Create new file regcache.h. Update all uses.
[deliverable/binutils-gdb.git] / gdb / lin-thread.c
CommitLineData
ed9a39eb
JM
1/* Multi-threaded debugging support for the thread_db interface,
2 used on operating systems such as Solaris and Linux.
4e052eda 3 Copyright 1999, 2001 Free Software Foundation, Inc.
ed9a39eb
JM
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22/* This module implements a thread_stratum target that sits on top of
23 a normal process_stratum target (such as procfs or ptrace). The
24 process_stratum target must install this thread_stratum target when
25 it detects the presence of the thread_db shared library.
26
27 This module will then use the thread_db API to add thread-awareness
28 to the functionality provided by the process_stratum target (or in
29 some cases, to add user-level thread awareness on top of the
30 kernel-level thread awareness that is already provided by the
31 process_stratum target).
32
33 Solaris threads (for instance) are a multi-level thread implementation;
34 the kernel provides a Light Weight Process (LWP) which the procfs
35 process_stratum module is aware of. This module must then mediate
36 the relationship between kernel LWP threads and user (eg. posix)
37 threads.
38
39 Linux threads are likely to be different -- but the thread_db
40 library API should make the difference largely transparent to GDB.
41
42 */
43
44/* The thread_db API provides a number of functions that give the caller
45 access to the inner workings of the child process's thread library.
46 We will be using the following (others may be added):
47
48 td_thr_validate Confirm valid "live" thread
49 td_thr_get_info Get info about a thread
50 td_thr_getgregs Get thread's general registers
51 td_thr_getfpregs Get thread's floating point registers
52 td_thr_setgregs Set thread's general registers
53 td_thr_setfpregs Set thread's floating point registers
54 td_ta_map_id2thr Get thread handle from thread id
55 td_ta_map_lwp2thr Get thread handle from LWP id
56 td_ta_thr_iter Iterate over all threads (with callback)
57
58 In return, the debugger has to provide certain services to the
59 thread_db library. Some of these aren't actually required to do
60 anything in practice. For instance, the thread_db expects to be
61 able to stop the child process and start it again: but in our
62 context, the child process will always be stopped already when we
63 invoke the thread_db library, so the functions that we provide for
64 the library to stop and start the child process are no-ops.
65
66 Here is the list of functions which we export to the thread_db
67 library, divided into no-op functions vs. functions that actually
68 have to do something:
69
70 No-op functions:
71
72 ps_pstop Stop the child process
73 ps_pcontinue Continue the child process
74 ps_lstop Stop a specific LWP (kernel thread)
75 ps_lcontinue Continue an LWP
76 ps_lgetxregsize Get size of LWP's xregs (sparc)
77 ps_lgetxregs Get LWP's xregs (sparc)
78 ps_lsetxregs Set LWP's xregs (sparc)
79
80 Functions that have to do useful work:
81
82 ps_pglobal_lookup Get the address of a global symbol
83 ps_pdread Read memory, data segment
84 ps_ptread Read memory, text segment
85 ps_pdwrite Write memory, data segment
86 ps_ptwrite Write memory, text segment
87 ps_lgetregs Get LWP's general registers
88 ps_lgetfpregs Get LWP's floating point registers
89 ps_lsetregs Set LWP's general registers
90 ps_lsetfpregs Set LWP's floating point registers
91 ps_lgetLDT Get LWP's Local Descriptor Table (x86)
92
93 Thus, if we ask the thread_db library to give us the general registers
94 for user thread X, thread_db may figure out that user thread X is
95 actually mapped onto kernel thread Y. Thread_db does not know how
96 to obtain the registers for kernel thread Y, but GDB does, so thread_db
97 turns the request right back to us via the ps_lgetregs callback. */
98
99#include "defs.h"
100#include "gdbthread.h"
101#include "target.h"
102#include "inferior.h"
103#include "gdbcmd.h"
4e052eda 104#include "regcache.h"
ed9a39eb 105
03f2053f 106#include "gdb_wait.h"
ed9a39eb
JM
107
108#include <time.h>
109
110#if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T)
111#include <sys/procfs.h>
112#endif
113
ed9a39eb 114#include "gdb_proc_service.h"
ed9a39eb
JM
115
116#if defined HAVE_STDINT_H /* Pre-5.2 systems don't have this header */
117#if defined (HAVE_THREAD_DB_H)
118#include <thread_db.h> /* defines outgoing API (td_thr_* calls) */
119#else
120#include "gdb_thread_db.h"
121#endif
122
123#include <dlfcn.h> /* dynamic library interface */
124
c60c0f5f
MS
125/* Prototypes for supply_gregset etc. */
126#include "gregset.h"
127
ed9a39eb
JM
128#ifndef TIDGET
129#define TIDGET(PID) (((PID) & 0x7fffffff) >> 16)
130#define PIDGET(PID) (((PID) & 0xffff))
131#define MERGEPID(PID, TID) (((PID) & 0xffff) | ((TID) << 16))
132#endif
133
134/* Macros for superimposing PID and TID into inferior_pid. */
135#define THREAD_FLAG 0x80000000
136#define is_thread(ARG) (((ARG) & THREAD_FLAG) != 0)
137#define is_lwp(ARG) (((ARG) & THREAD_FLAG) == 0)
138#define GET_LWP(PID) TIDGET (PID)
139#define GET_THREAD(PID) TIDGET (PID)
140#define BUILD_LWP(TID, PID) MERGEPID (PID, TID)
141#define BUILD_THREAD(TID, PID) (MERGEPID (PID, TID) | THREAD_FLAG)
142
143/*
144 * target_beneath is a pointer to the target_ops underlying this one.
145 */
146
147static struct target_ops *target_beneath;
148
149
150/*
151 * target vector defined in this module:
152 */
153
154static struct target_ops thread_db_ops;
155
156/*
157 * Typedefs required to resolve differences between the thread_db
158 * and proc_service API defined on different versions of Solaris:
159 */
160
161#if defined(PROC_SERVICE_IS_OLD)
162typedef const struct ps_prochandle *gdb_ps_prochandle_t;
163typedef char *gdb_ps_read_buf_t;
164typedef char *gdb_ps_write_buf_t;
165typedef int gdb_ps_size_t;
166#else
167typedef struct ps_prochandle *gdb_ps_prochandle_t;
168typedef void *gdb_ps_read_buf_t;
169typedef const void *gdb_ps_write_buf_t;
170typedef size_t gdb_ps_size_t;
171#endif
172
173/*
174 * proc_service callback functions, called by thread_db.
175 */
176
177ps_err_e
178ps_pstop (gdb_ps_prochandle_t ph) /* Process stop */
179{
180 return PS_OK;
181}
182
183ps_err_e
184ps_pcontinue (gdb_ps_prochandle_t ph) /* Process continue */
185{
186 return PS_OK;
187}
188
189ps_err_e
190ps_lstop (gdb_ps_prochandle_t ph, /* LWP stop */
191 lwpid_t lwpid)
192{
193 return PS_OK;
194}
195
196ps_err_e
197ps_lcontinue (gdb_ps_prochandle_t ph, /* LWP continue */
198 lwpid_t lwpid)
199{
200 return PS_OK;
201}
202
203ps_err_e
204ps_lgetxregsize (gdb_ps_prochandle_t ph, /* Get XREG size */
205 lwpid_t lwpid,
206 int *xregsize)
207{
208 return PS_OK;
209}
210
211ps_err_e
212ps_lgetxregs (gdb_ps_prochandle_t ph, /* Get XREGS */
213 lwpid_t lwpid,
214 caddr_t xregset)
215{
216 return PS_OK;
217}
218
219ps_err_e
220ps_lsetxregs (gdb_ps_prochandle_t ph, /* Set XREGS */
221 lwpid_t lwpid,
222 caddr_t xregset)
223{
224 return PS_OK;
225}
226
227void
228ps_plog (const char *fmt, ...)
229{
230 va_list args;
231
232 va_start (args, fmt);
233 vfprintf_filtered (gdb_stderr, fmt, args);
234}
235
236/* Look up a symbol in GDB's global symbol table.
