gdb/fortran: Add support for Fortran array slices at the GDB prompt
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
b811d2c2 3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
76727919 35#include "observable.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
268a13a5
TT
40#include "gdbsupport/enum-flags.h"
41#include "gdbsupport/gdb_optional.h"
3030c96e
UW
42
43#include <ctype.h>
4aa995e1 44
db1ff28b
JK
45/* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
8d297bbf 51enum filter_flag
db1ff28b
JK
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
8d297bbf 61DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
62
63/* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
df8411da
SDJ
91/* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
491144b5 94static bool use_coredump_filter = true;
df8411da 95
afa840dc
SL
96/* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
491144b5 99static bool dump_excluded_mappings = false;
afa840dc 100
eb14d406
SDJ
101/* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
06253dd3
JK
166static struct gdbarch_data *linux_gdbarch_data_handle;
167
168struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173static void *
174init_linux_gdbarch_data (struct gdbarch *gdbarch)
175{
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177}
178
179static struct linux_gdbarch_data *
180get_linux_gdbarch_data (struct gdbarch *gdbarch)
181{
9a3c8263
SM
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
184}
185
cdfa0b0a
PA
186/* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189struct linux_info
190{
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
89fb8848 196 struct mem_range vsyscall_range {};
cdfa0b0a
PA
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
89fb8848 201 int vsyscall_range_p = 0;
cdfa0b0a
PA
202};
203
89fb8848
TT
204/* Per-inferior data key. */
205static const struct inferior_key<linux_info> linux_inferior_data;
206
cdfa0b0a
PA
207/* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210static void
211invalidate_linux_cache_inf (struct inferior *inf)
212{
89fb8848 213 linux_inferior_data.clear (inf);
cdfa0b0a
PA
214}
215
216/* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219static struct linux_info *
220get_linux_inferior_data (void)
221{
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
89fb8848 225 info = linux_inferior_data.get (inf);
cdfa0b0a 226 if (info == NULL)
89fb8848 227 info = linux_inferior_data.emplace (inf);
cdfa0b0a
PA
228
229 return info;
230}
231
190b495d 232/* See linux-tdep.h. */
4aa995e1 233
190b495d 234struct type *
43564574
WT
235linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
4aa995e1 237{
06253dd3 238 struct linux_gdbarch_data *linux_gdbarch_data;
96b5c49f 239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
4aa995e1
PA
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
06253dd3
JK
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
e9bb382b
UW
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
96b5c49f
WT
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
4aa995e1
PA
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
e9bb382b 260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
d0e39ea2 261 sigval_type->set_name (xstrdup ("sigval_t"));
4aa995e1
PA
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
e3aa49af 266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
4aa995e1 268 TYPE_TARGET_TYPE (pid_type) = int_type;
8f53807e 269 pid_type->set_target_is_stub (true);
4aa995e1
PA
270
271 /* __uid_t */
e3aa49af 272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
4aa995e1 274 TYPE_TARGET_TYPE (uid_type) = uint_type;
8f53807e 275 uid_type->set_target_is_stub (true);
4aa995e1
PA
276
277 /* __clock_t */
e3aa49af 278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781
UW
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
4aa995e1 281 TYPE_TARGET_TYPE (clock_type) = long_type;
8f53807e 282 clock_type->set_target_is_stub (true);
4aa995e1
PA
283
284 /* _sifields */
e9bb382b 285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
e9bb382b 302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
e9bb382b 308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
e9bb382b 315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
e9bb382b 322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
e9bb382b 331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1 332 append_composite_type_field (type, "si_addr", void_ptr_type);
96b5c49f
WT
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
4aa995e1
PA
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
e9bb382b 348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
e9bb382b 354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
d0e39ea2 355 siginfo_type->set_name (xstrdup ("siginfo"));
4aa995e1
PA
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
06253dd3
JK
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
4aa995e1
PA
365 return siginfo_type;
366}
6b3ae818 367
43564574
WT
368/* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371static struct type *
372linux_get_siginfo_type (struct gdbarch *gdbarch)
373{
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375}
376
c01cbb3d
YQ
377/* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380int
381linux_is_uclinux (void)
6c95b8df 382{
6c95b8df 383 CORE_ADDR dummy;
6c95b8df 384
8b88a78e
PA
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
c01cbb3d 387}
6c95b8df 388
c01cbb3d
YQ
389static int
390linux_has_shared_address_space (struct gdbarch *gdbarch)
391{
392 return linux_is_uclinux ();
6c95b8df 393}
a5ee0f0c
PA
394
395/* This is how we want PTIDs from core files to be printed. */
396
a068643d 397static std::string
a5ee0f0c
PA
398linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399{
e38504b3 400 if (ptid.lwp () != 0)
a068643d 401 return string_printf ("LWP %ld", ptid.lwp ());
a5ee0f0c
PA
402
403 return normal_pid_to_str (ptid);
404}
405
db1ff28b
JK
406/* Service function for corefiles and info proc. */
407
408static void
409read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
dda83cd7 413 const char **device, size_t *device_len,
db1ff28b
JK
414 ULONGEST *inode,
415 const char **filename)
416{
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
f1735a53 424 p = skip_spaces (p);
db1ff28b
JK
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
f1735a53 432 p = skip_spaces (p);
db1ff28b
JK
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
f1735a53 440 p = skip_spaces (p);
db1ff28b
JK
441 *filename = p;
442}
443
444/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453static void
454decode_vmflags (char *p, struct smaps_vmflags *v)
455{
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476}
477
2d7cc5c7
PA
478/* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481struct mapping_regexes
482{
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514};
515
db1ff28b
JK
516/* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526static int
527mapping_is_anonymous_p (const char *filename)
528{
2d7cc5c7 529 static gdb::optional<mapping_regexes> regexes;
db1ff28b
JK
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
db1ff28b
JK
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
2d7cc5c7 538 regexes.emplace ();
db1ff28b
JK
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
2d7cc5c7
PA
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
db1ff28b
JK
563 return 1;
564
565 return 0;
566}
567
568/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
57e5e645
SDJ
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
db1ff28b
JK
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
57e5e645
SDJ
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
db1ff28b
JK
614
615static int
8d297bbf 616dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b 617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
57e5e645 618 const char *filename, ULONGEST addr, ULONGEST offset)
db1ff28b
JK
619{
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
57e5e645 628 int dump_p;
db1ff28b
JK
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
afa840dc 644 if (!dump_excluded_mappings && v->exclude_coredump)
db1ff28b
JK
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
57e5e645
SDJ
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
db1ff28b
JK
671 }
672 else if (mapping_anon_p)
57e5e645 673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
db1ff28b 674 else
57e5e645 675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
db1ff28b
JK
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
57e5e645
SDJ
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
db1ff28b
JK
686 }
687 else if (mapping_anon_p)
57e5e645 688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
db1ff28b 689 else
57e5e645 690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
db1ff28b 691 }
57e5e645
SDJ
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
57e5e645
SDJ
704 /* Useful define specifying the size of the ELF magical
705 header. */
706#ifndef SELFMAG
707#define SELFMAG 4
708#endif
709
a5d871dd
TT
710 /* Let's check if we have an ELF header. */
711 gdb_byte h[SELFMAG];
712 if (target_read_memory (addr, h, SELFMAG) == 0)
57e5e645 713 {
57e5e645
SDJ
714 /* The EI_MAG* and ELFMAG* constants come from
715 <elf/common.h>. */
716 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
717 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
718 {
719 /* This mapping contains an ELF header, so we
720 should dump it. */
721 dump_p = 1;
722 }
723 }
724 }
725
726 return dump_p;
db1ff28b
JK
727}
728
4ba11f89
KB
729/* As above, but return true only when we should dump the NT_FILE
730 entry. */
731
732static int
733dump_note_entry_p (filter_flags filterflags, const struct smaps_vmflags *v,
734 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
735 const char *filename, ULONGEST addr, ULONGEST offset)
736{
737 /* vDSO and vsyscall mappings will end up in the core file. Don't
738 put them in the NT_FILE note. */
739 if (strcmp ("[vdso]", filename) == 0
740 || strcmp ("[vsyscall]", filename) == 0)
741 return 0;
742
