Add a new gdbarch method to fetch signal information from core files.
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
61baf725 3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
cdfa0b0a 35#include "observer.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
8d297bbf 40#include "common/enum-flags.h"
2d7cc5c7 41#include "common/gdb_optional.h"
3030c96e
UW
42
43#include <ctype.h>
4aa995e1 44
db1ff28b
JK
45/* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
8d297bbf 51enum filter_flag
db1ff28b
JK
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
8d297bbf 61DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
62
63/* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
df8411da
SDJ
91/* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94static int use_coredump_filter = 1;
95
eb14d406
SDJ
96/* This enum represents the signals' numbers on a generic architecture
97 running the Linux kernel. The definition of "generic" comes from
98 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
99 tree, which is the "de facto" implementation of signal numbers to
100 be used by new architecture ports.
101
102 For those architectures which have differences between the generic
103 standard (e.g., Alpha), we define the different signals (and *only*
104 those) in the specific target-dependent file (e.g.,
105 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
106 tdep file for more information.
107
108 ARM deserves a special mention here. On the file
109 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
110 (and ARM-only) signal, which is SIGSWI, with the same number as
111 SIGRTMIN. This signal is used only for a very specific target,
112 called ArthurOS (from RISCOS). Therefore, we do not handle it on
113 the ARM-tdep file, and we can safely use the generic signal handler
114 here for ARM targets.
115
116 As stated above, this enum is derived from
117 <include/uapi/asm-generic/signal.h>, from the Linux kernel
118 tree. */
119
120enum
121 {
122 LINUX_SIGHUP = 1,
123 LINUX_SIGINT = 2,
124 LINUX_SIGQUIT = 3,
125 LINUX_SIGILL = 4,
126 LINUX_SIGTRAP = 5,
127 LINUX_SIGABRT = 6,
128 LINUX_SIGIOT = 6,
129 LINUX_SIGBUS = 7,
130 LINUX_SIGFPE = 8,
131 LINUX_SIGKILL = 9,
132 LINUX_SIGUSR1 = 10,
133 LINUX_SIGSEGV = 11,
134 LINUX_SIGUSR2 = 12,
135 LINUX_SIGPIPE = 13,
136 LINUX_SIGALRM = 14,
137 LINUX_SIGTERM = 15,
138 LINUX_SIGSTKFLT = 16,
139 LINUX_SIGCHLD = 17,
140 LINUX_SIGCONT = 18,
141 LINUX_SIGSTOP = 19,
142 LINUX_SIGTSTP = 20,
143 LINUX_SIGTTIN = 21,
144 LINUX_SIGTTOU = 22,
145 LINUX_SIGURG = 23,
146 LINUX_SIGXCPU = 24,
147 LINUX_SIGXFSZ = 25,
148 LINUX_SIGVTALRM = 26,
149 LINUX_SIGPROF = 27,
150 LINUX_SIGWINCH = 28,
151 LINUX_SIGIO = 29,
152 LINUX_SIGPOLL = LINUX_SIGIO,
153 LINUX_SIGPWR = 30,
154 LINUX_SIGSYS = 31,
155 LINUX_SIGUNUSED = 31,
156
157 LINUX_SIGRTMIN = 32,
158 LINUX_SIGRTMAX = 64,
159 };
160
06253dd3
JK
161static struct gdbarch_data *linux_gdbarch_data_handle;
162
163struct linux_gdbarch_data
164 {
165 struct type *siginfo_type;
166 };
167
168static void *
169init_linux_gdbarch_data (struct gdbarch *gdbarch)
170{
171 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
172}
173
174static struct linux_gdbarch_data *
175get_linux_gdbarch_data (struct gdbarch *gdbarch)
176{
9a3c8263
SM
177 return ((struct linux_gdbarch_data *)
178 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
179}
180
cdfa0b0a
PA
181/* Per-inferior data key. */
182static const struct inferior_data *linux_inferior_data;
183
184/* Linux-specific cached data. This is used by GDB for caching
185 purposes for each inferior. This helps reduce the overhead of
186 transfering data from a remote target to the local host. */
187struct linux_info
188{
189 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
190 if VSYSCALL_RANGE_P is positive. This is cached because getting
191 at this info requires an auxv lookup (which is itself cached),
192 and looking through the inferior's mappings (which change
193 throughout execution and therefore cannot be cached). */
194 struct mem_range vsyscall_range;
195
196 /* Zero if we haven't tried looking up the vsyscall's range before
197 yet. Positive if we tried looking it up, and found it. Negative
198 if we tried looking it up but failed. */
199 int vsyscall_range_p;
200};
201
202/* Frees whatever allocated space there is to be freed and sets INF's
203 linux cache data pointer to NULL. */
204
205static void
206invalidate_linux_cache_inf (struct inferior *inf)
207{
208 struct linux_info *info;
209
9a3c8263 210 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
211 if (info != NULL)
212 {
213 xfree (info);
214 set_inferior_data (inf, linux_inferior_data, NULL);
215 }
216}
217
218/* Handles the cleanup of the linux cache for inferior INF. ARG is
219 ignored. Callback for the inferior_appeared and inferior_exit
220 events. */
221
222static void
223linux_inferior_data_cleanup (struct inferior *inf, void *arg)
224{
225 invalidate_linux_cache_inf (inf);
226}
227
228/* Fetch the linux cache info for INF. This function always returns a
229 valid INFO pointer. */
230
231static struct linux_info *
232get_linux_inferior_data (void)
233{
234 struct linux_info *info;
235 struct inferior *inf = current_inferior ();
236
9a3c8263 237 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
cdfa0b0a
PA
238 if (info == NULL)
239 {
240 info = XCNEW (struct linux_info);
241 set_inferior_data (inf, linux_inferior_data, info);
242 }
243
244 return info;
245}
246
190b495d 247/* See linux-tdep.h. */
4aa995e1 248
190b495d 249struct type *
43564574
WT
250linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
251 linux_siginfo_extra_fields extra_fields)
4aa995e1 252{
06253dd3 253 struct linux_gdbarch_data *linux_gdbarch_data;
96b5c49f 254 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
4aa995e1
PA
255 struct type *uid_type, *pid_type;
256 struct type *sigval_type, *clock_type;
257 struct type *siginfo_type, *sifields_type;
258 struct type *type;
259
06253dd3
JK
260 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
261 if (linux_gdbarch_data->siginfo_type != NULL)
262 return linux_gdbarch_data->siginfo_type;
263
e9bb382b
UW
264 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
265 0, "int");
266 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
267 1, "unsigned int");
268 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
269 0, "long");
96b5c49f
WT
270 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
271 0, "short");
4aa995e1
PA
272 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
273
274 /* sival_t */
e9bb382b 275 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
276 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
277 append_composite_type_field (sigval_type, "sival_int", int_type);
278 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
279
280 /* __pid_t */
e3aa49af
MS
281 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
282 TYPE_LENGTH (int_type), "__pid_t");
4aa995e1 283 TYPE_TARGET_TYPE (pid_type) = int_type;
e9bb382b 284 TYPE_TARGET_STUB (pid_type) = 1;
4aa995e1
PA
285
286 /* __uid_t */
e3aa49af
MS
287 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
288 TYPE_LENGTH (uint_type), "__uid_t");
4aa995e1 289 TYPE_TARGET_TYPE (uid_type) = uint_type;
e9bb382b 290 TYPE_TARGET_STUB (uid_type) = 1;
4aa995e1
PA
291
292 /* __clock_t */
e3aa49af
MS
293 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
294 TYPE_LENGTH (long_type), "__clock_t");
4aa995e1 295 TYPE_TARGET_TYPE (clock_type) = long_type;
e9bb382b 296 TYPE_TARGET_STUB (clock_type) = 1;
4aa995e1
PA
297
298 /* _sifields */
e9bb382b 299 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
300
301 {
302 const int si_max_size = 128;
303 int si_pad_size;
304 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
305
306 /* _pad */
307 if (gdbarch_ptr_bit (gdbarch) == 64)
308 si_pad_size = (si_max_size / size_of_int) - 4;
309 else
310 si_pad_size = (si_max_size / size_of_int) - 3;
311 append_composite_type_field (sifields_type, "_pad",
312 init_vector_type (int_type, si_pad_size));
313 }
314
315 /* _kill */
e9bb382b 316 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
317 append_composite_type_field (type, "si_pid", pid_type);
318 append_composite_type_field (type, "si_uid", uid_type);
319 append_composite_type_field (sifields_type, "_kill", type);
320
321 /* _timer */
e9bb382b 322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
323 append_composite_type_field (type, "si_tid", int_type);
324 append_composite_type_field (type, "si_overrun", int_type);
325 append_composite_type_field (type, "si_sigval", sigval_type);
326 append_composite_type_field (sifields_type, "_timer", type);
327
328 /* _rt */
e9bb382b 329 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
330 append_composite_type_field (type, "si_pid", pid_type);
331 append_composite_type_field (type, "si_uid", uid_type);
332 append_composite_type_field (type, "si_sigval", sigval_type);
333 append_composite_type_field (sifields_type, "_rt", type);
334
335 /* _sigchld */
e9bb382b 336 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
337 append_composite_type_field (type, "si_pid", pid_type);
338 append_composite_type_field (type, "si_uid", uid_type);
339 append_composite_type_field (type, "si_status", int_type);
340 append_composite_type_field (type, "si_utime", clock_type);
341 append_composite_type_field (type, "si_stime", clock_type);
342 append_composite_type_field (sifields_type, "_sigchld", type);
343
344 /* _sigfault */
e9bb382b 345 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1 346 append_composite_type_field (type, "si_addr", void_ptr_type);
96b5c49f
WT
347
348 /* Additional bound fields for _sigfault in case they were requested. */
349 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
350 {
351 struct type *sigfault_bnd_fields;
352
353 append_composite_type_field (type, "_addr_lsb", short_type);
354 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
356 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
357 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
358 }
4aa995e1
PA
359 append_composite_type_field (sifields_type, "_sigfault", type);
360
361 /* _sigpoll */
