2009-12-15 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
CommitLineData
3993f6b1 1/* GNU/Linux native-dependent code common to multiple platforms.
dba24537 2
0fb0cc75 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
e26af52f 4 Free Software Foundation, Inc.
3993f6b1
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
3993f6b1
DJ
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
3993f6b1
DJ
20
21#include "defs.h"
22#include "inferior.h"
23#include "target.h"
d6b0e80f 24#include "gdb_string.h"
3993f6b1 25#include "gdb_wait.h"
d6b0e80f
AC
26#include "gdb_assert.h"
27#ifdef HAVE_TKILL_SYSCALL
28#include <unistd.h>
29#include <sys/syscall.h>
30#endif
3993f6b1 31#include <sys/ptrace.h>
0274a8ce 32#include "linux-nat.h"
ac264b3b 33#include "linux-fork.h"
d6b0e80f
AC
34#include "gdbthread.h"
35#include "gdbcmd.h"
36#include "regcache.h"
4f844a66 37#include "regset.h"
10d6c8cd
DJ
38#include "inf-ptrace.h"
39#include "auxv.h"
dba24537
AC
40#include <sys/param.h> /* for MAXPATHLEN */
41#include <sys/procfs.h> /* for elf_gregset etc. */
42#include "elf-bfd.h" /* for elfcore_write_* */
43#include "gregset.h" /* for gregset */
44#include "gdbcore.h" /* for get_exec_file */
45#include <ctype.h> /* for isdigit */
46#include "gdbthread.h" /* for struct thread_info etc. */
47#include "gdb_stat.h" /* for struct stat */
48#include <fcntl.h> /* for O_RDONLY */
b84876c2
PA
49#include "inf-loop.h"
50#include "event-loop.h"
51#include "event-top.h"
07e059b5
VP
52#include <pwd.h>
53#include <sys/types.h>
54#include "gdb_dirent.h"
55#include "xml-support.h"
191c4426 56#include "terminal.h"
efcbbd14 57#include <sys/vfs.h>
6c95b8df 58#include "solib.h"
efcbbd14
UW
59
60#ifndef SPUFS_MAGIC
61#define SPUFS_MAGIC 0x23c9b64e
62#endif
dba24537 63
10568435
JK
64#ifdef HAVE_PERSONALITY
65# include <sys/personality.h>
66# if !HAVE_DECL_ADDR_NO_RANDOMIZE
67# define ADDR_NO_RANDOMIZE 0x0040000
68# endif
69#endif /* HAVE_PERSONALITY */
70
8a77dff3
VP
71/* This comment documents high-level logic of this file.
72
73Waiting for events in sync mode
74===============================
75
76When waiting for an event in a specific thread, we just use waitpid, passing
77the specific pid, and not passing WNOHANG.
78
79When waiting for an event in all threads, waitpid is not quite good. Prior to
80version 2.4, Linux can either wait for event in main thread, or in secondary
81threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82miss an event. The solution is to use non-blocking waitpid, together with
83sigsuspend. First, we use non-blocking waitpid to get an event in the main
84process, if any. Second, we use non-blocking waitpid with the __WCLONED
85flag to check for events in cloned processes. If nothing is found, we use
86sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87happened to a child process -- and SIGCHLD will be delivered both for events
88in main debugged process and in cloned processes. As soon as we know there's
89an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93blocked, the signal becomes pending and sigsuspend immediately
94notices it and returns.
95
96Waiting for events in async mode
97================================
98
7feb7d06
PA
99In async mode, GDB should always be ready to handle both user input
100and target events, so neither blocking waitpid nor sigsuspend are
101viable options. Instead, we should asynchronously notify the GDB main
102event loop whenever there's an unprocessed event from the target. We
103detect asynchronous target events by handling SIGCHLD signals. To
104notify the event loop about target events, the self-pipe trick is used
105--- a pipe is registered as waitable event source in the event loop,
106the event loop select/poll's on the read end of this pipe (as well on
107other event sources, e.g., stdin), and the SIGCHLD handler writes a
108byte to this pipe. This is more portable than relying on
109pselect/ppoll, since on kernels that lack those syscalls, libc
110emulates them with select/poll+sigprocmask, and that is racy
111(a.k.a. plain broken).
112
113Obviously, if we fail to notify the event loop if there's a target
114event, it's bad. OTOH, if we notify the event loop when there's no
115event from the target, linux_nat_wait will detect that there's no real
116event to report, and return event of type TARGET_WAITKIND_IGNORE.
117This is mostly harmless, but it will waste time and is better avoided.
118
119The main design point is that every time GDB is outside linux-nat.c,
120we have a SIGCHLD handler installed that is called when something
121happens to the target and notifies the GDB event loop. Whenever GDB
122core decides to handle the event, and calls into linux-nat.c, we
123process things as in sync mode, except that the we never block in
124sigsuspend.
125
126While processing an event, we may end up momentarily blocked in
127waitpid calls. Those waitpid calls, while blocking, are guarantied to
128return quickly. E.g., in all-stop mode, before reporting to the core
129that an LWP hit a breakpoint, all LWPs are stopped by sending them
130SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131Note that this is different from blocking indefinitely waiting for the
132next event --- here, we're already handling an event.
8a77dff3
VP
133
134Use of signals
135==============
136
137We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138signal is not entirely significant; we just need for a signal to be delivered,
139so that we can intercept it. SIGSTOP's advantage is that it can not be
140blocked. A disadvantage is that it is not a real-time signal, so it can only
141be queued once; we do not keep track of other sources of SIGSTOP.
142
143Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144use them, because they have special behavior when the signal is generated -
145not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146kills the entire thread group.
147
148A delivered SIGSTOP would stop the entire thread group, not just the thread we
149tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152We could use a real-time signal instead. This would solve those problems; we
153could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155generates it, and there are races with trying to find a signal that is not
156blocked. */
a0ef4274 157
dba24537
AC
158#ifndef O_LARGEFILE
159#define O_LARGEFILE 0
160#endif
0274a8ce 161
3993f6b1
DJ
162/* If the system headers did not provide the constants, hard-code the normal
163 values. */
164#ifndef PTRACE_EVENT_FORK
165
166#define PTRACE_SETOPTIONS 0x4200
167#define PTRACE_GETEVENTMSG 0x4201
168
169/* options set using PTRACE_SETOPTIONS */
170#define PTRACE_O_TRACESYSGOOD 0x00000001
171#define PTRACE_O_TRACEFORK 0x00000002
172#define PTRACE_O_TRACEVFORK 0x00000004
173#define PTRACE_O_TRACECLONE 0x00000008
174#define PTRACE_O_TRACEEXEC 0x00000010
9016a515
DJ
175#define PTRACE_O_TRACEVFORKDONE 0x00000020
176#define PTRACE_O_TRACEEXIT 0x00000040
3993f6b1
DJ
177
178/* Wait extended result codes for the above trace options. */
179#define PTRACE_EVENT_FORK 1
180#define PTRACE_EVENT_VFORK 2
181#define PTRACE_EVENT_CLONE 3
182#define PTRACE_EVENT_EXEC 4
c874c7fc 183#define PTRACE_EVENT_VFORK_DONE 5
9016a515 184#define PTRACE_EVENT_EXIT 6
3993f6b1
DJ
185
186#endif /* PTRACE_EVENT_FORK */
187
ca2163eb
PA
188/* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191#define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
3993f6b1
DJ
193/* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196#ifndef __WALL
197#define __WALL 0x40000000 /* Wait for any child. */
198#endif
199
02d3ff8c 200#ifndef PTRACE_GETSIGINFO
1ef18d08
PA
201# define PTRACE_GETSIGINFO 0x4202
202# define PTRACE_SETSIGINFO 0x4203
02d3ff8c
UW
203#endif
204
10d6c8cd
DJ
205/* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207static struct target_ops *linux_ops;
f973ed9c 208static struct target_ops linux_ops_saved;
10d6c8cd 209
9f0bdab8
DJ
210/* The method to call, if any, when a new thread is attached. */
211static void (*linux_nat_new_thread) (ptid_t);
212
5b009018
PA
213/* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
ac264b3b
MS
220/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
10d6c8cd
DJ
226 ULONGEST, LONGEST);
227
d6b0e80f 228static int debug_linux_nat;
920d2a44
AC
229static void
230show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232{
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235}
d6b0e80f 236
b84876c2
PA
237static int debug_linux_nat_async = 0;
238static void
239show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241{
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244}
245
10568435
JK
246static int disable_randomization = 1;
247
248static void
249show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251{
252#ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256#else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258Disabling randomization of debuggee's virtual address space is unsupported on\n\
259this platform.\n"), file);
260#endif /* !HAVE_PERSONALITY */
261}
262
263static void
264set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265{
266#ifndef HAVE_PERSONALITY
267 error (_("\
268Disabling randomization of debuggee's virtual address space is unsupported on\n\
269this platform."));
270#endif /* !HAVE_PERSONALITY */
271}
272
9016a515
DJ
273static int linux_parent_pid;
274
ae087d01
DJ
275struct simple_pid_list
276{
277 int pid;
3d799a95 278 int status;
ae087d01
DJ
279 struct simple_pid_list *next;
280};
281struct simple_pid_list *stopped_pids;
282
3993f6b1
DJ
283/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
284 can not be used, 1 if it can. */
285
286static int linux_supports_tracefork_flag = -1;
287
a96d9b2e
SDJ
288/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
289 can not be used, 1 if it can. */
290
291static int linux_supports_tracesysgood_flag = -1;
292
9016a515
DJ
293/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
294 PTRACE_O_TRACEVFORKDONE. */
295
296static int linux_supports_tracevforkdone_flag = -1;
297
b84876c2
PA
298/* Async mode support */
299
b84876c2
PA
300/* Zero if the async mode, although enabled, is masked, which means
301 linux_nat_wait should behave as if async mode was off. */
302static int linux_nat_async_mask_value = 1;
303
a96d9b2e
SDJ
304/* Stores the current used ptrace() options. */
305static int current_ptrace_options = 0;
306
b84876c2
PA
307/* The read/write ends of the pipe registered as waitable file in the
308 event loop. */
309static int linux_nat_event_pipe[2] = { -1, -1 };
310
7feb7d06 311/* Flush the event pipe. */
b84876c2 312
7feb7d06
PA
313static void
314async_file_flush (void)
b84876c2 315{
7feb7d06
PA
316 int ret;
317 char buf;
b84876c2 318
7feb7d06 319 do
b84876c2 320 {
7feb7d06 321 ret = read (linux_nat_event_pipe[0], &buf, 1);
b84876c2 322 }
7feb7d06 323 while (ret >= 0 || (ret == -1 && errno == EINTR));
b84876c2
PA
324}
325
7feb7d06
PA
326/* Put something (anything, doesn't matter what, or how much) in event
327 pipe, so that the select/poll in the event-loop realizes we have
328 something to process. */
252fbfc8 329
b84876c2 330static void
7feb7d06 331async_file_mark (void)
b84876c2 332{
7feb7d06 333 int ret;
b84876c2 334
7feb7d06
PA
335 /* It doesn't really matter what the pipe contains, as long we end
336 up with something in it. Might as well flush the previous
337 left-overs. */
338 async_file_flush ();
b84876c2 339
7feb7d06 340 do
b84876c2 341 {
7feb7d06 342 ret = write (linux_nat_event_pipe[1], "+", 1);
b84876c2 343 }
7feb7d06 344 while (ret == -1 && errno == EINTR);
b84876c2 345
7feb7d06
PA
346 /* Ignore EAGAIN. If the pipe is full, the event loop will already
347 be awakened anyway. */
b84876c2
PA
348}
349
7feb7d06
PA
350static void linux_nat_async (void (*callback)
351 (enum inferior_event_type event_type, void *context),
352 void *context);
353static int linux_nat_async_mask (int mask);
354static int kill_lwp (int lwpid, int signo);
355
356static int stop_callback (struct lwp_info *lp, void *data);
357
358static void block_child_signals (sigset_t *prev_mask);
359static void restore_child_signals_mask (sigset_t *prev_mask);
2277426b
PA
360
361struct lwp_info;
362static struct lwp_info *add_lwp (ptid_t ptid);
363static void purge_lwp_list (int pid);
364static struct lwp_info *find_lwp_pid (ptid_t ptid);
365
ae087d01
DJ
366\f
367/* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
369static void
3d799a95 370add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
ae087d01
DJ
371{
372 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
373 new_pid->pid = pid;
3d799a95 374 new_pid->status = status;
ae087d01
DJ
375 new_pid->next = *listp;
376 *listp = new_pid;
377}
378
379static int
3d799a95 380pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
ae087d01
DJ
381{
382 struct simple_pid_list **p;
383
384 for (p = listp; *p != NULL; p = &(*p)->next)
385 if ((*p)->pid == pid)
386 {
387 struct simple_pid_list *next = (*p)->next;
3d799a95 388 *status = (*p)->status;
ae087d01
DJ
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394}
395
3d799a95
DJ
396static void
397linux_record_stopped_pid (int pid, int status)
ae087d01 398{
3d799a95 399 add_to_pid_list (&stopped_pids, pid, status);
ae087d01
DJ
400}
401
3993f6b1
DJ
402\f
403/* A helper function for linux_test_for_tracefork, called after fork (). */
404
405static void
406linux_tracefork_child (void)
407{
408 int ret;
409
410 ptrace (PTRACE_TRACEME, 0, 0, 0);
411 kill (getpid (), SIGSTOP);
412 fork ();
48bb3cce 413 _exit (0);
3993f6b1
DJ
414}
415
7feb7d06 416/* Wrapper function for waitpid which handles EINTR. */
b957e937
DJ
417
418static int
419my_waitpid (int pid, int *status, int flags)
420{
421 int ret;
b84876c2 422
b957e937
DJ
423 do
424 {
425 ret = waitpid (pid, status, flags);
426 }
427 while (ret == -1 && errno == EINTR);
428
429 return ret;
430}
431
432/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
433
434 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
435 we know that the feature is not available. This may change the tracing
436 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
437
438 However, if it succeeds, we don't know for sure that the feature is
439 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
3993f6b1 440 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
b957e937
DJ
441 fork tracing, and let it fork. If the process exits, we assume that we
442 can't use TRACEFORK; if we get the fork notification, and we can extract
443 the new child's PID, then we assume that we can. */
3993f6b1
DJ
444
445static void
b957e937 446linux_test_for_tracefork (int original_pid)
3993f6b1
DJ
447{
448 int child_pid, ret, status;
449 long second_pid;
7feb7d06 450 sigset_t prev_mask;
4c28f408 451
7feb7d06
PA
452 /* We don't want those ptrace calls to be interrupted. */
453 block_child_signals (&prev_mask);
3993f6b1 454
b957e937
DJ
455 linux_supports_tracefork_flag = 0;
456 linux_supports_tracevforkdone_flag = 0;
457
458 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
459 if (ret != 0)
7feb7d06
PA
460 {
461 restore_child_signals_mask (&prev_mask);
462 return;
463 }
b957e937 464
3993f6b1
DJ
465 child_pid = fork ();
466 if (child_pid == -1)
e2e0b3e5 467 perror_with_name (("fork"));
3993f6b1
DJ
468
469 if (child_pid == 0)
470 linux_tracefork_child ();
471
b957e937 472 ret = my_waitpid (child_pid, &status, 0);
3993f6b1 473 if (ret == -1)
e2e0b3e5 474 perror_with_name (("waitpid"));
3993f6b1 475 else if (ret != child_pid)
8a3fe4f8 476 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
3993f6b1 477 if (! WIFSTOPPED (status))
8a3fe4f8 478 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
3993f6b1 479
3993f6b1
DJ
480 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
481 if (ret != 0)
482 {
b957e937
DJ
483 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
484 if (ret != 0)
485 {
8a3fe4f8 486 warning (_("linux_test_for_tracefork: failed to kill child"));
7feb7d06 487 restore_child_signals_mask (&prev_mask);
b957e937
DJ
488 return;
489 }
490
491 ret = my_waitpid (child_pid, &status, 0);
492 if (ret != child_pid)
8a3fe4f8 493 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
b957e937 494 else if (!WIFSIGNALED (status))
8a3fe4f8
AC
495 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
496 "killed child"), status);
b957e937 497
7feb7d06 498 restore_child_signals_mask (&prev_mask);
3993f6b1
DJ
499 return;
500 }
501
9016a515
DJ
502 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
503 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
504 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
505 linux_supports_tracevforkdone_flag = (ret == 0);
506
b957e937
DJ
507 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
508 if (ret != 0)
8a3fe4f8 509 warning (_("linux_test_for_tracefork: failed to resume child"));
b957e937
DJ
510
511 ret = my_waitpid (child_pid, &status, 0);
512
3993f6b1
DJ
513 if (ret == child_pid && WIFSTOPPED (status)
514 && status >> 16 == PTRACE_EVENT_FORK)
515 {
516 second_pid = 0;
517 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
518 if (ret == 0 && second_pid != 0)
519 {
520 int second_status;
521
522 linux_supports_tracefork_flag = 1;
b957e937
DJ
523 my_waitpid (second_pid, &second_status, 0);
524 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
525 if (ret != 0)
8a3fe4f8 526 warning (_("linux_test_for_tracefork: failed to kill second child"));
97725dc4 527 my_waitpid (second_pid, &status, 0);
3993f6b1
DJ
528 }
529 }
b957e937 530 else
8a3fe4f8
AC
531 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
532 "(%d, status 0x%x)"), ret, status);
3993f6b1 533
b957e937
DJ
534 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
535 if (ret != 0)
8a3fe4f8 536 warning (_("linux_test_for_tracefork: failed to kill child"));
b957e937 537 my_waitpid (child_pid, &status, 0);
4c28f408 538
7feb7d06 539 restore_child_signals_mask (&prev_mask);
3993f6b1
DJ
540}
541
a96d9b2e
SDJ
542/* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
543
544 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
545 we know that the feature is not available. This may change the tracing
546 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
547
548static void
549linux_test_for_tracesysgood (int original_pid)
550{
551 int ret;
552 sigset_t prev_mask;
553
554 /* We don't want those ptrace calls to be interrupted. */
555 block_child_signals (&prev_mask);
556
557 linux_supports_tracesysgood_flag = 0;
558
559 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
560 if (ret != 0)
561 goto out;
562
563 linux_supports_tracesysgood_flag = 1;
564out:
565 restore_child_signals_mask (&prev_mask);
566}
567
568/* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
569 This function also sets linux_supports_tracesysgood_flag. */
570
571static int
572linux_supports_tracesysgood (int pid)
573{
574 if (linux_supports_tracesysgood_flag == -1)
575 linux_test_for_tracesysgood (pid);
576 return linux_supports_tracesysgood_flag;
577}
578
3993f6b1
DJ
579/* Return non-zero iff we have tracefork functionality available.
580 This function also sets linux_supports_tracefork_flag. */
581
582static int
b957e937 583linux_supports_tracefork (int pid)
3993f6b1
DJ
584{
585 if (linux_supports_tracefork_flag == -1)
b957e937 586 linux_test_for_tracefork (pid);
3993f6b1
DJ
587 return linux_supports_tracefork_flag;
588}
589
9016a515 590static int
b957e937 591linux_supports_tracevforkdone (int pid)
9016a515
DJ
592{
593 if (linux_supports_tracefork_flag == -1)
b957e937 594 linux_test_for_tracefork (pid);
9016a515
DJ
595 return linux_supports_tracevforkdone_flag;
596}
597
a96d9b2e
SDJ
598static void
599linux_enable_tracesysgood (ptid_t ptid)
600{
601 int pid = ptid_get_lwp (ptid);
602
603 if (pid == 0)
604 pid = ptid_get_pid (ptid);
605
606 if (linux_supports_tracesysgood (pid) == 0)
607 return;
608
609 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
612}
613
3993f6b1 614\f
4de4c07c
DJ
615void
616linux_enable_event_reporting (ptid_t ptid)
617{
d3587048 618 int pid = ptid_get_lwp (ptid);
4de4c07c 619
d3587048
DJ
620 if (pid == 0)
621 pid = ptid_get_pid (ptid);
622
b957e937 623 if (! linux_supports_tracefork (pid))
4de4c07c
DJ
624 return;
625
a96d9b2e
SDJ
626 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
627 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
628
b957e937 629 if (linux_supports_tracevforkdone (pid))
a96d9b2e 630 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
9016a515
DJ
631
632 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
633 read-only process state. */
4de4c07c 634
a96d9b2e 635 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
4de4c07c
DJ
636}
637
6d8fd2b7
UW
638static void
639linux_child_post_attach (int pid)
4de4c07c
DJ
640{
641 linux_enable_event_reporting (pid_to_ptid (pid));
0ec9a092 642 check_for_thread_db ();
a96d9b2e 643 linux_enable_tracesysgood (pid_to_ptid (pid));
4de4c07c
DJ
644}
645
10d6c8cd 646static void
4de4c07c
DJ
647linux_child_post_startup_inferior (ptid_t ptid)
648{
649 linux_enable_event_reporting (ptid);
0ec9a092 650 check_for_thread_db ();
a96d9b2e 651 linux_enable_tracesysgood (ptid);
4de4c07c
DJ
652}
653
6d8fd2b7
UW
654static int
655linux_child_follow_fork (struct target_ops *ops, int follow_child)
3993f6b1 656{
7feb7d06 657 sigset_t prev_mask;
9016a515 658 int has_vforked;
4de4c07c
DJ
659 int parent_pid, child_pid;
660
7feb7d06 661 block_child_signals (&prev_mask);
b84876c2 662
e58b0e63
PA
663 has_vforked = (inferior_thread ()->pending_follow.kind
664 == TARGET_WAITKIND_VFORKED);
665 parent_pid = ptid_get_lwp (inferior_ptid);
d3587048 666 if (parent_pid == 0)
e58b0e63
PA
667 parent_pid = ptid_get_pid (inferior_ptid);
668 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
4de4c07c 669
2277426b
PA
670 if (!detach_fork)
671 linux_enable_event_reporting (pid_to_ptid (child_pid));
672
6c95b8df
PA
673 if (has_vforked
674 && !non_stop /* Non-stop always resumes both branches. */
675 && (!target_is_async_p () || sync_execution)
676 && !(follow_child || detach_fork || sched_multi))
677 {
678 /* The parent stays blocked inside the vfork syscall until the
679 child execs or exits. If we don't let the child run, then
680 the parent stays blocked. If we're telling the parent to run
681 in the foreground, the user will not be able to ctrl-c to get
682 back the terminal, effectively hanging the debug session. */
683 fprintf_filtered (gdb_stderr, _("\
684Can not resume the parent process over vfork in the foreground while \n\
685holding the child stopped. Try \"set detach-on-fork\" or \
686\"set schedule-multiple\".\n"));
687 return 1;
688 }
689
4de4c07c
DJ
690 if (! follow_child)
691 {
6c95b8df 692 struct lwp_info *child_lp = NULL;
4de4c07c 693
6c95b8df 694 /* We're already attached to the parent, by default. */
4de4c07c 695
ac264b3b
MS
696 /* Detach new forked process? */
697 if (detach_fork)
f75c00e4 698 {
6c95b8df
PA
699 /* Before detaching from the child, remove all breakpoints
700 from it. If we forked, then this has already been taken
701 care of by infrun.c. If we vforked however, any
702 breakpoint inserted in the parent is visible in the
703 child, even those added while stopped in a vfork
704 catchpoint. This will remove the breakpoints from the
705 parent also, but they'll be reinserted below. */
706 if (has_vforked)
707 {
708 /* keep breakpoints list in sync. */
709 remove_breakpoints_pid (GET_PID (inferior_ptid));
710 }
711
e85a822c 712 if (info_verbose || debug_linux_nat)
ac264b3b
MS
713 {
714 target_terminal_ours ();
715 fprintf_filtered (gdb_stdlog,
716 "Detaching after fork from child process %d.\n",
717 child_pid);
718 }
4de4c07c 719
ac264b3b
MS
720 ptrace (PTRACE_DETACH, child_pid, 0, 0);
721 }
722 else
723 {
77435e4c 724 struct inferior *parent_inf, *child_inf;
2277426b 725 struct cleanup *old_chain;
7f9f62ba
PA
726
727 /* Add process to GDB's tables. */
77435e4c
PA
728 child_inf = add_inferior (child_pid);
729
e58b0e63 730 parent_inf = current_inferior ();
77435e4c 731 child_inf->attach_flag = parent_inf->attach_flag;
191c4426 732 copy_terminal_info (child_inf, parent_inf);
7f9f62ba 733
2277426b 734 old_chain = save_inferior_ptid ();
6c95b8df 735 save_current_program_space ();
2277426b
PA
736
737 inferior_ptid = ptid_build (child_pid, child_pid, 0);
738 add_thread (inferior_ptid);
6c95b8df
PA
739 child_lp = add_lwp (inferior_ptid);
740 child_lp->stopped = 1;
741 child_lp->resumed = 1;
2277426b 742
6c95b8df
PA
743 /* If this is a vfork child, then the address-space is
744 shared with the parent. */
745 if (has_vforked)
746 {
747 child_inf->pspace = parent_inf->pspace;
748 child_inf->aspace = parent_inf->aspace;
749
750 /* The parent will be frozen until the child is done
751 with the shared region. Keep track of the
752 parent. */
753 child_inf->vfork_parent = parent_inf;
754 child_inf->pending_detach = 0;
755 parent_inf->vfork_child = child_inf;
756 parent_inf->pending_detach = 0;
757 }
758 else
759 {
760 child_inf->aspace = new_address_space ();
761 child_inf->pspace = add_program_space (child_inf->aspace);
762 child_inf->removable = 1;
763 set_current_program_space (child_inf->pspace);
764 clone_program_space (child_inf->pspace, parent_inf->pspace);
765
766 /* Let the shared library layer (solib-svr4) learn about
767 this new process, relocate the cloned exec, pull in
768 shared libraries, and install the solib event
769 breakpoint. If a "cloned-VM" event was propagated
770 better throughout the core, this wouldn't be
771 required. */
772 solib_create_inferior_hook ();
773 }
774
775 /* Let the thread_db layer learn about this new process. */
2277426b
PA
776 check_for_thread_db ();
777
778 do_cleanups (old_chain);
ac264b3b 779 }
9016a515
DJ
780
781 if (has_vforked)
782 {
6c95b8df
PA
783 struct lwp_info *lp;
784 struct inferior *parent_inf;
785
786 parent_inf = current_inferior ();
787
788 /* If we detached from the child, then we have to be careful
789 to not insert breakpoints in the parent until the child
790 is done with the shared memory region. However, if we're
791 staying attached to the child, then we can and should
792 insert breakpoints, so that we can debug it. A
793 subsequent child exec or exit is enough to know when does
794 the child stops using the parent's address space. */
795 parent_inf->waiting_for_vfork_done = detach_fork;
56710373 796 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
6c95b8df
PA
797
798 lp = find_lwp_pid (pid_to_ptid (parent_pid));
b957e937
DJ
799 gdb_assert (linux_supports_tracefork_flag >= 0);
800 if (linux_supports_tracevforkdone (0))
9016a515 801 {
6c95b8df
PA
802 if (debug_linux_nat)
803 fprintf_unfiltered (gdb_stdlog,
804 "LCFF: waiting for VFORK_DONE on %d\n",
805 parent_pid);
806
807 lp->stopped = 1;
808 lp->resumed = 1;
9016a515 809
6c95b8df
PA
810 /* We'll handle the VFORK_DONE event like any other
811 event, in target_wait. */
9016a515
DJ
812 }
813 else
814 {
815 /* We can't insert breakpoints until the child has
816 finished with the shared memory region. We need to
817 wait until that happens. Ideal would be to just
818 call:
819 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
820 - waitpid (parent_pid, &status, __WALL);
821 However, most architectures can't handle a syscall
822 being traced on the way out if it wasn't traced on
823 the way in.
