Fix ARC TLS support.
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
618f726f 3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
cdfa0b0a 35#include "observer.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
8d297bbf 40#include "common/enum-flags.h"
3030c96e
UW
41
42#include <ctype.h>
4aa995e1 43
db1ff28b
JK
44/* This enum represents the values that the user can choose when
45 informing the Linux kernel about which memory mappings will be
46 dumped in a corefile. They are described in the file
47 Documentation/filesystems/proc.txt, inside the Linux kernel
48 tree. */
49
8d297bbf 50enum filter_flag
db1ff28b
JK
51 {
52 COREFILTER_ANON_PRIVATE = 1 << 0,
53 COREFILTER_ANON_SHARED = 1 << 1,
54 COREFILTER_MAPPED_PRIVATE = 1 << 2,
55 COREFILTER_MAPPED_SHARED = 1 << 3,
56 COREFILTER_ELF_HEADERS = 1 << 4,
57 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
58 COREFILTER_HUGETLB_SHARED = 1 << 6,
59 };
8d297bbf 60DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
61
62/* This struct is used to map flags found in the "VmFlags:" field (in
63 the /proc/<PID>/smaps file). */
64
65struct smaps_vmflags
66 {
67 /* Zero if this structure has not been initialized yet. It
68 probably means that the Linux kernel being used does not emit
69 the "VmFlags:" field on "/proc/PID/smaps". */
70
71 unsigned int initialized_p : 1;
72
73 /* Memory mapped I/O area (VM_IO, "io"). */
74
75 unsigned int io_page : 1;
76
77 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
78
79 unsigned int uses_huge_tlb : 1;
80
81 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
82
83 unsigned int exclude_coredump : 1;
84
85 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
86
87 unsigned int shared_mapping : 1;
88 };
89
df8411da
SDJ
90/* Whether to take the /proc/PID/coredump_filter into account when
91 generating a corefile. */
92
93static int use_coredump_filter = 1;
94
eb14d406
SDJ
95/* This enum represents the signals' numbers on a generic architecture
96 running the Linux kernel. The definition of "generic" comes from
97 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
98 tree, which is the "de facto" implementation of signal numbers to
99 be used by new architecture ports.
100
101 For those architectures which have differences between the generic
102 standard (e.g., Alpha), we define the different signals (and *only*
103 those) in the specific target-dependent file (e.g.,
104 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
105 tdep file for more information.
106
107 ARM deserves a special mention here. On the file
108 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
109 (and ARM-only) signal, which is SIGSWI, with the same number as
110 SIGRTMIN. This signal is used only for a very specific target,
111 called ArthurOS (from RISCOS). Therefore, we do not handle it on
112 the ARM-tdep file, and we can safely use the generic signal handler
113 here for ARM targets.
114
115 As stated above, this enum is derived from
116 <include/uapi/asm-generic/signal.h>, from the Linux kernel
117 tree. */
118
119enum
120 {
121 LINUX_SIGHUP = 1,
122 LINUX_SIGINT = 2,
123 LINUX_SIGQUIT = 3,
124 LINUX_SIGILL = 4,
125 LINUX_SIGTRAP = 5,
126 LINUX_SIGABRT = 6,
127 LINUX_SIGIOT = 6,
128 LINUX_SIGBUS = 7,
129 LINUX_SIGFPE = 8,
130 LINUX_SIGKILL = 9,
131 LINUX_SIGUSR1 = 10,
132 LINUX_SIGSEGV = 11,
133 LINUX_SIGUSR2 = 12,
134 LINUX_SIGPIPE = 13,
135 LINUX_SIGALRM = 14,
136 LINUX_SIGTERM = 15,
137 LINUX_SIGSTKFLT = 16,
138 LINUX_SIGCHLD = 17,
139 LINUX_SIGCONT = 18,
140 LINUX_SIGSTOP = 19,
141 LINUX_SIGTSTP = 20,
142 LINUX_SIGTTIN = 21,
143 LINUX_SIGTTOU = 22,
144 LINUX_SIGURG = 23,
145 LINUX_SIGXCPU = 24,
146 LINUX_SIGXFSZ = 25,
147 LINUX_SIGVTALRM = 26,
148 LINUX_SIGPROF = 27,
149 LINUX_SIGWINCH = 28,
150 LINUX_SIGIO = 29,
151 LINUX_SIGPOLL = LINUX_SIGIO,
152 LINUX_SIGPWR = 30,
153 LINUX_SIGSYS = 31,
154 LINUX_SIGUNUSED = 31,
155
156 LINUX_SIGRTMIN = 32,
157 LINUX_SIGRTMAX = 64,
158 };
159
06253dd3
JK
160static struct gdbarch_data *linux_gdbarch_data_handle;
161
162struct linux_gdbarch_data
163 {
164 struct type *siginfo_type;
165 };
166
167static void *
168init_linux_gdbarch_data (struct gdbarch *gdbarch)
169{
170 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
171}
172
173static struct linux_gdbarch_data *
174get_linux_gdbarch_data (struct gdbarch *gdbarch)
175{
9a3c8263
SM
176 return ((struct linux_gdbarch_data *)
177 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
178}
179
cdfa0b0a
PA
180/* Per-inferior data key. */
181static const struct inferior_data *linux_inferior_data;
182
183/* Linux-specific cached data. This is used by GDB for caching
184 purposes for each inferior. This helps reduce the overhead of
185 transfering data from a remote target to the local host. */
186struct linux_info
187{
188 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
189 if VSYSCALL_RANGE_P is positive. This is cached because getting
190 at this info requires an auxv lookup (which is itself cached),
191 and looking through the inferior's mappings (which change
192 throughout execution and therefore cannot be cached). */
193 struct mem_range vsyscall_range;
194
195 /* Zero if we haven't tried looking up the vsyscall's range before
196 yet. Positive if we tried looking it up, and found it. Negative
197 if we tried looking it up but failed. */
198 int vsyscall_range_p;
199};
200
201/* Frees whatever allocated space there is to be freed and sets INF's
202 linux cache data pointer to NULL. */
203
204static void
205invalidate_linux_cache_inf (struct inferior *inf)
206{
207 struct linux_info *info;
208
9a3c8263 209 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
210 if (info != NULL)
211 {
212 xfree (info);
213 set_inferior_data (inf, linux_inferior_data, NULL);
214 }
215}
216
217/* Handles the cleanup of the linux cache for inferior INF. ARG is
218 ignored. Callback for the inferior_appeared and inferior_exit
219 events. */
220
221static void
222linux_inferior_data_cleanup (struct inferior *inf, void *arg)
223{
224 invalidate_linux_cache_inf (inf);
225}
226
227/* Fetch the linux cache info for INF. This function always returns a
228 valid INFO pointer. */
229
230static struct linux_info *
231get_linux_inferior_data (void)
232{
233 struct linux_info *info;
234 struct inferior *inf = current_inferior ();
235
9a3c8263 236 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
237 if (info == NULL)
238 {
239 info = XCNEW (struct linux_info);
240 set_inferior_data (inf, linux_inferior_data, info);
241 }
242
243 return info;
244}
245
4aa995e1
PA
246/* This function is suitable for architectures that don't
247 extend/override the standard siginfo structure. */
248
5cd867b4 249static struct type *
4aa995e1
PA
250linux_get_siginfo_type (struct gdbarch *gdbarch)
251{
06253dd3 252 struct linux_gdbarch_data *linux_gdbarch_data;
4aa995e1
PA
253 struct type *int_type, *uint_type, *long_type, *void_ptr_type;
254 struct type *uid_type, *pid_type;
255 struct type *sigval_type, *clock_type;
256 struct type *siginfo_type, *sifields_type;
257 struct type *type;
258
06253dd3
JK
259 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
260 if (linux_gdbarch_data->siginfo_type != NULL)
261 return linux_gdbarch_data->siginfo_type;
262
e9bb382b
UW
263 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
264 0, "int");
265 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
266 1, "unsigned int");
267 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
268 0, "long");
4aa995e1
PA
269 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
270
271 /* sival_t */
e9bb382b 272 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
273 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
274 append_composite_type_field (sigval_type, "sival_int", int_type);
275 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
276
277 /* __pid_t */
e3aa49af
MS
278 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (int_type), "__pid_t");
4aa995e1 280 TYPE_TARGET_TYPE (pid_type) = int_type;
e9bb382b 281 TYPE_TARGET_STUB (pid_type) = 1;
4aa995e1
PA
282
283 /* __uid_t */
e3aa49af
MS
284 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
285 TYPE_LENGTH (uint_type), "__uid_t");
4aa995e1 286 TYPE_TARGET_TYPE (uid_type) = uint_type;
e9bb382b 287 TYPE_TARGET_STUB (uid_type) = 1;
4aa995e1
PA
288
289 /* __clock_t */
e3aa49af
MS
290 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
291 TYPE_LENGTH (long_type), "__clock_t");
4aa995e1 292 TYPE_TARGET_TYPE (clock_type) = long_type;
e9bb382b 293 TYPE_TARGET_STUB (clock_type) = 1;
4aa995e1
PA
294
295 /* _sifields */
e9bb382b 296 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
297
298 {
299 const int si_max_size = 128;
300 int si_pad_size;
301 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
302
303 /* _pad */
304 if (gdbarch_ptr_bit (gdbarch) == 64)
305 si_pad_size = (si_max_size / size_of_int) - 4;
306 else
307 si_pad_size = (si_max_size / size_of_int) - 3;
308 append_composite_type_field (sifields_type, "_pad",
309 init_vector_type (int_type, si_pad_size));
310 }
311
312 /* _kill */
e9bb382b 313 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
314 append_composite_type_field (type, "si_pid", pid_type);
315 append_composite_type_field (type, "si_uid", uid_type);
316 append_composite_type_field (sifields_type, "_kill", type);
317
318 /* _timer */
e9bb382b 319 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
320 append_composite_type_field (type, "si_tid", int_type);
321 append_composite_type_field (type, "si_overrun", int_type);
322 append_composite_type_field (type, "si_sigval", sigval_type);
323 append_composite_type_field (sifields_type, "_timer", type);
324
325 /* _rt */
e9bb382b 326 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
327 append_composite_type_field (type, "si_pid", pid_type);
328 append_composite_type_field (type, "si_uid", uid_type);
329 append_composite_type_field (type, "si_sigval", sigval_type);