237 Return the symbol's address.
238 FIXME: it would be more correct to look up the symbol in the context
239 of the LD_OBJECT_NAME provided. However we're probably fairly safe
240 as long as there aren't name conflicts with other libraries. */
241
242ps_err_e
243ps_pglobal_lookup (gdb_ps_prochandle_t ph,
244 const char *ld_object_name, /* the library name */
245 const char *ld_symbol_name, /* the symbol name */
246 paddr_t *ld_symbol_addr) /* return the symbol addr */
247{
248 struct minimal_symbol *ms;
249
250 ms = lookup_minimal_symbol (ld_symbol_name, NULL, NULL);
251
252 if (!ms)
253 return PS_NOSYM;
254
255 *ld_symbol_addr = SYMBOL_VALUE_ADDRESS (ms);
256
257 return PS_OK;
258}
259
260/* Worker function for all memory reads and writes: */
261static ps_err_e rw_common (const struct ps_prochandle *ph,
262 paddr_t addr,
263 char *buf,
264 int size,
265 int write_p);
266
267/* target_xfer_memory direction consts */
268enum {PS_READ = 0, PS_WRITE = 1};
269
270ps_err_e
271ps_pdread (gdb_ps_prochandle_t ph, /* read from data segment */
272 paddr_t addr,
273 gdb_ps_read_buf_t buf,
274 gdb_ps_size_t size)
275{
276 return rw_common (ph, addr, buf, size, PS_READ);
277}
278
279ps_err_e
280ps_pdwrite (gdb_ps_prochandle_t ph, /* write to data segment */
281 paddr_t addr,
282 gdb_ps_write_buf_t buf,
283 gdb_ps_size_t size)
284{
285 return rw_common (ph, addr, (char *) buf, size, PS_WRITE);
286}
287
288ps_err_e
289ps_ptread (gdb_ps_prochandle_t ph, /* read from text segment */
290 paddr_t addr,
291 gdb_ps_read_buf_t buf,
292 gdb_ps_size_t size)
293{
294 return rw_common (ph, addr, buf, size, PS_READ);
295}
296
297ps_err_e
298ps_ptwrite (gdb_ps_prochandle_t ph, /* write to text segment */
299 paddr_t addr,
300 gdb_ps_write_buf_t buf,
301 gdb_ps_size_t size)
302{
303 return rw_common (ph, addr, (char *) buf, size, PS_WRITE);
304}
305
306static struct cleanup *save_inferior_pid (void);
307static void restore_inferior_pid (void *saved_pid);
308static char *thr_err_string (td_err_e);
309static char *thr_state_string (td_thr_state_e);
310
ed9a39eb
JM
311struct ps_prochandle main_prochandle;
312td_thragent_t * main_threadagent;
313
314/*
315 * Common proc_service routine for reading and writing memory.
316 */
317
318/* FIXME: once we've munged the inferior_pid, why can't we
319 simply call target_read/write_memory and return? */
320
321
322static ps_err_e
323rw_common (const struct ps_prochandle *ph,
324 paddr_t addr,
325 char *buf,
326 int size,
327 int write_p)
328{
329 struct cleanup *old_chain = save_inferior_pid ();
330 int to_do = size;
331 int done = 0;
332
333 inferior_pid = main_prochandle.pid;
334
335 while (to_do > 0)
336 {
337 done = current_target.to_xfer_memory (addr, buf, size, write_p,
338 &current_target);
339 if (done <= 0)
340 {
341 if (write_p == PS_READ)
342 print_sys_errmsg ("rw_common (): read", errno);
343 else
344 print_sys_errmsg ("rw_common (): write", errno);
345
346 return PS_ERR;
347 }
348 to_do -= done;
349 buf += done;
350 }
351 do_cleanups (old_chain);
352 return PS_OK;
353}
354
355/* Cleanup functions used by the register callbacks
356 (which have to manipulate the global inferior_pid). */
357
358ps_err_e
359ps_lgetregs (gdb_ps_prochandle_t ph, /* Get LWP general regs */
360 lwpid_t lwpid,
361 prgregset_t gregset)
362{
363 struct cleanup *old_chain = save_inferior_pid ();
364
365 inferior_pid = BUILD_LWP (lwpid, main_prochandle.pid);
366 current_target.to_fetch_registers (-1);
367
368 fill_gregset (gregset, -1);
369 do_cleanups (old_chain);
370
371 return PS_OK;
372}
373
374ps_err_e
375ps_lsetregs (gdb_ps_prochandle_t ph, /* Set LWP general regs */
376 lwpid_t lwpid,
377 const prgregset_t gregset)
378{
379 struct cleanup *old_chain = save_inferior_pid ();
380
381 inferior_pid = BUILD_LWP (lwpid, main_prochandle.pid);
382 supply_gregset (gregset);
383 current_target.to_store_registers (-1);
384 do_cleanups (old_chain);
385 return PS_OK;
386}
387
388ps_err_e
389ps_lgetfpregs (gdb_ps_prochandle_t ph, /* Get LWP float regs */
390 lwpid_t lwpid,
d84dd0c5 391 gdb_prfpregset_t *fpregset)
ed9a39eb
JM
392{
393 struct cleanup *old_chain = save_inferior_pid ();
394
395 inferior_pid = BUILD_LWP (lwpid, main_prochandle.pid);
396 current_target.to_fetch_registers (-1);
397 fill_fpregset (fpregset, -1);
398 do_cleanups (old_chain);
399 return PS_OK;
400}
401
402ps_err_e
403ps_lsetfpregs (gdb_ps_prochandle_t ph, /* Set LWP float regs */
404 lwpid_t lwpid,
d84dd0c5 405 const gdb_prfpregset_t *fpregset)
ed9a39eb
JM
406{
407 struct cleanup *old_chain = save_inferior_pid ();
408
409 inferior_pid = BUILD_LWP (lwpid, main_prochandle.pid);
410 supply_fpregset (fpregset);
411 current_target.to_store_registers (-1);
412 do_cleanups (old_chain);
413 return PS_OK;
414}
415
416/*
417 * ps_getpid
418 *
419 * return the main pid for the child process
420 * (special for Linux -- not used on Solaris)
421 */
422
423pid_t
424ps_getpid (gdb_ps_prochandle_t ph)
425{
426 return ph->pid;
427}
428
429#ifdef TM_I386SOL2_H
430
431/* Reads the local descriptor table of a LWP. */
432
433ps_err_e
434ps_lgetLDT (gdb_ps_prochandle_t ph, lwpid_t lwpid,
435 struct ssd *pldt)
436{
437 /* NOTE: only used on Solaris, therefore OK to refer to procfs.c */
438 extern struct ssd *procfs_find_LDT_entry (int);
439 struct ssd *ret;
440
441 ret = procfs_find_LDT_entry (BUILD_LWP (lwpid,
442 PIDGET (main_prochandle.pid)));
443 if (ret)
444 {
445 memcpy (pldt, ret, sizeof (struct ssd));
446 return PS_OK;
447 }
448 else /* LDT not found. */
449 return PS_ERR;
450}
451#endif /* TM_I386SOL2_H */
452
453/*
454 * Pointers to thread_db functions:
455 *
456 * These are a dynamic library mechanism.
457 * The dlfcn.h interface will be used to initialize these
458 * so that they point to the appropriate functions in the
459 * thread_db dynamic library. This is done dynamically
460 * so that GDB can still run on systems that lack thread_db.
461 */
462
463static td_err_e (*p_td_init) (void);
464
465static td_err_e (*p_td_ta_new) (const struct ps_prochandle *ph_p,
466 td_thragent_t **ta_pp);
467
468static td_err_e (*p_td_ta_delete) (td_thragent_t *ta_p);
469
470static td_err_e (*p_td_ta_get_nthreads) (const td_thragent_t *ta_p,
471 int *nthread_p);
472
473
474static td_err_e (*p_td_ta_thr_iter) (const td_thragent_t *ta_p,
475 td_thr_iter_f *cb,
476 void *cbdata_p,
477 td_thr_state_e state,
478 int ti_pri,
479 sigset_t *ti_sigmask_p,
480 unsigned ti_user_flags);
481
482static td_err_e (*p_td_ta_event_addr) (const td_thragent_t *ta_p,
483 u_long event,
484 td_notify_t *notify_p);
485
486static td_err_e (*p_td_ta_event_getmsg) (const td_thragent_t *ta_p,
487 td_event_msg_t *msg);
488
489static td_err_e (*p_td_ta_set_event) (const td_thragent_t *ta_p,
490 td_thr_events_t *events);
491
492static td_err_e (*p_td_thr_validate) (const td_thrhandle_t *th_p);
493
494static td_err_e (*p_td_thr_event_enable) (const td_thrhandle_t *th_p,
495 int on_off);
496
497static td_err_e (*p_td_thr_get_info) (const td_thrhandle_t *th_p,
498 td_thrinfo_t *ti_p);
499
500static td_err_e (*p_td_thr_getgregs) (const td_thrhandle_t *th_p,
501 prgregset_t regset);
502
503static td_err_e (*p_td_thr_setgregs) (const td_thrhandle_t *th_p,
504 const prgregset_t regset);
505
506static td_err_e (*p_td_thr_getfpregs) (const td_thrhandle_t *th_p,
d84dd0c5 507 gdb_prfpregset_t *fpregset);
ed9a39eb
JM
508
509static td_err_e (*p_td_thr_setfpregs) (const td_thrhandle_t *th_p,
d84dd0c5 510 const gdb_prfpregset_t *fpregset);
ed9a39eb
JM
511
512static td_err_e (*p_td_ta_map_id2thr) (const td_thragent_t *ta_p,
513 thread_t tid,
514 td_thrhandle_t *th_p);
515
516static td_err_e (*p_td_ta_map_lwp2thr) (const td_thragent_t *ta_p,
517 lwpid_t lwpid,
518 td_thrhandle_t *th_p);
519
520/*
521 * API and target vector initialization function: thread_db_initialize.
522 *
523 * NOTE: this function is deliberately NOT named with the GDB convention
524 * of module initializer function names that begin with "_initialize".
525 * This module is NOT intended to be auto-initialized at GDB startup.
526 * Rather, it will only be initialized when a multi-threaded child
527 * process is detected.
528 *
529 */
530
531/*
532 * Initializer for thread_db library interface.
533 * This function does the dynamic library stuff (dlopen, dlsym),
534 * and then calls the thread_db library's one-time initializer
535 * function (td_init). If everything succeeds, this function
536 * returns true; otherwise it returns false, and this module
537 * cannot be used.