824
825 We might also think to loop, continuing the child
826 until it exits or gets a SIGTRAP. One problem is
827 that the child might call ptrace with PTRACE_TRACEME.
828
829 There's no simple and reliable way to figure out when
830 the vforked child will be done with its copy of the
831 shared memory. We could step it out of the syscall,
832 two instructions, let it go, and then single-step the
833 parent once. When we have hardware single-step, this
834 would work; with software single-step it could still
835 be made to work but we'd have to be able to insert
836 single-step breakpoints in the child, and we'd have
837 to insert -just- the single-step breakpoint in the
838 parent. Very awkward.
839
840 In the end, the best we can do is to make sure it
841 runs for a little while. Hopefully it will be out of
842 range of any breakpoints we reinsert. Usually this
843 is only the single-step breakpoint at vfork's return
844 point. */
845
6c95b8df
PA
846 if (debug_linux_nat)
847 fprintf_unfiltered (gdb_stdlog,
848 "LCFF: no VFORK_DONE support, sleeping a bit\n");
849
9016a515 850 usleep (10000);
9016a515 851
6c95b8df
PA
852 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
853 and leave it pending. The next linux_nat_resume call
854 will notice a pending event, and bypasses actually
855 resuming the inferior. */
856 lp->status = 0;
857 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
858 lp->stopped = 0;
859 lp->resumed = 1;
860
861 /* If we're in async mode, need to tell the event loop
862 there's something here to process. */
863 if (target_can_async_p ())
864 async_file_mark ();
865 }
9016a515 866 }
4de4c07c 867 }
3993f6b1 868 else
4de4c07c 869 {
4e1c45ea 870 struct thread_info *tp;
77435e4c 871 struct inferior *parent_inf, *child_inf;
2277426b 872 struct lwp_info *lp;
6c95b8df 873 struct program_space *parent_pspace;
4de4c07c 874
e85a822c 875 if (info_verbose || debug_linux_nat)
f75c00e4
DJ
876 {
877 target_terminal_ours ();
6c95b8df
PA
878 if (has_vforked)
879 fprintf_filtered (gdb_stdlog, _("\
880Attaching after process %d vfork to child process %d.\n"),
881 parent_pid, child_pid);
882 else
883 fprintf_filtered (gdb_stdlog, _("\
884Attaching after process %d fork to child process %d.\n"),
885 parent_pid, child_pid);
f75c00e4 886 }
4de4c07c 887
7a7d3353
PA
888 /* Add the new inferior first, so that the target_detach below
889 doesn't unpush the target. */
890
77435e4c
PA
891 child_inf = add_inferior (child_pid);
892
e58b0e63 893 parent_inf = current_inferior ();
77435e4c 894 child_inf->attach_flag = parent_inf->attach_flag;
191c4426 895 copy_terminal_info (child_inf, parent_inf);
7a7d3353 896
6c95b8df 897 parent_pspace = parent_inf->pspace;
9016a515 898
6c95b8df
PA
899 /* If we're vforking, we want to hold on to the parent until the
900 child exits or execs. At child exec or exit time we can
901 remove the old breakpoints from the parent and detach or
902 resume debugging it. Otherwise, detach the parent now; we'll
903 want to reuse it's program/address spaces, but we can't set
904 them to the child before removing breakpoints from the
905 parent, otherwise, the breakpoints module could decide to
906 remove breakpoints from the wrong process (since they'd be
907 assigned to the same address space). */
9016a515
DJ
908
909 if (has_vforked)
7f9f62ba 910 {
6c95b8df
PA
911 gdb_assert (child_inf->vfork_parent == NULL);
912 gdb_assert (parent_inf->vfork_child == NULL);
913 child_inf->vfork_parent = parent_inf;
914 child_inf->pending_detach = 0;
915 parent_inf->vfork_child = child_inf;
916 parent_inf->pending_detach = detach_fork;
917 parent_inf->waiting_for_vfork_done = 0;
ac264b3b 918 }
2277426b 919 else if (detach_fork)
b84876c2 920 target_detach (NULL, 0);
4de4c07c 921
6c95b8df
PA
922 /* Note that the detach above makes PARENT_INF dangling. */
923
924 /* Add the child thread to the appropriate lists, and switch to
925 this new thread, before cloning the program space, and
926 informing the solib layer about this new process. */
927
9f0bdab8 928 inferior_ptid = ptid_build (child_pid, child_pid, 0);
2277426b
PA
929 add_thread (inferior_ptid);
930 lp = add_lwp (inferior_ptid);
931 lp->stopped = 1;
6c95b8df
PA
932 lp->resumed = 1;
933
934 /* If this is a vfork child, then the address-space is shared
935 with the parent. If we detached from the parent, then we can
936 reuse the parent's program/address spaces. */
937 if (has_vforked || detach_fork)
938 {
939 child_inf->pspace = parent_pspace;
940 child_inf->aspace = child_inf->pspace->aspace;
941 }
942 else
943 {
944 child_inf->aspace = new_address_space ();
945 child_inf->pspace = add_program_space (child_inf->aspace);
946 child_inf->removable = 1;
947 set_current_program_space (child_inf->pspace);
948 clone_program_space (child_inf->pspace, parent_pspace);
949
950 /* Let the shared library layer (solib-svr4) learn about
951 this new process, relocate the cloned exec, pull in
952 shared libraries, and install the solib event breakpoint.
953 If a "cloned-VM" event was propagated better throughout
954 the core, this wouldn't be required. */
955 solib_create_inferior_hook ();
956 }
ac264b3b 957
6c95b8df 958 /* Let the thread_db layer learn about this new process. */
ef29ce1a 959 check_for_thread_db ();
4de4c07c
DJ
960 }
961
7feb7d06 962 restore_child_signals_mask (&prev_mask);
4de4c07c
DJ
963 return 0;
964}
965
4de4c07c 966\f
6d8fd2b7
UW
967static void
968linux_child_insert_fork_catchpoint (int pid)
4de4c07c 969{
b957e937 970 if (! linux_supports_tracefork (pid))
8a3fe4f8 971 error (_("Your system does not support fork catchpoints."));
3993f6b1
DJ
972}
973
6d8fd2b7
UW
974static void
975linux_child_insert_vfork_catchpoint (int pid)
3993f6b1 976{
b957e937 977 if (!linux_supports_tracefork (pid))
8a3fe4f8 978 error (_("Your system does not support vfork catchpoints."));
3993f6b1
DJ
979}
980
6d8fd2b7
UW
981static void
982linux_child_insert_exec_catchpoint (int pid)
3993f6b1 983{
b957e937 984 if (!linux_supports_tracefork (pid))
8a3fe4f8 985 error (_("Your system does not support exec catchpoints."));
3993f6b1
DJ
986}
987
a96d9b2e
SDJ
988static int
989linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
990 int table_size, int *table)
991{
992 if (! linux_supports_tracesysgood (pid))
993 error (_("Your system does not support syscall catchpoints."));
994 /* On GNU/Linux, we ignore the arguments. It means that we only
995 enable the syscall catchpoints, but do not disable them.
996
997 Also, we do not use the `table' information because we do not
998 filter system calls here. We let GDB do the logic for us. */
999 return 0;
1000}
1001
d6b0e80f
AC
1002/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1003 are processes sharing the same VM space. A multi-threaded process
1004 is basically a group of such processes. However, such a grouping
1005 is almost entirely a user-space issue; the kernel doesn't enforce
1006 such a grouping at all (this might change in the future). In
1007 general, we'll rely on the threads library (i.e. the GNU/Linux
1008 Threads library) to provide such a grouping.
1009
1010 It is perfectly well possible to write a multi-threaded application
1011 without the assistance of a threads library, by using the clone
1012 system call directly. This module should be able to give some
1013 rudimentary support for debugging such applications if developers
1014 specify the CLONE_PTRACE flag in the clone system call, and are
1015 using the Linux kernel 2.4 or above.
1016
1017 Note that there are some peculiarities in GNU/Linux that affect
1018 this code:
1019
1020 - In general one should specify the __WCLONE flag to waitpid in
1021 order to make it report events for any of the cloned processes
1022 (and leave it out for the initial process). However, if a cloned
1023 process has exited the exit status is only reported if the
1024 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1025 we cannot use it since GDB must work on older systems too.
1026
1027 - When a traced, cloned process exits and is waited for by the
1028 debugger, the kernel reassigns it to the original parent and
1029 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1030 library doesn't notice this, which leads to the "zombie problem":
1031 When debugged a multi-threaded process that spawns a lot of
1032 threads will run out of processes, even if the threads exit,
1033 because the "zombies" stay around. */
1034
1035/* List of known LWPs. */
9f0bdab8 1036struct lwp_info *lwp_list;
d6b0e80f
AC
1037\f
1038
d6b0e80f
AC
1039/* Original signal mask. */
1040static sigset_t normal_mask;
1041
1042/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1043 _initialize_linux_nat. */
1044static sigset_t suspend_mask;
1045
7feb7d06
PA
1046/* Signals to block to make that sigsuspend work. */
1047static sigset_t blocked_mask;
1048
1049/* SIGCHLD action. */
1050struct sigaction sigchld_action;
b84876c2 1051
7feb7d06
PA
1052/* Block child signals (SIGCHLD and linux threads signals), and store
1053 the previous mask in PREV_MASK. */
84e46146 1054
7feb7d06
PA
1055static void
1056block_child_signals (sigset_t *prev_mask)
1057{
1058 /* Make sure SIGCHLD is blocked. */
1059 if (!sigismember (&blocked_mask, SIGCHLD))
1060 sigaddset (&blocked_mask, SIGCHLD);
1061
1062 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1063}
1064
1065/* Restore child signals mask, previously returned by
1066 block_child_signals. */
1067
1068static void
1069restore_child_signals_mask (sigset_t *prev_mask)
1070{
1071 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1072}
d6b0e80f
AC
1073\f
1074
1075/* Prototypes for local functions. */
1076static int stop_wait_callback (struct lwp_info *lp, void *data);
28439f5e 1077static int linux_thread_alive (ptid_t ptid);
6d8fd2b7 1078static char *linux_child_pid_to_exec_file (int pid);
710151dd
PA
1079static int cancel_breakpoint (struct lwp_info *lp);
1080
d6b0e80f
AC
1081\f
1082/* Convert wait status STATUS to a string. Used for printing debug
1083 messages only. */
1084
1085static char *
1086status_to_str (int status)
1087{
1088 static char buf[64];
1089
1090 if (WIFSTOPPED (status))
206aa767 1091 {
ca2163eb 1092 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
206aa767
DE
1093 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1094 strsignal (SIGTRAP));
1095 else
1096 snprintf (buf, sizeof (buf), "%s (stopped)",
1097 strsignal (WSTOPSIG (status)));
1098 }
d6b0e80f
AC
1099 else if (WIFSIGNALED (status))
1100 snprintf (buf, sizeof (buf), "%s (terminated)",
1101 strsignal (WSTOPSIG (status)));
1102 else
1103 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1104
1105 return buf;
1106}
1107
1108/* Initialize the list of LWPs. Note that this module, contrary to
1109 what GDB's generic threads layer does for its thread list,
1110 re-initializes the LWP lists whenever we mourn or detach (which
1111 doesn't involve mourning) the inferior. */
1112
1113static void
1114init_lwp_list (void)
1115{
1116 struct lwp_info *lp, *lpnext;
1117
1118 for (lp = lwp_list; lp; lp = lpnext)
1119 {
1120 lpnext = lp->next;
1121 xfree (lp);
1122 }
1123
1124 lwp_list = NULL;
d90e17a7
PA
1125}
1126
1127/* Remove all LWPs belong to PID from the lwp list. */
1128
1129static void
1130purge_lwp_list (int pid)
1131{
1132 struct lwp_info *lp, *lpprev, *lpnext;
1133
1134 lpprev = NULL;
1135
1136 for (lp = lwp_list; lp; lp = lpnext)
1137 {
1138 lpnext = lp->next;
1139
1140 if (ptid_get_pid (lp->ptid) == pid)
1141 {
1142 if (lp == lwp_list)
1143 lwp_list = lp->next;
1144 else
1145 lpprev->next = lp->next;
1146
1147 xfree (lp);
1148 }
1149 else
1150 lpprev = lp;
1151 }
1152}
1153
1154/* Return the number of known LWPs in the tgid given by PID. */
1155
1156static int
1157num_lwps (int pid)
1158{
1159 int count = 0;
1160 struct lwp_info *lp;
1161
1162 for (lp = lwp_list; lp; lp = lp->next)
1163 if (ptid_get_pid (lp->ptid) == pid)
1164 count++;
1165
1166 return count;
d6b0e80f
AC
1167}
1168
f973ed9c 1169/* Add the LWP specified by PID to the list. Return a pointer to the
9f0bdab8
DJ
1170 structure describing the new LWP. The LWP should already be stopped
1171 (with an exception for the very first LWP). */
d6b0e80f
AC
1172
1173static struct lwp_info *
1174add_lwp (ptid_t ptid)
1175{
1176 struct lwp_info *lp;
1177
1178 gdb_assert (is_lwp (ptid));
1179
1180 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1181
1182 memset (lp, 0, sizeof (struct lwp_info));
1183
1184 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1185
1186 lp->ptid = ptid;
1187
1188 lp->next = lwp_list;
1189 lwp_list = lp;
d6b0e80f 1190
d90e17a7 1191 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
9f0bdab8
DJ
1192 linux_nat_new_thread (ptid);
1193
d6b0e80f
AC
1194 return lp;
1195}
1196
1197/* Remove the LWP specified by PID from the list. */
1198
1199static void
1200delete_lwp (ptid_t ptid)
1201{
1202 struct lwp_info *lp, *lpprev;
1203
1204 lpprev = NULL;
1205
1206 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1207 if (ptid_equal (lp->ptid, ptid))
1208 break;
1209
1210 if (!lp)
1211 return;
1212
d6b0e80f
AC
1213 if (lpprev)
1214 lpprev->next = lp->next;
1215 else
1216 lwp_list = lp->next;
1217
1218 xfree (lp);
1219}
1220
1221/* Return a pointer to the structure describing the LWP corresponding
1222 to PID. If no corresponding LWP could be found, return NULL. */
1223
1224static struct lwp_info *
1225find_lwp_pid (ptid_t ptid)
1226{
1227 struct lwp_info *lp;
1228 int lwp;
1229
1230 if (is_lwp (ptid))
1231 lwp = GET_LWP (ptid);
1232 else
1233 lwp = GET_PID (ptid);
1234
1235 for (lp = lwp_list; lp; lp = lp->next)
1236 if (lwp == GET_LWP (lp->ptid))
1237 return lp;
1238
1239 return NULL;
1240}
1241
d90e17a7
PA
1242/* Returns true if PTID matches filter FILTER. FILTER can be the wild
1243 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1244 a process (ptid_is_pid returns true), in which case, all lwps of
1245 that give process match, lwps of other process do not; or, it can
1246 represent a specific thread, in which case, only that thread will
1247 match true. PTID must represent an LWP, it can never be a wild
1248 card. */
1249
1250static int
1251ptid_match (ptid_t ptid, ptid_t filter)
1252{
1253 /* Since both parameters have the same type, prevent easy mistakes
1254 from happening. */
1255 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1256 && !ptid_equal (ptid, null_ptid));
1257
1258 if (ptid_equal (filter, minus_one_ptid))
1259 return 1;
1260 if (ptid_is_pid (filter)
1261 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1262 return 1;
1263 else if (ptid_equal (ptid, filter))
1264 return 1;
1265
1266 return 0;
1267}
1268
d6b0e80f
AC
1269/* Call CALLBACK with its second argument set to DATA for every LWP in
1270 the list. If CALLBACK returns 1 for a particular LWP, return a
1271 pointer to the structure describing that LWP immediately.
1272 Otherwise return NULL. */
1273
1274struct lwp_info *
d90e17a7
PA
1275iterate_over_lwps (ptid_t filter,
1276 int (*callback) (struct lwp_info *, void *),
1277 void *data)
d6b0e80f
AC
1278{
1279 struct lwp_info *lp, *lpnext;
1280
1281 for (lp = lwp_list; lp; lp = lpnext)
1282 {
1283 lpnext = lp->next;
d90e17a7
PA
1284
1285 if (ptid_match (lp->ptid, filter))
1286 {
1287 if ((*callback) (lp, data))
1288 return lp;
1289 }
d6b0e80f
AC
1290 }
1291
1292 return NULL;
1293}
1294
2277426b
PA
1295/* Update our internal state when changing from one checkpoint to
1296 another indicated by NEW_PTID. We can only switch single-threaded
1297 applications, so we only create one new LWP, and the previous list
1298 is discarded. */
f973ed9c
DJ
1299
1300void
1301linux_nat_switch_fork (ptid_t new_ptid)
1302{
1303 struct lwp_info *lp;
1304
2277426b
PA
1305 purge_lwp_list (GET_PID (inferior_ptid));
1306
f973ed9c
DJ
1307 lp = add_lwp (new_ptid);
1308 lp->stopped = 1;
e26af52f 1309
2277426b
PA
1310 /* This changes the thread's ptid while preserving the gdb thread
1311 num. Also changes the inferior pid, while preserving the
1312 inferior num. */
1313 thread_change_ptid (inferior_ptid, new_ptid);
1314
1315 /* We've just told GDB core that the thread changed target id, but,
1316 in fact, it really is a different thread, with different register
1317 contents. */
1318 registers_changed ();
e26af52f
DJ
1319}
1320
e26af52f
DJ
1321/* Handle the exit of a single thread LP. */
1322
1323static void
1324exit_lwp (struct lwp_info *lp)
1325{
e09875d4 1326 struct thread_info *th = find_thread_ptid (lp->ptid);
063bfe2e
VP
1327
1328 if (th)
e26af52f 1329 {
17faa917
DJ
1330 if (print_thread_events)
1331 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1332
4f8d22e3 1333 delete_thread (lp->ptid);
e26af52f
DJ
1334 }
1335
1336 delete_lwp (lp->ptid);
1337}
1338
4d062f1a
PA
1339/* Return an lwp's tgid, found in `/proc/PID/status'. */
1340
1341int
1342linux_proc_get_tgid (int lwpid)
1343{
1344 FILE *status_file;
1345 char buf[100];
1346 int tgid = -1;
1347
1348 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1349 status_file = fopen (buf, "r");
1350 if (status_file != NULL)
1351 {
1352 while (fgets (buf, sizeof (buf), status_file))
1353 {
1354 if (strncmp (buf, "Tgid:", 5) == 0)
1355 {
1356 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1357 break;
1358 }
1359 }
1360
1361 fclose (status_file);
1362 }
1363
1364 return tgid;
1365}
1366
a0ef4274
DJ
1367/* Detect `T (stopped)' in `/proc/PID/status'.
1368 Other states including `T (tracing stop)' are reported as false. */
1369
1370static int
1371pid_is_stopped (pid_t pid)
1372{
1373 FILE *status_file;
1374 char buf[100];
1375 int retval = 0;
1376
1377 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1378 status_file = fopen (buf, "r");
1379 if (status_file != NULL)
1380 {
1381 int have_state = 0;
1382
1383 while (fgets (buf, sizeof (buf), status_file))
1384 {
1385 if (strncmp (buf, "State:", 6) == 0)
1386 {
1387 have_state = 1;
1388 break;
1389 }
1390 }
1391 if (have_state && strstr (buf, "T (stopped)") != NULL)
1392 retval = 1;
1393 fclose (status_file);
1394 }
1395 return retval;
1396}
1397
1398/* Wait for the LWP specified by LP, which we have just attached to.
1399 Returns a wait status for that LWP, to cache. */
1400
1401static int
1402linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1403 int *signalled)
1404{
1405 pid_t new_pid, pid = GET_LWP (ptid);
1406 int status;
1407
1408 if (pid_is_stopped (pid))
1409 {
1410 if (debug_linux_nat)
1411 fprintf_unfiltered (gdb_stdlog,
1412 "LNPAW: Attaching to a stopped process\n");
1413
1414 /* The process is definitely stopped. It is in a job control
1415 stop, unless the kernel predates the TASK_STOPPED /
1416 TASK_TRACED distinction, in which case it might be in a
1417 ptrace stop. Make sure it is in a ptrace stop; from there we
1418 can kill it, signal it, et cetera.