330 append_composite_type_field (sifields_type, "_rt", type);
331
332 /* _sigchld */
e9bb382b 333 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
334 append_composite_type_field (type, "si_pid", pid_type);
335 append_composite_type_field (type, "si_uid", uid_type);
336 append_composite_type_field (type, "si_status", int_type);
337 append_composite_type_field (type, "si_utime", clock_type);
338 append_composite_type_field (type, "si_stime", clock_type);
339 append_composite_type_field (sifields_type, "_sigchld", type);
340
341 /* _sigfault */
e9bb382b 342 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
343 append_composite_type_field (type, "si_addr", void_ptr_type);
344 append_composite_type_field (sifields_type, "_sigfault", type);
345
346 /* _sigpoll */
e9bb382b 347 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
348 append_composite_type_field (type, "si_band", long_type);
349 append_composite_type_field (type, "si_fd", int_type);
350 append_composite_type_field (sifields_type, "_sigpoll", type);
351
352 /* struct siginfo */
e9bb382b 353 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
354 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
355 append_composite_type_field (siginfo_type, "si_signo", int_type);
356 append_composite_type_field (siginfo_type, "si_errno", int_type);
357 append_composite_type_field (siginfo_type, "si_code", int_type);
358 append_composite_type_field_aligned (siginfo_type,
359 "_sifields", sifields_type,
360 TYPE_LENGTH (long_type));
361
06253dd3
JK
362 linux_gdbarch_data->siginfo_type = siginfo_type;
363
4aa995e1
PA
364 return siginfo_type;
365}
6b3ae818 366
c01cbb3d
YQ
367/* Return true if the target is running on uClinux instead of normal
368 Linux kernel. */
369
370int
371linux_is_uclinux (void)
6c95b8df 372{
6c95b8df 373 CORE_ADDR dummy;
6c95b8df 374
c01cbb3d
YQ
375 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
376 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
377}
6c95b8df 378
c01cbb3d
YQ
379static int
380linux_has_shared_address_space (struct gdbarch *gdbarch)
381{
382 return linux_is_uclinux ();
6c95b8df 383}
a5ee0f0c
PA
384
385/* This is how we want PTIDs from core files to be printed. */
386
387static char *
388linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
389{
390 static char buf[80];
391
392 if (ptid_get_lwp (ptid) != 0)
393 {
394 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
395 return buf;
396 }
397
398 return normal_pid_to_str (ptid);
399}
400
db1ff28b
JK
401/* Service function for corefiles and info proc. */
402
403static void
404read_mapping (const char *line,
405 ULONGEST *addr, ULONGEST *endaddr,
406 const char **permissions, size_t *permissions_len,
407 ULONGEST *offset,
408 const char **device, size_t *device_len,
409 ULONGEST *inode,
410 const char **filename)
411{
412 const char *p = line;
413
414 *addr = strtoulst (p, &p, 16);
415 if (*p == '-')
416 p++;
417 *endaddr = strtoulst (p, &p, 16);
418
419 p = skip_spaces_const (p);
420 *permissions = p;
421 while (*p && !isspace (*p))
422 p++;
423 *permissions_len = p - *permissions;
424
425 *offset = strtoulst (p, &p, 16);
426
427 p = skip_spaces_const (p);
428 *device = p;
429 while (*p && !isspace (*p))
430 p++;
431 *device_len = p - *device;
432
433 *inode = strtoulst (p, &p, 10);
434
435 p = skip_spaces_const (p);
436 *filename = p;
437}
438
439/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
440
441 This function was based on the documentation found on
442 <Documentation/filesystems/proc.txt>, on the Linux kernel.
443
444 Linux kernels before commit
445 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
446 field on smaps. */
447
448static void
449decode_vmflags (char *p, struct smaps_vmflags *v)
450{
451 char *saveptr = NULL;
452 const char *s;
453
454 v->initialized_p = 1;
455 p = skip_to_space (p);
456 p = skip_spaces (p);
457
458 for (s = strtok_r (p, " ", &saveptr);
459 s != NULL;
460 s = strtok_r (NULL, " ", &saveptr))
461 {
462 if (strcmp (s, "io") == 0)
463 v->io_page = 1;
464 else if (strcmp (s, "ht") == 0)
465 v->uses_huge_tlb = 1;
466 else if (strcmp (s, "dd") == 0)
467 v->exclude_coredump = 1;
468 else if (strcmp (s, "sh") == 0)
469 v->shared_mapping = 1;
470 }
471}
472
473/* Return 1 if the memory mapping is anonymous, 0 otherwise.
474
475 FILENAME is the name of the file present in the first line of the
476 memory mapping, in the "/proc/PID/smaps" output. For example, if
477 the first line is:
478
479 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
480
481 Then FILENAME will be "/path/to/file". */
482
483static int
484mapping_is_anonymous_p (const char *filename)
485{
486 static regex_t dev_zero_regex, shmem_file_regex, file_deleted_regex;
487 static int init_regex_p = 0;
488
489 if (!init_regex_p)
490 {
491 struct cleanup *c = make_cleanup (null_cleanup, NULL);
492
493 /* Let's be pessimistic and assume there will be an error while
494 compiling the regex'es. */
495 init_regex_p = -1;
496
497 /* DEV_ZERO_REGEX matches "/dev/zero" filenames (with or
498 without the "(deleted)" string in the end). We know for
499 sure, based on the Linux kernel code, that memory mappings
500 whose associated filename is "/dev/zero" are guaranteed to be
501 MAP_ANONYMOUS. */
502 compile_rx_or_error (&dev_zero_regex, "^/dev/zero\\( (deleted)\\)\\?$",
503 _("Could not compile regex to match /dev/zero "
504 "filename"));
505 /* SHMEM_FILE_REGEX matches "/SYSV%08x" filenames (with or
506 without the "(deleted)" string in the end). These filenames
507 refer to shared memory (shmem), and memory mappings
508 associated with them are MAP_ANONYMOUS as well. */
509 compile_rx_or_error (&shmem_file_regex,
510 "^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$",
511 _("Could not compile regex to match shmem "
512 "filenames"));
513 /* FILE_DELETED_REGEX is a heuristic we use to try to mimic the
514 Linux kernel's 'n_link == 0' code, which is responsible to
515 decide if it is dealing with a 'MAP_SHARED | MAP_ANONYMOUS'
516 mapping. In other words, if FILE_DELETED_REGEX matches, it
517 does not necessarily mean that we are dealing with an
518 anonymous shared mapping. However, there is no easy way to
519 detect this currently, so this is the best approximation we
520 have.
521
522 As a result, GDB will dump readonly pages of deleted
523 executables when using the default value of coredump_filter
524 (0x33), while the Linux kernel will not dump those pages.
525 But we can live with that. */
526 compile_rx_or_error (&file_deleted_regex, " (deleted)$",
527 _("Could not compile regex to match "
528 "'<file> (deleted)'"));
529 /* We will never release these regexes, so just discard the
530 cleanups. */
531 discard_cleanups (c);
532
533 /* If we reached this point, then everything succeeded. */
534 init_regex_p = 1;
535 }
536
537 if (init_regex_p == -1)
538 {
539 const char deleted[] = " (deleted)";
540 size_t del_len = sizeof (deleted) - 1;
541 size_t filename_len = strlen (filename);
542
543 /* There was an error while compiling the regex'es above. In
544 order to try to give some reliable information to the caller,
545 we just try to find the string " (deleted)" in the filename.
546 If we managed to find it, then we assume the mapping is
547 anonymous. */
548 return (filename_len >= del_len
549 && strcmp (filename + filename_len - del_len, deleted) == 0);
550 }
551
552 if (*filename == '\0'
553 || regexec (&dev_zero_regex, filename, 0, NULL, 0) == 0
554 || regexec (&shmem_file_regex, filename, 0, NULL, 0) == 0
555 || regexec (&file_deleted_regex, filename, 0, NULL, 0) == 0)
556 return 1;
557
558 return 0;
559}
560
561/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
562 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
563 greater than 0 if it should.
564
565 In a nutshell, this is the logic that we follow in order to decide
566 if a mapping should be dumped or not.
567
568 - If the mapping is associated to a file whose name ends with
569 " (deleted)", or if the file is "/dev/zero", or if it is
570 "/SYSV%08x" (shared memory), or if there is no file associated
571 with it, or if the AnonHugePages: or the Anonymous: fields in the
572 /proc/PID/smaps have contents, then GDB considers this mapping to
573 be anonymous. Otherwise, GDB considers this mapping to be a
574 file-backed mapping (because there will be a file associated with
575 it).
576
577 It is worth mentioning that, from all those checks described
578 above, the most fragile is the one to see if the file name ends
579 with " (deleted)". This does not necessarily mean that the
580 mapping is anonymous, because the deleted file associated with
581 the mapping may have been a hard link to another file, for
582 example. The Linux kernel checks to see if "i_nlink == 0", but
583 GDB cannot easily (and normally) do this check (iff running as
584 root, it could find the mapping in /proc/PID/map_files/ and
585 determine whether there still are other hard links to the
586 inode/file). Therefore, we made a compromise here, and we assume
587 that if the file name ends with " (deleted)", then the mapping is
588 indeed anonymous. FWIW, this is something the Linux kernel could
589 do better: expose this information in a more direct way.
590
591 - If we see the flag "sh" in the "VmFlags:" field (in
592 /proc/PID/smaps), then certainly the memory mapping is shared
593 (VM_SHARED). If we have access to the VmFlags, and we don't see
594 the "sh" there, then certainly the mapping is private. However,
595 Linux kernels before commit
596 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
597 "VmFlags:" field; in that case, we use another heuristic: if we
598 see 'p' in the permission flags, then we assume that the mapping
599 is private, even though the presence of the 's' flag there would
600 mean VM_MAYSHARE, which means the mapping could still be private.