538 */
539
540static int
fba45db2 541init_thread_db_library (void)
ed9a39eb
JM
542{
543 void *dlhandle;
544 td_err_e ret;
545
546 /* Open a handle to the "thread_db" dynamic library. */
547 if ((dlhandle = dlopen ("libthread_db.so.1", RTLD_NOW)) == NULL)
548 return 0; /* fail */
549
550 /* Initialize pointers to the dynamic library functions we will use.
551 * Note that we are not calling the functions here -- we are only
552 * establishing pointers to them.
553 */
554
555 /* td_init: initialize thread_db library. */
556 if ((p_td_init = dlsym (dlhandle, "td_init")) == NULL)
557 return 0; /* fail */
558 /* td_ta_new: register a target process with thread_db. */
559 if ((p_td_ta_new = dlsym (dlhandle, "td_ta_new")) == NULL)
560 return 0; /* fail */
561 /* td_ta_delete: un-register a target process with thread_db. */
562 if ((p_td_ta_delete = dlsym (dlhandle, "td_ta_delete")) == NULL)
563 return 0; /* fail */
564
565 /* td_ta_map_id2thr: get thread handle from thread id. */
566 if ((p_td_ta_map_id2thr = dlsym (dlhandle, "td_ta_map_id2thr")) == NULL)
567 return 0; /* fail */
568 /* td_ta_map_lwp2thr: get thread handle from lwp id. */
569 if ((p_td_ta_map_lwp2thr = dlsym (dlhandle, "td_ta_map_lwp2thr")) == NULL)
570 return 0; /* fail */
571 /* td_ta_get_nthreads: get number of threads in target process. */
572 if ((p_td_ta_get_nthreads = dlsym (dlhandle, "td_ta_get_nthreads")) == NULL)
573 return 0; /* fail */
574 /* td_ta_thr_iter: iterate over all thread handles. */
575 if ((p_td_ta_thr_iter = dlsym (dlhandle, "td_ta_thr_iter")) == NULL)
576 return 0; /* fail */
577
578 /* td_thr_validate: make sure a thread handle is real and alive. */
579 if ((p_td_thr_validate = dlsym (dlhandle, "td_thr_validate")) == NULL)
580 return 0; /* fail */
581 /* td_thr_get_info: get a bunch of info about a thread. */
582 if ((p_td_thr_get_info = dlsym (dlhandle, "td_thr_get_info")) == NULL)
583 return 0; /* fail */
584 /* td_thr_getgregs: get general registers for thread. */
585 if ((p_td_thr_getgregs = dlsym (dlhandle, "td_thr_getgregs")) == NULL)
586 return 0; /* fail */
587 /* td_thr_setgregs: set general registers for thread. */
588 if ((p_td_thr_setgregs = dlsym (dlhandle, "td_thr_setgregs")) == NULL)
589 return 0; /* fail */
590 /* td_thr_getfpregs: get floating point registers for thread. */
591 if ((p_td_thr_getfpregs = dlsym (dlhandle, "td_thr_getfpregs")) == NULL)
592 return 0; /* fail */
593 /* td_thr_setfpregs: set floating point registers for thread. */
594 if ((p_td_thr_setfpregs = dlsym (dlhandle, "td_thr_setfpregs")) == NULL)
595 return 0; /* fail */
596
597 ret = p_td_init ();
598 if (ret != TD_OK)
599 {
600 warning ("init_thread_db: td_init: %s", thr_err_string (ret));
601 return 0;
602 }
603
604 /* Optional functions:
605 We can still debug even if the following functions are not found. */
606
607 /* td_ta_event_addr: get the breakpoint address for specified event. */
608 p_td_ta_event_addr = dlsym (dlhandle, "td_ta_event_addr");
609
610 /* td_ta_event_getmsg: get the next event message for the process. */
611 p_td_ta_event_getmsg = dlsym (dlhandle, "td_ta_event_getmsg");
612
613 /* td_ta_set_event: request notification of an event. */
614 p_td_ta_set_event = dlsym (dlhandle, "td_ta_set_event");
615
616 /* td_thr_event_enable: enable event reporting in a thread. */
617 p_td_thr_event_enable = dlsym (dlhandle, "td_thr_event_enable");
618
619 return 1; /* success */
620}
621
622/*
623 * Local utility functions:
624 */
625
626
627/*
628
629 LOCAL FUNCTION
630
631 save_inferior_pid - Save inferior_pid on the cleanup list
632 restore_inferior_pid - Restore inferior_pid from the cleanup list
633
634 SYNOPSIS
635
636 struct cleanup *save_inferior_pid (void);
637 void restore_inferior_pid (void *saved_pid);
638
639 DESCRIPTION
640
641 These two functions act in unison to restore inferior_pid in
642 case of an error.
643
644 NOTES
645
646 inferior_pid is a global variable that needs to be changed by many
647 of these routines before calling functions in procfs.c. In order
648 to guarantee that inferior_pid gets restored (in case of errors),
649 you need to call save_inferior_pid before changing it. At the end
650 of the function, you should invoke do_cleanups to restore it.
651
652 */
653
654static struct cleanup *
655save_inferior_pid (void)
656{
a91f7ea9
KB
657 int *saved_pid_ptr;
658
659 saved_pid_ptr = xmalloc (sizeof (int));
660 *saved_pid_ptr = inferior_pid;
661 return make_cleanup (restore_inferior_pid, saved_pid_ptr);
ed9a39eb
JM
662}
663
664static void
a91f7ea9 665restore_inferior_pid (void *arg)
ed9a39eb 666{
a91f7ea9
KB
667 int *saved_pid_ptr = arg;
668 inferior_pid = *saved_pid_ptr;
b8c9b27d 669 xfree (arg);
ed9a39eb
JM
670}
671
672/*
673
674 LOCAL FUNCTION
675
676 thr_err_string - Convert a thread_db error code to a string
677
678 SYNOPSIS
679
680 char * thr_err_string (errcode)
681
682 DESCRIPTION
683
684 Return a string description of the thread_db errcode. If errcode
685 is unknown, then return an <unknown> message.
686
687 */
688
689static char *
fba45db2 690thr_err_string (td_err_e errcode)
ed9a39eb
JM
691{
692 static char buf[50];
693
694 switch (errcode) {
695 case TD_OK: return "generic 'call succeeded'";
696 case TD_ERR: return "generic error";
697 case TD_NOTHR: return "no thread to satisfy query";
698 case TD_NOSV: return "no sync handle to satisfy query";
699 case TD_NOLWP: return "no lwp to satisfy query";
700 case TD_BADPH: return "invalid process handle";
701 case TD_BADTH: return "invalid thread handle";
702 case TD_BADSH: return "invalid synchronization handle";
703 case TD_BADTA: return "invalid thread agent";
704 case TD_BADKEY: return "invalid key";
705 case TD_NOMSG: return "no event message for getmsg";
706 case TD_NOFPREGS: return "FPU register set not available";
707 case TD_NOLIBTHREAD: return "application not linked with libthread";
708 case TD_NOEVENT: return "requested event is not supported";
709 case TD_NOCAPAB: return "capability not available";
710 case TD_DBERR: return "debugger service failed";
711 case TD_NOAPLIC: return "operation not applicable to";
712 case TD_NOTSD: return "no thread-specific data for this thread";
713 case TD_MALLOC: return "malloc failed";
714 case TD_PARTIALREG: return "only part of register set was written/read";
715 case TD_NOXREGS: return "X register set not available for this thread";
716 default:
717 sprintf (buf, "unknown thread_db error '%d'", errcode);
718 return buf;
719 }
720}
721
722/*
723
724 LOCAL FUNCTION
725
726 thr_state_string - Convert a thread_db state code to a string
727
728 SYNOPSIS
729
730 char *thr_state_string (statecode)
731
732 DESCRIPTION
733
734 Return the thread_db state string associated with statecode.
735 If statecode is unknown, then return an <unknown> message.
736
737 */
738
739static char *
fba45db2 740thr_state_string (td_thr_state_e statecode)
ed9a39eb
JM
741{
742 static char buf[50];
743
744 switch (statecode) {
745 case TD_THR_STOPPED: return "stopped by debugger";
746 case TD_THR_RUN: return "runnable";
747 case TD_THR_ACTIVE: return "active";
748 case TD_THR_ZOMBIE: return "zombie";
749 case TD_THR_SLEEP: return "sleeping";
750 case TD_THR_STOPPED_ASLEEP: return "stopped by debugger AND blocked";
751 default:
752 sprintf (buf, "unknown thread_db state %d", statecode);
753 return buf;
754 }
755}
756
757/*
758 * Local thread/event list.
759 * This data structure will be used to hold a list of threads and
760 * pending/deliverable events.