1419
1420 First make sure there is a pending SIGSTOP. Since we are
1421 already attached, the process can not transition from stopped
1422 to running without a PTRACE_CONT; so we know this signal will
1423 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1424 probably already in the queue (unless this kernel is old
1425 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1426 is not an RT signal, it can only be queued once. */
1427 kill_lwp (pid, SIGSTOP);
1428
1429 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1430 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1431 ptrace (PTRACE_CONT, pid, 0, 0);
1432 }
1433
1434 /* Make sure the initial process is stopped. The user-level threads
1435 layer might want to poke around in the inferior, and that won't
1436 work if things haven't stabilized yet. */
1437 new_pid = my_waitpid (pid, &status, 0);
1438 if (new_pid == -1 && errno == ECHILD)
1439 {
1440 if (first)
1441 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1442
1443 /* Try again with __WCLONE to check cloned processes. */
1444 new_pid = my_waitpid (pid, &status, __WCLONE);
1445 *cloned = 1;
1446 }
1447
dacc9cb2
PP
1448 gdb_assert (pid == new_pid);
1449
1450 if (!WIFSTOPPED (status))
1451 {
1452 /* The pid we tried to attach has apparently just exited. */
1453 if (debug_linux_nat)
1454 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1455 pid, status_to_str (status));
1456 return status;
1457 }
a0ef4274
DJ
1458
1459 if (WSTOPSIG (status) != SIGSTOP)
1460 {
1461 *signalled = 1;
1462 if (debug_linux_nat)
1463 fprintf_unfiltered (gdb_stdlog,
1464 "LNPAW: Received %s after attaching\n",
1465 status_to_str (status));
1466 }
1467
1468 return status;
1469}
1470
1471/* Attach to the LWP specified by PID. Return 0 if successful or -1
1472 if the new LWP could not be attached. */
d6b0e80f 1473
9ee57c33 1474int
93815fbf 1475lin_lwp_attach_lwp (ptid_t ptid)
d6b0e80f 1476{
9ee57c33 1477 struct lwp_info *lp;
7feb7d06 1478 sigset_t prev_mask;
d6b0e80f
AC
1479
1480 gdb_assert (is_lwp (ptid));
1481
7feb7d06 1482 block_child_signals (&prev_mask);
d6b0e80f 1483
9ee57c33 1484 lp = find_lwp_pid (ptid);
d6b0e80f
AC
1485
1486 /* We assume that we're already attached to any LWP that has an id
1487 equal to the overall process id, and to any LWP that is already
1488 in our list of LWPs. If we're not seeing exit events from threads
1489 and we've had PID wraparound since we last tried to stop all threads,
1490 this assumption might be wrong; fortunately, this is very unlikely
1491 to happen. */
9ee57c33 1492 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
d6b0e80f 1493 {
a0ef4274 1494 int status, cloned = 0, signalled = 0;
d6b0e80f
AC
1495
1496 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
9ee57c33
DJ
1497 {
1498 /* If we fail to attach to the thread, issue a warning,
1499 but continue. One way this can happen is if thread
e9efe249 1500 creation is interrupted; as of Linux kernel 2.6.19, a
9ee57c33
DJ
1501 bug may place threads in the thread list and then fail
1502 to create them. */
1503 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1504 safe_strerror (errno));
7feb7d06 1505 restore_child_signals_mask (&prev_mask);
9ee57c33
DJ
1506 return -1;
1507 }
1508
d6b0e80f
AC
1509 if (debug_linux_nat)
1510 fprintf_unfiltered (gdb_stdlog,
1511 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1512 target_pid_to_str (ptid));
1513
a0ef4274 1514 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
dacc9cb2
PP
1515 if (!WIFSTOPPED (status))
1516 return -1;
1517
a0ef4274
DJ
1518 lp = add_lwp (ptid);
1519 lp->stopped = 1;
1520 lp->cloned = cloned;
1521 lp->signalled = signalled;
1522 if (WSTOPSIG (status) != SIGSTOP)
d6b0e80f 1523 {
a0ef4274
DJ
1524 lp->resumed = 1;
1525 lp->status = status;
d6b0e80f
AC
1526 }
1527
a0ef4274 1528 target_post_attach (GET_LWP (lp->ptid));
d6b0e80f
AC
1529
1530 if (debug_linux_nat)
1531 {
1532 fprintf_unfiltered (gdb_stdlog,
1533 "LLAL: waitpid %s received %s\n",
1534 target_pid_to_str (ptid),
1535 status_to_str (status));
1536 }
1537 }
1538 else
1539 {
1540 /* We assume that the LWP representing the original process is
1541 already stopped. Mark it as stopped in the data structure
155bd5d1
AC
1542 that the GNU/linux ptrace layer uses to keep track of
1543 threads. Note that this won't have already been done since
1544 the main thread will have, we assume, been stopped by an
1545 attach from a different layer. */
9ee57c33
DJ
1546 if (lp == NULL)
1547 lp = add_lwp (ptid);
d6b0e80f
AC
1548 lp->stopped = 1;
1549 }
9ee57c33 1550
7feb7d06 1551 restore_child_signals_mask (&prev_mask);
9ee57c33 1552 return 0;
d6b0e80f
AC
1553}
1554
b84876c2 1555static void
136d6dae
VP
1556linux_nat_create_inferior (struct target_ops *ops,
1557 char *exec_file, char *allargs, char **env,
b84876c2
PA
1558 int from_tty)
1559{
10568435
JK
1560#ifdef HAVE_PERSONALITY
1561 int personality_orig = 0, personality_set = 0;
1562#endif /* HAVE_PERSONALITY */
b84876c2
PA
1563
1564 /* The fork_child mechanism is synchronous and calls target_wait, so
1565 we have to mask the async mode. */
1566
10568435
JK
1567#ifdef HAVE_PERSONALITY
1568 if (disable_randomization)
1569 {
1570 errno = 0;
1571 personality_orig = personality (0xffffffff);
1572 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1573 {
1574 personality_set = 1;
1575 personality (personality_orig | ADDR_NO_RANDOMIZE);
1576 }
1577 if (errno != 0 || (personality_set
1578 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1579 warning (_("Error disabling address space randomization: %s"),
1580 safe_strerror (errno));
1581 }
1582#endif /* HAVE_PERSONALITY */
1583
136d6dae 1584 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
b84876c2 1585
10568435
JK
1586#ifdef HAVE_PERSONALITY
1587 if (personality_set)
1588 {
1589 errno = 0;
1590 personality (personality_orig);
1591 if (errno != 0)
1592 warning (_("Error restoring address space randomization: %s"),
1593 safe_strerror (errno));
1594 }
1595#endif /* HAVE_PERSONALITY */
b84876c2
PA
1596}
1597
d6b0e80f 1598static void
136d6dae 1599linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f
AC
1600{
1601 struct lwp_info *lp;
d6b0e80f 1602 int status;
af990527 1603 ptid_t ptid;
d6b0e80f 1604
136d6dae 1605 linux_ops->to_attach (ops, args, from_tty);
d6b0e80f 1606
af990527
PA
1607 /* The ptrace base target adds the main thread with (pid,0,0)
1608 format. Decorate it with lwp info. */
1609 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1610 thread_change_ptid (inferior_ptid, ptid);
1611
9f0bdab8 1612 /* Add the initial process as the first LWP to the list. */
af990527 1613 lp = add_lwp (ptid);
a0ef4274
DJ
1614
1615 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1616 &lp->signalled);
dacc9cb2
PP
1617 if (!WIFSTOPPED (status))
1618 {
1619 if (WIFEXITED (status))
1620 {
1621 int exit_code = WEXITSTATUS (status);
1622
1623 target_terminal_ours ();
1624 target_mourn_inferior ();
1625 if (exit_code == 0)
1626 error (_("Unable to attach: program exited normally."));
1627 else
1628 error (_("Unable to attach: program exited with code %d."),
1629 exit_code);
1630 }
1631 else if (WIFSIGNALED (status))
1632 {
1633 enum target_signal signo;
1634
1635 target_terminal_ours ();
1636 target_mourn_inferior ();
1637
1638 signo = target_signal_from_host (WTERMSIG (status));
1639 error (_("Unable to attach: program terminated with signal "
1640 "%s, %s."),
1641 target_signal_to_name (signo),
1642 target_signal_to_string (signo));
1643 }
1644
1645 internal_error (__FILE__, __LINE__,
1646 _("unexpected status %d for PID %ld"),
1647 status, (long) GET_LWP (ptid));
1648 }
1649
a0ef4274 1650 lp->stopped = 1;
9f0bdab8 1651
a0ef4274 1652 /* Save the wait status to report later. */
d6b0e80f 1653 lp->resumed = 1;
a0ef4274
DJ
1654 if (debug_linux_nat)
1655 fprintf_unfiltered (gdb_stdlog,
1656 "LNA: waitpid %ld, saving status %s\n",
1657 (long) GET_PID (lp->ptid), status_to_str (status));
710151dd 1658
7feb7d06
PA
1659 lp->status = status;
1660
1661 if (target_can_async_p ())
1662 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1663}
1664
a0ef4274
DJ
1665/* Get pending status of LP. */
1666static int
1667get_pending_status (struct lwp_info *lp, int *status)
1668{
ca2163eb
PA
1669 enum target_signal signo = TARGET_SIGNAL_0;
1670
1671 /* If we paused threads momentarily, we may have stored pending
1672 events in lp->status or lp->waitstatus (see stop_wait_callback),
1673 and GDB core hasn't seen any signal for those threads.
1674 Otherwise, the last signal reported to the core is found in the
1675 thread object's stop_signal.
1676
1677 There's a corner case that isn't handled here at present. Only
1678 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1679 stop_signal make sense as a real signal to pass to the inferior.
1680 Some catchpoint related events, like
1681 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1682 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1683 those traps are debug API (ptrace in our case) related and
1684 induced; the inferior wouldn't see them if it wasn't being
1685 traced. Hence, we should never pass them to the inferior, even
1686 when set to pass state. Since this corner case isn't handled by
1687 infrun.c when proceeding with a signal, for consistency, neither
1688 do we handle it here (or elsewhere in the file we check for
1689 signal pass state). Normally SIGTRAP isn't set to pass state, so
1690 this is really a corner case. */
1691
1692 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1693 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1694 else if (lp->status)
1695 signo = target_signal_from_host (WSTOPSIG (lp->status));
1696 else if (non_stop && !is_executing (lp->ptid))
1697 {
1698 struct thread_info *tp = find_thread_ptid (lp->ptid);
1699 signo = tp->stop_signal;
1700 }
1701 else if (!non_stop)
a0ef4274 1702 {
ca2163eb
PA
1703 struct target_waitstatus last;
1704 ptid_t last_ptid;
4c28f408 1705
ca2163eb 1706 get_last_target_status (&last_ptid, &last);
4c28f408 1707
ca2163eb
PA
1708 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1709 {
e09875d4 1710 struct thread_info *tp = find_thread_ptid (lp->ptid);
2020b7ab 1711 signo = tp->stop_signal;
4c28f408 1712 }
ca2163eb 1713 }
4c28f408 1714
ca2163eb 1715 *status = 0;
4c28f408 1716
ca2163eb
PA
1717 if (signo == TARGET_SIGNAL_0)
1718 {
1719 if (debug_linux_nat)
1720 fprintf_unfiltered (gdb_stdlog,
1721 "GPT: lwp %s has no pending signal\n",
1722 target_pid_to_str (lp->ptid));
1723 }
1724 else if (!signal_pass_state (signo))
1725 {
1726 if (debug_linux_nat)
1727 fprintf_unfiltered (gdb_stdlog, "\
1728GPT: lwp %s had signal %s, but it is in no pass state\n",
1729 target_pid_to_str (lp->ptid),
1730 target_signal_to_string (signo));
a0ef4274 1731 }
a0ef4274 1732 else
4c28f408 1733 {
ca2163eb
PA
1734 *status = W_STOPCODE (target_signal_to_host (signo));
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "GPT: lwp %s has pending signal %s\n",
1739 target_pid_to_str (lp->ptid),
1740 target_signal_to_string (signo));
4c28f408 1741 }
a0ef4274
DJ
1742
1743 return 0;
1744}
1745
d6b0e80f
AC
1746static int
1747detach_callback (struct lwp_info *lp, void *data)
1748{
1749 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1750
1751 if (debug_linux_nat && lp->status)
1752 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1753 strsignal (WSTOPSIG (lp->status)),
1754 target_pid_to_str (lp->ptid));
1755
a0ef4274
DJ
1756 /* If there is a pending SIGSTOP, get rid of it. */
1757 if (lp->signalled)
d6b0e80f 1758 {
d6b0e80f
AC
1759 if (debug_linux_nat)
1760 fprintf_unfiltered (gdb_stdlog,
a0ef4274
DJ
1761 "DC: Sending SIGCONT to %s\n",
1762 target_pid_to_str (lp->ptid));
d6b0e80f 1763
a0ef4274 1764 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
d6b0e80f 1765 lp->signalled = 0;
d6b0e80f
AC
1766 }
1767
1768 /* We don't actually detach from the LWP that has an id equal to the
1769 overall process id just yet. */
1770 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1771 {
a0ef4274
DJ
1772 int status = 0;
1773
1774 /* Pass on any pending signal for this LWP. */
1775 get_pending_status (lp, &status);
1776
d6b0e80f
AC
1777 errno = 0;
1778 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
a0ef4274 1779 WSTOPSIG (status)) < 0)
8a3fe4f8 1780 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
d6b0e80f
AC
1781 safe_strerror (errno));
1782
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1786 target_pid_to_str (lp->ptid),
7feb7d06 1787 strsignal (WSTOPSIG (status)));
d6b0e80f
AC
1788
1789 delete_lwp (lp->ptid);
1790 }
1791
1792 return 0;
1793}
1794
1795static void
136d6dae 1796linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f 1797{
b84876c2 1798 int pid;
a0ef4274
DJ
1799 int status;
1800 enum target_signal sig;
d90e17a7
PA
1801 struct lwp_info *main_lwp;
1802
1803 pid = GET_PID (inferior_ptid);
a0ef4274 1804
b84876c2
PA
1805 if (target_can_async_p ())
1806 linux_nat_async (NULL, 0);
1807
4c28f408
PA
1808 /* Stop all threads before detaching. ptrace requires that the
1809 thread is stopped to sucessfully detach. */
d90e17a7 1810 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
4c28f408
PA
1811 /* ... and wait until all of them have reported back that
1812 they're no longer running. */
d90e17a7 1813 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
4c28f408 1814
d90e17a7 1815 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
d6b0e80f
AC
1816
1817 /* Only the initial process should be left right now. */
d90e17a7
PA
1818 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1819
1820 main_lwp = find_lwp_pid (pid_to_ptid (pid));
d6b0e80f 1821
a0ef4274
DJ
1822 /* Pass on any pending signal for the last LWP. */
1823 if ((args == NULL || *args == '\0')
d90e17a7 1824 && get_pending_status (main_lwp, &status) != -1
a0ef4274
DJ
1825 && WIFSTOPPED (status))
1826 {
1827 /* Put the signal number in ARGS so that inf_ptrace_detach will
1828 pass it along with PTRACE_DETACH. */
1829 args = alloca (8);
1830 sprintf (args, "%d", (int) WSTOPSIG (status));
1831 fprintf_unfiltered (gdb_stdlog,
1832 "LND: Sending signal %s to %s\n",
1833 args,
d90e17a7 1834 target_pid_to_str (main_lwp->ptid));
a0ef4274
DJ
1835 }
1836
d90e17a7 1837 delete_lwp (main_lwp->ptid);
b84876c2 1838
7a7d3353
PA
1839 if (forks_exist_p ())
1840 {
1841 /* Multi-fork case. The current inferior_ptid is being detached
1842 from, but there are other viable forks to debug. Detach from
1843 the current fork, and context-switch to the first
1844 available. */
1845 linux_fork_detach (args, from_tty);
1846
1847 if (non_stop && target_can_async_p ())
1848 target_async (inferior_event_handler, 0);
1849 }
1850 else
1851 linux_ops->to_detach (ops, args, from_tty);
d6b0e80f
AC
1852}
1853
1854/* Resume LP. */
1855
1856static int
1857resume_callback (struct lwp_info *lp, void *data)
1858{
6c95b8df
PA
1859 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1860
1861 if (lp->stopped && inf->vfork_child != NULL)
1862 {
1863 if (debug_linux_nat)
1864 fprintf_unfiltered (gdb_stdlog,
1865 "RC: Not resuming %s (vfork parent)\n",
1866 target_pid_to_str (lp->ptid));
1867 }
1868 else if (lp->stopped && lp->status == 0)
d6b0e80f 1869 {
d90e17a7
PA
1870 if (debug_linux_nat)
1871 fprintf_unfiltered (gdb_stdlog,
1872 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1873 target_pid_to_str (lp->ptid));
1874
28439f5e
PA
1875 linux_ops->to_resume (linux_ops,
1876 pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 1877 0, TARGET_SIGNAL_0);
d6b0e80f
AC
1878 if (debug_linux_nat)
1879 fprintf_unfiltered (gdb_stdlog,
1880 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1881 target_pid_to_str (lp->ptid));
1882 lp->stopped = 0;
1883 lp->step = 0;
9f0bdab8 1884 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
ebec9a0f 1885 lp->stopped_by_watchpoint = 0;
d6b0e80f 1886 }
57380f4e
DJ
1887 else if (lp->stopped && debug_linux_nat)
1888 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1889 target_pid_to_str (lp->ptid));
1890 else if (debug_linux_nat)
1891 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1892 target_pid_to_str (lp->ptid));
d6b0e80f
AC
1893
1894 return 0;
1895}
1896
1897static int
1898resume_clear_callback (struct lwp_info *lp, void *data)
1899{
1900 lp->resumed = 0;
1901 return 0;
1902}
1903
1904static int
1905resume_set_callback (struct lwp_info *lp, void *data)
1906{
1907 lp->resumed = 1;
1908 return 0;
1909}
1910
1911static void
28439f5e
PA
1912linux_nat_resume (struct target_ops *ops,
1913 ptid_t ptid, int step, enum target_signal signo)
d6b0e80f 1914{
7feb7d06 1915 sigset_t prev_mask;
d6b0e80f 1916 struct lwp_info *lp;
d90e17a7 1917 int resume_many;
d6b0e80f 1918
76f50ad1
DJ
1919 if (debug_linux_nat)
1920 fprintf_unfiltered (gdb_stdlog,
1921 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1922 step ? "step" : "resume",
1923 target_pid_to_str (ptid),
1924 signo ? strsignal (signo) : "0",
1925 target_pid_to_str (inferior_ptid));
1926
7feb7d06 1927 block_child_signals (&prev_mask);
b84876c2 1928
d6b0e80f 1929 /* A specific PTID means `step only this process id'. */
d90e17a7
PA
1930 resume_many = (ptid_equal (minus_one_ptid, ptid)
1931 || ptid_is_pid (ptid));
4c28f408
PA
1932
1933 if (!non_stop)
1934 {
d90e17a7
PA
1935 /* Mark the lwps we're resuming as resumed. */
1936 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
1937 iterate_over_lwps (ptid, resume_set_callback, NULL);
4c28f408 1938 }
d90e17a7
PA
1939 else
1940 iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
d6b0e80f 1941
d90e17a7
PA
1942 /* See if it's the current inferior that should be handled
1943 specially. */
1944 if (resume_many)
1945 lp = find_lwp_pid (inferior_ptid);
1946 else
1947 lp = find_lwp_pid (ptid);
9f0bdab8 1948 gdb_assert (lp != NULL);
d6b0e80f 1949
9f0bdab8
DJ
1950 /* Remember if we're stepping. */
1951 lp->step = step;
d6b0e80f 1952
9f0bdab8
DJ
1953 /* If we have a pending wait status for this thread, there is no
1954 point in resuming the process. But first make sure that
1955 linux_nat_wait won't preemptively handle the event - we
1956 should never take this short-circuit if we are going to
1957 leave LP running, since we have skipped resuming all the
1958 other threads. This bit of code needs to be synchronized
1959 with linux_nat_wait. */
76f50ad1 1960
9f0bdab8
DJ
1961 if (lp->status && WIFSTOPPED (lp->status))
1962 {
d6b48e9c
PA
1963 int saved_signo;
1964 struct inferior *inf;
76f50ad1 1965
d90e17a7 1966 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
d6b48e9c
PA
1967 gdb_assert (inf);
1968 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1969
1970 /* Defer to common code if we're gaining control of the
1971 inferior. */
1972 if (inf->stop_soon == NO_STOP_QUIETLY
1973 && signal_stop_state (saved_signo) == 0
9f0bdab8
DJ
1974 && signal_print_state (saved_signo) == 0
1975 && signal_pass_state (saved_signo) == 1)
d6b0e80f 1976 {
9f0bdab8
DJ
1977 if (debug_linux_nat)
1978 fprintf_unfiltered (gdb_stdlog,
1979 "LLR: Not short circuiting for ignored "
1980 "status 0x%x\n", lp->status);
1981
d6b0e80f
AC
1982 /* FIXME: What should we do if we are supposed to continue
1983 this thread with a signal? */
1984 gdb_assert (signo == TARGET_SIGNAL_0);
9f0bdab8
DJ
1985 signo = saved_signo;
1986 lp->status = 0;
1987 }
1988 }
76f50ad1 1989
6c95b8df 1990 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
9f0bdab8
DJ
1991 {
1992 /* FIXME: What should we do if we are supposed to continue
1993 this thread with a signal? */
1994 gdb_assert (signo == TARGET_SIGNAL_0);
76f50ad1 1995
9f0bdab8
DJ
1996 if (debug_linux_nat)
1997 fprintf_unfiltered (gdb_stdlog,
1998 "LLR: Short circuiting for status 0x%x\n",
1999 lp->status);
d6b0e80f 2000
7feb7d06
PA
2001 restore_child_signals_mask (&prev_mask);
2002 if (target_can_async_p ())
2003 {
2004 target_async (inferior_event_handler, 0);
2005 /* Tell the event loop we have something to process. */
2006 async_file_mark ();
2007 }
9f0bdab8 2008 return;
d6b0e80f
AC
2009 }
2010
9f0bdab8
DJ
2011 /* Mark LWP as not stopped to prevent it from being continued by
2012 resume_callback. */
2013 lp->stopped = 0;
2014
d90e17a7
PA
2015 if (resume_many)
2016 iterate_over_lwps (ptid, resume_callback, NULL);
2017
2018 /* Convert to something the lower layer understands. */
2019 ptid = pid_to_ptid (GET_LWP (lp->ptid));
d6b0e80f 2020
28439f5e 2021 linux_ops->to_resume (linux_ops, ptid, step, signo);
9f0bdab8 2022 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
ebec9a0f 2023 lp->stopped_by_watchpoint = 0;
9f0bdab8 2024
d6b0e80f
AC
2025 if (debug_linux_nat)
2026 fprintf_unfiltered (gdb_stdlog,
2027 "LLR: %s %s, %s (resume event thread)\n",
2028 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2029 target_pid_to_str (ptid),
2030 signo ? strsignal (signo) : "0");
b84876c2 2031
7feb7d06 2032 restore_child_signals_mask (&prev_mask);
b84876c2 2033 if (target_can_async_p ())
8ea051c5 2034 target_async (inferior_event_handler, 0);
d6b0e80f
AC
2035}
2036
2037/* Issue kill to specified lwp. */
2038
2039static int tkill_failed;
2040
2041static int
2042kill_lwp (int lwpid, int signo)
2043{
2044 errno = 0;
2045
2046/* Use tkill, if possible, in case we are using nptl threads. If tkill
2047 fails, then we are not using nptl threads and we should be using kill. */
2048
2049#ifdef HAVE_TKILL_SYSCALL
2050 if (!tkill_failed)
2051 {
2052 int ret = syscall (__NR_tkill, lwpid, signo);
2053 if (errno != ENOSYS)
2054 return ret;
2055 errno = 0;
2056 tkill_failed = 1;
2057 }
2058#endif
2059
2060 return kill (lwpid, signo);
2061}
2062
ca2163eb
PA
2063/* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2064 event, check if the core is interested in it: if not, ignore the
2065 event, and keep waiting; otherwise, we need to toggle the LWP's
2066 syscall entry/exit status, since the ptrace event itself doesn't
2067 indicate it, and report the trap to higher layers. */
2068
2069static int
2070linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2071{
2072 struct target_waitstatus *ourstatus = &lp->waitstatus;
2073 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2074 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2075
2076 if (stopping)
2077 {
2078 /* If we're stopping threads, there's a SIGSTOP pending, which
2079 makes it so that the LWP reports an immediate syscall return,
2080 followed by the SIGSTOP. Skip seeing that "return" using
2081 PTRACE_CONT directly, and let stop_wait_callback collect the
2082 SIGSTOP. Later when the thread is resumed, a new syscall
2083 entry event. If we didn't do this (and returned 0), we'd
2084 leave a syscall entry pending, and our caller, by using
2085 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2086 itself. Later, when the user re-resumes this LWP, we'd see
2087 another syscall entry event and we'd mistake it for a return.
