSET (so);
445 p->endaddr += LM_OFFSET (so);
446 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
447 if (STREQ (p->the_bfd_section->name, ".text"))
c906108c 448 {
c5aa993b 449 so->textsection = p;
c906108c
SS
450 }
451 }
452
453 /* Free the file names, close the file now. */
454 do_cleanups (old_chain);
455
ac2e2ef7 456 /* must be non-zero */
c906108c
SS
457 return (1);
458}
459
460/*
461
c5aa993b 462 LOCAL FUNCTION
c906108c 463
c5aa993b 464 locate_base -- locate the base address of dynamic linker structs
c906108c 465
c5aa993b 466 SYNOPSIS
c906108c 467
c5aa993b 468 CORE_ADDR locate_base (void)
c906108c 469
c5aa993b 470 DESCRIPTION
c906108c 471
c5aa993b
JM
472 For both the SunOS and SVR4 shared library implementations, if the
473 inferior executable has been linked dynamically, there is a single
474 address somewhere in the inferior's data space which is the key to
475 locating all of the dynamic linker's runtime structures. This
476 address is the value of the symbol defined by the macro DEBUG_BASE.
477 The job of this function is to find and return that address, or to
478 return 0 if there is no such address (the executable is statically
479 linked for example).
c906108c 480
c5aa993b
JM
481 For SunOS, the job is almost trivial, since the dynamic linker and
482 all of it's structures are statically linked to the executable at
483 link time. Thus the symbol for the address we are looking for has
484 already been added to the minimal symbol table for the executable's
485 objfile at the time the symbol file's symbols were read, and all we
486 have to do is look it up there. Note that we explicitly do NOT want
487 to find the copies in the shared library.
c906108c 488
c5aa993b
JM
489 The SVR4 version is much more complicated because the dynamic linker
490 and it's structures are located in the shared C library, which gets
491 run as the executable's "interpreter" by the kernel. We have to go
492 to a lot more work to discover the address of DEBUG_BASE. Because
493 of this complexity, we cache the value we find and return that value
494 on subsequent invocations. Note there is no copy in the executable
495 symbol tables.
c906108c 496
c5aa993b 497 Irix 5 is basically like SunOS.
c906108c 498
c5aa993b
JM
499 Note that we can assume nothing about the process state at the time
500 we need to find this address. We may be stopped on the first instruc-
501 tion of the interpreter (C shared library), the first instruction of
502 the executable itself, or somewhere else entirely (if we attached
503 to the process for example).
c906108c
SS
504
505 */
506
507static CORE_ADDR
fba45db2 508locate_base (void)
c906108c
SS
509{
510 struct minimal_symbol *msymbol;
511 CORE_ADDR address = 0;
512
513 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
514 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
515 {
516 address = SYMBOL_VALUE_ADDRESS (msymbol);
517 }
518 return (address);
519}
520
521/*
522
c5aa993b 523 LOCAL FUNCTION
c906108c 524
c5aa993b 525 first_link_map_member -- locate first member in dynamic linker's map
c906108c 526
c5aa993b 527 SYNOPSIS
c906108c 528
c5aa993b 529 static struct link_map *first_link_map_member (void)
c906108c 530
c5aa993b 531 DESCRIPTION
c906108c 532
c5aa993b
JM
533 Read in a copy of the first member in the inferior's dynamic
534 link map from the inferior's dynamic linker structures, and return
535 a pointer to the link map descriptor.