743 /* Otherwise, any other file-based mapping should be placed in the
744 note. */
5b7d45d3 745 return 1;
4ba11f89
KB
746}
747
3030c96e
UW
748/* Implement the "info proc" command. */
749
750static void
7bc112c1 751linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
752 enum info_proc_what what)
753{
754 /* A long is used for pid instead of an int to avoid a loss of precision
755 compiler warning from the output of strtoul. */
756 long pid;
757 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
758 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
759 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
760 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
761 int status_f = (what == IP_STATUS || what == IP_ALL);
762 int stat_f = (what == IP_STAT || what == IP_ALL);
763 char filename[100];
3030c96e
UW
764 int target_errno;
765
766 if (args && isdigit (args[0]))
7bc112c1
TT
767 {
768 char *tem;
769
770 pid = strtoul (args, &tem, 10);
771 args = tem;
772 }
3030c96e
UW
773 else
774 {
55f6301a 775 if (!target_has_execution ())
3030c96e
UW
776 error (_("No current process: you must name one."));
777 if (current_inferior ()->fake_pid_p)
778 error (_("Can't determine the current process's PID: you must name one."));
779
780 pid = current_inferior ()->pid;
781 }
782
f1735a53 783 args = skip_spaces (args);
3030c96e
UW
784 if (args && args[0])
785 error (_("Too many parameters: %s"), args);
786
787 printf_filtered (_("process %ld\n"), pid);
788 if (cmdline_f)
789 {
790 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
26d6cec4
AA
791 gdb_byte *buffer;
792 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
793
794 if (len > 0)
795 {
796 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
797 ssize_t pos;
798
799 for (pos = 0; pos < len - 1; pos++)
800 {
801 if (buffer[pos] == '\0')
802 buffer[pos] = ' ';
803 }
804 buffer[len - 1] = '\0';
805 printf_filtered ("cmdline = '%s'\n", buffer);
806 }
3030c96e
UW
807 else
808 warning (_("unable to open /proc file '%s'"), filename);
809 }
810 if (cwd_f)
811 {
812 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
e0d3522b
TT
813 gdb::optional<std::string> contents
814 = target_fileio_readlink (NULL, filename, &target_errno);
815 if (contents.has_value ())
816 printf_filtered ("cwd = '%s'\n", contents->c_str ());
3030c96e
UW
817 else
818 warning (_("unable to read link '%s'"), filename);
819 }
820 if (exe_f)
821 {
822 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
e0d3522b
TT
823 gdb::optional<std::string> contents
824 = target_fileio_readlink (NULL, filename, &target_errno);
825 if (contents.has_value ())
826 printf_filtered ("exe = '%s'\n", contents->c_str ());
3030c96e
UW
827 else
828 warning (_("unable to read link '%s'"), filename);
829 }
830 if (mappings_f)
831 {
832 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
87028b87
TT
833 gdb::unique_xmalloc_ptr<char> map
834 = target_fileio_read_stralloc (NULL, filename);
835 if (map != NULL)
3030c96e 836 {
3030c96e
UW
837 char *line;
838
839 printf_filtered (_("Mapped address spaces:\n\n"));
840 if (gdbarch_addr_bit (gdbarch) == 32)
841 {
842 printf_filtered ("\t%10s %10s %10s %10s %s\n",
843 "Start Addr",
844 " End Addr",
845 " Size", " Offset", "objfile");
dda83cd7 846 }
3030c96e 847 else
dda83cd7 848 {
3030c96e
UW
849 printf_filtered (" %18s %18s %10s %10s %s\n",
850 "Start Addr",
851 " End Addr",
852 " Size", " Offset", "objfile");
853 }
854
ca3a04f6
CB
855 char *saveptr;
856 for (line = strtok_r (map.get (), "\n", &saveptr);
87028b87 857 line;
ca3a04f6 858 line = strtok_r (NULL, "\n", &saveptr))
3030c96e
UW
859 {
860 ULONGEST addr, endaddr, offset, inode;
b926417a 861 const char *permissions, *device, *mapping_filename;
3030c96e
UW
862 size_t permissions_len, device_len;
863
864 read_mapping (line, &addr, &endaddr,
865 &permissions, &permissions_len,
866 &offset, &device, &device_len,
b926417a 867 &inode, &mapping_filename);
3030c96e
UW
868
869 if (gdbarch_addr_bit (gdbarch) == 32)
dda83cd7
SM
870 {
871 printf_filtered ("\t%10s %10s %10s %10s %s\n",
3030c96e
UW
872 paddress (gdbarch, addr),
873 paddress (gdbarch, endaddr),
874 hex_string (endaddr - addr),
875 hex_string (offset),
b926417a 876 *mapping_filename ? mapping_filename : "");
3030c96e
UW
877 }
878 else
dda83cd7
SM
879 {
880 printf_filtered (" %18s %18s %10s %10s %s\n",
3030c96e
UW
881 paddress (gdbarch, addr),
882 paddress (gdbarch, endaddr),
883 hex_string (endaddr - addr),
884 hex_string (offset),
b926417a 885 *mapping_filename ? mapping_filename : "");
dda83cd7 886 }
3030c96e 887 }
3030c96e
UW
888 }
889 else
890 warning (_("unable to open /proc file '%s'"), filename);
891 }
892 if (status_f)
893 {
894 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
87028b87
TT
895 gdb::unique_xmalloc_ptr<char> status
896 = target_fileio_read_stralloc (NULL, filename);
897 if (status)
898 puts_filtered (status.get ());
3030c96e
UW
899 else
900 warning (_("unable to open /proc file '%s'"), filename);
901 }
902 if (stat_f)
903 {
904 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
87028b87
TT
905 gdb::unique_xmalloc_ptr<char> statstr
906 = target_fileio_read_stralloc (NULL, filename);
907 if (statstr)
3030c96e 908 {
87028b87 909 const char *p = statstr.get ();
3030c96e
UW
910
911 printf_filtered (_("Process: %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913
f1735a53 914 p = skip_spaces (p);
a71b5a38 915 if (*p == '(')
3030c96e 916 {
184cd072
JK
917 /* ps command also relies on no trailing fields
918 ever contain ')'. */
919 const char *ep = strrchr (p, ')');
a71b5a38
UW
920 if (ep != NULL)
921 {
922 printf_filtered ("Exec file: %.*s\n",
923 (int) (ep - p - 1), p + 1);
924 p = ep + 1;
925 }
3030c96e
UW
926 }
927
f1735a53 928 p = skip_spaces (p);
3030c96e
UW
929 if (*p)
930 printf_filtered (_("State: %c\n"), *p++);
931
932 if (*p)
933 printf_filtered (_("Parent process: %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("Process group: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("Session id: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("TTY: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("TTY owner process group: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947
948 if (*p)
949 printf_filtered (_("Flags: %s\n"),
950 hex_string (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Minor faults (no memory page): %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Minor faults, children: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("Major faults (memory page faults): %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Major faults, children: %s\n"),
962 pulongest (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("utime: %s\n"),
965 pulongest (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("stime: %s\n"),
968 pulongest (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("utime, children: %s\n"),
971 pulongest (strtoulst (p, &p, 10)));
972 if (*p)
973 printf_filtered (_("stime, children: %s\n"),
974 pulongest (strtoulst (p, &p, 10)));
975 if (*p)
976 printf_filtered (_("jiffies remaining in current "
977 "time slice: %s\n"),
978 pulongest (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("'nice' value: %s\n"),
981 pulongest (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("jiffies until next timeout: %s\n"),
984 pulongest (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
987 pulongest (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("start time (jiffies since "
990 "system boot): %s\n"),
991 pulongest (strtoulst (p, &p, 10)));
992 if (*p)
993 printf_filtered (_("Virtual memory size: %s\n"),
994 pulongest (strtoulst (p, &p, 10)));
995 if (*p)
996 printf_filtered (_("Resident set size: %s\n"),
997 pulongest (strtoulst (p, &p, 10)));
998 if (*p)
999 printf_filtered (_("rlim: %s\n"),
1000 pulongest (strtoulst (p, &p, 10)));
1001 if (*p)
1002 printf_filtered (_("Start of text: %s\n"),
1003 hex_string (strtoulst (p, &p, 10)));
1004 if (*p)
1005 printf_filtered (_("End of text: %s\n"),
1006 hex_string (strtoulst (p, &p, 10)));
1007 if (*p)
1008 printf_filtered (_("Start of stack: %s\n"),
1009 hex_string (strtoulst (p, &p, 10)));
1010#if 0 /* Don't know how architecture-dependent the rest is...
1011 Anyway the signal bitmap info is available from "status". */
1012 if (*p)
1013 printf_filtered (_("Kernel stack pointer: %s\n"),
1014 hex_string (strtoulst (p, &p, 10)));
1015 if (*p)
1016 printf_filtered (_("Kernel instr pointer: %s\n"),
1017 hex_string (strtoulst (p, &p, 10)));
1018 if (*p)
1019 printf_filtered (_("Pending signals bitmap: %s\n"),
1020 hex_string (strtoulst (p, &p, 10)));
1021 if (*p)
1022 printf_filtered (_("Blocked signals bitmap: %s\n"),
1023 hex_string (strtoulst (p, &p, 10)));
1024 if (*p)
1025 printf_filtered (_("Ignored signals bitmap: %s\n"),
1026 hex_string (strtoulst (p, &p, 10)));
1027 if (*p)
1028 printf_filtered (_("Catched signals bitmap: %s\n"),
1029 hex_string (strtoulst (p, &p, 10)));
1030 if (*p)
1031 printf_filtered (_("wchan (system call): %s\n"),
1032 hex_string (strtoulst (p, &p, 10)));
1033#endif
3030c96e
UW
1034 }
1035 else
1036 warning (_("unable to open /proc file '%s'"), filename);
1037 }
1038}
1039
db082f59
KB
1040/* Implementation of `gdbarch_read_core_file_mappings', as defined in
1041 gdbarch.h.
1042
1043 This function reads the NT_FILE note (which BFD turns into the
1044 section ".note.linuxcore.file"). The format of this note / section
1045 is described as follows in the Linux kernel sources in
1046 fs/binfmt_elf.c:
1047
1048 long count -- how many files are mapped
1049 long page_size -- units for file_ofs
1050 array of [COUNT] elements of
1051 long start
1052 long end
1053 long file_ofs
1054 followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1055
1056 CBFD is the BFD of the core file.
1057
1058 PRE_LOOP_CB is the callback function to invoke prior to starting
1059 the loop which processes individual entries. This callback will
1060 only be executed after the note has been examined in enough
1061 detail to verify that it's not malformed in some way.