2088
2089 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2090 (leaving immediately with LWP->signalled set, without issuing
2091 a PTRACE_CONT), it would still be problematic to leave this
2092 syscall enter pending, as later when the thread is resumed,
2093 it would then see the same syscall exit mentioned above,
2094 followed by the delayed SIGSTOP, while the syscall didn't
2095 actually get to execute. It seems it would be even more
2096 confusing to the user. */
2097
2098 if (debug_linux_nat)
2099 fprintf_unfiltered (gdb_stdlog,
2100 "LHST: ignoring syscall %d "
2101 "for LWP %ld (stopping threads), "
2102 "resuming with PTRACE_CONT for SIGSTOP\n",
2103 syscall_number,
2104 GET_LWP (lp->ptid));
2105
2106 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2107 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2108 return 1;
2109 }
2110
2111 if (catch_syscall_enabled ())
2112 {
2113 /* Always update the entry/return state, even if this particular
2114 syscall isn't interesting to the core now. In async mode,
2115 the user could install a new catchpoint for this syscall
2116 between syscall enter/return, and we'll need to know to
2117 report a syscall return if that happens. */
2118 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2119 ? TARGET_WAITKIND_SYSCALL_RETURN
2120 : TARGET_WAITKIND_SYSCALL_ENTRY);
2121
2122 if (catching_syscall_number (syscall_number))
2123 {
2124 /* Alright, an event to report. */
2125 ourstatus->kind = lp->syscall_state;
2126 ourstatus->value.syscall_number = syscall_number;
2127
2128 if (debug_linux_nat)
2129 fprintf_unfiltered (gdb_stdlog,
2130 "LHST: stopping for %s of syscall %d"
2131 " for LWP %ld\n",
2132 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2133 ? "entry" : "return",
2134 syscall_number,
2135 GET_LWP (lp->ptid));
2136 return 0;
2137 }
2138
2139 if (debug_linux_nat)
2140 fprintf_unfiltered (gdb_stdlog,
2141 "LHST: ignoring %s of syscall %d "
2142 "for LWP %ld\n",
2143 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2144 ? "entry" : "return",
2145 syscall_number,
2146 GET_LWP (lp->ptid));
2147 }
2148 else
2149 {
2150 /* If we had been syscall tracing, and hence used PT_SYSCALL
2151 before on this LWP, it could happen that the user removes all
2152 syscall catchpoints before we get to process this event.
2153 There are two noteworthy issues here:
2154
2155 - When stopped at a syscall entry event, resuming with
2156 PT_STEP still resumes executing the syscall and reports a
2157 syscall return.
2158
2159 - Only PT_SYSCALL catches syscall enters. If we last
2160 single-stepped this thread, then this event can't be a
2161 syscall enter. If we last single-stepped this thread, this
2162 has to be a syscall exit.
2163
2164 The points above mean that the next resume, be it PT_STEP or
2165 PT_CONTINUE, can not trigger a syscall trace event. */
2166 if (debug_linux_nat)
2167 fprintf_unfiltered (gdb_stdlog,
2168 "LHST: caught syscall event with no syscall catchpoints."
2169 " %d for LWP %ld, ignoring\n",
2170 syscall_number,
2171 GET_LWP (lp->ptid));
2172 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2173 }
2174
2175 /* The core isn't interested in this event. For efficiency, avoid
2176 stopping all threads only to have the core resume them all again.
2177 Since we're not stopping threads, if we're still syscall tracing
2178 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2179 subsequent syscall. Simply resume using the inf-ptrace layer,
2180 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2181
2182 /* Note that gdbarch_get_syscall_number may access registers, hence
2183 fill a regcache. */
2184 registers_changed ();
2185 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2186 lp->step, TARGET_SIGNAL_0);
2187 return 1;
2188}
2189
3d799a95
DJ
2190/* Handle a GNU/Linux extended wait response. If we see a clone
2191 event, we need to add the new LWP to our list (and not report the
2192 trap to higher layers). This function returns non-zero if the
2193 event should be ignored and we should wait again. If STOPPING is
2194 true, the new LWP remains stopped, otherwise it is continued. */
d6b0e80f
AC
2195
2196static int
3d799a95
DJ
2197linux_handle_extended_wait (struct lwp_info *lp, int status,
2198 int stopping)
d6b0e80f 2199{
3d799a95
DJ
2200 int pid = GET_LWP (lp->ptid);
2201 struct target_waitstatus *ourstatus = &lp->waitstatus;
2202 struct lwp_info *new_lp = NULL;
2203 int event = status >> 16;
d6b0e80f 2204
3d799a95
DJ
2205 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2206 || event == PTRACE_EVENT_CLONE)
d6b0e80f 2207 {
3d799a95
DJ
2208 unsigned long new_pid;
2209 int ret;
2210
2211 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
6fc19103 2212
3d799a95
DJ
2213 /* If we haven't already seen the new PID stop, wait for it now. */
2214 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2215 {
2216 /* The new child has a pending SIGSTOP. We can't affect it until it
2217 hits the SIGSTOP, but we're already attached. */
2218 ret = my_waitpid (new_pid, &status,
2219 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2220 if (ret == -1)
2221 perror_with_name (_("waiting for new child"));
2222 else if (ret != new_pid)
2223 internal_error (__FILE__, __LINE__,
2224 _("wait returned unexpected PID %d"), ret);
2225 else if (!WIFSTOPPED (status))
2226 internal_error (__FILE__, __LINE__,
2227 _("wait returned unexpected status 0x%x"), status);
2228 }
2229
3a3e9ee3 2230 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
3d799a95 2231
2277426b
PA
2232 if (event == PTRACE_EVENT_FORK
2233 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2234 {
2235 struct fork_info *fp;
2236
2237 /* Handle checkpointing by linux-fork.c here as a special
2238 case. We don't want the follow-fork-mode or 'catch fork'
2239 to interfere with this. */
2240
2241 /* This won't actually modify the breakpoint list, but will
2242 physically remove the breakpoints from the child. */
2243 detach_breakpoints (new_pid);
2244
2245 /* Retain child fork in ptrace (stopped) state. */
2246 fp = find_fork_pid (new_pid);
2247 if (!fp)
2248 fp = add_fork (new_pid);
2249
2250 /* Report as spurious, so that infrun doesn't want to follow
2251 this fork. We're actually doing an infcall in
2252 linux-fork.c. */
2253 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2254 linux_enable_event_reporting (pid_to_ptid (new_pid));
2255
2256 /* Report the stop to the core. */
2257 return 0;
2258 }
2259
3d799a95
DJ
2260 if (event == PTRACE_EVENT_FORK)
2261 ourstatus->kind = TARGET_WAITKIND_FORKED;
2262 else if (event == PTRACE_EVENT_VFORK)
2263 ourstatus->kind = TARGET_WAITKIND_VFORKED;
6fc19103 2264 else
3d799a95 2265 {
4c28f408
PA
2266 struct cleanup *old_chain;
2267
3d799a95 2268 ourstatus->kind = TARGET_WAITKIND_IGNORE;
d90e17a7 2269 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
3d799a95 2270 new_lp->cloned = 1;
4c28f408 2271 new_lp->stopped = 1;
d6b0e80f 2272
3d799a95
DJ
2273 if (WSTOPSIG (status) != SIGSTOP)
2274 {
2275 /* This can happen if someone starts sending signals to
2276 the new thread before it gets a chance to run, which
2277 have a lower number than SIGSTOP (e.g. SIGUSR1).
2278 This is an unlikely case, and harder to handle for
2279 fork / vfork than for clone, so we do not try - but
2280 we handle it for clone events here. We'll send
2281 the other signal on to the thread below. */
2282
2283 new_lp->signalled = 1;
2284 }
2285 else
2286 status = 0;
d6b0e80f 2287
4c28f408 2288 if (non_stop)
3d799a95 2289 {
4c28f408
PA
2290 /* Add the new thread to GDB's lists as soon as possible
2291 so that:
2292
2293 1) the frontend doesn't have to wait for a stop to
2294 display them, and,
2295
2296 2) we tag it with the correct running state. */
2297
2298 /* If the thread_db layer is active, let it know about
2299 this new thread, and add it to GDB's list. */
2300 if (!thread_db_attach_lwp (new_lp->ptid))
2301 {
2302 /* We're not using thread_db. Add it to GDB's
2303 list. */
2304 target_post_attach (GET_LWP (new_lp->ptid));
2305 add_thread (new_lp->ptid);
2306 }
2307
2308 if (!stopping)
2309 {
2310 set_running (new_lp->ptid, 1);
2311 set_executing (new_lp->ptid, 1);
2312 }
2313 }
2314
ca2163eb
PA
2315 /* Note the need to use the low target ops to resume, to
2316 handle resuming with PT_SYSCALL if we have syscall
2317 catchpoints. */
4c28f408
PA
2318 if (!stopping)
2319 {
ca2163eb
PA
2320 int signo;
2321
4c28f408 2322 new_lp->stopped = 0;
3d799a95 2323 new_lp->resumed = 1;
ca2163eb
PA
2324
2325 signo = (status
2326 ? target_signal_from_host (WSTOPSIG (status))
2327 : TARGET_SIGNAL_0);
2328
2329 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2330 0, signo);
3d799a95 2331 }
d6b0e80f 2332
3d799a95
DJ
2333 if (debug_linux_nat)
2334 fprintf_unfiltered (gdb_stdlog,
2335 "LHEW: Got clone event from LWP %ld, resuming\n",
2336 GET_LWP (lp->ptid));
ca2163eb
PA
2337 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2338 0, TARGET_SIGNAL_0);
3d799a95
DJ
2339
2340 return 1;
2341 }
2342
2343 return 0;
d6b0e80f
AC
2344 }
2345
3d799a95
DJ
2346 if (event == PTRACE_EVENT_EXEC)
2347 {
a75724bc
PA
2348 if (debug_linux_nat)
2349 fprintf_unfiltered (gdb_stdlog,
2350 "LHEW: Got exec event from LWP %ld\n",
2351 GET_LWP (lp->ptid));
2352
3d799a95
DJ
2353 ourstatus->kind = TARGET_WAITKIND_EXECD;
2354 ourstatus->value.execd_pathname
6d8fd2b7 2355 = xstrdup (linux_child_pid_to_exec_file (pid));
3d799a95 2356
6c95b8df
PA
2357 return 0;
2358 }
2359
2360 if (event == PTRACE_EVENT_VFORK_DONE)
2361 {
2362 if (current_inferior ()->waiting_for_vfork_done)
3d799a95 2363 {
6c95b8df
PA
2364 if (debug_linux_nat)
2365 fprintf_unfiltered (gdb_stdlog, "\
2366LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2367 GET_LWP (lp->ptid));
3d799a95 2368
6c95b8df
PA
2369 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2370 return 0;
3d799a95
DJ
2371 }
2372
6c95b8df
PA
2373 if (debug_linux_nat)
2374 fprintf_unfiltered (gdb_stdlog, "\
2375LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2376 GET_LWP (lp->ptid));
2377 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2378 return 1;
3d799a95
DJ
2379 }
2380
2381 internal_error (__FILE__, __LINE__,
2382 _("unknown ptrace event %d"), event);
d6b0e80f
AC
2383}
2384
2385/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2386 exited. */
2387
2388static int
2389wait_lwp (struct lwp_info *lp)
2390{
2391 pid_t pid;
2392 int status;
2393 int thread_dead = 0;
2394
2395 gdb_assert (!lp->stopped);
2396 gdb_assert (lp->status == 0);
2397
58aecb61 2398 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
d6b0e80f
AC
2399 if (pid == -1 && errno == ECHILD)
2400 {
58aecb61 2401 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
d6b0e80f
AC
2402 if (pid == -1 && errno == ECHILD)
2403 {
2404 /* The thread has previously exited. We need to delete it
2405 now because, for some vendor 2.4 kernels with NPTL
2406 support backported, there won't be an exit event unless
2407 it is the main thread. 2.6 kernels will report an exit
2408 event for each thread that exits, as expected. */
2409 thread_dead = 1;
2410 if (debug_linux_nat)
2411 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2412 target_pid_to_str (lp->ptid));
2413 }
2414 }
2415
2416 if (!thread_dead)
2417 {
2418 gdb_assert (pid == GET_LWP (lp->ptid));
2419
2420 if (debug_linux_nat)
2421 {
2422 fprintf_unfiltered (gdb_stdlog,
2423 "WL: waitpid %s received %s\n",
2424 target_pid_to_str (lp->ptid),
2425 status_to_str (status));
2426 }
2427 }
2428
2429 /* Check if the thread has exited. */
2430 if (WIFEXITED (status) || WIFSIGNALED (status))
2431 {
2432 thread_dead = 1;
2433 if (debug_linux_nat)
2434 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2435 target_pid_to_str (lp->ptid));
2436 }
2437
2438 if (thread_dead)
2439 {
e26af52f 2440 exit_lwp (lp);
d6b0e80f
AC
2441 return 0;
2442 }
2443
2444 gdb_assert (WIFSTOPPED (status));
2445
ca2163eb
PA
2446 /* Handle GNU/Linux's syscall SIGTRAPs. */
2447 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2448 {
2449 /* No longer need the sysgood bit. The ptrace event ends up
2450 recorded in lp->waitstatus if we care for it. We can carry
2451 on handling the event like a regular SIGTRAP from here
2452 on. */
2453 status = W_STOPCODE (SIGTRAP);
2454 if (linux_handle_syscall_trap (lp, 1))
2455 return wait_lwp (lp);
2456 }
2457
d6b0e80f
AC
2458 /* Handle GNU/Linux's extended waitstatus for trace events. */
2459 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2460 {
2461 if (debug_linux_nat)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "WL: Handling extended status 0x%06x\n",
2464 status);
3d799a95 2465 if (linux_handle_extended_wait (lp, status, 1))
d6b0e80f
AC
2466 return wait_lwp (lp);
2467 }
2468
2469 return status;
2470}
2471
9f0bdab8
DJ
2472/* Save the most recent siginfo for LP. This is currently only called
2473 for SIGTRAP; some ports use the si_addr field for
2474 target_stopped_data_address. In the future, it may also be used to
2475 restore the siginfo of requeued signals. */
2476
2477static void
2478save_siginfo (struct lwp_info *lp)
2479{
2480 errno = 0;
2481 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2482 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2483
2484 if (errno != 0)
2485 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2486}
2487
d6b0e80f
AC
2488/* Send a SIGSTOP to LP. */
2489
2490static int
2491stop_callback (struct lwp_info *lp, void *data)
2492{
2493 if (!lp->stopped && !lp->signalled)
2494 {
2495 int ret;
2496
2497 if (debug_linux_nat)
2498 {
2499 fprintf_unfiltered (gdb_stdlog,
2500 "SC: kill %s **<SIGSTOP>**\n",
2501 target_pid_to_str (lp->ptid));
2502 }
2503 errno = 0;
2504 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2505 if (debug_linux_nat)
2506 {
2507 fprintf_unfiltered (gdb_stdlog,
2508 "SC: lwp kill %d %s\n",
2509 ret,
2510 errno ? safe_strerror (errno) : "ERRNO-OK");
2511 }
2512
2513 lp->signalled = 1;
2514 gdb_assert (lp->status == 0);
2515 }
2516
2517 return 0;
2518}
2519
57380f4e 2520/* Return non-zero if LWP PID has a pending SIGINT. */
d6b0e80f
AC
2521
2522static int
57380f4e
DJ
2523linux_nat_has_pending_sigint (int pid)
2524{
2525 sigset_t pending, blocked, ignored;
2526 int i;
2527
2528 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2529
2530 if (sigismember (&pending, SIGINT)
2531 && !sigismember (&ignored, SIGINT))
2532 return 1;
2533
2534 return 0;
2535}
2536
2537/* Set a flag in LP indicating that we should ignore its next SIGINT. */
2538
2539static int
2540set_ignore_sigint (struct lwp_info *lp, void *data)
d6b0e80f 2541{
57380f4e
DJ
2542 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2543 flag to consume the next one. */
2544 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2545 && WSTOPSIG (lp->status) == SIGINT)
2546 lp->status = 0;
2547 else
2548 lp->ignore_sigint = 1;
2549
2550 return 0;
2551}
2552
2553/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2554 This function is called after we know the LWP has stopped; if the LWP
2555 stopped before the expected SIGINT was delivered, then it will never have
2556 arrived. Also, if the signal was delivered to a shared queue and consumed
2557 by a different thread, it will never be delivered to this LWP. */
d6b0e80f 2558
57380f4e
DJ
2559static void
2560maybe_clear_ignore_sigint (struct lwp_info *lp)
2561{
2562 if (!lp->ignore_sigint)
2563 return;
2564
2565 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2566 {
2567 if (debug_linux_nat)
2568 fprintf_unfiltered (gdb_stdlog,
2569 "MCIS: Clearing bogus flag for %s\n",
2570 target_pid_to_str (lp->ptid));
2571 lp->ignore_sigint = 0;
2572 }
2573}
2574
ebec9a0f
PA
2575/* Fetch the possible triggered data watchpoint info and store it in
2576 LP.
2577
2578 On some archs, like x86, that use debug registers to set
2579 watchpoints, it's possible that the way to know which watched
2580 address trapped, is to check the register that is used to select
2581 which address to watch. Problem is, between setting the watchpoint
2582 and reading back which data address trapped, the user may change
2583 the set of watchpoints, and, as a consequence, GDB changes the
2584 debug registers in the inferior. To avoid reading back a stale
2585 stopped-data-address when that happens, we cache in LP the fact
2586 that a watchpoint trapped, and the corresponding data address, as
2587 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2588 registers meanwhile, we have the cached data we can rely on. */
2589
2590static void
2591save_sigtrap (struct lwp_info *lp)
2592{
2593 struct cleanup *old_chain;
2594
2595 if (linux_ops->to_stopped_by_watchpoint == NULL)
2596 {
2597 lp->stopped_by_watchpoint = 0;
2598 return;
2599 }
2600
2601 old_chain = save_inferior_ptid ();
2602 inferior_ptid = lp->ptid;
2603
2604 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2605
2606 if (lp->stopped_by_watchpoint)
2607 {
2608 if (linux_ops->to_stopped_data_address != NULL)
2609 lp->stopped_data_address_p =
2610 linux_ops->to_stopped_data_address (&current_target,
2611 &lp->stopped_data_address);
2612 else
2613 lp->stopped_data_address_p = 0;
2614 }
2615
2616 do_cleanups (old_chain);
2617}
2618
2619/* See save_sigtrap. */
2620
2621static int
2622linux_nat_stopped_by_watchpoint (void)
2623{
2624 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2625
2626 gdb_assert (lp != NULL);
2627
2628 return lp->stopped_by_watchpoint;
2629}
2630
2631static int
2632linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2633{
2634 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2635
2636 gdb_assert (lp != NULL);
2637
2638 *addr_p = lp->stopped_data_address;
2639
2640 return lp->stopped_data_address_p;
2641}
2642
57380f4e
DJ
2643/* Wait until LP is stopped. */
2644
2645static int
2646stop_wait_callback (struct lwp_info *lp, void *data)
2647{
6c95b8df
PA
2648 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2649
2650 /* If this is a vfork parent, bail out, it is not going to report
2651 any SIGSTOP until the vfork is done with. */
2652 if (inf->vfork_child != NULL)
2653 return 0;
2654
d6b0e80f
AC
2655 if (!lp->stopped)
2656 {
2657 int status;
2658
2659 status = wait_lwp (lp);
2660 if (status == 0)
2661 return 0;
2662
57380f4e
DJ
2663 if (lp->ignore_sigint && WIFSTOPPED (status)
2664 && WSTOPSIG (status) == SIGINT)
d6b0e80f 2665 {
57380f4e 2666 lp->ignore_sigint = 0;
d6b0e80f
AC
2667
2668 errno = 0;
2669 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2670 if (debug_linux_nat)
2671 fprintf_unfiltered (gdb_stdlog,
57380f4e 2672 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
d6b0e80f
AC
2673 target_pid_to_str (lp->ptid),
2674 errno ? safe_strerror (errno) : "OK");
2675
57380f4e 2676 return stop_wait_callback (lp, NULL);
d6b0e80f
AC
2677 }
2678
57380f4e
DJ
2679 maybe_clear_ignore_sigint (lp);
2680
d6b0e80f
AC
2681 if (WSTOPSIG (status) != SIGSTOP)
2682 {
2683 if (WSTOPSIG (status) == SIGTRAP)
2684 {
2685 /* If a LWP other than the LWP that we're reporting an
2686 event for has hit a GDB breakpoint (as opposed to
2687 some random trap signal), then just arrange for it to
2688 hit it again later. We don't keep the SIGTRAP status
2689 and don't forward the SIGTRAP signal to the LWP. We
2690 will handle the current event, eventually we will
2691 resume all LWPs, and this one will get its breakpoint
2692 trap again.
