2011-01-08 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
CommitLineData
96309189
MS
1/* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
7b6bb8da
JB
3 Copyright 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
96309189
MS
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
96309189
MS
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
96309189
MS
20
21#include "defs.h"
22
23#include <stdarg.h>
24
25#if defined (HAVE_STRING_H)
26#include <string.h>
27#endif
28
29#include "gdb_assert.h"
30#include "elf-bfd.h"
31#include "elf/m32c.h"
32#include "gdb/sim-m32c.h"
33#include "dis-asm.h"
34#include "gdbtypes.h"
35#include "regcache.h"
36#include "arch-utils.h"
37#include "frame.h"
38#include "frame-unwind.h"
39#include "dwarf2-frame.h"
40#include "dwarf2expr.h"
41#include "symtab.h"
42#include "gdbcore.h"
43#include "value.h"
44#include "reggroups.h"
45#include "prologue-value.h"
46#include "target.h"
47
48\f
49/* The m32c tdep structure. */
50
51static struct reggroup *m32c_dma_reggroup;
52
53struct m32c_reg;
54
55/* The type of a function that moves the value of REG between CACHE or
56 BUF --- in either direction. */
57typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
58 struct regcache *cache,
59 void *buf);
60
61struct m32c_reg
62{
63 /* The name of this register. */
64 const char *name;
65
66 /* Its type. */
67 struct type *type;
68
69 /* The architecture this register belongs to. */
70 struct gdbarch *arch;
71
72 /* Its GDB register number. */
73 int num;
74
75 /* Its sim register number. */
76 int sim_num;
77
78 /* Its DWARF register number, or -1 if it doesn't have one. */
79 int dwarf_num;
80
81 /* Register group memberships. */
82 unsigned int general_p : 1;
83 unsigned int dma_p : 1;
84 unsigned int system_p : 1;
85 unsigned int save_restore_p : 1;
86
87 /* Functions to read its value from a regcache, and write its value
88 to a regcache. */
89 m32c_move_reg_t *read, *write;
90
91 /* Data for READ and WRITE functions. The exact meaning depends on
92 the specific functions selected; see the comments for those
93 functions. */
94 struct m32c_reg *rx, *ry;
95 int n;
96};
97
98
99/* An overestimate of the number of raw and pseudoregisters we will
100 have. The exact answer depends on the variant of the architecture
101 at hand, but we can use this to declare statically allocated
102 arrays, and bump it up when needed. */
103#define M32C_MAX_NUM_REGS (75)
104
105/* The largest assigned DWARF register number. */
106#define M32C_MAX_DWARF_REGNUM (40)
107
108
109struct gdbarch_tdep
110{
111 /* All the registers for this variant, indexed by GDB register
112 number, and the number of registers present. */
113 struct m32c_reg regs[M32C_MAX_NUM_REGS];
114
115 /* The number of valid registers. */
116 int num_regs;
117
118 /* Interesting registers. These are pointers into REGS. */
119 struct m32c_reg *pc, *flg;
120 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
121 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
122 struct m32c_reg *sb, *fb, *sp;
123
124 /* A table indexed by DWARF register numbers, pointing into
125 REGS. */
126 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
127
128 /* Types for this architecture. We can't use the builtin_type_foo
129 types, because they're not initialized when building a gdbarch
130 structure. */
131 struct type *voyd, *ptr_voyd, *func_voyd;
132 struct type *uint8, *uint16;
133 struct type *int8, *int16, *int32, *int64;
134
135 /* The types for data address and code address registers. */
136 struct type *data_addr_reg_type, *code_addr_reg_type;
137
138 /* The number of bytes a return address pushed by a 'jsr' instruction
139 occupies on the stack. */
140 int ret_addr_bytes;
141
142 /* The number of bytes an address register occupies on the stack
143 when saved by an 'enter' or 'pushm' instruction. */
144 int push_addr_bytes;
145};
146
147\f
148/* Types. */
149
150static void
151make_types (struct gdbarch *arch)
152{
153 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
154 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
155 int data_addr_reg_bits, code_addr_reg_bits;
156 char type_name[50];
157
158#if 0
159 /* This is used to clip CORE_ADDR values, so this value is
160 appropriate both on the m32c, where pointers are 32 bits long,
161 and on the m16c, where pointers are sixteen bits long, but there
162 may be code above the 64k boundary. */
163 set_gdbarch_addr_bit (arch, 24);
164#else
165 /* GCC uses 32 bits for addrs in the dwarf info, even though
166 only 16/24 bits are used. Setting addr_bit to 24 causes
167 errors in reading the dwarf addresses. */
168 set_gdbarch_addr_bit (arch, 32);
169#endif
170
171 set_gdbarch_int_bit (arch, 16);
172 switch (mach)
173 {
174 case bfd_mach_m16c:
175 data_addr_reg_bits = 16;
176 code_addr_reg_bits = 24;
177 set_gdbarch_ptr_bit (arch, 16);
178 tdep->ret_addr_bytes = 3;
179 tdep->push_addr_bytes = 2;
180 break;
181
182 case bfd_mach_m32c:
183 data_addr_reg_bits = 24;
184 code_addr_reg_bits = 24;
185 set_gdbarch_ptr_bit (arch, 32);
186 tdep->ret_addr_bytes = 4;
187 tdep->push_addr_bytes = 4;
188 break;
189
190 default:
f3574227 191 gdb_assert_not_reached ("unexpected mach");
96309189
MS
192 }
193
194 /* The builtin_type_mumble variables are sometimes uninitialized when
195 this is called, so we avoid using them. */
e9bb382b
UW
196 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
197 tdep->ptr_voyd
bd333fb7
KB
198 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
199 NULL);
96309189 200 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
e9bb382b 201 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
96309189
MS
202 tdep->func_voyd = lookup_function_type (tdep->voyd);
203
204 sprintf (type_name, "%s_data_addr_t",
205 gdbarch_bfd_arch_info (arch)->printable_name);
206 tdep->data_addr_reg_type
bd333fb7
KB
207 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
208 xstrdup (type_name));
96309189 209 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
e9bb382b 210 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
96309189
MS
211
212 sprintf (type_name, "%s_code_addr_t",
213 gdbarch_bfd_arch_info (arch)->printable_name);
214 tdep->code_addr_reg_type
bd333fb7
KB
215 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
216 xstrdup (type_name));
96309189 217 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
e9bb382b
UW
218 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
219
220 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
221 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
222 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
223 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
224 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
225 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
96309189
MS
226}
227
228
229\f
230/* Register set. */
231
232static const char *
d93859e2 233m32c_register_name (struct gdbarch *gdbarch, int num)
96309189 234{
d93859e2 235 return gdbarch_tdep (gdbarch)->regs[num].name;
96309189
MS
236}
237
238
239static struct type *
240m32c_register_type (struct gdbarch *arch, int reg_nr)
241{
242 return gdbarch_tdep (arch)->regs[reg_nr].type;
243}
244
245
246static int
e7faf938 247m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
96309189 248{
e7faf938 249 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
96309189
MS
250}
251
252
253static int
d3f73121 254m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
96309189 255{
d3f73121 256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
257 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
258 && tdep->dwarf_regs[reg_nr])
259 return tdep->dwarf_regs[reg_nr]->num;
260 else
261 /* The DWARF CFI code expects to see -1 for invalid register
262 numbers. */
263 return -1;
264}
265
266
63807e1d 267static int
96309189
MS
268m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
269 struct reggroup *group)
270{
40a6adc1 271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
272 struct m32c_reg *reg = &tdep->regs[regnum];
273
274 /* The anonymous raw registers aren't in any groups. */
275 if (! reg->name)
276 return 0;
277
278 if (group == all_reggroup)
279 return 1;
280
281 if (group == general_reggroup
282 && reg->general_p)
283 return 1;
284
285 if (group == m32c_dma_reggroup
286 && reg->dma_p)
287 return 1;
288
289 if (group == system_reggroup
290 && reg->system_p)
291 return 1;
292
293 /* Since the m32c DWARF register numbers refer to cooked registers, not
294 raw registers, and frame_pop depends on the save and restore groups
295 containing registers the DWARF CFI will actually mention, our save
296 and restore groups are cooked registers, not raw registers. (This is
297 why we can't use the default reggroup function.) */
298 if ((group == save_reggroup
299 || group == restore_reggroup)
300 && reg->save_restore_p)
301 return 1;
302
303 return 0;
304}
305
306
307/* Register move functions. We declare them here using
308 m32c_move_reg_t to check the types. */
309static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
310static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
311static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
312static m32c_move_reg_t m32c_part_read, m32c_part_write;
313static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
314static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
315
316
317/* Copy the value of the raw register REG from CACHE to BUF. */
318static void
319m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
320{
321 regcache_raw_read (cache, reg->num, buf);
322}
323
324
325/* Copy the value of the raw register REG from BUF to CACHE. */
326static void
327m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
328{
329 regcache_raw_write (cache, reg->num, (const void *) buf);
330}
331
332
333/* Return the value of the 'flg' register in CACHE. */
334static int
335m32c_read_flg (struct regcache *cache)
336{
337 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
338 ULONGEST flg;
339 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
340 return flg & 0xffff;
341}
342
343
7830cb4f
CV
344/* Evaluate the real register number of a banked register. */
345static struct m32c_reg *
346m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
347{
348 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
349}
350
351
96309189
MS
352/* Move the value of a banked register from CACHE to BUF.
353 If the value of the 'flg' register in CACHE has any of the bits
354 masked in REG->n set, then read REG->ry. Otherwise, read
355 REG->rx. */
356static void
357m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
358{
7830cb4f 359 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
96309189
MS
360 regcache_raw_read (cache, bank_reg->num, buf);
361}
362
363
364/* Move the value of a banked register from BUF to CACHE.
365 If the value of the 'flg' register in CACHE has any of the bits
366 masked in REG->n set, then write REG->ry. Otherwise, write
367 REG->rx. */
368static void
369m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
370{
7830cb4f 371 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
96309189
MS
372 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
373}
374
375
376/* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
377 banked register; on bfd_mach_m16c, it's not. */
378static void
379m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
380{
381 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
382 m32c_raw_read (reg->rx, cache, buf);
383 else
384 m32c_banked_read (reg, cache, buf);
385}
386
387
388/* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
389 banked register; on bfd_mach_m16c, it's not. */
390static void
391m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
392{
393 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
394 m32c_raw_write (reg->rx, cache, buf);
395 else
396 m32c_banked_write (reg, cache, buf);
397}
398
399
400/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
401 and *LEN_P to the offset and length, in bytes, of the part REG
402 occupies in its underlying register. The offset is from the
403 lower-addressed end, regardless of the architecture's endianness.