601 This should work OK enough, however. */
602
603static int
8d297bbf 604dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b
JK
605 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
606 const char *filename)
607{
608 /* Initially, we trust in what we received from our caller. This
609 value may not be very precise (i.e., it was probably gathered
610 from the permission line in the /proc/PID/smaps list, which
611 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
612 what we have until we take a look at the "VmFlags:" field
613 (assuming that the version of the Linux kernel being used
614 supports it, of course). */
615 int private_p = maybe_private_p;
616
617 /* We always dump vDSO and vsyscall mappings, because it's likely that
618 there'll be no file to read the contents from at core load time.
619 The kernel does the same. */
620 if (strcmp ("[vdso]", filename) == 0
621 || strcmp ("[vsyscall]", filename) == 0)
622 return 1;
623
624 if (v->initialized_p)
625 {
626 /* We never dump I/O mappings. */
627 if (v->io_page)
628 return 0;
629
630 /* Check if we should exclude this mapping. */
631 if (v->exclude_coredump)
632 return 0;
633
634 /* Update our notion of whether this mapping is shared or
635 private based on a trustworthy value. */
636 private_p = !v->shared_mapping;
637
638 /* HugeTLB checking. */
639 if (v->uses_huge_tlb)
640 {
641 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
642 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
643 return 1;
644
645 return 0;
646 }
647 }
648
649 if (private_p)
650 {
651 if (mapping_anon_p && mapping_file_p)
652 {
653 /* This is a special situation. It can happen when we see a
654 mapping that is file-backed, but that contains anonymous
655 pages. */
656 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
657 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
658 }
659 else if (mapping_anon_p)
660 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
661 else
662 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
663 }
664 else
665 {
666 if (mapping_anon_p && mapping_file_p)
667 {
668 /* This is a special situation. It can happen when we see a
669 mapping that is file-backed, but that contains anonymous
670 pages. */
671 return ((filterflags & COREFILTER_ANON_SHARED) != 0
672 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
673 }
674 else if (mapping_anon_p)
675 return (filterflags & COREFILTER_ANON_SHARED) != 0;
676 else
677 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
678 }
679}
680
3030c96e
UW
681/* Implement the "info proc" command. */
682
683static void
7bc112c1 684linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
685 enum info_proc_what what)
686{
687 /* A long is used for pid instead of an int to avoid a loss of precision
688 compiler warning from the output of strtoul. */
689 long pid;
690 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
691 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
692 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
693 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
694 int status_f = (what == IP_STATUS || what == IP_ALL);
695 int stat_f = (what == IP_STAT || what == IP_ALL);
696 char filename[100];
001f13d8 697 char *data;
3030c96e
UW
698 int target_errno;
699
700 if (args && isdigit (args[0]))
7bc112c1
TT
701 {
702 char *tem;
703
704 pid = strtoul (args, &tem, 10);
705 args = tem;
706 }
3030c96e
UW
707 else
708 {
709 if (!target_has_execution)
710 error (_("No current process: you must name one."));
711 if (current_inferior ()->fake_pid_p)
712 error (_("Can't determine the current process's PID: you must name one."));
713
714 pid = current_inferior ()->pid;
715 }
716
7bc112c1 717 args = skip_spaces_const (args);
3030c96e
UW
718 if (args && args[0])
719 error (_("Too many parameters: %s"), args);
720
721 printf_filtered (_("process %ld\n"), pid);
722 if (cmdline_f)
723 {
724 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
07c138c8 725 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
726 if (data)
727 {
728 struct cleanup *cleanup = make_cleanup (xfree, data);
729 printf_filtered ("cmdline = '%s'\n", data);
730 do_cleanups (cleanup);
731 }
732 else
733 warning (_("unable to open /proc file '%s'"), filename);
734 }
735 if (cwd_f)
736 {
737 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
07c138c8 738 data = target_fileio_readlink (NULL, filename, &target_errno);
3030c96e
UW
739 if (data)
740 {
741 struct cleanup *cleanup = make_cleanup (xfree, data);
742 printf_filtered ("cwd = '%s'\n", data);
743 do_cleanups (cleanup);
744 }
745 else
746 warning (_("unable to read link '%s'"), filename);
747 }
748 if (exe_f)
749 {
750 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
07c138c8 751 data = target_fileio_readlink (NULL, filename, &target_errno);
3030c96e
UW
752 if (data)
753 {
754 struct cleanup *cleanup = make_cleanup (xfree, data);
755 printf_filtered ("exe = '%s'\n", data);
756 do_cleanups (cleanup);
757 }
758 else
759 warning (_("unable to read link '%s'"), filename);
760 }
761 if (mappings_f)
762 {
763 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
07c138c8 764 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
765 if (data)
766 {
767 struct cleanup *cleanup = make_cleanup (xfree, data);
768 char *line;
769
770 printf_filtered (_("Mapped address spaces:\n\n"));
771 if (gdbarch_addr_bit (gdbarch) == 32)
772 {
773 printf_filtered ("\t%10s %10s %10s %10s %s\n",
774 "Start Addr",
775 " End Addr",
776 " Size", " Offset", "objfile");
777 }
778 else
779 {
780 printf_filtered (" %18s %18s %10s %10s %s\n",
781 "Start Addr",
782 " End Addr",
783 " Size", " Offset", "objfile");
784 }
785
786 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
787 {
788 ULONGEST addr, endaddr, offset, inode;
789 const char *permissions, *device, *filename;
790 size_t permissions_len, device_len;
791
792 read_mapping (line, &addr, &endaddr,
793 &permissions, &permissions_len,
794 &offset, &device, &device_len,
795 &inode, &filename);
796
797 if (gdbarch_addr_bit (gdbarch) == 32)
798 {
799 printf_filtered ("\t%10s %10s %10s %10s %s\n",
800 paddress (gdbarch, addr),
801 paddress (gdbarch, endaddr),
802 hex_string (endaddr - addr),
803 hex_string (offset),
804 *filename? filename : "");
805 }
806 else
807 {
808 printf_filtered (" %18s %18s %10s %10s %s\n",
809 paddress (gdbarch, addr),
810 paddress (gdbarch, endaddr),
811 hex_string (endaddr - addr),
812 hex_string (offset),
813 *filename? filename : "");
814 }
815 }
816
817 do_cleanups (cleanup);
818 }
819 else
820 warning (_("unable to open /proc file '%s'"), filename);
821 }
822 if (status_f)
823 {
824 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
07c138c8 825 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
826 if (data)
827 {
828 struct cleanup *cleanup = make_cleanup (xfree, data);
829 puts_filtered (data);
830 do_cleanups (cleanup);
831 }
832 else
833 warning (_("unable to open /proc file '%s'"), filename);
834 }
835 if (stat_f)
836 {
837 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
07c138c8 838 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
839 if (data)
840 {
841 struct cleanup *cleanup = make_cleanup (xfree, data);
842 const char *p = data;
3030c96e
UW
843
844 printf_filtered (_("Process: %s\n"),
845 pulongest (strtoulst (p, &p, 10)));
846
529480d0 847 p = skip_spaces_const (p);
a71b5a38 848 if (*p == '(')
3030c96e 849 {
184cd072
JK
850 /* ps command also relies on no trailing fields
851 ever contain ')'. */
852 const char *ep = strrchr (p, ')');
a71b5a38
UW
853 if (ep != NULL)
854 {
855 printf_filtered ("Exec file: %.*s\n",
856 (int) (ep - p - 1), p + 1);
857 p = ep + 1;
858 }
3030c96e
UW
859 }
860
529480d0 861 p = skip_spaces_const (p);
3030c96e
UW
862 if (*p)
863 printf_filtered (_("State: %c\n"), *p++);
864
865 if (*p)
866 printf_filtered (_("Parent process: %s\n"),
867 pulongest (strtoulst (p, &p, 10)));
868 if (*p)
869 printf_filtered (_("Process group: %s\n"),
870 pulongest (strtoulst (p, &p, 10)));
871 if (*p)
872 printf_filtered (_("Session id: %s\n"),
873 pulongest (strtoulst (p, &p, 10)));
874 if (*p)
875 printf_filtered (_("TTY: %s\n"),
876 pulongest (strtoulst (p, &p, 10)));
877 if (*p)
878 printf_filtered (_("TTY owner process group: %s\n"),
879 pulongest (strtoulst (p, &p, 10)));
880
881 if (*p)
882 printf_filtered (_("Flags: %s\n"),
883 hex_string (strtoulst (p, &p, 10)));
884 if (*p)
885 printf_filtered (_("Minor faults (no memory page): %s\n"),
886 pulongest (strtoulst (p, &p, 10)));
887 if (*p)
888 printf_filtered (_("Minor faults, children: %s\n"),
889 pulongest (strtoulst (p, &p, 10)));
890 if (*p)
891 printf_filtered (_("Major faults (memory page faults): %s\n"),
892 pulongest (strtoulst (p, &p, 10)));
893 if (*p)
894 printf_filtered (_("Major faults, children: %s\n"),
895 pulongest (strtoulst (p, &p, 10)));
896 if (*p)
897 printf_filtered (_("utime: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
899 if (*p)
900 printf_filtered (_("stime: %s\n"),
901 pulongest (strtoulst (p, &p, 10)));
902 if (*p)
903 printf_filtered (_("utime, children: %s\n"),
904 pulongest (strtoulst (p, &p, 10)));
905 if (*p)
906 printf_filtered (_("stime, children: %s\n"),
907 pulongest (strtoulst (p, &p, 10)));
908 if (*p)
909 printf_filtered (_("jiffies remaining in current "
910 "time slice: %s\n"),
911 pulongest (strtoulst (p, &p, 10)));
912 if (*p)
913 printf_filtered (_("'nice' value: %s\n"),
914 pulongest (strtoulst (p, &p, 10)));
915 if (*p)
916 printf_filtered (_("jiffies until next timeout: %s\n"),
917 pulongest (strtoulst (p, &p, 10)));
918 if (*p)
919 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
920 pulongest (strtoulst (p, &p, 10)));
921 if (*p)
922 printf_filtered (_("start time (jiffies since "
923 "system boot): %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("Virtual memory size: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("Resident set size: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("rlim: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934 if (*p)
935 printf_filtered (_("Start of text: %s\n"),
936 hex_string (strtoulst (p, &p, 10)));
937 if (*p)
938 printf_filtered (_("End of text: %s\n"),
939 hex_string (strtoulst (p, &p, 10)));
940 if (*p)
941 printf_filtered (_("Start of stack: %s\n"),
942 hex_string (strtoulst (p, &p, 10)));
943#if 0 /* Don't know how architecture-dependent the rest is...
