Remove unnecessary null_cleanup
[deliverable/binutils-gdb.git] / gdb / lm32-tdep.c
CommitLineData
c28c63d8
JB
1/* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
618f726f 4 Copyright (C) 2009-2016 Free Software Foundation, Inc.
c28c63d8
JB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "frame.h"
23#include "frame-unwind.h"
24#include "frame-base.h"
25#include "inferior.h"
26#include "dis-asm.h"
27#include "symfile.h"
28#include "remote.h"
29#include "gdbcore.h"
30#include "gdb/sim-lm32.h"
31#include "gdb/callback.h"
32#include "gdb/remote-sim.h"
33#include "sim-regno.h"
34#include "arch-utils.h"
35#include "regcache.h"
36#include "trad-frame.h"
37#include "reggroups.h"
38#include "opcodes/lm32-desc.h"
325fac50 39#include <algorithm>
c28c63d8 40
c28c63d8
JB
41/* Macros to extract fields from an instruction. */
42#define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
43#define LM32_REG0(insn) ((insn >> 21) & 0x1f)
44#define LM32_REG1(insn) ((insn >> 16) & 0x1f)
45#define LM32_REG2(insn) ((insn >> 11) & 0x1f)
46#define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
47
48struct gdbarch_tdep
49{
1777feb0 50 /* gdbarch target dependent data here. Currently unused for LM32. */
c28c63d8
JB
51};
52
53struct lm32_frame_cache
54{
55 /* The frame's base. Used when constructing a frame ID. */
56 CORE_ADDR base;
57 CORE_ADDR pc;
58 /* Size of frame. */
59 int size;
60 /* Table indicating the location of each and every register. */
61 struct trad_frame_saved_reg *saved_regs;
62};
63
64/* Add the available register groups. */
65
66static void
67lm32_add_reggroups (struct gdbarch *gdbarch)
68{
69 reggroup_add (gdbarch, general_reggroup);
70 reggroup_add (gdbarch, all_reggroup);
71 reggroup_add (gdbarch, system_reggroup);
72}
73
74/* Return whether a given register is in a given group. */
75
76static int
77lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
78 struct reggroup *group)
79{
80 if (group == general_reggroup)
81 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
82 || (regnum == SIM_LM32_PC_REGNUM);
83 else if (group == system_reggroup)
84 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
85 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
86 return default_register_reggroup_p (gdbarch, regnum, group);
87}
88
89/* Return a name that corresponds to the given register number. */
90
91static const char *
92lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
93{
94 static char *register_names[] = {
95 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
96 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
97 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
98 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
99 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
100 };
101
102 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
103 return NULL;
104 else
105 return register_names[reg_nr];
106}
107
108/* Return type of register. */
109
110static struct type *
111lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
112{
df4df182 113 return builtin_type (gdbarch)->builtin_int32;
c28c63d8
JB
114}
115
116/* Return non-zero if a register can't be written. */
117
118static int
119lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
120{
121 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
122}
123
124/* Analyze a function's prologue. */
125
126static CORE_ADDR
e17a4113
UW
127lm32_analyze_prologue (struct gdbarch *gdbarch,
128 CORE_ADDR pc, CORE_ADDR limit,
c28c63d8
JB
129 struct lm32_frame_cache *info)
130{
e17a4113 131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c28c63d8
JB
132 unsigned long instruction;
133
134 /* Keep reading though instructions, until we come across an instruction
135 that isn't likely to be part of the prologue. */
136 info->size = 0;
137 for (; pc < limit; pc += 4)
138 {
139
140 /* Read an instruction. */
e17a4113 141 instruction = read_memory_integer (pc, 4, byte_order);
c28c63d8
JB
142
143 if ((LM32_OPCODE (instruction) == OP_SW)
144 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
145 {
1777feb0 146 /* Any stack displaced store is likely part of the prologue.
c28c63d8
JB
147 Record that the register is being saved, and the offset
148 into the stack. */
149 info->saved_regs[LM32_REG1 (instruction)].addr =
150 LM32_IMM16 (instruction);
151 }
152 else if ((LM32_OPCODE (instruction) == OP_ADDI)
153 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
154 {
1777feb0 155 /* An add to the SP is likely to be part of the prologue.