404 (The M32C family is always little-endian, but let's keep those
405 assumptions out of here.) */
406static void
407m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
408{
409 /* The length of the containing register, of which REG is one part. */
410 int containing_len = TYPE_LENGTH (reg->rx->type);
411
412 /* The length of one "element" in our imaginary array. */
413 int elt_len = TYPE_LENGTH (reg->type);
414
415 /* The offset of REG's "element" from the least significant end of
416 the containing register. */
417 int elt_offset = reg->n * elt_len;
418
419 /* If we extend off the end, trim the length of the element. */
420 if (elt_offset + elt_len > containing_len)
421 {
422 elt_len = containing_len - elt_offset;
423 /* We shouldn't be declaring partial registers that go off the
424 end of their containing registers. */
425 gdb_assert (elt_len > 0);
426 }
427
428 /* Flip the offset around if we're big-endian. */
429 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
430 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
431
432 *offset_p = elt_offset;
433 *len_p = elt_len;
434}
435
436
437/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
438 to BUF. Treating the value of the register REG->rx as an array of
439 REG->type values, where higher indices refer to more significant
440 bits, read the value of the REG->n'th element. */
441static void
442m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
443{
444 int offset, len;
445 memset (buf, 0, TYPE_LENGTH (reg->type));
446 m32c_find_part (reg, &offset, &len);
447 regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
448}
449
450
451/* Move the value of a banked register from BUF to CACHE.
452 Treating the value of the register REG->rx as an array of REG->type
453 values, where higher indices refer to more significant bits, write
454 the value of the REG->n'th element. */
455static void
456m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
457{
458 int offset, len;
459 m32c_find_part (reg, &offset, &len);
460 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
461}
462
463
464/* Move the value of REG from CACHE to BUF. REG's value is the
465 concatenation of the values of the registers REG->rx and REG->ry,
466 with REG->rx contributing the more significant bits. */
467static void
468m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
469{
470 int high_bytes = TYPE_LENGTH (reg->rx->type);
471 int low_bytes = TYPE_LENGTH (reg->ry->type);
472 /* For address arithmetic. */
473 unsigned char *cbuf = buf;
474
475 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
476
477 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
478 {
479 regcache_cooked_read (cache, reg->rx->num, cbuf);
480 regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
481 }
482 else
483 {
484 regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
485 regcache_cooked_read (cache, reg->ry->num, cbuf);
486 }
487}
488
489
490/* Move the value of REG from CACHE to BUF. REG's value is the
491 concatenation of the values of the registers REG->rx and REG->ry,
492 with REG->rx contributing the more significant bits. */
493static void
494m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
495{
496 int high_bytes = TYPE_LENGTH (reg->rx->type);
497 int low_bytes = TYPE_LENGTH (reg->ry->type);
498 /* For address arithmetic. */
499 unsigned char *cbuf = buf;
500
501 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
502
503 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
504 {
505 regcache_cooked_write (cache, reg->rx->num, cbuf);
506 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
507 }
508 else
509 {
510 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
511 regcache_cooked_write (cache, reg->ry->num, cbuf);
512 }
513}
514
515
516/* Copy the value of the raw register REG from CACHE to BUF. REG is
517 the concatenation (from most significant to least) of r3, r2, r1,
518 and r0. */
519static void
520m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
521{
522 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
523 int len = TYPE_LENGTH (tdep->r0->type);
524
525 /* For address arithmetic. */
526 unsigned char *cbuf = buf;
527
528 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
529 {
530 regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
531 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
532 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
533 regcache_cooked_read (cache, tdep->r3->num, cbuf);
534 }
535 else
536 {
537 regcache_cooked_read (cache, tdep->r0->num, cbuf);
538 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
539 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
540 regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
541 }
542}
543
544
545/* Copy the value of the raw register REG from BUF to CACHE. REG is
546 the concatenation (from most significant to least) of r3, r2, r1,
547 and r0. */
548static void
549m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
550{
551 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
552 int len = TYPE_LENGTH (tdep->r0->type);
553
554 /* For address arithmetic. */
555 unsigned char *cbuf = buf;
556
557 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
558 {
559 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
560 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
561 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
562 regcache_cooked_write (cache, tdep->r3->num, cbuf);
563 }
564 else
565 {
566 regcache_cooked_write (cache, tdep->r0->num, cbuf);
567 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
568 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
569 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
570 }
571}
572
573
574static void
575m32c_pseudo_register_read (struct gdbarch *arch,
576 struct regcache *cache,
577 int cookednum,
578 gdb_byte *buf)
579{
580 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
581 struct m32c_reg *reg;
582
583 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
584 gdb_assert (arch == get_regcache_arch (cache));
585 gdb_assert (arch == tdep->regs[cookednum].arch);
586 reg = &tdep->regs[cookednum];
587
588 reg->read (reg, cache, buf);
589}
590
591
592static void
593m32c_pseudo_register_write (struct gdbarch *arch,
594 struct regcache *cache,
595 int cookednum,
596 const gdb_byte *buf)
597{
598 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
599 struct m32c_reg *reg;
600
601 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
602 gdb_assert (arch == get_regcache_arch (cache));
603 gdb_assert (arch == tdep->regs[cookednum].arch);
604 reg = &tdep->regs[cookednum];
605
606 reg->write (reg, cache, (void *) buf);
607}
608
609
610/* Add a register with the given fields to the end of ARCH's table.
611 Return a pointer to the newly added register. */
612static struct m32c_reg *
613add_reg (struct gdbarch *arch,
614 const char *name,
615 struct type *type,
616 int sim_num,
617 m32c_move_reg_t *read,
618 m32c_move_reg_t *write,
619 struct m32c_reg *rx,
620 struct m32c_reg *ry,
621 int n)
622{
623 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
624 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
625
626 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
627
628 r->name = name;
629 r->type = type;
630 r->arch = arch;
631 r->num = tdep->num_regs;
632 r->sim_num = sim_num;
633 r->dwarf_num = -1;
634 r->general_p = 0;
635 r->dma_p = 0;
636 r->system_p = 0;
637 r->save_restore_p = 0;
638 r->read = read;
639 r->write = write;
640 r->rx = rx;
641 r->ry = ry;
642 r->n = n;
643
644 tdep->num_regs++;
645
646 return r;
647}
648
649
650/* Record NUM as REG's DWARF register number. */
651static void
652set_dwarf_regnum (struct m32c_reg *reg, int num)
653{
654 gdb_assert (num < M32C_MAX_NUM_REGS);
655
656 /* Update the reg->DWARF mapping. Only count the first number
657 assigned to this register. */
658 if (reg->dwarf_num == -1)
659 reg->dwarf_num = num;
660
661 /* Update the DWARF->reg mapping. */
662 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
663}
664
665
666/* Mark REG as a general-purpose register, and return it. */
667static struct m32c_reg *
668mark_general (struct m32c_reg *reg)
669{
670 reg->general_p = 1;
671 return reg;
672}
673
674
675/* Mark REG as a DMA register, and return it. */
676static struct m32c_reg *
677mark_dma (struct m32c_reg *reg)
678{
679 reg->dma_p = 1;
680 return reg;
681}
682
683
684/* Mark REG as a SYSTEM register, and return it. */
685static struct m32c_reg *
686mark_system (struct m32c_reg *reg)
687{
688 reg->system_p = 1;
689 return reg;
690}
691
692
693/* Mark REG as a save-restore register, and return it. */
694static struct m32c_reg *
695mark_save_restore (struct m32c_reg *reg)
696{
697 reg->save_restore_p = 1;
698 return reg;
699}
700
701
702#define FLAGBIT_B 0x0010
703#define FLAGBIT_U 0x0080
704
705/* Handy macros for declaring registers. These all evaluate to
706 pointers to the register declared. Macros that define two
707 registers evaluate to a pointer to the first. */
708
709/* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
710#define R(name, type, sim_num) \
711 (add_reg (arch, (name), (type), (sim_num), \
712 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
713
714/* The simulator register number for a raw register named NAME. */
715#define SIM(name) (m32c_sim_reg_ ## name)
716
717/* A raw unsigned 16-bit data register named NAME.
718 NAME should be an identifier, not a string. */
719#define R16U(name) \
720 (R(#name, tdep->uint16, SIM (name)))
721
722/* A raw data address register named NAME.
723 NAME should be an identifier, not a string. */
724#define RA(name) \
725 (R(#name, tdep->data_addr_reg_type, SIM (name)))
726
727/* A raw code address register named NAME. NAME should
728 be an identifier, not a string. */
729#define RC(name) \
730 (R(#name, tdep->code_addr_reg_type, SIM (name)))
731
732/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
733 NAME should be an identifier, not a string. */
734#define RP(name, type) \
735 (R(#name "0", (type), SIM (name ## 0)), \
736 R(#name "1", (type), SIM (name ## 1)) - 1)
737
738/* A raw banked general-purpose data register named NAME.
739 NAME should be an identifier, not a string. */
740#define RBD(name) \
741 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
742 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
743
744/* A raw banked data address register named NAME.
745 NAME should be an identifier, not a string. */
746#define RBA(name) \
747 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
748 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
749
750/* A cooked register named NAME referring to a raw banked register
751 from the bank selected by the current value of FLG. RAW_PAIR
752 should be a pointer to the first register in the banked pair.