761 */
762
763typedef struct THREADINFO {
764 thread_t tid; /* thread ID */
765 pid_t lid; /* process/lwp ID */
766 td_thr_state_e state; /* thread state (a la thread_db) */
767 td_thr_type_e type; /* thread type (a la thread_db) */
768 int pending; /* true if holding a pending event */
769 int status; /* wait status of any interesting event */
770} threadinfo;
771
772threadinfo * threadlist;
773int threadlist_max = 0; /* current size of table */
774int threadlist_top = 0; /* number of threads now in table */
775#define THREADLIST_ALLOC 100 /* chunk size by which to expand table */
776
777static threadinfo *
fba45db2 778insert_thread (int tid, int lid, td_thr_state_e state, td_thr_type_e type)
ed9a39eb
JM
779{
780 if (threadlist_top >= threadlist_max)
781 {
782 threadlist_max += THREADLIST_ALLOC;
783 threadlist = realloc (threadlist,
784 threadlist_max * sizeof (threadinfo));
785 if (threadlist == NULL)
786 return NULL;
787 }
788 threadlist[threadlist_top].tid = tid;
789 threadlist[threadlist_top].lid = lid;
790 threadlist[threadlist_top].state = state;
791 threadlist[threadlist_top].type = type;
792 threadlist[threadlist_top].pending = 0;
793 threadlist[threadlist_top].status = 0;
794
795 return &threadlist[threadlist_top++];
796}
797
798static void
fba45db2 799empty_threadlist (void)
ed9a39eb
JM
800{
801 threadlist_top = 0;
802}
803
804static threadinfo *
fba45db2 805next_pending_event (void)
ed9a39eb
JM
806{
807 int i;
808
809 for (i = 0; i < threadlist_top; i++)
810 if (threadlist[i].pending)
811 return &threadlist[i];
812
813 return NULL;
814}
815
816static void
064002de
KB
817threadlist_iter (int (*func) (), void *data, td_thr_state_e state,
818 td_thr_type_e type)
ed9a39eb
JM
819{
820 int i;
821
822 for (i = 0; i < threadlist_top; i++)
823 if ((state == TD_THR_ANY_STATE || state == threadlist[i].state) &&
824 (type == TD_THR_ANY_TYPE || type == threadlist[i].type))
825 if ((*func) (&threadlist[i], data) != 0)
826 break;
827
828 return;
829}
830
831/*
832 * Global state
833 *
834 * Here we keep state information all collected in one place.
835 */
836
837/* This flag is set when we activate, so that we don't do it twice.
838 Defined in linux-thread.c and used for inter-target syncronization. */
839extern int using_thread_db;
840
841/* The process id for which we've stopped.
842 * This is only set when we actually stop all threads.
843 * Otherwise it's zero.
844 */
845static int event_pid;
846
847/*
848 * The process id for a new thread to which we've just attached.
849 * This process needs special handling at resume time.
850 */
851static int attach_pid;
852
853
854/*
855 * thread_db event handling:
856 *
857 * The mechanism for event notification via the thread_db API.
858 * These events are implemented as breakpoints. The thread_db
859 * library gives us an address where we can set a breakpoint.
860 * When the breakpoint is hit, it represents an event of interest
861 * such as:
862 * Thread creation
863 * Thread death
864 * Thread reap
865 */
866
867/* Location of the thread creation event breakpoint. The code at this
868 location in the child process will be called by the pthread library
869 whenever a new thread is created. By setting a special breakpoint
870 at this location, GDB can detect when a new thread is created. We
871 obtain this location via the td_ta_event_addr call. */
872
873static CORE_ADDR thread_creation_bkpt_address;
874
875/* Location of the thread death event breakpoint. The code at this
876 location in the child process will be called by the pthread library
877 whenever a thread is destroyed. By setting a special breakpoint at
878 this location, GDB can detect when a new thread is created. We
879 obtain this location via the td_ta_event_addr call. */
880
881static CORE_ADDR thread_death_bkpt_address;
882
883/* This function handles the global parts of enabling thread events.
884 The thread-specific enabling is handled per-thread elsewhere. */
885
886static void
fba45db2 887enable_thread_event_reporting (td_thragent_t *ta)
ed9a39eb
JM
888{
889 td_thr_events_t events;
890 td_notify_t notify;
891 CORE_ADDR addr;
892
893 if (p_td_ta_set_event == NULL ||
894 p_td_ta_event_addr == NULL ||
895 p_td_ta_event_getmsg == NULL ||
896 p_td_thr_event_enable == NULL)
897 return; /* can't do thread event reporting without these funcs */
898
899 /* set process wide mask saying which events we are interested in */
900 td_event_emptyset (&events);
901 td_event_addset (&events, TD_CREATE);
902 td_event_addset (&events, TD_DEATH);
903
904 if (p_td_ta_set_event (ta, &events) != TD_OK)
905 {
906 warning ("unable to set global thread event mask");
907 return;
908 }
909
910 /* Delete previous thread event breakpoints, if any. */
911 remove_thread_event_breakpoints ();
912
913 /* create breakpoints -- thread creation and death */
914 /* thread creation */
915 /* get breakpoint location */
916 if (p_td_ta_event_addr (ta, TD_CREATE, &notify) != TD_OK)
917 {
918 warning ("unable to get location for thread creation breakpoint");
919 return;
920 }
921
922 /* Set up the breakpoint. */
923 create_thread_event_breakpoint (notify.u.bptaddr);
924
925 /* Save it's location. */
926 thread_creation_bkpt_address = notify.u.bptaddr;
927
928 /* thread death */
929 /* get breakpoint location */
930 if (p_td_ta_event_addr (ta, TD_DEATH, &notify) != TD_OK)
931 {
932 warning ("unable to get location for thread death breakpoint");
933 return;
934 }
935 /* Set up the breakpoint. */
936 create_thread_event_breakpoint (notify.u.bptaddr);
937
938 /* Save it's location. */
939 thread_death_bkpt_address = notify.u.bptaddr;
940}
941
942/* This function handles the global parts of disabling thread events.
943 The thread-specific enabling is handled per-thread elsewhere. */
944
945static void
fba45db2 946disable_thread_event_reporting (td_thragent_t *ta)
ed9a39eb
JM
947{
948 td_thr_events_t events;
949
950 /* set process wide mask saying we aren't interested in any events */
951 td_event_emptyset (&events);
952 p_td_ta_set_event (main_threadagent, &events);
953
954 /* Delete thread event breakpoints, if any. */
955 remove_thread_event_breakpoints ();
956 thread_creation_bkpt_address = 0;
957 thread_death_bkpt_address = 0;
958}
959
960/* check_for_thread_event
961
962 if it's a thread event we recognize (currently
963 we only recognize creation and destruction
964 events), return 1; else return 0. */
965
966
967static int
968check_for_thread_event (struct target_waitstatus *tws, int event_pid)
969{
970 /* FIXME: to be more efficient, we should keep a static
971 list of threads, and update it only here (with td_ta_thr_iter). */
972}
973
974static void
975thread_db_push_target (void)
976{
977 /* Called ONLY from thread_db_new_objfile after td_ta_new call succeeds. */
978
979 /* Push this target vector */
980 push_target (&thread_db_ops);
981 /* Find the underlying process-layer target for calling later. */
982 target_beneath = find_target_beneath (&thread_db_ops);
983 using_thread_db = 1;
984 /* Turn on thread_db event-reporting API. */
985 enable_thread_event_reporting (main_threadagent);
986}
987
988static void
989thread_db_unpush_target (void)
990{
991 /* Must be called whenever we remove ourself from the target stack! */
992
993 using_thread_db = 0;
994 target_beneath = NULL;
995
996 /* delete local list of threads */
997 empty_threadlist ();
998 /* Turn off the thread_db API. */
999 p_td_ta_delete (main_threadagent);
1000 /* Unpush this target vector */
1001 unpush_target (&thread_db_ops);
1002 /* Reset linuxthreads module. */
1003 linuxthreads_discard_global_state ();
1004}
1005
1006/*
1007 * New objfile hook function:
1008 * Called for each new objfile (image, shared lib) in the target process.
1009 *
1010 * The purpose of this function is to detect that the target process
1011 * is linked with the (appropriate) thread library. So every time a
1012 * new target shared library is detected, we will call td_ta_new.
1013 * If it succeeds, we know we have a multi-threaded target process
1014 * that we can debug using the thread_db API.
1015 */
1016
1017/*
1018 * new_objfile function:
1019 *
1020 * connected to target_new_objfile_hook, this function gets called
1021 * every time a new binary image is loaded.
1022 *
1023 * At each call, we attempt to open the thread_db connection to the
1024 * child process. If it succeeds, we know we have a libthread process
1025 * and we can debug it with this target vector. Therefore we push
1026 * ourself onto the target stack.
1027 */
1028
1029static void (*target_new_objfile_chain) (struct objfile *objfile);
1030static int stop_or_attach_thread_callback (const td_thrhandle_t *th,
1031 void *data);
1032static int wait_thread_callback (const td_thrhandle_t *th,
1033 void *data);
1034
1035static void
1036thread_db_new_objfile (struct objfile *objfile)
1037{
1038 td_err_e ret;
1039
1040 if (using_thread_db) /* libthread already detected, and */
1041 goto quit; /* thread target vector activated. */
1042
1043 if (objfile == NULL)
1044 goto quit; /* un-interesting object file */
1045
1046 /* Initialize our "main prochandle" with the main inferior pid. */
1047 main_prochandle.pid = PIDGET (inferior_pid);
1048
1049 /* Now attempt to open a thread_db connection to the
1050 thread library running in the child process. */
1051 ret = p_td_ta_new (&main_prochandle, &main_threadagent);
1052 switch (ret) {
1053 default:
1054 warning ("Unexpected error initializing thread_db: %s",
1055 thr_err_string (ret));
1056 break;
1057 case TD_NOLIBTHREAD: /* expected: no libthread in child process (yet) */
1058 break;
1059 case TD_OK: /* libthread detected in child: we go live now! */
1060 thread_db_push_target ();
1061 event_pid = inferior_pid; /* for resume */
1062
1063 /* Now stop everyone else, and attach any new threads you find. */
1064 p_td_ta_thr_iter (main_threadagent,
1065 stop_or_attach_thread_callback,
1066 (void *) 0,
1067 TD_THR_ANY_STATE,
1068 TD_THR_LOWEST_PRIORITY,
1069 TD_SIGNO_MASK,
1070 TD_THR_ANY_USER_FLAGS);
1071
1072 /* Now go call wait on all the threads you've stopped:
1073 This allows us to absorb the SIGKILL event, and to make sure
1074 that the thread knows that it is stopped (Linux peculiarity). */
1075 p_td_ta_thr_iter (main_threadagent,
1076 wait_thread_callback,
1077 (void *) 0,
1078 TD_THR_ANY_STATE,
1079 TD_THR_LOWEST_PRIORITY,
1080 TD_SIGNO_MASK,
1081 TD_THR_ANY_USER_FLAGS);
1082
1083 break;
1084 }
1085quit:
1086 if (target_new_objfile_chain)
1087 target_new_objfile_chain (objfile);
1088}
1089
1090
1091/*
1092
1093 LOCAL FUNCTION
1094
1095 thread_db_alive - test thread for "aliveness"
1096
1097 SYNOPSIS
1098
1099 static bool thread_db_alive (int pid);
1100
1101 DESCRIPTION
1102
1103 returns true if thread still active in inferior.
