gdb/testsuite: Reduce test name duplication in gdb.python tests
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
42a4f53d 3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
76727919 35#include "observable.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
268a13a5
TT
40#include "gdbsupport/enum-flags.h"
41#include "gdbsupport/gdb_optional.h"
3030c96e
UW
42
43#include <ctype.h>
4aa995e1 44
db1ff28b
JK
45/* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
8d297bbf 51enum filter_flag
db1ff28b
JK
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
8d297bbf 61DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
62
63/* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
df8411da
SDJ
91/* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
491144b5 94static bool use_coredump_filter = true;
df8411da 95
afa840dc
SL
96/* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
491144b5 99static bool dump_excluded_mappings = false;
afa840dc 100
eb14d406
SDJ
101/* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
06253dd3
JK
166static struct gdbarch_data *linux_gdbarch_data_handle;
167
168struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173static void *
174init_linux_gdbarch_data (struct gdbarch *gdbarch)
175{
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177}
178
179static struct linux_gdbarch_data *
180get_linux_gdbarch_data (struct gdbarch *gdbarch)
181{
9a3c8263
SM
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
184}
185
cdfa0b0a
PA
186/* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189struct linux_info
190{
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
89fb8848 196 struct mem_range vsyscall_range {};
cdfa0b0a
PA
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
89fb8848 201 int vsyscall_range_p = 0;
cdfa0b0a
PA
202};
203
89fb8848
TT
204/* Per-inferior data key. */
205static const struct inferior_key<linux_info> linux_inferior_data;
206
cdfa0b0a
PA
207/* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210static void
211invalidate_linux_cache_inf (struct inferior *inf)
212{
89fb8848 213 linux_inferior_data.clear (inf);
cdfa0b0a
PA
214}
215
216/* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219static struct linux_info *
220get_linux_inferior_data (void)
221{
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
89fb8848 225 info = linux_inferior_data.get (inf);
cdfa0b0a 226 if (info == NULL)
89fb8848 227 info = linux_inferior_data.emplace (inf);
cdfa0b0a
PA
228
229 return info;
230}
231
190b495d 232/* See linux-tdep.h. */
4aa995e1 233
190b495d 234struct type *
43564574
WT
235linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
4aa995e1 237{
06253dd3 238 struct linux_gdbarch_data *linux_gdbarch_data;
96b5c49f 239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
4aa995e1
PA
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
06253dd3
JK
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
e9bb382b
UW
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
96b5c49f
WT
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
4aa995e1
PA
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
e9bb382b 260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
261 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
e3aa49af 266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
4aa995e1 268 TYPE_TARGET_TYPE (pid_type) = int_type;
e9bb382b 269 TYPE_TARGET_STUB (pid_type) = 1;
4aa995e1
PA
270
271 /* __uid_t */
e3aa49af 272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
4aa995e1 274 TYPE_TARGET_TYPE (uid_type) = uint_type;
e9bb382b 275 TYPE_TARGET_STUB (uid_type) = 1;
4aa995e1
PA
276
277 /* __clock_t */
e3aa49af 278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781
UW
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
4aa995e1 281 TYPE_TARGET_TYPE (clock_type) = long_type;
e9bb382b 282 TYPE_TARGET_STUB (clock_type) = 1;
4aa995e1
PA
283
284 /* _sifields */
e9bb382b 285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
e9bb382b 302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
e9bb382b 308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
e9bb382b 315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
e9bb382b 322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
e9bb382b 331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1 332 append_composite_type_field (type, "si_addr", void_ptr_type);
96b5c49f
WT
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
4aa995e1
PA
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
e9bb382b 348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
e9bb382b 354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
355 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
06253dd3
JK
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
4aa995e1
PA
365 return siginfo_type;
366}
6b3ae818 367
43564574
WT
368/* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371static struct type *
372linux_get_siginfo_type (struct gdbarch *gdbarch)
373{
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375}
376
c01cbb3d
YQ
377/* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380int
381linux_is_uclinux (void)
6c95b8df 382{
6c95b8df 383 CORE_ADDR dummy;
6c95b8df 384
8b88a78e
PA
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
c01cbb3d 387}
6c95b8df 388
c01cbb3d
YQ
389static int
390linux_has_shared_address_space (struct gdbarch *gdbarch)
391{
392 return linux_is_uclinux ();
6c95b8df 393}
a5ee0f0c
PA
394
395/* This is how we want PTIDs from core files to be printed. */
396
a068643d 397static std::string
a5ee0f0c
PA
398linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399{
e38504b3 400 if (ptid.lwp () != 0)
a068643d 401 return string_printf ("LWP %ld", ptid.lwp ());
a5ee0f0c
PA
402
403 return normal_pid_to_str (ptid);
404}
405
db1ff28b
JK
406/* Service function for corefiles and info proc. */
407
408static void
409read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416{
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
f1735a53 424 p = skip_spaces (p);
db1ff28b
JK
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
f1735a53 432 p = skip_spaces (p);
db1ff28b
JK
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
f1735a53 440 p = skip_spaces (p);
db1ff28b
JK
441 *filename = p;
442}
443
444/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453static void
454decode_vmflags (char *p, struct smaps_vmflags *v)
455{
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476}
477
2d7cc5c7
PA
478/* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481struct mapping_regexes
482{
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514};
515
db1ff28b
JK
516/* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526static int
527mapping_is_anonymous_p (const char *filename)
528{
2d7cc5c7 529 static gdb::optional<mapping_regexes> regexes;
db1ff28b
JK
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
db1ff28b
JK
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
2d7cc5c7 538 regexes.emplace ();
db1ff28b
JK
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
2d7cc5c7
PA
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
db1ff28b
JK
563 return 1;
564
565 return 0;
566}
567
568/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
57e5e645
SDJ
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
db1ff28b
JK
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
57e5e645
SDJ
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
db1ff28b
JK
614
615static int
8d297bbf 616dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b 617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
57e5e645 618 const char *filename, ULONGEST addr, ULONGEST offset)
db1ff28b
JK
619{
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
57e5e645 628 int dump_p;
db1ff28b
JK
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
afa840dc 644 if (!dump_excluded_mappings && v->exclude_coredump)
db1ff28b
JK
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
57e5e645
SDJ
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
db1ff28b
JK
671 }
672 else if (mapping_anon_p)
57e5e645 673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
db1ff28b 674 else
57e5e645 675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
db1ff28b
JK
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
57e5e645
SDJ
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
db1ff28b
JK
686 }
687 else if (mapping_anon_p)
57e5e645 688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
db1ff28b 689 else
57e5e645 690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
db1ff28b 691 }
57e5e645
SDJ
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
704 /* Let's check if we have an ELF header. */
705 gdb::unique_xmalloc_ptr<char> header;
706 int errcode;
707
708 /* Useful define specifying the size of the ELF magical
709 header. */