753 NAME must be an identifier, not a string. */
754#define CB(name, raw_pair) \
755 (add_reg (arch, #name, (raw_pair)->type, 0, \
756 m32c_banked_read, m32c_banked_write, \
757 (raw_pair), (raw_pair + 1), FLAGBIT_B))
758
759/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
760 access the top and bottom halves of the register pointed to by
761 NAME. NAME should be an identifier. */
762#define CHL(name, type) \
763 (add_reg (arch, #name "h", (type), 0, \
764 m32c_part_read, m32c_part_write, name, NULL, 1), \
765 add_reg (arch, #name "l", (type), 0, \
766 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
767
768/* A register constructed by concatenating the two registers HIGH and
769 LOW, whose name is HIGHLOW and whose type is TYPE. */
770#define CCAT(high, low, type) \
771 (add_reg (arch, #high #low, (type), 0, \
772 m32c_cat_read, m32c_cat_write, (high), (low), 0))
773
774/* Abbreviations for marking register group membership. */
775#define G(reg) (mark_general (reg))
776#define S(reg) (mark_system (reg))
777#define DMA(reg) (mark_dma (reg))
778
779
780/* Construct the register set for ARCH. */
781static void
782make_regs (struct gdbarch *arch)
783{
784 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
785 int mach = gdbarch_bfd_arch_info (arch)->mach;
f79b9530
DJ
786 int num_raw_regs;
787 int num_cooked_regs;
788
789 struct m32c_reg *r0;
790 struct m32c_reg *r1;
791 struct m32c_reg *r2;
792 struct m32c_reg *r3;
793 struct m32c_reg *a0;
794 struct m32c_reg *a1;
795 struct m32c_reg *fb;
796 struct m32c_reg *sb;
797 struct m32c_reg *sp;
798 struct m32c_reg *r0hl;
799 struct m32c_reg *r1hl;
800 struct m32c_reg *r2hl;
801 struct m32c_reg *r3hl;
802 struct m32c_reg *intbhl;
803 struct m32c_reg *r2r0;
804 struct m32c_reg *r3r1;
805 struct m32c_reg *r3r1r2r0;
806 struct m32c_reg *r3r2r1r0;
807 struct m32c_reg *a1a0;
96309189
MS
808
809 struct m32c_reg *raw_r0_pair = RBD (r0);
810 struct m32c_reg *raw_r1_pair = RBD (r1);
811 struct m32c_reg *raw_r2_pair = RBD (r2);
812 struct m32c_reg *raw_r3_pair = RBD (r3);
813 struct m32c_reg *raw_a0_pair = RBA (a0);
814 struct m32c_reg *raw_a1_pair = RBA (a1);
815 struct m32c_reg *raw_fb_pair = RBA (fb);
816
817 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
818 We always declare both raw registers, and deal with the distinction
819 in the pseudoregister. */
820 struct m32c_reg *raw_sb_pair = RBA (sb);
821
822 struct m32c_reg *usp = S (RA (usp));
823 struct m32c_reg *isp = S (RA (isp));
824 struct m32c_reg *intb = S (RC (intb));
825 struct m32c_reg *pc = G (RC (pc));
826 struct m32c_reg *flg = G (R16U (flg));
827
828 if (mach == bfd_mach_m32c)
829 {
830 struct m32c_reg *svf = S (R16U (svf));
831 struct m32c_reg *svp = S (RC (svp));
832 struct m32c_reg *vct = S (RC (vct));
833
834 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
835 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
836 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
837 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
838 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
839 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
840 }
841
f79b9530 842 num_raw_regs = tdep->num_regs;
96309189 843
f79b9530
DJ
844 r0 = G (CB (r0, raw_r0_pair));
845 r1 = G (CB (r1, raw_r1_pair));
846 r2 = G (CB (r2, raw_r2_pair));
847 r3 = G (CB (r3, raw_r3_pair));
848 a0 = G (CB (a0, raw_a0_pair));
849 a1 = G (CB (a1, raw_a1_pair));
850 fb = G (CB (fb, raw_fb_pair));
96309189
MS
851
852 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
853 Specify custom read/write functions that do the right thing. */
f79b9530
DJ
854 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
855 m32c_sb_read, m32c_sb_write,
856 raw_sb_pair, raw_sb_pair + 1, 0));
96309189
MS
857
858 /* The current sp is either usp or isp, depending on the value of
859 the FLG register's U bit. */
f79b9530
DJ
860 sp = G (add_reg (arch, "sp", usp->type, 0,
861 m32c_banked_read, m32c_banked_write,
862 isp, usp, FLAGBIT_U));
96309189 863
f79b9530
DJ
864 r0hl = CHL (r0, tdep->int8);
865 r1hl = CHL (r1, tdep->int8);
866 r2hl = CHL (r2, tdep->int8);
867 r3hl = CHL (r3, tdep->int8);
868 intbhl = CHL (intb, tdep->int16);
96309189 869
f79b9530
DJ
870 r2r0 = CCAT (r2, r0, tdep->int32);
871 r3r1 = CCAT (r3, r1, tdep->int32);
872 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
96309189 873
f79b9530 874 r3r2r1r0
96309189
MS
875 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
876 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
877
96309189
MS
878 if (mach == bfd_mach_m16c)
879 a1a0 = CCAT (a1, a0, tdep->int32);
880 else
881 a1a0 = NULL;
882
f79b9530 883 num_cooked_regs = tdep->num_regs - num_raw_regs;
96309189
MS
884
885 tdep->pc = pc;
886 tdep->flg = flg;
887 tdep->r0 = r0;
888 tdep->r1 = r1;
889 tdep->r2 = r2;
890 tdep->r3 = r3;
891 tdep->r2r0 = r2r0;
892 tdep->r3r2r1r0 = r3r2r1r0;
893 tdep->r3r1r2r0 = r3r1r2r0;
894 tdep->a0 = a0;
895 tdep->a1 = a1;
896 tdep->sb = sb;
897 tdep->fb = fb;
898 tdep->sp = sp;
899
900 /* Set up the DWARF register table. */
901 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
902 set_dwarf_regnum (r0hl + 1, 0x01);
903 set_dwarf_regnum (r0hl + 0, 0x02);
904 set_dwarf_regnum (r1hl + 1, 0x03);
905 set_dwarf_regnum (r1hl + 0, 0x04);
906 set_dwarf_regnum (r0, 0x05);
907 set_dwarf_regnum (r1, 0x06);
908 set_dwarf_regnum (r2, 0x07);
909 set_dwarf_regnum (r3, 0x08);
910 set_dwarf_regnum (a0, 0x09);
911 set_dwarf_regnum (a1, 0x0a);
912 set_dwarf_regnum (fb, 0x0b);
913 set_dwarf_regnum (sp, 0x0c);
914 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
915 set_dwarf_regnum (sb, 0x13);
916 set_dwarf_regnum (r2r0, 0x15);
917 set_dwarf_regnum (r3r1, 0x16);
918 if (a1a0)
919 set_dwarf_regnum (a1a0, 0x17);
920
921 /* Enumerate the save/restore register group.
922
923 The regcache_save and regcache_restore functions apply their read
924 function to each register in this group.
925
926 Since frame_pop supplies frame_unwind_register as its read
927 function, the registers meaningful to the Dwarf unwinder need to
928 be in this group.
929
930 On the other hand, when we make inferior calls, save_inferior_status
931 and restore_inferior_status use them to preserve the current register
932 values across the inferior call. For this, you'd kind of like to
933 preserve all the raw registers, to protect the interrupted code from
934 any sort of bank switching the callee might have done. But we handle
935 those cases so badly anyway --- for example, it matters whether we
936 restore FLG before or after we restore the general-purpose registers,
937 but there's no way to express that --- that it isn't worth worrying
938 about.
939
940 We omit control registers like inthl: if you call a function that
941 changes those, it's probably because you wanted that change to be
942 visible to the interrupted code. */
943 mark_save_restore (r0);
944 mark_save_restore (r1);
945 mark_save_restore (r2);
946 mark_save_restore (r3);
947 mark_save_restore (a0);
948 mark_save_restore (a1);
949 mark_save_restore (sb);
950 mark_save_restore (fb);
951 mark_save_restore (sp);
952 mark_save_restore (pc);
953 mark_save_restore (flg);
954
955 set_gdbarch_num_regs (arch, num_raw_regs);
956 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
957 set_gdbarch_pc_regnum (arch, pc->num);
958 set_gdbarch_sp_regnum (arch, sp->num);
959 set_gdbarch_register_name (arch, m32c_register_name);
960 set_gdbarch_register_type (arch, m32c_register_type);
961 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
962 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
963 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
964 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
96309189
MS
965 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
966 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
967
968 reggroup_add (arch, general_reggroup);
969 reggroup_add (arch, all_reggroup);
970 reggroup_add (arch, save_reggroup);
971 reggroup_add (arch, restore_reggroup);
972 reggroup_add (arch, system_reggroup);
973 reggroup_add (arch, m32c_dma_reggroup);
974}
975
976
977\f
978/* Breakpoints. */
979
980static const unsigned char *
67d57894 981m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
96309189
MS
982{
983 static unsigned char break_insn[] = { 0x00 }; /* brk */
984
985 *len = sizeof (break_insn);
986 return break_insn;
987}
988
989
990\f
991/* Prologue analysis. */
992
993struct m32c_prologue
994{
995 /* For consistency with the DWARF 2 .debug_frame info generated by
996 GCC, a frame's CFA is the address immediately after the saved
997 return address. */
998
999 /* The architecture for which we generated this prologue info. */
1000 struct gdbarch *arch;
1001
1002 enum {
1003 /* This function uses a frame pointer. */
1004 prologue_with_frame_ptr,
1005
1006 /* This function has no frame pointer. */
1007 prologue_sans_frame_ptr,
1008
1009 /* This function sets up the stack, so its frame is the first
1010 frame on the stack. */
1011 prologue_first_frame
1012
1013 } kind;
1014
1015 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1016 CFA to where the frame pointer points. This is always zero or
1017 negative. */
1018 LONGEST frame_ptr_offset;
1019
1020 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1021 the stack pointer --- always zero or negative.
1022
1023 Calling this a "size" is a bit misleading, but given that the
1024 stack grows downwards, using offsets for everything keeps one
1025 from going completely sign-crazy: you never change anything's
1026 sign for an ADD instruction; always change the second operand's
1027 sign for a SUB instruction; and everything takes care of
1028 itself.
