gdb-2.8
[deliverable/binutils-gdb.git] / gdb / m-pn.h
CommitLineData
3bf57d21 1/* Parameters for execution on a Gould PN, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987 Free Software Foundation, Inc.
3
4GDB is distributed in the hope that it will be useful, but WITHOUT ANY
5WARRANTY. No author or distributor accepts responsibility to anyone
6for the consequences of using it or for whether it serves any
7particular purpose or works at all, unless he says so in writing.
8Refer to the GDB General Public License for full details.
9
10Everyone is granted permission to copy, modify and redistribute GDB,
11but only under the conditions described in the GDB General Public
12License. A copy of this license is supposed to have been given to you
13along with GDB so you can know your rights and responsibilities. It
14should be in a file named COPYING. Among other things, the copyright
15notice and this notice must be preserved on all copies.
16
17In other words, go ahead and share GDB, but don't try to stop
18anyone else from sharing it farther. Help stamp out software hoarding! */
19
20/* Read file headers properly in core.c */
21#define gould
22
23/* Macro for text-offset and data info (in PN a.out format). */
24#define TEXTINFO \
25 text_offset = N_TXTOFF (exec_coffhdr); \
26 exec_data_offset = N_TXTOFF (exec_coffhdr) \
27 + exec_aouthdr.a_text
28
29/* Macro for number of symbol table entries */
30#define END_OF_TEXT_DEFAULT \
31 (0xffffff)
32
33/* Macro for number of symbol table entries */
34#define NUMBER_OF_SYMBOLS \
35 (coffhdr.f_nsyms)
36
37/* Macro for file-offset of symbol table (in usual a.out format). */
38#define SYMBOL_TABLE_OFFSET \
39 N_SYMOFF (coffhdr)
40
41/* Macro for file-offset of string table (in usual a.out format). */
42#define STRING_TABLE_OFFSET \
43 (N_STROFF (coffhdr) + sizeof(int))
44
45/* Macro to store the length of the string table data in INTO. */
46#define READ_STRING_TABLE_SIZE(INTO) \
47 { INTO = hdr.a_stsize; }
48
49/* Macro to declare variables to hold the file's header data. */
50#define DECLARE_FILE_HEADERS struct old_exec hdr; \
51 FILHDR coffhdr
52
53/* Macro to read the header data from descriptor DESC and validate it.
54 NAME is the file name, for error messages. */
55#define READ_FILE_HEADERS(DESC, NAME) \
56{ val = myread (DESC, &coffhdr, sizeof coffhdr); \
57 if (val < 0) \
58 perror_with_name (NAME); \
59 val = myread (DESC, &hdr, sizeof hdr); \
60 if (val < 0) \
61 perror_with_name (NAME); \
62 if (coffhdr.f_magic != GNP1MAGIC) \
63 error ("File \"%s\" not in coff executable format.", NAME); \
64 if (N_BADMAG (hdr)) \
65 error ("File \"%s\" not in executable format.", NAME); }
66
67/* Define COFF and other symbolic names needed on NP1 */
68#define NS32GMAGIC GDPMAGIC
69#define NS32SMAGIC PN_MAGIC
70#define vprintf printf
71
72/* Get rid of any system-imposed stack limit if possible. */
73#define SET_STACK_LIMIT_HUGE
74
75/* Define this if the C compiler puts an underscore at the front
76 of external names before giving them to the linker. */
77#define NAMES_HAVE_UNDERSCORE
78
79/* Debugger information will be in DBX format. */
80#define READ_DBX_FORMAT
81
82/* Offset from address of function to start of its code.