c28c63d8
JB
156 Adjust stack size by whatever the instruction adds to the sp. */
157 info->size -= LM32_IMM16 (instruction);
158 }
159 else if ( /* add fp,fp,sp */
160 ((LM32_OPCODE (instruction) == OP_ADD)
161 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
163 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
164 /* mv fp,imm */
165 || ((LM32_OPCODE (instruction) == OP_ADDI)
166 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
167 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
168 {
169 /* Likely to be in the prologue for functions that require
170 a frame pointer. */
171 }
172 else
173 {
1777feb0
MS
174 /* Any other instruction is likely not to be part of the
175 prologue. */
c28c63d8
JB
176 break;
177 }
178 }
179
180 return pc;
181}
182
183/* Return PC of first non prologue instruction, for the function at the
184 specified address. */
185
186static CORE_ADDR
187lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
188{
189 CORE_ADDR func_addr, limit_pc;
c28c63d8
JB
190 struct lm32_frame_cache frame_info;
191 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
192
193 /* See if we can determine the end of the prologue via the symbol table.
194 If so, then return either PC, or the PC after the prologue, whichever
195 is greater. */
196 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
197 {
d80b854b
UW
198 CORE_ADDR post_prologue_pc
199 = skip_prologue_using_sal (gdbarch, func_addr);
c28c63d8 200 if (post_prologue_pc != 0)
325fac50 201 return std::max (pc, post_prologue_pc);
c28c63d8
JB
202 }
203
204 /* Can't determine prologue from the symbol table, need to examine
205 instructions. */
206
207 /* Find an upper limit on the function prologue using the debug
208 information. If the debug information could not be used to provide
209 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 210 limit_pc = skip_prologue_using_sal (gdbarch, pc);
c28c63d8
JB
211 if (limit_pc == 0)
212 limit_pc = pc + 100; /* Magic. */
213
214 frame_info.saved_regs = saved_regs;
e17a4113 215 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
c28c63d8
JB
216}
217
218/* Create a breakpoint instruction. */
219
220static const gdb_byte *
221lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
222 int *lenptr)
223{
224 static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
225
226 *lenptr = sizeof (breakpoint);
227 return breakpoint;
228}
229
230/* Setup registers and stack for faking a call to a function in the
231 inferior. */
232
233static CORE_ADDR
234lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
235 struct regcache *regcache, CORE_ADDR bp_addr,
236 int nargs, struct value **args, CORE_ADDR sp,
237 int struct_return, CORE_ADDR struct_addr)
238{
e17a4113 239 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c28c63d8
JB
240 int first_arg_reg = SIM_LM32_R1_REGNUM;
241 int num_arg_regs = 8;
242 int i;
243
244 /* Set the return address. */
245 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
246
247 /* If we're returning a large struct, a pointer to the address to
248 store it at is passed as a first hidden parameter. */
249 if (struct_return)
250 {
251 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
252 first_arg_reg++;
253 num_arg_regs--;
254 sp -= 4;
255 }
256
257 /* Setup parameters. */
258 for (i = 0; i < nargs; i++)
259 {
260 struct value *arg = args[i];
261 struct type *arg_type = check_typedef (value_type (arg));
262 gdb_byte *contents;
c28c63d8
JB
263 ULONGEST val;
264
265 /* Promote small integer types to int. */
266 switch (TYPE_CODE (arg_type))
267 {
268 case TYPE_CODE_INT:
269 case TYPE_CODE_BOOL:
270 case TYPE_CODE_CHAR:
271 case TYPE_CODE_RANGE:
272 case TYPE_CODE_ENUM:
273 if (TYPE_LENGTH (arg_type) < 4)
274 {
df4df182 275 arg_type = builtin_type (gdbarch)->builtin_int32;
c28c63d8
JB
276 arg = value_cast (arg_type, arg);
277 }
278 break;
279 }
280
281 /* FIXME: Handle structures. */
282
283 contents = (gdb_byte *) value_contents (arg);
744a8059
SP
284 val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
285 byte_order);
c28c63d8
JB
286
287 /* First num_arg_regs parameters are passed by registers,
288 and the rest are passed on the stack. */
289 if (i < num_arg_regs)
290 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
291 else
292 {
4666fec3
SM
293 write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
294 val);
c28c63d8
JB
295 sp -= 4;
296 }
297 }
298
299 /* Update stack pointer. */
300 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
301
302 /* Return adjusted stack pointer. */
303 return sp;
304}
305
306/* Extract return value after calling a function in the inferior. */
307
308static void
309lm32_extract_return_value (struct type *type, struct regcache *regcache,
310 gdb_byte *valbuf)
311{
e17a4113
UW
312 struct gdbarch *gdbarch = get_regcache_arch (regcache);
313 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c28c63d8
JB
314 ULONGEST l;