1029
1030 Functions that use alloca don't have a constant frame size. But
1031 they always have frame pointers, so we must use that to find the
1032 CFA (and perhaps to unwind the stack pointer). */
1033 LONGEST frame_size;
1034
1035 /* The address of the first instruction at which the frame has been
1036 set up and the arguments are where the debug info says they are
1037 --- as best as we can tell. */
1038 CORE_ADDR prologue_end;
1039
1040 /* reg_offset[R] is the offset from the CFA at which register R is
1041 saved, or 1 if register R has not been saved. (Real values are
1042 always zero or negative.) */
1043 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1044};
1045
1046
1047/* The longest I've seen, anyway. */
1048#define M32C_MAX_INSN_LEN (9)
1049
1050/* Processor state, for the prologue analyzer. */
1051struct m32c_pv_state
1052{
1053 struct gdbarch *arch;
1054 pv_t r0, r1, r2, r3;
1055 pv_t a0, a1;
1056 pv_t sb, fb, sp;
1057 pv_t pc;
1058 struct pv_area *stack;
1059
1060 /* Bytes from the current PC, the address they were read from,
1061 and the address of the next unconsumed byte. */
1062 gdb_byte insn[M32C_MAX_INSN_LEN];
1063 CORE_ADDR scan_pc, next_addr;
1064};
1065
1066
1067/* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1068 all went well, or non-zero if simulating the action would trash our
1069 state. */
1070static int
1071m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1072{
1073 if (pv_area_store_would_trash (state->stack, state->sp))
1074 return 1;
1075
1076 state->sp = pv_add_constant (state->sp, -size);
1077 pv_area_store (state->stack, state->sp, size, value);
1078
1079 return 0;
1080}
1081
1082
1083/* A source or destination location for an m16c or m32c
1084 instruction. */
1085struct srcdest
1086{
1087 /* If srcdest_reg, the location is a register pointed to by REG.
1088 If srcdest_partial_reg, the location is part of a register pointed
1089 to by REG. We don't try to handle this too well.
1090 If srcdest_mem, the location is memory whose address is ADDR. */
1091 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1092 pv_t *reg, addr;
1093};
1094
1095
1096/* Return the SIZE-byte value at LOC in STATE. */
1097static pv_t
1098m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1099{
1100 if (loc.kind == srcdest_mem)
1101 return pv_area_fetch (state->stack, loc.addr, size);
1102 else if (loc.kind == srcdest_partial_reg)
1103 return pv_unknown ();
1104 else
1105 return *loc.reg;
1106}
1107
1108
1109/* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1110 all went well, or non-zero if simulating the store would trash our
1111 state. */
1112static int
1113m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1114 pv_t value, int size)
1115{
1116 if (loc.kind == srcdest_mem)
1117 {
1118 if (pv_area_store_would_trash (state->stack, loc.addr))
1119 return 1;
1120 pv_area_store (state->stack, loc.addr, size, value);
1121 }
1122 else if (loc.kind == srcdest_partial_reg)
1123 *loc.reg = pv_unknown ();
1124 else
1125 *loc.reg = value;
1126
1127 return 0;
1128}
1129
1130
1131static int
1132m32c_sign_ext (int v, int bits)
1133{
1134 int mask = 1 << (bits - 1);
1135 return (v ^ mask) - mask;
1136}
1137
1138static unsigned int
1139m32c_next_byte (struct m32c_pv_state *st)
1140{
1141 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1142 return st->insn[st->next_addr++ - st->scan_pc];
1143}
1144
1145static int
1146m32c_udisp8 (struct m32c_pv_state *st)
1147{
1148 return m32c_next_byte (st);
1149}
1150
1151
1152static int
1153m32c_sdisp8 (struct m32c_pv_state *st)
1154{
1155 return m32c_sign_ext (m32c_next_byte (st), 8);
1156}
1157
1158
1159static int
1160m32c_udisp16 (struct m32c_pv_state *st)
1161{
1162 int low = m32c_next_byte (st);
1163 int high = m32c_next_byte (st);
1164
1165 return low + (high << 8);
1166}
1167
1168
1169static int
1170m32c_sdisp16 (struct m32c_pv_state *st)
1171{
1172 int low = m32c_next_byte (st);
1173 int high = m32c_next_byte (st);
1174
1175 return m32c_sign_ext (low + (high << 8), 16);
1176}
1177
1178
1179static int
1180m32c_udisp24 (struct m32c_pv_state *st)
1181{
1182 int low = m32c_next_byte (st);
1183 int mid = m32c_next_byte (st);
1184 int high = m32c_next_byte (st);
1185
1186 return low + (mid << 8) + (high << 16);
1187}
1188
1189
1190/* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1191static int
1192m32c_get_src23 (unsigned char *i)
1193{
1194 return (((i[0] & 0x70) >> 2)
1195 | ((i[1] & 0x30) >> 4));
1196}
1197
1198
1199/* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1200static int
1201m32c_get_dest23 (unsigned char *i)
1202{
1203 return (((i[0] & 0x0e) << 1)
1204 | ((i[1] & 0xc0) >> 6));
1205}
1206
1207
1208static struct srcdest
1209m32c_decode_srcdest4 (struct m32c_pv_state *st,
1210 int code, int size)
1211{
1212 struct srcdest sd;
1213
1214 if (code < 6)
1215 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1216 else
1217 sd.kind = srcdest_mem;
1218
d56874a7
DD
1219 sd.addr = pv_unknown ();
1220 sd.reg = 0;
1221
96309189
MS
1222 switch (code)
1223 {
1224 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1225 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1226 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1227 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1228
1229 case 0x4: sd.reg = &st->a0; break;
1230 case 0x5: sd.reg = &st->a1; break;
1231
1232 case 0x6: sd.addr = st->a0; break;
1233 case 0x7: sd.addr = st->a1; break;
1234
1235 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1236 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1237 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1238 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1239
1240 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1241 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1242 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1243 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1244
1245 default:
f3574227 1246 gdb_assert_not_reached ("unexpected srcdest4");
96309189
MS
1247 }
1248
1249 return sd;
1250}
1251
1252
1253static struct srcdest
1254m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1255{
1256 struct srcdest sd;
1257
d56874a7
DD
1258 sd.addr = pv_unknown ();
1259 sd.reg = 0;
1260
96309189
MS
1261 switch (code)
1262 {
1263 case 0x12:
1264 case 0x13:
1265 case 0x10:
1266 case 0x11:
1267 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1268 break;
1269
1270 case 0x02:
1271 case 0x03:
1272 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1273 break;
1274
1275 default:
1276 sd.kind = srcdest_mem;
1277 break;
1278
1279 }
1280
1281 switch (code)
1282 {
1283 case 0x12: sd.reg = &st->r0; break;
1284 case 0x13: sd.reg = &st->r1; break;
1285 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1286 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1287 case 0x02: sd.reg = &st->a0; break;
1288 case 0x03: sd.reg = &st->a1; break;
1289
1290 case 0x00: sd.addr = st->a0; break;
1291 case 0x01: sd.addr = st->a1; break;
1292 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1293 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1294 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1295 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1296 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1297 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1298 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1299 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1300 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1301 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1302 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1303 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1304 default:
f3574227 1305 gdb_assert_not_reached ("unexpected sd23");
96309189
MS
1306 }
1307
1308 if (ind)
1309 {
1310 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1311 sd.kind = srcdest_mem;
1312 }
1313
1314 return sd;
1315}
1316
1317
1318/* The r16c and r32c machines have instructions with similar
1319 semantics, but completely different machine language encodings. So
1320 we break out the semantics into their own functions, and leave
1321 machine-specific decoding in m32c_analyze_prologue.
1322
1323 The following functions all expect their arguments already decoded,
1324 and they all return zero if analysis should continue past this
1325 instruction, or non-zero if analysis should stop. */
1326
1327
1328/* Simulate an 'enter SIZE' instruction in STATE. */
1329static int
1330m32c_pv_enter (struct m32c_pv_state *state, int size)
1331{
1332 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1333
1334 /* If simulating this store would require us to forget
1335 everything we know about the stack frame in the name of
1336 accuracy, it would be better to just quit now. */
1337 if (pv_area_store_would_trash (state->stack, state->sp))
1338 return 1;
1339
1340 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1341 return 1;
1342 state->fb = state->sp;
1343 state->sp = pv_add_constant (state->sp, -size);
1344
1345 return 0;
1346}
1347
1348
1349static int
1350m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1351 int bit, int src, int size)
1352{
1353 if (bit & src)
1354 {
1355 if (m32c_pv_push (state, reg, size))
1356 return 1;
1357 }
1358
1359 return 0;
1360}
1361
1362
1363/* Simulate a 'pushm SRC' instruction in STATE. */
1364static int
1365m32c_pv_pushm (struct m32c_pv_state *state, int src)
1366{
1367 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1368
1369 /* The bits in SRC indicating which registers to save are:
1370 r0 r1 r2 r3 a0 a1 sb fb */
1371 return
1372 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1373 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1374 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1375 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1376 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1377 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1378 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1379 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1380}
1381
1382/* Return non-zero if VALUE is the first incoming argument register. */
1383
1384static int
1385m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1386{
1387 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1388 return (value.kind == pvk_register
1389 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1390 ? (value.reg == tdep->r1->num)
1391 : (value.reg == tdep->r0->num))
1392 && value.k == 0);
1393}
1394
1395/* Return non-zero if VALUE is an incoming argument register. */
1396
1397static int
1398m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1399{
1400 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1401 return (value.kind == pvk_register
1402 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1403 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1404 : (value.reg == tdep->r0->num))
1405 && value.k == 0);
1406}
1407
1408/* Return non-zero if a store of VALUE to LOC is probably spilling an
1409 argument register to its stack slot in STATE. Such instructions
1410 should be included in the prologue, if possible.
1411
1412 The store is a spill if:
1413 - the value being stored is the original value of an argument register;
1414 - the value has not already been stored somewhere in STACK; and
1415 - LOC is a stack slot (e.g., a memory location whose address is
1416 relative to the original value of the SP). */
1417
1418static int
1419m32c_is_arg_spill (struct m32c_pv_state *st,
1420 struct srcdest loc,
1421 pv_t value)
1422{
1423 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1424
1425 return (m32c_is_arg_reg (st, value)
1426 && loc.kind == srcdest_mem
1427 && pv_is_register (loc.addr, tdep->sp->num)
1428 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1429}
1430
1431/* Return non-zero if a store of VALUE to LOC is probably
1432 copying the struct return address into an address register
1433 for immediate use. This is basically a "spill" into the
1434 address register, instead of onto the stack.