536 */
c906108c
SS
537
538static struct link_map *
fba45db2 539first_link_map_member (void)
c906108c
SS
540{
541 struct obj_list *listp;
542 struct obj_list list_old;
543 struct link_map *lm;
544 static struct link_map first_lm;
545 CORE_ADDR lladdr;
546 CORE_ADDR next_lladdr;
547
548 /* We have not already read in the dynamic linking structures
549 from the inferior, lookup the address of the base structure. */
550 debug_base = locate_base ();
551 if (debug_base == 0)
552 return NULL;
553
554 /* Get address of first list entry. */
555 read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
556
557 if (listp == NULL)
558 return NULL;
559
560 /* Get first list entry. */
ac2e2ef7
AC
561 /* The MIPS Sign extends addresses. */
562 lladdr = host_pointer_to_address (listp);
c906108c
SS
563 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
564
565 /* The first entry in the list is the object file we are debugging,
566 so skip it. */
ac2e2ef7 567 next_lladdr = host_pointer_to_address (list_old.next);
c906108c
SS
568
569#ifdef HANDLE_NEW_OBJ_LIST
570 if (list_old.data == NEW_OBJ_INFO_MAGIC)
571 {
572 Elf32_Obj_Info list_32;
573
574 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
575 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
576 return NULL;
c5aa993b 577 next_lladdr = (CORE_ADDR) list_32.oi_next;
c906108c
SS
578 }
579#endif
580
581 if (next_lladdr == 0)
582 return NULL;
583
584 first_lm.l_lladdr = next_lladdr;
585 lm = &first_lm;
586 return lm;
587}
588
589/*
590
c5aa993b 591 LOCAL FUNCTION
c906108c 592
c5aa993b 593 next_link_map_member -- locate next member in dynamic linker's map
c906108c 594
c5aa993b 595 SYNOPSIS
c906108c 596
c5aa993b 597 static struct link_map *next_link_map_member (so_list_ptr)
c906108c 598
c5aa993b 599 DESCRIPTION
c906108c 600
c5aa993b
JM
601 Read in a copy of the next member in the inferior's dynamic
602 link map from the inferior's dynamic linker structures, and return
603 a pointer to the link map descriptor.
604 */
c906108c
SS
605
606static struct link_map *
fba45db2 607next_link_map_member (struct so_list *so_list_ptr)
c906108c 608{
c5aa993b
JM
609 struct link_map *lm = &so_list_ptr->lm;
610 CORE_ADDR next_lladdr = lm->l_next;
c906108c
SS
611 static struct link_map next_lm;
612
613 if (next_lladdr == 0)
614 {
615 /* We have hit the end of the list, so check to see if any were
c5aa993b 616 added, but be quiet if we can't read from the target any more. */
c906108c
SS
617 int status = 0;
618
c5aa993b 619 if (lm->l_variant == OBJ_LIST_OLD)
c906108c
SS
620 {
621 struct obj_list list_old;
622
c5aa993b 623 status = target_read_memory (lm->l_lladdr,
c906108c
SS
624 (char *) &list_old,
625 sizeof (struct obj_list));
ac2e2ef7 626 next_lladdr = host_pointer_to_address (list_old.next);
c906108c
SS
627 }
628#ifdef HANDLE_NEW_OBJ_LIST
c5aa993b 629 else if (lm->l_variant == OBJ_LIST_32)
c906108c
SS
630 {
631 Elf32_Obj_Info list_32;
c5aa993b 632 status = target_read_memory (lm->l_lladdr,
c906108c
SS
633 (char *) &list_32,
634 sizeof (Elf32_Obj_Info));
635 next_lladdr = (CORE_ADDR) list_32.oi_next;
636 }
637#endif
638
639 if (status != 0 || next_lladdr == 0)
640 return NULL;
641 }
642
643 next_lm.l_lladdr = next_lladdr;
644 lm = &next_lm;
645 return lm;
646}
647
648/*
649
c5aa993b 650 LOCAL FUNCTION
c906108c 651
c5aa993b 652 xfer_link_map_member -- set local variables from dynamic linker's map
c906108c 653
c5aa993b 654 SYNOPSIS
c906108c 655
c5aa993b 656 static void xfer_link_map_member (so_list_ptr, lm)
c906108c 657
c5aa993b 658 DESCRIPTION
c906108c 659
c5aa993b
JM
660 Read in a copy of the requested member in the inferior's dynamic
661 link map from the inferior's dynamic linker structures, and fill
662 in the necessary so_list_ptr elements.
663 */
c906108c
SS
664
665static void
fba45db2 666xfer_link_map_member (struct so_list *so_list_ptr, struct link_map *lm)
c906108c
SS
667{
668 struct obj_list list_old;
c5aa993b
JM
669 CORE_ADDR lladdr = lm->l_lladdr;
670 struct link_map *new_lm = &so_list_ptr->lm;
c906108c
SS
671 int errcode;
672
673 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
674
c5aa993b
JM
675 new_lm->l_variant = OBJ_LIST_OLD;
676 new_lm->l_lladdr = lladdr;
ac2e2ef7 677 new_lm->l_next = host_pointer_to_address (list_old.next);
c906108c
SS
678
679#ifdef HANDLE_NEW_OBJ_LIST
680 if (list_old.data == NEW_OBJ_INFO_MAGIC)
681 {
682 Elf32_Obj_Info list_32;
683
684 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
685 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
686 return;
c5aa993b
JM
687 new_lm->l_variant = OBJ_LIST_32;
688 new_lm->l_next = (CORE_ADDR) list_32.oi_next;
c906108c
SS
689
690 target_read_string ((CORE_ADDR) list_32.oi_pathname,
c5aa993b 691 &so_list_ptr->so_name,
c906108c
SS
692 list_32.oi_pathname_len + 1, &errcode);
693 if (errcode != 0)
694 memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
695
696 LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
697 LM_OFFSET (so_list_ptr) =
698 (CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
699 }
700 else
701#endif
702 {
703#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
704 /* If we are compiling GDB under N32 ABI, the alignments in
c5aa993b
JM
705 the obj struct are different from the O32 ABI and we will get
706 wrong values when accessing the struct.