710#ifndef SELFMAG
711#define SELFMAG 4
712#endif
713
714 /* Read the first SELFMAG bytes and check if it is ELFMAG. */
715 if (target_read_string (addr, &header, SELFMAG, &errcode) == SELFMAG
716 && errcode == 0)
717 {
718 const char *h = header.get ();
719
720 /* The EI_MAG* and ELFMAG* constants come from
721 <elf/common.h>. */
722 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
723 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
724 {
725 /* This mapping contains an ELF header, so we
726 should dump it. */
727 dump_p = 1;
728 }
729 }
730 }
731
732 return dump_p;
db1ff28b
JK
733}
734
3030c96e
UW
735/* Implement the "info proc" command. */
736
737static void
7bc112c1 738linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
739 enum info_proc_what what)
740{
741 /* A long is used for pid instead of an int to avoid a loss of precision
742 compiler warning from the output of strtoul. */
743 long pid;
744 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
745 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
746 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
747 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
748 int status_f = (what == IP_STATUS || what == IP_ALL);
749 int stat_f = (what == IP_STAT || what == IP_ALL);
750 char filename[100];
3030c96e
UW
751 int target_errno;
752
753 if (args && isdigit (args[0]))
7bc112c1
TT
754 {
755 char *tem;
756
757 pid = strtoul (args, &tem, 10);
758 args = tem;
759 }
3030c96e
UW
760 else
761 {
762 if (!target_has_execution)
763 error (_("No current process: you must name one."));
764 if (current_inferior ()->fake_pid_p)
765 error (_("Can't determine the current process's PID: you must name one."));
766
767 pid = current_inferior ()->pid;
768 }
769
f1735a53 770 args = skip_spaces (args);
3030c96e
UW
771 if (args && args[0])
772 error (_("Too many parameters: %s"), args);
773
774 printf_filtered (_("process %ld\n"), pid);
775 if (cmdline_f)
776 {
777 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
26d6cec4
AA
778 gdb_byte *buffer;
779 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
780
781 if (len > 0)
782 {
783 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
784 ssize_t pos;
785
786 for (pos = 0; pos < len - 1; pos++)
787 {
788 if (buffer[pos] == '\0')
789 buffer[pos] = ' ';
790 }
791 buffer[len - 1] = '\0';
792 printf_filtered ("cmdline = '%s'\n", buffer);
793 }
3030c96e
UW
794 else
795 warning (_("unable to open /proc file '%s'"), filename);
796 }
797 if (cwd_f)
798 {
799 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
e0d3522b
TT
800 gdb::optional<std::string> contents
801 = target_fileio_readlink (NULL, filename, &target_errno);
802 if (contents.has_value ())
803 printf_filtered ("cwd = '%s'\n", contents->c_str ());
3030c96e
UW
804 else
805 warning (_("unable to read link '%s'"), filename);
806 }
807 if (exe_f)
808 {
809 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
e0d3522b
TT
810 gdb::optional<std::string> contents
811 = target_fileio_readlink (NULL, filename, &target_errno);
812 if (contents.has_value ())
813 printf_filtered ("exe = '%s'\n", contents->c_str ());
3030c96e
UW
814 else
815 warning (_("unable to read link '%s'"), filename);
816 }
817 if (mappings_f)
818 {
819 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
87028b87
TT
820 gdb::unique_xmalloc_ptr<char> map
821 = target_fileio_read_stralloc (NULL, filename);
822 if (map != NULL)
3030c96e 823 {
3030c96e
UW
824 char *line;
825
826 printf_filtered (_("Mapped address spaces:\n\n"));
827 if (gdbarch_addr_bit (gdbarch) == 32)
828 {
829 printf_filtered ("\t%10s %10s %10s %10s %s\n",
830 "Start Addr",
831 " End Addr",
832 " Size", " Offset", "objfile");
833 }
834 else
835 {
836 printf_filtered (" %18s %18s %10s %10s %s\n",
837 "Start Addr",
838 " End Addr",
839 " Size", " Offset", "objfile");
840 }
841
87028b87
TT
842 for (line = strtok (map.get (), "\n");
843 line;
844 line = strtok (NULL, "\n"))
3030c96e
UW
845 {
846 ULONGEST addr, endaddr, offset, inode;
b926417a 847 const char *permissions, *device, *mapping_filename;
3030c96e
UW
848 size_t permissions_len, device_len;
849
850 read_mapping (line, &addr, &endaddr,
851 &permissions, &permissions_len,
852 &offset, &device, &device_len,
b926417a 853 &inode, &mapping_filename);
3030c96e
UW
854
855 if (gdbarch_addr_bit (gdbarch) == 32)
856 {
857 printf_filtered ("\t%10s %10s %10s %10s %s\n",
858 paddress (gdbarch, addr),
859 paddress (gdbarch, endaddr),
860 hex_string (endaddr - addr),
861 hex_string (offset),
b926417a 862 *mapping_filename ? mapping_filename : "");
3030c96e
UW
863 }
864 else
865 {
866 printf_filtered (" %18s %18s %10s %10s %s\n",
867 paddress (gdbarch, addr),
868 paddress (gdbarch, endaddr),
869 hex_string (endaddr - addr),
870 hex_string (offset),
b926417a 871 *mapping_filename ? mapping_filename : "");
3030c96e
UW
872 }
873 }
3030c96e
UW
874 }
875 else
876 warning (_("unable to open /proc file '%s'"), filename);
877 }
878 if (status_f)
879 {
880 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
87028b87
TT
881 gdb::unique_xmalloc_ptr<char> status
882 = target_fileio_read_stralloc (NULL, filename);
883 if (status)
884 puts_filtered (status.get ());
3030c96e
UW
885 else
886 warning (_("unable to open /proc file '%s'"), filename);
887 }
888 if (stat_f)
889 {
890 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
87028b87
TT
891 gdb::unique_xmalloc_ptr<char> statstr
892 = target_fileio_read_stralloc (NULL, filename);
893 if (statstr)
3030c96e 894 {
87028b87 895 const char *p = statstr.get ();
3030c96e
UW
896
897 printf_filtered (_("Process: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
899
f1735a53 900 p = skip_spaces (p);
a71b5a38 901 if (*p == '(')
3030c96e 902 {
184cd072
JK
903 /* ps command also relies on no trailing fields
904 ever contain ')'. */
905 const char *ep = strrchr (p, ')');
a71b5a38
UW
906 if (ep != NULL)
907 {
908 printf_filtered ("Exec file: %.*s\n",
909 (int) (ep - p - 1), p + 1);
910 p = ep + 1;
911 }
3030c96e
UW
912 }
913
f1735a53 914 p = skip_spaces (p);
3030c96e
UW
915 if (*p)
916 printf_filtered (_("State: %c\n"), *p++);
917
918 if (*p)
919 printf_filtered (_("Parent process: %s\n"),
920 pulongest (strtoulst (p, &p, 10)));
921 if (*p)
922 printf_filtered (_("Process group: %s\n"),
923 pulongest (strtoulst (p, &p, 10)));
924 if (*p)
925 printf_filtered (_("Session id: %s\n"),
926 pulongest (strtoulst (p, &p, 10)));
927 if (*p)
928 printf_filtered (_("TTY: %s\n"),
929 pulongest (strtoulst (p, &p, 10)));
930 if (*p)
931 printf_filtered (_("TTY owner process group: %s\n"),
932 pulongest (strtoulst (p, &p, 10)));
933
934 if (*p)
935 printf_filtered (_("Flags: %s\n"),
936 hex_string (strtoulst (p, &p, 10)));
937 if (*p)
938 printf_filtered (_("Minor faults (no memory page): %s\n"),
939 pulongest (strtoulst (p, &p, 10)));
940 if (*p)
941 printf_filtered (_("Minor faults, children: %s\n"),
942 pulongest (strtoulst (p, &p, 10)));
943 if (*p)
944 printf_filtered (_("Major faults (memory page faults): %s\n"),
945 pulongest (strtoulst (p, &p, 10)));
946 if (*p)
947 printf_filtered (_("Major faults, children: %s\n"),
948 pulongest (strtoulst (p, &p, 10)));
949 if (*p)
950 printf_filtered (_("utime: %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
952 if (*p)
953 printf_filtered (_("stime: %s\n"),
954 pulongest (strtoulst (p, &p, 10)));
955 if (*p)
956 printf_filtered (_("utime, children: %s\n"),
957 pulongest (strtoulst (p, &p, 10)));
958 if (*p)
959 printf_filtered (_("stime, children: %s\n"),
960 pulongest (strtoulst (p, &p, 10)));
961 if (*p)
962 printf_filtered (_("jiffies remaining in current "
963 "time slice: %s\n"),
964 pulongest (strtoulst (p, &p, 10)));
965 if (*p)
966 printf_filtered (_("'nice' value: %s\n"),
967 pulongest (strtoulst (p, &p, 10)));
968 if (*p)
969 printf_filtered (_("jiffies until next timeout: %s\n"),
970 pulongest (strtoulst (p, &p, 10)));
971 if (*p)
972 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
973 pulongest (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("start time (jiffies since "
976 "system boot): %s\n"),
977 pulongest (strtoulst (p, &p, 10)));
978 if (*p)
979 printf_filtered (_("Virtual memory size: %s\n"),
980 pulongest (strtoulst (p, &p, 10)));
981 if (*p)
982 printf_filtered (_("Resident set size: %s\n"),
983 pulongest (strtoulst (p, &p, 10)));
984 if (*p)
985 printf_filtered (_("rlim: %s\n"),
986 pulongest (strtoulst (p, &p, 10)));
987 if (*p)
988 printf_filtered (_("Start of text: %s\n"),
989 hex_string (strtoulst (p, &p, 10)));
990 if (*p)
991 printf_filtered (_("End of text: %s\n"),
992 hex_string (strtoulst (p, &p, 10)));
993 if (*p)
994 printf_filtered (_("Start of stack: %s\n"),
995 hex_string (strtoulst (p, &p, 10)));
996#if 0 /* Don't know how architecture-dependent the rest is...