1435
1436 The prerequisites are:
1437 - value being stored is original value of the FIRST arg register;
1438 - value has not already been stored on stack; and
1439 - LOC is an address register (a0 or a1). */
1440
1441static int
1442m32c_is_struct_return (struct m32c_pv_state *st,
1443 struct srcdest loc,
1444 pv_t value)
1445{
1446 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1447
1448 return (m32c_is_1st_arg_reg (st, value)
1449 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1450 && loc.kind == srcdest_reg
1451 && (pv_is_register (*loc.reg, tdep->a0->num)
1452 || pv_is_register (*loc.reg, tdep->a1->num)));
1453}
1454
1455/* Return non-zero if a 'pushm' saving the registers indicated by SRC
1456 was a register save:
1457 - all the named registers should have their original values, and
1458 - the stack pointer should be at a constant offset from the
1459 original stack pointer. */
1460static int
1461m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1462{
1463 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1464 /* The bits in SRC indicating which registers to save are:
1465 r0 r1 r2 r3 a0 a1 sb fb */
1466 return
1467 (pv_is_register (st->sp, tdep->sp->num)
1468 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1469 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1470 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1471 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1472 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1473 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1474 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1475 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1476}
1477
1478
1479/* Function for finding saved registers in a 'struct pv_area'; we pass
1480 this to pv_area_scan.
1481
1482 If VALUE is a saved register, ADDR says it was saved at a constant
1483 offset from the frame base, and SIZE indicates that the whole
1484 register was saved, record its offset in RESULT_UNTYPED. */
1485static void
1486check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1487{
1488 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1489 struct gdbarch *arch = prologue->arch;
1490 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1491
1492 /* Is this the unchanged value of some register being saved on the
1493 stack? */
1494 if (value.kind == pvk_register
1495 && value.k == 0
1496 && pv_is_register (addr, tdep->sp->num))
1497 {
1498 /* Some registers require special handling: they're saved as a
1499 larger value than the register itself. */
1500 CORE_ADDR saved_size = register_size (arch, value.reg);
1501
1502 if (value.reg == tdep->pc->num)
1503 saved_size = tdep->ret_addr_bytes;
7b9ee6a8 1504 else if (register_type (arch, value.reg)
96309189
MS
1505 == tdep->data_addr_reg_type)
1506 saved_size = tdep->push_addr_bytes;
1507
1508 if (size == saved_size)
1509 {
1510 /* Find which end of the saved value corresponds to our
1511 register. */
1512 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1513 prologue->reg_offset[value.reg]
1514 = (addr.k + saved_size - register_size (arch, value.reg));
1515 else
1516 prologue->reg_offset[value.reg] = addr.k;
1517 }
1518 }
1519}
1520
1521
1522/* Analyze the function prologue for ARCH at START, going no further
1523 than LIMIT, and place a description of what we found in
1524 PROLOGUE. */
63807e1d 1525static void
96309189
MS
1526m32c_analyze_prologue (struct gdbarch *arch,
1527 CORE_ADDR start, CORE_ADDR limit,
1528 struct m32c_prologue *prologue)
1529{
1530 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1531 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1532 CORE_ADDR after_last_frame_related_insn;
1533 struct cleanup *back_to;
1534 struct m32c_pv_state st;
1535
1536 st.arch = arch;
1537 st.r0 = pv_register (tdep->r0->num, 0);
1538 st.r1 = pv_register (tdep->r1->num, 0);
1539 st.r2 = pv_register (tdep->r2->num, 0);
1540 st.r3 = pv_register (tdep->r3->num, 0);
1541 st.a0 = pv_register (tdep->a0->num, 0);
1542 st.a1 = pv_register (tdep->a1->num, 0);
1543 st.sb = pv_register (tdep->sb->num, 0);
1544 st.fb = pv_register (tdep->fb->num, 0);
1545 st.sp = pv_register (tdep->sp->num, 0);
1546 st.pc = pv_register (tdep->pc->num, 0);
55f960e1 1547 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
96309189
MS
1548 back_to = make_cleanup_free_pv_area (st.stack);
1549
1550 /* Record that the call instruction has saved the return address on
1551 the stack. */
1552 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1553
1554 memset (prologue, 0, sizeof (*prologue));
1555 prologue->arch = arch;
1556 {
1557 int i;
1558 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1559 prologue->reg_offset[i] = 1;
1560 }
1561
1562 st.scan_pc = after_last_frame_related_insn = start;
1563
1564 while (st.scan_pc < limit)
1565 {
1566 pv_t pre_insn_fb = st.fb;
1567 pv_t pre_insn_sp = st.sp;
1568
1569 /* In theory we could get in trouble by trying to read ahead
1570 here, when we only know we're expecting one byte. In
1571 practice I doubt anyone will care, and it makes the rest of
1572 the code easier. */
1573 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1574 /* If we can't fetch the instruction from memory, stop here
1575 and hope for the best. */
1576 break;
1577 st.next_addr = st.scan_pc;
1578
1579 /* The assembly instructions are written as they appear in the
1580 section of the processor manuals that describe the
1581 instruction encodings.
1582
1583 When a single assembly language instruction has several
1584 different machine-language encodings, the manual
1585 distinguishes them by a number in parens, before the
1586 mnemonic. Those numbers are included, as well.
1587
1588 The srcdest decoding instructions have the same names as the
1589 analogous functions in the simulator. */
1590 if (mach == bfd_mach_m16c)
1591 {
1592 /* (1) ENTER #imm8 */
1593 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1594 {
1595 if (m32c_pv_enter (&st, st.insn[2]))
1596 break;
1597 st.next_addr += 3;
1598 }
1599 /* (1) PUSHM src */
1600 else if (st.insn[0] == 0xec)
1601 {
1602 int src = st.insn[1];
1603 if (m32c_pv_pushm (&st, src))
1604 break;
1605 st.next_addr += 2;
1606
1607 if (m32c_pushm_is_reg_save (&st, src))
1608 after_last_frame_related_insn = st.next_addr;
1609 }
1610
1611 /* (6) MOV.size:G src, dest */
1612 else if ((st.insn[0] & 0xfe) == 0x72)
1613 {
1614 int size = (st.insn[0] & 0x01) ? 2 : 1;
f79b9530
DJ
1615 struct srcdest src;
1616 struct srcdest dest;
1617 pv_t src_value;
96309189
MS
1618 st.next_addr += 2;
1619
f79b9530 1620 src
96309189 1621 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
f79b9530 1622 dest
96309189 1623 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
f79b9530 1624 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1625
1626 if (m32c_is_arg_spill (&st, dest, src_value))
1627 after_last_frame_related_insn = st.next_addr;
1628 else if (m32c_is_struct_return (&st, dest, src_value))
1629 after_last_frame_related_insn = st.next_addr;
1630
1631 if (m32c_srcdest_store (&st, dest, src_value, size))
1632 break;
1633 }
1634
1635 /* (1) LDC #IMM16, sp */
1636 else if (st.insn[0] == 0xeb
1637 && st.insn[1] == 0x50)
1638 {
1639 st.next_addr += 2;
1640 st.sp = pv_constant (m32c_udisp16 (&st));
1641 }
1642
1643 else
1644 /* We've hit some instruction we don't know how to simulate.
1645 Strictly speaking, we should set every value we're
1646 tracking to "unknown". But we'll be optimistic, assume
1647 that we have enough information already, and stop
1648 analysis here. */
1649 break;
1650 }
1651 else
1652 {
1653 int src_indirect = 0;
1654 int dest_indirect = 0;
1655 int i = 0;
1656
1657 gdb_assert (mach == bfd_mach_m32c);
1658
1659 /* Check for prefix bytes indicating indirect addressing. */
1660 if (st.insn[0] == 0x41)
1661 {
1662 src_indirect = 1;
1663 i++;
1664 }
1665 else if (st.insn[0] == 0x09)
1666 {
1667 dest_indirect = 1;
1668 i++;
1669 }
1670 else if (st.insn[0] == 0x49)
1671 {
1672 src_indirect = dest_indirect = 1;
1673 i++;
1674 }
1675
1676 /* (1) ENTER #imm8 */
1677 if (st.insn[i] == 0xec)
1678 {
1679 if (m32c_pv_enter (&st, st.insn[i + 1]))
1680 break;
1681 st.next_addr += 2;
1682 }
1683
1684 /* (1) PUSHM src */
1685 else if (st.insn[i] == 0x8f)
1686 {
1687 int src = st.insn[i + 1];
1688 if (m32c_pv_pushm (&st, src))
1689 break;
1690 st.next_addr += 2;
1691
1692 if (m32c_pushm_is_reg_save (&st, src))
1693 after_last_frame_related_insn = st.next_addr;
1694 }
1695
1696 /* (7) MOV.size:G src, dest */
1697 else if ((st.insn[i] & 0x80) == 0x80
1698 && (st.insn[i + 1] & 0x0f) == 0x0b
1699 && m32c_get_src23 (&st.insn[i]) < 20
1700 && m32c_get_dest23 (&st.insn[i]) < 20)
1701 {
f79b9530
DJ
1702 struct srcdest src;
1703 struct srcdest dest;
1704 pv_t src_value;
96309189
MS
1705 int bw = st.insn[i] & 0x01;
1706 int size = bw ? 2 : 1;
96309189
MS
1707 st.next_addr += 2;
1708
f79b9530 1709 src
96309189
MS
1710 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1711 size, src_indirect);
f79b9530 1712 dest
96309189
MS
1713 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1714 size, dest_indirect);
f79b9530 1715 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1716
1717 if (m32c_is_arg_spill (&st, dest, src_value))
1718 after_last_frame_related_insn = st.next_addr;
1719
1720 if (m32c_srcdest_store (&st, dest, src_value, size))
1721 break;
1722 }
1723 /* (2) LDC #IMM24, sp */
1724 else if (st.insn[i] == 0xd5
1725 && st.insn[i + 1] == 0x29)
1726 {
1727 st.next_addr += 2;
1728 st.sp = pv_constant (m32c_udisp24 (&st));
1729 }
1730 else
1731 /* We've hit some instruction we don't know how to simulate.
1732 Strictly speaking, we should set every value we're
1733 tracking to "unknown". But we'll be optimistic, assume
1734 that we have enough information already, and stop
1735 analysis here. */
1736 break;
1737 }
1738
1739 /* If this instruction changed the FB or decreased the SP (i.e.,
1740 allocated more stack space), then this may be a good place to
1741 declare the prologue finished. However, there are some
1742 exceptions:
1743
1744 - If the instruction just changed the FB back to its original
1745 value, then that's probably a restore instruction. The
1746 prologue should definitely end before that.