944 Anyway the signal bitmap info is available from "status". */
945 if (*p)
946 printf_filtered (_("Kernel stack pointer: %s\n"),
947 hex_string (strtoulst (p, &p, 10)));
948 if (*p)
949 printf_filtered (_("Kernel instr pointer: %s\n"),
950 hex_string (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Pending signals bitmap: %s\n"),
953 hex_string (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Blocked signals bitmap: %s\n"),
956 hex_string (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("Ignored signals bitmap: %s\n"),
959 hex_string (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Catched signals bitmap: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("wchan (system call): %s\n"),
965 hex_string (strtoulst (p, &p, 10)));
966#endif
967 do_cleanups (cleanup);
968 }
969 else
970 warning (_("unable to open /proc file '%s'"), filename);
971 }
972}
973
451b7c33
TT
974/* Implement "info proc mappings" for a corefile. */
975
976static void
7bc112c1 977linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
451b7c33
TT
978{
979 asection *section;
980 ULONGEST count, page_size;
981 unsigned char *descdata, *filenames, *descend, *contents;
982 size_t note_size;
983 unsigned int addr_size_bits, addr_size;
984 struct cleanup *cleanup;
985 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
986 /* We assume this for reading 64-bit core files. */
987 gdb_static_assert (sizeof (ULONGEST) >= 8);
988
989 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
990 if (section == NULL)
991 {
992 warning (_("unable to find mappings in core file"));
993 return;
994 }
995
996 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
997 addr_size = addr_size_bits / 8;
998 note_size = bfd_get_section_size (section);
999
1000 if (note_size < 2 * addr_size)
1001 error (_("malformed core note - too short for header"));
1002
224c3ddb 1003 contents = (unsigned char *) xmalloc (note_size);
451b7c33
TT
1004 cleanup = make_cleanup (xfree, contents);
1005 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1006 error (_("could not get core note contents"));
1007
1008 descdata = contents;
1009 descend = descdata + note_size;
1010
1011 if (descdata[note_size - 1] != '\0')
1012 error (_("malformed note - does not end with \\0"));
1013
1014 count = bfd_get (addr_size_bits, core_bfd, descdata);
1015 descdata += addr_size;
1016
1017 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1018 descdata += addr_size;
1019
1020 if (note_size < 2 * addr_size + count * 3 * addr_size)
1021 error (_("malformed note - too short for supplied file count"));
1022
1023 printf_filtered (_("Mapped address spaces:\n\n"));
1024 if (gdbarch_addr_bit (gdbarch) == 32)
1025 {
1026 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1027 "Start Addr",
1028 " End Addr",
1029 " Size", " Offset", "objfile");
1030 }
1031 else
1032 {
1033 printf_filtered (" %18s %18s %10s %10s %s\n",
1034 "Start Addr",
1035 " End Addr",
1036 " Size", " Offset", "objfile");
1037 }
1038
1039 filenames = descdata + count * 3 * addr_size;
1040 while (--count > 0)
1041 {
1042 ULONGEST start, end, file_ofs;
1043
1044 if (filenames == descend)
1045 error (_("malformed note - filenames end too early"));
1046
1047 start = bfd_get (addr_size_bits, core_bfd, descdata);
1048 descdata += addr_size;
1049 end = bfd_get (addr_size_bits, core_bfd, descdata);
1050 descdata += addr_size;
1051 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1052 descdata += addr_size;
1053
1054 file_ofs *= page_size;
1055
1056 if (gdbarch_addr_bit (gdbarch) == 32)
1057 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1058 paddress (gdbarch, start),
1059 paddress (gdbarch, end),
1060 hex_string (end - start),
1061 hex_string (file_ofs),
1062 filenames);
1063 else
1064 printf_filtered (" %18s %18s %10s %10s %s\n",
1065 paddress (gdbarch, start),
1066 paddress (gdbarch, end),
1067 hex_string (end - start),
1068 hex_string (file_ofs),
1069 filenames);
1070
1071 filenames += 1 + strlen ((char *) filenames);
1072 }
1073
1074 do_cleanups (cleanup);
1075}
1076
1077/* Implement "info proc" for a corefile. */
1078
1079static void
7bc112c1 1080linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1081 enum info_proc_what what)
1082{
1083 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1084 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1085
1086 if (exe_f)
1087 {
1088 const char *exe;
1089
1090 exe = bfd_core_file_failing_command (core_bfd);
1091 if (exe != NULL)
1092 printf_filtered ("exe = '%s'\n", exe);
1093 else
1094 warning (_("unable to find command name in core file"));
1095 }
1096
1097 if (mappings_f)
1098 linux_core_info_proc_mappings (gdbarch, args);
1099
1100 if (!exe_f && !mappings_f)
1101 error (_("unable to handle request"));
1102}
1103
db1ff28b
JK
1104typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1105 ULONGEST offset, ULONGEST inode,
1106 int read, int write,
1107 int exec, int modified,
1108 const char *filename,
1109 void *data);
451b7c33 1110
db1ff28b 1111/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1112
1113static int
db1ff28b
JK
1114linux_find_memory_regions_full (struct gdbarch *gdbarch,
1115 linux_find_memory_region_ftype *func,
1116 void *obfd)
f7af1fcd 1117{
db1ff28b
JK
1118 char mapsfilename[100];
1119 char coredumpfilter_name[100];
1120 char *data, *coredumpfilterdata;
f7af1fcd
JK
1121 pid_t pid;
1122 /* Default dump behavior of coredump_filter (0x33), according to
1123 Documentation/filesystems/proc.txt from the Linux kernel
1124 tree. */
8d297bbf
PA
1125 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1126 | COREFILTER_ANON_SHARED
1127 | COREFILTER_ELF_HEADERS
1128 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1129
db1ff28b 1130 /* We need to know the real target PID to access /proc. */
f7af1fcd 1131 if (current_inferior ()->fake_pid_p)
db1ff28b 1132 return 1;
f7af1fcd
JK
1133
1134 pid = current_inferior ()->pid;
1135
1136 if (use_coredump_filter)
1137 {
f7af1fcd
JK
1138 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1139 "/proc/%d/coredump_filter", pid);
1140 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1141 coredumpfilter_name);
1142 if (coredumpfilterdata != NULL)
1143 {
8d297bbf
PA
1144 unsigned int flags;
1145
1146 sscanf (coredumpfilterdata, "%x", &flags);
1147 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1148 xfree (coredumpfilterdata);
1149 }
1150 }
1151
db1ff28b
JK
1152 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1153 data = target_fileio_read_stralloc (NULL, mapsfilename);
1154 if (data == NULL)
1155 {
1156 /* Older Linux kernels did not support /proc/PID/smaps. */
1157 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1158 data = target_fileio_read_stralloc (NULL, mapsfilename);
1159 }
1160
1161 if (data != NULL)
1162 {
1163 struct cleanup *cleanup = make_cleanup (xfree, data);
1164 char *line, *t;
1165
1166 line = strtok_r (data, "\n", &t);
1167 while (line != NULL)
1168 {
1169 ULONGEST addr, endaddr, offset, inode;
1170 const char *permissions, *device, *filename;
1171 struct smaps_vmflags v;
1172 size_t permissions_len, device_len;
1173 int read, write, exec, priv;
1174 int has_anonymous = 0;
1175 int should_dump_p = 0;
1176 int mapping_anon_p;
1177 int mapping_file_p;
1178
1179 memset (&v, 0, sizeof (v));
1180 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1181 &offset, &device, &device_len, &inode, &filename);
1182 mapping_anon_p = mapping_is_anonymous_p (filename);
1183 /* If the mapping is not anonymous, then we can consider it
1184 to be file-backed. These two states (anonymous or
1185 file-backed) seem to be exclusive, but they can actually
1186 coexist. For example, if a file-backed mapping has
1187 "Anonymous:" pages (see more below), then the Linux
1188 kernel will dump this mapping when the user specified
1189 that she only wants anonymous mappings in the corefile
1190 (*even* when she explicitly disabled the dumping of
1191 file-backed mappings). */
1192 mapping_file_p = !mapping_anon_p;
1193
1194 /* Decode permissions. */
1195 read = (memchr (permissions, 'r', permissions_len) != 0);
1196 write = (memchr (permissions, 'w', permissions_len) != 0);
1197 exec = (memchr (permissions, 'x', permissions_len) != 0);
1198 /* 'private' here actually means VM_MAYSHARE, and not
1199 VM_SHARED. In order to know if a mapping is really
1200 private or not, we must check the flag "sh" in the
1201 VmFlags field. This is done by decode_vmflags. However,
1202 if we are using a Linux kernel released before the commit
1203 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1204 not have the VmFlags there. In this case, there is
1205 really no way to know if we are dealing with VM_SHARED,
1206 so we just assume that VM_MAYSHARE is enough. */
1207 priv = memchr (permissions, 'p', permissions_len) != 0;
1208
1209 /* Try to detect if region should be dumped by parsing smaps
1210 counters. */
1211 for (line = strtok_r (NULL, "\n", &t);
1212 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1213 line = strtok_r (NULL, "\n", &t))
1214 {
1215 char keyword[64 + 1];
1216
1217 if (sscanf (line, "%64s", keyword) != 1)
1218 {
1219 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1220 break;
1221 }
1222
1223 if (strcmp (keyword, "Anonymous:") == 0)
1224 {
1225 /* Older Linux kernels did not support the
1226 "Anonymous:" counter. Check it here. */
1227 has_anonymous = 1;
1228 }
1229 else if (strcmp (keyword, "VmFlags:") == 0)
1230 decode_vmflags (line, &v);
1231
1232 if (strcmp (keyword, "AnonHugePages:") == 0
1233 || strcmp (keyword, "Anonymous:") == 0)
1234 {
1235 unsigned long number;
1236
1237 if (sscanf (line, "%*s%lu", &number) != 1)
1238 {
1239 warning (_("Error parsing {s,}maps file '%s' number"),
1240 mapsfilename);
1241 break;
1242 }
1243 if (number > 0)
1244 {
1245 /* Even if we are dealing with a file-backed
1246 mapping, if it contains anonymous pages we
1247 consider it to be *also* an anonymous
1248 mapping, because this is what the Linux
1249 kernel does:
1250
1251 // Dump segments that have been written to.