997 Anyway the signal bitmap info is available from "status". */
998 if (*p)
999 printf_filtered (_("Kernel stack pointer: %s\n"),
1000 hex_string (strtoulst (p, &p, 10)));
1001 if (*p)
1002 printf_filtered (_("Kernel instr pointer: %s\n"),
1003 hex_string (strtoulst (p, &p, 10)));
1004 if (*p)
1005 printf_filtered (_("Pending signals bitmap: %s\n"),
1006 hex_string (strtoulst (p, &p, 10)));
1007 if (*p)
1008 printf_filtered (_("Blocked signals bitmap: %s\n"),
1009 hex_string (strtoulst (p, &p, 10)));
1010 if (*p)
1011 printf_filtered (_("Ignored signals bitmap: %s\n"),
1012 hex_string (strtoulst (p, &p, 10)));
1013 if (*p)
1014 printf_filtered (_("Catched signals bitmap: %s\n"),
1015 hex_string (strtoulst (p, &p, 10)));
1016 if (*p)
1017 printf_filtered (_("wchan (system call): %s\n"),
1018 hex_string (strtoulst (p, &p, 10)));
1019#endif
3030c96e
UW
1020 }
1021 else
1022 warning (_("unable to open /proc file '%s'"), filename);
1023 }
1024}
1025
451b7c33
TT
1026/* Implement "info proc mappings" for a corefile. */
1027
1028static void
7bc112c1 1029linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
451b7c33
TT
1030{
1031 asection *section;
1032 ULONGEST count, page_size;
9f584b37 1033 unsigned char *descdata, *filenames, *descend;
451b7c33
TT
1034 size_t note_size;
1035 unsigned int addr_size_bits, addr_size;
451b7c33
TT
1036 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1037 /* We assume this for reading 64-bit core files. */
1038 gdb_static_assert (sizeof (ULONGEST) >= 8);
1039
1040 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1041 if (section == NULL)
1042 {
1043 warning (_("unable to find mappings in core file"));
1044 return;
1045 }
1046
1047 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1048 addr_size = addr_size_bits / 8;
fd361982 1049 note_size = bfd_section_size (section);
451b7c33
TT
1050
1051 if (note_size < 2 * addr_size)
1052 error (_("malformed core note - too short for header"));
1053
9f584b37
TT
1054 gdb::def_vector<unsigned char> contents (note_size);
1055 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1056 0, note_size))
451b7c33
TT
1057 error (_("could not get core note contents"));
1058
9f584b37 1059 descdata = contents.data ();
451b7c33
TT
1060 descend = descdata + note_size;
1061
1062 if (descdata[note_size - 1] != '\0')
1063 error (_("malformed note - does not end with \\0"));
1064
1065 count = bfd_get (addr_size_bits, core_bfd, descdata);
1066 descdata += addr_size;
1067
1068 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1069 descdata += addr_size;
1070
1071 if (note_size < 2 * addr_size + count * 3 * addr_size)
1072 error (_("malformed note - too short for supplied file count"));
1073
1074 printf_filtered (_("Mapped address spaces:\n\n"));
1075 if (gdbarch_addr_bit (gdbarch) == 32)
1076 {
1077 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1078 "Start Addr",
1079 " End Addr",
1080 " Size", " Offset", "objfile");
1081 }
1082 else
1083 {
1084 printf_filtered (" %18s %18s %10s %10s %s\n",
1085 "Start Addr",
1086 " End Addr",
1087 " Size", " Offset", "objfile");
1088 }
1089
1090 filenames = descdata + count * 3 * addr_size;
1091 while (--count > 0)
1092 {
1093 ULONGEST start, end, file_ofs;
1094
1095 if (filenames == descend)
1096 error (_("malformed note - filenames end too early"));
1097
1098 start = bfd_get (addr_size_bits, core_bfd, descdata);
1099 descdata += addr_size;
1100 end = bfd_get (addr_size_bits, core_bfd, descdata);
1101 descdata += addr_size;
1102 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1103 descdata += addr_size;
1104
1105 file_ofs *= page_size;
1106
1107 if (gdbarch_addr_bit (gdbarch) == 32)
1108 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1109 paddress (gdbarch, start),
1110 paddress (gdbarch, end),
1111 hex_string (end - start),
1112 hex_string (file_ofs),
1113 filenames);
1114 else
1115 printf_filtered (" %18s %18s %10s %10s %s\n",
1116 paddress (gdbarch, start),
1117 paddress (gdbarch, end),
1118 hex_string (end - start),
1119 hex_string (file_ofs),
1120 filenames);
1121
1122 filenames += 1 + strlen ((char *) filenames);
1123 }
451b7c33
TT
1124}
1125
1126/* Implement "info proc" for a corefile. */
1127
1128static void
7bc112c1 1129linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1130 enum info_proc_what what)
1131{
1132 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1133 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1134
1135 if (exe_f)
1136 {
1137 const char *exe;
1138
1139 exe = bfd_core_file_failing_command (core_bfd);
1140 if (exe != NULL)
1141 printf_filtered ("exe = '%s'\n", exe);
1142 else
1143 warning (_("unable to find command name in core file"));
1144 }
1145
1146 if (mappings_f)
1147 linux_core_info_proc_mappings (gdbarch, args);
1148
1149 if (!exe_f && !mappings_f)
1150 error (_("unable to handle request"));
1151}
1152
382b69bb
JB
1153/* Read siginfo data from the core, if possible. Returns -1 on
1154 failure. Otherwise, returns the number of bytes read. READBUF,
1155 OFFSET, and LEN are all as specified by the to_xfer_partial
1156 interface. */
1157
1158static LONGEST
1159linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1160 ULONGEST offset, ULONGEST len)
1161{
1162 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1163 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1164 if (section == NULL)
1165 return -1;
1166
1167 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1168 return -1;
1169
1170 return len;
1171}
1172
db1ff28b
JK
1173typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1174 ULONGEST offset, ULONGEST inode,
1175 int read, int write,
1176 int exec, int modified,
1177 const char *filename,
1178 void *data);
451b7c33 1179
db1ff28b 1180/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1181
1182static int
db1ff28b
JK
1183linux_find_memory_regions_full (struct gdbarch *gdbarch,
1184 linux_find_memory_region_ftype *func,
1185 void *obfd)
f7af1fcd 1186{
db1ff28b
JK
1187 char mapsfilename[100];
1188 char coredumpfilter_name[100];
f7af1fcd
JK
1189 pid_t pid;
1190 /* Default dump behavior of coredump_filter (0x33), according to
1191 Documentation/filesystems/proc.txt from the Linux kernel
1192 tree. */
8d297bbf
PA
1193 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1194 | COREFILTER_ANON_SHARED
1195 | COREFILTER_ELF_HEADERS
1196 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1197
db1ff28b 1198 /* We need to know the real target PID to access /proc. */
f7af1fcd 1199 if (current_inferior ()->fake_pid_p)
db1ff28b 1200 return 1;
f7af1fcd
JK
1201
1202 pid = current_inferior ()->pid;
1203
1204 if (use_coredump_filter)
1205 {
f7af1fcd
JK
1206 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1207 "/proc/%d/coredump_filter", pid);
87028b87
TT
1208 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1209 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
f7af1fcd
JK
1210 if (coredumpfilterdata != NULL)
1211 {
8d297bbf
PA
1212 unsigned int flags;
1213
87028b87 1214 sscanf (coredumpfilterdata.get (), "%x", &flags);
8d297bbf 1215 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1216 }
1217 }
1218
db1ff28b 1219 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
87028b87
TT
1220 gdb::unique_xmalloc_ptr<char> data
1221 = target_fileio_read_stralloc (NULL, mapsfilename);
db1ff28b
JK
1222 if (data == NULL)
1223 {
1224 /* Older Linux kernels did not support /proc/PID/smaps. */
1225 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1226 data = target_fileio_read_stralloc (NULL, mapsfilename);
1227 }
1228
1229 if (data != NULL)
1230 {
db1ff28b
JK
1231 char *line, *t;
1232
87028b87 1233 line = strtok_r (data.get (), "\n", &t);
db1ff28b
JK
1234 while (line != NULL)
1235 {
1236 ULONGEST addr, endaddr, offset, inode;
1237 const char *permissions, *device, *filename;
1238 struct smaps_vmflags v;
1239 size_t permissions_len, device_len;
1240 int read, write, exec, priv;
1241 int has_anonymous = 0;
1242 int should_dump_p = 0;
1243 int mapping_anon_p;
1244 int mapping_file_p;
1245
1246 memset (&v, 0, sizeof (v));
1247 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1248 &offset, &device, &device_len, &inode, &filename);
1249 mapping_anon_p = mapping_is_anonymous_p (filename);
1250 /* If the mapping is not anonymous, then we can consider it
1251 to be file-backed. These two states (anonymous or
1252 file-backed) seem to be exclusive, but they can actually
1253 coexist. For example, if a file-backed mapping has
1254 "Anonymous:" pages (see more below), then the Linux
1255 kernel will dump this mapping when the user specified
1256 that she only wants anonymous mappings in the corefile
1257 (*even* when she explicitly disabled the dumping of
1258 file-backed mappings). */
1259 mapping_file_p = !mapping_anon_p;
1260
1261 /* Decode permissions. */
1262 read = (memchr (permissions, 'r', permissions_len) != 0);
1263 write = (memchr (permissions, 'w', permissions_len) != 0);
1264 exec = (memchr (permissions, 'x', permissions_len) != 0);
1265 /* 'private' here actually means VM_MAYSHARE, and not
1266 VM_SHARED. In order to know if a mapping is really
1267 private or not, we must check the flag "sh" in the
1268 VmFlags field. This is done by decode_vmflags. However,
1269 if we are using a Linux kernel released before the commit
1270 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1271 not have the VmFlags there. In this case, there is
1272 really no way to know if we are dealing with VM_SHARED,
1273 so we just assume that VM_MAYSHARE is enough. */
1274 priv = memchr (permissions, 'p', permissions_len) != 0;
1275
1276 /* Try to detect if region should be dumped by parsing smaps
1277 counters. */
1278 for (line = strtok_r (NULL, "\n", &t);
1279 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1280 line = strtok_r (NULL, "\n", &t))
1281 {
1282 char keyword[64 + 1];
1283
1284 if (sscanf (line, "%64s", keyword) != 1)
1285 {
1286 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1287 break;
1288 }
1289
1290 if (strcmp (keyword, "Anonymous:") == 0)
1291 {
1292 /* Older Linux kernels did not support the
1293 "Anonymous:" counter. Check it here. */
1294 has_anonymous = 1;
1295 }
1296 else if (strcmp (keyword, "VmFlags:") == 0)
1297 decode_vmflags (line, &v);
1298
1299 if (strcmp (keyword, "AnonHugePages:") == 0
1300 || strcmp (keyword, "Anonymous:") == 0)
1301 {
1302 unsigned long number;
1303
1304 if (sscanf (line, "%*s%lu", &number) != 1)
1305 {
1306 warning (_("Error parsing {s,}maps file '%s' number"),
1307 mapsfilename);
1308 break;
1309 }
1310 if (number > 0)
1311 {
1312 /* Even if we are dealing with a file-backed
1313 mapping, if it contains anonymous pages we
1314 consider it to be *also* an anonymous
1315 mapping, because this is what the Linux
1316 kernel does:
1317
1318 // Dump segments that have been written to.