1062
1063 LOOP_CB is the callback function that will be executed once
1064 for each mapping. */
451b7c33
TT
1065
1066static void
db082f59
KB
1067linux_read_core_file_mappings (struct gdbarch *gdbarch,
1068 struct bfd *cbfd,
1069 gdb::function_view<void (ULONGEST count)>
dda83cd7 1070 pre_loop_cb,
db082f59 1071 gdb::function_view<void (int num,
dda83cd7 1072 ULONGEST start,
db082f59
KB
1073 ULONGEST end,
1074 ULONGEST file_ofs,
1075 const char *filename,
1076 const void *other)>
1077 loop_cb)
451b7c33 1078{
db082f59 1079 /* Ensure that ULONGEST is big enough for reading 64-bit core files. */
451b7c33
TT
1080 gdb_static_assert (sizeof (ULONGEST) >= 8);
1081
db082f59
KB
1082 /* It's not required that the NT_FILE note exists, so return silently
1083 if it's not found. Beyond this point though, we'll complain
1084 if problems are found. */
1085 asection *section = bfd_get_section_by_name (cbfd, ".note.linuxcore.file");
1086 if (section == nullptr)
1087 return;
451b7c33 1088
db082f59
KB
1089 unsigned int addr_size_bits = gdbarch_addr_bit (gdbarch);
1090 unsigned int addr_size = addr_size_bits / 8;
1091 size_t note_size = bfd_section_size (section);
451b7c33
TT
1092
1093 if (note_size < 2 * addr_size)
db082f59
KB
1094 {
1095 warning (_("malformed core note - too short for header"));
1096 return;
1097 }
451b7c33 1098
db082f59 1099 gdb::def_vector<gdb_byte> contents (note_size);
9f584b37
TT
1100 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1101 0, note_size))
db082f59
KB
1102 {
1103 warning (_("could not get core note contents"));
1104 return;
1105 }
451b7c33 1106
db082f59
KB
1107 gdb_byte *descdata = contents.data ();
1108 char *descend = (char *) descdata + note_size;
451b7c33
TT
1109
1110 if (descdata[note_size - 1] != '\0')
db082f59
KB
1111 {
1112 warning (_("malformed note - does not end with \\0"));
1113 return;
1114 }
451b7c33 1115
db082f59 1116 ULONGEST count = bfd_get (addr_size_bits, core_bfd, descdata);
451b7c33
TT
1117 descdata += addr_size;
1118
db082f59 1119 ULONGEST page_size = bfd_get (addr_size_bits, core_bfd, descdata);
451b7c33
TT
1120 descdata += addr_size;
1121
1122 if (note_size < 2 * addr_size + count * 3 * addr_size)
451b7c33 1123 {
db082f59
KB
1124 warning (_("malformed note - too short for supplied file count"));
1125 return;
451b7c33
TT
1126 }
1127
db082f59
KB
1128 char *filenames = (char *) descdata + count * 3 * addr_size;
1129
1130 /* Make sure that the correct number of filenames exist. Complain
1131 if there aren't enough or are too many. */
1132 char *f = filenames;
1133 for (int i = 0; i < count; i++)
451b7c33 1134 {
db082f59 1135 if (f >= descend)
dda83cd7 1136 {
db082f59
KB
1137 warning (_("malformed note - filename area is too small"));
1138 return;
1139 }
1140 f += strnlen (f, descend - f) + 1;
1141 }
1142 /* Complain, but don't return early if the filename area is too big. */
1143 if (f != descend)
1144 warning (_("malformed note - filename area is too big"));
451b7c33 1145
db082f59 1146 pre_loop_cb (count);
451b7c33 1147
db082f59
KB
1148 for (int i = 0; i < count; i++)
1149 {
1150 ULONGEST start = bfd_get (addr_size_bits, core_bfd, descdata);
451b7c33 1151 descdata += addr_size;
db082f59 1152 ULONGEST end = bfd_get (addr_size_bits, core_bfd, descdata);
451b7c33 1153 descdata += addr_size;
db082f59 1154 ULONGEST file_ofs
dda83cd7 1155 = bfd_get (addr_size_bits, core_bfd, descdata) * page_size;
451b7c33 1156 descdata += addr_size;
db082f59
KB
1157 char * filename = filenames;
1158 filenames += strlen ((char *) filenames) + 1;
451b7c33 1159
db082f59 1160 loop_cb (i, start, end, file_ofs, filename, nullptr);
451b7c33 1161 }
451b7c33
TT
1162}
1163
db082f59
KB
1164/* Implement "info proc mappings" for a corefile. */
1165
1166static void
1167linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1168{
1169 linux_read_core_file_mappings (gdbarch, core_bfd,
1170 [=] (ULONGEST count)
1171 {
1172 printf_filtered (_("Mapped address spaces:\n\n"));
1173 if (gdbarch_addr_bit (gdbarch) == 32)
1174 {
1175 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1176 "Start Addr",
1177 " End Addr",
1178 " Size", " Offset", "objfile");
1179 }
1180 else
1181 {
1182 printf_filtered (" %18s %18s %10s %10s %s\n",
1183 "Start Addr",
1184 " End Addr",
1185 " Size", " Offset", "objfile");
1186 }
1187 },
1188 [=] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
dda83cd7 1189 const char *filename, const void *other)
db082f59
KB
1190 {
1191 if (gdbarch_addr_bit (gdbarch) == 32)
1192 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1193 paddress (gdbarch, start),
1194 paddress (gdbarch, end),
1195 hex_string (end - start),
1196 hex_string (file_ofs),
1197 filename);
1198 else
1199 printf_filtered (" %18s %18s %10s %10s %s\n",
1200 paddress (gdbarch, start),
1201 paddress (gdbarch, end),
1202 hex_string (end - start),
1203 hex_string (file_ofs),
1204 filename);
1205 });
1206}
1207
451b7c33
TT
1208/* Implement "info proc" for a corefile. */
1209
1210static void
7bc112c1 1211linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1212 enum info_proc_what what)
1213{
1214 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1215 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1216
1217 if (exe_f)
1218 {
1219 const char *exe;
1220
1221 exe = bfd_core_file_failing_command (core_bfd);
1222 if (exe != NULL)
1223 printf_filtered ("exe = '%s'\n", exe);
1224 else
1225 warning (_("unable to find command name in core file"));
1226 }
1227
1228 if (mappings_f)
1229 linux_core_info_proc_mappings (gdbarch, args);
1230
1231 if (!exe_f && !mappings_f)
1232 error (_("unable to handle request"));
1233}
1234
382b69bb
JB
1235/* Read siginfo data from the core, if possible. Returns -1 on
1236 failure. Otherwise, returns the number of bytes read. READBUF,
1237 OFFSET, and LEN are all as specified by the to_xfer_partial
1238 interface. */
1239
1240static LONGEST
1241linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1242 ULONGEST offset, ULONGEST len)
1243{
1244 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1245 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1246 if (section == NULL)
1247 return -1;
1248
1249 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1250 return -1;
1251
1252 return len;
1253}
1254
db1ff28b
JK
1255typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1256 ULONGEST offset, ULONGEST inode,
1257 int read, int write,
1258 int exec, int modified,
1259 const char *filename,
1260 void *data);
451b7c33 1261
4ba11f89
KB
1262typedef int linux_dump_mapping_p_ftype (filter_flags filterflags,
1263 const struct smaps_vmflags *v,
1264 int maybe_private_p,
1265 int mapping_anon_p,
1266 int mapping_file_p,
1267 const char *filename,
1268 ULONGEST addr,
1269 ULONGEST offset);
1270
db1ff28b 1271/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1272
1273static int
db1ff28b 1274linux_find_memory_regions_full (struct gdbarch *gdbarch,
4ba11f89 1275 linux_dump_mapping_p_ftype *should_dump_mapping_p,
db1ff28b
JK
1276 linux_find_memory_region_ftype *func,
1277 void *obfd)
f7af1fcd 1278{
db1ff28b
JK
1279 char mapsfilename[100];
1280 char coredumpfilter_name[100];
f7af1fcd
JK
1281 pid_t pid;
1282 /* Default dump behavior of coredump_filter (0x33), according to
1283 Documentation/filesystems/proc.txt from the Linux kernel
1284 tree. */
8d297bbf
PA
1285 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1286 | COREFILTER_ANON_SHARED
1287 | COREFILTER_ELF_HEADERS
1288 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1289
db1ff28b 1290 /* We need to know the real target PID to access /proc. */
f7af1fcd 1291 if (current_inferior ()->fake_pid_p)
db1ff28b 1292 return 1;
f7af1fcd
JK
1293
1294 pid = current_inferior ()->pid;
1295
1296 if (use_coredump_filter)
1297 {
f7af1fcd
JK
1298 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1299 "/proc/%d/coredump_filter", pid);
87028b87
TT
1300 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1301 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
f7af1fcd
JK
1302 if (coredumpfilterdata != NULL)
1303 {
8d297bbf
PA
1304 unsigned int flags;
1305
87028b87 1306 sscanf (coredumpfilterdata.get (), "%x", &flags);
8d297bbf 1307 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1308 }
1309 }
1310
db1ff28b 1311 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
87028b87
TT
