aarch64: Add cast for integer to enum cast
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
CommitLineData
96309189
MS
1/* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
32d0add0 3 Copyright (C) 2004-2015 Free Software Foundation, Inc.
96309189
MS
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
96309189
MS
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
96309189
MS
19
20#include "defs.h"
96309189
MS
21#include "elf-bfd.h"
22#include "elf/m32c.h"
23#include "gdb/sim-m32c.h"
24#include "dis-asm.h"
25#include "gdbtypes.h"
26#include "regcache.h"
27#include "arch-utils.h"
28#include "frame.h"
29#include "frame-unwind.h"
30#include "dwarf2-frame.h"
31#include "dwarf2expr.h"
32#include "symtab.h"
33#include "gdbcore.h"
34#include "value.h"
35#include "reggroups.h"
36#include "prologue-value.h"
37#include "target.h"
77e371c0 38#include "objfiles.h"
96309189
MS
39
40\f
41/* The m32c tdep structure. */
42
43static struct reggroup *m32c_dma_reggroup;
44
45struct m32c_reg;
46
47/* The type of a function that moves the value of REG between CACHE or
48 BUF --- in either direction. */
05d1431c
PA
49typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
50 struct regcache *cache,
51 void *buf);
96309189
MS
52
53struct m32c_reg
54{
55 /* The name of this register. */
56 const char *name;
57
58 /* Its type. */
59 struct type *type;
60
61 /* The architecture this register belongs to. */
62 struct gdbarch *arch;
63
64 /* Its GDB register number. */
65 int num;
66
67 /* Its sim register number. */
68 int sim_num;
69
70 /* Its DWARF register number, or -1 if it doesn't have one. */
71 int dwarf_num;
72
73 /* Register group memberships. */
74 unsigned int general_p : 1;
75 unsigned int dma_p : 1;
76 unsigned int system_p : 1;
77 unsigned int save_restore_p : 1;
78
79 /* Functions to read its value from a regcache, and write its value
80 to a regcache. */
81 m32c_move_reg_t *read, *write;
82
83 /* Data for READ and WRITE functions. The exact meaning depends on
84 the specific functions selected; see the comments for those
85 functions. */
86 struct m32c_reg *rx, *ry;
87 int n;
88};
89
90
91/* An overestimate of the number of raw and pseudoregisters we will
92 have. The exact answer depends on the variant of the architecture
93 at hand, but we can use this to declare statically allocated
94 arrays, and bump it up when needed. */
95#define M32C_MAX_NUM_REGS (75)
96
97/* The largest assigned DWARF register number. */
98#define M32C_MAX_DWARF_REGNUM (40)
99
100
101struct gdbarch_tdep
102{
103 /* All the registers for this variant, indexed by GDB register
104 number, and the number of registers present. */
105 struct m32c_reg regs[M32C_MAX_NUM_REGS];
106
107 /* The number of valid registers. */
108 int num_regs;
109
110 /* Interesting registers. These are pointers into REGS. */
111 struct m32c_reg *pc, *flg;
112 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
113 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
114 struct m32c_reg *sb, *fb, *sp;
115
116 /* A table indexed by DWARF register numbers, pointing into
117 REGS. */
118 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
119
120 /* Types for this architecture. We can't use the builtin_type_foo
121 types, because they're not initialized when building a gdbarch
122 structure. */
123 struct type *voyd, *ptr_voyd, *func_voyd;
124 struct type *uint8, *uint16;
125 struct type *int8, *int16, *int32, *int64;
126
127 /* The types for data address and code address registers. */
128 struct type *data_addr_reg_type, *code_addr_reg_type;
129
130 /* The number of bytes a return address pushed by a 'jsr' instruction
131 occupies on the stack. */
132 int ret_addr_bytes;
133
134 /* The number of bytes an address register occupies on the stack
135 when saved by an 'enter' or 'pushm' instruction. */
136 int push_addr_bytes;
137};
138
139\f
140/* Types. */
141
142static void
143make_types (struct gdbarch *arch)
144{
145 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
146 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
147 int data_addr_reg_bits, code_addr_reg_bits;
148 char type_name[50];
149
150#if 0
151 /* This is used to clip CORE_ADDR values, so this value is
152 appropriate both on the m32c, where pointers are 32 bits long,
153 and on the m16c, where pointers are sixteen bits long, but there
154 may be code above the 64k boundary. */
155 set_gdbarch_addr_bit (arch, 24);
156#else
157 /* GCC uses 32 bits for addrs in the dwarf info, even though
158 only 16/24 bits are used. Setting addr_bit to 24 causes
159 errors in reading the dwarf addresses. */
160 set_gdbarch_addr_bit (arch, 32);
161#endif
162
163 set_gdbarch_int_bit (arch, 16);
164 switch (mach)
165 {
166 case bfd_mach_m16c:
167 data_addr_reg_bits = 16;
168 code_addr_reg_bits = 24;
169 set_gdbarch_ptr_bit (arch, 16);
170 tdep->ret_addr_bytes = 3;
171 tdep->push_addr_bytes = 2;
172 break;
173
174 case bfd_mach_m32c:
175 data_addr_reg_bits = 24;
176 code_addr_reg_bits = 24;
177 set_gdbarch_ptr_bit (arch, 32);
178 tdep->ret_addr_bytes = 4;
179 tdep->push_addr_bytes = 4;
180 break;
181
182 default:
f3574227 183 gdb_assert_not_reached ("unexpected mach");
96309189
MS
184 }
185
186 /* The builtin_type_mumble variables are sometimes uninitialized when
187 this is called, so we avoid using them. */
e9bb382b
UW
188 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
189 tdep->ptr_voyd
bd333fb7
KB
190 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
191 NULL);
96309189 192 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
e9bb382b 193 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
96309189
MS
194 tdep->func_voyd = lookup_function_type (tdep->voyd);
195
8c042590
PM
196 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
197 gdbarch_bfd_arch_info (arch)->printable_name);
96309189 198 tdep->data_addr_reg_type
bd333fb7
KB
199 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
200 xstrdup (type_name));
96309189 201 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
e9bb382b 202 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