315 CORE_ADDR return_buffer;
316
317 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
318 && TYPE_CODE (type) != TYPE_CODE_UNION
319 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
320 {
321 /* Return value is returned in a single register. */
322 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
e17a4113 323 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
c28c63d8
JB
324 }
325 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
326 {
327 /* 64-bit values are returned in a register pair. */
328 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
329 memcpy (valbuf, &l, 4);
330 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
331 memcpy (valbuf + 4, &l, 4);
332 }
333 else
334 {
1777feb0
MS
335 /* Aggregate types greater than a single register are returned
336 in memory. FIXME: Unless they are only 2 regs?. */
c28c63d8
JB
337 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
338 return_buffer = l;
339 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
340 }
341}
342
343/* Write into appropriate registers a function return value of type
344 TYPE, given in virtual format. */
345static void
346lm32_store_return_value (struct type *type, struct regcache *regcache,
347 const gdb_byte *valbuf)
348{
e17a4113
UW
349 struct gdbarch *gdbarch = get_regcache_arch (regcache);
350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c28c63d8 351 ULONGEST val;
bad43aa5 352 int len = TYPE_LENGTH (type);
c28c63d8 353
bad43aa5 354 if (len <= 4)
c28c63d8 355 {
bad43aa5 356 val = extract_unsigned_integer (valbuf, len, byte_order);
c28c63d8
JB
357 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
358 }
bad43aa5 359 else if (len <= 8)
c28c63d8 360 {
e17a4113 361 val = extract_unsigned_integer (valbuf, 4, byte_order);
c28c63d8 362 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
bad43aa5 363 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
c28c63d8
JB
364 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
365 }
366 else
367 error (_("lm32_store_return_value: type length too large."));
368}
369
370/* Determine whether a functions return value is in a register or memory. */
371static enum return_value_convention
6a3a010b 372lm32_return_value (struct gdbarch *gdbarch, struct value *function,
c28c63d8
JB
373 struct type *valtype, struct regcache *regcache,
374 gdb_byte *readbuf, const gdb_byte *writebuf)
375{
376 enum type_code code = TYPE_CODE (valtype);
377
378 if (code == TYPE_CODE_STRUCT
379 || code == TYPE_CODE_UNION
380 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
381 return RETURN_VALUE_STRUCT_CONVENTION;
382
383 if (readbuf)
384 lm32_extract_return_value (valtype, regcache, readbuf);
385 if (writebuf)
386 lm32_store_return_value (valtype, regcache, writebuf);
387
388 return RETURN_VALUE_REGISTER_CONVENTION;
389}
390
391static CORE_ADDR
392lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
393{
394 return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
395}
396
397static CORE_ADDR
398lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
399{
400 return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
401}
402
403static struct frame_id
404lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
405{
406 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
407
408 return frame_id_build (sp, get_frame_pc (this_frame));
409}
410
411/* Put here the code to store, into fi->saved_regs, the addresses of
412 the saved registers of frame described by FRAME_INFO. This
413 includes special registers such as pc and fp saved in special ways
414 in the stack frame. sp is even more special: the address we return
415 for it IS the sp for the next frame. */
416
417static struct lm32_frame_cache *
418lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
419{
c28c63d8
JB
420 CORE_ADDR current_pc;
421 ULONGEST prev_sp;
422 ULONGEST this_base;
423 struct lm32_frame_cache *info;
c28c63d8 424 int i;
c28c63d8
JB
425
426 if ((*this_prologue_cache))
9a3c8263 427 return (struct lm32_frame_cache *) (*this_prologue_cache);
c28c63d8
JB
428
429 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
430 (*this_prologue_cache) = info;
431 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
432
433 info->pc = get_frame_func (this_frame);
434 current_pc = get_frame_pc (this_frame);
e17a4113
UW
435 lm32_analyze_prologue (get_frame_arch (this_frame),
436 info->pc, current_pc, info);
c28c63d8
JB
437
438 /* Compute the frame's base, and the previous frame's SP. */
439 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
440 prev_sp = this_base + info->size;
441 info->base = this_base;
442
443 /* Convert callee save offsets into addresses. */
444 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
445 {
446 if (trad_frame_addr_p (info->saved_regs, i))
447 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
448 }
449
450 /* The call instruction moves the caller's PC in the callee's RA register.