1104
1105 */
1106
1107static int
fba45db2 1108thread_db_alive (int pid)
ed9a39eb
JM
1109{
1110 if (is_thread (pid)) /* user-space (non-kernel) thread */
1111 {
1112 td_thrhandle_t th;
1113 td_err_e ret;
1114
1115 pid = GET_THREAD (pid);
1116 if ((ret = p_td_ta_map_id2thr (main_threadagent, pid, &th)) != TD_OK)
1117 return 0; /* thread not found */
1118 if ((ret = p_td_thr_validate (&th)) != TD_OK)
1119 return 0; /* thread not valid */
1120 return 1; /* known thread: return true */
1121 }
1122 else if (target_beneath->to_thread_alive)
1123 return target_beneath->to_thread_alive (pid);
1124 else
1125 return 0; /* default to "not alive" (shouldn't happen anyway) */
1126}
1127
1128/*
1129 * get_lwp_from_thread_handle
1130 */
1131
1132static int /* lwpid_t or pid_t */
fba45db2 1133get_lwp_from_thread_handle (td_thrhandle_t *th)
ed9a39eb
JM
1134{
1135 td_thrinfo_t ti;
1136 td_err_e ret;
1137
1138 if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
1139 error ("get_lwp_from_thread_handle: thr_get_info failed: %s",
1140 thr_err_string (ret));
1141
1142 return ti.ti_lid;
1143}
1144
1145/*
1146 * get_lwp_from_thread_id
1147 */
1148
1149static int /* lwpid_t or pid_t */
064002de 1150get_lwp_from_thread_id (int tid /* thread_t? */)
ed9a39eb
JM
1151{
1152 td_thrhandle_t th;
1153 td_err_e ret;
1154
1155 if ((ret = p_td_ta_map_id2thr (main_threadagent, tid, &th)) != TD_OK)
1156 error ("get_lwp_from_thread_id: map_id2thr failed: %s",
1157 thr_err_string (ret));
1158
1159 return get_lwp_from_thread_handle (&th);
1160}
1161
1162/*
1163 * pid_to_str has to handle user-space threads.
1164 * If not a user-space thread, then pass the request on to the
1165 * underlying stratum if it can handle it: else call normal_pid_to_str.
1166 */
1167
1168static char *
1169thread_db_pid_to_str (int pid)
1170{
1171 static char buf[100];
1172 td_thrhandle_t th;
1173 td_thrinfo_t ti;
1174 td_err_e ret;
1175
1176 if (is_thread (pid))
1177 {
1178 if ((ret = p_td_ta_map_id2thr (main_threadagent,
1179 GET_THREAD (pid),
1180 &th)) != TD_OK)
1181 error ("thread_db: map_id2thr failed: %s", thr_err_string (ret));
1182
1183 if ((ret = p_td_thr_get_info (&th, &ti)) != TD_OK)
1184 error ("thread_db: thr_get_info failed: %s", thr_err_string (ret));
1185
1186 if (ti.ti_state == TD_THR_ACTIVE &&
1187 ti.ti_lid != 0)
1188 sprintf (buf, "Thread %d (LWP %d)", ti.ti_tid, ti.ti_lid);
1189 else
1190 sprintf (buf, "Thread %d (%s)", ti.ti_tid,
1191 thr_state_string (ti.ti_state));
1192 }
1193 else if (GET_LWP (pid))
1194 sprintf (buf, "LWP %d", GET_LWP (pid));
1195 else return normal_pid_to_str (pid);
1196
1197 return buf;
1198}
1199
1200/*
1201 * thread_db target vector functions:
1202 */
1203
1204static void
1205thread_db_files_info (struct target_ops *tgt_vector)
1206{
1207 /* This function will be unnecessary in real life. */
1208 printf_filtered ("thread_db stratum:\n");
1209 target_beneath->to_files_info (tgt_vector);
1210}
1211
1212/*
1213 * xfer_memory has to munge the inferior_pid before passing the call
1214 * down to the target layer.
1215 */
1216
1217static int
064002de
KB
1218thread_db_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int dowrite,
1219 struct target_ops *target)
ed9a39eb
JM
1220{
1221 struct cleanup *old_chain;
1222 int ret;
1223
1224 old_chain = save_inferior_pid ();
1225
1226 if (is_thread (inferior_pid) ||
1227 !target_thread_alive (inferior_pid))
1228 {
1229 /* FIXME: use the LID/LWP, so that underlying process layer
1230 can read memory from specific threads? */
1231 inferior_pid = main_prochandle.pid;
1232 }
1233
1234 ret = target_beneath->to_xfer_memory (memaddr, myaddr, len,
1235 dowrite, target);
1236 do_cleanups (old_chain);
1237 return ret;
1238}
1239
1240/*
1241 * fetch_registers has to determine if inferior_pid is a user-space thread.
1242 * If so, we use the thread_db API to get the registers.
1243 * And if not, we call the underlying process stratum.
1244 */
1245
1246static void
fba45db2 1247thread_db_fetch_registers (int regno)
ed9a39eb
JM
1248{
1249 td_thrhandle_t thandle;
d84dd0c5 1250 gdb_prfpregset_t fpregset;
ed9a39eb
JM
1251 prgregset_t gregset;
1252 thread_t thread;
1253 td_err_e ret;
1254
1255 if (!is_thread (inferior_pid)) /* kernel thread */
1256 { /* pass the request on to the target underneath. */
1257 target_beneath->to_fetch_registers (regno);
1258 return;
1259 }
1260
1261 /* convert inferior_pid into a td_thrhandle_t */
1262
1263 if ((thread = GET_THREAD (inferior_pid)) == 0)
1264 error ("fetch_registers: thread == 0");
1265
1266 if ((ret = p_td_ta_map_id2thr (main_threadagent, thread, &thandle)) != TD_OK)
1267 error ("fetch_registers: td_ta_map_id2thr: %s", thr_err_string (ret));
1268
1269 /* Get the integer regs:
1270 For the sparc, TD_PARTIALREG means that only i0->i7, l0->l7,
1271 pc and sp are saved (by a thread context switch). */
1272 if ((ret = p_td_thr_getgregs (&thandle, gregset)) != TD_OK &&
1273 ret != TD_PARTIALREG)
1274 error ("fetch_registers: td_thr_getgregs %s", thr_err_string (ret));
1275
1276 /* And, now the fp regs */
1277 if ((ret = p_td_thr_getfpregs (&thandle, &fpregset)) != TD_OK &&
1278 ret != TD_NOFPREGS)
1279 error ("fetch_registers: td_thr_getfpregs %s", thr_err_string (ret));
1280
1281/* Note that we must call supply_{g fp}regset *after* calling the td routines
1282 because the td routines call ps_lget* which affect the values stored in the
1283 registers array. */
1284
1285 supply_gregset (gregset);
1286 supply_fpregset (&fpregset);
1287
1288}
1289
1290/*
1291 * store_registers has to determine if inferior_pid is a user-space thread.
1292 * If so, we use the thread_db API to get the registers.
1293 * And if not, we call the underlying process stratum.