1252 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1253 goto whole;
1254
1255 Note that if the mapping is already marked as
1256 file-backed (i.e., mapping_file_p is
1257 non-zero), then this is a special case, and
1258 this mapping will be dumped either when the
1259 user wants to dump file-backed *or* anonymous
1260 mappings. */
1261 mapping_anon_p = 1;
1262 }
1263 }
1264 }
1265
1266 if (has_anonymous)
1267 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1268 mapping_anon_p, mapping_file_p,
1269 filename);
1270 else
1271 {
1272 /* Older Linux kernels did not support the "Anonymous:" counter.
1273 If it is missing, we can't be sure - dump all the pages. */
1274 should_dump_p = 1;
1275 }
1276
1277 /* Invoke the callback function to create the corefile segment. */
1278 if (should_dump_p)
1279 func (addr, endaddr - addr, offset, inode,
1280 read, write, exec, 1, /* MODIFIED is true because we
1281 want to dump the mapping. */
1282 filename, obfd);
1283 }
1284
1285 do_cleanups (cleanup);
1286 return 0;
1287 }
1288
1289 return 1;
1290}
1291
1292/* A structure for passing information through
1293 linux_find_memory_regions_full. */
1294
1295struct linux_find_memory_regions_data
1296{
1297 /* The original callback. */
1298
1299 find_memory_region_ftype func;
1300
1301 /* The original datum. */
1302
1303 void *obfd;
1304};
1305
1306/* A callback for linux_find_memory_regions that converts between the
1307 "full"-style callback and find_memory_region_ftype. */
1308
1309static int
1310linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1311 ULONGEST offset, ULONGEST inode,
1312 int read, int write, int exec, int modified,
1313 const char *filename, void *arg)
1314{
9a3c8263
SM
1315 struct linux_find_memory_regions_data *data
1316 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1317
1318 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1319}
1320
1321/* A variant of linux_find_memory_regions_full that is suitable as the
1322 gdbarch find_memory_regions method. */
1323
1324static int
1325linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1326 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1327{
1328 struct linux_find_memory_regions_data data;
1329
1330 data.func = func;
db1ff28b 1331 data.obfd = obfd;
451b7c33 1332
db1ff28b
JK
1333 return linux_find_memory_regions_full (gdbarch,
1334 linux_find_memory_regions_thunk,
1335 &data);
451b7c33
TT
1336}
1337
6432734d
UW
1338/* Determine which signal stopped execution. */
1339
1340static int
1341find_signalled_thread (struct thread_info *info, void *data)
1342{
a493e3e2 1343 if (info->suspend.stop_signal != GDB_SIGNAL_0
6432734d
UW
1344 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1345 return 1;
1346
1347 return 0;
1348}
1349
6432734d
UW
1350/* Generate corefile notes for SPU contexts. */
1351
1352static char *
1353linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1354{
1355 static const char *spu_files[] =
1356 {
1357 "object-id",
1358 "mem",
1359 "regs",
1360 "fpcr",
1361 "lslr",
1362 "decr",
1363 "decr_status",
1364 "signal1",
1365 "signal1_type",
1366 "signal2",
1367 "signal2_type",
1368 "event_mask",
1369 "event_status",
1370 "mbox_info",
1371 "ibox_info",
1372 "wbox_info",
1373 "dma_info",
1374 "proxydma_info",
1375 };
1376
f5656ead 1377 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
6432734d
UW
1378 gdb_byte *spu_ids;
1379 LONGEST i, j, size;
1380
1381 /* Determine list of SPU ids. */
1382 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1383 NULL, &spu_ids);
1384
1385 /* Generate corefile notes for each SPU file. */
1386 for (i = 0; i < size; i += 4)
1387 {
1388 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1389
1390 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1391 {
1392 char annex[32], note_name[32];
1393 gdb_byte *spu_data;
1394 LONGEST spu_len;
1395
1396 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1397 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1398 annex, &spu_data);
1399 if (spu_len > 0)
1400 {
1401 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1402 note_data = elfcore_write_note (obfd, note_data, note_size,
1403 note_name, NT_SPU,
1404 spu_data, spu_len);
1405 xfree (spu_data);
1406
1407 if (!note_data)
1408 {
1409 xfree (spu_ids);
1410 return NULL;
1411 }
1412 }
1413 }
1414 }
1415
1416 if (size > 0)
1417 xfree (spu_ids);
1418
1419 return note_data;
1420}
1421
451b7c33
TT
1422/* This is used to pass information from
1423 linux_make_mappings_corefile_notes through
1424 linux_find_memory_regions_full. */
1425
1426struct linux_make_mappings_data
1427{
1428 /* Number of files mapped. */
1429 ULONGEST file_count;
1430
1431 /* The obstack for the main part of the data. */
1432 struct obstack *data_obstack;
1433
1434 /* The filename obstack. */
1435 struct obstack *filename_obstack;
1436
1437 /* The architecture's "long" type. */
1438 struct type *long_type;
1439};
1440
1441static linux_find_memory_region_ftype linux_make_mappings_callback;
1442
1443/* A callback for linux_find_memory_regions_full that updates the
1444 mappings data for linux_make_mappings_corefile_notes. */
1445
1446static int
1447linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1448 ULONGEST offset, ULONGEST inode,
1449 int read, int write, int exec, int modified,
1450 const char *filename, void *data)
1451{
9a3c8263
SM
1452 struct linux_make_mappings_data *map_data
1453 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1454 gdb_byte buf[sizeof (ULONGEST)];
1455
1456 if (*filename == '\0' || inode == 0)
1457 return 0;
1458
1459 ++map_data->file_count;
1460
1461 pack_long (buf, map_data->long_type, vaddr);
1462 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1463 pack_long (buf, map_data->long_type, vaddr + size);
1464 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1465 pack_long (buf, map_data->long_type, offset);
1466 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1467
1468 obstack_grow_str0 (map_data->filename_obstack, filename);
1469
1470 return 0;
1471}
1472
1473/* Write the file mapping data to the core file, if possible. OBFD is
1474 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1475 is a pointer to the note size. Returns the new NOTE_DATA and
1476 updates NOTE_SIZE. */
1477
1478static char *
1479linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1480 char *note_data, int *note_size)
1481{
1482 struct cleanup *cleanup;
1483 struct obstack data_obstack, filename_obstack;
1484 struct linux_make_mappings_data mapping_data;
1485 struct type *long_type
1486 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1487 gdb_byte buf[sizeof (ULONGEST)];
1488
1489 obstack_init (&data_obstack);
1490 cleanup = make_cleanup_obstack_free (&data_obstack);
1491 obstack_init (&filename_obstack);
1492 make_cleanup_obstack_free (&filename_obstack);
1493
1494 mapping_data.file_count = 0;
1495 mapping_data.data_obstack = &data_obstack;
1496 mapping_data.filename_obstack = &filename_obstack;
1497 mapping_data.long_type = long_type;
1498
1499 /* Reserve space for the count. */
1500 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1501 /* We always write the page size as 1 since we have no good way to
1502 determine the correct value. */
1503 pack_long (buf, long_type, 1);
1504 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1505
db1ff28b
JK
1506 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1507 &mapping_data);
451b7c33
TT
1508
1509 if (mapping_data.file_count != 0)
1510 {
1511 /* Write the count to the obstack. */
51a5cd90
PA
1512 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1513 long_type, mapping_data.file_count);
451b7c33
TT
1514
1515 /* Copy the filenames to the data obstack. */
1516 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1517 obstack_object_size (&filename_obstack));
1518
1519 note_data = elfcore_write_note (obfd, note_data, note_size,
1520 "CORE", NT_FILE,
1521 obstack_base (&data_obstack),
1522 obstack_object_size (&data_obstack));
1523 }
1524
1525 do_cleanups (cleanup);
1526 return note_data;
1527}
1528
5aa82d05
AA
1529/* Structure for passing information from
1530 linux_collect_thread_registers via an iterator to
1531 linux_collect_regset_section_cb. */
1532
1533struct linux_collect_regset_section_cb_data
1534{
1535 struct gdbarch *gdbarch;
1536 const struct regcache *regcache;
1537 bfd *obfd;
1538 char *note_data;
1539 int *note_size;