2693
2694 If we do not do this, then we run the risk that the
2695 user will delete or disable the breakpoint, but the
2696 thread will have already tripped on it. */
2697
9f0bdab8
DJ
2698 /* Save the trap's siginfo in case we need it later. */
2699 save_siginfo (lp);
2700
ebec9a0f
PA
2701 save_sigtrap (lp);
2702
d6b0e80f
AC
2703 /* Now resume this LWP and get the SIGSTOP event. */
2704 errno = 0;
2705 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2706 if (debug_linux_nat)
2707 {
2708 fprintf_unfiltered (gdb_stdlog,
2709 "PTRACE_CONT %s, 0, 0 (%s)\n",
2710 target_pid_to_str (lp->ptid),
2711 errno ? safe_strerror (errno) : "OK");
2712
2713 fprintf_unfiltered (gdb_stdlog,
2714 "SWC: Candidate SIGTRAP event in %s\n",
2715 target_pid_to_str (lp->ptid));
2716 }
710151dd
PA
2717 /* Hold this event/waitstatus while we check to see if
2718 there are any more (we still want to get that SIGSTOP). */
57380f4e 2719 stop_wait_callback (lp, NULL);
710151dd 2720
7feb7d06
PA
2721 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2722 there's another event, throw it back into the
2723 queue. */
2724 if (lp->status)
710151dd 2725 {
7feb7d06
PA
2726 if (debug_linux_nat)
2727 fprintf_unfiltered (gdb_stdlog,
2728 "SWC: kill %s, %s\n",
2729 target_pid_to_str (lp->ptid),
2730 status_to_str ((int) status));
2731 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
d6b0e80f 2732 }
7feb7d06
PA
2733
2734 /* Save the sigtrap event. */
2735 lp->status = status;
d6b0e80f
AC
2736 return 0;
2737 }
2738 else
2739 {
2740 /* The thread was stopped with a signal other than
2741 SIGSTOP, and didn't accidentally trip a breakpoint. */
2742
2743 if (debug_linux_nat)
2744 {
2745 fprintf_unfiltered (gdb_stdlog,
2746 "SWC: Pending event %s in %s\n",
2747 status_to_str ((int) status),
2748 target_pid_to_str (lp->ptid));
2749 }
2750 /* Now resume this LWP and get the SIGSTOP event. */
2751 errno = 0;
2752 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2753 if (debug_linux_nat)
2754 fprintf_unfiltered (gdb_stdlog,
2755 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2756 target_pid_to_str (lp->ptid),
2757 errno ? safe_strerror (errno) : "OK");
2758
2759 /* Hold this event/waitstatus while we check to see if
2760 there are any more (we still want to get that SIGSTOP). */
57380f4e 2761 stop_wait_callback (lp, NULL);
710151dd
PA
2762
2763 /* If the lp->status field is still empty, use it to
2764 hold this event. If not, then this event must be
2765 returned to the event queue of the LWP. */
7feb7d06 2766 if (lp->status)
d6b0e80f
AC
2767 {
2768 if (debug_linux_nat)
2769 {
2770 fprintf_unfiltered (gdb_stdlog,
2771 "SWC: kill %s, %s\n",
2772 target_pid_to_str (lp->ptid),
2773 status_to_str ((int) status));
2774 }
2775 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2776 }
710151dd
PA
2777 else
2778 lp->status = status;
d6b0e80f
AC
2779 return 0;
2780 }
2781 }
2782 else
2783 {
2784 /* We caught the SIGSTOP that we intended to catch, so
2785 there's no SIGSTOP pending. */
2786 lp->stopped = 1;
2787 lp->signalled = 0;
2788 }
2789 }
2790
2791 return 0;
2792}
2793
d6b0e80f
AC
2794/* Return non-zero if LP has a wait status pending. */
2795
2796static int
2797status_callback (struct lwp_info *lp, void *data)
2798{
2799 /* Only report a pending wait status if we pretend that this has
2800 indeed been resumed. */
ca2163eb
PA
2801 if (!lp->resumed)
2802 return 0;
2803
2804 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2805 {
2806 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2807 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2808 0', so a clean process exit can not be stored pending in
2809 lp->status, it is indistinguishable from
2810 no-pending-status. */
2811 return 1;
2812 }
2813
2814 if (lp->status != 0)
2815 return 1;
2816
2817 return 0;
d6b0e80f
AC
2818}
2819
2820/* Return non-zero if LP isn't stopped. */
2821
2822static int
2823running_callback (struct lwp_info *lp, void *data)
2824{
2825 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2826}
2827
2828/* Count the LWP's that have had events. */
2829
2830static int
2831count_events_callback (struct lwp_info *lp, void *data)
2832{
2833 int *count = data;
2834
2835 gdb_assert (count != NULL);
2836
e09490f1
DJ
2837 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2838 if (lp->status != 0 && lp->resumed
d6b0e80f
AC
2839 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2840 (*count)++;
2841
2842 return 0;
2843}
2844
2845/* Select the LWP (if any) that is currently being single-stepped. */
2846
2847static int
2848select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2849{
2850 if (lp->step && lp->status != 0)
2851 return 1;
2852 else
2853 return 0;
2854}
2855
2856/* Select the Nth LWP that has had a SIGTRAP event. */
2857
2858static int
2859select_event_lwp_callback (struct lwp_info *lp, void *data)
2860{
2861 int *selector = data;
2862
2863 gdb_assert (selector != NULL);
2864
e09490f1
DJ
2865 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2866 if (lp->status != 0 && lp->resumed
d6b0e80f
AC
2867 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2868 if ((*selector)-- == 0)
2869 return 1;
2870
2871 return 0;
2872}
2873
710151dd
PA
2874static int
2875cancel_breakpoint (struct lwp_info *lp)
2876{
2877 /* Arrange for a breakpoint to be hit again later. We don't keep
2878 the SIGTRAP status and don't forward the SIGTRAP signal to the
2879 LWP. We will handle the current event, eventually we will resume
2880 this LWP, and this breakpoint will trap again.
2881
2882 If we do not do this, then we run the risk that the user will
2883 delete or disable the breakpoint, but the LWP will have already
2884 tripped on it. */
2885
515630c5
UW
2886 struct regcache *regcache = get_thread_regcache (lp->ptid);
2887 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2888 CORE_ADDR pc;
2889
2890 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
6c95b8df 2891 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
710151dd
PA
2892 {
2893 if (debug_linux_nat)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "CB: Push back breakpoint for %s\n",
2896 target_pid_to_str (lp->ptid));
2897
2898 /* Back up the PC if necessary. */
515630c5
UW
2899 if (gdbarch_decr_pc_after_break (gdbarch))
2900 regcache_write_pc (regcache, pc);
2901
710151dd
PA
2902 return 1;
2903 }
2904 return 0;
2905}
2906
d6b0e80f
AC
2907static int
2908cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2909{
2910 struct lwp_info *event_lp = data;
2911
2912 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2913 if (lp == event_lp)
2914 return 0;
2915
2916 /* If a LWP other than the LWP that we're reporting an event for has
2917 hit a GDB breakpoint (as opposed to some random trap signal),
2918 then just arrange for it to hit it again later. We don't keep
2919 the SIGTRAP status and don't forward the SIGTRAP signal to the
2920 LWP. We will handle the current event, eventually we will resume
2921 all LWPs, and this one will get its breakpoint trap again.
2922
2923 If we do not do this, then we run the risk that the user will
2924 delete or disable the breakpoint, but the LWP will have already
2925 tripped on it. */
2926
ca2163eb
PA
2927 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2928 && lp->status != 0
d6b0e80f 2929 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
710151dd
PA
2930 && cancel_breakpoint (lp))
2931 /* Throw away the SIGTRAP. */
2932 lp->status = 0;
d6b0e80f
AC
2933
2934 return 0;
2935}
2936
2937/* Select one LWP out of those that have events pending. */
2938
2939static void
d90e17a7 2940select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
d6b0e80f
AC
2941{
2942 int num_events = 0;
2943 int random_selector;
2944 struct lwp_info *event_lp;
2945
ac264b3b 2946 /* Record the wait status for the original LWP. */
d6b0e80f
AC
2947 (*orig_lp)->status = *status;
2948
2949 /* Give preference to any LWP that is being single-stepped. */
d90e17a7
PA
2950 event_lp = iterate_over_lwps (filter,
2951 select_singlestep_lwp_callback, NULL);
d6b0e80f
AC
2952 if (event_lp != NULL)
2953 {
2954 if (debug_linux_nat)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "SEL: Select single-step %s\n",
2957 target_pid_to_str (event_lp->ptid));
2958 }
2959 else
2960 {
2961 /* No single-stepping LWP. Select one at random, out of those
2962 which have had SIGTRAP events. */
2963
2964 /* First see how many SIGTRAP events we have. */
d90e17a7 2965 iterate_over_lwps (filter, count_events_callback, &num_events);
d6b0e80f
AC
2966
2967 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2968 random_selector = (int)
2969 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2970
2971 if (debug_linux_nat && num_events > 1)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2974 num_events, random_selector);
2975
d90e17a7
PA
2976 event_lp = iterate_over_lwps (filter,
2977 select_event_lwp_callback,
d6b0e80f
AC
2978 &random_selector);
2979 }
2980
2981 if (event_lp != NULL)
2982 {
2983 /* Switch the event LWP. */
2984 *orig_lp = event_lp;
2985 *status = event_lp->status;
2986 }
2987
2988 /* Flush the wait status for the event LWP. */
2989 (*orig_lp)->status = 0;
2990}
2991
2992/* Return non-zero if LP has been resumed. */
2993
2994static int
2995resumed_callback (struct lwp_info *lp, void *data)
2996{
2997 return lp->resumed;
2998}
2999
d6b0e80f
AC
3000/* Stop an active thread, verify it still exists, then resume it. */
3001
3002static int
3003stop_and_resume_callback (struct lwp_info *lp, void *data)
3004{
3005 struct lwp_info *ptr;
3006
3007 if (!lp->stopped && !lp->signalled)
3008 {
3009 stop_callback (lp, NULL);
3010 stop_wait_callback (lp, NULL);
3011 /* Resume if the lwp still exists. */
3012 for (ptr = lwp_list; ptr; ptr = ptr->next)
3013 if (lp == ptr)
3014 {
3015 resume_callback (lp, NULL);
3016 resume_set_callback (lp, NULL);
3017 }
3018 }
3019 return 0;
3020}
3021
02f3fc28 3022/* Check if we should go on and pass this event to common code.
fa2c6a57 3023 Return the affected lwp if we are, or NULL otherwise. */
02f3fc28
PA
3024static struct lwp_info *
3025linux_nat_filter_event (int lwpid, int status, int options)
3026{
3027 struct lwp_info *lp;
3028
3029 lp = find_lwp_pid (pid_to_ptid (lwpid));
3030
3031 /* Check for stop events reported by a process we didn't already
3032 know about - anything not already in our LWP list.
3033
3034 If we're expecting to receive stopped processes after
3035 fork, vfork, and clone events, then we'll just add the
3036 new one to our list and go back to waiting for the event
3037 to be reported - the stopped process might be returned
3038 from waitpid before or after the event is. */
3039 if (WIFSTOPPED (status) && !lp)
3040 {
3041 linux_record_stopped_pid (lwpid, status);
3042 return NULL;
3043 }
3044
3045 /* Make sure we don't report an event for the exit of an LWP not in
3046 our list, i.e. not part of the current process. This can happen
3047 if we detach from a program we original forked and then it
3048 exits. */
3049 if (!WIFSTOPPED (status) && !lp)
3050 return NULL;
3051
3052 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3053 CLONE_PTRACE processes which do not use the thread library -
3054 otherwise we wouldn't find the new LWP this way. That doesn't
3055 currently work, and the following code is currently unreachable
3056 due to the two blocks above. If it's fixed some day, this code
3057 should be broken out into a function so that we can also pick up
3058 LWPs from the new interface. */
3059 if (!lp)
3060 {
3061 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3062 if (options & __WCLONE)
3063 lp->cloned = 1;
3064
3065 gdb_assert (WIFSTOPPED (status)
3066 && WSTOPSIG (status) == SIGSTOP);
3067 lp->signalled = 1;
3068
3069 if (!in_thread_list (inferior_ptid))
3070 {
3071 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3072 GET_PID (inferior_ptid));
3073 add_thread (inferior_ptid);
3074 }
3075
3076 add_thread (lp->ptid);
3077 }
3078
ca2163eb
PA
3079 /* Handle GNU/Linux's syscall SIGTRAPs. */
3080 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3081 {
3082 /* No longer need the sysgood bit. The ptrace event ends up
3083 recorded in lp->waitstatus if we care for it. We can carry
3084 on handling the event like a regular SIGTRAP from here
3085 on. */
3086 status = W_STOPCODE (SIGTRAP);
3087 if (linux_handle_syscall_trap (lp, 0))
3088 return NULL;
3089 }
02f3fc28 3090
ca2163eb
PA
3091 /* Handle GNU/Linux's extended waitstatus for trace events. */
3092 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
02f3fc28
PA
3093 {
3094 if (debug_linux_nat)
3095 fprintf_unfiltered (gdb_stdlog,
3096 "LLW: Handling extended status 0x%06x\n",
3097 status);
3098 if (linux_handle_extended_wait (lp, status, 0))
3099 return NULL;
3100 }
3101
ca2163eb 3102 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
ebec9a0f
PA
3103 {
3104 /* Save the trap's siginfo in case we need it later. */
3105 save_siginfo (lp);
3106
3107 save_sigtrap (lp);
3108 }
ca2163eb 3109
02f3fc28 3110 /* Check if the thread has exited. */
d90e17a7
PA
3111 if ((WIFEXITED (status) || WIFSIGNALED (status))
3112 && num_lwps (GET_PID (lp->ptid)) > 1)
02f3fc28 3113 {
9db03742
JB
3114 /* If this is the main thread, we must stop all threads and verify
3115 if they are still alive. This is because in the nptl thread model
3116 on Linux 2.4, there is no signal issued for exiting LWPs
02f3fc28
PA
3117 other than the main thread. We only get the main thread exit
3118 signal once all child threads have already exited. If we
3119 stop all the threads and use the stop_wait_callback to check
3120 if they have exited we can determine whether this signal
3121 should be ignored or whether it means the end of the debugged
3122 application, regardless of which threading model is being
5d3b6af6 3123 used. */
02f3fc28
PA
3124 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3125 {
3126 lp->stopped = 1;
d90e17a7
PA
3127 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3128 stop_and_resume_callback, NULL);
02f3fc28
PA
3129 }
3130
3131 if (debug_linux_nat)
3132 fprintf_unfiltered (gdb_stdlog,
3133 "LLW: %s exited.\n",
3134 target_pid_to_str (lp->ptid));
3135
d90e17a7 3136 if (num_lwps (GET_PID (lp->ptid)) > 1)
9db03742
JB
3137 {
3138 /* If there is at least one more LWP, then the exit signal
3139 was not the end of the debugged application and should be
3140 ignored. */
3141 exit_lwp (lp);
3142 return NULL;
3143 }
02f3fc28
PA
3144 }
3145
3146 /* Check if the current LWP has previously exited. In the nptl
3147 thread model, LWPs other than the main thread do not issue
3148 signals when they exit so we must check whenever the thread has
3149 stopped. A similar check is made in stop_wait_callback(). */
d90e17a7 3150 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
02f3fc28 3151 {
d90e17a7
PA
3152 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3153
02f3fc28
PA
3154 if (debug_linux_nat)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "LLW: %s exited.\n",
3157 target_pid_to_str (lp->ptid));
3158
3159 exit_lwp (lp);
3160
3161 /* Make sure there is at least one thread running. */
d90e17a7 3162 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
02f3fc28
PA
3163
3164 /* Discard the event. */
3165 return NULL;
3166 }
3167
3168 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3169 an attempt to stop an LWP. */
3170 if (lp->signalled
3171 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3172 {
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "LLW: Delayed SIGSTOP caught for %s.\n",
3176 target_pid_to_str (lp->ptid));
3177
3178 /* This is a delayed SIGSTOP. */
3179 lp->signalled = 0;
3180
3181 registers_changed ();
3182
28439f5e 3183 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
02f3fc28
PA
3184 lp->step, TARGET_SIGNAL_0);
3185 if (debug_linux_nat)
3186 fprintf_unfiltered (gdb_stdlog,
3187 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3188 lp->step ?
3189 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3190 target_pid_to_str (lp->ptid));
3191
3192 lp->stopped = 0;
3193 gdb_assert (lp->resumed);
3194
3195 /* Discard the event. */
3196 return NULL;
3197 }
3198
57380f4e
DJ
3199 /* Make sure we don't report a SIGINT that we have already displayed
3200 for another thread. */
3201 if (lp->ignore_sigint
3202 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3203 {
3204 if (debug_linux_nat)
3205 fprintf_unfiltered (gdb_stdlog,
3206 "LLW: Delayed SIGINT caught for %s.\n",
3207 target_pid_to_str (lp->ptid));
3208
3209 /* This is a delayed SIGINT. */
3210 lp->ignore_sigint = 0;
3211
3212 registers_changed ();
28439f5e 3213 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
57380f4e
DJ
3214 lp->step, TARGET_SIGNAL_0);
3215 if (debug_linux_nat)
3216 fprintf_unfiltered (gdb_stdlog,
3217 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3218 lp->step ?
3219 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3220 target_pid_to_str (lp->ptid));
3221
3222 lp->stopped = 0;
3223 gdb_assert (lp->resumed);
3224
3225 /* Discard the event. */
3226 return NULL;
3227 }
3228
02f3fc28
PA
3229 /* An interesting event. */
3230 gdb_assert (lp);
ca2163eb 3231 lp->status = status;
02f3fc28
PA
3232 return lp;
3233}
3234
d6b0e80f 3235static ptid_t
7feb7d06 3236linux_nat_wait_1 (struct target_ops *ops,
47608cb1
PA
3237 ptid_t ptid, struct target_waitstatus *ourstatus,
3238 int target_options)
d6b0e80f 3239{
7feb7d06 3240 static sigset_t prev_mask;
d6b0e80f
AC
3241 struct lwp_info *lp = NULL;
3242 int options = 0;
3243 int status = 0;
d90e17a7 3244 pid_t pid;
d6b0e80f 3245
b84876c2
PA
3246 if (debug_linux_nat_async)
3247 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3248
f973ed9c
DJ
3249 /* The first time we get here after starting a new inferior, we may
3250 not have added it to the LWP list yet - this is the earliest
3251 moment at which we know its PID. */
d90e17a7 3252 if (ptid_is_pid (inferior_ptid))
f973ed9c 3253 {
27c9d204
PA
3254 /* Upgrade the main thread's ptid. */
3255 thread_change_ptid (inferior_ptid,
3256 BUILD_LWP (GET_PID (inferior_ptid),
3257 GET_PID (inferior_ptid)));
3258
f973ed9c
DJ
3259 lp = add_lwp (inferior_ptid);
3260 lp->resumed = 1;
3261 }
3262
7feb7d06
PA
3263 /* Make sure SIGCHLD is blocked. */
3264 block_child_signals (&prev_mask);
d6b0e80f 3265
d90e17a7
PA
3266 if (ptid_equal (ptid, minus_one_ptid))
3267 pid = -1;
3268 else if (ptid_is_pid (ptid))
3269 /* A request to wait for a specific tgid. This is not possible
3270 with waitpid, so instead, we wait for any child, and leave
3271 children we're not interested in right now with a pending
3272 status to report later. */
3273 pid = -1;
3274 else
3275 pid = GET_LWP (ptid);
3276
d6b0e80f 3277retry:
d90e17a7
PA
3278 lp = NULL;
3279 status = 0;
d6b0e80f 3280
f973ed9c 3281 /* Make sure there is at least one LWP that has been resumed. */
d90e17a7 3282 gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
d6b0e80f
AC
3283
3284 /* First check if there is a LWP with a wait status pending. */
3285 if (pid == -1)
3286 {
3287 /* Any LWP that's been resumed will do. */
d90e17a7 3288 lp = iterate_over_lwps (ptid, status_callback, NULL);
d6b0e80f
AC
3289 if (lp)
3290 {
ca2163eb 3291 if (debug_linux_nat && lp->status)
d6b0e80f
AC
3292 fprintf_unfiltered (gdb_stdlog,
3293 "LLW: Using pending wait status %s for %s.\n",
ca2163eb 3294 status_to_str (lp->status),
d6b0e80f
AC
3295 target_pid_to_str (lp->ptid));
3296 }
3297
b84876c2 3298 /* But if we don't find one, we'll have to wait, and check both
7feb7d06
PA
3299 cloned and uncloned processes. We start with the cloned
3300 processes. */
d6b0e80f
AC
3301 options = __WCLONE | WNOHANG;
3302 }
3303 else if (is_lwp (ptid))
3304 {
3305 if (debug_linux_nat)
3306 fprintf_unfiltered (gdb_stdlog,
3307 "LLW: Waiting for specific LWP %s.\n",
3308 target_pid_to_str (ptid));
3309
3310 /* We have a specific LWP to check. */
3311 lp = find_lwp_pid (ptid);
3312 gdb_assert (lp);
d6b0e80f 3313
ca2163eb 3314 if (debug_linux_nat && lp->status)
d6b0e80f
AC
3315 fprintf_unfiltered (gdb_stdlog,
3316 "LLW: Using pending wait status %s for %s.\n",
ca2163eb 3317 status_to_str (lp->status),
d6b0e80f
AC
3318 target_pid_to_str (lp->ptid));
3319
3320 /* If we have to wait, take into account whether PID is a cloned
3321 process or not. And we have to convert it to something that
3322 the layer beneath us can understand. */
3323 options = lp->cloned ? __WCLONE : 0;
3324 pid = GET_LWP (ptid);
d90e17a7
PA
3325
3326 /* We check for lp->waitstatus in addition to lp->status,
3327 because we can have pending process exits recorded in
3328 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3329 an additional lp->status_p flag. */
ca2163eb 3330 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
d90e17a7 3331 lp = NULL;
d6b0e80f
AC
3332 }
3333
d90e17a7 3334 if (lp && lp->signalled)
d6b0e80f
AC
3335 {
3336 /* A pending SIGSTOP may interfere with the normal stream of
3337 events. In a typical case where interference is a problem,
3338 we have a SIGSTOP signal pending for LWP A while
3339 single-stepping it, encounter an event in LWP B, and take the
3340 pending SIGSTOP while trying to stop LWP A. After processing
3341 the event in LWP B, LWP A is continued, and we'll never see
3342 the SIGTRAP associated with the last time we were
3343 single-stepping LWP A. */
3344
3345 /* Resume the thread. It should halt immediately returning the
3346 pending SIGSTOP. */
3347 registers_changed ();
28439f5e 3348 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 3349 lp->step, TARGET_SIGNAL_0);
d6b0e80f
AC
3350 if (debug_linux_nat)
3351 fprintf_unfiltered (gdb_stdlog,
3352 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3353 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3354 target_pid_to_str (lp->ptid));
3355 lp->stopped = 0;
3356 gdb_assert (lp->resumed);
3357
ca2163eb
PA
3358 /* Catch the pending SIGSTOP. */
3359 status = lp->status;
3360 lp->status = 0;
3361
d6b0e80f 3362 stop_wait_callback (lp, NULL);
ca2163eb
PA
3363
3364 /* If the lp->status field isn't empty, we caught another signal
3365 while flushing the SIGSTOP. Return it back to the event
3366 queue of the LWP, as we already have an event to handle. */
3367 if (lp->status)
3368 {
3369 if (debug_linux_nat)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "LLW: kill %s, %s\n",
3372 target_pid_to_str (lp->ptid),
3373 status_to_str (lp->status));
3374 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3375 }
3376
3377 lp->status = status;
d6b0e80f
AC
3378 }
3379
b84876c2
PA
3380 if (!target_can_async_p ())
3381 {
3382 /* Causes SIGINT to be passed on to the attached process. */
3383 set_sigint_trap ();
b84876c2 3384 }
d6b0e80f 3385
47608cb1
PA
3386 /* Translate generic target_wait options into waitpid options. */
3387 if (target_options & TARGET_WNOHANG)
3388 options |= WNOHANG;
7feb7d06 3389
d90e17a7 3390 while (lp == NULL)
d6b0e80f
AC
3391 {
3392 pid_t lwpid;
3393
7feb7d06 3394 lwpid = my_waitpid (pid, &status, options);
b84876c2 3395
d6b0e80f
AC
3396 if (lwpid > 0)
3397 {
3398 gdb_assert (pid == -1 || lwpid == pid);
3399
3400 if (debug_linux_nat)
3401 {
3402 fprintf_unfiltered (gdb_stdlog,
3403 "LLW: waitpid %ld received %s\n",
3404 (long) lwpid, status_to_str (status));
3405 }
3406
02f3fc28 3407 lp = linux_nat_filter_event (lwpid, status, options);
d90e17a7
PA
3408
3409 if (lp
3410 && ptid_is_pid (ptid)
3411 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
d6b0e80f 3412 {
d90e17a7
PA
3413 if (debug_linux_nat)
3414 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3415 ptid_get_lwp (lp->ptid), status);
3416
ca2163eb 3417 if (WIFSTOPPED (lp->status))
d90e17a7 3418 {
ca2163eb 3419 if (WSTOPSIG (lp->status) != SIGSTOP)
d90e17a7 3420 {
d90e17a7
PA
3421 stop_callback (lp, NULL);
3422
3423 /* Resume in order to collect the sigstop. */
3424 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
3425
3426 stop_wait_callback (lp, NULL);
3427 }
3428 else
3429 {
3430 lp->stopped = 1;
3431 lp->signalled = 0;
3432 }
3433 }
3434 else if (WIFEXITED (status) || WIFSIGNALED (status))
3435 {
3436 if (debug_linux_nat)
3437 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3438 ptid_get_lwp (lp->ptid));
3439
3440 /* This was the last lwp in the process. Since
3441 events are serialized to GDB core, and we can't
3442 report this one right now, but GDB core and the
3443 other target layers will want to be notified
3444 about the exit code/signal, leave the status
3445 pending for the next time we're able to report
3446 it. */
d90e17a7
PA
3447
3448 /* Prevent trying to stop this thread again. We'll
3449 never try to resume it because it has a pending
3450 status. */
3451 lp->stopped = 1;
3452
3453 /* Dead LWP's aren't expected to reported a pending
3454 sigstop. */
3455 lp->signalled = 0;
3456
3457 /* Store the pending event in the waitstatus as
3458 well, because W_EXITCODE(0,0) == 0. */
ca2163eb 3459 store_waitstatus (&lp->waitstatus, lp->status);
d90e17a7
PA
3460 }
3461
3462 /* Keep looking. */
3463 lp = NULL;
d6b0e80f
AC
3464 continue;
3465 }
3466
d90e17a7
PA
3467 if (lp)
3468 break;
3469 else
3470 {
3471 if (pid == -1)
3472 {
3473 /* waitpid did return something. Restart over. */
3474 options |= __WCLONE;
3475 }
3476 continue;
3477 }
d6b0e80f
AC
3478 }
3479
3480 if (pid == -1)
3481 {
3482 /* Alternate between checking cloned and uncloned processes. */
3483 options ^= __WCLONE;
3484
b84876c2
PA
3485 /* And every time we have checked both:
3486 In async mode, return to event loop;
3487 In sync mode, suspend waiting for a SIGCHLD signal. */
d6b0e80f 3488 if (options & __WCLONE)
b84876c2 3489 {
47608cb1 3490 if (target_options & TARGET_WNOHANG)
b84876c2
PA
3491 {
3492 /* No interesting event. */
3493 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3494
b84876c2
PA
3495 if (debug_linux_nat_async)
3496 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3497
7feb7d06 3498 restore_child_signals_mask (&prev_mask);
b84876c2
PA
3499 return minus_one_ptid;
3500 }
3501
3502 sigsuspend (&suspend_mask);
3503 }
d6b0e80f 3504 }
28736962
PA
3505 else if (target_options & TARGET_WNOHANG)
3506 {
3507 /* No interesting event for PID yet. */
3508 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3509
3510 if (debug_linux_nat_async)
3511 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3512
3513 restore_child_signals_mask (&prev_mask);
3514 return minus_one_ptid;
3515 }
d6b0e80f
AC
3516
3517 /* We shouldn't end up here unless we want to try again. */
d90e17a7 3518 gdb_assert (lp == NULL);
d6b0e80f
AC
3519 }
3520
b84876c2 3521 if (!target_can_async_p ())
d26b5354 3522 clear_sigint_trap ();
d6b0e80f
AC
3523
3524 gdb_assert (lp);
3525
ca2163eb
PA
3526 status = lp->status;
3527 lp->status = 0;
3528
d6b0e80f
AC
3529 /* Don't report signals that GDB isn't interested in, such as
3530 signals that are neither printed nor stopped upon. Stopping all
3531 threads can be a bit time-consuming so if we want decent
3532 performance with heavily multi-threaded programs, especially when
3533 they're using a high frequency timer, we'd better avoid it if we
3534 can. */
3535
3536 if (WIFSTOPPED (status))
3537 {
3538 int signo = target_signal_from_host (WSTOPSIG (status));
d6b48e9c
PA
3539 struct inferior *inf;
3540
3541 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3542 gdb_assert (inf);
d6b0e80f 3543
d6b48e9c
PA
3544 /* Defer to common code if we get a signal while
3545 single-stepping, since that may need special care, e.g. to
3546 skip the signal handler, or, if we're gaining control of the
3547 inferior. */
d539ed7e 3548 if (!lp->step
d6b48e9c 3549 && inf->stop_soon == NO_STOP_QUIETLY
d539ed7e 3550 && signal_stop_state (signo) == 0
d6b0e80f
AC
3551 && signal_print_state (signo) == 0
3552 && signal_pass_state (signo) == 1)
3553 {
3554 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3555 here? It is not clear we should. GDB may not expect
3556 other threads to run. On the other hand, not resuming
3557 newly attached threads may cause an unwanted delay in
3558 getting them running. */
3559 registers_changed ();
28439f5e 3560 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
10d6c8cd 3561 lp->step, signo);
d6b0e80f
AC
3562 if (debug_linux_nat)
3563 fprintf_unfiltered (gdb_stdlog,
3564 "LLW: %s %s, %s (preempt 'handle')\n",
3565 lp->step ?