1319 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1320 goto whole;
1321
1322 Note that if the mapping is already marked as
1323 file-backed (i.e., mapping_file_p is
1324 non-zero), then this is a special case, and
1325 this mapping will be dumped either when the
1326 user wants to dump file-backed *or* anonymous
1327 mappings. */
1328 mapping_anon_p = 1;
1329 }
1330 }
1331 }
1332
1333 if (has_anonymous)
1334 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1335 mapping_anon_p, mapping_file_p,
57e5e645 1336 filename, addr, offset);
db1ff28b
JK
1337 else
1338 {
1339 /* Older Linux kernels did not support the "Anonymous:" counter.
1340 If it is missing, we can't be sure - dump all the pages. */
1341 should_dump_p = 1;
1342 }
1343
1344 /* Invoke the callback function to create the corefile segment. */
1345 if (should_dump_p)
1346 func (addr, endaddr - addr, offset, inode,
1347 read, write, exec, 1, /* MODIFIED is true because we
1348 want to dump the mapping. */
1349 filename, obfd);
1350 }
1351
db1ff28b
JK
1352 return 0;
1353 }
1354
1355 return 1;
1356}
1357
1358/* A structure for passing information through
1359 linux_find_memory_regions_full. */
1360
1361struct linux_find_memory_regions_data
1362{
1363 /* The original callback. */
1364
1365 find_memory_region_ftype func;
1366
1367 /* The original datum. */
1368
1369 void *obfd;
1370};
1371
1372/* A callback for linux_find_memory_regions that converts between the
1373 "full"-style callback and find_memory_region_ftype. */
1374
1375static int
1376linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1377 ULONGEST offset, ULONGEST inode,
1378 int read, int write, int exec, int modified,
1379 const char *filename, void *arg)
1380{
9a3c8263
SM
1381 struct linux_find_memory_regions_data *data
1382 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1383
1384 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1385}
1386
1387/* A variant of linux_find_memory_regions_full that is suitable as the
1388 gdbarch find_memory_regions method. */
1389
1390static int
1391linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1392 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1393{
1394 struct linux_find_memory_regions_data data;
1395
1396 data.func = func;
db1ff28b 1397 data.obfd = obfd;
451b7c33 1398
db1ff28b
JK
1399 return linux_find_memory_regions_full (gdbarch,
1400 linux_find_memory_regions_thunk,
1401 &data);
451b7c33
TT
1402}
1403
6432734d
UW
1404/* Determine which signal stopped execution. */
1405
1406static int
1407find_signalled_thread (struct thread_info *info, void *data)
1408{
a493e3e2 1409 if (info->suspend.stop_signal != GDB_SIGNAL_0
e99b03dc 1410 && info->ptid.pid () == inferior_ptid.pid ())
6432734d
UW
1411 return 1;
1412
1413 return 0;
1414}
1415
451b7c33
TT
1416/* This is used to pass information from
1417 linux_make_mappings_corefile_notes through
1418 linux_find_memory_regions_full. */
1419
1420struct linux_make_mappings_data
1421{
1422 /* Number of files mapped. */
1423 ULONGEST file_count;
1424
1425 /* The obstack for the main part of the data. */
1426 struct obstack *data_obstack;
1427
1428 /* The filename obstack. */
1429 struct obstack *filename_obstack;
1430
1431 /* The architecture's "long" type. */
1432 struct type *long_type;
1433};
1434
1435static linux_find_memory_region_ftype linux_make_mappings_callback;
1436
1437/* A callback for linux_find_memory_regions_full that updates the
1438 mappings data for linux_make_mappings_corefile_notes. */
1439
1440static int
1441linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1442 ULONGEST offset, ULONGEST inode,
1443 int read, int write, int exec, int modified,
1444 const char *filename, void *data)
1445{
9a3c8263
SM
1446 struct linux_make_mappings_data *map_data
1447 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1448 gdb_byte buf[sizeof (ULONGEST)];
1449
1450 if (*filename == '\0' || inode == 0)
1451 return 0;
1452
1453 ++map_data->file_count;
1454
1455 pack_long (buf, map_data->long_type, vaddr);
1456 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1457 pack_long (buf, map_data->long_type, vaddr + size);
1458 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1459 pack_long (buf, map_data->long_type, offset);
1460 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1461
1462 obstack_grow_str0 (map_data->filename_obstack, filename);
1463
1464 return 0;
1465}
1466
1467/* Write the file mapping data to the core file, if possible. OBFD is
1468 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1469 is a pointer to the note size. Returns the new NOTE_DATA and
1470 updates NOTE_SIZE. */
1471
1472static char *
1473linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1474 char *note_data, int *note_size)
1475{
451b7c33
TT
1476 struct linux_make_mappings_data mapping_data;
1477 struct type *long_type
1478 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1479 gdb_byte buf[sizeof (ULONGEST)];
1480
8268c778 1481 auto_obstack data_obstack, filename_obstack;
451b7c33
TT
1482
1483 mapping_data.file_count = 0;
1484 mapping_data.data_obstack = &data_obstack;
1485 mapping_data.filename_obstack = &filename_obstack;
1486 mapping_data.long_type = long_type;
1487
1488 /* Reserve space for the count. */
1489 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1490 /* We always write the page size as 1 since we have no good way to
1491 determine the correct value. */
1492 pack_long (buf, long_type, 1);
1493 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1494
db1ff28b
JK
1495 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1496 &mapping_data);
451b7c33
TT
1497
1498 if (mapping_data.file_count != 0)
1499 {
1500 /* Write the count to the obstack. */
51a5cd90
PA
1501 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1502 long_type, mapping_data.file_count);
451b7c33
TT
1503
1504 /* Copy the filenames to the data obstack. */
3fba72f7 1505 int size = obstack_object_size (&filename_obstack);
451b7c33 1506 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
3fba72f7 1507 size);
451b7c33
TT
1508
1509 note_data = elfcore_write_note (obfd, note_data, note_size,
1510 "CORE", NT_FILE,
1511 obstack_base (&data_obstack),
1512 obstack_object_size (&data_obstack));
1513 }
1514
451b7c33
TT
1515 return note_data;
1516}
1517
5aa82d05
AA
1518/* Structure for passing information from
1519 linux_collect_thread_registers via an iterator to
1520 linux_collect_regset_section_cb. */
1521
1522struct linux_collect_regset_section_cb_data
1523{
1524 struct gdbarch *gdbarch;
1525 const struct regcache *regcache;
1526 bfd *obfd;
1527 char *note_data;
1528 int *note_size;
1529 unsigned long lwp;
1530 enum gdb_signal stop_signal;
1531 int abort_iteration;
1532};
1533
1534/* Callback for iterate_over_regset_sections that records a single
1535 regset in the corefile note section. */
1536
1537static void
a616bb94
AH
1538linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1539 int collect_size, const struct regset *regset,
5aa82d05
AA
1540 const char *human_name, void *cb_data)
1541{
7567e115
SM
1542 struct linux_collect_regset_section_cb_data *data
1543 = (struct linux_collect_regset_section_cb_data *) cb_data;
a616bb94
AH
1544 bool variable_size_section = (regset != NULL
1545 && regset->flags & REGSET_VARIABLE_SIZE);
1546
1547 if (!variable_size_section)
1548 gdb_assert (supply_size == collect_size);
5aa82d05
AA
1549
1550 if (data->abort_iteration)
1551 return;
1552
5aa82d05
AA
1553 gdb_assert (regset && regset->collect_regset);
1554
afde3032
PFC
1555 /* This is intentionally zero-initialized by using std::vector, so