1540 unsigned long lwp;
1541 enum gdb_signal stop_signal;
1542 int abort_iteration;
1543};
1544
1545/* Callback for iterate_over_regset_sections that records a single
1546 regset in the corefile note section. */
1547
1548static void
1549linux_collect_regset_section_cb (const char *sect_name, int size,
8f0435f7 1550 const struct regset *regset,
5aa82d05
AA
1551 const char *human_name, void *cb_data)
1552{
5aa82d05 1553 char *buf;
7567e115
SM
1554 struct linux_collect_regset_section_cb_data *data
1555 = (struct linux_collect_regset_section_cb_data *) cb_data;
5aa82d05
AA
1556
1557 if (data->abort_iteration)
1558 return;
1559
5aa82d05
AA
1560 gdb_assert (regset && regset->collect_regset);
1561
224c3ddb 1562 buf = (char *) xmalloc (size);
5aa82d05
AA
1563 regset->collect_regset (regset, data->regcache, -1, buf, size);
1564
1565 /* PRSTATUS still needs to be treated specially. */
1566 if (strcmp (sect_name, ".reg") == 0)
1567 data->note_data = (char *) elfcore_write_prstatus
1568 (data->obfd, data->note_data, data->note_size, data->lwp,
1569 gdb_signal_to_host (data->stop_signal), buf);
1570 else
1571 data->note_data = (char *) elfcore_write_register_note
1572 (data->obfd, data->note_data, data->note_size,
1573 sect_name, buf, size);
1574 xfree (buf);
1575
1576 if (data->note_data == NULL)
1577 data->abort_iteration = 1;
1578}
1579
6432734d
UW
1580/* Records the thread's register state for the corefile note
1581 section. */
1582
1583static char *
1584linux_collect_thread_registers (const struct regcache *regcache,
1585 ptid_t ptid, bfd *obfd,
1586 char *note_data, int *note_size,
2ea28649 1587 enum gdb_signal stop_signal)
6432734d
UW
1588{
1589 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5aa82d05 1590 struct linux_collect_regset_section_cb_data data;
6432734d 1591
5aa82d05
AA
1592 data.gdbarch = gdbarch;
1593 data.regcache = regcache;
1594 data.obfd = obfd;
1595 data.note_data = note_data;
1596 data.note_size = note_size;
1597 data.stop_signal = stop_signal;
1598 data.abort_iteration = 0;
6432734d
UW
1599
1600 /* For remote targets the LWP may not be available, so use the TID. */
5aa82d05
AA
1601 data.lwp = ptid_get_lwp (ptid);
1602 if (!data.lwp)
1603 data.lwp = ptid_get_tid (ptid);
1604
1605 gdbarch_iterate_over_regset_sections (gdbarch,
1606 linux_collect_regset_section_cb,
1607 &data, regcache);
1608 return data.note_data;
6432734d
UW
1609}
1610
9015683b
TT
1611/* Fetch the siginfo data for the current thread, if it exists. If
1612 there is no data, or we could not read it, return NULL. Otherwise,
1613 return a newly malloc'd buffer holding the data and fill in *SIZE
1614 with the size of the data. The caller is responsible for freeing
1615 the data. */
1616
1617static gdb_byte *
1618linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1619{
1620 struct type *siginfo_type;
1621 gdb_byte *buf;
1622 LONGEST bytes_read;
1623 struct cleanup *cleanups;
1624
1625 if (!gdbarch_get_siginfo_type_p (gdbarch))
1626 return NULL;
1627
1628 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1629
224c3ddb 1630 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
9015683b
TT
1631 cleanups = make_cleanup (xfree, buf);
1632
1633 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1634 buf, 0, TYPE_LENGTH (siginfo_type));
1635 if (bytes_read == TYPE_LENGTH (siginfo_type))
1636 {
1637 discard_cleanups (cleanups);
1638 *size = bytes_read;
1639 }
1640 else
1641 {
1642 do_cleanups (cleanups);
1643 buf = NULL;
1644 }
1645
1646 return buf;
1647}
1648
6432734d
UW
1649struct linux_corefile_thread_data
1650{
1651 struct gdbarch *gdbarch;
6432734d
UW
1652 bfd *obfd;
1653 char *note_data;
1654 int *note_size;
2ea28649 1655 enum gdb_signal stop_signal;
6432734d
UW
1656};
1657
050c224b
PA
1658/* Records the thread's register state for the corefile note
1659 section. */
6432734d 1660
050c224b
PA
1661static void
1662linux_corefile_thread (struct thread_info *info,
1663 struct linux_corefile_thread_data *args)
6432734d 1664{
050c224b
PA
1665 struct cleanup *old_chain;
1666 struct regcache *regcache;
1667 gdb_byte *siginfo_data;
1668 LONGEST siginfo_size = 0;
1669
1670 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1671
1672 old_chain = save_inferior_ptid ();
1673 inferior_ptid = info->ptid;
1674 target_fetch_registers (regcache, -1);
1675 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1676 do_cleanups (old_chain);
1677
1678 old_chain = make_cleanup (xfree, siginfo_data);
1679
1680 args->note_data = linux_collect_thread_registers
1681 (regcache, info->ptid, args->obfd, args->note_data,
1682 args->note_size, args->stop_signal);
1683
1684 /* Don't return anything if we got no register information above,
1685 such a core file is useless. */
1686 if (args->note_data != NULL)
1687 if (siginfo_data != NULL)
1688 args->note_data = elfcore_write_note (args->obfd,
1689 args->note_data,
1690 args->note_size,
1691 "CORE", NT_SIGINFO,
1692 siginfo_data, siginfo_size);
1693
1694 do_cleanups (old_chain);
6432734d
UW
1695}
1696
b3ac9c77
SDJ
1697/* Fill the PRPSINFO structure with information about the process being
1698 debugged. Returns 1 in case of success, 0 for failures. Please note that
1699 even if the structure cannot be entirely filled (e.g., GDB was unable to
1700 gather information about the process UID/GID), this function will still
1701 return 1 since some information was already recorded. It will only return
1702 0 iff nothing can be gathered. */
1703
1704static int
1705linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1706{
1707 /* The filename which we will use to obtain some info about the process.
1708 We will basically use this to store the `/proc/PID/FILENAME' file. */
1709 char filename[100];
1710 /* The full name of the program which generated the corefile. */
1711 char *fname;
1712 /* The basename of the executable. */
1713 const char *basename;
1714 /* The arguments of the program. */
1715 char *psargs;
1716 char *infargs;
1717 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1718 char *proc_stat, *proc_status;
1719 /* Temporary buffer. */
1720 char *tmpstr;
1721 /* The valid states of a process, according to the Linux kernel. */
1722 const char valid_states[] = "RSDTZW";
1723 /* The program state. */
1724 const char *prog_state;
1725 /* The state of the process. */
1726 char pr_sname;
1727 /* The PID of the program which generated the corefile. */
1728 pid_t pid;
1729 /* Process flags. */
1730 unsigned int pr_flag;
1731 /* Process nice value. */
1732 long pr_nice;
1733 /* The number of fields read by `sscanf'. */
1734 int n_fields = 0;
1735 /* Cleanups. */
1736 struct cleanup *c;
1737 int i;
1738
1739 gdb_assert (p != NULL);
1740
1741 /* Obtaining PID and filename. */
1742 pid = ptid_get_pid (inferior_ptid);
1743 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
07c138c8 1744 fname = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1745
1746 if (fname == NULL || *fname == '\0')
1747 {
1748 /* No program name was read, so we won't be able to retrieve more
1749 information about the process. */
1750 xfree (fname);
1751 return 0;
1752 }
1753
1754 c = make_cleanup (xfree, fname);
1755 memset (p, 0, sizeof (*p));
1756
1757 /* Defining the PID. */
1758 p->pr_pid = pid;
1759
1760 /* Copying the program name. Only the basename matters. */
1761 basename = lbasename (fname);
1762 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1763 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1764
1765 infargs = get_inferior_args ();
1766
1767 psargs = xstrdup (fname);
1768 if (infargs != NULL)
1769 psargs = reconcat (psargs, psargs, " ", infargs, NULL);
1770
1771 make_cleanup (xfree, psargs);
1772
1773 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1774 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1775
1776 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
07c138c8 1777 proc_stat = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1778 make_cleanup (xfree, proc_stat);
1779
1780 if (proc_stat == NULL || *proc_stat == '\0')
1781 {
1782 /* Despite being unable to read more information about the
1783 process, we return 1 here because at least we have its
1784 command line, PID and arguments. */
1785 do_cleanups (c);
1786 return 1;
1787 }
1788
1789 /* Ok, we have the stats. It's time to do a little parsing of the
1790 contents of the buffer, so that we end up reading what we want.