e9bb382b 362 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
363 append_composite_type_field (type, "si_band", long_type);
364 append_composite_type_field (type, "si_fd", int_type);
365 append_composite_type_field (sifields_type, "_sigpoll", type);
366
367 /* struct siginfo */
e9bb382b 368 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
369 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
370 append_composite_type_field (siginfo_type, "si_signo", int_type);
371 append_composite_type_field (siginfo_type, "si_errno", int_type);
372 append_composite_type_field (siginfo_type, "si_code", int_type);
373 append_composite_type_field_aligned (siginfo_type,
374 "_sifields", sifields_type,
375 TYPE_LENGTH (long_type));
376
06253dd3
JK
377 linux_gdbarch_data->siginfo_type = siginfo_type;
378
4aa995e1
PA
379 return siginfo_type;
380}
6b3ae818 381
43564574
WT
382/* This function is suitable for architectures that don't
383 extend/override the standard siginfo structure. */
384
385static struct type *
386linux_get_siginfo_type (struct gdbarch *gdbarch)
387{
388 return linux_get_siginfo_type_with_fields (gdbarch, 0);
389}
390
c01cbb3d
YQ
391/* Return true if the target is running on uClinux instead of normal
392 Linux kernel. */
393
394int
395linux_is_uclinux (void)
6c95b8df 396{
6c95b8df 397 CORE_ADDR dummy;
6c95b8df 398
c01cbb3d
YQ
399 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
400 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
401}
6c95b8df 402
c01cbb3d
YQ
403static int
404linux_has_shared_address_space (struct gdbarch *gdbarch)
405{
406 return linux_is_uclinux ();
6c95b8df 407}
a5ee0f0c
PA
408
409/* This is how we want PTIDs from core files to be printed. */
410
7a114964 411static const char *
a5ee0f0c
PA
412linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
413{
414 static char buf[80];
415
416 if (ptid_get_lwp (ptid) != 0)
417 {
418 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
419 return buf;
420 }
421
422 return normal_pid_to_str (ptid);
423}
424
db1ff28b
JK
425/* Service function for corefiles and info proc. */
426
427static void
428read_mapping (const char *line,
429 ULONGEST *addr, ULONGEST *endaddr,
430 const char **permissions, size_t *permissions_len,
431 ULONGEST *offset,
432 const char **device, size_t *device_len,
433 ULONGEST *inode,
434 const char **filename)
435{
436 const char *p = line;
437
438 *addr = strtoulst (p, &p, 16);
439 if (*p == '-')
440 p++;
441 *endaddr = strtoulst (p, &p, 16);
442
443 p = skip_spaces_const (p);
444 *permissions = p;
445 while (*p && !isspace (*p))
446 p++;
447 *permissions_len = p - *permissions;
448
449 *offset = strtoulst (p, &p, 16);
450
451 p = skip_spaces_const (p);
452 *device = p;
453 while (*p && !isspace (*p))
454 p++;
455 *device_len = p - *device;
456
457 *inode = strtoulst (p, &p, 10);
458
459 p = skip_spaces_const (p);
460 *filename = p;
461}
462
463/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
464
465 This function was based on the documentation found on
466 <Documentation/filesystems/proc.txt>, on the Linux kernel.
467
468 Linux kernels before commit
469 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
470 field on smaps. */
471
472static void
473decode_vmflags (char *p, struct smaps_vmflags *v)
474{
475 char *saveptr = NULL;
476 const char *s;
477
478 v->initialized_p = 1;
479 p = skip_to_space (p);
480 p = skip_spaces (p);
481
482 for (s = strtok_r (p, " ", &saveptr);
483 s != NULL;
484 s = strtok_r (NULL, " ", &saveptr))
485 {
486 if (strcmp (s, "io") == 0)
487 v->io_page = 1;
488 else if (strcmp (s, "ht") == 0)
489 v->uses_huge_tlb = 1;
490 else if (strcmp (s, "dd") == 0)
491 v->exclude_coredump = 1;
492 else if (strcmp (s, "sh") == 0)
493 v->shared_mapping = 1;
494 }
495}
496
2d7cc5c7
PA
497/* Regexes used by mapping_is_anonymous_p. Put in a structure because
498 they're initialized lazily. */
499
500struct mapping_regexes
501{
502 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
503 string in the end). We know for sure, based on the Linux kernel
504 code, that memory mappings whose associated filename is
505 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
506 compiled_regex dev_zero
507 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
508 _("Could not compile regex to match /dev/zero filename")};
509
510 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
511 string in the end). These filenames refer to shared memory
512 (shmem), and memory mappings associated with them are
513 MAP_ANONYMOUS as well. */
514 compiled_regex shmem_file
515 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
516 _("Could not compile regex to match shmem filenames")};
517
518 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
519 0' code, which is responsible to decide if it is dealing with a
520 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
521 FILE_DELETED matches, it does not necessarily mean that we are
522 dealing with an anonymous shared mapping. However, there is no
523 easy way to detect this currently, so this is the best
524 approximation we have.
525
526 As a result, GDB will dump readonly pages of deleted executables
527 when using the default value of coredump_filter (0x33), while the
528 Linux kernel will not dump those pages. But we can live with
529 that. */
530 compiled_regex file_deleted
531 {" (deleted)$", REG_NOSUB,
532 _("Could not compile regex to match '<file> (deleted)'")};
533};
534
db1ff28b
JK
535/* Return 1 if the memory mapping is anonymous, 0 otherwise.
536
537 FILENAME is the name of the file present in the first line of the
538 memory mapping, in the "/proc/PID/smaps" output. For example, if
539 the first line is:
540
541 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
542
543 Then FILENAME will be "/path/to/file". */
544
545static int
546mapping_is_anonymous_p (const char *filename)
547{
2d7cc5c7 548 static gdb::optional<mapping_regexes> regexes;
db1ff28b
JK
549 static int init_regex_p = 0;
550
551 if (!init_regex_p)
552 {
db1ff28b
JK
553 /* Let's be pessimistic and assume there will be an error while
554 compiling the regex'es. */
555 init_regex_p = -1;
556
2d7cc5c7 557 regexes.emplace ();
db1ff28b
JK
558
559 /* If we reached this point, then everything succeeded. */
560 init_regex_p = 1;
561 }
562
563 if (init_regex_p == -1)
564 {
565 const char deleted[] = " (deleted)";
566 size_t del_len = sizeof (deleted) - 1;
567 size_t filename_len = strlen (filename);
568
569 /* There was an error while compiling the regex'es above. In
570 order to try to give some reliable information to the caller,
571 we just try to find the string " (deleted)" in the filename.
572 If we managed to find it, then we assume the mapping is
573 anonymous. */
574 return (filename_len >= del_len
575 && strcmp (filename + filename_len - del_len, deleted) == 0);
576 }
577
578 if (*filename == '\0'
2d7cc5c7
PA
579 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
580 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
581 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
db1ff28b
JK
582 return 1;
583
584 return 0;
585}
586
587/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
588 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
589 greater than 0 if it should.
590
591 In a nutshell, this is the logic that we follow in order to decide
592 if a mapping should be dumped or not.
593
594 - If the mapping is associated to a file whose name ends with
595 " (deleted)", or if the file is "/dev/zero", or if it is
596 "/SYSV%08x" (shared memory), or if there is no file associated
597 with it, or if the AnonHugePages: or the Anonymous: fields in the
598 /proc/PID/smaps have contents, then GDB considers this mapping to
599 be anonymous. Otherwise, GDB considers this mapping to be a
600 file-backed mapping (because there will be a file associated with
601 it).
602
603 It is worth mentioning that, from all those checks described
604 above, the most fragile is the one to see if the file name ends
605 with " (deleted)". This does not necessarily mean that the
606 mapping is anonymous, because the deleted file associated with
607 the mapping may have been a hard link to another file, for
608 example. The Linux kernel checks to see if "i_nlink == 0", but
609 GDB cannot easily (and normally) do this check (iff running as
610 root, it could find the mapping in /proc/PID/map_files/ and
611 determine whether there still are other hard links to the
612 inode/file). Therefore, we made a compromise here, and we assume
613 that if the file name ends with " (deleted)", then the mapping is
614 indeed anonymous. FWIW, this is something the Linux kernel could
615 do better: expose this information in a more direct way.
616
617 - If we see the flag "sh" in the "VmFlags:" field (in
618 /proc/PID/smaps), then certainly the memory mapping is shared
619 (VM_SHARED). If we have access to the VmFlags, and we don't see
620 the "sh" there, then certainly the mapping is private. However,
621 Linux kernels before commit
622 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
623 "VmFlags:" field; in that case, we use another heuristic: if we
624 see 'p' in the permission flags, then we assume that the mapping
625 is private, even though the presence of the 's' flag there would
626 mean VM_MAYSHARE, which means the mapping could still be private.
627 This should work OK enough, however. */
628
629static int
8d297bbf 630dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b
JK
631 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
632 const char *filename)
633{
634 /* Initially, we trust in what we received from our caller. This
635 value may not be very precise (i.e., it was probably gathered
636 from the permission line in the /proc/PID/smaps list, which
637 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
638 what we have until we take a look at the "VmFlags:" field
639 (assuming that the version of the Linux kernel being used
640 supports it, of course). */
641 int private_p = maybe_private_p;
642
643 /* We always dump vDSO and vsyscall mappings, because it's likely that
644 there'll be no file to read the contents from at core load time.