1294 */
1295
1296static void
fba45db2 1297thread_db_store_registers (int regno)
ed9a39eb
JM
1298{
1299 td_thrhandle_t thandle;
d84dd0c5 1300 gdb_prfpregset_t fpregset;
ed9a39eb
JM
1301 prgregset_t gregset;
1302 thread_t thread;
1303 td_err_e ret;
1304
1305 if (!is_thread (inferior_pid)) /* Kernel thread: */
1306 { /* pass the request on to the underlying target vector. */
1307 target_beneath->to_store_registers (regno);
1308 return;
1309 }
1310
1311 /* convert inferior_pid into a td_thrhandle_t */
1312
1313 if ((thread = GET_THREAD (inferior_pid)) == 0)
1314 error ("store_registers: thread == 0");
1315
1316 if ((ret = p_td_ta_map_id2thr (main_threadagent, thread, &thandle)) != TD_OK)
1317 error ("store_registers: td_ta_map_id2thr %s", thr_err_string (ret));
1318
1319 if (regno != -1)
1320 { /* Not writing all the regs */
1321 /* save new register value */
1322 /* MVS: I don't understand this... */
1323 char old_value[REGISTER_SIZE];
1324
1325 memcpy (old_value, &registers[REGISTER_BYTE (regno)], REGISTER_SIZE);
1326
1327 if ((ret = p_td_thr_getgregs (&thandle, gregset)) != TD_OK)
1328 error ("store_registers: td_thr_getgregs %s", thr_err_string (ret));
1329 if ((ret = p_td_thr_getfpregs (&thandle, &fpregset)) != TD_OK)
1330 error ("store_registers: td_thr_getfpregs %s", thr_err_string (ret));
1331
1332 /* restore new register value */
1333 memcpy (&registers[REGISTER_BYTE (regno)], old_value, REGISTER_SIZE);
1334
1335 }
1336
1337 fill_gregset (gregset, regno);
1338 fill_fpregset (&fpregset, regno);
1339
1340 if ((ret = p_td_thr_setgregs (&thandle, gregset)) != TD_OK)
1341 error ("store_registers: td_thr_setgregs %s", thr_err_string (ret));
1342 if ((ret = p_td_thr_setfpregs (&thandle, &fpregset)) != TD_OK &&
1343 ret != TD_NOFPREGS)
1344 error ("store_registers: td_thr_setfpregs %s", thr_err_string (ret));
1345}
1346
1347static void
fba45db2
KB
1348handle_new_thread (int tid, /* user thread id */
1349 int lid, /* kernel thread id */
1350 int verbose)
ed9a39eb
JM
1351{
1352 int gdb_pid = BUILD_THREAD (tid, main_prochandle.pid);
1353 int wait_pid, wait_status;
1354
1355 if (verbose)
1356 printf_filtered ("[New %s]\n", target_pid_to_str (gdb_pid));
1357 add_thread (gdb_pid);
1358
1359 if (lid != main_prochandle.pid)
1360 {
1361 attach_thread (lid);
1362 /* According to the Eric Paire model, we now have to send
1363 the restart signal to the new thread -- however, empirically,
1364 I do not find that to be necessary. */
1365 attach_pid = lid;
1366 }
1367}
1368
1369static void
fba45db2 1370test_for_new_thread (int tid, int lid, int verbose)
ed9a39eb
JM
1371{
1372 if (!in_thread_list (BUILD_THREAD (tid, main_prochandle.pid)))
1373 handle_new_thread (tid, lid, verbose);
1374}
1375
1376/*
1377 * Callback function that gets called once per USER thread
1378 * (i.e., not kernel) thread by td_ta_thr_iter.
1379 */
1380
1381static int
fba45db2 1382find_new_threads_callback (const td_thrhandle_t *th, void *ignored)
ed9a39eb
JM
1383{
1384 td_thrinfo_t ti;
1385 td_err_e ret;
1386
1387 if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
1388 {
1389 warning ("find_new_threads_callback: %s", thr_err_string (ret));
1390 return -1; /* bail out, get_info failed. */
1391 }
1392
1393 /* FIXME:
1394 As things now stand, this should never detect a new thread.
1395 But if it does, we could be in trouble because we aren't calling
1396 wait_thread_callback for it. */
1397 test_for_new_thread (ti.ti_tid, ti.ti_lid, 0);
1398 return 0;
1399}
1400
1401/*
1402 * find_new_threads uses the thread_db iterator function to discover
1403 * user-space threads. Then if the underlying process stratum has a
1404 * find_new_threads method, we call that too.
1405 */
1406
1407static void
fba45db2 1408thread_db_find_new_threads (void)
ed9a39eb
JM
1409{
1410 if (inferior_pid == -1) /* FIXME: still necessary? */
1411 {
1412 printf_filtered ("No process.\n");
1413 return;
1414 }
1415 p_td_ta_thr_iter (main_threadagent,
1416 find_new_threads_callback,
1417 (void *) 0,
1418 TD_THR_ANY_STATE,
1419 TD_THR_LOWEST_PRIORITY,
1420 TD_SIGNO_MASK,
1421 TD_THR_ANY_USER_FLAGS);
1422 if (target_beneath->to_find_new_threads)
1423 target_beneath->to_find_new_threads ();
1424}
1425
1426/*
1427 * Resume all threads, or resume a single thread.
1428 * If step is true, then single-step the appropriate thread
1429 * (or single-step inferior_pid, but continue everyone else).
1430 * If signo is true, then send that signal to at least one thread.
1431 */
1432
1433/*
1434 * This function is called once for each thread before resuming.
1435 * It sends continue (no step, and no signal) to each thread except
1436 * the main thread, and
1437 * the event thread (the one that stopped at a breakpoint etc.)
1438 *
1439 * The event thread is handled separately so that it can be sent
1440 * the stepping and signal args with which target_resume was called.
1441 *
1442 * The main thread is resumed last, so that the thread_db proc_service
1443 * callbacks will still work during the iterator function.
1444 */
1445
1446static int
fba45db2 1447resume_thread_callback (const td_thrhandle_t *th, void *data)
ed9a39eb
JM
1448{
1449 td_thrinfo_t ti;
1450 td_err_e ret;
1451
1452 if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
1453 {
1454 warning ("resume_thread_callback: %s", thr_err_string (ret));
1455 return -1; /* bail out, get_info failed. */
1456 }
1457 /* FIXME:
1458 As things now stand, this should never detect a new thread.
1459 But if it does, we could be in trouble because we aren't calling
1460 wait_thread_callback for it. */
1461 test_for_new_thread (ti.ti_tid, ti.ti_lid, 1);
1462
1463 if (ti.ti_lid != main_prochandle.pid &&
1464 ti.ti_lid != event_pid)
1465 {
1466 /* Unconditionally continue the thread with no signal.
1467 Only the event thread will get a signal of any kind. */
1468
1469 target_beneath->to_resume (ti.ti_lid, 0, 0);
1470 }
1471 return 0;
1472}
1473
1474static int
fba45db2 1475new_resume_thread_callback (threadinfo *thread, void *data)
ed9a39eb
JM
1476{
1477 if (thread->lid != event_pid &&
1478 thread->lid != main_prochandle.pid)
1479 {
1480 /* Unconditionally continue the thread with no signal (for now). */
1481
1482 target_beneath->to_resume (thread->lid, 0, 0);
1483 }
1484 return 0;
1485}
1486
1487static int last_resume_pid;
1488static int last_resume_step;
1489static int last_resume_signo;
1490
1491static void
fba45db2 1492thread_db_resume (int pid, int step, enum target_signal signo)
ed9a39eb
JM
1493{
1494 last_resume_pid = pid;
1495 last_resume_step = step;
1496 last_resume_signo = signo;
1497
1498 /* resuming a specific pid? */
1499 if (pid != -1)
1500 {
1501 if (is_thread (pid))
1502 pid = get_lwp_from_thread_id (GET_THREAD (pid));
1503 else if (GET_LWP (pid))
1504 pid = GET_LWP (pid);
1505 }
1506
1507 /* Apparently the interpretation of 'pid' is dependent on 'step':
1508 If step is true, then a specific pid means 'step only this pid'.
1509 But if step is not true, then pid means 'continue ALL pids, but
1510 give the signal only to this one'. */
1511 if (pid != -1 && step)
1512 {
1513 /* FIXME: is this gonna work in all circumstances? */
1514 target_beneath->to_resume (pid, step, signo);
1515 }
1516 else
1517 {
1518 /* 1) Continue all threads except the event thread and the main thread.
1519 2) resume the event thread with step and signo.
1520 3) If event thread != main thread, continue the main thread.
1521
1522 Note: order of 2 and 3 may need to be reversed. */
1523
1524 threadlist_iter (new_resume_thread_callback,
1525 (void *) 0,
1526 TD_THR_ANY_STATE,
1527 TD_THR_ANY_TYPE);
1528 /* now resume event thread, and if necessary also main thread. */
1529 if (event_pid)
1530 {
1531 target_beneath->to_resume (event_pid, step, signo);
1532 }
1533 if (event_pid != main_prochandle.pid)
1534 {
1535 target_beneath->to_resume (main_prochandle.pid, 0, 0);
1536 }
1537 }
1538}
1539
1540/* All new threads will be attached.
1541 All previously known threads will be stopped using kill (SIGKILL). */
1542
1543static int
1544stop_or_attach_thread_callback (const td_thrhandle_t *th, void *data)
1545{
1546 td_thrinfo_t ti;
1547 td_err_e ret;
1548 int gdb_pid;
1549 int on_off = 1;
1550
1551 if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
1552 {
1553 warning ("stop_or_attach_thread_callback: %s", thr_err_string (ret));
1554 return -1; /* bail out, get_info failed. */
1555 }
1556
1557 /* First add it to our internal list.
1558 We build this list anew at every wait event. */
1559 insert_thread (ti.ti_tid, ti.ti_lid, ti.ti_state, ti.ti_type);
1560 /* Now: if we've already seen it, stop it, else add it and attach it. */
1561 gdb_pid = BUILD_THREAD (ti.ti_tid, main_prochandle.pid);
1562 if (!in_thread_list (gdb_pid)) /* new thread */
1563 {
1564 handle_new_thread (ti.ti_tid, ti.ti_lid, 1);
1565 /* Enable thread events */
1566 if (p_td_thr_event_enable)
1567 if ((ret = p_td_thr_event_enable (th, on_off)) != TD_OK)
1568 warning ("stop_or_attach_thread: %s", thr_err_string (ret));
1569 }
1570 else if (ti.ti_lid != event_pid &&
1571 ti.ti_lid != main_prochandle.pid)
1572 {
1573 ret = (td_err_e) kill (ti.ti_lid, SIGSTOP);
1574 }
1575
1576 return 0;
1577}
1578
1579/*
1580 * Wait for signal N from pid PID.