1312 gdb::unique_xmalloc_ptr<char> data
1313 = target_fileio_read_stralloc (NULL, mapsfilename);
db1ff28b
JK
1314 if (data == NULL)
1315 {
1316 /* Older Linux kernels did not support /proc/PID/smaps. */
1317 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1318 data = target_fileio_read_stralloc (NULL, mapsfilename);
1319 }
1320
1321 if (data != NULL)
1322 {
db1ff28b
JK
1323 char *line, *t;
1324
87028b87 1325 line = strtok_r (data.get (), "\n", &t);
db1ff28b
JK
1326 while (line != NULL)
1327 {
1328 ULONGEST addr, endaddr, offset, inode;
1329 const char *permissions, *device, *filename;
1330 struct smaps_vmflags v;
1331 size_t permissions_len, device_len;
1332 int read, write, exec, priv;
1333 int has_anonymous = 0;
1334 int should_dump_p = 0;
1335 int mapping_anon_p;
1336 int mapping_file_p;
1337
1338 memset (&v, 0, sizeof (v));
1339 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1340 &offset, &device, &device_len, &inode, &filename);
1341 mapping_anon_p = mapping_is_anonymous_p (filename);
1342 /* If the mapping is not anonymous, then we can consider it
1343 to be file-backed. These two states (anonymous or
1344 file-backed) seem to be exclusive, but they can actually
1345 coexist. For example, if a file-backed mapping has
1346 "Anonymous:" pages (see more below), then the Linux
1347 kernel will dump this mapping when the user specified
1348 that she only wants anonymous mappings in the corefile
1349 (*even* when she explicitly disabled the dumping of
1350 file-backed mappings). */
1351 mapping_file_p = !mapping_anon_p;
1352
1353 /* Decode permissions. */
1354 read = (memchr (permissions, 'r', permissions_len) != 0);
1355 write = (memchr (permissions, 'w', permissions_len) != 0);
1356 exec = (memchr (permissions, 'x', permissions_len) != 0);
1357 /* 'private' here actually means VM_MAYSHARE, and not
1358 VM_SHARED. In order to know if a mapping is really
1359 private or not, we must check the flag "sh" in the
1360 VmFlags field. This is done by decode_vmflags. However,
1361 if we are using a Linux kernel released before the commit
1362 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1363 not have the VmFlags there. In this case, there is
1364 really no way to know if we are dealing with VM_SHARED,
1365 so we just assume that VM_MAYSHARE is enough. */
1366 priv = memchr (permissions, 'p', permissions_len) != 0;
1367
1368 /* Try to detect if region should be dumped by parsing smaps
1369 counters. */
1370 for (line = strtok_r (NULL, "\n", &t);
1371 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1372 line = strtok_r (NULL, "\n", &t))
1373 {
1374 char keyword[64 + 1];
1375
1376 if (sscanf (line, "%64s", keyword) != 1)
1377 {
1378 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1379 break;
1380 }
1381
1382 if (strcmp (keyword, "Anonymous:") == 0)
1383 {
1384 /* Older Linux kernels did not support the
1385 "Anonymous:" counter. Check it here. */
1386 has_anonymous = 1;
1387 }
1388 else if (strcmp (keyword, "VmFlags:") == 0)
1389 decode_vmflags (line, &v);
1390
1391 if (strcmp (keyword, "AnonHugePages:") == 0
1392 || strcmp (keyword, "Anonymous:") == 0)
1393 {
1394 unsigned long number;
1395
1396 if (sscanf (line, "%*s%lu", &number) != 1)
1397 {
1398 warning (_("Error parsing {s,}maps file '%s' number"),
1399 mapsfilename);
1400 break;
1401 }
1402 if (number > 0)
1403 {
1404 /* Even if we are dealing with a file-backed
1405 mapping, if it contains anonymous pages we
1406 consider it to be *also* an anonymous
1407 mapping, because this is what the Linux
1408 kernel does:
1409
1410 // Dump segments that have been written to.
1411 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1412 goto whole;
1413
1414 Note that if the mapping is already marked as
1415 file-backed (i.e., mapping_file_p is
1416 non-zero), then this is a special case, and
1417 this mapping will be dumped either when the
1418 user wants to dump file-backed *or* anonymous
1419 mappings. */
1420 mapping_anon_p = 1;
1421 }
1422 }
1423 }
1424
1425 if (has_anonymous)
4ba11f89 1426 should_dump_p = should_dump_mapping_p (filterflags, &v, priv,
dda83cd7 1427 mapping_anon_p,
4ba11f89 1428 mapping_file_p,
dda83cd7 1429 filename, addr, offset);
db1ff28b
JK
1430 else
1431 {
1432 /* Older Linux kernels did not support the "Anonymous:" counter.
1433 If it is missing, we can't be sure - dump all the pages. */
1434 should_dump_p = 1;
1435 }
1436
1437 /* Invoke the callback function to create the corefile segment. */
1438 if (should_dump_p)
1439 func (addr, endaddr - addr, offset, inode,
1440 read, write, exec, 1, /* MODIFIED is true because we
1441 want to dump the mapping. */
1442 filename, obfd);
1443 }
1444
db1ff28b
JK
1445 return 0;
1446 }
1447
1448 return 1;
1449}
1450
1451/* A structure for passing information through
1452 linux_find_memory_regions_full. */
1453
1454struct linux_find_memory_regions_data
1455{
1456 /* The original callback. */
1457
1458 find_memory_region_ftype func;
1459
1460 /* The original datum. */
1461
1462 void *obfd;
1463};
1464
1465/* A callback for linux_find_memory_regions that converts between the
1466 "full"-style callback and find_memory_region_ftype. */
1467
1468static int
1469linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1470 ULONGEST offset, ULONGEST inode,
1471 int read, int write, int exec, int modified,
1472 const char *filename, void *arg)
1473{
9a3c8263
SM
1474 struct linux_find_memory_regions_data *data
1475 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1476
1477 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1478}
1479
1480/* A variant of linux_find_memory_regions_full that is suitable as the
1481 gdbarch find_memory_regions method. */
1482
1483static int
1484linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1485 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1486{
1487 struct linux_find_memory_regions_data data;
1488
1489 data.func = func;
db1ff28b 1490 data.obfd = obfd;
451b7c33 1491
db1ff28b 1492 return linux_find_memory_regions_full (gdbarch,
4ba11f89 1493 dump_mapping_p,
db1ff28b
JK
1494 linux_find_memory_regions_thunk,
1495 &data);
451b7c33
TT
1496}
1497
451b7c33
TT
1498/* This is used to pass information from
1499 linux_make_mappings_corefile_notes through
1500 linux_find_memory_regions_full. */
1501
1502struct linux_make_mappings_data
1503{
1504 /* Number of files mapped. */
1505 ULONGEST file_count;
1506
1507 /* The obstack for the main part of the data. */
1508 struct obstack *data_obstack;
1509
1510 /* The filename obstack. */
1511 struct obstack *filename_obstack;
1512
1513 /* The architecture's "long" type. */
1514 struct type *long_type;
1515};
1516
1517static linux_find_memory_region_ftype linux_make_mappings_callback;
1518
1519/* A callback for linux_find_memory_regions_full that updates the
1520 mappings data for linux_make_mappings_corefile_notes. */
1521
1522static int
1523linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1524 ULONGEST offset, ULONGEST inode,
1525 int read, int write, int exec, int modified,
1526 const char *filename, void *data)
1527{
9a3c8263
SM
1528 struct linux_make_mappings_data *map_data
1529 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1530 gdb_byte buf[sizeof (ULONGEST)];
1531
1532 if (*filename == '\0' || inode == 0)
1533 return 0;
1534
1535 ++map_data->file_count;
1536
1537 pack_long (buf, map_data->long_type, vaddr);
1538 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1539 pack_long (buf, map_data->long_type, vaddr + size);
1540 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1541 pack_long (buf, map_data->long_type, offset);
1542 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1543
1544 obstack_grow_str0 (map_data->filename_obstack, filename);
1545
1546 return 0;
1547}
1548
1549/* Write the file mapping data to the core file, if possible. OBFD is
1550 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
c21f37a8 1551 is a pointer to the note size. Updates NOTE_DATA and NOTE_SIZE. */
451b7c33 1552
c21f37a8 1553static void
451b7c33 1554linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
c21f37a8
SM
1555 gdb::unique_xmalloc_ptr<char> &note_data,
1556 int *note_size)
451b7c33 1557{
451b7c33
TT
1558 struct linux_make_mappings_data mapping_data;
1559 struct type *long_type
1560 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1561 gdb_byte buf[sizeof (ULONGEST)];