707 As a workaround we use fixed values which are good for
708 Irix 6.2. */
c906108c
SS
709 char buf[432];
710
711 read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
712
713 target_read_string (extract_address (&buf[236], 4),
c5aa993b 714 &so_list_ptr->so_name,
c906108c
SS
715 INT_MAX, &errcode);
716 if (errcode != 0)
717 memory_error (errcode, extract_address (&buf[236], 4));
718
719 LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
720 LM_OFFSET (so_list_ptr) =
721 extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
722#else
723 struct obj obj_old;
724
725 read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
726 sizeof (struct obj));
727
728 target_read_string ((CORE_ADDR) obj_old.o_path,
c5aa993b 729 &so_list_ptr->so_name,
c906108c
SS
730 INT_MAX, &errcode);
731 if (errcode != 0)
732 memory_error (errcode, (CORE_ADDR) obj_old.o_path);
733
734 LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
735 LM_OFFSET (so_list_ptr) =
736 (CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
737#endif
738 }
739
740 catch_errors (solib_map_sections, (char *) so_list_ptr,
741 "Error while mapping shared library sections:\n",
742 RETURN_MASK_ALL);
743}
744
745
746/*
747
c5aa993b 748 LOCAL FUNCTION
c906108c 749
c5aa993b 750 find_solib -- step through list of shared objects
c906108c 751
c5aa993b 752 SYNOPSIS
c906108c 753
c5aa993b 754 struct so_list *find_solib (struct so_list *so_list_ptr)
c906108c 755
c5aa993b 756 DESCRIPTION
c906108c 757
c5aa993b
JM
758 This module contains the routine which finds the names of any
759 loaded "images" in the current process. The argument in must be
760 NULL on the first call, and then the returned value must be passed
761 in on subsequent calls. This provides the capability to "step" down
762 the list of loaded objects. On the last object, a NULL value is
763 returned.
c906108c
SS
764 */
765
766static struct so_list *
767find_solib (so_list_ptr)
768 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
769{
770 struct so_list *so_list_next = NULL;
771 struct link_map *lm = NULL;
772 struct so_list *new;
c5aa993b 773
c906108c
SS
774 if (so_list_ptr == NULL)
775 {
776 /* We are setting up for a new scan through the loaded images. */
777 if ((so_list_next = so_list_head) == NULL)
778 {
779 /* Find the first link map list member. */
780 lm = first_link_map_member ();
781 }
782 }
783 else
784 {
785 /* We have been called before, and are in the process of walking
c5aa993b 786 the shared library list. Advance to the next shared object. */
c906108c 787 lm = next_link_map_member (so_list_ptr);
c5aa993b 788 so_list_next = so_list_ptr->next;
c906108c
SS
789 }
790 if ((so_list_next == NULL) && (lm != NULL))
791 {
792 new = (struct so_list *) xmalloc (sizeof (struct so_list));
793 memset ((char *) new, 0, sizeof (struct so_list));
794 /* Add the new node as the next node in the list, or as the root
c5aa993b 795 node if this is the first one. */
c906108c
SS
796 if (so_list_ptr != NULL)
797 {
c5aa993b 798 so_list_ptr->next = new;
c906108c
SS
799 }
800 else
801 {
802 so_list_head = new;
c5aa993b 803 }
c906108c
SS
804 so_list_next = new;
805 xfer_link_map_member (new, lm);
806 }
807 return (so_list_next);
808}
809
810/* A small stub to get us past the arg-passing pinhole of catch_errors. */
811
812static int
ac2e2ef7 813symbol_add_stub (void *arg)
c906108c 814{
c5aa993b 815 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
c906108c 816 CORE_ADDR text_addr = 0;
2acceee2 817 struct section_addr_info section_addrs;
c906108c 818
2acceee2 819 memset (&section_addrs, 0, sizeof (section_addrs));
c5aa993b
JM
820 if (so->textsection)
821 text_addr = so->textsection->addr;
822 else if (so->abfd != NULL)
c906108c