3566 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3567 target_pid_to_str (lp->ptid),
3568 signo ? strsignal (signo) : "0");
3569 lp->stopped = 0;
d6b0e80f
AC
3570 goto retry;
3571 }
3572
1ad15515 3573 if (!non_stop)
d6b0e80f 3574 {
1ad15515
PA
3575 /* Only do the below in all-stop, as we currently use SIGINT
3576 to implement target_stop (see linux_nat_stop) in
3577 non-stop. */
3578 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3579 {
3580 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3581 forwarded to the entire process group, that is, all LWPs
3582 will receive it - unless they're using CLONE_THREAD to
3583 share signals. Since we only want to report it once, we
3584 mark it as ignored for all LWPs except this one. */
d90e17a7
PA
3585 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3586 set_ignore_sigint, NULL);
1ad15515
PA
3587 lp->ignore_sigint = 0;
3588 }
3589 else
3590 maybe_clear_ignore_sigint (lp);
d6b0e80f
AC
3591 }
3592 }
3593
3594 /* This LWP is stopped now. */
3595 lp->stopped = 1;
3596
3597 if (debug_linux_nat)
3598 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3599 status_to_str (status), target_pid_to_str (lp->ptid));
3600
4c28f408
PA
3601 if (!non_stop)
3602 {
3603 /* Now stop all other LWP's ... */
d90e17a7 3604 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
4c28f408
PA
3605
3606 /* ... and wait until all of them have reported back that
3607 they're no longer running. */
d90e17a7 3608 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
4c28f408
PA
3609
3610 /* If we're not waiting for a specific LWP, choose an event LWP
3611 from among those that have had events. Giving equal priority
3612 to all LWPs that have had events helps prevent
3613 starvation. */
3614 if (pid == -1)
d90e17a7 3615 select_event_lwp (ptid, &lp, &status);
4c28f408 3616 }
d6b0e80f
AC
3617
3618 /* Now that we've selected our final event LWP, cancel any
3619 breakpoints in other LWPs that have hit a GDB breakpoint. See
3620 the comment in cancel_breakpoints_callback to find out why. */
d90e17a7 3621 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
d6b0e80f 3622
d6b0e80f
AC
3623 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3624 {
d6b0e80f
AC
3625 if (debug_linux_nat)
3626 fprintf_unfiltered (gdb_stdlog,
4fdebdd0
PA
3627 "LLW: trap ptid is %s.\n",
3628 target_pid_to_str (lp->ptid));
d6b0e80f 3629 }
d6b0e80f
AC
3630
3631 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3632 {
3633 *ourstatus = lp->waitstatus;
3634 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3635 }
3636 else
3637 store_waitstatus (ourstatus, status);
3638
b84876c2
PA
3639 if (debug_linux_nat_async)
3640 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3641
7feb7d06 3642 restore_child_signals_mask (&prev_mask);
f973ed9c 3643 return lp->ptid;
d6b0e80f
AC
3644}
3645
7feb7d06
PA
3646static ptid_t
3647linux_nat_wait (struct target_ops *ops,
47608cb1
PA
3648 ptid_t ptid, struct target_waitstatus *ourstatus,
3649 int target_options)
7feb7d06
PA
3650{
3651 ptid_t event_ptid;
3652
3653 if (debug_linux_nat)
3654 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3655
3656 /* Flush the async file first. */
3657 if (target_can_async_p ())
3658 async_file_flush ();
3659
47608cb1 3660 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
7feb7d06
PA
3661
3662 /* If we requested any event, and something came out, assume there
3663 may be more. If we requested a specific lwp or process, also
3664 assume there may be more. */
3665 if (target_can_async_p ()
3666 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3667 || !ptid_equal (ptid, minus_one_ptid)))
3668 async_file_mark ();
3669
3670 /* Get ready for the next event. */
3671 if (target_can_async_p ())
3672 target_async (inferior_event_handler, 0);
3673
3674 return event_ptid;
3675}
3676
d6b0e80f
AC
3677static int
3678kill_callback (struct lwp_info *lp, void *data)
3679{
3680 errno = 0;
3681 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3682 if (debug_linux_nat)
3683 fprintf_unfiltered (gdb_stdlog,
3684 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3685 target_pid_to_str (lp->ptid),
3686 errno ? safe_strerror (errno) : "OK");
3687
3688 return 0;
3689}
3690
3691static int
3692kill_wait_callback (struct lwp_info *lp, void *data)
3693{
3694 pid_t pid;
3695
3696 /* We must make sure that there are no pending events (delayed
3697 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3698 program doesn't interfere with any following debugging session. */
3699
3700 /* For cloned processes we must check both with __WCLONE and
3701 without, since the exit status of a cloned process isn't reported
3702 with __WCLONE. */
3703 if (lp->cloned)
3704 {
3705 do
3706 {
58aecb61 3707 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
e85a822c 3708 if (pid != (pid_t) -1)
d6b0e80f 3709 {
e85a822c
DJ
3710 if (debug_linux_nat)
3711 fprintf_unfiltered (gdb_stdlog,
3712 "KWC: wait %s received unknown.\n",
3713 target_pid_to_str (lp->ptid));
3714 /* The Linux kernel sometimes fails to kill a thread
3715 completely after PTRACE_KILL; that goes from the stop
3716 point in do_fork out to the one in
3717 get_signal_to_deliever and waits again. So kill it
3718 again. */
3719 kill_callback (lp, NULL);
d6b0e80f
AC
3720 }
3721 }
3722 while (pid == GET_LWP (lp->ptid));
3723
3724 gdb_assert (pid == -1 && errno == ECHILD);
3725 }
3726
3727 do
3728 {
58aecb61 3729 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
e85a822c 3730 if (pid != (pid_t) -1)
d6b0e80f 3731 {
e85a822c
DJ
3732 if (debug_linux_nat)
3733 fprintf_unfiltered (gdb_stdlog,
3734 "KWC: wait %s received unk.\n",
3735 target_pid_to_str (lp->ptid));
3736 /* See the call to kill_callback above. */
3737 kill_callback (lp, NULL);
d6b0e80f
AC
3738 }
3739 }
3740 while (pid == GET_LWP (lp->ptid));
3741
3742 gdb_assert (pid == -1 && errno == ECHILD);
3743 return 0;
3744}
3745
3746static void
7d85a9c0 3747linux_nat_kill (struct target_ops *ops)
d6b0e80f 3748{
f973ed9c
DJ
3749 struct target_waitstatus last;
3750 ptid_t last_ptid;
3751 int status;
d6b0e80f 3752
f973ed9c
DJ
3753 /* If we're stopped while forking and we haven't followed yet,
3754 kill the other task. We need to do this first because the
3755 parent will be sleeping if this is a vfork. */
d6b0e80f 3756
f973ed9c 3757 get_last_target_status (&last_ptid, &last);
d6b0e80f 3758
f973ed9c
DJ
3759 if (last.kind == TARGET_WAITKIND_FORKED
3760 || last.kind == TARGET_WAITKIND_VFORKED)
3761 {
3a3e9ee3 3762 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
f973ed9c
DJ
3763 wait (&status);
3764 }
3765
3766 if (forks_exist_p ())
7feb7d06 3767 linux_fork_killall ();
f973ed9c
DJ
3768 else
3769 {
d90e17a7 3770 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4c28f408
PA
3771 /* Stop all threads before killing them, since ptrace requires
3772 that the thread is stopped to sucessfully PTRACE_KILL. */
d90e17a7 3773 iterate_over_lwps (ptid, stop_callback, NULL);
4c28f408
PA
3774 /* ... and wait until all of them have reported back that
3775 they're no longer running. */
d90e17a7 3776 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4c28f408 3777
f973ed9c 3778 /* Kill all LWP's ... */
d90e17a7 3779 iterate_over_lwps (ptid, kill_callback, NULL);
f973ed9c
DJ
3780
3781 /* ... and wait until we've flushed all events. */
d90e17a7 3782 iterate_over_lwps (ptid, kill_wait_callback, NULL);
f973ed9c
DJ
3783 }
3784
3785 target_mourn_inferior ();
d6b0e80f
AC
3786}
3787
3788static void
136d6dae 3789linux_nat_mourn_inferior (struct target_ops *ops)
d6b0e80f 3790{
d90e17a7 3791 purge_lwp_list (ptid_get_pid (inferior_ptid));
d6b0e80f 3792
f973ed9c 3793 if (! forks_exist_p ())
d90e17a7
PA
3794 /* Normal case, no other forks available. */
3795 linux_ops->to_mourn_inferior (ops);
f973ed9c
DJ
3796 else
3797 /* Multi-fork case. The current inferior_ptid has exited, but
3798 there are other viable forks to debug. Delete the exiting
3799 one and context-switch to the first available. */
3800 linux_fork_mourn_inferior ();
d6b0e80f
AC
3801}
3802
5b009018
PA
3803/* Convert a native/host siginfo object, into/from the siginfo in the
3804 layout of the inferiors' architecture. */
3805
3806static void
3807siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3808{
3809 int done = 0;
3810
3811 if (linux_nat_siginfo_fixup != NULL)
3812 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3813
3814 /* If there was no callback, or the callback didn't do anything,
3815 then just do a straight memcpy. */
3816 if (!done)
3817 {
3818 if (direction == 1)
3819 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3820 else
3821 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3822 }
3823}
3824
4aa995e1
PA
3825static LONGEST
3826linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3827 const char *annex, gdb_byte *readbuf,
3828 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3829{
4aa995e1
PA
3830 int pid;
3831 struct siginfo siginfo;
5b009018 3832 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4aa995e1
PA
3833
3834 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3835 gdb_assert (readbuf || writebuf);
3836
3837 pid = GET_LWP (inferior_ptid);
3838 if (pid == 0)
3839 pid = GET_PID (inferior_ptid);
3840
3841 if (offset > sizeof (siginfo))
3842 return -1;
3843
3844 errno = 0;
3845 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3846 if (errno != 0)
3847 return -1;
3848
5b009018
PA
3849 /* When GDB is built as a 64-bit application, ptrace writes into
3850 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3851 inferior with a 64-bit GDB should look the same as debugging it
3852 with a 32-bit GDB, we need to convert it. GDB core always sees
3853 the converted layout, so any read/write will have to be done
3854 post-conversion. */
3855 siginfo_fixup (&siginfo, inf_siginfo, 0);
3856
4aa995e1
PA
3857 if (offset + len > sizeof (siginfo))
3858 len = sizeof (siginfo) - offset;
3859
3860 if (readbuf != NULL)
5b009018 3861 memcpy (readbuf, inf_siginfo + offset, len);
4aa995e1
PA
3862 else
3863 {
5b009018
PA
3864 memcpy (inf_siginfo + offset, writebuf, len);
3865
3866 /* Convert back to ptrace layout before flushing it out. */
3867 siginfo_fixup (&siginfo, inf_siginfo, 1);
3868
4aa995e1
PA
3869 errno = 0;
3870 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3871 if (errno != 0)
3872 return -1;
3873 }
3874
3875 return len;
3876}
3877
10d6c8cd
DJ
3878static LONGEST
3879linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3880 const char *annex, gdb_byte *readbuf,
3881 const gdb_byte *writebuf,
3882 ULONGEST offset, LONGEST len)
d6b0e80f 3883{
4aa995e1 3884 struct cleanup *old_chain;
10d6c8cd 3885 LONGEST xfer;
d6b0e80f 3886
4aa995e1
PA
3887 if (object == TARGET_OBJECT_SIGNAL_INFO)
3888 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3889 offset, len);
3890
c35b1492
PA
3891 /* The target is connected but no live inferior is selected. Pass
3892 this request down to a lower stratum (e.g., the executable
3893 file). */
3894 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3895 return 0;
3896
4aa995e1
PA
3897 old_chain = save_inferior_ptid ();
3898
d6b0e80f
AC
3899 if (is_lwp (inferior_ptid))
3900 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3901
10d6c8cd
DJ
3902 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3903 offset, len);
d6b0e80f
AC
3904
3905 do_cleanups (old_chain);
3906 return xfer;
3907}
3908
3909static int
28439f5e 3910linux_thread_alive (ptid_t ptid)
d6b0e80f 3911{
4c28f408
PA
3912 int err;
3913
d6b0e80f
AC
3914 gdb_assert (is_lwp (ptid));
3915
4c28f408
PA
3916 /* Send signal 0 instead of anything ptrace, because ptracing a
3917 running thread errors out claiming that the thread doesn't
3918 exist. */
3919 err = kill_lwp (GET_LWP (ptid), 0);
3920
d6b0e80f
AC
3921 if (debug_linux_nat)
3922 fprintf_unfiltered (gdb_stdlog,
4c28f408 3923 "LLTA: KILL(SIG0) %s (%s)\n",
d6b0e80f 3924 target_pid_to_str (ptid),
4c28f408 3925 err ? safe_strerror (err) : "OK");
9c0dd46b 3926
4c28f408 3927 if (err != 0)
d6b0e80f
AC
3928 return 0;
3929
3930 return 1;
3931}
3932
28439f5e
PA
3933static int
3934linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3935{
3936 return linux_thread_alive (ptid);
3937}
3938
d6b0e80f 3939static char *
117de6a9 3940linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
d6b0e80f
AC
3941{
3942 static char buf[64];
3943
a0ef4274 3944 if (is_lwp (ptid)
d90e17a7
PA
3945 && (GET_PID (ptid) != GET_LWP (ptid)
3946 || num_lwps (GET_PID (ptid)) > 1))
d6b0e80f
AC
3947 {
3948 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3949 return buf;
3950 }
3951
3952 return normal_pid_to_str (ptid);
3953}
3954
dba24537
AC
3955/* Accepts an integer PID; Returns a string representing a file that
3956 can be opened to get the symbols for the child process. */
3957
6d8fd2b7
UW
3958static char *
3959linux_child_pid_to_exec_file (int pid)
dba24537
AC
3960{
3961 char *name1, *name2;
3962
3963 name1 = xmalloc (MAXPATHLEN);
3964 name2 = xmalloc (MAXPATHLEN);
3965 make_cleanup (xfree, name1);
3966 make_cleanup (xfree, name2);
3967 memset (name2, 0, MAXPATHLEN);
3968
3969 sprintf (name1, "/proc/%d/exe", pid);
3970 if (readlink (name1, name2, MAXPATHLEN) > 0)
3971 return name2;
3972 else
3973 return name1;
3974}
3975
3976/* Service function for corefiles and info proc. */
3977
3978static int
3979read_mapping (FILE *mapfile,
3980 long long *addr,
3981 long long *endaddr,
3982 char *permissions,
3983 long long *offset,
3984 char *device, long long *inode, char *filename)
3985{
3986 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3987 addr, endaddr, permissions, offset, device, inode);
3988
2e14c2ea
MS
3989 filename[0] = '\0';
3990 if (ret > 0 && ret != EOF)
dba24537
AC
3991 {
3992 /* Eat everything up to EOL for the filename. This will prevent
3993 weird filenames (such as one with embedded whitespace) from
3994 confusing this code. It also makes this code more robust in
3995 respect to annotations the kernel may add after the filename.