1562
8268c778 1563 auto_obstack data_obstack, filename_obstack;
451b7c33
TT
1564
1565 mapping_data.file_count = 0;
1566 mapping_data.data_obstack = &data_obstack;
1567 mapping_data.filename_obstack = &filename_obstack;
1568 mapping_data.long_type = long_type;
1569
1570 /* Reserve space for the count. */
1571 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1572 /* We always write the page size as 1 since we have no good way to
1573 determine the correct value. */
1574 pack_long (buf, long_type, 1);
1575 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1576
4ba11f89
KB
1577 linux_find_memory_regions_full (gdbarch,
1578 dump_note_entry_p,
1579 linux_make_mappings_callback,
db1ff28b 1580 &mapping_data);
451b7c33
TT
1581
1582 if (mapping_data.file_count != 0)
1583 {
1584 /* Write the count to the obstack. */
51a5cd90
PA
1585 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1586 long_type, mapping_data.file_count);
451b7c33
TT
1587
1588 /* Copy the filenames to the data obstack. */
3fba72f7 1589 int size = obstack_object_size (&filename_obstack);
451b7c33 1590 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
3fba72f7 1591 size);
451b7c33 1592
c21f37a8
SM
1593 note_data.reset (elfcore_write_note
1594 (obfd, note_data.release (),
1595 note_size, "CORE", NT_FILE,
1596 obstack_base (&data_obstack),
1597 obstack_object_size (&data_obstack)));
451b7c33 1598 }
451b7c33
TT
1599}
1600
5aa82d05
AA
1601/* Structure for passing information from
1602 linux_collect_thread_registers via an iterator to
1603 linux_collect_regset_section_cb. */
1604
1605struct linux_collect_regset_section_cb_data
1606{
c21f37a8
SM
1607 linux_collect_regset_section_cb_data (struct gdbarch *gdbarch,
1608 const struct regcache *regcache,
1609 bfd *obfd,
1610 gdb::unique_xmalloc_ptr<char> &note_data,
1611 int *note_size,
1612 unsigned long lwp,
1613 gdb_signal stop_signal)
1614 : gdbarch (gdbarch), regcache (regcache), obfd (obfd),
1615 note_data (note_data), note_size (note_size), lwp (lwp),
1616 stop_signal (stop_signal)
1617 {}
1618
5aa82d05
AA
1619 struct gdbarch *gdbarch;
1620 const struct regcache *regcache;
1621 bfd *obfd;
c21f37a8 1622 gdb::unique_xmalloc_ptr<char> &note_data;
5aa82d05
AA
1623 int *note_size;
1624 unsigned long lwp;
1625 enum gdb_signal stop_signal;
c21f37a8 1626 bool abort_iteration = false;
5aa82d05
AA
1627};
1628
1629/* Callback for iterate_over_regset_sections that records a single
1630 regset in the corefile note section. */
1631
1632static void
a616bb94
AH
1633linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1634 int collect_size, const struct regset *regset,
5aa82d05
AA
1635 const char *human_name, void *cb_data)
1636{
7567e115
SM
1637 struct linux_collect_regset_section_cb_data *data
1638 = (struct linux_collect_regset_section_cb_data *) cb_data;
a616bb94
AH
1639 bool variable_size_section = (regset != NULL
1640 && regset->flags & REGSET_VARIABLE_SIZE);
1641
1642 if (!variable_size_section)
1643 gdb_assert (supply_size == collect_size);
5aa82d05
AA
1644
1645 if (data->abort_iteration)
1646 return;
1647
5aa82d05
AA
1648 gdb_assert (regset && regset->collect_regset);
1649
afde3032
PFC
1650 /* This is intentionally zero-initialized by using std::vector, so
1651 that any padding bytes in the core file will show as 0. */
1652 std::vector<gdb_byte> buf (collect_size);
1653
1654 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1655 collect_size);
5aa82d05
AA
1656
1657 /* PRSTATUS still needs to be treated specially. */
1658 if (strcmp (sect_name, ".reg") == 0)
c21f37a8
SM
1659 data->note_data.reset (elfcore_write_prstatus
1660 (data->obfd, data->note_data.release (),
1661 data->note_size, data->lwp,
1662 gdb_signal_to_host (data->stop_signal),
1663 buf.data ()));
5aa82d05 1664 else
c21f37a8
SM
1665 data->note_data.reset (elfcore_write_register_note
1666 (data->obfd, data->note_data.release (),
1667 data->note_size, sect_name, buf.data (),
1668 collect_size));
5aa82d05
AA
1669
1670 if (data->note_data == NULL)
c21f37a8 1671 data->abort_iteration = true;
5aa82d05
AA
1672}
1673
6432734d
UW
1674/* Records the thread's register state for the corefile note
1675 section. */
1676
c21f37a8 1677static void
6432734d
UW
1678linux_collect_thread_registers (const struct regcache *regcache,
1679 ptid_t ptid, bfd *obfd,
c21f37a8
SM
1680 gdb::unique_xmalloc_ptr<char> &note_data,
1681 int *note_size,
2ea28649 1682 enum gdb_signal stop_signal)
6432734d 1683{
ac7936df 1684 struct gdbarch *gdbarch = regcache->arch ();
6432734d
UW
1685
1686 /* For remote targets the LWP may not be available, so use the TID. */
c21f37a8
SM
1687 long lwp = ptid.lwp ();
1688 if (lwp == 0)
1689 lwp = ptid.tid ();
1690
1691 linux_collect_regset_section_cb_data data (gdbarch, regcache, obfd, note_data,
1692 note_size, lwp, stop_signal);
5aa82d05
AA
1693
1694 gdbarch_iterate_over_regset_sections (gdbarch,
1695 linux_collect_regset_section_cb,
1696 &data, regcache);
6432734d
UW
1697}
1698
2989a365 1699/* Fetch the siginfo data for the specified thread, if it exists. If
9f584b37
TT
1700 there is no data, or we could not read it, return an empty
1701 buffer. */
1702
1703static gdb::byte_vector
1704linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
9015683b
TT
1705{
1706 struct type *siginfo_type;
9015683b 1707 LONGEST bytes_read;
9015683b
TT
1708
1709 if (!gdbarch_get_siginfo_type_p (gdbarch))
9f584b37
TT
1710 return gdb::byte_vector ();
1711
41792d68
PA
1712 scoped_restore_current_thread save_current_thread;
1713 switch_to_thread (thread);
2989a365 1714
9015683b
TT
1715 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1716
9f584b37 1717 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
9015683b 1718
8b88a78e 1719 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9f584b37
TT
1720 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1721 if (bytes_read != TYPE_LENGTH (siginfo_type))
1722 buf.clear ();
9015683b
TT
1723
1724 return buf;
1725}
1726
6432734d
UW
1727struct linux_corefile_thread_data
1728{
c21f37a8
SM
1729 linux_corefile_thread_data (struct gdbarch *gdbarch, bfd *obfd,
1730 gdb::unique_xmalloc_ptr<char> &note_data,
1731 int *note_size, gdb_signal stop_signal)
1732 : gdbarch (gdbarch), obfd (obfd), note_data (note_data),
1733 note_size (note_size), stop_signal (stop_signal)
1734 {}
1735
6432734d 1736 struct gdbarch *gdbarch;
6432734d 1737 bfd *obfd;
c21f37a8 1738 gdb::unique_xmalloc_ptr<char> &note_data;
6432734d 1739 int *note_size;
2ea28649 1740 enum gdb_signal stop_signal;
6432734d
UW
1741};
1742
050c224b
PA
1743/* Records the thread's register state for the corefile note
1744 section. */
6432734d 1745
050c224b
PA
1746static void
1747linux_corefile_thread (struct thread_info *info,
1748 struct linux_corefile_thread_data *args)
6432734d 1749{
050c224b 1750 struct regcache *regcache;
050c224b 1751
5b6d1e4f
PA
1752 regcache = get_thread_arch_regcache (info->inf->process_target (),
1753 info->ptid, args->gdbarch);
050c224b 1754
050c224b 1755 target_fetch_registers (regcache, -1);
9f584b37 1756 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
050c224b 1757
c21f37a8
SM
1758 linux_collect_thread_registers (regcache, info->ptid, args->obfd,
1759 args->note_data, args->note_size,
1760 args->stop_signal);
050c224b
PA
1761
1762 /* Don't return anything if we got no register information above,
1763 such a core file is useless. */
1764 if (args->note_data != NULL)
c21f37a8
SM
1765 {
1766 if (!siginfo_data.empty ())
1767 args->note_data.reset (elfcore_write_note (args->obfd,
1768 args->note_data.release (),
1769 args->note_size,
1770 "CORE", NT_SIGINFO,
1771 siginfo_data.data (),
1772 siginfo_data.size ()));
1773 }
6432734d
UW
1774}
1775
b3ac9c77
SDJ
1776/* Fill the PRPSINFO structure with information about the process being
1777 debugged. Returns 1 in case of success, 0 for failures. Please note that
1778 even if the structure cannot be entirely filled (e.g., GDB was unable to
1779 gather information about the process UID/GID), this function will still
1780 return 1 since some information was already recorded. It will only return
1781 0 iff nothing can be gathered. */
1782
1783static int
1784linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1785{
1786 /* The filename which we will use to obtain some info about the process.