SS
823 {
824 asection *lowest_sect;
825
826 /* If we didn't find a mapped non zero sized .text section, set up
c5aa993b 827 text_addr so that the relocation in symbol_file_add does no harm. */
c906108c 828
c5aa993b 829 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
c906108c 830 if (lowest_sect == NULL)
c5aa993b 831 bfd_map_over_sections (so->abfd, find_lowest_section,
96baa820 832 (PTR) &lowest_sect);
c906108c 833 if (lowest_sect)
c5aa993b 834 text_addr = bfd_section_vma (so->abfd, lowest_sect) + LM_OFFSET (so);
c906108c 835 }
c5aa993b 836
a034fba4
EZ
837
838 section_addrs.other[0].name = ".text";
839 section_addrs.other[0].addr = text_addr;
c5aa993b 840 so->objfile = symbol_file_add (so->so_name, so->from_tty,
2df3850c 841 &section_addrs, 0, 0);
ac2e2ef7 842 /* must be non-zero */
c906108c
SS
843 return (1);
844}
845
846/*
847
c5aa993b 848 GLOBAL FUNCTION
c906108c 849
c5aa993b 850 solib_add -- add a shared library file to the symtab and section list
c906108c 851
c5aa993b 852 SYNOPSIS
c906108c 853
c5aa993b
JM
854 void solib_add (char *arg_string, int from_tty,
855 struct target_ops *target)
c906108c 856
c5aa993b 857 DESCRIPTION
c906108c 858
c5aa993b 859 */
c906108c
SS
860
861void
fba45db2 862solib_add (char *arg_string, int from_tty, struct target_ops *target)
c5aa993b
JM
863{
864 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
865
866 /* Last shared library that we read. */
867 struct so_list *so_last = NULL;
868
869 char *re_err;
870 int count;
871 int old;
c5aa993b 872
c906108c
SS
873 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
874 {
875 error ("Invalid regexp: %s", re_err);
876 }
c5aa993b 877
c906108c
SS
878 /* Add the shared library sections to the section table of the
879 specified target, if any. */
880 if (target)
881 {
882 /* Count how many new section_table entries there are. */
883 so = NULL;
884 count = 0;
885 while ((so = find_solib (so)) != NULL)
886 {
c5aa993b 887 if (so->so_name[0])
c906108c 888 {
c5aa993b 889 count += so->sections_end - so->sections;
c906108c
SS
890 }
891 }
c5aa993b 892
c906108c
SS
893 if (count)
894 {
6426a772
JM
895 old = target_resize_to_sections (target, count);
896
c906108c
SS
897 /* Add these section table entries to the target's table. */
898 while ((so = find_solib (so)) != NULL)
899 {
c5aa993b 900 if (so->so_name[0])
c906108c 901 {
c5aa993b
JM
902 count = so->sections_end - so->sections;
903 memcpy ((char *) (target->to_sections + old),
904 so->sections,
c906108c
SS
905 (sizeof (struct section_table)) * count);
906 old += count;
907 }
908 }
909 }
910 }
c5aa993b 911
c906108c
SS
912 /* Now add the symbol files. */
913 while ((so = find_solib (so)) != NULL)
914 {
c5aa993b 915 if (so->so_name[0] && re_exec (so->so_name))
c906108c 916 {
c5aa993b
JM
917 so->from_tty = from_tty;
918 if (so->symbols_loaded)
c906108c
SS
919 {
920 if (from_tty)
921 {
c5aa993b 922 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
c906108c
SS
923 }
924 }
925 else if (catch_errors
926 (symbol_add_stub, (char *) so,
927 "Error while reading shared library symbols:\n",
928 RETURN_MASK_ALL))
929 {
930 so_last = so;
c5aa993b 931 so->symbols_loaded = 1;
c906108c
SS
932 }
933 }
934 }
935
936 /* Getting new symbols may change our opinion about what is
937 frameless. */
938 if (so_last)
939 reinit_frame_cache ();
940}
941
942/*
943
c5aa993b 944 LOCAL FUNCTION
c906108c 945
c5aa993b 946 info_sharedlibrary_command -- code for "info sharedlibrary"
c906108c 947
c5aa993b 948 SYNOPSIS
c906108c 949
c5aa993b 950 static void info_sharedlibrary_command ()
c906108c 951
c5aa993b 952 DESCRIPTION
c906108c 953
c5aa993b
JM
954 Walk through the shared library list and print information
955 about each attached library.