1556 that any padding bytes in the core file will show as 0. */
1557 std::vector<gdb_byte> buf (collect_size);
1558
1559 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1560 collect_size);
5aa82d05
AA
1561
1562 /* PRSTATUS still needs to be treated specially. */
1563 if (strcmp (sect_name, ".reg") == 0)
1564 data->note_data = (char *) elfcore_write_prstatus
1565 (data->obfd, data->note_data, data->note_size, data->lwp,
afde3032 1566 gdb_signal_to_host (data->stop_signal), buf.data ());
5aa82d05
AA
1567 else
1568 data->note_data = (char *) elfcore_write_register_note
1569 (data->obfd, data->note_data, data->note_size,
afde3032 1570 sect_name, buf.data (), collect_size);
5aa82d05
AA
1571
1572 if (data->note_data == NULL)
1573 data->abort_iteration = 1;
1574}
1575
6432734d
UW
1576/* Records the thread's register state for the corefile note
1577 section. */
1578
1579static char *
1580linux_collect_thread_registers (const struct regcache *regcache,
1581 ptid_t ptid, bfd *obfd,
1582 char *note_data, int *note_size,
2ea28649 1583 enum gdb_signal stop_signal)
6432734d 1584{
ac7936df 1585 struct gdbarch *gdbarch = regcache->arch ();
5aa82d05 1586 struct linux_collect_regset_section_cb_data data;
6432734d 1587
5aa82d05
AA
1588 data.gdbarch = gdbarch;
1589 data.regcache = regcache;
1590 data.obfd = obfd;
1591 data.note_data = note_data;
1592 data.note_size = note_size;
1593 data.stop_signal = stop_signal;
1594 data.abort_iteration = 0;
6432734d
UW
1595
1596 /* For remote targets the LWP may not be available, so use the TID. */
e38504b3 1597 data.lwp = ptid.lwp ();
5aa82d05 1598 if (!data.lwp)
cc6bcb54 1599 data.lwp = ptid.tid ();
5aa82d05
AA
1600
1601 gdbarch_iterate_over_regset_sections (gdbarch,
1602 linux_collect_regset_section_cb,
1603 &data, regcache);
1604 return data.note_data;
6432734d
UW
1605}
1606
2989a365 1607/* Fetch the siginfo data for the specified thread, if it exists. If
9f584b37
TT
1608 there is no data, or we could not read it, return an empty
1609 buffer. */
1610
1611static gdb::byte_vector
1612linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
9015683b
TT
1613{
1614 struct type *siginfo_type;
9015683b 1615 LONGEST bytes_read;
9015683b
TT
1616
1617 if (!gdbarch_get_siginfo_type_p (gdbarch))
9f584b37
TT
1618 return gdb::byte_vector ();
1619
2989a365
TT
1620 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1621 inferior_ptid = thread->ptid;
1622
9015683b
TT
1623 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1624
9f584b37 1625 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
9015683b 1626
8b88a78e 1627 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9f584b37
TT
1628 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1629 if (bytes_read != TYPE_LENGTH (siginfo_type))
1630 buf.clear ();
9015683b
TT
1631
1632 return buf;
1633}
1634
6432734d
UW
1635struct linux_corefile_thread_data
1636{
1637 struct gdbarch *gdbarch;
6432734d
UW
1638 bfd *obfd;
1639 char *note_data;
1640 int *note_size;
2ea28649 1641 enum gdb_signal stop_signal;
6432734d
UW
1642};
1643
050c224b
PA
1644/* Records the thread's register state for the corefile note
1645 section. */
6432734d 1646
050c224b
PA
1647static void
1648linux_corefile_thread (struct thread_info *info,
1649 struct linux_corefile_thread_data *args)
6432734d 1650{
050c224b 1651 struct regcache *regcache;
050c224b
PA
1652
1653 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1654
050c224b 1655 target_fetch_registers (regcache, -1);
9f584b37 1656 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
050c224b
PA
1657
1658 args->note_data = linux_collect_thread_registers
1659 (regcache, info->ptid, args->obfd, args->note_data,
1660 args->note_size, args->stop_signal);
1661
1662 /* Don't return anything if we got no register information above,
1663 such a core file is useless. */
1664 if (args->note_data != NULL)
9f584b37 1665 if (!siginfo_data.empty ())
050c224b
PA
1666 args->note_data = elfcore_write_note (args->obfd,
1667 args->note_data,
1668 args->note_size,
1669 "CORE", NT_SIGINFO,
9f584b37
TT
1670 siginfo_data.data (),
1671 siginfo_data.size ());
6432734d
UW
1672}
1673
b3ac9c77
SDJ
1674/* Fill the PRPSINFO structure with information about the process being
1675 debugged. Returns 1 in case of success, 0 for failures. Please note that
1676 even if the structure cannot be entirely filled (e.g., GDB was unable to
1677 gather information about the process UID/GID), this function will still
1678 return 1 since some information was already recorded. It will only return
1679 0 iff nothing can be gathered. */
1680
1681static int
1682linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1683{
1684 /* The filename which we will use to obtain some info about the process.
1685 We will basically use this to store the `/proc/PID/FILENAME' file. */
1686 char filename[100];
b3ac9c77
SDJ
1687 /* The basename of the executable. */
1688 const char *basename;
cbaaa0ca 1689 const char *infargs;
b3ac9c77
SDJ
1690 /* Temporary buffer. */
1691 char *tmpstr;
1692 /* The valid states of a process, according to the Linux kernel. */
1693 const char valid_states[] = "RSDTZW";
1694 /* The program state. */
1695 const char *prog_state;
1696 /* The state of the process. */
1697 char pr_sname;
1698 /* The PID of the program which generated the corefile. */
1699 pid_t pid;
1700 /* Process flags. */
1701 unsigned int pr_flag;
1702 /* Process nice value. */
1703 long pr_nice;
1704 /* The number of fields read by `sscanf'. */
1705 int n_fields = 0;
b3ac9c77
SDJ
1706
1707 gdb_assert (p != NULL);
1708
1709 /* Obtaining PID and filename. */
e99b03dc 1710 pid = inferior_ptid.pid ();
b3ac9c77 1711 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
87028b87
TT
1712 /* The full name of the program which generated the corefile. */
1713 gdb::unique_xmalloc_ptr<char> fname
1714 = target_fileio_read_stralloc (NULL, filename);
b3ac9c77 1715
87028b87 1716 if (fname == NULL || fname.get ()[0] == '\0')
b3ac9c77
SDJ
1717 {
1718 /* No program name was read, so we won't be able to retrieve more
1719 information about the process. */
b3ac9c77
SDJ
1720 return 0;
1721 }
1722
b3ac9c77
SDJ
1723 memset (p, 0, sizeof (*p));
1724
1725 /* Defining the PID. */
1726 p->pr_pid = pid;
1727
1728 /* Copying the program name. Only the basename matters. */
87028b87 1729 basename = lbasename (fname.get ());
b3ac9c77
SDJ
1730 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1731 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1732
1733 infargs = get_inferior_args ();
1734
87028b87
TT
1735 /* The arguments of the program. */
1736 std::string psargs = fname.get ();
b3ac9c77 1737 if (infargs != NULL)
87028b87 1738 psargs = psargs + " " + infargs;
b3ac9c77 1739
87028b87 1740 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
b3ac9c77
SDJ
1741 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1742
1743 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
87028b87
TT
1744 /* The contents of `/proc/PID/stat'. */
1745 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1746 = target_fileio_read_stralloc (NULL, filename);
1747 char *proc_stat = proc_stat_contents.get ();
b3ac9c77
SDJ
1748
1749 if (proc_stat == NULL || *proc_stat == '\0')
1750 {
1751 /* Despite being unable to read more information about the
1752 process, we return 1 here because at least we have its
1753 command line, PID and arguments. */
b3ac9c77
SDJ
1754 return 1;
1755 }
1756
1757 /* Ok, we have the stats. It's time to do a little parsing of the
1758 contents of the buffer, so that we end up reading what we want.