1747
1748 - If the instruction increased the value of the SP (that is,
1749 shrunk the frame), then it's probably part of a frame
1750 teardown sequence, and the prologue should end before
1751 that. */
1752
1753 if (! pv_is_identical (st.fb, pre_insn_fb))
1754 {
1755 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1756 after_last_frame_related_insn = st.next_addr;
1757 }
1758 else if (! pv_is_identical (st.sp, pre_insn_sp))
1759 {
1760 /* The comparison of the constants looks odd, there, because
1761 .k is unsigned. All it really means is that the SP is
1762 lower than it was before the instruction. */
1763 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1764 && pv_is_register (st.sp, tdep->sp->num)
1765 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1766 after_last_frame_related_insn = st.next_addr;
1767 }
1768
1769 st.scan_pc = st.next_addr;
1770 }
1771
1772 /* Did we load a constant value into the stack pointer? */
1773 if (pv_is_constant (st.sp))
1774 prologue->kind = prologue_first_frame;
1775
1776 /* Alternatively, did we initialize the frame pointer? Remember
1777 that the CFA is the address after the return address. */
1778 if (pv_is_register (st.fb, tdep->sp->num))
1779 {
1780 prologue->kind = prologue_with_frame_ptr;
1781 prologue->frame_ptr_offset = st.fb.k;
1782 }
1783
1784 /* Is the frame size a known constant? Remember that frame_size is
1785 actually the offset from the CFA to the SP (i.e., a negative
1786 value). */
1787 else if (pv_is_register (st.sp, tdep->sp->num))
1788 {
1789 prologue->kind = prologue_sans_frame_ptr;
1790 prologue->frame_size = st.sp.k;
1791 }
1792
1793 /* We haven't been able to make sense of this function's frame. Treat
1794 it as the first frame. */
1795 else
1796 prologue->kind = prologue_first_frame;
1797
1798 /* Record where all the registers were saved. */
1799 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1800
1801 prologue->prologue_end = after_last_frame_related_insn;
1802
1803 do_cleanups (back_to);
1804}
1805
1806
1807static CORE_ADDR
6093d2eb 1808m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
96309189
MS
1809{
1810 char *name;
1811 CORE_ADDR func_addr, func_end, sal_end;
1812 struct m32c_prologue p;
1813
1814 /* Try to find the extent of the function that contains IP. */
1815 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1816 return ip;
1817
1818 /* Find end by prologue analysis. */
6093d2eb 1819 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
96309189 1820 /* Find end by line info. */
d80b854b 1821 sal_end = skip_prologue_using_sal (gdbarch, ip);
96309189
MS
1822 /* Return whichever is lower. */
1823 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1824 return sal_end;
1825 else
1826 return p.prologue_end;
1827}
1828
1829
1830\f
1831/* Stack unwinding. */
1832
1833static struct m32c_prologue *
94afd7a6 1834m32c_analyze_frame_prologue (struct frame_info *this_frame,
96309189
MS
1835 void **this_prologue_cache)
1836{
1837 if (! *this_prologue_cache)
1838 {
94afd7a6
UW
1839 CORE_ADDR func_start = get_frame_func (this_frame);
1840 CORE_ADDR stop_addr = get_frame_pc (this_frame);
96309189
MS
1841
1842 /* If we couldn't find any function containing the PC, then
1843 just initialize the prologue cache, but don't do anything. */
1844 if (! func_start)
1845 stop_addr = func_start;
1846
1847 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
94afd7a6 1848 m32c_analyze_prologue (get_frame_arch (this_frame),
96309189
MS
1849 func_start, stop_addr, *this_prologue_cache);
1850 }
1851
1852 return *this_prologue_cache;
1853}
1854
1855
1856static CORE_ADDR
94afd7a6 1857m32c_frame_base (struct frame_info *this_frame,
96309189
MS
1858 void **this_prologue_cache)
1859{
1860 struct m32c_prologue *p
94afd7a6
UW
1861 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1862 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189
MS
1863
1864 /* In functions that use alloca, the distance between the stack
1865 pointer and the frame base varies dynamically, so we can't use
1866 the SP plus static information like prologue analysis to find the
1867 frame base. However, such functions must have a frame pointer,
1868 to be able to restore the SP on exit. So whenever we do have a
1869 frame pointer, use that to find the base. */
1870 switch (p->kind)
1871 {
1872 case prologue_with_frame_ptr:
1873 {
1874 CORE_ADDR fb
94afd7a6 1875 = get_frame_register_unsigned (this_frame, tdep->fb->num);
96309189
MS
1876 return fb - p->frame_ptr_offset;
1877 }
1878
1879 case prologue_sans_frame_ptr:
1880 {
1881 CORE_ADDR sp
94afd7a6 1882 = get_frame_register_unsigned (this_frame, tdep->sp->num);
96309189
MS
1883 return sp - p->frame_size;
1884 }
1885
1886 case prologue_first_frame:
1887 return 0;
1888
1889 default:
f3574227 1890 gdb_assert_not_reached ("unexpected prologue kind");
96309189
MS
1891 }
1892}
1893
1894
1895static void
94afd7a6 1896m32c_this_id (struct frame_info *this_frame,
96309189
MS
1897 void **this_prologue_cache,
1898 struct frame_id *this_id)
1899{
94afd7a6 1900 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
96309189
MS
1901
1902 if (base)
94afd7a6 1903 *this_id = frame_id_build (base, get_frame_func (this_frame));
96309189
MS
1904 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1905}
1906
1907
94afd7a6
UW
1908static struct value *
1909m32c_prev_register (struct frame_info *this_frame,
1910 void **this_prologue_cache, int regnum)
96309189 1911{
94afd7a6 1912 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189 1913 struct m32c_prologue *p
94afd7a6
UW
1914 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1915 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1916 int reg_size = register_size (get_frame_arch (this_frame), regnum);
96309189
MS
1917
1918 if (regnum == tdep->sp->num)
94afd7a6 1919 return frame_unwind_got_constant (this_frame, regnum, frame_base);
96309189
MS
1920
1921 /* If prologue analysis says we saved this register somewhere,
1922 return a description of the stack slot holding it. */
94afd7a6
UW
1923 if (p->reg_offset[regnum] != 1)
1924 return frame_unwind_got_memory (this_frame, regnum,
1925 frame_base + p->reg_offset[regnum]);
96309189
MS
1926
1927 /* Otherwise, presume we haven't changed the value of this
1928 register, and get it from the next frame. */
94afd7a6 1929 return frame_unwind_got_register (this_frame, regnum, regnum);
96309189
MS
1930}
1931
1932
1933static const struct frame_unwind m32c_unwind = {
1934 NORMAL_FRAME,
1935 m32c_this_id,
94afd7a6
UW
1936 m32c_prev_register,
1937 NULL,
1938 default_frame_sniffer
96309189
MS
1939};
1940
1941
96309189
MS
1942static CORE_ADDR
1943m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1944{
1945 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1946 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1947}
1948
1949
1950static CORE_ADDR
1951m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1952{
1953 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1954 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1955}
1956
1957\f
1958/* Inferior calls. */
1959
1960/* The calling conventions, according to GCC:
1961
1962 r8c, m16c
1963 ---------
1964 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1965 HImode), (2) is named, and (3) is an integer or pointer type (no
1966 structs, floats, etc). Otherwise, it's passed on the stack.
1967
1968 Second arg may be passed in r2, same restrictions (but not QImode),
1969 even if the first arg is passed on the stack.
1970
1971 Third and further args are passed on the stack. No padding is
1972 used, stack "alignment" is 8 bits.
1973
1974 m32cm, m32c
1975 -----------
1976
1977 First arg may be passed in r0l or r0, same restrictions as above.
1978
1979 Second and further args are passed on the stack. Padding is used
1980 after QImode parameters (i.e. lower-addressed byte is the value,
1981 higher-addressed byte is the padding), stack "alignment" is 16
1982 bits. */
1983
1984
1985/* Return true if TYPE is a type that can be passed in registers. (We
1986 ignore the size, and pay attention only to the type code;
1987 acceptable sizes depends on which register is being considered to
1988 hold it.) */
1989static int
1990m32c_reg_arg_type (struct type *type)
1991{
1992 enum type_code code = TYPE_CODE (type);
1993
1994 return (code == TYPE_CODE_INT
1995 || code == TYPE_CODE_ENUM
1996 || code == TYPE_CODE_PTR
1997 || code == TYPE_CODE_REF
1998 || code == TYPE_CODE_BOOL
1999 || code == TYPE_CODE_CHAR);
2000}
2001
2002
2003static CORE_ADDR
2004m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2005 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2006 struct value **args, CORE_ADDR sp, int struct_return,
2007 CORE_ADDR struct_addr)
2008{
2009 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2010 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2011 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2012 CORE_ADDR cfa;
2013 int i;
2014
2015 /* The number of arguments given in this function's prototype, or
2016 zero if it has a non-prototyped function type. The m32c ABI
2017 passes arguments mentioned in the prototype differently from
2018 those in the ellipsis of a varargs function, or from those passed
2019 to a non-prototyped function. */
2020 int num_prototyped_args = 0;
2021
2022 {
2023 struct type *func_type = value_type (function);
2024
ed09d7da
KB
2025 /* Dereference function pointer types. */
2026 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2027 func_type = TYPE_TARGET_TYPE (func_type);
2028
96309189
MS
2029 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2030 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2031
2032#if 0
2033 /* The ABI description in gcc/config/m32c/m32c.abi says that
2034 we need to handle prototyped and non-prototyped functions
2035 separately, but the code in GCC doesn't actually do so. */
2036 if (TYPE_PROTOTYPED (func_type))
2037#endif
2038 num_prototyped_args = TYPE_NFIELDS (func_type);
2039 }
2040
2041 /* First, if the function returns an aggregate by value, push a
2042 pointer to a buffer for it. This doesn't affect the way
2043 subsequent arguments are allocated to registers. */
2044 if (struct_return)
2045 {
2046 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2047 sp -= ptr_len;
e17a4113 2048 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
96309189
MS
2049 }
2050
2051 /* Push the arguments. */
2052 for (i = nargs - 1; i >= 0; i--)
2053 {
2054 struct value *arg = args[i];
2055 const gdb_byte *arg_bits = value_contents (arg);
2056 struct type *arg_type = value_type (arg);
2057 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2058
2059 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2060 if (i == 0
2061 && arg_size <= 2
2062 && i < num_prototyped_args
2063 && m32c_reg_arg_type (arg_type))
2064 {
2065 /* Extract and re-store as an integer as a terse way to make
2066 sure it ends up in the least significant end of r1. (GDB
2067 should avoid assuming endianness, even on uni-endian
2068 processors.) */
e17a4113
UW
2069 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2070 byte_order);
96309189
MS
2071 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2072 regcache_cooked_write_unsigned (regcache, reg->num, u);
2073 }
2074
2075 /* Can it go in r2? */
2076 else if (mach == bfd_mach_m16c
2077 && i == 1
2078 && arg_size == 2
2079 && i < num_prototyped_args
2080 && m32c_reg_arg_type (arg_type))
2081 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2082
2083 /* Everything else goes on the stack. */
2084 else
2085 {
2086 sp -= arg_size;
2087
2088 /* Align the stack. */
2089 if (mach == bfd_mach_m32c)
2090 sp &= ~1;
2091
2092 write_memory (sp, arg_bits, arg_size);
2093 }
2094 }
2095
2096 /* This is the CFA we use to identify the dummy frame. */
2097 cfa = sp;
2098
2099 /* Push the return address. */
2100 sp -= tdep->ret_addr_bytes;
e17a4113
UW
2101 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2102 bp_addr);
96309189
MS
2103
2104 /* Update the stack pointer. */
2105 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2106
2107 /* We need to borrow an odd trick from the i386 target here.