645 The kernel does the same. */
646 if (strcmp ("[vdso]", filename) == 0
647 || strcmp ("[vsyscall]", filename) == 0)
648 return 1;
649
650 if (v->initialized_p)
651 {
652 /* We never dump I/O mappings. */
653 if (v->io_page)
654 return 0;
655
656 /* Check if we should exclude this mapping. */
657 if (v->exclude_coredump)
658 return 0;
659
660 /* Update our notion of whether this mapping is shared or
661 private based on a trustworthy value. */
662 private_p = !v->shared_mapping;
663
664 /* HugeTLB checking. */
665 if (v->uses_huge_tlb)
666 {
667 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
668 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
669 return 1;
670
671 return 0;
672 }
673 }
674
675 if (private_p)
676 {
677 if (mapping_anon_p && mapping_file_p)
678 {
679 /* This is a special situation. It can happen when we see a
680 mapping that is file-backed, but that contains anonymous
681 pages. */
682 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
683 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
684 }
685 else if (mapping_anon_p)
686 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
687 else
688 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
689 }
690 else
691 {
692 if (mapping_anon_p && mapping_file_p)
693 {
694 /* This is a special situation. It can happen when we see a
695 mapping that is file-backed, but that contains anonymous
696 pages. */
697 return ((filterflags & COREFILTER_ANON_SHARED) != 0
698 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
699 }
700 else if (mapping_anon_p)
701 return (filterflags & COREFILTER_ANON_SHARED) != 0;
702 else
703 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
704 }
705}
706
3030c96e
UW
707/* Implement the "info proc" command. */
708
709static void
7bc112c1 710linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
711 enum info_proc_what what)
712{
713 /* A long is used for pid instead of an int to avoid a loss of precision
714 compiler warning from the output of strtoul. */
715 long pid;
716 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
717 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
718 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
719 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
720 int status_f = (what == IP_STATUS || what == IP_ALL);
721 int stat_f = (what == IP_STAT || what == IP_ALL);
722 char filename[100];
001f13d8 723 char *data;
3030c96e
UW
724 int target_errno;
725
726 if (args && isdigit (args[0]))
7bc112c1
TT
727 {
728 char *tem;
729
730 pid = strtoul (args, &tem, 10);
731 args = tem;
732 }
3030c96e
UW
733 else
734 {
735 if (!target_has_execution)
736 error (_("No current process: you must name one."));
737 if (current_inferior ()->fake_pid_p)
738 error (_("Can't determine the current process's PID: you must name one."));
739
740 pid = current_inferior ()->pid;
741 }
742
7bc112c1 743 args = skip_spaces_const (args);
3030c96e
UW
744 if (args && args[0])
745 error (_("Too many parameters: %s"), args);
746
747 printf_filtered (_("process %ld\n"), pid);
748 if (cmdline_f)
749 {
750 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
07c138c8 751 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
752 if (data)
753 {
754 struct cleanup *cleanup = make_cleanup (xfree, data);
755 printf_filtered ("cmdline = '%s'\n", data);
756 do_cleanups (cleanup);
757 }
758 else
759 warning (_("unable to open /proc file '%s'"), filename);
760 }
761 if (cwd_f)
762 {
763 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
07c138c8 764 data = target_fileio_readlink (NULL, filename, &target_errno);
3030c96e
UW
765 if (data)
766 {
767 struct cleanup *cleanup = make_cleanup (xfree, data);
768 printf_filtered ("cwd = '%s'\n", data);
769 do_cleanups (cleanup);
770 }
771 else
772 warning (_("unable to read link '%s'"), filename);
773 }
774 if (exe_f)
775 {
776 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
07c138c8 777 data = target_fileio_readlink (NULL, filename, &target_errno);
3030c96e
UW
778 if (data)
779 {
780 struct cleanup *cleanup = make_cleanup (xfree, data);
781 printf_filtered ("exe = '%s'\n", data);
782 do_cleanups (cleanup);
783 }
784 else
785 warning (_("unable to read link '%s'"), filename);
786 }
787 if (mappings_f)
788 {
789 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
07c138c8 790 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
791 if (data)
792 {
793 struct cleanup *cleanup = make_cleanup (xfree, data);
794 char *line;
795
796 printf_filtered (_("Mapped address spaces:\n\n"));
797 if (gdbarch_addr_bit (gdbarch) == 32)
798 {
799 printf_filtered ("\t%10s %10s %10s %10s %s\n",
800 "Start Addr",
801 " End Addr",
802 " Size", " Offset", "objfile");
803 }
804 else
805 {
806 printf_filtered (" %18s %18s %10s %10s %s\n",
807 "Start Addr",
808 " End Addr",
809 " Size", " Offset", "objfile");
810 }
811
812 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
813 {
814 ULONGEST addr, endaddr, offset, inode;
815 const char *permissions, *device, *filename;
816 size_t permissions_len, device_len;
817
818 read_mapping (line, &addr, &endaddr,
819 &permissions, &permissions_len,
820 &offset, &device, &device_len,
821 &inode, &filename);
822
823 if (gdbarch_addr_bit (gdbarch) == 32)
824 {
825 printf_filtered ("\t%10s %10s %10s %10s %s\n",
826 paddress (gdbarch, addr),
827 paddress (gdbarch, endaddr),
828 hex_string (endaddr - addr),
829 hex_string (offset),
830 *filename? filename : "");
831 }
832 else
833 {
834 printf_filtered (" %18s %18s %10s %10s %s\n",
835 paddress (gdbarch, addr),
836 paddress (gdbarch, endaddr),
837 hex_string (endaddr - addr),
838 hex_string (offset),
839 *filename? filename : "");
840 }
841 }
842
843 do_cleanups (cleanup);
844 }
845 else
846 warning (_("unable to open /proc file '%s'"), filename);
847 }
848 if (status_f)
849 {
850 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
07c138c8 851 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
852 if (data)
853 {
854 struct cleanup *cleanup = make_cleanup (xfree, data);
855 puts_filtered (data);
856 do_cleanups (cleanup);
857 }
858 else
859 warning (_("unable to open /proc file '%s'"), filename);
860 }
861 if (stat_f)
862 {
863 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
07c138c8 864 data = target_fileio_read_stralloc (NULL, filename);
3030c96e
UW
865 if (data)
866 {
867 struct cleanup *cleanup = make_cleanup (xfree, data);
868 const char *p = data;
3030c96e
UW
869
870 printf_filtered (_("Process: %s\n"),
871 pulongest (strtoulst (p, &p, 10)));
872
529480d0 873 p = skip_spaces_const (p);
a71b5a38 874 if (*p == '(')
3030c96e 875 {
184cd072
JK
876 /* ps command also relies on no trailing fields
877 ever contain ')'. */
878 const char *ep = strrchr (p, ')');
a71b5a38
UW
879 if (ep != NULL)
880 {
881 printf_filtered ("Exec file: %.*s\n",
882 (int) (ep - p - 1), p + 1);
883 p = ep + 1;
884 }
3030c96e
UW
885 }
886
529480d0 887 p = skip_spaces_const (p);
3030c96e
UW
888 if (*p)
889 printf_filtered (_("State: %c\n"), *p++);
890
891 if (*p)
892 printf_filtered (_("Parent process: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894 if (*p)
895 printf_filtered (_("Process group: %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
897 if (*p)
898 printf_filtered (_("Session id: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900 if (*p)
901 printf_filtered (_("TTY: %s\n"),
902 pulongest (strtoulst (p, &p, 10)));
903 if (*p)
904 printf_filtered (_("TTY owner process group: %s\n"),
905 pulongest (strtoulst (p, &p, 10)));
906
907 if (*p)
908 printf_filtered (_("Flags: %s\n"),
909 hex_string (strtoulst (p, &p, 10)));
910 if (*p)
911 printf_filtered (_("Minor faults (no memory page): %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913 if (*p)
914 printf_filtered (_("Minor faults, children: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Major faults (memory page faults): %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("Major faults, children: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("utime: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("stime: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("utime, children: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("stime, children: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934 if (*p)
935 printf_filtered (_("jiffies remaining in current "
936 "time slice: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("'nice' value: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("jiffies until next timeout: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("start time (jiffies since "
949 "system boot): %s\n"),
950 pulongest (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Virtual memory size: %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Resident set size: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("rlim: %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Start of text: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("End of text: %s\n"),
965 hex_string (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("Start of stack: %s\n"),
968 hex_string (strtoulst (p, &p, 10)));
969#if 0 /* Don't know how architecture-dependent the rest is...