83 Zero on most machines. */
84#define FUNCTION_START_OFFSET 4
85
86/* Advance PC across any function entry prologue instructions
87 to reach some "real" code. One PN we can have one or two startup
88 sequences depending on the size of the local stack:
89
90 Either:
91 "suabr b2, #"
92 of
93 "lil r4, #", "suabr b2, #(r4)"
94
95 "lwbr b6, #", "stw r1, 8(b2)"
96 Optional "stwbr b3, c(b2)"
97 Optional "trr r2,r7" (Gould first argument register passing)
98 or
99 Optional "stw r2,8(b3)" (Gould first argument register passing)
100 */
101#define SKIP_PROLOGUE(pc) { \
102 register int op = read_memory_integer ((pc), 4); \
103 if ((op & 0xffff0000) == 0x580B0000) { \
104 pc += 4; \
105 op = read_memory_integer ((pc), 4); \
106 if ((op & 0xffff0000) == 0x59400000) { \
107 pc += 4; \
108 op = read_memory_integer ((pc), 4); \
109 if ((op & 0xffff0000) == 0x5F000000) { \
110 pc += 4; \
111 op = read_memory_integer ((pc), 4); \
112 if (op == 0xD4820008) { \
113 pc += 4; \
114 op = read_memory_integer ((pc), 4); \
115 if (op == 0x5582000C) { \
116 pc += 4; \
117 op = read_memory_integer ((pc), 2); \
118 if (op == 0x2fa0) { \
119 pc += 2; \
120 } else { \
121 op = read_memory_integer ((pc), 4); \
122 if (op == 0xd5030008) { \
123 pc += 4; \
124 } \
125 } \
126 } else { \
127 op = read_memory_integer ((pc), 2); \
128 if (op == 0x2fa0) { \
129 pc += 2; \
130 } \
131 } \
132 } \
133 } \
134 } \
135 } \
136 if ((op & 0xffff0000) == 0x59000000) { \
137 pc += 4; \
138 op = read_memory_integer ((pc), 4); \
139 if ((op & 0xffff0000) == 0x5F000000) { \
140 pc += 4; \
141 op = read_memory_integer ((pc), 4); \
142 if (op == 0xD4820008) { \
143 pc += 4; \
144 op = read_memory_integer ((pc), 4); \
145 if (op == 0x5582000C) { \
146 pc += 4; \
147 op = read_memory_integer ((pc), 2); \
148 if (op == 0x2fa0) { \
149 pc += 2; \
150 } else { \
151 op = read_memory_integer ((pc), 4); \
152 if (op == 0xd5030008) { \
153 pc += 4; \
154 } \
155 } \
156 } else { \
157 op = read_memory_integer ((pc), 2); \
158 if (op == 0x2fa0) { \
159 pc += 2; \
160 } \
161 } \
162 } \
163 } \
164 } \
165}
166
167/* Immediately after a function call, return the saved pc.
168 Can't go through the frames for this because on some machines
169 the new frame is not set up until the new function executes
170 some instructions. True on PN! Return address is in R1.
171 Note: true return location is 4 bytes past R1! */
172#define SAVED_PC_AFTER_CALL(frame) \
173 (read_register(R1_REGNUM) + 4)
174
175/* Address of U in kernel space */
176#define KERNEL_U_ADDR 0x3fc000
177
178/* Address of end of stack space. */
179#define STACK_END_ADDR 0x480000
180
181/* Stack grows downward. */
182#define INNER_THAN <
183
184/* Sequence of bytes for breakpoint instruction. */
185#define BREAKPOINT {0x28, 0x09}
186
187/* Amount PC must be decremented by after a breakpoint.
188 This is often the number of bytes in BREAKPOINT
189 but not always. */
190#define DECR_PC_AFTER_BREAK 2
191
192/* Nonzero if instruction at PC is a return instruction. "bu 4(r1)" */
193#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0xEC100004)
194
195/* Return 1 if P points to an invalid floating point value. */
196#define INVALID_FLOAT(p, len) ((*(short *)p & 0xff80) == 0x8000)
197
198/* Say how long (ordinary) registers are. */
199#define REGISTER_TYPE long
200
201/* Number of machine registers */
202#define NUM_REGS 19
203#define NUM_GEN_REGS 16
204#define NUM_CPU_REGS 3
205
206/* Initializer for an array of names of registers.
207 There should be NUM_REGS strings in this initializer. */
208#define REGISTER_NAMES { \
209 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
210 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
211 "sp", "ps", "pc", \
212}
213
214/* Register numbers of various important registers.
215 Note that some of these values are "real" register numbers,
216 and correspond to the general registers of the machine,
217 and some are "phony" register numbers which are too large
218 to be actual register numbers as far as the user is concerned
219 but do serve to get the desired values when passed to read_register. */
220#define R1_REGNUM 1 /* Gr1 => return address of caller */
221#define R4_REGNUM 4 /* Gr4 => register save area */
222#define R5_REGNUM 5 /* Gr5 => register save area */
223#define R6_REGNUM 6 /* Gr6 => register save area */
224#define R7_REGNUM 7 /* Gr7 => register save area */
225#define B1_REGNUM 9 /* Br1 => start of this code routine */
226#define FP_REGNUM 10 /* Br2 == (sp) */
227#define AP_REGNUM 11 /* Br3 == (ap) */
228#define SP_REGNUM 16 /* A copy of Br2 saved in trap */
229#define PS_REGNUM 17 /* Contains processor status */