3996
3997 Note the filename is used for informational purposes
3998 only. */
3999 ret += fscanf (mapfile, "%[^\n]\n", filename);
4000 }
2e14c2ea 4001
dba24537
AC
4002 return (ret != 0 && ret != EOF);
4003}
4004
4005/* Fills the "to_find_memory_regions" target vector. Lists the memory
4006 regions in the inferior for a corefile. */
4007
4008static int
4009linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4010 unsigned long,
4011 int, int, int, void *), void *obfd)
4012{
89ecc4f5 4013 int pid = PIDGET (inferior_ptid);
dba24537
AC
4014 char mapsfilename[MAXPATHLEN];
4015 FILE *mapsfile;
4016 long long addr, endaddr, size, offset, inode;
4017 char permissions[8], device[8], filename[MAXPATHLEN];
4018 int read, write, exec;
4019 int ret;
7c8a8b04 4020 struct cleanup *cleanup;
dba24537
AC
4021
4022 /* Compose the filename for the /proc memory map, and open it. */
89ecc4f5 4023 sprintf (mapsfilename, "/proc/%d/maps", pid);
dba24537 4024 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
8a3fe4f8 4025 error (_("Could not open %s."), mapsfilename);
7c8a8b04 4026 cleanup = make_cleanup_fclose (mapsfile);
dba24537
AC
4027
4028 if (info_verbose)
4029 fprintf_filtered (gdb_stdout,
4030 "Reading memory regions from %s\n", mapsfilename);
4031
4032 /* Now iterate until end-of-file. */
4033 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4034 &offset, &device[0], &inode, &filename[0]))
4035 {
4036 size = endaddr - addr;
4037
4038 /* Get the segment's permissions. */
4039 read = (strchr (permissions, 'r') != 0);
4040 write = (strchr (permissions, 'w') != 0);
4041 exec = (strchr (permissions, 'x') != 0);
4042
4043 if (info_verbose)
4044 {
4045 fprintf_filtered (gdb_stdout,
5af949e3
UW
4046 "Save segment, %lld bytes at %s (%c%c%c)",
4047 size, paddress (target_gdbarch, addr),
dba24537
AC
4048 read ? 'r' : ' ',
4049 write ? 'w' : ' ', exec ? 'x' : ' ');
b260b6c1 4050 if (filename[0])
dba24537
AC
4051 fprintf_filtered (gdb_stdout, " for %s", filename);
4052 fprintf_filtered (gdb_stdout, "\n");
4053 }
4054
4055 /* Invoke the callback function to create the corefile
4056 segment. */
4057 func (addr, size, read, write, exec, obfd);
4058 }
7c8a8b04 4059 do_cleanups (cleanup);
dba24537
AC
4060 return 0;
4061}
4062
2020b7ab
PA
4063static int
4064find_signalled_thread (struct thread_info *info, void *data)
4065{
4066 if (info->stop_signal != TARGET_SIGNAL_0
4067 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4068 return 1;
4069
4070 return 0;
4071}
4072
4073static enum target_signal
4074find_stop_signal (void)
4075{
4076 struct thread_info *info =
4077 iterate_over_threads (find_signalled_thread, NULL);
4078
4079 if (info)
4080 return info->stop_signal;
4081 else
4082 return TARGET_SIGNAL_0;
4083}
4084
dba24537
AC
4085/* Records the thread's register state for the corefile note
4086 section. */
4087
4088static char *
4089linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
2020b7ab
PA
4090 char *note_data, int *note_size,
4091 enum target_signal stop_signal)
dba24537
AC
4092{
4093 gdb_gregset_t gregs;
4094 gdb_fpregset_t fpregs;
dba24537 4095 unsigned long lwp = ptid_get_lwp (ptid);
c2250ad1
UW
4096 struct gdbarch *gdbarch = target_gdbarch;
4097 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4f844a66 4098 const struct regset *regset;
55e969c1 4099 int core_regset_p;
594f7785 4100 struct cleanup *old_chain;
17ea7499
CES
4101 struct core_regset_section *sect_list;
4102 char *gdb_regset;
594f7785
UW
4103
4104 old_chain = save_inferior_ptid ();
4105 inferior_ptid = ptid;
4106 target_fetch_registers (regcache, -1);
4107 do_cleanups (old_chain);
4f844a66
DM
4108
4109 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
17ea7499
CES
4110 sect_list = gdbarch_core_regset_sections (gdbarch);
4111
55e969c1
DM
4112 if (core_regset_p
4113 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4114 sizeof (gregs))) != NULL
4115 && regset->collect_regset != NULL)
594f7785 4116 regset->collect_regset (regset, regcache, -1,
55e969c1 4117 &gregs, sizeof (gregs));
4f844a66 4118 else
594f7785 4119 fill_gregset (regcache, &gregs, -1);
4f844a66 4120
55e969c1
DM
4121 note_data = (char *) elfcore_write_prstatus (obfd,
4122 note_data,
4123 note_size,
4124 lwp,
4125 stop_signal, &gregs);
4126
17ea7499
CES
4127 /* The loop below uses the new struct core_regset_section, which stores
4128 the supported section names and sizes for the core file. Note that
4129 note PRSTATUS needs to be treated specially. But the other notes are
4130 structurally the same, so they can benefit from the new struct. */
4131 if (core_regset_p && sect_list != NULL)
4132 while (sect_list->sect_name != NULL)
4133 {
4134 /* .reg was already handled above. */
4135 if (strcmp (sect_list->sect_name, ".reg") == 0)
4136 {
4137 sect_list++;
4138 continue;
4139 }
4140 regset = gdbarch_regset_from_core_section (gdbarch,
4141 sect_list->sect_name,
4142 sect_list->size);
4143 gdb_assert (regset && regset->collect_regset);
4144 gdb_regset = xmalloc (sect_list->size);
4145 regset->collect_regset (regset, regcache, -1,
4146 gdb_regset, sect_list->size);
4147 note_data = (char *) elfcore_write_register_note (obfd,
4148 note_data,
4149 note_size,
4150 sect_list->sect_name,
4151 gdb_regset,
4152 sect_list->size);
4153 xfree (gdb_regset);
4154 sect_list++;
4155 }
dba24537 4156
17ea7499
CES
4157 /* For architectures that does not have the struct core_regset_section
4158 implemented, we use the old method. When all the architectures have
4159 the new support, the code below should be deleted. */
4f844a66 4160 else
17ea7499
CES
4161 {
4162 if (core_regset_p
4163 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4164 sizeof (fpregs))) != NULL
4165 && regset->collect_regset != NULL)
4166 regset->collect_regset (regset, regcache, -1,
4167 &fpregs, sizeof (fpregs));
4168 else
4169 fill_fpregset (regcache, &fpregs, -1);
4170
4171 note_data = (char *) elfcore_write_prfpreg (obfd,
4172 note_data,
4173 note_size,
4174 &fpregs, sizeof (fpregs));
4175 }
4f844a66 4176
dba24537
AC
4177 return note_data;
4178}
4179
4180struct linux_nat_corefile_thread_data
4181{
4182 bfd *obfd;
4183 char *note_data;
4184 int *note_size;
4185 int num_notes;
2020b7ab 4186 enum target_signal stop_signal;
dba24537
AC
4187};
4188
4189/* Called by gdbthread.c once per thread. Records the thread's
4190 register state for the corefile note section. */
4191
4192static int
4193linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4194{
4195 struct linux_nat_corefile_thread_data *args = data;
dba24537 4196
dba24537
AC
4197 args->note_data = linux_nat_do_thread_registers (args->obfd,
4198 ti->ptid,
4199 args->note_data,
2020b7ab
PA
4200 args->note_size,
4201 args->stop_signal);
dba24537 4202 args->num_notes++;
56be3814 4203
dba24537
AC
4204 return 0;
4205}
4206
efcbbd14
UW
4207/* Enumerate spufs IDs for process PID. */
4208
4209static void
4210iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4211{
4212 char path[128];
4213 DIR *dir;
4214 struct dirent *entry;
4215
4216 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4217 dir = opendir (path);
4218 if (!dir)
4219 return;
4220
4221 rewinddir (dir);
4222 while ((entry = readdir (dir)) != NULL)
4223 {
4224 struct stat st;
4225 struct statfs stfs;
4226 int fd;
4227
4228 fd = atoi (entry->d_name);
4229 if (!fd)
4230 continue;
4231
4232 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4233 if (stat (path, &st) != 0)
4234 continue;
4235 if (!S_ISDIR (st.st_mode))
4236 continue;
4237
4238 if (statfs (path, &stfs) != 0)
4239 continue;
4240 if (stfs.f_type != SPUFS_MAGIC)
4241 continue;
4242
4243 callback (data, fd);
4244 }
4245
4246 closedir (dir);
4247}
4248
4249/* Generate corefile notes for SPU contexts. */
4250
4251struct linux_spu_corefile_data
4252{
4253 bfd *obfd;
4254 char *note_data;
4255 int *note_size;
4256};
4257
4258static void
4259linux_spu_corefile_callback (void *data, int fd)
4260{
4261 struct linux_spu_corefile_data *args = data;
4262 int i;
4263
4264 static const char *spu_files[] =
4265 {
4266 "object-id",
4267 "mem",
4268 "regs",
4269 "fpcr",
4270 "lslr",
4271 "decr",
4272 "decr_status",
4273 "signal1",
4274 "signal1_type",
4275 "signal2",
4276 "signal2_type",
4277 "event_mask",
4278 "event_status",
4279 "mbox_info",
4280 "ibox_info",
4281 "wbox_info",
4282 "dma_info",
4283 "proxydma_info",
4284 };
4285
4286 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4287 {
4288 char annex[32], note_name[32];
4289 gdb_byte *spu_data;
4290 LONGEST spu_len;
4291
4292 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4293 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4294 annex, &spu_data);
4295 if (spu_len > 0)
4296 {
4297 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4298 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4299 args->note_size, note_name,
4300 NT_SPU, spu_data, spu_len);
4301 xfree (spu_data);
4302 }
4303 }
4304}
4305
4306static char *
4307linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4308{
4309 struct linux_spu_corefile_data args;
4310 args.obfd = obfd;
4311 args.note_data = note_data;
4312 args.note_size = note_size;
4313
4314 iterate_over_spus (PIDGET (inferior_ptid),
4315 linux_spu_corefile_callback, &args);
4316
4317 return args.note_data;
4318}
4319
dba24537
AC
4320/* Fills the "to_make_corefile_note" target vector. Builds the note
4321 section for a corefile, and returns it in a malloc buffer. */
4322
4323static char *
4324linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4325{
4326 struct linux_nat_corefile_thread_data thread_args;
4327 struct cleanup *old_chain;
d99148ef 4328 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
dba24537 4329 char fname[16] = { '\0' };
d99148ef 4330 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
dba24537
AC
4331 char psargs[80] = { '\0' };
4332 char *note_data = NULL;
4333 ptid_t current_ptid = inferior_ptid;
d90e17a7 4334 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
c6826062 4335 gdb_byte *auxv;
dba24537
AC
4336 int auxv_len;
4337
4338 if (get_exec_file (0))
4339 {
4340 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4341 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4342 if (get_inferior_args ())
4343 {
d99148ef
JK
4344 char *string_end;
4345 char *psargs_end = psargs + sizeof (psargs);
4346
4347 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4348 strings fine. */
4349 string_end = memchr (psargs, 0, sizeof (psargs));
4350 if (string_end != NULL)
4351 {
4352 *string_end++ = ' ';
4353 strncpy (string_end, get_inferior_args (),
4354 psargs_end - string_end);
4355 }
dba24537
AC
4356 }
4357 note_data = (char *) elfcore_write_prpsinfo (obfd,
4358 note_data,
4359 note_size, fname, psargs);
4360 }
4361
4362 /* Dump information for threads. */
4363 thread_args.obfd = obfd;
4364 thread_args.note_data = note_data;
4365 thread_args.note_size = note_size;
4366 thread_args.num_notes = 0;
2020b7ab 4367 thread_args.stop_signal = find_stop_signal ();
d90e17a7 4368 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
2020b7ab
PA
4369 gdb_assert (thread_args.num_notes != 0);
4370 note_data = thread_args.note_data;
dba24537 4371
13547ab6
DJ
4372 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4373 NULL, &auxv);
dba24537
AC
4374 if (auxv_len > 0)
4375 {
4376 note_data = elfcore_write_note (obfd, note_data, note_size,
4377 "CORE", NT_AUXV, auxv, auxv_len);
4378 xfree (auxv);
4379 }
4380
efcbbd14
UW
4381 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4382
dba24537
AC
4383 make_cleanup (xfree, note_data);
4384 return note_data;
4385}
4386
4387/* Implement the "info proc" command. */
4388
4389static void
4390linux_nat_info_proc_cmd (char *args, int from_tty)
4391{
89ecc4f5
DE
4392 /* A long is used for pid instead of an int to avoid a loss of precision
4393 compiler warning from the output of strtoul. */
4394 long pid = PIDGET (inferior_ptid);
dba24537
AC
4395 FILE *procfile;
4396 char **argv = NULL;
4397 char buffer[MAXPATHLEN];
4398 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4399 int cmdline_f = 1;
4400 int cwd_f = 1;
4401 int exe_f = 1;
4402 int mappings_f = 0;
4403 int environ_f = 0;
4404 int status_f = 0;
4405 int stat_f = 0;
4406 int all = 0;
4407 struct stat dummy;
4408
4409 if (args)
4410 {
4411 /* Break up 'args' into an argv array. */
d1a41061
PP
4412 argv = gdb_buildargv (args);
4413 make_cleanup_freeargv (argv);
dba24537
AC
4414 }
4415 while (argv != NULL && *argv != NULL)
4416 {
4417 if (isdigit (argv[0][0]))
4418 {
4419 pid = strtoul (argv[0], NULL, 10);
4420 }
4421 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4422 {
4423 mappings_f = 1;
4424 }
4425 else if (strcmp (argv[0], "status") == 0)
4426 {
4427 status_f = 1;
4428 }
4429 else if (strcmp (argv[0], "stat") == 0)
4430 {
4431 stat_f = 1;
4432 }
4433 else if (strcmp (argv[0], "cmd") == 0)
4434 {
4435 cmdline_f = 1;
4436 }
4437 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4438 {
4439 exe_f = 1;
4440 }
4441 else if (strcmp (argv[0], "cwd") == 0)
4442 {
4443 cwd_f = 1;
4444 }
4445 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4446 {
4447 all = 1;
4448 }
4449 else
4450 {
4451 /* [...] (future options here) */
4452 }
4453 argv++;
4454 }
4455 if (pid == 0)
8a3fe4f8 4456 error (_("No current process: you must name one."));
dba24537 4457
89ecc4f5 4458 sprintf (fname1, "/proc/%ld", pid);
dba24537 4459 if (stat (fname1, &dummy) != 0)
8a3fe4f8 4460 error (_("No /proc directory: '%s'"), fname1);
dba24537 4461
89ecc4f5 4462 printf_filtered (_("process %ld\n"), pid);
dba24537
AC
4463 if (cmdline_f || all)
4464 {
89ecc4f5 4465 sprintf (fname1, "/proc/%ld/cmdline", pid);
d5d6fca5 4466 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 4467 {
7c8a8b04 4468 struct cleanup *cleanup = make_cleanup_fclose (procfile);
bf1d7d9c
JB
4469 if (fgets (buffer, sizeof (buffer), procfile))
4470 printf_filtered ("cmdline = '%s'\n", buffer);
4471 else
4472 warning (_("unable to read '%s'"), fname1);
7c8a8b04 4473 do_cleanups (cleanup);
dba24537
AC
4474 }
4475 else
8a3fe4f8 4476 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
4477 }
4478 if (cwd_f || all)
4479 {
89ecc4f5 4480 sprintf (fname1, "/proc/%ld/cwd", pid);
dba24537
AC
4481 memset (fname2, 0, sizeof (fname2));
4482 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4483 printf_filtered ("cwd = '%s'\n", fname2);
4484 else
8a3fe4f8 4485 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
4486 }
4487 if (exe_f || all)
4488 {
89ecc4f5 4489 sprintf (fname1, "/proc/%ld/exe", pid);
dba24537
AC
4490 memset (fname2, 0, sizeof (fname2));
4491 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4492 printf_filtered ("exe = '%s'\n", fname2);
4493 else
8a3fe4f8 4494 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
4495 }
4496 if (mappings_f || all)
4497 {
89ecc4f5 4498 sprintf (fname1, "/proc/%ld/maps", pid);
d5d6fca5 4499 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
4500 {
4501 long long addr, endaddr, size, offset, inode;
4502 char permissions[8], device[8], filename[MAXPATHLEN];
7c8a8b04 4503 struct cleanup *cleanup;
dba24537 4504
7c8a8b04 4505 cleanup = make_cleanup_fclose (procfile);
a3f17187 4506 printf_filtered (_("Mapped address spaces:\n\n"));
a97b0ac8 4507 if (gdbarch_addr_bit (target_gdbarch) == 32)
dba24537
AC
4508 {
4509 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4510 "Start Addr",
4511 " End Addr",
4512 " Size", " Offset", "objfile");
4513 }
4514 else
4515 {
4516 printf_filtered (" %18s %18s %10s %10s %7s\n",
4517 "Start Addr",
4518 " End Addr",
4519 " Size", " Offset", "objfile");
4520 }
4521
4522 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4523 &offset, &device[0], &inode, &filename[0]))
4524 {
4525 size = endaddr - addr;
4526
4527 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4528 calls here (and possibly above) should be abstracted
4529 out into their own functions? Andrew suggests using
4530 a generic local_address_string instead to print out
4531 the addresses; that makes sense to me, too. */
4532
a97b0ac8 4533 if (gdbarch_addr_bit (target_gdbarch) == 32)
dba24537
AC
4534 {
4535 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4536 (unsigned long) addr, /* FIXME: pr_addr */
4537 (unsigned long) endaddr,
4538 (int) size,
4539 (unsigned int) offset,
4540 filename[0] ? filename : "");
4541 }
4542 else
4543 {
4544 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4545 (unsigned long) addr, /* FIXME: pr_addr */
4546 (unsigned long) endaddr,
4547 (int) size,
4548 (unsigned int) offset,
4549 filename[0] ? filename : "");
4550 }
4551 }
4552
7c8a8b04 4553 do_cleanups (cleanup);
dba24537
AC
4554 }
4555 else
8a3fe4f8 4556 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
4557 }
4558 if (status_f || all)
4559 {
89ecc4f5 4560 sprintf (fname1, "/proc/%ld/status", pid);
d5d6fca5 4561 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 4562 {
7c8a8b04 4563 struct cleanup *cleanup = make_cleanup_fclose (procfile);
dba24537
AC
4564 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4565 puts_filtered (buffer);
7c8a8b04 4566 do_cleanups (cleanup);
dba24537
AC
4567 }
4568 else
8a3fe4f8 4569 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
4570 }
4571 if (stat_f || all)
4572 {
89ecc4f5 4573 sprintf (fname1, "/proc/%ld/stat", pid);
d5d6fca5 4574 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
4575 {
4576 int itmp;
4577 char ctmp;
a25694b4 4578 long ltmp;
7c8a8b04 4579 struct cleanup *cleanup = make_cleanup_fclose (procfile);
dba24537
AC
4580
4581 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4582 printf_filtered (_("Process: %d\n"), itmp);
a25694b4 4583 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
a3f17187 4584 printf_filtered (_("Exec file: %s\n"), buffer);
dba24537 4585 if (fscanf (procfile, "%c ", &ctmp) > 0)
a3f17187 4586 printf_filtered (_("State: %c\n"), ctmp);
dba24537 4587 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4588 printf_filtered (_("Parent process: %d\n"), itmp);
dba24537 4589 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4590 printf_filtered (_("Process group: %d\n"), itmp);
dba24537 4591 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4592 printf_filtered (_("Session id: %d\n"), itmp);
dba24537 4593 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4594 printf_filtered (_("TTY: %d\n"), itmp);
dba24537 4595 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 4596 printf_filtered (_("TTY owner process group: %d\n"), itmp);
a25694b4
AS
4597 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4598 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4599 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4600 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4601 (unsigned long) ltmp);
4602 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4603 printf_filtered (_("Minor faults, children: %lu\n"),
4604 (unsigned long) ltmp);
4605 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4606 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4607 (unsigned long) ltmp);
4608 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4609 printf_filtered (_("Major faults, children: %lu\n"),
4610 (unsigned long) ltmp);
4611 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4612 printf_filtered (_("utime: %ld\n"), ltmp);
4613 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4614 printf_filtered (_("stime: %ld\n"), ltmp);
4615 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4616 printf_filtered (_("utime, children: %ld\n"), ltmp);
4617 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4618 printf_filtered (_("stime, children: %ld\n"), ltmp);
4619 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4620 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4621 ltmp);
4622 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4623 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4624 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4625 printf_filtered (_("jiffies until next timeout: %lu\n"),
4626 (unsigned long) ltmp);
4627 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4628 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4629 (unsigned long) ltmp);
4630 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4631 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4632 ltmp);
4633 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4634 printf_filtered (_("Virtual memory size: %lu\n"),
4635 (unsigned long) ltmp);
4636 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4637 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4638 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4639 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4640 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4641 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4642 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4643 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4644 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4645 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
dba24537
AC
4646#if 0 /* Don't know how architecture-dependent the rest is...
4647 Anyway the signal bitmap info is available from "status". */
a25694b4
AS
4648 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4649 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4650 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4651 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4652 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4653 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4654 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4655 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4656 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4657 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4658 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4659 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4660 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4661 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
dba24537 4662#endif
7c8a8b04 4663 do_cleanups (cleanup);
dba24537
AC
4664 }
4665 else
8a3fe4f8 4666 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
4667 }
4668}
4669
10d6c8cd
DJ
4670/* Implement the to_xfer_partial interface for memory reads using the /proc
4671 filesystem. Because we can use a single read() call for /proc, this
4672 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4673 but it doesn't support writes. */
4674
4675static LONGEST
4676linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4677 const char *annex, gdb_byte *readbuf,
4678 const gdb_byte *writebuf,
4679 ULONGEST offset, LONGEST len)
dba24537 4680{
10d6c8cd
DJ
4681 LONGEST ret;
4682 int fd;
dba24537
AC
4683 char filename[64];
4684
10d6c8cd 4685 if (object != TARGET_OBJECT_MEMORY || !readbuf)
dba24537
AC
4686 return 0;
4687
4688 /* Don't bother for one word. */
4689 if (len < 3 * sizeof (long))
4690 return 0;
4691
4692 /* We could keep this file open and cache it - possibly one per
4693 thread. That requires some juggling, but is even faster. */
4694 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4695 fd = open (filename, O_RDONLY | O_LARGEFILE);
4696 if (fd == -1)
4697 return 0;
4698
4699 /* If pread64 is available, use it. It's faster if the kernel
4700 supports it (only one syscall), and it's 64-bit safe even on
4701 32-bit platforms (for instance, SPARC debugging a SPARC64
4702 application). */
4703#ifdef HAVE_PREAD64
10d6c8cd 4704 if (pread64 (fd, readbuf, len, offset) != len)
dba24537 4705#else
10d6c8cd 4706 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
dba24537
AC
4707#endif
4708 ret = 0;
4709 else
4710 ret = len;
4711
4712 close (fd);
4713 return ret;
4714}
4715
efcbbd14
UW
4716
4717/* Enumerate spufs IDs for process PID. */
4718static LONGEST
4719spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4720{
4721 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4722 LONGEST pos = 0;
4723 LONGEST written = 0;
4724 char path[128];
4725 DIR *dir;
4726 struct dirent *entry;
4727
4728 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4729 dir = opendir (path);
4730 if (!dir)
4731 return -1;
4732
4733 rewinddir (dir);
4734 while ((entry = readdir (dir)) != NULL)
4735 {
4736 struct stat st;
4737 struct statfs stfs;
4738 int fd;
4739
4740 fd = atoi (entry->d_name);
4741 if (!fd)
4742 continue;
4743
4744 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4745 if (stat (path, &st) != 0)
4746 continue;
4747 if (!S_ISDIR (st.st_mode))
4748 continue;
4749
4750 if (statfs (path, &stfs) != 0)
4751 continue;
4752 if (stfs.f_type != SPUFS_MAGIC)
4753 continue;
4754
4755 if (pos >= offset && pos + 4 <= offset + len)
4756 {
4757 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4758 written += 4;
4759 }
4760 pos += 4;
4761 }
4762
4763 closedir (dir);
4764 return written;
4765}
4766
4767/* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4768 object type, using the /proc file system. */
4769static LONGEST
4770linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4771 const char *annex, gdb_byte *readbuf,
4772 const gdb_byte *writebuf,
4773 ULONGEST offset, LONGEST len)
4774{
4775 char buf[128];
4776 int fd = 0;
4777 int ret = -1;
4778 int pid = PIDGET (inferior_ptid);
4779
4780 if (!annex)
4781 {
4782 if (!readbuf)
4783 return -1;
4784 else
4785 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4786 }
4787
4788 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4789 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4790 if (fd <= 0)
4791 return -1;
4792
4793 if (offset != 0
4794 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4795 {
4796 close (fd);
4797 return 0;
4798 }
4799
4800 if (writebuf)
4801 ret = write (fd, writebuf, (size_t) len);
4802 else if (readbuf)
4803 ret = read (fd, readbuf, (size_t) len);
4804
4805 close (fd);
4806 return ret;
4807}
4808
4809
dba24537
AC
4810/* Parse LINE as a signal set and add its set bits to SIGS. */
4811
4812static void
4813add_line_to_sigset (const char *line, sigset_t *sigs)
4814{
4815 int len = strlen (line) - 1;
4816 const char *p;
4817 int signum;
4818
4819 if (line[len] != '\n')
8a3fe4f8 4820 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4821
4822 p = line;
4823 signum = len * 4;
4824 while (len-- > 0)
4825 {
4826 int digit;
4827
4828 if (*p >= '0' && *p <= '9')
4829 digit = *p - '0';
4830 else if (*p >= 'a' && *p <= 'f')
4831 digit = *p - 'a' + 10;
4832 else
8a3fe4f8 4833 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4834
4835 signum -= 4;
4836
4837 if (digit & 1)
4838 sigaddset (sigs, signum + 1);
4839 if (digit & 2)
4840 sigaddset (sigs, signum + 2);
4841 if (digit & 4)
4842 sigaddset (sigs, signum + 3);
4843 if (digit & 8)
4844 sigaddset (sigs, signum + 4);
4845
4846 p++;
4847 }
4848}
4849
4850/* Find process PID's pending signals from /proc/pid/status and set
4851 SIGS to match. */
4852
4853void
4854linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4855{
4856 FILE *procfile;
4857 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4858 int signum;
7c8a8b04 4859 struct cleanup *cleanup;
dba24537
AC
4860
4861 sigemptyset (pending);
4862 sigemptyset (blocked);
4863 sigemptyset (ignored);
4864 sprintf (fname, "/proc/%d/status", pid);
4865 procfile = fopen (fname, "r");
4866 if (procfile == NULL)
8a3fe4f8 4867 error (_("Could not open %s"), fname);
7c8a8b04 4868 cleanup = make_cleanup_fclose (procfile);
dba24537
AC
4869
4870 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4871 {
4872 /* Normal queued signals are on the SigPnd line in the status
4873 file. However, 2.6 kernels also have a "shared" pending
4874 queue for delivering signals to a thread group, so check for
4875 a ShdPnd line also.