970 Anyway the signal bitmap info is available from "status". */
971 if (*p)
972 printf_filtered (_("Kernel stack pointer: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("Kernel instr pointer: %s\n"),
976 hex_string (strtoulst (p, &p, 10)));
977 if (*p)
978 printf_filtered (_("Pending signals bitmap: %s\n"),
979 hex_string (strtoulst (p, &p, 10)));
980 if (*p)
981 printf_filtered (_("Blocked signals bitmap: %s\n"),
982 hex_string (strtoulst (p, &p, 10)));
983 if (*p)
984 printf_filtered (_("Ignored signals bitmap: %s\n"),
985 hex_string (strtoulst (p, &p, 10)));
986 if (*p)
987 printf_filtered (_("Catched signals bitmap: %s\n"),
988 hex_string (strtoulst (p, &p, 10)));
989 if (*p)
990 printf_filtered (_("wchan (system call): %s\n"),
991 hex_string (strtoulst (p, &p, 10)));
992#endif
993 do_cleanups (cleanup);
994 }
995 else
996 warning (_("unable to open /proc file '%s'"), filename);
997 }
998}
999
451b7c33
TT
1000/* Implement "info proc mappings" for a corefile. */
1001
1002static void
7bc112c1 1003linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
451b7c33
TT
1004{
1005 asection *section;
1006 ULONGEST count, page_size;
1007 unsigned char *descdata, *filenames, *descend, *contents;
1008 size_t note_size;
1009 unsigned int addr_size_bits, addr_size;
1010 struct cleanup *cleanup;
1011 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1012 /* We assume this for reading 64-bit core files. */
1013 gdb_static_assert (sizeof (ULONGEST) >= 8);
1014
1015 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1016 if (section == NULL)
1017 {
1018 warning (_("unable to find mappings in core file"));
1019 return;
1020 }
1021
1022 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1023 addr_size = addr_size_bits / 8;
1024 note_size = bfd_get_section_size (section);
1025
1026 if (note_size < 2 * addr_size)
1027 error (_("malformed core note - too short for header"));
1028
224c3ddb 1029 contents = (unsigned char *) xmalloc (note_size);
451b7c33
TT
1030 cleanup = make_cleanup (xfree, contents);
1031 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1032 error (_("could not get core note contents"));
1033
1034 descdata = contents;
1035 descend = descdata + note_size;
1036
1037 if (descdata[note_size - 1] != '\0')
1038 error (_("malformed note - does not end with \\0"));
1039
1040 count = bfd_get (addr_size_bits, core_bfd, descdata);
1041 descdata += addr_size;
1042
1043 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1044 descdata += addr_size;
1045
1046 if (note_size < 2 * addr_size + count * 3 * addr_size)
1047 error (_("malformed note - too short for supplied file count"));
1048
1049 printf_filtered (_("Mapped address spaces:\n\n"));
1050 if (gdbarch_addr_bit (gdbarch) == 32)
1051 {
1052 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1053 "Start Addr",
1054 " End Addr",
1055 " Size", " Offset", "objfile");
1056 }
1057 else
1058 {
1059 printf_filtered (" %18s %18s %10s %10s %s\n",
1060 "Start Addr",
1061 " End Addr",
1062 " Size", " Offset", "objfile");
1063 }
1064
1065 filenames = descdata + count * 3 * addr_size;
1066 while (--count > 0)
1067 {
1068 ULONGEST start, end, file_ofs;
1069
1070 if (filenames == descend)
1071 error (_("malformed note - filenames end too early"));
1072
1073 start = bfd_get (addr_size_bits, core_bfd, descdata);
1074 descdata += addr_size;
1075 end = bfd_get (addr_size_bits, core_bfd, descdata);
1076 descdata += addr_size;
1077 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1078 descdata += addr_size;
1079
1080 file_ofs *= page_size;
1081
1082 if (gdbarch_addr_bit (gdbarch) == 32)
1083 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1084 paddress (gdbarch, start),
1085 paddress (gdbarch, end),
1086 hex_string (end - start),
1087 hex_string (file_ofs),
1088 filenames);
1089 else
1090 printf_filtered (" %18s %18s %10s %10s %s\n",
1091 paddress (gdbarch, start),
1092 paddress (gdbarch, end),
1093 hex_string (end - start),
1094 hex_string (file_ofs),
1095 filenames);
1096
1097 filenames += 1 + strlen ((char *) filenames);
1098 }
1099
1100 do_cleanups (cleanup);
1101}
1102
1103/* Implement "info proc" for a corefile. */
1104
1105static void
7bc112c1 1106linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1107 enum info_proc_what what)
1108{
1109 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1110 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1111
1112 if (exe_f)
1113 {
1114 const char *exe;
1115
1116 exe = bfd_core_file_failing_command (core_bfd);
1117 if (exe != NULL)
1118 printf_filtered ("exe = '%s'\n", exe);
1119 else
1120 warning (_("unable to find command name in core file"));
1121 }
1122
1123 if (mappings_f)
1124 linux_core_info_proc_mappings (gdbarch, args);
1125
1126 if (!exe_f && !mappings_f)
1127 error (_("unable to handle request"));
1128}
1129
382b69bb
JB
1130/* Read siginfo data from the core, if possible. Returns -1 on
1131 failure. Otherwise, returns the number of bytes read. READBUF,
1132 OFFSET, and LEN are all as specified by the to_xfer_partial
1133 interface. */
1134
1135static LONGEST
1136linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1137 ULONGEST offset, ULONGEST len)
1138{
1139 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1140 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1141 if (section == NULL)
1142 return -1;
1143
1144 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1145 return -1;
1146
1147 return len;
1148}
1149
db1ff28b
JK
1150typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1151 ULONGEST offset, ULONGEST inode,
1152 int read, int write,
1153 int exec, int modified,
1154 const char *filename,
1155 void *data);
451b7c33 1156
db1ff28b 1157/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1158
1159static int
db1ff28b
JK
1160linux_find_memory_regions_full (struct gdbarch *gdbarch,
1161 linux_find_memory_region_ftype *func,
1162 void *obfd)
f7af1fcd 1163{
db1ff28b
JK
1164 char mapsfilename[100];
1165 char coredumpfilter_name[100];
1166 char *data, *coredumpfilterdata;
f7af1fcd
JK
1167 pid_t pid;
1168 /* Default dump behavior of coredump_filter (0x33), according to
1169 Documentation/filesystems/proc.txt from the Linux kernel
1170 tree. */
8d297bbf
PA
1171 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1172 | COREFILTER_ANON_SHARED
1173 | COREFILTER_ELF_HEADERS
1174 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1175
db1ff28b 1176 /* We need to know the real target PID to access /proc. */
f7af1fcd 1177 if (current_inferior ()->fake_pid_p)
db1ff28b 1178 return 1;
f7af1fcd
JK
1179
1180 pid = current_inferior ()->pid;
1181
1182 if (use_coredump_filter)
1183 {
f7af1fcd
JK
1184 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1185 "/proc/%d/coredump_filter", pid);
1186 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1187 coredumpfilter_name);
1188 if (coredumpfilterdata != NULL)
1189 {
8d297bbf
PA
1190 unsigned int flags;
1191
1192 sscanf (coredumpfilterdata, "%x", &flags);
1193 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1194 xfree (coredumpfilterdata);
1195 }
1196 }
1197
db1ff28b
JK
1198 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1199 data = target_fileio_read_stralloc (NULL, mapsfilename);
1200 if (data == NULL)
1201 {
1202 /* Older Linux kernels did not support /proc/PID/smaps. */
1203 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1204 data = target_fileio_read_stralloc (NULL, mapsfilename);
1205 }
1206
1207 if (data != NULL)
1208 {
1209 struct cleanup *cleanup = make_cleanup (xfree, data);
1210 char *line, *t;
1211
1212 line = strtok_r (data, "\n", &t);
1213 while (line != NULL)
1214 {
1215 ULONGEST addr, endaddr, offset, inode;
1216 const char *permissions, *device, *filename;
1217 struct smaps_vmflags v;
1218 size_t permissions_len, device_len;
1219 int read, write, exec, priv;
1220 int has_anonymous = 0;
1221 int should_dump_p = 0;
1222 int mapping_anon_p;
1223 int mapping_file_p;
1224
1225 memset (&v, 0, sizeof (v));
1226 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1227 &offset, &device, &device_len, &inode, &filename);
1228 mapping_anon_p = mapping_is_anonymous_p (filename);
1229 /* If the mapping is not anonymous, then we can consider it
1230 to be file-backed. These two states (anonymous or
1231 file-backed) seem to be exclusive, but they can actually
1232 coexist. For example, if a file-backed mapping has
1233 "Anonymous:" pages (see more below), then the Linux
1234 kernel will dump this mapping when the user specified
1235 that she only wants anonymous mappings in the corefile
1236 (*even* when she explicitly disabled the dumping of
1237 file-backed mappings). */
1238 mapping_file_p = !mapping_anon_p;
1239
1240 /* Decode permissions. */
1241 read = (memchr (permissions, 'r', permissions_len) != 0);
1242 write = (memchr (permissions, 'w', permissions_len) != 0);
1243 exec = (memchr (permissions, 'x', permissions_len) != 0);
1244 /* 'private' here actually means VM_MAYSHARE, and not
1245 VM_SHARED. In order to know if a mapping is really
1246 private or not, we must check the flag "sh" in the
1247 VmFlags field. This is done by decode_vmflags. However,
1248 if we are using a Linux kernel released before the commit
1249 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1250 not have the VmFlags there. In this case, there is
1251 really no way to know if we are dealing with VM_SHARED,
1252 so we just assume that VM_MAYSHARE is enough. */
1253 priv = memchr (permissions, 'p', permissions_len) != 0;
1254
1255 /* Try to detect if region should be dumped by parsing smaps
1256 counters. */
1257 for (line = strtok_r (NULL, "\n", &t);
1258 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1259 line = strtok_r (NULL, "\n", &t))
1260 {
1261 char keyword[64 + 1];
1262
1263 if (sscanf (line, "%64s", keyword) != 1)
1264 {
1265 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1266 break;
1267 }
1268
1269 if (strcmp (keyword, "Anonymous:") == 0)
1270 {
1271 /* Older Linux kernels did not support the
1272 "Anonymous:" counter. Check it here. */
1273 has_anonymous = 1;
1274 }
1275 else if (strcmp (keyword, "VmFlags:") == 0)
1276 decode_vmflags (line, &v);
1277
1278 if (strcmp (keyword, "AnonHugePages:") == 0
1279 || strcmp (keyword, "Anonymous:") == 0)
1280 {
1281 unsigned long number;
1282
1283 if (sscanf (line, "%*s%lu", &number) != 1)
1284 {
1285 warning (_("Error parsing {s,}maps file '%s' number"),
1286 mapsfilename);
1287 break;
1288 }
1289 if (number > 0)
1290 {
1291 /* Even if we are dealing with a file-backed
1292 mapping, if it contains anonymous pages we
1293 consider it to be *also* an anonymous
1294 mapping, because this is what the Linux
1295 kernel does:
1296
1297 // Dump segments that have been written to.
1298 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1299 goto whole;
1300
1301 Note that if the mapping is already marked as
1302 file-backed (i.e., mapping_file_p is
1303 non-zero), then this is a special case, and
1304 this mapping will be dumped either when the
1305 user wants to dump file-backed *or* anonymous
1306 mappings. */
1307 mapping_anon_p = 1;
1308 }
1309 }
1310 }
1311
1312 if (has_anonymous)
1313 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1314 mapping_anon_p, mapping_file_p,
1315 filename);
1316 else
1317 {
1318 /* Older Linux kernels did not support the "Anonymous:" counter.