1791
1792 The following parsing mechanism is strongly based on the
1793 information generated by the `fs/proc/array.c' file, present in
1794 the Linux kernel tree. More details about how the information is
1795 displayed can be obtained by seeing the manpage of proc(5),
1796 specifically under the entry of `/proc/[pid]/stat'. */
1797
1798 /* Getting rid of the PID, since we already have it. */
1799 while (isdigit (*proc_stat))
1800 ++proc_stat;
1801
1802 proc_stat = skip_spaces (proc_stat);
1803
184cd072
JK
1804 /* ps command also relies on no trailing fields ever contain ')'. */
1805 proc_stat = strrchr (proc_stat, ')');
1806 if (proc_stat == NULL)
1807 {
1808 do_cleanups (c);
1809 return 1;
1810 }
1811 proc_stat++;
b3ac9c77
SDJ
1812
1813 proc_stat = skip_spaces (proc_stat);
1814
1815 n_fields = sscanf (proc_stat,
1816 "%c" /* Process state. */
1817 "%d%d%d" /* Parent PID, group ID, session ID. */
1818 "%*d%*d" /* tty_nr, tpgid (not used). */
1819 "%u" /* Flags. */
1820 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1821 cmajflt (not used). */
1822 "%*s%*s%*s%*s" /* utime, stime, cutime,
1823 cstime (not used). */
1824 "%*s" /* Priority (not used). */
1825 "%ld", /* Nice. */
1826 &pr_sname,
1827 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1828 &pr_flag,
1829 &pr_nice);
1830
1831 if (n_fields != 6)
1832 {
1833 /* Again, we couldn't read the complementary information about
1834 the process state. However, we already have minimal
1835 information, so we just return 1 here. */
1836 do_cleanups (c);
1837 return 1;
1838 }
1839
1840 /* Filling the structure fields. */
1841 prog_state = strchr (valid_states, pr_sname);
1842 if (prog_state != NULL)
1843 p->pr_state = prog_state - valid_states;
1844 else
1845 {
1846 /* Zero means "Running". */
1847 p->pr_state = 0;
1848 }
1849
1850 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1851 p->pr_zomb = p->pr_sname == 'Z';
1852 p->pr_nice = pr_nice;
1853 p->pr_flag = pr_flag;
1854
1855 /* Finally, obtaining the UID and GID. For that, we read and parse the
1856 contents of the `/proc/PID/status' file. */
1857 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
07c138c8 1858 proc_status = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1859 make_cleanup (xfree, proc_status);
1860
1861 if (proc_status == NULL || *proc_status == '\0')
1862 {
1863 /* Returning 1 since we already have a bunch of information. */
1864 do_cleanups (c);
1865 return 1;
1866 }
1867
1868 /* Extracting the UID. */
1869 tmpstr = strstr (proc_status, "Uid:");
1870 if (tmpstr != NULL)
1871 {
1872 /* Advancing the pointer to the beginning of the UID. */
1873 tmpstr += sizeof ("Uid:");
1874 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1875 ++tmpstr;
1876
1877 if (isdigit (*tmpstr))
1878 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1879 }
1880
1881 /* Extracting the GID. */
1882 tmpstr = strstr (proc_status, "Gid:");
1883 if (tmpstr != NULL)
1884 {
1885 /* Advancing the pointer to the beginning of the GID. */
1886 tmpstr += sizeof ("Gid:");
1887 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1888 ++tmpstr;
1889
1890 if (isdigit (*tmpstr))
1891 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1892 }
1893
1894 do_cleanups (c);
1895
1896 return 1;
1897}
1898
f968fe80
AA
1899/* Build the note section for a corefile, and return it in a malloc
1900 buffer. */
6432734d 1901
f968fe80
AA
1902static char *
1903linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d
UW
1904{
1905 struct linux_corefile_thread_data thread_args;
b3ac9c77 1906 struct elf_internal_linux_prpsinfo prpsinfo;
6432734d
UW
1907 char *note_data = NULL;
1908 gdb_byte *auxv;
1909 int auxv_len;
050c224b 1910 struct thread_info *curr_thr, *signalled_thr, *thr;
6432734d 1911
f968fe80
AA
1912 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1913 return NULL;
1914
b3ac9c77 1915 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 1916 {
b3ac9c77
SDJ
1917 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1918 {
1919 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1920 note_data, note_size,
1921 &prpsinfo);
1922 }
1923 else
1924 {
1925 if (gdbarch_ptr_bit (gdbarch) == 64)
1926 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1927 note_data, note_size,
1928 &prpsinfo);
1929 else
1930 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1931 note_data, note_size,
1932 &prpsinfo);
1933 }
6432734d
UW
1934 }
1935
1936 /* Thread register information. */
492d29ea 1937 TRY
22fd09ae
JK
1938 {
1939 update_thread_list ();
1940 }
492d29ea
PA
1941 CATCH (e, RETURN_MASK_ERROR)
1942 {
1943 exception_print (gdb_stderr, e);
1944 }
1945 END_CATCH
1946
050c224b
PA
1947 /* Like the kernel, prefer dumping the signalled thread first.
1948 "First thread" is what tools use to infer the signalled thread.
1949 In case there's more than one signalled thread, prefer the
1950 current thread, if it is signalled. */
1951 curr_thr = inferior_thread ();
1952 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1953 signalled_thr = curr_thr;
1954 else
1955 {
1956 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1957 if (signalled_thr == NULL)
1958 signalled_thr = curr_thr;
1959 }
1960
6432734d 1961 thread_args.gdbarch = gdbarch;
6432734d
UW
1962 thread_args.obfd = obfd;
1963 thread_args.note_data = note_data;
1964 thread_args.note_size = note_size;
050c224b
PA
1965 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1966
1967 linux_corefile_thread (signalled_thr, &thread_args);
1968 ALL_NON_EXITED_THREADS (thr)
1969 {
1970 if (thr == signalled_thr)
1971 continue;
1972 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1973 continue;
1974
1975 linux_corefile_thread (thr, &thread_args);
1976 }
1977
6432734d
UW
1978 note_data = thread_args.note_data;
1979 if (!note_data)
1980 return NULL;
1981
1982 /* Auxillary vector. */
1983 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
1984 NULL, &auxv);
1985 if (auxv_len > 0)
1986 {
1987 note_data = elfcore_write_note (obfd, note_data, note_size,
1988 "CORE", NT_AUXV, auxv, auxv_len);
1989 xfree (auxv);
1990
1991 if (!note_data)
1992 return NULL;
1993 }
1994
1995 /* SPU information. */
1996 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1997 if (!note_data)
1998 return NULL;
1999
451b7c33
TT
2000 /* File mappings. */
2001 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2002 note_data, note_size);
2003
6432734d
UW
2004 return note_data;
2005}
2006
eb14d406
SDJ
2007/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2008 gdbarch.h. This function is not static because it is exported to
2009 other -tdep files. */
2010
2011enum gdb_signal
2012linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2013{
2014 switch (signal)
2015 {
2016 case 0:
2017 return GDB_SIGNAL_0;
2018
2019 case LINUX_SIGHUP:
2020 return GDB_SIGNAL_HUP;
2021
2022 case LINUX_SIGINT:
2023 return GDB_SIGNAL_INT;
2024
2025 case LINUX_SIGQUIT:
2026 return GDB_SIGNAL_QUIT;
2027
2028 case LINUX_SIGILL:
2029 return GDB_SIGNAL_ILL;
2030
2031 case LINUX_SIGTRAP:
2032 return GDB_SIGNAL_TRAP;
2033
2034 case LINUX_SIGABRT:
2035 return GDB_SIGNAL_ABRT;
2036
2037 case LINUX_SIGBUS:
2038 return GDB_SIGNAL_BUS;
2039
2040 case LINUX_SIGFPE:
2041 return GDB_SIGNAL_FPE;
2042
2043 case LINUX_SIGKILL:
2044 return GDB_SIGNAL_KILL;
2045
2046 case LINUX_SIGUSR1:
2047 return GDB_SIGNAL_USR1;
2048
2049 case LINUX_SIGSEGV:
2050 return GDB_SIGNAL_SEGV;
2051
2052 case LINUX_SIGUSR2:
2053 return GDB_SIGNAL_USR2;
2054
2055 case LINUX_SIGPIPE:
2056 return GDB_SIGNAL_PIPE;
2057
2058 case LINUX_SIGALRM:
2059 return GDB_SIGNAL_ALRM;
2060
2061 case LINUX_SIGTERM:
2062 return GDB_SIGNAL_TERM;
2063
2064 case LINUX_SIGCHLD:
2065 return GDB_SIGNAL_CHLD;
2066
2067 case LINUX_SIGCONT:
2068 return GDB_SIGNAL_CONT;
2069
2070 case LINUX_SIGSTOP:
2071 return GDB_SIGNAL_STOP;
2072
2073 case LINUX_SIGTSTP:
2074 return GDB_SIGNAL_TSTP;
2075
2076 case LINUX_SIGTTIN:
2077 return GDB_SIGNAL_TTIN;
2078
2079 case LINUX_SIGTTOU:
2080 return GDB_SIGNAL_TTOU;
2081
2082 case LINUX_SIGURG:
2083 return GDB_SIGNAL_URG;
2084
2085 case LINUX_SIGXCPU:
2086 return GDB_SIGNAL_XCPU;
2087
2088 case LINUX_SIGXFSZ:
2089 return GDB_SIGNAL_XFSZ;
2090
2091 case LINUX_SIGVTALRM:
2092 return GDB_SIGNAL_VTALRM;
2093
2094 case LINUX_SIGPROF:
2095 return GDB_SIGNAL_PROF;
2096
2097 case LINUX_SIGWINCH:
2098 return GDB_SIGNAL_WINCH;
2099
2100 /* No way to differentiate between SIGIO and SIGPOLL.