1787 We will basically use this to store the `/proc/PID/FILENAME' file. */
1788 char filename[100];
b3ac9c77
SDJ
1789 /* The basename of the executable. */
1790 const char *basename;
cbaaa0ca 1791 const char *infargs;
b3ac9c77
SDJ
1792 /* Temporary buffer. */
1793 char *tmpstr;
1794 /* The valid states of a process, according to the Linux kernel. */
1795 const char valid_states[] = "RSDTZW";
1796 /* The program state. */
1797 const char *prog_state;
1798 /* The state of the process. */
1799 char pr_sname;
1800 /* The PID of the program which generated the corefile. */
1801 pid_t pid;
1802 /* Process flags. */
1803 unsigned int pr_flag;
1804 /* Process nice value. */
1805 long pr_nice;
1806 /* The number of fields read by `sscanf'. */
1807 int n_fields = 0;
b3ac9c77
SDJ
1808
1809 gdb_assert (p != NULL);
1810
1811 /* Obtaining PID and filename. */
e99b03dc 1812 pid = inferior_ptid.pid ();
b3ac9c77 1813 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
87028b87
TT
1814 /* The full name of the program which generated the corefile. */
1815 gdb::unique_xmalloc_ptr<char> fname
1816 = target_fileio_read_stralloc (NULL, filename);
b3ac9c77 1817
87028b87 1818 if (fname == NULL || fname.get ()[0] == '\0')
b3ac9c77
SDJ
1819 {
1820 /* No program name was read, so we won't be able to retrieve more
1821 information about the process. */
b3ac9c77
SDJ
1822 return 0;
1823 }
1824
b3ac9c77
SDJ
1825 memset (p, 0, sizeof (*p));
1826
1827 /* Defining the PID. */
1828 p->pr_pid = pid;
1829
1830 /* Copying the program name. Only the basename matters. */
87028b87 1831 basename = lbasename (fname.get ());
f67210ff 1832 strncpy (p->pr_fname, basename, sizeof (p->pr_fname) - 1);
b3ac9c77
SDJ
1833 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1834
1835 infargs = get_inferior_args ();
1836
87028b87
TT
1837 /* The arguments of the program. */
1838 std::string psargs = fname.get ();
b3ac9c77 1839 if (infargs != NULL)
87028b87 1840 psargs = psargs + " " + infargs;
b3ac9c77 1841
f67210ff 1842 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs) - 1);
b3ac9c77
SDJ
1843 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1844
1845 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
87028b87
TT
1846 /* The contents of `/proc/PID/stat'. */
1847 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1848 = target_fileio_read_stralloc (NULL, filename);
1849 char *proc_stat = proc_stat_contents.get ();
b3ac9c77
SDJ
1850
1851 if (proc_stat == NULL || *proc_stat == '\0')
1852 {
1853 /* Despite being unable to read more information about the
1854 process, we return 1 here because at least we have its
1855 command line, PID and arguments. */
b3ac9c77
SDJ
1856 return 1;
1857 }
1858
1859 /* Ok, we have the stats. It's time to do a little parsing of the
1860 contents of the buffer, so that we end up reading what we want.
1861
1862 The following parsing mechanism is strongly based on the
1863 information generated by the `fs/proc/array.c' file, present in
1864 the Linux kernel tree. More details about how the information is
1865 displayed can be obtained by seeing the manpage of proc(5),
1866 specifically under the entry of `/proc/[pid]/stat'. */
1867
1868 /* Getting rid of the PID, since we already have it. */
1869 while (isdigit (*proc_stat))
1870 ++proc_stat;
1871
1872 proc_stat = skip_spaces (proc_stat);
1873
184cd072
JK
1874 /* ps command also relies on no trailing fields ever contain ')'. */
1875 proc_stat = strrchr (proc_stat, ')');
1876 if (proc_stat == NULL)
87028b87 1877 return 1;
184cd072 1878 proc_stat++;
b3ac9c77
SDJ
1879
1880 proc_stat = skip_spaces (proc_stat);
1881
1882 n_fields = sscanf (proc_stat,
1883 "%c" /* Process state. */
1884 "%d%d%d" /* Parent PID, group ID, session ID. */
1885 "%*d%*d" /* tty_nr, tpgid (not used). */
1886 "%u" /* Flags. */
1887 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1888 cmajflt (not used). */
1889 "%*s%*s%*s%*s" /* utime, stime, cutime,
1890 cstime (not used). */
1891 "%*s" /* Priority (not used). */
1892 "%ld", /* Nice. */
1893 &pr_sname,
1894 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1895 &pr_flag,
1896 &pr_nice);
1897
1898 if (n_fields != 6)
1899 {
1900 /* Again, we couldn't read the complementary information about
1901 the process state. However, we already have minimal
1902 information, so we just return 1 here. */
b3ac9c77
SDJ
1903 return 1;
1904 }
1905
1906 /* Filling the structure fields. */
1907 prog_state = strchr (valid_states, pr_sname);
1908 if (prog_state != NULL)
1909 p->pr_state = prog_state - valid_states;
1910 else
1911 {
1912 /* Zero means "Running". */
1913 p->pr_state = 0;
1914 }
1915
1916 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1917 p->pr_zomb = p->pr_sname == 'Z';
1918 p->pr_nice = pr_nice;
1919 p->pr_flag = pr_flag;
1920
1921 /* Finally, obtaining the UID and GID. For that, we read and parse the
1922 contents of the `/proc/PID/status' file. */
1923 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
87028b87
TT
1924 /* The contents of `/proc/PID/status'. */
1925 gdb::unique_xmalloc_ptr<char> proc_status_contents
1926 = target_fileio_read_stralloc (NULL, filename);
1927 char *proc_status = proc_status_contents.get ();
b3ac9c77
SDJ
1928
1929 if (proc_status == NULL || *proc_status == '\0')
1930 {
1931 /* Returning 1 since we already have a bunch of information. */
b3ac9c77
SDJ
1932 return 1;
1933 }
1934
1935 /* Extracting the UID. */
1936 tmpstr = strstr (proc_status, "Uid:");
1937 if (tmpstr != NULL)
1938 {
1939 /* Advancing the pointer to the beginning of the UID. */
1940 tmpstr += sizeof ("Uid:");
1941 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1942 ++tmpstr;
1943
1944 if (isdigit (*tmpstr))
1945 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1946 }
1947
1948 /* Extracting the GID. */
1949 tmpstr = strstr (proc_status, "Gid:");
1950 if (tmpstr != NULL)
1951 {
1952 /* Advancing the pointer to the beginning of the GID. */
1953 tmpstr += sizeof ("Gid:");
1954 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1955 ++tmpstr;
1956
1957 if (isdigit (*tmpstr))
1958 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1959 }
1960
b3ac9c77
SDJ
1961 return 1;
1962}
1963
8df01799
PA
1964/* Find the signalled thread. In case there's more than one signalled
1965 thread, prefer the current thread, if it is signalled. If no
1966 thread was signalled, default to the current thread, unless it has
1967 exited, in which case return NULL. */
1968
1969static thread_info *
1970find_signalled_thread ()
1971{
1972 thread_info *curr_thr = inferior_thread ();
1973 if (curr_thr->state != THREAD_EXITED
1974 && curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1975 return curr_thr;
1976
1977 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1978 if (thr->suspend.stop_signal != GDB_SIGNAL_0)
1979 return thr;
1980
1981 /* Default to the current thread, unless it has exited. */
1982 if (curr_thr->state != THREAD_EXITED)
1983 return curr_thr;
1984
1985 return nullptr;
1986}
1987
f968fe80
AA
1988/* Build the note section for a corefile, and return it in a malloc
1989 buffer. */
6432734d 1990
c21f37a8 1991static gdb::unique_xmalloc_ptr<char>
f968fe80 1992linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d 1993{
b3ac9c77 1994 struct elf_internal_linux_prpsinfo prpsinfo;
c21f37a8 1995 gdb::unique_xmalloc_ptr<char> note_data;
6432734d 1996
f968fe80
AA
1997 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1998 return NULL;
1999
b3ac9c77 2000 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 2001 {
fe220226 2002 if (gdbarch_ptr_bit (gdbarch) == 64)
c21f37a8
SM
2003 note_data.reset (elfcore_write_linux_prpsinfo64 (obfd,
2004 note_data.release (),
2005 note_size, &prpsinfo));
b3ac9c77 2006 else
c21f37a8
SM
2007 note_data.reset (elfcore_write_linux_prpsinfo32 (obfd,
2008 note_data.release (),
2009 note_size, &prpsinfo));
6432734d
UW
2010 }
2011
2012 /* Thread register information. */
a70b8144 2013 try
22fd09ae
JK
2014 {
2015 update_thread_list ();
2016 }
230d2906 2017 catch (const gdb_exception_error &e)
492d29ea
PA
2018 {
2019 exception_print (gdb_stderr, e);
2020 }
492d29ea 2021
050c224b 2022 /* Like the kernel, prefer dumping the signalled thread first.