1319 If it is missing, we can't be sure - dump all the pages. */
1320 should_dump_p = 1;
1321 }
1322
1323 /* Invoke the callback function to create the corefile segment. */
1324 if (should_dump_p)
1325 func (addr, endaddr - addr, offset, inode,
1326 read, write, exec, 1, /* MODIFIED is true because we
1327 want to dump the mapping. */
1328 filename, obfd);
1329 }
1330
1331 do_cleanups (cleanup);
1332 return 0;
1333 }
1334
1335 return 1;
1336}
1337
1338/* A structure for passing information through
1339 linux_find_memory_regions_full. */
1340
1341struct linux_find_memory_regions_data
1342{
1343 /* The original callback. */
1344
1345 find_memory_region_ftype func;
1346
1347 /* The original datum. */
1348
1349 void *obfd;
1350};
1351
1352/* A callback for linux_find_memory_regions that converts between the
1353 "full"-style callback and find_memory_region_ftype. */
1354
1355static int
1356linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1357 ULONGEST offset, ULONGEST inode,
1358 int read, int write, int exec, int modified,
1359 const char *filename, void *arg)
1360{
9a3c8263
SM
1361 struct linux_find_memory_regions_data *data
1362 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1363
1364 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1365}
1366
1367/* A variant of linux_find_memory_regions_full that is suitable as the
1368 gdbarch find_memory_regions method. */
1369
1370static int
1371linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1372 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1373{
1374 struct linux_find_memory_regions_data data;
1375
1376 data.func = func;
db1ff28b 1377 data.obfd = obfd;
451b7c33 1378
db1ff28b
JK
1379 return linux_find_memory_regions_full (gdbarch,
1380 linux_find_memory_regions_thunk,
1381 &data);
451b7c33
TT
1382}
1383
6432734d
UW
1384/* Determine which signal stopped execution. */
1385
1386static int
1387find_signalled_thread (struct thread_info *info, void *data)
1388{
a493e3e2 1389 if (info->suspend.stop_signal != GDB_SIGNAL_0
6432734d
UW
1390 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1391 return 1;
1392
1393 return 0;
1394}
1395
6432734d
UW
1396/* Generate corefile notes for SPU contexts. */
1397
1398static char *
1399linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1400{
1401 static const char *spu_files[] =
1402 {
1403 "object-id",
1404 "mem",
1405 "regs",
1406 "fpcr",
1407 "lslr",
1408 "decr",
1409 "decr_status",
1410 "signal1",
1411 "signal1_type",
1412 "signal2",
1413 "signal2_type",
1414 "event_mask",
1415 "event_status",
1416 "mbox_info",
1417 "ibox_info",
1418 "wbox_info",
1419 "dma_info",
1420 "proxydma_info",
1421 };
1422
f5656ead 1423 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
6432734d
UW
1424 gdb_byte *spu_ids;
1425 LONGEST i, j, size;
1426
1427 /* Determine list of SPU ids. */
1428 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1429 NULL, &spu_ids);
1430
1431 /* Generate corefile notes for each SPU file. */
1432 for (i = 0; i < size; i += 4)
1433 {
1434 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1435
1436 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1437 {
1438 char annex[32], note_name[32];
1439 gdb_byte *spu_data;
1440 LONGEST spu_len;
1441
1442 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1443 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1444 annex, &spu_data);
1445 if (spu_len > 0)
1446 {
1447 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1448 note_data = elfcore_write_note (obfd, note_data, note_size,
1449 note_name, NT_SPU,
1450 spu_data, spu_len);
1451 xfree (spu_data);
1452
1453 if (!note_data)
1454 {
1455 xfree (spu_ids);
1456 return NULL;
1457 }
1458 }
1459 }
1460 }
1461
1462 if (size > 0)
1463 xfree (spu_ids);
1464
1465 return note_data;
1466}
1467
451b7c33
TT
1468/* This is used to pass information from
1469 linux_make_mappings_corefile_notes through
1470 linux_find_memory_regions_full. */
1471
1472struct linux_make_mappings_data
1473{
1474 /* Number of files mapped. */
1475 ULONGEST file_count;
1476
1477 /* The obstack for the main part of the data. */
1478 struct obstack *data_obstack;
1479
1480 /* The filename obstack. */
1481 struct obstack *filename_obstack;
1482
1483 /* The architecture's "long" type. */
1484 struct type *long_type;
1485};
1486
1487static linux_find_memory_region_ftype linux_make_mappings_callback;
1488
1489/* A callback for linux_find_memory_regions_full that updates the
1490 mappings data for linux_make_mappings_corefile_notes. */
1491
1492static int
1493linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1494 ULONGEST offset, ULONGEST inode,
1495 int read, int write, int exec, int modified,
1496 const char *filename, void *data)
1497{
9a3c8263
SM
1498 struct linux_make_mappings_data *map_data
1499 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1500 gdb_byte buf[sizeof (ULONGEST)];
1501
1502 if (*filename == '\0' || inode == 0)
1503 return 0;
1504
1505 ++map_data->file_count;
1506
1507 pack_long (buf, map_data->long_type, vaddr);
1508 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1509 pack_long (buf, map_data->long_type, vaddr + size);
1510 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1511 pack_long (buf, map_data->long_type, offset);
1512 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1513
1514 obstack_grow_str0 (map_data->filename_obstack, filename);
1515
1516 return 0;
1517}
1518
1519/* Write the file mapping data to the core file, if possible. OBFD is
1520 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1521 is a pointer to the note size. Returns the new NOTE_DATA and
1522 updates NOTE_SIZE. */
1523
1524static char *
1525linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1526 char *note_data, int *note_size)
1527{
1528 struct cleanup *cleanup;
451b7c33
TT
1529 struct linux_make_mappings_data mapping_data;
1530 struct type *long_type
1531 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1532 gdb_byte buf[sizeof (ULONGEST)];
1533
8268c778 1534 auto_obstack data_obstack, filename_obstack;
451b7c33
TT
1535
1536 mapping_data.file_count = 0;
1537 mapping_data.data_obstack = &data_obstack;
1538 mapping_data.filename_obstack = &filename_obstack;
1539 mapping_data.long_type = long_type;
1540
1541 /* Reserve space for the count. */
1542 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1543 /* We always write the page size as 1 since we have no good way to
1544 determine the correct value. */
1545 pack_long (buf, long_type, 1);
1546 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1547
db1ff28b
JK
1548 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1549 &mapping_data);
451b7c33
TT
1550
1551 if (mapping_data.file_count != 0)
1552 {
1553 /* Write the count to the obstack. */
51a5cd90
PA
1554 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1555 long_type, mapping_data.file_count);
451b7c33
TT
1556
1557 /* Copy the filenames to the data obstack. */
1558 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1559 obstack_object_size (&filename_obstack));
1560
1561 note_data = elfcore_write_note (obfd, note_data, note_size,
1562 "CORE", NT_FILE,
1563 obstack_base (&data_obstack),
1564 obstack_object_size (&data_obstack));
1565 }
1566
451b7c33
TT
1567 return note_data;
1568}
1569
5aa82d05
AA
1570/* Structure for passing information from
1571 linux_collect_thread_registers via an iterator to
1572 linux_collect_regset_section_cb. */
1573
1574struct linux_collect_regset_section_cb_data
1575{
1576 struct gdbarch *gdbarch;
1577 const struct regcache *regcache;
1578 bfd *obfd;
1579 char *note_data;
1580 int *note_size;
1581 unsigned long lwp;
1582 enum gdb_signal stop_signal;
1583 int abort_iteration;
1584};
1585
1586/* Callback for iterate_over_regset_sections that records a single
1587 regset in the corefile note section. */
1588
1589static void
1590linux_collect_regset_section_cb (const char *sect_name, int size,
8f0435f7 1591 const struct regset *regset,
5aa82d05
AA
1592 const char *human_name, void *cb_data)
1593{
5aa82d05 1594 char *buf;
7567e115
SM
1595 struct linux_collect_regset_section_cb_data *data
1596 = (struct linux_collect_regset_section_cb_data *) cb_data;
5aa82d05
AA
1597
1598 if (data->abort_iteration)
1599 return;
1600
5aa82d05
AA
1601 gdb_assert (regset && regset->collect_regset);
1602
224c3ddb 1603 buf = (char *) xmalloc (size);
5aa82d05
AA
1604 regset->collect_regset (regset, data->regcache, -1, buf, size);
1605
1606 /* PRSTATUS still needs to be treated specially. */
1607 if (strcmp (sect_name, ".reg") == 0)
1608 data->note_data = (char *) elfcore_write_prstatus
1609 (data->obfd, data->note_data, data->note_size, data->lwp,
1610 gdb_signal_to_host (data->stop_signal), buf);
1611 else
1612 data->note_data = (char *) elfcore_write_register_note
1613 (data->obfd, data->note_data, data->note_size,
1614 sect_name, buf, size);
1615 xfree (buf);
1616
1617 if (data->note_data == NULL)
1618 data->abort_iteration = 1;
1619}
1620
6432734d
UW
1621/* Records the thread's register state for the corefile note
1622 section. */
1623
1624static char *
1625linux_collect_thread_registers (const struct regcache *regcache,
1626 ptid_t ptid, bfd *obfd,
1627 char *note_data, int *note_size,
2ea28649 1628 enum gdb_signal stop_signal)
6432734d
UW
1629{
1630 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5aa82d05 1631 struct linux_collect_regset_section_cb_data data;
6432734d 1632
5aa82d05
AA
1633 data.gdbarch = gdbarch;
1634 data.regcache = regcache;
1635 data.obfd = obfd;
1636 data.note_data = note_data;
1637 data.note_size = note_size;
1638 data.stop_signal = stop_signal;
1639 data.abort_iteration = 0;
6432734d
UW
1640
1641 /* For remote targets the LWP may not be available, so use the TID. */
5aa82d05
AA
1642 data.lwp = ptid_get_lwp (ptid);
1643 if (!data.lwp)
1644 data.lwp = ptid_get_tid (ptid);
1645
1646 gdbarch_iterate_over_regset_sections (gdbarch,
1647 linux_collect_regset_section_cb,
1648 &data, regcache);
1649 return data.note_data;
6432734d
UW
1650}
1651
9015683b
TT
1652/* Fetch the siginfo data for the current thread, if it exists. If
1653 there is no data, or we could not read it, return NULL. Otherwise,
1654 return a newly malloc'd buffer holding the data and fill in *SIZE
1655 with the size of the data. The caller is responsible for freeing
1656 the data. */
1657
1658static gdb_byte *