1581 * If wait returns any other signals, put them back before returning.
1582 */
1583
1584static void
fba45db2 1585wait_for_stop (int pid)
ed9a39eb
JM
1586{
1587 int i;
1588 int retpid;
1589 int status;
1590
1591 /* Array of wait/signal status */
1592 /* FIXME: wrong data structure, we need a queue.
1593 Realtime signals may be delivered more than once.
1594 And at that, we really can't handle them (see below). */
1595#if defined (NSIG)
1596 static int wstatus [NSIG];
1597#elif defined (_NSIG)
1598 static int wstatus [_NSIG];
1599#else
1600#error No definition for number of signals!
1601#endif
1602
1603 /* clear wait/status list */
1604 memset (&wstatus, 0, sizeof (wstatus));
1605
1606 /* Now look for SIGSTOP event on all threads except event thread. */
1607 do {
1608 errno = 0;
1609 if (pid == main_prochandle.pid)
1610 retpid = waitpid (pid, &status, 0);
1611 else
1612 retpid = waitpid (pid, &status, __WCLONE);
1613
1614 if (retpid > 0)
1615 if (WSTOPSIG (status) == SIGSTOP)
1616 {
1617 /* Got the SIGSTOP event we're looking for.
1618 Throw it away, and throw any other events back! */
1619 for (i = 0; i < sizeof(wstatus) / sizeof (wstatus[0]); i++)
1620 if (wstatus[i])
1621 if (i != SIGSTOP)
1622 {
1623 kill (retpid, i);
1624 }
1625 break; /* all done */
1626 }
1627 else
1628 {
1629 int signo;
1630 /* Oops, got an event other than SIGSTOP.
1631 Save it, and throw it back after we find the SIGSTOP event. */
1632
1633 /* FIXME (how?) This method is going to fail for realtime
1634 signals, which cannot be put back simply by using kill. */
1635
1636 if (WIFEXITED (status))
1637 error ("Ack! Thread Exited event. What do I do now???");
1638 else if (WIFSTOPPED (status))
1639 signo = WSTOPSIG (status);
1640 else
1641 signo = WTERMSIG (status);
1642
1643 /* If a thread other than the event thread has hit a GDB
1644 breakpoint (as opposed to some random trap signal), then
1645 just arrange for it to hit it again later. Back up the
1646 PC if necessary. Don't forward the SIGTRAP signal to
1647 the thread. We will handle the current event, eventually
1648 we will resume all the threads, and this one will get
1649 it's breakpoint trap again.
1650
1651 If we do not do this, then we run the risk that the user
1652 will delete or disable the breakpoint, but the thread will
1653 have already tripped on it. */
1654
1655 if (retpid != event_pid &&
1656 signo == SIGTRAP &&
1657 breakpoint_inserted_here_p (read_pc_pid (retpid) -
1658 DECR_PC_AFTER_BREAK))
1659 {
1660 /* Set the pc to before the trap and DO NOT re-send the signal */
1661 if (DECR_PC_AFTER_BREAK)
1662 write_pc_pid (read_pc_pid (retpid) - DECR_PC_AFTER_BREAK,
1663 retpid);
1664 }
1665
1666 /* Since SIGINT gets forwarded to the entire process group
1667 (in the case where ^C is typed at the tty / console),
1668 just ignore all SIGINTs from other than the event thread. */
1669 else if (retpid != event_pid && signo == SIGINT)
1670 { /* do nothing. Signal will disappear into oblivion! */
1671 ;
1672 }
1673
1674 else /* This is some random signal other than a breakpoint. */
1675 {
1676 wstatus [signo] = 1;
1677 }
1678 child_resume (retpid, 0, TARGET_SIGNAL_0);
1679 continue;
1680 }
1681
1682 } while (errno == 0 || errno == EINTR);
1683}
1684
1685/*
1686 * wait_thread_callback
1687 *
1688 * Calls waitpid for each thread, repeatedly if necessary, until
1689 * SIGSTOP is returned. Afterward, if any other signals were returned
1690 * by waitpid, return them to the thread's pending queue by calling kill.
1691 */
1692
1693static int
1694wait_thread_callback (const td_thrhandle_t *th, void *data)
1695{
1696 td_thrinfo_t ti;
1697 td_err_e ret;
1698
1699 if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
1700 {
1701 warning ("wait_thread_callback: %s", thr_err_string (ret));
1702 return -1; /* bail out, get_info failed. */
1703 }
1704
1705 /* This callback to act on all threads except the event thread: */
1706 if (ti.ti_lid == event_pid || /* no need to wait (no sigstop) */
1707 ti.ti_lid == main_prochandle.pid) /* no need to wait (already waited) */
1708 return 0; /* don't wait on the event thread. */
1709
1710 wait_for_stop (ti.ti_lid);
1711 return 0; /* finished: next thread. */
1712}
1713
1714static int
fba45db2 1715new_wait_thread_callback (threadinfo *thread, void *data)
ed9a39eb
JM
1716{
1717 /* don't wait on the event thread -- it's already stopped and waited.
1718 Ditto the main thread. */
1719 if (thread->lid != event_pid &&
1720 thread->lid != main_prochandle.pid)
1721 {
1722 wait_for_stop (thread->lid);
1723 }
1724 return 0;
1725}
1726
1727/*
1728 * Wait for any thread to stop, by calling the underlying wait method.
1729 * The PID returned by the underlying target may be a kernel thread,
1730 * in which case we will want to convert it to the corresponding
1731 * user-space thread.
1732 */
1733
1734static int
1735thread_db_wait (int pid, struct target_waitstatus *ourstatus)
1736{
1737 td_thrhandle_t thandle;
1738 td_thrinfo_t ti;
1739 td_err_e ret;
1740 lwpid_t lwp;
1741 int retpid;
1742 int status;
1743 int save_errno;
1744
1745 /* OK, we're about to wait for an event from the running inferior.
1746 Make sure we're ignoring the right signals. */
1747
1748 check_all_signal_numbers (); /* see if magic signals changed. */
1749
1750 event_pid = 0;
1751 attach_pid = 0;
1752
1753 /* FIXME: should I do the wait right here inline? */
1754#if 0
1755 if (pid == -1)
1756 lwp = -1;
1757 else
1758 lwp = get_lwp_from_thread_id (GET_THREAD (pid));
1759#endif
1760
1761
1762 save_errno = linux_child_wait (-1, &retpid, &status);
1763 store_waitstatus (ourstatus, status);
1764
1765 /* Thread ID is irrelevant if the target process exited.
1766 FIXME: do I have any killing to do?
1767 Can I get this event mistakenly from a thread? */
1768 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
1769 return retpid;
1770
1771 /* OK, we got an event of interest.
1772 Go stop all threads and look for new ones.
1773 FIXME: maybe don't do this for the restart signal? Optimization... */
1774 event_pid = retpid;
1775
1776 /* If the last call to resume was for a specific thread, then we don't
1777 need to stop everyone else: they should already be stopped. */
1778 if (last_resume_step == 0 || last_resume_pid == -1)
1779 {
1780 /* Main thread must be stopped before calling the iterator. */
1781 if (retpid != main_prochandle.pid)
1782 {
1783 kill (main_prochandle.pid, SIGSTOP);
1784 wait_for_stop (main_prochandle.pid);
1785 }
1786
1787 empty_threadlist ();
1788 /* Now stop everyone else, and attach any new threads you find. */
1789 p_td_ta_thr_iter (main_threadagent,
1790 stop_or_attach_thread_callback,
1791 (void *) 0,
1792 TD_THR_ANY_STATE,
1793 TD_THR_LOWEST_PRIORITY,
1794 TD_SIGNO_MASK,
1795 TD_THR_ANY_USER_FLAGS);
1796
1797 /* Now go call wait on all the threads we've stopped:
1798 This allows us to absorb the SIGKILL event, and to make sure
1799 that the thread knows that it is stopped (Linux peculiarity). */
1800
1801 threadlist_iter (new_wait_thread_callback,
1802 (void *) 0,
1803 TD_THR_ANY_STATE,
1804 TD_THR_ANY_TYPE);
1805 }
1806
1807 /* Convert the kernel thread id to the corresponding thread id. */
1808
1809 /* If the process layer does not furnish an lwp,
1810 then perhaps the returned pid IS the lwp... */
1811 if ((lwp = GET_LWP (retpid)) == 0)
1812 lwp = retpid;
1813
1814 if ((ret = p_td_ta_map_lwp2thr (main_threadagent, lwp, &thandle)) != TD_OK)
1815 return retpid; /* LWP is not mapped onto a user-space thread. */
1816
1817 if ((ret = p_td_thr_validate (&thandle)) != TD_OK)
1818 return retpid; /* LWP is not mapped onto a valid thread. */
1819
1820 if ((ret = p_td_thr_get_info (&thandle, &ti)) != TD_OK)
1821 {
1822 warning ("thread_db: thr_get_info failed ('%s')", thr_err_string (ret));
1823 return retpid;
1824 }
1825
1826 retpid = BUILD_THREAD (ti.ti_tid, main_prochandle.pid);
1827 /* If this is a new user thread, notify GDB about it. */
1828 if (!in_thread_list (retpid))
1829 {
1830 printf_filtered ("[New %s]\n", target_pid_to_str (retpid));
1831 add_thread (retpid);
1832 }
1833
1834#if 0
1835 /* Now detect if this is a thread creation/deletion event: */
1836 check_for_thread_event (ourstatus, retpid);
1837#endif
1838 return retpid;
1839}
1840
1841/*
1842 * kill has to call the underlying kill.