956 */
c906108c
SS
957
958static void
fba45db2 959info_sharedlibrary_command (char *ignore, int from_tty)
c906108c 960{
c5aa993b 961 register struct so_list *so = NULL; /* link map state variable */
c906108c 962 int header_done = 0;
c5aa993b 963
c906108c
SS
964 if (exec_bfd == NULL)
965 {
4ce44c66 966 printf_unfiltered ("No executable file.\n");
c906108c
SS
967 return;
968 }
969 while ((so = find_solib (so)) != NULL)
970 {
c5aa993b 971 if (so->so_name[0])
c906108c
SS
972 {
973 if (!header_done)
974 {
c5aa993b
JM
975 printf_unfiltered ("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
976 "Shared Object Library");
c906108c
SS
977 header_done++;
978 }
979 printf_unfiltered ("%-12s",
c5aa993b
JM
980 local_hex_string_custom ((unsigned long) LM_ADDR (so),
981 "08l"));
c906108c 982 printf_unfiltered ("%-12s",
c5aa993b
JM
983 local_hex_string_custom ((unsigned long) so->lmend,
984 "08l"));
985 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
986 printf_unfiltered ("%s\n", so->so_name);
c906108c
SS
987 }
988 }
989 if (so_list_head == NULL)
990 {
c5aa993b 991 printf_unfiltered ("No shared libraries loaded at this time.\n");
c906108c
SS
992 }
993}
994
995/*
996
c5aa993b 997 GLOBAL FUNCTION
c906108c 998
c5aa993b 999 solib_address -- check to see if an address is in a shared lib
c906108c 1000
c5aa993b 1001 SYNOPSIS
c906108c 1002
c5aa993b 1003 char *solib_address (CORE_ADDR address)
c906108c 1004
c5aa993b 1005 DESCRIPTION
c906108c 1006
c5aa993b
JM
1007 Provides a hook for other gdb routines to discover whether or
1008 not a particular address is within the mapped address space of
1009 a shared library. Any address between the base mapping address
1010 and the first address beyond the end of the last mapping, is
1011 considered to be within the shared library address space, for
1012 our purposes.
c906108c 1013
c5aa993b
JM
1014 For example, this routine is called at one point to disable
1015 breakpoints which are in shared libraries that are not currently
1016 mapped in.
c906108c
SS
1017 */
1018
1019char *
fba45db2 1020solib_address (CORE_ADDR address)
c906108c 1021{
c5aa993b
JM
1022 register struct so_list *so = 0; /* link map state variable */
1023
c906108c
SS
1024 while ((so = find_solib (so)) != NULL)
1025 {
c5aa993b 1026 if (so->so_name[0])
c906108c
SS
1027 {
1028 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
c5aa993b 1029 (address < (CORE_ADDR) so->lmend))
c906108c
SS
1030 return (so->so_name);
1031 }
1032 }
1033 return (0);
1034}
1035
1036/* Called by free_all_symtabs */
1037
c5aa993b 1038void
fba45db2 1039clear_solib (void)
c906108c
SS
1040{
1041 struct so_list *next;
1042 char *bfd_filename;
c5aa993b 1043
c906108c
SS
1044 disable_breakpoints_in_shlibs (1);
1045
1046 while (so_list_head)
1047 {
c5aa993b 1048 if (so_list_head->sections)
c906108c 1049 {
c5aa993b 1050 free ((PTR) so_list_head->sections);
c906108c 1051 }
c5aa993b 1052 if (so_list_head->abfd)
c906108c 1053 {
c5aa993b
JM
1054 bfd_filename = bfd_get_filename (so_list_head->abfd);
1055 if (!bfd_close (so_list_head->abfd))
c906108c
SS
1056 warning ("cannot close \"%s\": %s",
1057 bfd_filename, bfd_errmsg (bfd_get_error ()));
1058 }
1059 else
1060 /* This happens for the executable on SVR4. */
1061 bfd_filename = NULL;
1062
c5aa993b 1063 next = so_list_head->next;
c906108c 1064 if (bfd_filename)
c5aa993b 1065 free ((PTR) bfd_filename);
c906108c 1066 free (so_list_head->so_name);
c5aa993b 1067 free ((PTR) so_list_head);
c906108c
SS
1068 so_list_head = next;
1069 }
1070 debug_base = 0;
1071}
1072
1073/*
1074
c5aa993b 1075 LOCAL FUNCTION
c906108c 1076
c5aa993b 1077 disable_break -- remove the "mapping changed" breakpoint
c906108c 1078
c5aa993b 1079 SYNOPSIS
c906108c 1080
c5aa993b 1081 static int disable_break ()
c906108c 1082
c5aa993b 1083 DESCRIPTION
c906108c 1084
c5aa993b
JM
1085 Removes the breakpoint that gets hit when the dynamic linker
1086 completes a mapping change.