1659linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1660{
1661 struct type *siginfo_type;
1662 gdb_byte *buf;
1663 LONGEST bytes_read;
1664 struct cleanup *cleanups;
1665
1666 if (!gdbarch_get_siginfo_type_p (gdbarch))
1667 return NULL;
1668
1669 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1670
224c3ddb 1671 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
9015683b
TT
1672 cleanups = make_cleanup (xfree, buf);
1673
1674 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1675 buf, 0, TYPE_LENGTH (siginfo_type));
1676 if (bytes_read == TYPE_LENGTH (siginfo_type))
1677 {
1678 discard_cleanups (cleanups);
1679 *size = bytes_read;
1680 }
1681 else
1682 {
1683 do_cleanups (cleanups);
1684 buf = NULL;
1685 }
1686
1687 return buf;
1688}
1689
6432734d
UW
1690struct linux_corefile_thread_data
1691{
1692 struct gdbarch *gdbarch;
6432734d
UW
1693 bfd *obfd;
1694 char *note_data;
1695 int *note_size;
2ea28649 1696 enum gdb_signal stop_signal;
6432734d
UW
1697};
1698
050c224b
PA
1699/* Records the thread's register state for the corefile note
1700 section. */
6432734d 1701
050c224b
PA
1702static void
1703linux_corefile_thread (struct thread_info *info,
1704 struct linux_corefile_thread_data *args)
6432734d 1705{
050c224b
PA
1706 struct cleanup *old_chain;
1707 struct regcache *regcache;
1708 gdb_byte *siginfo_data;
1709 LONGEST siginfo_size = 0;
1710
1711 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1712
1713 old_chain = save_inferior_ptid ();
1714 inferior_ptid = info->ptid;
1715 target_fetch_registers (regcache, -1);
1716 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1717 do_cleanups (old_chain);
1718
1719 old_chain = make_cleanup (xfree, siginfo_data);
1720
1721 args->note_data = linux_collect_thread_registers
1722 (regcache, info->ptid, args->obfd, args->note_data,
1723 args->note_size, args->stop_signal);
1724
1725 /* Don't return anything if we got no register information above,
1726 such a core file is useless. */
1727 if (args->note_data != NULL)
1728 if (siginfo_data != NULL)
1729 args->note_data = elfcore_write_note (args->obfd,
1730 args->note_data,
1731 args->note_size,
1732 "CORE", NT_SIGINFO,
1733 siginfo_data, siginfo_size);
1734
1735 do_cleanups (old_chain);
6432734d
UW
1736}
1737
b3ac9c77
SDJ
1738/* Fill the PRPSINFO structure with information about the process being
1739 debugged. Returns 1 in case of success, 0 for failures. Please note that
1740 even if the structure cannot be entirely filled (e.g., GDB was unable to
1741 gather information about the process UID/GID), this function will still
1742 return 1 since some information was already recorded. It will only return
1743 0 iff nothing can be gathered. */
1744
1745static int
1746linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1747{
1748 /* The filename which we will use to obtain some info about the process.
1749 We will basically use this to store the `/proc/PID/FILENAME' file. */
1750 char filename[100];
1751 /* The full name of the program which generated the corefile. */
1752 char *fname;
1753 /* The basename of the executable. */
1754 const char *basename;
1755 /* The arguments of the program. */
1756 char *psargs;
1757 char *infargs;
1758 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1759 char *proc_stat, *proc_status;
1760 /* Temporary buffer. */
1761 char *tmpstr;
1762 /* The valid states of a process, according to the Linux kernel. */
1763 const char valid_states[] = "RSDTZW";
1764 /* The program state. */
1765 const char *prog_state;
1766 /* The state of the process. */
1767 char pr_sname;
1768 /* The PID of the program which generated the corefile. */
1769 pid_t pid;
1770 /* Process flags. */
1771 unsigned int pr_flag;
1772 /* Process nice value. */
1773 long pr_nice;
1774 /* The number of fields read by `sscanf'. */
1775 int n_fields = 0;
1776 /* Cleanups. */
1777 struct cleanup *c;
b3ac9c77
SDJ
1778
1779 gdb_assert (p != NULL);
1780
1781 /* Obtaining PID and filename. */
1782 pid = ptid_get_pid (inferior_ptid);
1783 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
07c138c8 1784 fname = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1785
1786 if (fname == NULL || *fname == '\0')
1787 {
1788 /* No program name was read, so we won't be able to retrieve more
1789 information about the process. */
1790 xfree (fname);
1791 return 0;
1792 }
1793
1794 c = make_cleanup (xfree, fname);
1795 memset (p, 0, sizeof (*p));
1796
1797 /* Defining the PID. */
1798 p->pr_pid = pid;
1799
1800 /* Copying the program name. Only the basename matters. */
1801 basename = lbasename (fname);
1802 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1803 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1804
1805 infargs = get_inferior_args ();
1806
1807 psargs = xstrdup (fname);
1808 if (infargs != NULL)
b36cec19 1809 psargs = reconcat (psargs, psargs, " ", infargs, (char *) NULL);
b3ac9c77
SDJ
1810
1811 make_cleanup (xfree, psargs);
1812
1813 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1814 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1815
1816 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
07c138c8 1817 proc_stat = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1818 make_cleanup (xfree, proc_stat);
1819
1820 if (proc_stat == NULL || *proc_stat == '\0')
1821 {
1822 /* Despite being unable to read more information about the
1823 process, we return 1 here because at least we have its
1824 command line, PID and arguments. */
1825 do_cleanups (c);
1826 return 1;
1827 }
1828
1829 /* Ok, we have the stats. It's time to do a little parsing of the
1830 contents of the buffer, so that we end up reading what we want.
1831
1832 The following parsing mechanism is strongly based on the
1833 information generated by the `fs/proc/array.c' file, present in
1834 the Linux kernel tree. More details about how the information is
1835 displayed can be obtained by seeing the manpage of proc(5),
1836 specifically under the entry of `/proc/[pid]/stat'. */
1837
1838 /* Getting rid of the PID, since we already have it. */
1839 while (isdigit (*proc_stat))
1840 ++proc_stat;
1841
1842 proc_stat = skip_spaces (proc_stat);
1843
184cd072
JK
1844 /* ps command also relies on no trailing fields ever contain ')'. */
1845 proc_stat = strrchr (proc_stat, ')');
1846 if (proc_stat == NULL)
1847 {
1848 do_cleanups (c);
1849 return 1;
1850 }
1851 proc_stat++;
b3ac9c77
SDJ
1852
1853 proc_stat = skip_spaces (proc_stat);
1854
1855 n_fields = sscanf (proc_stat,
1856 "%c" /* Process state. */
1857 "%d%d%d" /* Parent PID, group ID, session ID. */
1858 "%*d%*d" /* tty_nr, tpgid (not used). */
1859 "%u" /* Flags. */
1860 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1861 cmajflt (not used). */
1862 "%*s%*s%*s%*s" /* utime, stime, cutime,
1863 cstime (not used). */
1864 "%*s" /* Priority (not used). */
1865 "%ld", /* Nice. */
1866 &pr_sname,
1867 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1868 &pr_flag,
1869 &pr_nice);
1870
1871 if (n_fields != 6)
1872 {
1873 /* Again, we couldn't read the complementary information about
1874 the process state. However, we already have minimal
1875 information, so we just return 1 here. */
1876 do_cleanups (c);
1877 return 1;
1878 }
1879
1880 /* Filling the structure fields. */
1881 prog_state = strchr (valid_states, pr_sname);
1882 if (prog_state != NULL)
1883 p->pr_state = prog_state - valid_states;
1884 else
1885 {
1886 /* Zero means "Running". */
1887 p->pr_state = 0;
1888 }
1889
1890 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1891 p->pr_zomb = p->pr_sname == 'Z';
1892 p->pr_nice = pr_nice;
1893 p->pr_flag = pr_flag;
1894
1895 /* Finally, obtaining the UID and GID. For that, we read and parse the
1896 contents of the `/proc/PID/status' file. */
1897 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
07c138c8 1898 proc_status = target_fileio_read_stralloc (NULL, filename);
b3ac9c77
SDJ
1899 make_cleanup (xfree, proc_status);
1900
1901 if (proc_status == NULL || *proc_status == '\0')
1902 {
1903 /* Returning 1 since we already have a bunch of information. */
1904 do_cleanups (c);
1905 return 1;
1906 }
1907
1908 /* Extracting the UID. */
1909 tmpstr = strstr (proc_status, "Uid:");
1910 if (tmpstr != NULL)
1911 {
1912 /* Advancing the pointer to the beginning of the UID. */
1913 tmpstr += sizeof ("Uid:");
1914 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1915 ++tmpstr;
1916
1917 if (isdigit (*tmpstr))
1918 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1919 }
1920
1921 /* Extracting the GID. */
1922 tmpstr = strstr (proc_status, "Gid:");
1923 if (tmpstr != NULL)
1924 {
1925 /* Advancing the pointer to the beginning of the GID. */
1926 tmpstr += sizeof ("Gid:");
1927 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1928 ++tmpstr;
1929
1930 if (isdigit (*tmpstr))
1931 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1932 }
1933
1934 do_cleanups (c);
1935
1936 return 1;
1937}
1938
f968fe80
AA
1939/* Build the note section for a corefile, and return it in a malloc
1940 buffer. */
6432734d 1941
f968fe80
AA
1942static char *
1943linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d
UW
1944{
1945 struct linux_corefile_thread_data thread_args;
b3ac9c77 1946 struct elf_internal_linux_prpsinfo prpsinfo;
6432734d
UW
1947 char *note_data = NULL;
1948 gdb_byte *auxv;
1949 int auxv_len;
050c224b 1950 struct thread_info *curr_thr, *signalled_thr, *thr;
6432734d 1951
f968fe80
AA
1952 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1953 return NULL;
1954
b3ac9c77 1955 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 1956 {
b3ac9c77
SDJ
1957 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1958 {
1959 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1960 note_data, note_size,
1961 &prpsinfo);
1962 }
1963 else
1964 {
1965 if (gdbarch_ptr_bit (gdbarch) == 64)
1966 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1967 note_data, note_size,
1968 &prpsinfo);
1969 else
1970 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1971 note_data, note_size,
1972 &prpsinfo);
1973 }
6432734d
UW
1974 }
1975
1976 /* Thread register information. */
492d29ea 1977 TRY
22fd09ae
JK
1978 {
1979 update_thread_list ();
1980 }
492d29ea
PA
1981 CATCH (e, RETURN_MASK_ERROR)
1982 {
1983 exception_print (gdb_stderr, e);
1984 }
1985 END_CATCH
1986
050c224b
PA
1987 /* Like the kernel, prefer dumping the signalled thread first.