4876
4877 Unfortunately some Red Hat kernels include the shared pending
4878 queue but not the ShdPnd status field. */
4879
4880 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4881 add_line_to_sigset (buffer + 8, pending);
4882 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4883 add_line_to_sigset (buffer + 8, pending);
4884 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4885 add_line_to_sigset (buffer + 8, blocked);
4886 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4887 add_line_to_sigset (buffer + 8, ignored);
4888 }
4889
7c8a8b04 4890 do_cleanups (cleanup);
dba24537
AC
4891}
4892
07e059b5
VP
4893static LONGEST
4894linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4895 const char *annex, gdb_byte *readbuf,
4896 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4897{
4898 /* We make the process list snapshot when the object starts to be
4899 read. */
4900 static const char *buf;
4901 static LONGEST len_avail = -1;
4902 static struct obstack obstack;
4903
4904 DIR *dirp;
4905
4906 gdb_assert (object == TARGET_OBJECT_OSDATA);
4907
4908 if (strcmp (annex, "processes") != 0)
4909 return 0;
4910
4911 gdb_assert (readbuf && !writebuf);
4912
4913 if (offset == 0)
4914 {
4915 if (len_avail != -1 && len_avail != 0)
4916 obstack_free (&obstack, NULL);
4917 len_avail = 0;
4918 buf = NULL;
4919 obstack_init (&obstack);
4920 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4921
4922 dirp = opendir ("/proc");
4923 if (dirp)
4924 {
4925 struct dirent *dp;
4926 while ((dp = readdir (dirp)) != NULL)
4927 {
4928 struct stat statbuf;
4929 char procentry[sizeof ("/proc/4294967295")];
4930
4931 if (!isdigit (dp->d_name[0])
1a6d2f2f 4932 || NAMELEN (dp) > sizeof ("4294967295") - 1)
07e059b5
VP
4933 continue;
4934
4935 sprintf (procentry, "/proc/%s", dp->d_name);
4936 if (stat (procentry, &statbuf) == 0
4937 && S_ISDIR (statbuf.st_mode))
4938 {
4939 char *pathname;
4940 FILE *f;
4941 char cmd[MAXPATHLEN + 1];
4942 struct passwd *entry;
4943
4944 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4945 entry = getpwuid (statbuf.st_uid);
4946
4947 if ((f = fopen (pathname, "r")) != NULL)
4948 {
4949 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4950 if (len > 0)
4951 {
4952 int i;
4953 for (i = 0; i < len; i++)
4954 if (cmd[i] == '\0')
4955 cmd[i] = ' ';
4956 cmd[len] = '\0';
4957
4958 obstack_xml_printf (
4959 &obstack,
4960 "<item>"
4961 "<column name=\"pid\">%s</column>"
4962 "<column name=\"user\">%s</column>"
4963 "<column name=\"command\">%s</column>"
4964 "</item>",
4965 dp->d_name,
4966 entry ? entry->pw_name : "?",
4967 cmd);
4968 }
4969 fclose (f);
4970 }
4971
4972 xfree (pathname);
4973 }
4974 }
4975
4976 closedir (dirp);
4977 }
4978
4979 obstack_grow_str0 (&obstack, "</osdata>\n");
4980 buf = obstack_finish (&obstack);
4981 len_avail = strlen (buf);
4982 }
4983
4984 if (offset >= len_avail)
4985 {
4986 /* Done. Get rid of the obstack. */
4987 obstack_free (&obstack, NULL);
4988 buf = NULL;
4989 len_avail = 0;
4990 return 0;
4991 }
4992
4993 if (len > len_avail - offset)
4994 len = len_avail - offset;
4995 memcpy (readbuf, buf + offset, len);
4996
4997 return len;
4998}
4999
10d6c8cd
DJ
5000static LONGEST
5001linux_xfer_partial (struct target_ops *ops, enum target_object object,
5002 const char *annex, gdb_byte *readbuf,
5003 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5004{
5005 LONGEST xfer;
5006
5007 if (object == TARGET_OBJECT_AUXV)
5008 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
5009 offset, len);
5010
07e059b5
VP
5011 if (object == TARGET_OBJECT_OSDATA)
5012 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5013 offset, len);
5014
efcbbd14
UW
5015 if (object == TARGET_OBJECT_SPU)
5016 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5017 offset, len);
5018
8f313923
JK
5019 /* GDB calculates all the addresses in possibly larget width of the address.
5020 Address width needs to be masked before its final use - either by
5021 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5022
5023 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5024
5025 if (object == TARGET_OBJECT_MEMORY)
5026 {
5027 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5028
5029 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5030 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5031 }
5032
10d6c8cd
DJ
5033 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5034 offset, len);
5035 if (xfer != 0)
5036 return xfer;
5037
5038 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5039 offset, len);
5040}
5041
e9efe249 5042/* Create a prototype generic GNU/Linux target. The client can override
10d6c8cd
DJ
5043 it with local methods. */
5044
910122bf
UW
5045static void
5046linux_target_install_ops (struct target_ops *t)
10d6c8cd 5047{
6d8fd2b7
UW
5048 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5049 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5050 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
a96d9b2e 5051 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
6d8fd2b7 5052 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
10d6c8cd 5053 t->to_post_startup_inferior = linux_child_post_startup_inferior;
6d8fd2b7
UW
5054 t->to_post_attach = linux_child_post_attach;
5055 t->to_follow_fork = linux_child_follow_fork;
10d6c8cd
DJ
5056 t->to_find_memory_regions = linux_nat_find_memory_regions;
5057 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5058
5059 super_xfer_partial = t->to_xfer_partial;
5060 t->to_xfer_partial = linux_xfer_partial;
910122bf
UW
5061}
5062
5063struct target_ops *
5064linux_target (void)
5065{
5066 struct target_ops *t;
5067
5068 t = inf_ptrace_target ();
5069 linux_target_install_ops (t);
5070
5071 return t;
5072}
5073
5074struct target_ops *
7714d83a 5075linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
910122bf
UW
5076{
5077 struct target_ops *t;
5078
5079 t = inf_ptrace_trad_target (register_u_offset);
5080 linux_target_install_ops (t);
10d6c8cd 5081
10d6c8cd
DJ
5082 return t;
5083}
5084
b84876c2
PA
5085/* target_is_async_p implementation. */
5086
5087static int
5088linux_nat_is_async_p (void)
5089{
5090 /* NOTE: palves 2008-03-21: We're only async when the user requests
7feb7d06 5091 it explicitly with the "set target-async" command.
b84876c2 5092 Someday, linux will always be async. */
c6ebd6cf 5093 if (!target_async_permitted)
b84876c2
PA
5094 return 0;
5095
d90e17a7
PA
5096 /* See target.h/target_async_mask. */
5097 return linux_nat_async_mask_value;
b84876c2
PA
5098}
5099
5100/* target_can_async_p implementation. */
5101
5102static int
5103linux_nat_can_async_p (void)
5104{
5105 /* NOTE: palves 2008-03-21: We're only async when the user requests
7feb7d06 5106 it explicitly with the "set target-async" command.
b84876c2 5107 Someday, linux will always be async. */
c6ebd6cf 5108 if (!target_async_permitted)
b84876c2
PA
5109 return 0;
5110
5111 /* See target.h/target_async_mask. */
5112 return linux_nat_async_mask_value;
5113}
5114
9908b566
VP
5115static int
5116linux_nat_supports_non_stop (void)
5117{
5118 return 1;
5119}
5120
d90e17a7
PA
5121/* True if we want to support multi-process. To be removed when GDB
5122 supports multi-exec. */
5123
2277426b 5124int linux_multi_process = 1;
d90e17a7
PA
5125
5126static int
5127linux_nat_supports_multi_process (void)
5128{
5129 return linux_multi_process;
5130}
5131
b84876c2
PA
5132/* target_async_mask implementation. */
5133
5134static int
7feb7d06 5135linux_nat_async_mask (int new_mask)
b84876c2 5136{
7feb7d06 5137 int curr_mask = linux_nat_async_mask_value;
b84876c2 5138
7feb7d06 5139 if (curr_mask != new_mask)
b84876c2 5140 {
7feb7d06 5141 if (new_mask == 0)
b84876c2
PA
5142 {
5143 linux_nat_async (NULL, 0);
7feb7d06 5144 linux_nat_async_mask_value = new_mask;
b84876c2
PA
5145 }
5146 else
5147 {
7feb7d06 5148 linux_nat_async_mask_value = new_mask;
84e46146 5149
7feb7d06
PA
5150 /* If we're going out of async-mask in all-stop, then the
5151 inferior is stopped. The next resume will call
5152 target_async. In non-stop, the target event source
5153 should be always registered in the event loop. Do so
5154 now. */
5155 if (non_stop)
5156 linux_nat_async (inferior_event_handler, 0);
b84876c2
PA
5157 }
5158 }
5159
7feb7d06 5160 return curr_mask;
b84876c2
PA
5161}
5162
5163static int async_terminal_is_ours = 1;
5164
5165/* target_terminal_inferior implementation. */
5166
5167static void
5168linux_nat_terminal_inferior (void)
5169{
5170 if (!target_is_async_p ())
5171 {
5172 /* Async mode is disabled. */
5173 terminal_inferior ();
5174 return;
5175 }
5176
b84876c2
PA
5177 terminal_inferior ();
5178
d9d2d8b6 5179 /* Calls to target_terminal_*() are meant to be idempotent. */
b84876c2
PA
5180 if (!async_terminal_is_ours)
5181 return;
5182
5183 delete_file_handler (input_fd);
5184 async_terminal_is_ours = 0;
5185 set_sigint_trap ();
5186}
5187
5188/* target_terminal_ours implementation. */
5189
2c0b251b 5190static void
b84876c2
PA
5191linux_nat_terminal_ours (void)
5192{
5193 if (!target_is_async_p ())
5194 {
5195 /* Async mode is disabled. */
5196 terminal_ours ();
5197 return;
5198 }
5199
5200 /* GDB should never give the terminal to the inferior if the
5201 inferior is running in the background (run&, continue&, etc.),
5202 but claiming it sure should. */
5203 terminal_ours ();
5204
b84876c2
PA
5205 if (async_terminal_is_ours)
5206 return;
5207
5208 clear_sigint_trap ();
5209 add_file_handler (input_fd, stdin_event_handler, 0);
5210 async_terminal_is_ours = 1;
5211}
5212
5213static void (*async_client_callback) (enum inferior_event_type event_type,
5214 void *context);
5215static void *async_client_context;
5216
7feb7d06
PA
5217/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5218 so we notice when any child changes state, and notify the
5219 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5220 above to wait for the arrival of a SIGCHLD. */
5221
b84876c2 5222static void
7feb7d06 5223sigchld_handler (int signo)
b84876c2 5224{
7feb7d06
PA
5225 int old_errno = errno;
5226
5227 if (debug_linux_nat_async)
5228 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5229
5230 if (signo == SIGCHLD
5231 && linux_nat_event_pipe[0] != -1)
5232 async_file_mark (); /* Let the event loop know that there are
5233 events to handle. */
5234
5235 errno = old_errno;
5236}
5237
5238/* Callback registered with the target events file descriptor. */
5239
5240static void
5241handle_target_event (int error, gdb_client_data client_data)
5242{
5243 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5244}
5245
5246/* Create/destroy the target events pipe. Returns previous state. */
5247
5248static int
5249linux_async_pipe (int enable)
5250{
5251 int previous = (linux_nat_event_pipe[0] != -1);
5252
5253 if (previous != enable)
5254 {
5255 sigset_t prev_mask;
5256
5257 block_child_signals (&prev_mask);
5258
5259 if (enable)
5260 {
5261 if (pipe (linux_nat_event_pipe) == -1)
5262 internal_error (__FILE__, __LINE__,
5263 "creating event pipe failed.");
5264
5265 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5266 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5267 }
5268 else
5269 {
5270 close (linux_nat_event_pipe[0]);
5271 close (linux_nat_event_pipe[1]);
5272 linux_nat_event_pipe[0] = -1;
5273 linux_nat_event_pipe[1] = -1;
5274 }
5275
5276 restore_child_signals_mask (&prev_mask);
5277 }
5278
5279 return previous;
b84876c2
PA
5280}
5281
5282/* target_async implementation. */
5283
5284static void
5285linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5286 void *context), void *context)
5287{
c6ebd6cf 5288 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
b84876c2
PA
5289 internal_error (__FILE__, __LINE__,
5290 "Calling target_async when async is masked");
5291
5292 if (callback != NULL)
5293 {
5294 async_client_callback = callback;
5295 async_client_context = context;
7feb7d06
PA
5296 if (!linux_async_pipe (1))
5297 {
5298 add_file_handler (linux_nat_event_pipe[0],
5299 handle_target_event, NULL);
5300 /* There may be pending events to handle. Tell the event loop
5301 to poll them. */
5302 async_file_mark ();
5303 }
b84876c2
PA
5304 }
5305 else
5306 {
5307 async_client_callback = callback;
5308 async_client_context = context;
b84876c2 5309 delete_file_handler (linux_nat_event_pipe[0]);
7feb7d06 5310 linux_async_pipe (0);
b84876c2
PA
5311 }
5312 return;
5313}
5314
252fbfc8
PA
5315/* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5316 event came out. */
5317
4c28f408 5318static int
252fbfc8 5319linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4c28f408 5320{
d90e17a7 5321 if (!lwp->stopped)
252fbfc8 5322 {
d90e17a7
PA
5323 int pid, status;
5324 ptid_t ptid = lwp->ptid;
252fbfc8 5325
d90e17a7
PA
5326 if (debug_linux_nat)
5327 fprintf_unfiltered (gdb_stdlog,
5328 "LNSL: running -> suspending %s\n",
5329 target_pid_to_str (lwp->ptid));
252fbfc8 5330
252fbfc8 5331
d90e17a7
PA
5332 stop_callback (lwp, NULL);
5333 stop_wait_callback (lwp, NULL);
252fbfc8 5334
d90e17a7
PA
5335 /* If the lwp exits while we try to stop it, there's nothing
5336 else to do. */
5337 lwp = find_lwp_pid (ptid);
5338 if (lwp == NULL)
5339 return 0;
252fbfc8 5340
d90e17a7
PA
5341 /* If we didn't collect any signal other than SIGSTOP while
5342 stopping the LWP, push a SIGNAL_0 event. In either case, the
5343 event-loop will end up calling target_wait which will collect
5344 these. */
5345 if (lwp->status == 0)
5346 lwp->status = W_STOPCODE (0);
5347 async_file_mark ();
5348 }
5349 else
5350 {
5351 /* Already known to be stopped; do nothing. */
252fbfc8 5352
d90e17a7
PA
5353 if (debug_linux_nat)
5354 {
e09875d4 5355 if (find_thread_ptid (lwp->ptid)->stop_requested)
d90e17a7 5356 fprintf_unfiltered (gdb_stdlog, "\
252fbfc8 5357LNSL: already stopped/stop_requested %s\n",
d90e17a7
PA
5358 target_pid_to_str (lwp->ptid));
5359 else
5360 fprintf_unfiltered (gdb_stdlog, "\
252fbfc8 5361LNSL: already stopped/no stop_requested yet %s\n",
d90e17a7 5362 target_pid_to_str (lwp->ptid));
252fbfc8
PA
5363 }
5364 }
4c28f408
PA
5365 return 0;
5366}
5367
5368static void
5369linux_nat_stop (ptid_t ptid)
5370{
5371 if (non_stop)
d90e17a7 5372 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4c28f408
PA
5373 else
5374 linux_ops->to_stop (ptid);
5375}
5376
d90e17a7
PA
5377static void
5378linux_nat_close (int quitting)
5379{
5380 /* Unregister from the event loop. */
5381 if (target_is_async_p ())
5382 target_async (NULL, 0);
5383
5384 /* Reset the async_masking. */
5385 linux_nat_async_mask_value = 1;
5386
5387 if (linux_ops->to_close)
5388 linux_ops->to_close (quitting);
5389}
5390
c0694254
PA
5391/* When requests are passed down from the linux-nat layer to the
5392 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5393 used. The address space pointer is stored in the inferior object,
5394 but the common code that is passed such ptid can't tell whether
5395 lwpid is a "main" process id or not (it assumes so). We reverse
5396 look up the "main" process id from the lwp here. */
5397
5398struct address_space *
5399linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5400{
5401 struct lwp_info *lwp;
5402 struct inferior *inf;
5403 int pid;
5404
5405 pid = GET_LWP (ptid);
5406 if (GET_LWP (ptid) == 0)
5407 {
5408 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5409 tgid. */
5410 lwp = find_lwp_pid (ptid);
5411 pid = GET_PID (lwp->ptid);
5412 }
5413 else
5414 {
5415 /* A (pid,lwpid,0) ptid. */
5416 pid = GET_PID (ptid);
5417 }
5418
5419 inf = find_inferior_pid (pid);
5420 gdb_assert (inf != NULL);
5421 return inf->aspace;
5422}
5423
f973ed9c
DJ
5424void
5425linux_nat_add_target (struct target_ops *t)
5426{
f973ed9c
DJ
5427 /* Save the provided single-threaded target. We save this in a separate
5428 variable because another target we've inherited from (e.g. inf-ptrace)
5429 may have saved a pointer to T; we want to use it for the final
5430 process stratum target. */
5431 linux_ops_saved = *t;
5432 linux_ops = &linux_ops_saved;
5433
5434 /* Override some methods for multithreading. */
b84876c2 5435 t->to_create_inferior = linux_nat_create_inferior;
f973ed9c
DJ
5436 t->to_attach = linux_nat_attach;
5437 t->to_detach = linux_nat_detach;
5438 t->to_resume = linux_nat_resume;
5439 t->to_wait = linux_nat_wait;
5440 t->to_xfer_partial = linux_nat_xfer_partial;
5441 t->to_kill = linux_nat_kill;
5442 t->to_mourn_inferior = linux_nat_mourn_inferior;
5443 t->to_thread_alive = linux_nat_thread_alive;
5444 t->to_pid_to_str = linux_nat_pid_to_str;
5445 t->to_has_thread_control = tc_schedlock;
c0694254 5446 t->to_thread_address_space = linux_nat_thread_address_space;
ebec9a0f
PA
5447 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5448 t->to_stopped_data_address = linux_nat_stopped_data_address;
f973ed9c 5449
b84876c2
PA
5450 t->to_can_async_p = linux_nat_can_async_p;
5451 t->to_is_async_p = linux_nat_is_async_p;
9908b566 5452 t->to_supports_non_stop = linux_nat_supports_non_stop;
b84876c2
PA
5453 t->to_async = linux_nat_async;
5454 t->to_async_mask = linux_nat_async_mask;
5455 t->to_terminal_inferior = linux_nat_terminal_inferior;
5456 t->to_terminal_ours = linux_nat_terminal_ours;
d90e17a7 5457 t->to_close = linux_nat_close;
b84876c2 5458
4c28f408
PA
5459 /* Methods for non-stop support. */
5460 t->to_stop = linux_nat_stop;
5461
d90e17a7
PA
5462 t->to_supports_multi_process = linux_nat_supports_multi_process;
5463
f973ed9c
DJ
5464 /* We don't change the stratum; this target will sit at
5465 process_stratum and thread_db will set at thread_stratum. This
5466 is a little strange, since this is a multi-threaded-capable
5467 target, but we want to be on the stack below thread_db, and we
5468 also want to be used for single-threaded processes. */
5469
5470 add_target (t);
f973ed9c
DJ
5471}
5472
9f0bdab8
DJ
5473/* Register a method to call whenever a new thread is attached. */
5474void
5475linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5476{
5477 /* Save the pointer. We only support a single registered instance
5478 of the GNU/Linux native target, so we do not need to map this to
5479 T. */
5480 linux_nat_new_thread = new_thread;
5481}
5482
5b009018
PA
5483/* Register a method that converts a siginfo object between the layout
5484 that ptrace returns, and the layout in the architecture of the
5485 inferior. */
5486void
5487linux_nat_set_siginfo_fixup (struct target_ops *t,
5488 int (*siginfo_fixup) (struct siginfo *,
5489 gdb_byte *,
5490 int))
5491{
5492 /* Save the pointer. */
5493 linux_nat_siginfo_fixup = siginfo_fixup;
5494}
5495
9f0bdab8
DJ
5496/* Return the saved siginfo associated with PTID. */
5497struct siginfo *
5498linux_nat_get_siginfo (ptid_t ptid)
5499{
5500 struct lwp_info *lp = find_lwp_pid (ptid);
5501
5502 gdb_assert (lp != NULL);
5503
5504 return &lp->siginfo;
5505}
5506
2c0b251b
PA
5507/* Provide a prototype to silence -Wmissing-prototypes. */
5508extern initialize_file_ftype _initialize_linux_nat;
5509
d6b0e80f
AC
5510void
5511_initialize_linux_nat (void)
5512{
b84876c2 5513 sigset_t mask;
dba24537 5514
1bedd215
AC
5515 add_info ("proc", linux_nat_info_proc_cmd, _("\
5516Show /proc process information about any running process.\n\
dba24537
AC
5517Specify any process id, or use the program being debugged by default.\n\
5518Specify any of the following keywords for detailed info:\n\
5519 mappings -- list of mapped memory regions.\n\
5520 stat -- list a bunch of random process info.\n\
5521 status -- list a different bunch of random process info.\n\
1bedd215 5522 all -- list all available /proc info."));
d6b0e80f 5523
b84876c2
PA
5524 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5525 &debug_linux_nat, _("\
5526Set debugging of GNU/Linux lwp module."), _("\
5527Show debugging of GNU/Linux lwp module."), _("\
5528Enables printf debugging output."),
5529 NULL,
5530 show_debug_linux_nat,
5531 &setdebuglist, &showdebuglist);
5532
5533 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5534 &debug_linux_nat_async, _("\
5535Set debugging of GNU/Linux async lwp module."), _("\
5536Show debugging of GNU/Linux async lwp module."), _("\
5537Enables printf debugging output."),
5538 NULL,
5539 show_debug_linux_nat_async,
5540 &setdebuglist, &showdebuglist);
5541
b84876c2 5542 /* Save this mask as the default. */
d6b0e80f
AC
5543 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5544
7feb7d06
PA
5545 /* Install a SIGCHLD handler. */
5546 sigchld_action.sa_handler = sigchld_handler;
5547 sigemptyset (&sigchld_action.sa_mask);
5548 sigchld_action.sa_flags = SA_RESTART;
b84876c2
PA
5549
5550 /* Make it the default. */
7feb7d06 5551 sigaction (SIGCHLD, &sigchld_action, NULL);
d6b0e80f
AC
5552
5553 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5554 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5555 sigdelset (&suspend_mask, SIGCHLD);
5556
7feb7d06 5557 sigemptyset (&blocked_mask);
10568435
JK
5558
5559 add_setshow_boolean_cmd ("disable-randomization", class_support,
5560 &disable_randomization, _("\
5561Set disabling of debuggee's virtual address space randomization."), _("\
5562Show disabling of debuggee's virtual address space randomization."), _("\
5563When this mode is on (which is the default), randomization of the virtual\n\
5564address space is disabled. Standalone programs run with the randomization\n\
5565enabled by default on some platforms."),
5566 &set_disable_randomization,
5567 &show_disable_randomization,
5568 &setlist, &showlist);
d6b0e80f
AC
5569}
5570\f
5571
5572/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5573 the GNU/Linux Threads library and therefore doesn't really belong
5574 here. */
5575
5576/* Read variable NAME in the target and return its value if found.
5577 Otherwise return zero. It is assumed that the type of the variable
5578 is `int'. */
5579
5580static int
5581get_signo (const char *name)
5582{
5583 struct minimal_symbol *ms;
5584 int signo;
5585
5586 ms = lookup_minimal_symbol (name, NULL, NULL);
5587 if (ms == NULL)
5588 return 0;
5589
8e70166d 5590 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
d6b0e80f
AC
5591 sizeof (signo)) != 0)
5592 return 0;
5593
5594 return signo;
5595}
5596
5597/* Return the set of signals used by the threads library in *SET. */
5598
5599void
5600lin_thread_get_thread_signals (sigset_t *set)
5601{
5602 struct sigaction action;
5603 int restart, cancel;
5604
b84876c2 5605 sigemptyset (&blocked_mask);
d6b0e80f
AC
5606 sigemptyset (set);
5607
5608 restart = get_signo ("__pthread_sig_restart");
17fbb0bd
DJ
5609 cancel = get_signo ("__pthread_sig_cancel");
5610
5611 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5612 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5613 not provide any way for the debugger to query the signal numbers -
5614 fortunately they don't change! */
5615
d6b0e80f 5616 if (restart == 0)
17fbb0bd 5617 restart = __SIGRTMIN;
d6b0e80f 5618
d6b0e80f 5619 if (cancel == 0)
17fbb0bd 5620 cancel = __SIGRTMIN + 1;
d6b0e80f
AC
5621
5622 sigaddset (set, restart);
5623 sigaddset (set, cancel);
5624
5625 /* The GNU/Linux Threads library makes terminating threads send a
5626 special "cancel" signal instead of SIGCHLD. Make sure we catch
5627 those (to prevent them from terminating GDB itself, which is
5628 likely to be their default action) and treat them the same way as
5629 SIGCHLD. */
5630
5631 action.sa_handler = sigchld_handler;
5632 sigemptyset (&action.sa_mask);
58aecb61 5633 action.sa_flags = SA_RESTART;
d6b0e80f
AC
5634 sigaction (cancel, &action, NULL);
5635
5636 /* We block the "cancel" signal throughout this code ... */
5637 sigaddset (&blocked_mask, cancel);
5638 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5639
5640 /* ... except during a sigsuspend. */
5641 sigdelset (&suspend_mask, cancel);
5642}
This page took 0.832565 seconds and 4 git commands to generate.