1759
1760 The following parsing mechanism is strongly based on the
1761 information generated by the `fs/proc/array.c' file, present in
1762 the Linux kernel tree. More details about how the information is
1763 displayed can be obtained by seeing the manpage of proc(5),
1764 specifically under the entry of `/proc/[pid]/stat'. */
1765
1766 /* Getting rid of the PID, since we already have it. */
1767 while (isdigit (*proc_stat))
1768 ++proc_stat;
1769
1770 proc_stat = skip_spaces (proc_stat);
1771
184cd072
JK
1772 /* ps command also relies on no trailing fields ever contain ')'. */
1773 proc_stat = strrchr (proc_stat, ')');
1774 if (proc_stat == NULL)
87028b87 1775 return 1;
184cd072 1776 proc_stat++;
b3ac9c77
SDJ
1777
1778 proc_stat = skip_spaces (proc_stat);
1779
1780 n_fields = sscanf (proc_stat,
1781 "%c" /* Process state. */
1782 "%d%d%d" /* Parent PID, group ID, session ID. */
1783 "%*d%*d" /* tty_nr, tpgid (not used). */
1784 "%u" /* Flags. */
1785 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1786 cmajflt (not used). */
1787 "%*s%*s%*s%*s" /* utime, stime, cutime,
1788 cstime (not used). */
1789 "%*s" /* Priority (not used). */
1790 "%ld", /* Nice. */
1791 &pr_sname,
1792 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1793 &pr_flag,
1794 &pr_nice);
1795
1796 if (n_fields != 6)
1797 {
1798 /* Again, we couldn't read the complementary information about
1799 the process state. However, we already have minimal
1800 information, so we just return 1 here. */
b3ac9c77
SDJ
1801 return 1;
1802 }
1803
1804 /* Filling the structure fields. */
1805 prog_state = strchr (valid_states, pr_sname);
1806 if (prog_state != NULL)
1807 p->pr_state = prog_state - valid_states;
1808 else
1809 {
1810 /* Zero means "Running". */
1811 p->pr_state = 0;
1812 }
1813
1814 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1815 p->pr_zomb = p->pr_sname == 'Z';
1816 p->pr_nice = pr_nice;
1817 p->pr_flag = pr_flag;
1818
1819 /* Finally, obtaining the UID and GID. For that, we read and parse the
1820 contents of the `/proc/PID/status' file. */
1821 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
87028b87
TT
1822 /* The contents of `/proc/PID/status'. */
1823 gdb::unique_xmalloc_ptr<char> proc_status_contents
1824 = target_fileio_read_stralloc (NULL, filename);
1825 char *proc_status = proc_status_contents.get ();
b3ac9c77
SDJ
1826
1827 if (proc_status == NULL || *proc_status == '\0')
1828 {
1829 /* Returning 1 since we already have a bunch of information. */
b3ac9c77
SDJ
1830 return 1;
1831 }
1832
1833 /* Extracting the UID. */
1834 tmpstr = strstr (proc_status, "Uid:");
1835 if (tmpstr != NULL)
1836 {
1837 /* Advancing the pointer to the beginning of the UID. */
1838 tmpstr += sizeof ("Uid:");
1839 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1840 ++tmpstr;
1841
1842 if (isdigit (*tmpstr))
1843 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1844 }
1845
1846 /* Extracting the GID. */
1847 tmpstr = strstr (proc_status, "Gid:");
1848 if (tmpstr != NULL)
1849 {
1850 /* Advancing the pointer to the beginning of the GID. */
1851 tmpstr += sizeof ("Gid:");
1852 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1853 ++tmpstr;
1854
1855 if (isdigit (*tmpstr))
1856 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1857 }
1858
b3ac9c77
SDJ
1859 return 1;
1860}
1861
f968fe80
AA
1862/* Build the note section for a corefile, and return it in a malloc
1863 buffer. */
6432734d 1864
f968fe80
AA
1865static char *
1866linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d
UW
1867{
1868 struct linux_corefile_thread_data thread_args;
b3ac9c77 1869 struct elf_internal_linux_prpsinfo prpsinfo;
6432734d 1870 char *note_data = NULL;
08036331 1871 struct thread_info *curr_thr, *signalled_thr;
6432734d 1872
f968fe80
AA
1873 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1874 return NULL;
1875
b3ac9c77 1876 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 1877 {
fe220226
MR
1878 if (gdbarch_ptr_bit (gdbarch) == 64)
1879 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1880 note_data, note_size,
1881 &prpsinfo);
b3ac9c77 1882 else
fe220226
MR
1883 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1884 note_data, note_size,
1885 &prpsinfo);
6432734d
UW
1886 }
1887
1888 /* Thread register information. */
a70b8144 1889 try
22fd09ae
JK
1890 {
1891 update_thread_list ();
1892 }
230d2906 1893 catch (const gdb_exception_error &e)
492d29ea
PA
1894 {
1895 exception_print (gdb_stderr, e);
1896 }
492d29ea 1897
050c224b
PA
1898 /* Like the kernel, prefer dumping the signalled thread first.
1899 "First thread" is what tools use to infer the signalled thread.
1900 In case there's more than one signalled thread, prefer the
1901 current thread, if it is signalled. */
1902 curr_thr = inferior_thread ();
1903 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1904 signalled_thr = curr_thr;
1905 else
1906 {
1907 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1908 if (signalled_thr == NULL)
1909 signalled_thr = curr_thr;
1910 }
1911
6432734d 1912 thread_args.gdbarch = gdbarch;
6432734d
UW
1913 thread_args.obfd = obfd;
1914 thread_args.note_data = note_data;
1915 thread_args.note_size = note_size;
050c224b
PA
1916 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1917
1918 linux_corefile_thread (signalled_thr, &thread_args);
08036331 1919 for (thread_info *thr : current_inferior ()->non_exited_threads ())
050c224b
PA
1920 {
1921 if (thr == signalled_thr)
1922 continue;
050c224b
PA
1923
1924 linux_corefile_thread (thr, &thread_args);
1925 }
1926
6432734d
UW
1927 note_data = thread_args.note_data;
1928 if (!note_data)
1929 return NULL;
1930
1931 /* Auxillary vector. */
9018be22 1932 gdb::optional<gdb::byte_vector> auxv =
8b88a78e 1933 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
9018be22 1934 if (auxv && !auxv->empty ())
6432734d
UW
1935 {
1936 note_data = elfcore_write_note (obfd, note_data, note_size,
9018be22
SM
1937 "CORE", NT_AUXV, auxv->data (),
1938 auxv->size ());
6432734d
UW
1939
1940 if (!note_data)
1941 return NULL;
1942 }
1943
451b7c33
TT
1944 /* File mappings. */
1945 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1946 note_data, note_size);
1947
6432734d
UW
1948 return note_data;
1949}
1950
eb14d406
SDJ
1951/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1952 gdbarch.h. This function is not static because it is exported to
1953 other -tdep files. */
1954
1955enum gdb_signal
1956linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1957{
1958 switch (signal)
1959 {
1960 case 0:
1961 return GDB_SIGNAL_0;
1962
1963 case LINUX_SIGHUP:
1964 return GDB_SIGNAL_HUP;
1965
1966 case LINUX_SIGINT:
1967 return GDB_SIGNAL_INT;
1968
1969 case LINUX_SIGQUIT:
1970 return GDB_SIGNAL_QUIT;
1971
1972 case LINUX_SIGILL:
1973 return GDB_SIGNAL_ILL;
1974
1975 case LINUX_SIGTRAP:
1976 return GDB_SIGNAL_TRAP;
1977
1978 case LINUX_SIGABRT:
1979 return GDB_SIGNAL_ABRT;
1980
1981 case LINUX_SIGBUS:
1982 return GDB_SIGNAL_BUS;
1983
1984 case LINUX_SIGFPE:
1985 return GDB_SIGNAL_FPE;
1986
1987 case LINUX_SIGKILL:
1988 return GDB_SIGNAL_KILL;
1989
1990 case LINUX_SIGUSR1:
1991 return GDB_SIGNAL_USR1;
1992
1993 case LINUX_SIGSEGV:
1994 return GDB_SIGNAL_SEGV;
1995
1996 case LINUX_SIGUSR2:
1997 return GDB_SIGNAL_USR2;
1998
1999 case LINUX_SIGPIPE:
2000 return GDB_SIGNAL_PIPE;
2001
2002 case LINUX_SIGALRM:
2003 return GDB_SIGNAL_ALRM;
2004
2005 case LINUX_SIGTERM:
2006 return GDB_SIGNAL_TERM;
2007
2008 case LINUX_SIGCHLD:
2009 return GDB_SIGNAL_CHLD;
2010
2011 case LINUX_SIGCONT:
2012 return GDB_SIGNAL_CONT;
2013
2014 case LINUX_SIGSTOP:
2015 return GDB_SIGNAL_STOP;
2016
2017 case LINUX_SIGTSTP:
2018 return GDB_SIGNAL_TSTP;
2019
2020 case LINUX_SIGTTIN:
2021 return GDB_SIGNAL_TTIN;
2022
2023 case LINUX_SIGTTOU:
2024 return GDB_SIGNAL_TTOU;
2025
2026 case LINUX_SIGURG:
2027 return GDB_SIGNAL_URG;
2028
2029 case LINUX_SIGXCPU:
2030 return GDB_SIGNAL_XCPU;
2031
2032 case LINUX_SIGXFSZ:
2033 return GDB_SIGNAL_XFSZ;
2034
2035 case LINUX_SIGVTALRM:
2036 return GDB_SIGNAL_VTALRM;
2037
2038 case LINUX_SIGPROF:
2039 return GDB_SIGNAL_PROF;
2040
2041 case LINUX_SIGWINCH:
2042 return GDB_SIGNAL_WINCH;
2043
2044 /* No way to differentiate between SIGIO and SIGPOLL.