8df01799
PA
2023 "First thread" is what tools use to infer the signalled
2024 thread. */
2025 thread_info *signalled_thr = find_signalled_thread ();
c21f37a8 2026 gdb_signal stop_signal;
8df01799 2027 if (signalled_thr != nullptr)
c21f37a8 2028 stop_signal = signalled_thr->suspend.stop_signal;
8df01799 2029 else
c21f37a8
SM
2030 stop_signal = GDB_SIGNAL_0;
2031
2032 linux_corefile_thread_data thread_args (gdbarch, obfd, note_data, note_size,
2033 stop_signal);
050c224b 2034
8df01799
PA
2035 if (signalled_thr != nullptr)
2036 linux_corefile_thread (signalled_thr, &thread_args);
08036331 2037 for (thread_info *thr : current_inferior ()->non_exited_threads ())
050c224b
PA
2038 {
2039 if (thr == signalled_thr)
2040 continue;
050c224b
PA
2041
2042 linux_corefile_thread (thr, &thread_args);
2043 }
2044
6432734d
UW
2045 if (!note_data)
2046 return NULL;
2047
2048 /* Auxillary vector. */
9018be22 2049 gdb::optional<gdb::byte_vector> auxv =
8b88a78e 2050 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
9018be22 2051 if (auxv && !auxv->empty ())
6432734d 2052 {
c21f37a8
SM
2053 note_data.reset (elfcore_write_note (obfd, note_data.release (),
2054 note_size, "CORE", NT_AUXV,
2055 auxv->data (), auxv->size ()));
6432734d
UW
2056
2057 if (!note_data)
2058 return NULL;
2059 }
2060
451b7c33 2061 /* File mappings. */
c21f37a8 2062 linux_make_mappings_corefile_notes (gdbarch, obfd, note_data, note_size);
451b7c33 2063
6432734d
UW
2064 return note_data;
2065}
2066
eb14d406
SDJ
2067/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2068 gdbarch.h. This function is not static because it is exported to
2069 other -tdep files. */
2070
2071enum gdb_signal
2072linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2073{
2074 switch (signal)
2075 {
2076 case 0:
2077 return GDB_SIGNAL_0;
2078
2079 case LINUX_SIGHUP:
2080 return GDB_SIGNAL_HUP;
2081
2082 case LINUX_SIGINT:
2083 return GDB_SIGNAL_INT;
2084
2085 case LINUX_SIGQUIT:
2086 return GDB_SIGNAL_QUIT;
2087
2088 case LINUX_SIGILL:
2089 return GDB_SIGNAL_ILL;
2090
2091 case LINUX_SIGTRAP:
2092 return GDB_SIGNAL_TRAP;
2093
2094 case LINUX_SIGABRT:
2095 return GDB_SIGNAL_ABRT;
2096
2097 case LINUX_SIGBUS:
2098 return GDB_SIGNAL_BUS;
2099
2100 case LINUX_SIGFPE:
2101 return GDB_SIGNAL_FPE;
2102
2103 case LINUX_SIGKILL:
2104 return GDB_SIGNAL_KILL;
2105
2106 case LINUX_SIGUSR1:
2107 return GDB_SIGNAL_USR1;
2108
2109 case LINUX_SIGSEGV:
2110 return GDB_SIGNAL_SEGV;
2111
2112 case LINUX_SIGUSR2:
2113 return GDB_SIGNAL_USR2;
2114
2115 case LINUX_SIGPIPE:
2116 return GDB_SIGNAL_PIPE;
2117
2118 case LINUX_SIGALRM:
2119 return GDB_SIGNAL_ALRM;
2120
2121 case LINUX_SIGTERM:
2122 return GDB_SIGNAL_TERM;
2123
2124 case LINUX_SIGCHLD:
2125 return GDB_SIGNAL_CHLD;
2126
2127 case LINUX_SIGCONT:
2128 return GDB_SIGNAL_CONT;
2129
2130 case LINUX_SIGSTOP:
2131 return GDB_SIGNAL_STOP;
2132
2133 case LINUX_SIGTSTP:
2134 return GDB_SIGNAL_TSTP;
2135
2136 case LINUX_SIGTTIN:
2137 return GDB_SIGNAL_TTIN;
2138
2139 case LINUX_SIGTTOU:
2140 return GDB_SIGNAL_TTOU;
2141
2142 case LINUX_SIGURG:
2143 return GDB_SIGNAL_URG;
2144
2145 case LINUX_SIGXCPU:
2146 return GDB_SIGNAL_XCPU;
2147
2148 case LINUX_SIGXFSZ:
2149 return GDB_SIGNAL_XFSZ;
2150
2151 case LINUX_SIGVTALRM:
2152 return GDB_SIGNAL_VTALRM;
2153
2154 case LINUX_SIGPROF:
2155 return GDB_SIGNAL_PROF;
2156
2157 case LINUX_SIGWINCH:
2158 return GDB_SIGNAL_WINCH;
2159
2160 /* No way to differentiate between SIGIO and SIGPOLL.
2161 Therefore, we just handle the first one. */
2162 case LINUX_SIGIO:
2163 return GDB_SIGNAL_IO;
2164
2165 case LINUX_SIGPWR:
2166 return GDB_SIGNAL_PWR;
2167
2168 case LINUX_SIGSYS:
2169 return GDB_SIGNAL_SYS;
2170
2171 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2172 therefore we have to handle them here. */
2173 case LINUX_SIGRTMIN:
2174 return GDB_SIGNAL_REALTIME_32;
2175
2176 case LINUX_SIGRTMAX:
2177 return GDB_SIGNAL_REALTIME_64;
2178 }
2179
2180 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2181 {
2182 int offset = signal - LINUX_SIGRTMIN + 1;
2183
2184 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2185 }
2186
2187 return GDB_SIGNAL_UNKNOWN;
2188}
2189
2190/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2191 gdbarch.h. This function is not static because it is exported to
2192 other -tdep files. */
2193
2194int
2195linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2196 enum gdb_signal signal)
2197{
2198 switch (signal)
2199 {
2200 case GDB_SIGNAL_0:
2201 return 0;
2202
2203 case GDB_SIGNAL_HUP:
2204 return LINUX_SIGHUP;
2205
2206 case GDB_SIGNAL_INT:
2207 return LINUX_SIGINT;
2208
2209 case GDB_SIGNAL_QUIT:
2210 return LINUX_SIGQUIT;
2211
2212 case GDB_SIGNAL_ILL:
2213 return LINUX_SIGILL;
2214
2215 case GDB_SIGNAL_TRAP:
2216 return LINUX_SIGTRAP;
2217
2218 case GDB_SIGNAL_ABRT:
2219 return LINUX_SIGABRT;
2220
2221 case GDB_SIGNAL_FPE:
2222 return LINUX_SIGFPE;
2223
2224 case GDB_SIGNAL_KILL:
2225 return LINUX_SIGKILL;
2226
2227 case GDB_SIGNAL_BUS:
2228 return LINUX_SIGBUS;
2229
2230 case GDB_SIGNAL_SEGV:
2231 return LINUX_SIGSEGV;
2232
2233 case GDB_SIGNAL_SYS:
2234 return LINUX_SIGSYS;
2235
2236 case GDB_SIGNAL_PIPE:
2237 return LINUX_SIGPIPE;
2238
2239 case GDB_SIGNAL_ALRM:
2240 return LINUX_SIGALRM;
2241
2242 case GDB_SIGNAL_TERM:
2243 return LINUX_SIGTERM;
2244
2245 case GDB_SIGNAL_URG:
2246 return LINUX_SIGURG;
2247
2248 case GDB_SIGNAL_STOP:
2249 return LINUX_SIGSTOP;
2250
2251 case GDB_SIGNAL_TSTP:
2252 return LINUX_SIGTSTP;
2253
2254 case GDB_SIGNAL_CONT:
2255 return LINUX_SIGCONT;
2256
2257 case GDB_SIGNAL_CHLD:
2258 return LINUX_SIGCHLD;
2259
2260 case GDB_SIGNAL_TTIN:
2261 return LINUX_SIGTTIN;
2262
2263 case GDB_SIGNAL_TTOU:
2264 return LINUX_SIGTTOU;
2265
2266 case GDB_SIGNAL_IO:
2267 return LINUX_SIGIO;
2268
2269 case GDB_SIGNAL_XCPU:
2270 return LINUX_SIGXCPU;
2271
2272 case GDB_SIGNAL_XFSZ:
2273 return LINUX_SIGXFSZ;
2274
2275 case GDB_SIGNAL_VTALRM:
2276 return LINUX_SIGVTALRM;
2277
2278 case GDB_SIGNAL_PROF:
2279 return LINUX_SIGPROF;
2280
2281 case GDB_SIGNAL_WINCH:
2282 return LINUX_SIGWINCH;
2283
2284 case GDB_SIGNAL_USR1:
2285 return LINUX_SIGUSR1;
2286
2287 case GDB_SIGNAL_USR2:
2288 return LINUX_SIGUSR2;
2289
2290 case GDB_SIGNAL_PWR:
2291 return LINUX_SIGPWR;
2292
2293 case GDB_SIGNAL_POLL:
2294 return LINUX_SIGPOLL;
2295
2296 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2297 therefore we have to handle it here. */
2298 case GDB_SIGNAL_REALTIME_32:
2299 return LINUX_SIGRTMIN;
2300
2301 /* Same comment applies to _64. */
2302 case GDB_SIGNAL_REALTIME_64:
2303 return LINUX_SIGRTMAX;
2304 }
2305
2306 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2307 if (signal >= GDB_SIGNAL_REALTIME_33
2308 && signal <= GDB_SIGNAL_REALTIME_63)
2309 {
2310 int offset = signal - GDB_SIGNAL_REALTIME_33;
2311
2312 return LINUX_SIGRTMIN + 1 + offset;
2313 }
2314
2315 return -1;
2316}
2317
cdfa0b0a
PA
2318/* Helper for linux_vsyscall_range that does the real work of finding
2319 the vsyscall's address range. */
3437254d
PA
2320
2321static int
cdfa0b0a 2322linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d 2323{
95e94c3f
PA
2324 char filename[100];
2325 long pid;
95e94c3f 2326
8b88a78e 2327 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
95e94c3f
PA
2328 return 0;
2329
6bb90213
PA
2330 /* It doesn't make sense to access the host's /proc when debugging a
2331 core file. Instead, look for the PT_LOAD segment that matches
2332 the vDSO. */
55f6301a 2333 if (!target_has_execution ())
6bb90213 2334 {
6bb90213
PA
2335 long phdrs_size;
2336 int num_phdrs, i;
2337
2338 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2339 if (phdrs_size == -1)
2340 return 0;
2341
31aceee8
TV
2342 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2343 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2344 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
6bb90213
PA
2345 if (num_phdrs == -1)
2346 return 0;
2347
2348 for (i = 0; i < num_phdrs; i++)
31aceee8
TV
2349 if (phdrs.get ()[i].p_type == PT_LOAD
2350 && phdrs.get ()[i].p_vaddr == range->start)
6bb90213 2351 {
31aceee8 2352 range->length = phdrs.get ()[i].p_memsz;
6bb90213
PA
2353 return 1;
2354 }
2355
2356 return 0;
2357 }
2358
95e94c3f
PA
2359 /* We need to know the real target PID to access /proc. */
2360 if (current_inferior ()->fake_pid_p)
2361 return 0;
2362
95e94c3f 2363 pid = current_inferior ()->pid;
3437254d 2364
95e94c3f
PA
2365 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2366 reading /proc/PID/maps (2). The later identifies thread stacks
2367 in the output, which requires scanning every thread in the thread
2368 group to check whether a VMA is actually a thread's stack. With
2369 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2370 a few thousand threads, (1) takes a few miliseconds, while (2)
2371 takes several seconds. Also note that "smaps", what we read for
2372 determining core dump mappings, is even slower than "maps". */
2373 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
87028b87
TT
2374 gdb::unique_xmalloc_ptr<char> data
2375 = target_fileio_read_stralloc (NULL, filename);
95e94c3f
PA
2376 if (data != NULL)
2377 {