c906108c 1087
c5aa993b 1088 */
c906108c
SS
1089
1090static int
fba45db2 1091disable_break (void)
c906108c
SS
1092{
1093 int status = 1;
1094
1095
1096 /* Note that breakpoint address and original contents are in our address
1097 space, so we just need to write the original contents back. */
1098
1099 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1100 {
1101 status = 0;
1102 }
1103
1104 /* For the SVR4 version, we always know the breakpoint address. For the
1105 SunOS version we don't know it until the above code is executed.
1106 Grumble if we are stopped anywhere besides the breakpoint address. */
1107
1108 if (stop_pc != breakpoint_addr)
1109 {
1110 warning ("stopped at unknown breakpoint while handling shared libraries");
1111 }
1112
1113 return (status);
1114}
1115
1116/*
1117
c5aa993b 1118 LOCAL FUNCTION
c906108c 1119
c5aa993b 1120 enable_break -- arrange for dynamic linker to hit breakpoint
c906108c 1121
c5aa993b 1122 SYNOPSIS
c906108c 1123
c5aa993b 1124 int enable_break (void)
c906108c 1125
c5aa993b 1126 DESCRIPTION
c906108c 1127
c5aa993b
JM
1128 This functions inserts a breakpoint at the entry point of the
1129 main executable, where all shared libraries are mapped in.
1130 */
c906108c
SS
1131
1132static int
fba45db2 1133enable_break (void)
c906108c
SS
1134{
1135 if (symfile_objfile != NULL
1136 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
1137 shadow_contents) == 0)
1138 {
1139 breakpoint_addr = symfile_objfile->ei.entry_point;
1140 return 1;
1141 }
1142
1143 return 0;
1144}
c5aa993b 1145
c906108c 1146/*
c5aa993b
JM
1147
1148 GLOBAL FUNCTION
1149
1150 solib_create_inferior_hook -- shared library startup support
1151
1152 SYNOPSIS
1153
1154 void solib_create_inferior_hook()
1155
1156 DESCRIPTION
1157
1158 When gdb starts up the inferior, it nurses it along (through the
1159 shell) until it is ready to execute it's first instruction. At this
1160 point, this function gets called via expansion of the macro
1161 SOLIB_CREATE_INFERIOR_HOOK.
1162
1163 For SunOS executables, this first instruction is typically the
1164 one at "_start", or a similar text label, regardless of whether
1165 the executable is statically or dynamically linked. The runtime
1166 startup code takes care of dynamically linking in any shared
1167 libraries, once gdb allows the inferior to continue.
1168
1169 For SVR4 executables, this first instruction is either the first
1170 instruction in the dynamic linker (for dynamically linked
1171 executables) or the instruction at "start" for statically linked
1172 executables. For dynamically linked executables, the system
1173 first exec's /lib/libc.so.N, which contains the dynamic linker,
1174 and starts it running. The dynamic linker maps in any needed
1175 shared libraries, maps in the actual user executable, and then
1176 jumps to "start" in the user executable.
1177
1178 For both SunOS shared libraries, and SVR4 shared libraries, we
1179 can arrange to cooperate with the dynamic linker to discover the
1180 names of shared libraries that are dynamically linked, and the
1181 base addresses to which they are linked.
1182
1183 This function is responsible for discovering those names and
1184 addresses, and saving sufficient information about them to allow
1185 their symbols to be read at a later time.
1186
1187 FIXME
1188
1189 Between enable_break() and disable_break(), this code does not
1190 properly handle hitting breakpoints which the user might have
1191 set in the startup code or in the dynamic linker itself. Proper
1192 handling will probably have to wait until the implementation is
1193 changed to use the "breakpoint handler function" method.