1988 "First thread" is what tools use to infer the signalled thread.
1989 In case there's more than one signalled thread, prefer the
1990 current thread, if it is signalled. */
1991 curr_thr = inferior_thread ();
1992 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1993 signalled_thr = curr_thr;
1994 else
1995 {
1996 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1997 if (signalled_thr == NULL)
1998 signalled_thr = curr_thr;
1999 }
2000
6432734d 2001 thread_args.gdbarch = gdbarch;
6432734d
UW
2002 thread_args.obfd = obfd;
2003 thread_args.note_data = note_data;
2004 thread_args.note_size = note_size;
050c224b
PA
2005 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
2006
2007 linux_corefile_thread (signalled_thr, &thread_args);
2008 ALL_NON_EXITED_THREADS (thr)
2009 {
2010 if (thr == signalled_thr)
2011 continue;
2012 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
2013 continue;
2014
2015 linux_corefile_thread (thr, &thread_args);
2016 }
2017
6432734d
UW
2018 note_data = thread_args.note_data;
2019 if (!note_data)
2020 return NULL;
2021
2022 /* Auxillary vector. */
2023 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
2024 NULL, &auxv);
2025 if (auxv_len > 0)
2026 {
2027 note_data = elfcore_write_note (obfd, note_data, note_size,
2028 "CORE", NT_AUXV, auxv, auxv_len);
2029 xfree (auxv);
2030
2031 if (!note_data)
2032 return NULL;
2033 }
2034
2035 /* SPU information. */
2036 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2037 if (!note_data)
2038 return NULL;
2039
451b7c33
TT
2040 /* File mappings. */
2041 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2042 note_data, note_size);
2043
6432734d
UW
2044 return note_data;
2045}
2046
eb14d406
SDJ
2047/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2048 gdbarch.h. This function is not static because it is exported to
2049 other -tdep files. */
2050
2051enum gdb_signal
2052linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2053{
2054 switch (signal)
2055 {
2056 case 0:
2057 return GDB_SIGNAL_0;
2058
2059 case LINUX_SIGHUP:
2060 return GDB_SIGNAL_HUP;
2061
2062 case LINUX_SIGINT:
2063 return GDB_SIGNAL_INT;
2064
2065 case LINUX_SIGQUIT:
2066 return GDB_SIGNAL_QUIT;
2067
2068 case LINUX_SIGILL:
2069 return GDB_SIGNAL_ILL;
2070
2071 case LINUX_SIGTRAP:
2072 return GDB_SIGNAL_TRAP;
2073
2074 case LINUX_SIGABRT:
2075 return GDB_SIGNAL_ABRT;
2076
2077 case LINUX_SIGBUS:
2078 return GDB_SIGNAL_BUS;
2079
2080 case LINUX_SIGFPE:
2081 return GDB_SIGNAL_FPE;
2082
2083 case LINUX_SIGKILL:
2084 return GDB_SIGNAL_KILL;
2085
2086 case LINUX_SIGUSR1:
2087 return GDB_SIGNAL_USR1;
2088
2089 case LINUX_SIGSEGV:
2090 return GDB_SIGNAL_SEGV;
2091
2092 case LINUX_SIGUSR2:
2093 return GDB_SIGNAL_USR2;
2094
2095 case LINUX_SIGPIPE:
2096 return GDB_SIGNAL_PIPE;
2097
2098 case LINUX_SIGALRM:
2099 return GDB_SIGNAL_ALRM;
2100
2101 case LINUX_SIGTERM:
2102 return GDB_SIGNAL_TERM;
2103
2104 case LINUX_SIGCHLD:
2105 return GDB_SIGNAL_CHLD;
2106
2107 case LINUX_SIGCONT:
2108 return GDB_SIGNAL_CONT;
2109
2110 case LINUX_SIGSTOP:
2111 return GDB_SIGNAL_STOP;
2112
2113 case LINUX_SIGTSTP:
2114 return GDB_SIGNAL_TSTP;
2115
2116 case LINUX_SIGTTIN:
2117 return GDB_SIGNAL_TTIN;
2118
2119 case LINUX_SIGTTOU:
2120 return GDB_SIGNAL_TTOU;
2121
2122 case LINUX_SIGURG:
2123 return GDB_SIGNAL_URG;
2124
2125 case LINUX_SIGXCPU:
2126 return GDB_SIGNAL_XCPU;
2127
2128 case LINUX_SIGXFSZ:
2129 return GDB_SIGNAL_XFSZ;
2130
2131 case LINUX_SIGVTALRM:
2132 return GDB_SIGNAL_VTALRM;
2133
2134 case LINUX_SIGPROF:
2135 return GDB_SIGNAL_PROF;
2136
2137 case LINUX_SIGWINCH:
2138 return GDB_SIGNAL_WINCH;
2139
2140 /* No way to differentiate between SIGIO and SIGPOLL.
2141 Therefore, we just handle the first one. */
2142 case LINUX_SIGIO:
2143 return GDB_SIGNAL_IO;
2144
2145 case LINUX_SIGPWR:
2146 return GDB_SIGNAL_PWR;
2147
2148 case LINUX_SIGSYS:
2149 return GDB_SIGNAL_SYS;
2150
2151 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2152 therefore we have to handle them here. */
2153 case LINUX_SIGRTMIN:
2154 return GDB_SIGNAL_REALTIME_32;
2155
2156 case LINUX_SIGRTMAX:
2157 return GDB_SIGNAL_REALTIME_64;
2158 }
2159
2160 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2161 {
2162 int offset = signal - LINUX_SIGRTMIN + 1;
2163
2164 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2165 }
2166
2167 return GDB_SIGNAL_UNKNOWN;
2168}
2169
2170/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2171 gdbarch.h. This function is not static because it is exported to
2172 other -tdep files. */
2173
2174int
2175linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2176 enum gdb_signal signal)
2177{
2178 switch (signal)
2179 {
2180 case GDB_SIGNAL_0:
2181 return 0;
2182
2183 case GDB_SIGNAL_HUP:
2184 return LINUX_SIGHUP;
2185
2186 case GDB_SIGNAL_INT:
2187 return LINUX_SIGINT;
2188
2189 case GDB_SIGNAL_QUIT:
2190 return LINUX_SIGQUIT;
2191
2192 case GDB_SIGNAL_ILL:
2193 return LINUX_SIGILL;
2194
2195 case GDB_SIGNAL_TRAP:
2196 return LINUX_SIGTRAP;
2197
2198 case GDB_SIGNAL_ABRT:
2199 return LINUX_SIGABRT;
2200
2201 case GDB_SIGNAL_FPE:
2202 return LINUX_SIGFPE;
2203
2204 case GDB_SIGNAL_KILL:
2205 return LINUX_SIGKILL;
2206
2207 case GDB_SIGNAL_BUS:
2208 return LINUX_SIGBUS;
2209
2210 case GDB_SIGNAL_SEGV:
2211 return LINUX_SIGSEGV;
2212
2213 case GDB_SIGNAL_SYS:
2214 return LINUX_SIGSYS;
2215
2216 case GDB_SIGNAL_PIPE:
2217 return LINUX_SIGPIPE;
2218
2219 case GDB_SIGNAL_ALRM:
2220 return LINUX_SIGALRM;
2221
2222 case GDB_SIGNAL_TERM:
2223 return LINUX_SIGTERM;
2224
2225 case GDB_SIGNAL_URG:
2226 return LINUX_SIGURG;
2227
2228 case GDB_SIGNAL_STOP:
2229 return LINUX_SIGSTOP;
2230
2231 case GDB_SIGNAL_TSTP:
2232 return LINUX_SIGTSTP;
2233
2234 case GDB_SIGNAL_CONT:
2235 return LINUX_SIGCONT;
2236
2237 case GDB_SIGNAL_CHLD:
2238 return LINUX_SIGCHLD;
2239
2240 case GDB_SIGNAL_TTIN:
2241 return LINUX_SIGTTIN;
2242
2243 case GDB_SIGNAL_TTOU:
2244 return LINUX_SIGTTOU;
2245
2246 case GDB_SIGNAL_IO:
2247 return LINUX_SIGIO;
2248
2249 case GDB_SIGNAL_XCPU:
2250 return LINUX_SIGXCPU;
2251
2252 case GDB_SIGNAL_XFSZ:
2253 return LINUX_SIGXFSZ;
2254
2255 case GDB_SIGNAL_VTALRM:
2256 return LINUX_SIGVTALRM;
2257
2258 case GDB_SIGNAL_PROF:
2259 return LINUX_SIGPROF;
2260
2261 case GDB_SIGNAL_WINCH:
2262 return LINUX_SIGWINCH;
2263
2264 case GDB_SIGNAL_USR1:
2265 return LINUX_SIGUSR1;
2266
2267 case GDB_SIGNAL_USR2:
2268 return LINUX_SIGUSR2;
2269
2270 case GDB_SIGNAL_PWR:
2271 return LINUX_SIGPWR;
2272
2273 case GDB_SIGNAL_POLL:
2274 return LINUX_SIGPOLL;
2275
2276 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2277 therefore we have to handle it here. */
2278 case GDB_SIGNAL_REALTIME_32:
2279 return LINUX_SIGRTMIN;
2280
2281 /* Same comment applies to _64. */
2282 case GDB_SIGNAL_REALTIME_64:
2283 return LINUX_SIGRTMAX;
2284 }
2285
2286 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2287 if (signal >= GDB_SIGNAL_REALTIME_33
2288 && signal <= GDB_SIGNAL_REALTIME_63)
2289 {
2290 int offset = signal - GDB_SIGNAL_REALTIME_33;
2291
2292 return LINUX_SIGRTMIN + 1 + offset;
2293 }
2294
2295 return -1;
2296}
2297
cdfa0b0a
PA
2298/* Helper for linux_vsyscall_range that does the real work of finding
2299 the vsyscall's address range. */
3437254d
PA
2300
2301static int
cdfa0b0a 2302linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d 2303{
95e94c3f
PA
2304 char filename[100];
2305 long pid;
2306 char *data;
2307
6bb90213 2308 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
95e94c3f
PA
2309 return 0;
2310
6bb90213
PA
2311 /* It doesn't make sense to access the host's /proc when debugging a
2312 core file. Instead, look for the PT_LOAD segment that matches
2313 the vDSO. */
2314 if (!target_has_execution)
2315 {
2316 Elf_Internal_Phdr *phdrs;
2317 long phdrs_size;
2318 int num_phdrs, i;
2319
2320 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2321 if (phdrs_size == -1)
2322 return 0;
2323
2324 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2325 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2326 if (num_phdrs == -1)
2327 return 0;
2328
2329 for (i = 0; i < num_phdrs; i++)
2330 if (phdrs[i].p_type == PT_LOAD
2331 && phdrs[i].p_vaddr == range->start)
2332 {
2333 range->length = phdrs[i].p_memsz;
2334 return 1;
2335 }
2336
2337 return 0;
2338 }
2339
95e94c3f
PA
2340 /* We need to know the real target PID to access /proc. */
2341 if (current_inferior ()->fake_pid_p)
2342 return 0;
2343
95e94c3f 2344 pid = current_inferior ()->pid;
3437254d 2345
95e94c3f
PA