230#define PC_REGNUM 18 /* Contains program counter */
231
232/* This is a piece of magic that is given a register number REGNO
233 and as BLOCKEND the address in the system of the end of the user structure
234 and stores in ADDR the address in the kernel or core dump
235 of that register. */
236#define REGISTER_U_ADDR(addr, blockend, regno) { \
237 addr = blockend + regno * 4; \
238 if (regno == PC_REGNUM) addr = blockend - 8 * 4; \
239 if (regno == PS_REGNUM) addr = blockend - 7 * 4; \
240 if (regno == SP_REGNUM) addr = blockend - 6 * 4; \
241}
242
243/* Total amount of space needed to store our copies of the machine's
244 register state, the array `registers'. */
245#define REGISTER_BYTES (NUM_GEN_REGS*4 + NUM_CPU_REGS*4)
246
247/* Index within `registers' of the first byte of the space for
248 register N. */
249#define REGISTER_BYTE(N) ((N) * 4)
250
251/* Number of bytes of storage in the actual machine representation
252 for register N. On the PN, all normal regs are 4 bytes. */
253#define REGISTER_RAW_SIZE(N) (4)
254
255/* Number of bytes of storage in the program's representation
256 for register N. On the PN, all regs are 4 bytes. */
257#define REGISTER_VIRTUAL_SIZE(N) (4)
258
259/* Largest value REGISTER_RAW_SIZE can have. */
260#define MAX_REGISTER_RAW_SIZE (4)
261
262/* Largest value REGISTER_VIRTUAL_SIZE can have. */
263#define MAX_REGISTER_VIRTUAL_SIZE (4)
264
265/* Nonzero if register N requires conversion
266 from raw format to virtual format. */
267#define REGISTER_CONVERTIBLE(N) (0)
268
269/* Convert data from raw format for register REGNUM
270 to virtual format for register REGNUM. */
271#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
272 bcopy ((FROM), (TO), REGISTER_RAW_SIZE(REGNUM));
273
274/* Convert data from virtual format for register REGNUM
275 to raw format for register REGNUM. */
276#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
277 bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
278
279/* Return the GDB type object for the "standard" data type
280 of data in register N. */
281#define REGISTER_VIRTUAL_TYPE(N) (builtin_type_int)
282
283/* Extract from an arrary REGBUF containing the (raw) register state
284 a function return value of type TYPE, and copy that, in virtual format,
285 into VALBUF. */
286
287#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
288 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
289
290/* Write into appropriate registers a function return value
291 of type TYPE, given in virtual format. */
292
293#define STORE_RETURN_VALUE(TYPE,VALBUF) \
294 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
295
296/* Extract from an array REGBUF containing the (raw) register state
297 the address in which a function should return its structure value,
298 as a CORE_ADDR (or an expression that can be used as one). */
299
300#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
301
302\f
303/* Describe the pointer in each stack frame to the previous stack frame
304 (its caller). */
305
306/* FRAME_CHAIN takes a frame's nominal address
307 and produces the frame's chain-pointer.
308
309 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
310 and produces the nominal address of the caller frame.
311
312 However, if FRAME_CHAIN_VALID returns zero,
313 it means the given frame is the outermost one and has no caller.
314 In that case, FRAME_CHAIN_COMBINE is not used. */
315
316/* In the case of the NPL, the frame's norminal address is Br2 and the
317 previous routines frame is up the stack X bytes, where X is the
318 value stored in the code function header xA(Br1). */
319#define FRAME_CHAIN(thisframe) (findframe(thisframe))
320
321#define FRAME_CHAIN_VALID(chain, thisframe) \
322 (chain != 0 && chain != thisframe)
323
324#define FRAME_CHAIN_COMBINE(chain, thisframe) \
325 (chain)
326
327/* Define other aspects of the stack frame on NPL. */
328#define FRAME_SAVED_PC(frame) \
329 (read_memory_integer (frame + 8, 4))
330
331#define FRAME_ARGS_ADDRESS(fi) \
332 ((fi).next_frame ? \
333 read_memory_integer ((fi).frame + 12, 4) : \
334 read_register (AP_REGNUM))
335
336#define FRAME_LOCALS_ADDRESS(fi) ((fi).frame + 80)
337
338/* Set VAL to the number of args passed to frame described by FI.
339 Can set VAL to -1, meaning no way to tell. */
340
341/* We can check the stab info to see how
342 many arg we have. No info in stack will tell us */
343#define FRAME_NUM_ARGS(val,fi) (val = findarg(fi))
344
345/* Return number of bytes at start of arglist that are not really args. */
346#define FRAME_ARGS_SKIP 8
347
348/* Put here the code to store, into a struct frame_saved_regs,
349 the addresses of the saved registers of frame described by FRAME_INFO.