95e94c3f
PA
2378 char *line;
2379 char *saveptr = NULL;
2380
87028b87 2381 for (line = strtok_r (data.get (), "\n", &saveptr);
95e94c3f
PA
2382 line != NULL;
2383 line = strtok_r (NULL, "\n", &saveptr))
2384 {
2385 ULONGEST addr, endaddr;
2386 const char *p = line;
2387
2388 addr = strtoulst (p, &p, 16);
2389 if (addr == range->start)
2390 {
2391 if (*p == '-')
2392 p++;
2393 endaddr = strtoulst (p, &p, 16);
2394 range->length = endaddr - addr;
95e94c3f
PA
2395 return 1;
2396 }
2397 }
95e94c3f
PA
2398 }
2399 else
2400 warning (_("unable to open /proc file '%s'"), filename);
2401
2402 return 0;
3437254d
PA
2403}
2404
cdfa0b0a
PA
2405/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2406 caching, and defers the real work to linux_vsyscall_range_raw. */
2407
2408static int
2409linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2410{
2411 struct linux_info *info = get_linux_inferior_data ();
2412
2413 if (info->vsyscall_range_p == 0)
2414 {
2415 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2416 info->vsyscall_range_p = 1;
2417 else
2418 info->vsyscall_range_p = -1;
2419 }
2420
2421 if (info->vsyscall_range_p < 0)
2422 return 0;
2423
2424 *range = info->vsyscall_range;
2425 return 1;
2426}
2427
3bc3cebe
JK
2428/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2429 definitions would be dependent on compilation host. */
2430#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2431#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2432
2433/* See gdbarch.sh 'infcall_mmap'. */
2434
2435static CORE_ADDR
2436linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2437{
2438 struct objfile *objf;
2439 /* Do there still exist any Linux systems without "mmap64"?
2440 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2441 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2442 struct value *addr_val;
08feed99 2443 struct gdbarch *gdbarch = objf->arch ();
3bc3cebe
JK
2444 CORE_ADDR retval;
2445 enum
2446 {
2a546367 2447 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2448 };
2a546367 2449 struct value *arg[ARG_LAST];
3bc3cebe
JK
2450
2451 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2452 0);
2453 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2454 arg[ARG_LENGTH] = value_from_ulongest
2455 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2456 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2457 | GDB_MMAP_PROT_EXEC))
2458 == 0);
2459 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2460 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2461 GDB_MMAP_MAP_PRIVATE
2462 | GDB_MMAP_MAP_ANONYMOUS);
2463 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2464 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2465 0);
e71585ff 2466 addr_val = call_function_by_hand (mmap_val, NULL, arg);
3bc3cebe
JK
2467 retval = value_as_address (addr_val);
2468 if (retval == (CORE_ADDR) -1)
2469 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2470 pulongest (size));
2471 return retval;
2472}
2473
7f361056
JK
2474/* See gdbarch.sh 'infcall_munmap'. */
2475
2476static void
2477linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2478{
2479 struct objfile *objf;
2480 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2481 struct value *retval_val;
08feed99 2482 struct gdbarch *gdbarch = objf->arch ();
7f361056
JK
2483 LONGEST retval;
2484 enum
2485 {
2486 ARG_ADDR, ARG_LENGTH, ARG_LAST
2487 };
2488 struct value *arg[ARG_LAST];
2489
2490 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2491 addr);
2492 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2493 arg[ARG_LENGTH] = value_from_ulongest
2494 (builtin_type (gdbarch)->builtin_unsigned_long, size);
e71585ff 2495 retval_val = call_function_by_hand (munmap_val, NULL, arg);
7f361056
JK
2496 retval = value_as_long (retval_val);
2497 if (retval != 0)
2498 warning (_("Failed inferior munmap call at %s for %s bytes, "
2499 "errno is changed."),
2500 hex_string (addr), pulongest (size));
2501}
2502
906d60cf
PA
2503/* See linux-tdep.h. */
2504
2505CORE_ADDR
2506linux_displaced_step_location (struct gdbarch *gdbarch)
2507{
2508 CORE_ADDR addr;
2509 int bp_len;
2510
2511 /* Determine entry point from target auxiliary vector. This avoids
2512 the need for symbols. Also, when debugging a stand-alone SPU
2513 executable, entry_point_address () will point to an SPU
2514 local-store address and is thus not usable as displaced stepping
2515 location. The auxiliary vector gets us the PowerPC-side entry
2516 point address instead. */
8b88a78e 2517 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
16b41842
PA
2518 throw_error (NOT_SUPPORTED_ERROR,
2519 _("Cannot find AT_ENTRY auxiliary vector entry."));
906d60cf
PA
2520
2521 /* Make certain that the address points at real code, and not a
2522 function descriptor. */
2523 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
8b88a78e 2524 current_top_target ());
906d60cf
PA
2525
2526 /* Inferior calls also use the entry point as a breakpoint location.
2527 We don't want displaced stepping to interfere with those
2528 breakpoints, so leave space. */
2529 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2530 addr += bp_len * 2;
2531
2532 return addr;
2533}
2534
0f83012e
AH
2535/* See linux-tdep.h. */
2536
2537CORE_ADDR
2538linux_get_hwcap (struct target_ops *target)
2539{
2540 CORE_ADDR field;
2541 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2542 return 0;
2543 return field;
2544}
2545
2546/* See linux-tdep.h. */
2547
2548CORE_ADDR
2549linux_get_hwcap2 (struct target_ops *target)
2550{
2551 CORE_ADDR field;
2552 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2553 return 0;
2554 return field;
2555}
2556
df8411da
SDJ
2557/* Display whether the gcore command is using the
2558 /proc/PID/coredump_filter file. */
2559
2560static void
2561show_use_coredump_filter (struct ui_file *file, int from_tty,
2562 struct cmd_list_element *c, const char *value)
2563{
2564 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2565 " corefiles is %s.\n"), value);
2566}
2567
afa840dc
SL
2568/* Display whether the gcore command is dumping mappings marked with
2569 the VM_DONTDUMP flag. */
2570
2571static void
2572show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2573 struct cmd_list_element *c, const char *value)
2574{
2575 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2576 " flag is %s.\n"), value);
2577}
2578
a5ee0f0c
PA
2579/* To be called from the various GDB_OSABI_LINUX handlers for the
2580 various GNU/Linux architectures and machine types. */
2581
2582void
2583linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2584{
2585 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2586 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2587 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
382b69bb 2588 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
db082f59 2589 set_gdbarch_read_core_file_mappings (gdbarch, linux_read_core_file_mappings);
35c2fab7 2590 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2591 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2592 set_gdbarch_has_shared_address_space (gdbarch,
2593 linux_has_shared_address_space);
eb14d406
SDJ
2594 set_gdbarch_gdb_signal_from_target (gdbarch,
2595 linux_gdb_signal_from_target);
2596 set_gdbarch_gdb_signal_to_target (gdbarch,
2597 linux_gdb_signal_to_target);
3437254d 2598 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2599 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2600 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2601 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2602}
06253dd3 2603
6c265988 2604void _initialize_linux_tdep ();
06253dd3 2605void
6c265988 2606_initialize_linux_tdep ()
06253dd3
JK
2607{
2608 linux_gdbarch_data_handle =
2609 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a 2610
cdfa0b0a 2611 /* Observers used to invalidate the cache when needed. */
76727919
TT
2612 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2613 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
df8411da
SDJ
2614
2615 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2616 &use_coredump_filter, _("\
2617Set whether gcore should consider /proc/PID/coredump_filter."),
2618 _("\
2619Show whether gcore should consider /proc/PID/coredump_filter."),
2620 _("\
2621Use this command to set whether gcore should consider the contents\n\
2622of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2623about this file, refer to the manpage of core(5)."),
2624 NULL, show_use_coredump_filter,
2625 &setlist, &showlist);
afa840dc
SL
2626
2627 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2628 &dump_excluded_mappings, _("\
2629Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2630 _("\
2631Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2632 _("\
2633Use this command to set whether gcore should dump mappings marked with the\n\
2634VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2635more information about this file, refer to the manpage of proc(5) and core(5)."),
2636 NULL, show_dump_excluded_mappings,
2637 &setlist, &showlist);
06253dd3 2638}
This page took 1.2013 seconds and 4 git commands to generate.