2108
2109 The value we return from this function gets used as the stack
2110 address (the CFA) for the dummy frame's ID. The obvious thing is
2111 to return the new TOS. However, that points at the return
2112 address, saved on the stack, which is inconsistent with the CFA's
2113 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2114 .debug_frame info uses the address immediately after the saved
2115 return address. So you end up with a dummy frame whose CFA
2116 points at the return address, but the frame for the function
2117 being called has a CFA pointing after the return address: the
2118 younger CFA is *greater than* the older CFA. The sanity checks
2119 in frame.c don't like that.
2120
2121 So we try to be consistent with the CFA's used by DWARF 2.
2122 Having a dummy frame and a real frame with the *same* CFA is
2123 tolerable. */
2124 return cfa;
2125}
2126
2127
2128static struct frame_id
94afd7a6 2129m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
96309189
MS
2130{
2131 /* This needs to return a frame ID whose PC is the return address
2132 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2133 m32c_push_dummy_call returned.
2134
2135 m32c_unwind_sp gives us the CFA, which is the value the SP had
2136 before the return address was pushed. */
94afd7a6
UW
2137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2138 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2139 return frame_id_build (sp, get_frame_pc (this_frame));
96309189
MS
2140}
2141
2142
2143\f
2144/* Return values. */
2145
2146/* Return value conventions, according to GCC:
2147
2148 r8c, m16c
2149 ---------
2150
2151 QImode in r0l
2152 HImode in r0
2153 SImode in r2r0
2154 near pointer in r0
2155 far pointer in r2r0
2156
2157 Aggregate values (regardless of size) are returned by pushing a
2158 pointer to a temporary area on the stack after the args are pushed.
2159 The function fills in this area with the value. Note that this
2160 pointer on the stack does not affect how register arguments, if any,
2161 are configured.
2162
2163 m32cm, m32c
2164 -----------
2165 Same. */
2166
2167/* Return non-zero if values of type TYPE are returned by storing them
2168 in a buffer whose address is passed on the stack, ahead of the
2169 other arguments. */
2170static int
2171m32c_return_by_passed_buf (struct type *type)
2172{
2173 enum type_code code = TYPE_CODE (type);
2174
2175 return (code == TYPE_CODE_STRUCT
2176 || code == TYPE_CODE_UNION);
2177}
2178
2179static enum return_value_convention
2180m32c_return_value (struct gdbarch *gdbarch,
c055b101 2181 struct type *func_type,
96309189
MS
2182 struct type *valtype,
2183 struct regcache *regcache,
2184 gdb_byte *readbuf,
2185 const gdb_byte *writebuf)
2186{
2187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2189 enum return_value_convention conv;
2190 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2191
2192 if (m32c_return_by_passed_buf (valtype))
2193 conv = RETURN_VALUE_STRUCT_CONVENTION;
2194 else
2195 conv = RETURN_VALUE_REGISTER_CONVENTION;
2196
2197 if (readbuf)
2198 {
2199 /* We should never be called to find values being returned by
2200 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2201 unless we made the call ourselves. */
2202 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2203
2204 gdb_assert (valtype_len <= 8);
2205
2206 /* Anything that fits in r0 is returned there. */
2207 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2208 {
2209 ULONGEST u;
2210 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
e17a4113 2211 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
96309189
MS
2212 }
2213 else
2214 {
2215 /* Everything else is passed in mem0, using as many bytes as
2216 needed. This is not what the Renesas tools do, but it's
2217 what GCC does at the moment. */
2218 struct minimal_symbol *mem0
2219 = lookup_minimal_symbol ("mem0", NULL, NULL);
2220
2221 if (! mem0)
2222 error ("The return value is stored in memory at 'mem0', "
2223 "but GDB cannot find\n"
2224 "its address.");
2225 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2226 }
2227 }
2228
2229 if (writebuf)
2230 {
2231 /* We should never be called to store values to be returned
2232 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2233 finding the buffer, unless we made the call ourselves. */
2234 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2235
2236 gdb_assert (valtype_len <= 8);
2237
2238 /* Anything that fits in r0 is returned there. */
2239 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2240 {
e17a4113
UW
2241 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2242 byte_order);
96309189
MS
2243 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2244 }
2245 else
2246 {
2247 /* Everything else is passed in mem0, using as many bytes as
2248 needed. This is not what the Renesas tools do, but it's
2249 what GCC does at the moment. */
2250 struct minimal_symbol *mem0
2251 = lookup_minimal_symbol ("mem0", NULL, NULL);
2252
2253 if (! mem0)
2254 error ("The return value is stored in memory at 'mem0', "
2255 "but GDB cannot find\n"
2256 " its address.");
2257 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2258 (char *) writebuf, valtype_len);
2259 }
2260 }
2261
2262 return conv;
2263}
2264
2265
2266\f
2267/* Trampolines. */
2268
2269/* The m16c and m32c use a trampoline function for indirect function
2270 calls. An indirect call looks like this:
2271
2272 ... push arguments ...
2273 ... push target function address ...
2274 jsr.a m32c_jsri16
2275
2276 The code for m32c_jsri16 looks like this:
2277
2278 m32c_jsri16:
2279
2280 # Save return address.
2281 pop.w m32c_jsri_ret
2282 pop.b m32c_jsri_ret+2
2283
2284 # Store target function address.
2285 pop.w m32c_jsri_addr
2286
2287 # Re-push return address.
2288 push.b m32c_jsri_ret+2
2289 push.w m32c_jsri_ret
2290
2291 # Call the target function.
2292 jmpi.a m32c_jsri_addr
2293
2294 Without further information, GDB will treat calls to m32c_jsri16
2295 like calls to any other function. Since m32c_jsri16 doesn't have
2296 debugging information, that normally means that GDB sets a step-
2297 resume breakpoint and lets the program continue --- which is not
2298 what the user wanted. (Giving the trampoline debugging info
2299 doesn't help: the user expects the program to stop in the function
2300 their program is calling, not in some trampoline code they've never
2301 seen before.)
2302
e76f05fa 2303 The gdbarch_skip_trampoline_code method tells GDB how to step
96309189
MS
2304 through such trampoline functions transparently to the user. When
2305 given the address of a trampoline function's first instruction,
e76f05fa 2306 gdbarch_skip_trampoline_code should return the address of the first
96309189
MS
2307 instruction of the function really being called. If GDB decides it
2308 wants to step into that function, it will set a breakpoint there
2309 and silently continue to it.
2310
2311 We recognize the trampoline by name, and extract the target address
2312 directly from the stack. This isn't great, but recognizing by its
2313 code sequence seems more fragile. */
2314
2315static CORE_ADDR
52f729a7 2316m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
96309189 2317{
e17a4113
UW
2318 struct gdbarch *gdbarch = get_frame_arch (frame);
2319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2320 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2321
2322 /* It would be nicer to simply look up the addresses of known
2323 trampolines once, and then compare stop_pc with them. However,
2324 we'd need to ensure that that cached address got invalidated when
2325 someone loaded a new executable, and I'm not quite sure of the
2326 best way to do that. find_pc_partial_function does do some
2327 caching, so we'll see how this goes. */
2328 char *name;
2329 CORE_ADDR start, end;
2330
2331 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2332 {
2333 /* Are we stopped at the beginning of the trampoline function? */
2334 if (strcmp (name, "m32c_jsri16") == 0
2335 && stop_pc == start)
2336 {
2337 /* Get the stack pointer. The return address is at the top,
2338 and the target function's address is just below that. We
2339 know it's a two-byte address, since the trampoline is
2340 m32c_jsri*16*. */
2341 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2342 CORE_ADDR target
e17a4113
UW
2343 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2344 2, byte_order);
96309189
MS
2345
2346 /* What we have now is the address of a jump instruction.
2347 What we need is the destination of that jump.
2348 The opcode is 1 byte, and the destination is the next 3 bytes.
2349 */
e17a4113 2350 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
96309189
MS
2351 return target;
2352 }
2353 }
2354
2355 return 0;
2356}
2357
2358
2359/* Address/pointer conversions. */
2360
2361/* On the m16c, there is a 24-bit address space, but only a very few
2362 instructions can generate addresses larger than 0xffff: jumps,
2363 jumps to subroutines, and the lde/std (load/store extended)
2364 instructions.
2365
2366 Since GCC can only support one size of pointer, we can't have
2367 distinct 'near' and 'far' pointer types; we have to pick one size
2368 for everything. If we wanted to use 24-bit pointers, then GCC
2369 would have to use lde and ste for all memory references, which
2370 would be terrible for performance and code size. So the GNU
2371 toolchain uses 16-bit pointers for everything, and gives up the
2372 ability to have pointers point outside the first 64k of memory.