1194
1195 Also, what if child has exit()ed? Must exit loop somehow.
1196 */
1197
1198void
fba45db2 1199solib_create_inferior_hook (void)
c906108c
SS
1200{
1201 if (!enable_break ())
1202 {
1203 warning ("shared library handler failed to enable breakpoint");
1204 return;
1205 }
1206
1207 /* Now run the target. It will eventually hit the breakpoint, at
1208 which point all of the libraries will have been mapped in and we
1209 can go groveling around in the dynamic linker structures to find
1210 out what we need to know about them. */
1211
1212 clear_proceed_status ();
1213 stop_soon_quietly = 1;
1214 stop_signal = TARGET_SIGNAL_0;
1215 do
1216 {
1217 target_resume (-1, 0, stop_signal);
1218 wait_for_inferior ();
1219 }
1220 while (stop_signal != TARGET_SIGNAL_TRAP);
c5aa993b 1221
c906108c
SS
1222 /* We are now either at the "mapping complete" breakpoint (or somewhere
1223 else, a condition we aren't prepared to deal with anyway), so adjust
1224 the PC as necessary after a breakpoint, disable the breakpoint, and
1225 add any shared libraries that were mapped in. */
1226
1227 if (DECR_PC_AFTER_BREAK)
1228 {
1229 stop_pc -= DECR_PC_AFTER_BREAK;
1230 write_register (PC_REGNUM, stop_pc);
1231 }
1232
1233 if (!disable_break ())
1234 {
1235 warning ("shared library handler failed to disable breakpoint");
1236 }
1237
1238 /* solib_add will call reinit_frame_cache.
c5aa993b
JM
1239 But we are stopped in the startup code and we might not have symbols
1240 for the startup code, so heuristic_proc_start could be called
1241 and will put out an annoying warning.
1242 Delaying the resetting of stop_soon_quietly until after symbol loading
1243 suppresses the warning. */
c906108c
SS
1244 if (auto_solib_add)
1245 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1246 stop_soon_quietly = 0;
1247}
1248
1249/*
1250
c5aa993b 1251 LOCAL FUNCTION
c906108c 1252
c5aa993b 1253 sharedlibrary_command -- handle command to explicitly add library
c906108c 1254
c5aa993b 1255 SYNOPSIS
c906108c 1256
c5aa993b 1257 static void sharedlibrary_command (char *args, int from_tty)
c906108c 1258
c5aa993b 1259 DESCRIPTION
c906108c 1260
c5aa993b 1261 */
c906108c
SS
1262
1263static void
fba45db2 1264sharedlibrary_command (char *args, int from_tty)
c906108c
SS
1265{
1266 dont_repeat ();
1267 solib_add (args, from_tty, (struct target_ops *) 0);
1268}
1269
1270void
fba45db2 1271_initialize_solib (void)
c906108c
SS
1272{
1273 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1274 "Load shared object library symbols for files matching REGEXP.");
c5aa993b 1275 add_info ("sharedlibrary", info_sharedlibrary_command,
c906108c
SS
1276 "Status of loaded shared object libraries.");
1277
1278 add_show_from_set
1279 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1280 (char *) &auto_solib_add,
1281 "Set autoloading of shared library symbols.\n\
1282If nonzero, symbols from all shared object libraries will be loaded\n\
1283automatically when the inferior begins execution or when the dynamic linker\n\
1284informs gdb that a new library has been loaded. Otherwise, symbols\n\
1285must be loaded manually, using `sharedlibrary'.",
1286 &setlist),
1287 &showlist);
1288}
c906108c 1289\f
c5aa993b 1290
c906108c
SS
1291/* Register that we are able to handle irix5 core file formats.
1292 This really is bfd_target_unknown_flavour */
1293
1294static struct core_fns irix5_core_fns =
1295{
2acceee2
JM
1296 bfd_target_unknown_flavour, /* core_flavour */
1297 default_check_format, /* check_format */
1298 default_core_sniffer, /* core_sniffer */
1299 fetch_core_registers, /* core_read_registers */
1300 NULL /* next */
c906108c
SS
1301};
1302
1303void
fba45db2 1304_initialize_core_irix5 (void)
c906108c
SS
1305{
1306 add_core_fns (&irix5_core_fns);
1307}
This page took 0.129829 seconds and 4 git commands to generate.