2346 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2347 reading /proc/PID/maps (2). The later identifies thread stacks
2348 in the output, which requires scanning every thread in the thread
2349 group to check whether a VMA is actually a thread's stack. With
2350 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2351 a few thousand threads, (1) takes a few miliseconds, while (2)
2352 takes several seconds. Also note that "smaps", what we read for
2353 determining core dump mappings, is even slower than "maps". */
2354 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2355 data = target_fileio_read_stralloc (NULL, filename);
2356 if (data != NULL)
2357 {
2358 struct cleanup *cleanup = make_cleanup (xfree, data);
2359 char *line;
2360 char *saveptr = NULL;
2361
2362 for (line = strtok_r (data, "\n", &saveptr);
2363 line != NULL;
2364 line = strtok_r (NULL, "\n", &saveptr))
2365 {
2366 ULONGEST addr, endaddr;
2367 const char *p = line;
2368
2369 addr = strtoulst (p, &p, 16);
2370 if (addr == range->start)
2371 {
2372 if (*p == '-')
2373 p++;
2374 endaddr = strtoulst (p, &p, 16);
2375 range->length = endaddr - addr;
2376 do_cleanups (cleanup);
2377 return 1;
2378 }
2379 }
2380
2381 do_cleanups (cleanup);
2382 }
2383 else
2384 warning (_("unable to open /proc file '%s'"), filename);
2385
2386 return 0;
3437254d
PA
2387}
2388
cdfa0b0a
PA
2389/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2390 caching, and defers the real work to linux_vsyscall_range_raw. */
2391
2392static int
2393linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2394{
2395 struct linux_info *info = get_linux_inferior_data ();
2396
2397 if (info->vsyscall_range_p == 0)
2398 {
2399 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2400 info->vsyscall_range_p = 1;
2401 else
2402 info->vsyscall_range_p = -1;
2403 }
2404
2405 if (info->vsyscall_range_p < 0)
2406 return 0;
2407
2408 *range = info->vsyscall_range;
2409 return 1;
2410}
2411
3bc3cebe
JK
2412/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2413 definitions would be dependent on compilation host. */
2414#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2415#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2416
2417/* See gdbarch.sh 'infcall_mmap'. */
2418
2419static CORE_ADDR
2420linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2421{
2422 struct objfile *objf;
2423 /* Do there still exist any Linux systems without "mmap64"?
2424 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2425 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2426 struct value *addr_val;
2427 struct gdbarch *gdbarch = get_objfile_arch (objf);
2428 CORE_ADDR retval;
2429 enum
2430 {
2a546367 2431 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2432 };
2a546367 2433 struct value *arg[ARG_LAST];
3bc3cebe
JK
2434
2435 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2436 0);
2437 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2438 arg[ARG_LENGTH] = value_from_ulongest
2439 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2440 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2441 | GDB_MMAP_PROT_EXEC))
2442 == 0);
2443 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2444 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2445 GDB_MMAP_MAP_PRIVATE
2446 | GDB_MMAP_MAP_ANONYMOUS);
2447 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2448 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2449 0);
2a546367 2450 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg);
3bc3cebe
JK
2451 retval = value_as_address (addr_val);
2452 if (retval == (CORE_ADDR) -1)
2453 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2454 pulongest (size));
2455 return retval;
2456}
2457
7f361056
JK
2458/* See gdbarch.sh 'infcall_munmap'. */
2459
2460static void
2461linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2462{
2463 struct objfile *objf;
2464 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2465 struct value *retval_val;
2466 struct gdbarch *gdbarch = get_objfile_arch (objf);
2467 LONGEST retval;
2468 enum
2469 {
2470 ARG_ADDR, ARG_LENGTH, ARG_LAST
2471 };
2472 struct value *arg[ARG_LAST];
2473
2474 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2475 addr);
2476 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2477 arg[ARG_LENGTH] = value_from_ulongest
2478 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2479 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg);
2480 retval = value_as_long (retval_val);
2481 if (retval != 0)
2482 warning (_("Failed inferior munmap call at %s for %s bytes, "
2483 "errno is changed."),
2484 hex_string (addr), pulongest (size));
2485}
2486
906d60cf
PA
2487/* See linux-tdep.h. */
2488
2489CORE_ADDR
2490linux_displaced_step_location (struct gdbarch *gdbarch)
2491{
2492 CORE_ADDR addr;
2493 int bp_len;
2494
2495 /* Determine entry point from target auxiliary vector. This avoids
2496 the need for symbols. Also, when debugging a stand-alone SPU
2497 executable, entry_point_address () will point to an SPU
2498 local-store address and is thus not usable as displaced stepping
2499 location. The auxiliary vector gets us the PowerPC-side entry
2500 point address instead. */
2501 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
16b41842
PA
2502 throw_error (NOT_SUPPORTED_ERROR,
2503 _("Cannot find AT_ENTRY auxiliary vector entry."));
906d60cf
PA
2504
2505 /* Make certain that the address points at real code, and not a
2506 function descriptor. */
2507 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2508 &current_target);
2509
2510 /* Inferior calls also use the entry point as a breakpoint location.
2511 We don't want displaced stepping to interfere with those
2512 breakpoints, so leave space. */
2513 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2514 addr += bp_len * 2;
2515
2516 return addr;
2517}
2518
df8411da
SDJ
2519/* Display whether the gcore command is using the
2520 /proc/PID/coredump_filter file. */
2521
2522static void
2523show_use_coredump_filter (struct ui_file *file, int from_tty,
2524 struct cmd_list_element *c, const char *value)
2525{
2526 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2527 " corefiles is %s.\n"), value);
2528}
2529
a5ee0f0c
PA
2530/* To be called from the various GDB_OSABI_LINUX handlers for the
2531 various GNU/Linux architectures and machine types. */
2532
2533void
2534linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2535{
2536 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2537 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2538 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
382b69bb 2539 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
35c2fab7 2540 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2541 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2542 set_gdbarch_has_shared_address_space (gdbarch,
2543 linux_has_shared_address_space);
eb14d406
SDJ
2544 set_gdbarch_gdb_signal_from_target (gdbarch,
2545 linux_gdb_signal_from_target);
2546 set_gdbarch_gdb_signal_to_target (gdbarch,
2547 linux_gdb_signal_to_target);
3437254d 2548 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2549 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2550 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2551 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2552}
06253dd3 2553
70221824
PA
2554/* Provide a prototype to silence -Wmissing-prototypes. */
2555extern initialize_file_ftype _initialize_linux_tdep;
2556
06253dd3
JK
2557void
2558_initialize_linux_tdep (void)
2559{
2560 linux_gdbarch_data_handle =
2561 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a
PA
2562
2563 /* Set a cache per-inferior. */
2564 linux_inferior_data
2565 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2566 /* Observers used to invalidate the cache when needed. */
2567 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2568 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
df8411da
SDJ
2569
2570 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2571 &use_coredump_filter, _("\
2572Set whether gcore should consider /proc/PID/coredump_filter."),
2573 _("\
2574Show whether gcore should consider /proc/PID/coredump_filter."),
2575 _("\
2576Use this command to set whether gcore should consider the contents\n\
2577of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2578about this file, refer to the manpage of core(5)."),
2579 NULL, show_use_coredump_filter,
2580 &setlist, &showlist);
06253dd3 2581}
This page took 1.02489 seconds and 4 git commands to generate.