1843 * FIXME: I'm not sure if it's necessary to check inferior_pid any more,
1844 * but we might need to fix inferior_pid up if it's a user thread.
1845 */
1846
1847static int
fba45db2 1848kill_thread_callback (td_thrhandle_t *th, void *data)
ed9a39eb
JM
1849{
1850 td_thrinfo_t ti;
1851 td_err_e ret;
1852
1853 /* Fixme:
1854 For Linux, threads may need to be waited. */
1855 if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
1856 {
1857 warning ("kill_thread_callback: %s", thr_err_string (ret));
1858 return -1; /* bail out, get_info failed. */
1859 }
1860
1861 if (ti.ti_lid != main_prochandle.pid)
1862 {
1863 kill (ti.ti_lid, SIGKILL);
1864 }
1865 return 0;
1866}
1867
1868
1869static void thread_db_kill (void)
1870{
1871 int rpid;
1872 int status;
1873
1874 /* Fixme:
1875 For Linux, threads may need to be waited. */
1876 if (inferior_pid != 0)
1877 {
1878 /* Go kill the children first. Save the main thread for last. */
1879 p_td_ta_thr_iter (main_threadagent,
1880 kill_thread_callback,
1881 (void *) 0,
1882 TD_THR_ANY_STATE,
1883 TD_THR_LOWEST_PRIORITY,
1884 TD_SIGNO_MASK,
1885 TD_THR_ANY_USER_FLAGS);
1886
1887 /* Turn off thread_db event-reporting API *before* killing the
1888 main thread, since this operation requires child memory access.
1889 Can't move this into thread_db_unpush target because then
1890 detach would not work. */
1891 disable_thread_event_reporting (main_threadagent);
1892
1893 inferior_pid = main_prochandle.pid;
1894
1895 /*
1896 * Since both procfs_kill and ptrace_kill call target_mourn,
1897 * it should be sufficient for me to call one of them.
1898 * That will result in my mourn being called, which will both
1899 * unpush me and call the underlying mourn.
1900 */
1901 target_beneath->to_kill ();
1902 }
1903
1904 /* Wait for all threads. */
1905 /* FIXME: need a universal wait_for_signal func? */
1906 do
1907 {
1908 rpid = waitpid (-1, &status, __WCLONE | WNOHANG);
1909 }
1910 while (rpid > 0 || errno == EINTR);
1911
1912 do
1913 {
1914 rpid = waitpid (-1, &status, WNOHANG);
1915 }
1916 while (rpid > 0 || errno == EINTR);
1917}
1918
1919/*
1920 * Mourn has to remove us from the target stack,
1921 * and then call the underlying mourn.
1922 */
1923
1924static void thread_db_mourn_inferior (void)
1925{
1926 thread_db_unpush_target ();
1927 target_mourn_inferior (); /* call the underlying mourn */
1928}
1929
1930/*
1931 * Detach has to remove us from the target stack,
1932 * and then call the underlying detach.
1933 *
1934 * But first, it has to detach all the cloned threads!
1935 */
1936
1937static int
fba45db2 1938detach_thread_callback (td_thrhandle_t *th, void *data)
ed9a39eb
JM
1939{
1940 /* Called once per thread. */
1941 td_thrinfo_t ti;
1942 td_err_e ret;
1943
1944 if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
1945 {
1946 warning ("detach_thread_callback: %s", thr_err_string (ret));
1947 return -1; /* bail out, get_info failed. */
1948 }
1949
1950 if (!in_thread_list (BUILD_THREAD (ti.ti_tid, main_prochandle.pid)))
1951 return 0; /* apparently we don't know this one. */
1952
1953 /* Save main thread for last, or the iterator will fail! */
1954 if (ti.ti_lid != main_prochandle.pid)
1955 {
1956 struct cleanup *old_chain;
1957 int off = 0;
1958
1959 /* Time to detach this thread.
1960 First disable thread_db event reporting for the thread. */
1961 if (p_td_thr_event_enable &&
1962 (ret = p_td_thr_event_enable (th, off)) != TD_OK)
1963 {
1964 warning ("detach_thread_callback: %s\n", thr_err_string (ret));
1965 return 0;
1966 }
1967
1968 /* Now cancel any pending SIGTRAPS. FIXME! */
1969
1970 /* Call underlying detach method. FIXME just detach it. */
1971 old_chain = save_inferior_pid ();
1972 inferior_pid = ti.ti_lid;
1973 detach (TARGET_SIGNAL_0);
1974 do_cleanups (old_chain);
1975 }
1976 return 0;
1977}
1978
1979static void
1980thread_db_detach (char *args, int from_tty)
1981{
1982 td_err_e ret;
1983
1984 if ((ret = p_td_ta_thr_iter (main_threadagent,
1985 detach_thread_callback,
1986 (void *) 0,
1987 TD_THR_ANY_STATE,
1988 TD_THR_LOWEST_PRIORITY,
1989 TD_SIGNO_MASK,
1990 TD_THR_ANY_USER_FLAGS))
1991 != TD_OK)
1992 warning ("detach (thr_iter): %s", thr_err_string (ret));
1993
1994 /* Turn off thread_db event-reporting API
1995 (before detaching the main thread) */
1996 disable_thread_event_reporting (main_threadagent);
1997
1998 thread_db_unpush_target ();
1999
2000 /* above call nullifies target_beneath, so don't use that! */
2001 inferior_pid = PIDGET (inferior_pid);
2002 target_detach (args, from_tty);
2003}
2004
2005
2006/*
2007 * We never want to actually create the inferior!
2008 *
2009 * If this is ever called, it means we were on the target stack
2010 * when the user said "run". But we don't want to be on the new
2011 * inferior's target stack until the thread_db / libthread
2012 * connection is ready to be made.
2013 *
2014 * So, what shall we do?
2015 * Unpush ourselves from the stack, and then invoke
2016 * find_default_create_inferior, which will invoke the
2017 * appropriate process_stratum target to do the create.
2018 */
2019
2020static void
fba45db2 2021thread_db_create_inferior (char *exec_file, char *allargs, char **env)
ed9a39eb
JM
2022{
2023 thread_db_unpush_target ();
2024 find_default_create_inferior (exec_file, allargs, env);
2025}
2026
2027/*
2028 * Thread_db target vector initializer.
2029 */
2030
2031void
fba45db2 2032init_thread_db_ops (void)
ed9a39eb
JM
2033{
2034 thread_db_ops.to_shortname = "multi-thread";
2035 thread_db_ops.to_longname = "multi-threaded child process.";
2036 thread_db_ops.to_doc = "Threads and pthreads support.";
2037 thread_db_ops.to_files_info = thread_db_files_info;
2038 thread_db_ops.to_create_inferior = thread_db_create_inferior;
2039 thread_db_ops.to_detach = thread_db_detach;
2040 thread_db_ops.to_wait = thread_db_wait;
2041 thread_db_ops.to_resume = thread_db_resume;
2042 thread_db_ops.to_mourn_inferior = thread_db_mourn_inferior;
2043 thread_db_ops.to_kill = thread_db_kill;
2044 thread_db_ops.to_xfer_memory = thread_db_xfer_memory;
2045 thread_db_ops.to_fetch_registers = thread_db_fetch_registers;
2046 thread_db_ops.to_store_registers = thread_db_store_registers;
2047 thread_db_ops.to_thread_alive = thread_db_alive;
2048 thread_db_ops.to_find_new_threads = thread_db_find_new_threads;
2049 thread_db_ops.to_pid_to_str = thread_db_pid_to_str;
2050 thread_db_ops.to_stratum = thread_stratum;
2051 thread_db_ops.to_has_thread_control = tc_schedlock;
2052 thread_db_ops.to_magic = OPS_MAGIC;
2053}
2054#endif /* HAVE_STDINT_H */
2055
2056/*
2057 * Module constructor / initializer function.
2058 * If connection to thread_db dynamic library is successful,
2059 * then initialize this module's target vectors and the
2060 * new_objfile hook.
2061 */
2062
2063
2064void
fba45db2 2065_initialize_thread_db (void)
ed9a39eb
JM
2066{
2067#ifdef HAVE_STDINT_H /* stub out entire module, leave initializer empty */
2068 if (init_thread_db_library ())
2069 {
2070 init_thread_db_ops ();
2071 add_target (&thread_db_ops);
2072 /*
2073 * Hook up to the new_objfile event.
2074 * If someone is already there, arrange for him to be called
2075 * after we are.
2076 */
2077 target_new_objfile_chain = target_new_objfile_hook;
2078 target_new_objfile_hook = thread_db_new_objfile;
2079 }
2080#endif /* HAVE_STDINT_H */
2081}
2082
This page took 0.25783 seconds and 4 git commands to generate.