2373
2374 However, as a special hack, we let the linker place functions at
2375 addresses above 0xffff, as long as it also places a trampoline in
2376 the low 64k for every function whose address is taken. Each
2377 trampoline consists of a single jmp.a instruction that jumps to the
2378 function's real entry point. Pointers to functions can be 16 bits
2379 long, even though the functions themselves are at higher addresses:
2380 the pointers refer to the trampolines, not the functions.
2381
2382 This complicates things for GDB, however: given the address of a
2383 function (from debug info or linker symbols, say) which could be
2384 anywhere in the 24-bit address space, how can we find an
2385 appropriate 16-bit value to use as a pointer to it?
2386
2387 If the linker has not generated a trampoline for the function,
2388 we're out of luck. Well, I guess we could malloc some space and
2389 write a jmp.a instruction to it, but I'm not going to get into that
2390 at the moment.
2391
2392 If the linker has generated a trampoline for the function, then it
2393 also emitted a symbol for the trampoline: if the function's linker
2394 symbol is named NAME, then the function's trampoline's linker
2395 symbol is named NAME.plt.
2396
2397 So, given a code address:
2398 - We try to find a linker symbol at that address.
2399 - If we find such a symbol named NAME, we look for a linker symbol
2400 named NAME.plt.
2401 - If we find such a symbol, we assume it is a trampoline, and use
2402 its address as the pointer value.
2403
2404 And, given a function pointer:
2405 - We try to find a linker symbol at that address named NAME.plt.
2406 - If we find such a symbol, we look for a linker symbol named NAME.
2407 - If we find that, we provide that as the function's address.
2408 - If any of the above steps fail, we return the original address
2409 unchanged; it might really be a function in the low 64k.
2410
2411 See? You *knew* there was a reason you wanted to be a computer
2412 programmer! :) */
2413
2414static void
9898f801
UW
2415m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2416 struct type *type, gdb_byte *buf, CORE_ADDR addr)
96309189 2417{
e17a4113 2418 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530 2419 enum type_code target_code;
96309189
MS
2420 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2421 TYPE_CODE (type) == TYPE_CODE_REF);
2422
f79b9530 2423 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2424
2425 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2426 {
f79b9530
DJ
2427 char *func_name;
2428 char *tramp_name;
2429 struct minimal_symbol *tramp_msym;
2430
96309189
MS
2431 /* Try to find a linker symbol at this address. */
2432 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2433
2434 if (! func_msym)
d77b48cf
KB
2435 error (_("Cannot convert code address %s to function pointer:\n"
2436 "couldn't find a symbol at that address, to find trampoline."),
5af949e3 2437 paddress (gdbarch, addr));
96309189 2438
f79b9530
DJ
2439 func_name = SYMBOL_LINKAGE_NAME (func_msym);
2440 tramp_name = xmalloc (strlen (func_name) + 5);
96309189
MS
2441 strcpy (tramp_name, func_name);
2442 strcat (tramp_name, ".plt");
2443
2444 /* Try to find a linker symbol for the trampoline. */
f79b9530 2445 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
96309189
MS
2446
2447 /* We've either got another copy of the name now, or don't need
2448 the name any more. */
2449 xfree (tramp_name);
2450
2451 if (! tramp_msym)
d77b48cf
KB
2452 {
2453 CORE_ADDR ptrval;
2454
2455 /* No PLT entry found. Mask off the upper bits of the address
2456 to make a pointer. As noted in the warning to the user
2457 below, this value might be useful if converted back into
2458 an address by GDB, but will otherwise, almost certainly,
2459 be garbage.
2460
2461 Using this masked result does seem to be useful
2462 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2463 PASSes. These results appear to be correct as well.
2464
2465 We print a warning here so that the user can make a
2466 determination about whether the result is useful or not. */
2467 ptrval = addr & 0xffff;
2468
2469 warning (_("Cannot convert code address %s to function pointer:\n"
2470 "couldn't find trampoline named '%s.plt'.\n"
2471 "Returning pointer value %s instead; this may produce\n"
2472 "a useful result if converted back into an address by GDB,\n"
2473 "but will most likely not be useful otherwise.\n"),
2474 paddress (gdbarch, addr), func_name,
2475 paddress (gdbarch, ptrval));
2476
2477 addr = ptrval;
96309189 2478
d77b48cf
KB
2479 }
2480 else
2481 {
2482 /* The trampoline's address is our pointer. */
2483 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2484 }
96309189
MS
2485 }
2486
e17a4113 2487 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
96309189
MS
2488}
2489
2490
2491static CORE_ADDR
9898f801
UW
2492m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2493 struct type *type, const gdb_byte *buf)
96309189 2494{
e17a4113 2495 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530
DJ
2496 CORE_ADDR ptr;
2497 enum type_code target_code;
2498
96309189
MS
2499 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2500 TYPE_CODE (type) == TYPE_CODE_REF);
2501
e17a4113 2502 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
96309189 2503
f79b9530 2504 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2505
2506 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2507 {
2508 /* See if there is a minimal symbol at that address whose name is
2509 "NAME.plt". */
2510 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2511
2512 if (ptr_msym)
2513 {
2514 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2515 int len = strlen (ptr_msym_name);
2516
2517 if (len > 4
2518 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2519 {
f79b9530 2520 struct minimal_symbol *func_msym;
96309189
MS
2521 /* We have a .plt symbol; try to find the symbol for the
2522 corresponding function.
2523
2524 Since the trampoline contains a jump instruction, we
2525 could also just extract the jump's target address. I
2526 don't see much advantage one way or the other. */
2527 char *func_name = xmalloc (len - 4 + 1);
2528 memcpy (func_name, ptr_msym_name, len - 4);
2529 func_name[len - 4] = '\0';
f79b9530 2530 func_msym
96309189
MS
2531 = lookup_minimal_symbol (func_name, NULL, NULL);
2532
2533 /* If we do have such a symbol, return its value as the
2534 function's true address. */
2535 if (func_msym)
2536 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2537 }
2538 }
d77b48cf
KB
2539 else
2540 {
2541 int aspace;
2542
2543 for (aspace = 1; aspace <= 15; aspace++)
2544 {
2545 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2546
2547 if (ptr_msym)
2548 ptr |= aspace << 16;
2549 }
2550 }
96309189
MS
2551 }
2552
2553 return ptr;
2554}
2555
63807e1d 2556static void
a54fba4c 2557m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
7830cb4f
CV
2558 int *frame_regnum,
2559 LONGEST *frame_offset)
2560{
2561 char *name;
2562 CORE_ADDR func_addr, func_end, sal_end;
2563 struct m32c_prologue p;
2564
594f7785 2565 struct regcache *regcache = get_current_regcache ();
a54fba4c 2566 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7830cb4f
CV
2567
2568 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2569 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2570
a54fba4c 2571 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
7830cb4f
CV
2572 switch (p.kind)
2573 {
2574 case prologue_with_frame_ptr:
594f7785 2575 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
7830cb4f
CV
2576 *frame_offset = p.frame_ptr_offset;
2577 break;
2578 case prologue_sans_frame_ptr:
594f7785 2579 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2580 *frame_offset = p.frame_size;
2581 break;
2582 default:
594f7785 2583 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2584 *frame_offset = 0;
2585 break;
2586 }
2587 /* Sanity check */
a54fba4c 2588 if (*frame_regnum > gdbarch_num_regs (gdbarch))
7830cb4f
CV
2589 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2590}
96309189
MS
2591
2592\f
2593/* Initialization. */
2594
2595static struct gdbarch *
2596m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2597{
2598 struct gdbarch *arch;
2599 struct gdbarch_tdep *tdep;
2600 unsigned long mach = info.bfd_arch_info->mach;
2601
2602 /* Find a candidate among the list of architectures we've created
2603 already. */
2604 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2605 arches != NULL;
2606 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2607 return arches->gdbarch;
2608
2609 tdep = xcalloc (1, sizeof (*tdep));
2610 arch = gdbarch_alloc (&info, tdep);
2611
2612 /* Essential types. */
2613 make_types (arch);
2614
2615 /* Address/pointer conversions. */
2616 if (mach == bfd_mach_m16c)
2617 {
2618 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2619 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2620 }
2621
2622 /* Register set. */
2623 make_regs (arch);
2624
2625 /* Disassembly. */
2626 set_gdbarch_print_insn (arch, print_insn_m32c);
2627
2628 /* Breakpoints. */
2629 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2630
2631 /* Prologue analysis and unwinding. */
2632 set_gdbarch_inner_than (arch, core_addr_lessthan);
2633 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2634 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2635 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2636#if 0
2637 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2638 They may be in the dwarf2 cfi code in GDB, or they may be in
2639 the debug info emitted by the upstream toolchain. I don't
2640 know which, but I do know that the prologue analyzer works better.
2641 MVS 04/13/06
2642 */
94afd7a6 2643 dwarf2_append_sniffers (arch);
96309189 2644#endif
94afd7a6 2645 frame_unwind_append_unwinder (arch, &m32c_unwind);
96309189
MS
2646
2647 /* Inferior calls. */
2648 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2649 set_gdbarch_return_value (arch, m32c_return_value);
94afd7a6 2650 set_gdbarch_dummy_id (arch, m32c_dummy_id);
96309189
MS
2651
2652 /* Trampolines. */
2653 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2654
7830cb4f
CV
2655 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2656
ed09d7da
KB
2657 /* m32c function boundary addresses are not necessarily even.
2658 Therefore, the `vbit', which indicates a pointer to a virtual
2659 member function, is stored in the delta field, rather than as
2660 the low bit of a function pointer address.
2661
2662 In order to verify this, see the definition of
2663 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2664 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2665 set_gdbarch_vbit_in_delta (arch, 1);
2666
96309189
MS
2667 return arch;
2668}
2669
63807e1d
PA
2670/* Provide a prototype to silence -Wmissing-prototypes. */
2671extern initialize_file_ftype _initialize_m32c_tdep;
96309189
MS
2672
2673void
2674_initialize_m32c_tdep (void)
2675{
2676 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2677
2678 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2679}
This page took 0.534611 seconds and 4 git commands to generate.