350 This includes special registers such as pc and fp saved in special
351 ways in the stack frame. sp is even more special:
352 the address we return for it IS the sp for the next frame. */
353
354#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
355{ \
356 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
357 (frame_saved_regs).regs[PC_REGNUM] = (frame_info).frame + 8; \
358 (frame_saved_regs).regs[R4_REGNUM] = (frame_info).frame + 0x30; \
359 (frame_saved_regs).regs[R5_REGNUM] = (frame_info).frame + 0x34; \
360 (frame_saved_regs).regs[R6_REGNUM] = (frame_info).frame + 0x38; \
361 (frame_saved_regs).regs[R7_REGNUM] = (frame_info).frame + 0x3C; \
362}
363\f
364/* Things needed for making the inferior call functions. */
365
366/* Push an empty stack frame, to record the current PC, etc. */
367
368#define PUSH_DUMMY_FRAME \
369{ register CORE_ADDR sp = read_register (SP_REGNUM); \
370 register int regnum; \
371 sp = push_word (sp, read_register (PC_REGNUM)); \
372 sp = push_word (sp, read_register (FP_REGNUM)); \
373 write_register (FP_REGNUM, sp); \
374 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
375 sp = push_word (sp, read_register (regnum)); \
376 sp = push_word (sp, read_register (PS_REGNUM)); \
377 write_register (SP_REGNUM, sp); }
378
379/* Discard from the stack the innermost frame,
380 restoring all saved registers. */
381
382#define POP_FRAME \
383{ register CORE_ADDR fp = read_register (FP_REGNUM); \
384 register int regnum; \
385 struct frame_saved_regs fsr; \
386 struct frame_info fi; \
387 fi = get_frame_info (fp); \
388 get_frame_saved_regs (&fi, &fsr); \
389 for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
390 if (fsr.regs[regnum]) \
391 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
392 if (fsr.regs[PS_REGNUM]) \
393 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
394 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
395 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
396 write_register (SP_REGNUM, fp + 8); \
397 set_current_frame (read_register (FP_REGNUM)); }
398
399/* This sequence of words is the instructions:
400 halt
401 halt
402 halt
403 halt
404 suabr b2, #<stacksize>
405 lwbr b6, #con
406 stw r1, 8(b2) - save caller address, do we care?
407 lw r2, 60(b2) - arg1
408 labr b3, 50(b2)
409 std r4, 30(b2) - save r4-r7
410 std r6, 38(b2)
411 lwbr b1, #<func> - load function call address
412 brlnk r1, 8(b1) - call function
413 halt
414 halt
415 ld r4, 30(b2) - restore r4-r7
416 ld r6, 38(b2)
417
418 Setup our stack frame, load argumemts, call and then restore registers.
419*/
420
421#define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e4f4e71}
422
423#define CALL_DUMMY_LENGTH 28
424
425#define CALL_DUMMY_START_OFFSET 12
426
427/* Insert the specified number of args and function address
428 into a call sequence of the above form stored at DUMMYNAME. */
429
430#define FIX_CALL_DUMMY(dummyname, fun, nargs) \
431{ *(int *)((char *) dummyname + 20) = nargs * 4; \
432 *(int *)((char *) dummyname + 14) = fun; }
433\f
434/*
435 * No KDB support, Yet! */
436/* Interface definitions for kernel debugger KDB. */
437
438/* Map machine fault codes into signal numbers.
439 First subtract 0, divide by 4, then index in a table.
440 Faults for which the entry in this table is 0
441 are not handled by KDB; the program's own trap handler
442 gets to handle then. */
443
444#define FAULT_CODE_ORIGIN 0
445#define FAULT_CODE_UNITS 4
446#define FAULT_TABLE \
447{ 0, 0, 0, 0, SIGTRAP, 0, 0, 0, \
448 0, SIGTRAP, 0, 0, 0, 0, 0, SIGKILL, \
449 0, 0, 0, 0, 0, 0, 0, 0, \
450 SIGILL }
451
452/* Start running with a stack stretching from BEG to END.
453 BEG and END should be symbols meaningful to the assembler.
454 This is used only for kdb. */
455
456#define INIT_STACK(beg, end) \
457{ asm (".globl end"); \
458 asm ("movel $ end, sp"); \
459 asm ("clrl fp"); }
460
461/* Push the frame pointer register on the stack. */
462#define PUSH_FRAME_PTR \
463 asm ("movel fp, -(sp)");
464
465/* Copy the top-of-stack to the frame pointer register. */
466#define POP_FRAME_PTR \
467 asm ("movl (sp), fp");
468
469/* After KDB is entered by a fault, push all registers
470 that GDB thinks about (all NUM_REGS of them),
471 so that they appear in order of ascending GDB register number.
472 The fault code will be on the stack beyond the last register. */
473
474#define PUSH_REGISTERS \
475{ asm ("clrw -(sp)"); \
476 asm ("pea 10(sp)"); \
477 asm ("movem $ 0xfffe,-(sp)"); }
478
479/* Assuming the registers (including processor status) have been
480 pushed on the stack in order of ascending GDB register number,
481 restore them and return to the address in the saved PC register. */
482
483#define POP_REGISTERS \
484{ asm ("subil $8,28(sp)"); \
485 asm ("movem (sp),$ 0xffff"); \
486 asm ("rte"); }
This page took 0.050169 seconds and 4 git commands to generate.