2045 Therefore, we just handle the first one. */
2046 case LINUX_SIGIO:
2047 return GDB_SIGNAL_IO;
2048
2049 case LINUX_SIGPWR:
2050 return GDB_SIGNAL_PWR;
2051
2052 case LINUX_SIGSYS:
2053 return GDB_SIGNAL_SYS;
2054
2055 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2056 therefore we have to handle them here. */
2057 case LINUX_SIGRTMIN:
2058 return GDB_SIGNAL_REALTIME_32;
2059
2060 case LINUX_SIGRTMAX:
2061 return GDB_SIGNAL_REALTIME_64;
2062 }
2063
2064 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2065 {
2066 int offset = signal - LINUX_SIGRTMIN + 1;
2067
2068 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2069 }
2070
2071 return GDB_SIGNAL_UNKNOWN;
2072}
2073
2074/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2075 gdbarch.h. This function is not static because it is exported to
2076 other -tdep files. */
2077
2078int
2079linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2080 enum gdb_signal signal)
2081{
2082 switch (signal)
2083 {
2084 case GDB_SIGNAL_0:
2085 return 0;
2086
2087 case GDB_SIGNAL_HUP:
2088 return LINUX_SIGHUP;
2089
2090 case GDB_SIGNAL_INT:
2091 return LINUX_SIGINT;
2092
2093 case GDB_SIGNAL_QUIT:
2094 return LINUX_SIGQUIT;
2095
2096 case GDB_SIGNAL_ILL:
2097 return LINUX_SIGILL;
2098
2099 case GDB_SIGNAL_TRAP:
2100 return LINUX_SIGTRAP;
2101
2102 case GDB_SIGNAL_ABRT:
2103 return LINUX_SIGABRT;
2104
2105 case GDB_SIGNAL_FPE:
2106 return LINUX_SIGFPE;
2107
2108 case GDB_SIGNAL_KILL:
2109 return LINUX_SIGKILL;
2110
2111 case GDB_SIGNAL_BUS:
2112 return LINUX_SIGBUS;
2113
2114 case GDB_SIGNAL_SEGV:
2115 return LINUX_SIGSEGV;
2116
2117 case GDB_SIGNAL_SYS:
2118 return LINUX_SIGSYS;
2119
2120 case GDB_SIGNAL_PIPE:
2121 return LINUX_SIGPIPE;
2122
2123 case GDB_SIGNAL_ALRM:
2124 return LINUX_SIGALRM;
2125
2126 case GDB_SIGNAL_TERM:
2127 return LINUX_SIGTERM;
2128
2129 case GDB_SIGNAL_URG:
2130 return LINUX_SIGURG;
2131
2132 case GDB_SIGNAL_STOP:
2133 return LINUX_SIGSTOP;
2134
2135 case GDB_SIGNAL_TSTP:
2136 return LINUX_SIGTSTP;
2137
2138 case GDB_SIGNAL_CONT:
2139 return LINUX_SIGCONT;
2140
2141 case GDB_SIGNAL_CHLD:
2142 return LINUX_SIGCHLD;
2143
2144 case GDB_SIGNAL_TTIN:
2145 return LINUX_SIGTTIN;
2146
2147 case GDB_SIGNAL_TTOU:
2148 return LINUX_SIGTTOU;
2149
2150 case GDB_SIGNAL_IO:
2151 return LINUX_SIGIO;
2152
2153 case GDB_SIGNAL_XCPU:
2154 return LINUX_SIGXCPU;
2155
2156 case GDB_SIGNAL_XFSZ:
2157 return LINUX_SIGXFSZ;
2158
2159 case GDB_SIGNAL_VTALRM:
2160 return LINUX_SIGVTALRM;
2161
2162 case GDB_SIGNAL_PROF:
2163 return LINUX_SIGPROF;
2164
2165 case GDB_SIGNAL_WINCH:
2166 return LINUX_SIGWINCH;
2167
2168 case GDB_SIGNAL_USR1:
2169 return LINUX_SIGUSR1;
2170
2171 case GDB_SIGNAL_USR2:
2172 return LINUX_SIGUSR2;
2173
2174 case GDB_SIGNAL_PWR:
2175 return LINUX_SIGPWR;
2176
2177 case GDB_SIGNAL_POLL:
2178 return LINUX_SIGPOLL;
2179
2180 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2181 therefore we have to handle it here. */
2182 case GDB_SIGNAL_REALTIME_32:
2183 return LINUX_SIGRTMIN;
2184
2185 /* Same comment applies to _64. */
2186 case GDB_SIGNAL_REALTIME_64:
2187 return LINUX_SIGRTMAX;
2188 }
2189
2190 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2191 if (signal >= GDB_SIGNAL_REALTIME_33
2192 && signal <= GDB_SIGNAL_REALTIME_63)
2193 {
2194 int offset = signal - GDB_SIGNAL_REALTIME_33;
2195
2196 return LINUX_SIGRTMIN + 1 + offset;
2197 }
2198
2199 return -1;
2200}
2201
cdfa0b0a
PA
2202/* Helper for linux_vsyscall_range that does the real work of finding
2203 the vsyscall's address range. */
3437254d
PA
2204
2205static int
cdfa0b0a 2206linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d 2207{
95e94c3f
PA
2208 char filename[100];
2209 long pid;
95e94c3f 2210
8b88a78e 2211 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
95e94c3f
PA
2212 return 0;
2213
6bb90213
PA
2214 /* It doesn't make sense to access the host's /proc when debugging a
2215 core file. Instead, look for the PT_LOAD segment that matches
2216 the vDSO. */
2217 if (!target_has_execution)
2218 {
6bb90213
PA
2219 long phdrs_size;
2220 int num_phdrs, i;
2221
2222 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2223 if (phdrs_size == -1)
2224 return 0;
2225
31aceee8
TV
2226 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2227 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2228 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
6bb90213
PA
2229 if (num_phdrs == -1)
2230 return 0;
2231
2232 for (i = 0; i < num_phdrs; i++)
31aceee8
TV
2233 if (phdrs.get ()[i].p_type == PT_LOAD
2234 && phdrs.get ()[i].p_vaddr == range->start)
6bb90213 2235 {
31aceee8 2236 range->length = phdrs.get ()[i].p_memsz;
6bb90213
PA
2237 return 1;
2238 }
2239
2240 return 0;
2241 }
2242
95e94c3f
PA
2243 /* We need to know the real target PID to access /proc. */
2244 if (current_inferior ()->fake_pid_p)
2245 return 0;
2246
95e94c3f 2247 pid = current_inferior ()->pid;
3437254d 2248
95e94c3f
PA
2249 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2250 reading /proc/PID/maps (2). The later identifies thread stacks
2251 in the output, which requires scanning every thread in the thread
2252 group to check whether a VMA is actually a thread's stack. With
2253 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2254 a few thousand threads, (1) takes a few miliseconds, while (2)
2255 takes several seconds. Also note that "smaps", what we read for
2256 determining core dump mappings, is even slower than "maps". */
2257 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
87028b87
TT
2258 gdb::unique_xmalloc_ptr<char> data
2259 = target_fileio_read_stralloc (NULL, filename);
95e94c3f
PA
2260 if (data != NULL)
2261 {
95e94c3f
PA
2262 char *line;
2263 char *saveptr = NULL;
2264
87028b87 2265 for (line = strtok_r (data.get (), "\n", &saveptr);
95e94c3f
PA
2266 line != NULL;
2267 line = strtok_r (NULL, "\n", &saveptr))
2268 {
2269 ULONGEST addr, endaddr;
2270 const char *p = line;
2271
2272 addr = strtoulst (p, &p, 16);
2273 if (addr == range->start)
2274 {
2275 if (*p == '-')
2276 p++;
2277 endaddr = strtoulst (p, &p, 16);
2278 range->length = endaddr - addr;
95e94c3f
PA
2279 return 1;
2280 }
2281 }
95e94c3f
PA
2282 }
2283 else
2284 warning (_("unable to open /proc file '%s'"), filename);
2285
2286 return 0;
3437254d
PA
2287}
2288
cdfa0b0a
PA
2289/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2290 caching, and defers the real work to linux_vsyscall_range_raw. */
2291
2292static int
2293linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2294{
2295 struct linux_info *info = get_linux_inferior_data ();
2296
2297 if (info->vsyscall_range_p == 0)
2298 {
2299 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2300 info->vsyscall_range_p = 1;
2301 else
2302 info->vsyscall_range_p = -1;
2303 }
2304
2305 if (info->vsyscall_range_p < 0)
2306 return 0;
2307
2308 *range = info->vsyscall_range;
2309 return 1;
2310}
2311
3bc3cebe
JK
2312/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2313 definitions would be dependent on compilation host. */
2314#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2315#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2316
2317/* See gdbarch.sh 'infcall_mmap'. */
2318
2319static CORE_ADDR
2320linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2321{
2322 struct objfile *objf;
2323 /* Do there still exist any Linux systems without "mmap64"?