451 Since this is an unwind, do the reverse. Copy the location of RA register
452 into PC (the address / regnum) so that a request for PC will be
453 converted into a request for the RA register. */
454 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
455
1777feb0
MS
456 /* The previous frame's SP needed to be computed. Save the computed
457 value. */
c28c63d8
JB
458 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
459
460 return info;
461}
462
463static void
464lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
465 struct frame_id *this_id)
466{
467 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
468
469 /* This marks the outermost frame. */
470 if (cache->base == 0)
471 return;
472
473 (*this_id) = frame_id_build (cache->base, cache->pc);
474}
475
476static struct value *
477lm32_frame_prev_register (struct frame_info *this_frame,
478 void **this_prologue_cache, int regnum)
479{
480 struct lm32_frame_cache *info;
481
482 info = lm32_frame_cache (this_frame, this_prologue_cache);
483 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
484}
485
486static const struct frame_unwind lm32_frame_unwind = {
487 NORMAL_FRAME,
8fbca658 488 default_frame_unwind_stop_reason,
c28c63d8
JB
489 lm32_frame_this_id,
490 lm32_frame_prev_register,
491 NULL,
492 default_frame_sniffer
493};
494
495static CORE_ADDR
496lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
497{
498 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
499
500 return info->base;
501}
502
503static const struct frame_base lm32_frame_base = {
504 &lm32_frame_unwind,
505 lm32_frame_base_address,
506 lm32_frame_base_address,
507 lm32_frame_base_address
508};
509
510static CORE_ADDR
511lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
512{
513 /* Align to the size of an instruction (so that they can safely be
514 pushed onto the stack. */
515 return sp & ~3;
516}
517
518static struct gdbarch *
519lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
520{
521 struct gdbarch *gdbarch;
522 struct gdbarch_tdep *tdep;
523
524 /* If there is already a candidate, use it. */
525 arches = gdbarch_list_lookup_by_info (arches, &info);
526 if (arches != NULL)
527 return arches->gdbarch;
528
529 /* None found, create a new architecture from the information provided. */
70ba0933 530 tdep = XNEW (struct gdbarch_tdep);
c28c63d8
JB
531 gdbarch = gdbarch_alloc (&info, tdep);
532
533 /* Type sizes. */
534 set_gdbarch_short_bit (gdbarch, 16);
535 set_gdbarch_int_bit (gdbarch, 32);
536 set_gdbarch_long_bit (gdbarch, 32);
537 set_gdbarch_long_long_bit (gdbarch, 64);
538 set_gdbarch_float_bit (gdbarch, 32);
539 set_gdbarch_double_bit (gdbarch, 64);
540 set_gdbarch_long_double_bit (gdbarch, 64);
541 set_gdbarch_ptr_bit (gdbarch, 32);
542
543 /* Register info. */
544 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
545 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
546 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
547 set_gdbarch_register_name (gdbarch, lm32_register_name);
548 set_gdbarch_register_type (gdbarch, lm32_register_type);
549 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
550
551 /* Frame info. */
552 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
553 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
554 set_gdbarch_decr_pc_after_break (gdbarch, 0);
555 set_gdbarch_frame_args_skip (gdbarch, 0);
556
557 /* Frame unwinding. */
558 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
559 frame_base_set_default (gdbarch, &lm32_frame_base);
560 set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
561 set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
562 set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
563 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
564
565 /* Breakpoints. */
566 set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
567 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
568
569 /* Calling functions in the inferior. */
570 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
571 set_gdbarch_return_value (gdbarch, lm32_return_value);
572
573 /* Instruction disassembler. */
574 set_gdbarch_print_insn (gdbarch, print_insn_lm32);
575
576 lm32_add_reggroups (gdbarch);
577 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
578
579 return gdbarch;
580}
581
693be288
JK
582/* -Wmissing-prototypes */
583extern initialize_file_ftype _initialize_lm32_tdep;
584
c28c63d8
JB
585void
586_initialize_lm32_tdep (void)
587{
588 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
589}
This page took 0.71027 seconds and 4 git commands to generate.