2101 Therefore, we just handle the first one. */
2102 case LINUX_SIGIO:
2103 return GDB_SIGNAL_IO;
2104
2105 case LINUX_SIGPWR:
2106 return GDB_SIGNAL_PWR;
2107
2108 case LINUX_SIGSYS:
2109 return GDB_SIGNAL_SYS;
2110
2111 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2112 therefore we have to handle them here. */
2113 case LINUX_SIGRTMIN:
2114 return GDB_SIGNAL_REALTIME_32;
2115
2116 case LINUX_SIGRTMAX:
2117 return GDB_SIGNAL_REALTIME_64;
2118 }
2119
2120 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2121 {
2122 int offset = signal - LINUX_SIGRTMIN + 1;
2123
2124 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2125 }
2126
2127 return GDB_SIGNAL_UNKNOWN;
2128}
2129
2130/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2131 gdbarch.h. This function is not static because it is exported to
2132 other -tdep files. */
2133
2134int
2135linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2136 enum gdb_signal signal)
2137{
2138 switch (signal)
2139 {
2140 case GDB_SIGNAL_0:
2141 return 0;
2142
2143 case GDB_SIGNAL_HUP:
2144 return LINUX_SIGHUP;
2145
2146 case GDB_SIGNAL_INT:
2147 return LINUX_SIGINT;
2148
2149 case GDB_SIGNAL_QUIT:
2150 return LINUX_SIGQUIT;
2151
2152 case GDB_SIGNAL_ILL:
2153 return LINUX_SIGILL;
2154
2155 case GDB_SIGNAL_TRAP:
2156 return LINUX_SIGTRAP;
2157
2158 case GDB_SIGNAL_ABRT:
2159 return LINUX_SIGABRT;
2160
2161 case GDB_SIGNAL_FPE:
2162 return LINUX_SIGFPE;
2163
2164 case GDB_SIGNAL_KILL:
2165 return LINUX_SIGKILL;
2166
2167 case GDB_SIGNAL_BUS:
2168 return LINUX_SIGBUS;
2169
2170 case GDB_SIGNAL_SEGV:
2171 return LINUX_SIGSEGV;
2172
2173 case GDB_SIGNAL_SYS:
2174 return LINUX_SIGSYS;
2175
2176 case GDB_SIGNAL_PIPE:
2177 return LINUX_SIGPIPE;
2178
2179 case GDB_SIGNAL_ALRM:
2180 return LINUX_SIGALRM;
2181
2182 case GDB_SIGNAL_TERM:
2183 return LINUX_SIGTERM;
2184
2185 case GDB_SIGNAL_URG:
2186 return LINUX_SIGURG;
2187
2188 case GDB_SIGNAL_STOP:
2189 return LINUX_SIGSTOP;
2190
2191 case GDB_SIGNAL_TSTP:
2192 return LINUX_SIGTSTP;
2193
2194 case GDB_SIGNAL_CONT:
2195 return LINUX_SIGCONT;
2196
2197 case GDB_SIGNAL_CHLD:
2198 return LINUX_SIGCHLD;
2199
2200 case GDB_SIGNAL_TTIN:
2201 return LINUX_SIGTTIN;
2202
2203 case GDB_SIGNAL_TTOU:
2204 return LINUX_SIGTTOU;
2205
2206 case GDB_SIGNAL_IO:
2207 return LINUX_SIGIO;
2208
2209 case GDB_SIGNAL_XCPU:
2210 return LINUX_SIGXCPU;
2211
2212 case GDB_SIGNAL_XFSZ:
2213 return LINUX_SIGXFSZ;
2214
2215 case GDB_SIGNAL_VTALRM:
2216 return LINUX_SIGVTALRM;
2217
2218 case GDB_SIGNAL_PROF:
2219 return LINUX_SIGPROF;
2220
2221 case GDB_SIGNAL_WINCH:
2222 return LINUX_SIGWINCH;
2223
2224 case GDB_SIGNAL_USR1:
2225 return LINUX_SIGUSR1;
2226
2227 case GDB_SIGNAL_USR2:
2228 return LINUX_SIGUSR2;
2229
2230 case GDB_SIGNAL_PWR:
2231 return LINUX_SIGPWR;
2232
2233 case GDB_SIGNAL_POLL:
2234 return LINUX_SIGPOLL;
2235
2236 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2237 therefore we have to handle it here. */
2238 case GDB_SIGNAL_REALTIME_32:
2239 return LINUX_SIGRTMIN;
2240
2241 /* Same comment applies to _64. */
2242 case GDB_SIGNAL_REALTIME_64:
2243 return LINUX_SIGRTMAX;
2244 }
2245
2246 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2247 if (signal >= GDB_SIGNAL_REALTIME_33
2248 && signal <= GDB_SIGNAL_REALTIME_63)
2249 {
2250 int offset = signal - GDB_SIGNAL_REALTIME_33;
2251
2252 return LINUX_SIGRTMIN + 1 + offset;
2253 }
2254
2255 return -1;
2256}
2257
3437254d
PA
2258/* Rummage through mappings to find a mapping's size. */
2259
2260static int
2261find_mapping_size (CORE_ADDR vaddr, unsigned long size,
2262 int read, int write, int exec, int modified,
2263 void *data)
2264{
9a3c8263 2265 struct mem_range *range = (struct mem_range *) data;
3437254d
PA
2266
2267 if (vaddr == range->start)
2268 {
2269 range->length = size;
2270 return 1;
2271 }
2272 return 0;
2273}
2274
cdfa0b0a
PA
2275/* Helper for linux_vsyscall_range that does the real work of finding
2276 the vsyscall's address range. */
3437254d
PA
2277
2278static int
cdfa0b0a 2279linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d
PA
2280{
2281 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2282 return 0;
2283
2284 /* This is installed by linux_init_abi below, so should always be
2285 available. */
2286 gdb_assert (gdbarch_find_memory_regions_p (target_gdbarch ()));
2287
2288 range->length = 0;
2289 gdbarch_find_memory_regions (gdbarch, find_mapping_size, range);
2290 return 1;
2291}
2292
cdfa0b0a
PA
2293/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2294 caching, and defers the real work to linux_vsyscall_range_raw. */
2295
2296static int
2297linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2298{
2299 struct linux_info *info = get_linux_inferior_data ();
2300
2301 if (info->vsyscall_range_p == 0)
2302 {
2303 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2304 info->vsyscall_range_p = 1;
2305 else
2306 info->vsyscall_range_p = -1;
2307 }
2308
2309 if (info->vsyscall_range_p < 0)
2310 return 0;
2311
2312 *range = info->vsyscall_range;
2313 return 1;
2314}
2315
3bc3cebe
JK
2316/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2317 definitions would be dependent on compilation host. */
2318#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2319#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2320
2321/* See gdbarch.sh 'infcall_mmap'. */
2322
2323static CORE_ADDR
2324linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2325{
2326 struct objfile *objf;
2327 /* Do there still exist any Linux systems without "mmap64"?
2328 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2329 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2330 struct value *addr_val;
2331 struct gdbarch *gdbarch = get_objfile_arch (objf);
2332 CORE_ADDR retval;
2333 enum
2334 {
2a546367 2335 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2336 };
2a546367 2337 struct value *arg[ARG_LAST];
3bc3cebe
JK
2338
2339 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2340 0);
2341 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2342 arg[ARG_LENGTH] = value_from_ulongest
2343 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2344 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2345 | GDB_MMAP_PROT_EXEC))
2346 == 0);
2347 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2348 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2349 GDB_MMAP_MAP_PRIVATE
2350 | GDB_MMAP_MAP_ANONYMOUS);
2351 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2352 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2353 0);
2a546367 2354 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg);
3bc3cebe
JK
2355 retval = value_as_address (addr_val);
2356 if (retval == (CORE_ADDR) -1)
2357 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2358 pulongest (size));
2359 return retval;
2360}
2361
7f361056
JK
2362/* See gdbarch.sh 'infcall_munmap'. */
2363
2364static void
2365linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2366{
2367 struct objfile *objf;
2368 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2369 struct value *retval_val;
2370 struct gdbarch *gdbarch = get_objfile_arch (objf);
2371 LONGEST retval;
2372 enum
2373 {
2374 ARG_ADDR, ARG_LENGTH, ARG_LAST
2375 };
2376 struct value *arg[ARG_LAST];
2377
2378 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2379 addr);
2380 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2381 arg[ARG_LENGTH] = value_from_ulongest
2382 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2383 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg);
2384 retval = value_as_long (retval_val);
2385 if (retval != 0)
2386 warning (_("Failed inferior munmap call at %s for %s bytes, "
2387 "errno is changed."),
2388 hex_string (addr), pulongest (size));
2389}
2390
906d60cf
PA
2391/* See linux-tdep.h. */
2392
2393CORE_ADDR
2394linux_displaced_step_location (struct gdbarch *gdbarch)
2395{
2396 CORE_ADDR addr;
2397 int bp_len;
2398
2399 /* Determine entry point from target auxiliary vector. This avoids
2400 the need for symbols. Also, when debugging a stand-alone SPU
2401 executable, entry_point_address () will point to an SPU
2402 local-store address and is thus not usable as displaced stepping
2403 location. The auxiliary vector gets us the PowerPC-side entry
2404 point address instead. */
2405 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2406 error (_("Cannot find AT_ENTRY auxiliary vector entry."));
2407
2408 /* Make certain that the address points at real code, and not a
2409 function descriptor. */
2410 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2411 &current_target);
2412
2413 /* Inferior calls also use the entry point as a breakpoint location.
2414 We don't want displaced stepping to interfere with those
2415 breakpoints, so leave space. */
2416 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2417 addr += bp_len * 2;
2418
2419 return addr;
2420}
2421
df8411da
SDJ
2422/* Display whether the gcore command is using the
2423 /proc/PID/coredump_filter file. */
2424
2425static void
2426show_use_coredump_filter (struct ui_file *file, int from_tty,
2427 struct cmd_list_element *c, const char *value)
2428{
2429 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2430 " corefiles is %s.\n"), value);
2431}
2432
a5ee0f0c
PA
2433/* To be called from the various GDB_OSABI_LINUX handlers for the
2434 various GNU/Linux architectures and machine types. */
2435
2436void
2437linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2438{
2439 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2440 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2441 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
35c2fab7 2442 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2443 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2444 set_gdbarch_has_shared_address_space (gdbarch,
2445 linux_has_shared_address_space);
eb14d406
SDJ
2446 set_gdbarch_gdb_signal_from_target (gdbarch,
2447 linux_gdb_signal_from_target);
2448 set_gdbarch_gdb_signal_to_target (gdbarch,
2449 linux_gdb_signal_to_target);
3437254d 2450 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2451 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2452 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2453 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2454}
06253dd3 2455
70221824
PA
2456/* Provide a prototype to silence -Wmissing-prototypes. */
2457extern initialize_file_ftype _initialize_linux_tdep;
2458
06253dd3
JK
2459void
2460_initialize_linux_tdep (void)
2461{
2462 linux_gdbarch_data_handle =
2463 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a
PA
2464
2465 /* Set a cache per-inferior. */
2466 linux_inferior_data
2467 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2468 /* Observers used to invalidate the cache when needed. */
2469 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2470 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
df8411da
SDJ
2471
2472 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2473 &use_coredump_filter, _("\
2474Set whether gcore should consider /proc/PID/coredump_filter."),
2475 _("\
2476Show whether gcore should consider /proc/PID/coredump_filter."),
2477 _("\
2478Use this command to set whether gcore should consider the contents\n\
2479of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2480about this file, refer to the manpage of core(5)."),
2481 NULL, show_use_coredump_filter,
2482 &setlist, &showlist);
06253dd3 2483}
This page took 0.750189 seconds and 4 git commands to generate.