2324 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2325 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2326 struct value *addr_val;
2327 struct gdbarch *gdbarch = get_objfile_arch (objf);
2328 CORE_ADDR retval;
2329 enum
2330 {
2a546367 2331 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2332 };
2a546367 2333 struct value *arg[ARG_LAST];
3bc3cebe
JK
2334
2335 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2336 0);
2337 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2338 arg[ARG_LENGTH] = value_from_ulongest
2339 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2340 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2341 | GDB_MMAP_PROT_EXEC))
2342 == 0);
2343 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2344 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2345 GDB_MMAP_MAP_PRIVATE
2346 | GDB_MMAP_MAP_ANONYMOUS);
2347 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2348 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2349 0);
e71585ff 2350 addr_val = call_function_by_hand (mmap_val, NULL, arg);
3bc3cebe
JK
2351 retval = value_as_address (addr_val);
2352 if (retval == (CORE_ADDR) -1)
2353 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2354 pulongest (size));
2355 return retval;
2356}
2357
7f361056
JK
2358/* See gdbarch.sh 'infcall_munmap'. */
2359
2360static void
2361linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2362{
2363 struct objfile *objf;
2364 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2365 struct value *retval_val;
2366 struct gdbarch *gdbarch = get_objfile_arch (objf);
2367 LONGEST retval;
2368 enum
2369 {
2370 ARG_ADDR, ARG_LENGTH, ARG_LAST
2371 };
2372 struct value *arg[ARG_LAST];
2373
2374 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2375 addr);
2376 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2377 arg[ARG_LENGTH] = value_from_ulongest
2378 (builtin_type (gdbarch)->builtin_unsigned_long, size);
e71585ff 2379 retval_val = call_function_by_hand (munmap_val, NULL, arg);
7f361056
JK
2380 retval = value_as_long (retval_val);
2381 if (retval != 0)
2382 warning (_("Failed inferior munmap call at %s for %s bytes, "
2383 "errno is changed."),
2384 hex_string (addr), pulongest (size));
2385}
2386
906d60cf
PA
2387/* See linux-tdep.h. */
2388
2389CORE_ADDR
2390linux_displaced_step_location (struct gdbarch *gdbarch)
2391{
2392 CORE_ADDR addr;
2393 int bp_len;
2394
2395 /* Determine entry point from target auxiliary vector. This avoids
2396 the need for symbols. Also, when debugging a stand-alone SPU
2397 executable, entry_point_address () will point to an SPU
2398 local-store address and is thus not usable as displaced stepping
2399 location. The auxiliary vector gets us the PowerPC-side entry
2400 point address instead. */
8b88a78e 2401 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
16b41842
PA
2402 throw_error (NOT_SUPPORTED_ERROR,
2403 _("Cannot find AT_ENTRY auxiliary vector entry."));
906d60cf
PA
2404
2405 /* Make certain that the address points at real code, and not a
2406 function descriptor. */
2407 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
8b88a78e 2408 current_top_target ());
906d60cf
PA
2409
2410 /* Inferior calls also use the entry point as a breakpoint location.
2411 We don't want displaced stepping to interfere with those
2412 breakpoints, so leave space. */
2413 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2414 addr += bp_len * 2;
2415
2416 return addr;
2417}
2418
0f83012e
AH
2419/* See linux-tdep.h. */
2420
2421CORE_ADDR
2422linux_get_hwcap (struct target_ops *target)
2423{
2424 CORE_ADDR field;
2425 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2426 return 0;
2427 return field;
2428}
2429
2430/* See linux-tdep.h. */
2431
2432CORE_ADDR
2433linux_get_hwcap2 (struct target_ops *target)
2434{
2435 CORE_ADDR field;
2436 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2437 return 0;
2438 return field;
2439}
2440
df8411da
SDJ
2441/* Display whether the gcore command is using the
2442 /proc/PID/coredump_filter file. */
2443
2444static void
2445show_use_coredump_filter (struct ui_file *file, int from_tty,
2446 struct cmd_list_element *c, const char *value)
2447{
2448 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2449 " corefiles is %s.\n"), value);
2450}
2451
afa840dc
SL
2452/* Display whether the gcore command is dumping mappings marked with
2453 the VM_DONTDUMP flag. */
2454
2455static void
2456show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2457 struct cmd_list_element *c, const char *value)
2458{
2459 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2460 " flag is %s.\n"), value);
2461}
2462
a5ee0f0c
PA
2463/* To be called from the various GDB_OSABI_LINUX handlers for the
2464 various GNU/Linux architectures and machine types. */
2465
2466void
2467linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2468{
2469 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2470 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2471 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
382b69bb 2472 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
35c2fab7 2473 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2474 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2475 set_gdbarch_has_shared_address_space (gdbarch,
2476 linux_has_shared_address_space);
eb14d406
SDJ
2477 set_gdbarch_gdb_signal_from_target (gdbarch,
2478 linux_gdb_signal_from_target);
2479 set_gdbarch_gdb_signal_to_target (gdbarch,
2480 linux_gdb_signal_to_target);
3437254d 2481 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2482 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2483 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2484 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2485}
06253dd3
JK
2486
2487void
2488_initialize_linux_tdep (void)
2489{
2490 linux_gdbarch_data_handle =
2491 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a 2492
cdfa0b0a 2493 /* Observers used to invalidate the cache when needed. */
76727919
TT
2494 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2495 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
df8411da
SDJ
2496
2497 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2498 &use_coredump_filter, _("\
2499Set whether gcore should consider /proc/PID/coredump_filter."),
2500 _("\
2501Show whether gcore should consider /proc/PID/coredump_filter."),
2502 _("\
2503Use this command to set whether gcore should consider the contents\n\
2504of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2505about this file, refer to the manpage of core(5)."),
2506 NULL, show_use_coredump_filter,
2507 &setlist, &showlist);
afa840dc
SL
2508
2509 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2510 &dump_excluded_mappings, _("\
2511Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2512 _("\
2513Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2514 _("\
2515Use this command to set whether gcore should dump mappings marked with the\n\
2516VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2517more information about this file, refer to the manpage of proc(5) and core(5)."),
2518 NULL, show_dump_excluded_mappings,
2519 &setlist, &showlist);
06253dd3 2520}
This page took 1.315959 seconds and 4 git commands to generate.