96309189 203
8c042590
PM
204 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
205 gdbarch_bfd_arch_info (arch)->printable_name);
96309189 206 tdep->code_addr_reg_type
bd333fb7
KB
207 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
208 xstrdup (type_name));
96309189 209 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
e9bb382b
UW
210 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
211
212 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
213 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
214 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
215 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
216 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
217 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
96309189
MS
218}
219
220
221\f
222/* Register set. */
223
224static const char *
d93859e2 225m32c_register_name (struct gdbarch *gdbarch, int num)
96309189 226{
d93859e2 227 return gdbarch_tdep (gdbarch)->regs[num].name;
96309189
MS
228}
229
230
231static struct type *
232m32c_register_type (struct gdbarch *arch, int reg_nr)
233{
234 return gdbarch_tdep (arch)->regs[reg_nr].type;
235}
236
237
238static int
e7faf938 239m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
96309189 240{
e7faf938 241 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
96309189
MS
242}
243
244
245static int
d3f73121 246m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
96309189 247{
d3f73121 248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
249 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
250 && tdep->dwarf_regs[reg_nr])
251 return tdep->dwarf_regs[reg_nr]->num;
252 else
253 /* The DWARF CFI code expects to see -1 for invalid register
254 numbers. */
255 return -1;
256}
257
258
63807e1d 259static int
96309189
MS
260m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
261 struct reggroup *group)
262{
40a6adc1 263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96309189
MS
264 struct m32c_reg *reg = &tdep->regs[regnum];
265
266 /* The anonymous raw registers aren't in any groups. */
267 if (! reg->name)
268 return 0;
269
270 if (group == all_reggroup)
271 return 1;
272
273 if (group == general_reggroup
274 && reg->general_p)
275 return 1;
276
277 if (group == m32c_dma_reggroup
278 && reg->dma_p)
279 return 1;
280
281 if (group == system_reggroup
282 && reg->system_p)
283 return 1;
284
285 /* Since the m32c DWARF register numbers refer to cooked registers, not
286 raw registers, and frame_pop depends on the save and restore groups
287 containing registers the DWARF CFI will actually mention, our save
288 and restore groups are cooked registers, not raw registers. (This is
289 why we can't use the default reggroup function.) */
290 if ((group == save_reggroup
291 || group == restore_reggroup)
292 && reg->save_restore_p)
293 return 1;
294
295 return 0;
296}
297
298
299/* Register move functions. We declare them here using
300 m32c_move_reg_t to check the types. */
301static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
302static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
303static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
304static m32c_move_reg_t m32c_part_read, m32c_part_write;
305static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
306static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
307
308
309/* Copy the value of the raw register REG from CACHE to BUF. */
05d1431c 310static enum register_status
96309189
MS
311m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
312{
05d1431c 313 return regcache_raw_read (cache, reg->num, buf);
96309189
MS
314}
315
316
317/* Copy the value of the raw register REG from BUF to CACHE. */
05d1431c 318static enum register_status
96309189
MS
319m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
320{
321 regcache_raw_write (cache, reg->num, (const void *) buf);
05d1431c
PA
322
323 return REG_VALID;
96309189
MS
324}
325
326
327/* Return the value of the 'flg' register in CACHE. */
328static int
329m32c_read_flg (struct regcache *cache)
330{
331 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
332 ULONGEST flg;
333 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
334 return flg & 0xffff;
335}
336
337
7830cb4f
CV
338/* Evaluate the real register number of a banked register. */
339static struct m32c_reg *
340m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
341{
342 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
343}
344
345
96309189
MS
346/* Move the value of a banked register from CACHE to BUF.
347 If the value of the 'flg' register in CACHE has any of the bits
348 masked in REG->n set, then read REG->ry. Otherwise, read
349 REG->rx. */
05d1431c 350static enum register_status
96309189
MS
351m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
352{
7830cb4f 353 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
05d1431c 354 return regcache_raw_read (cache, bank_reg->num, buf);
96309189
MS
355}
356
357
358/* Move the value of a banked register from BUF to CACHE.
359 If the value of the 'flg' register in CACHE has any of the bits
360 masked in REG->n set, then write REG->ry. Otherwise, write
361 REG->rx. */
05d1431c 362static enum register_status
96309189
MS
363m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
364{
7830cb4f 365 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
96309189 366 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
05d1431c
PA
367
368 return REG_VALID;
96309189
MS
369}
370
371
372/* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
373 banked register; on bfd_mach_m16c, it's not. */
05d1431c 374static enum register_status
96309189
MS
375m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
376{
377 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
05d1431c 378 return m32c_raw_read (reg->rx, cache, buf);
96309189 379 else
05d1431c 380 return m32c_banked_read (reg, cache, buf);
96309189
MS
381}
382
383
384/* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
385 banked register; on bfd_mach_m16c, it's not. */
05d1431c 386static enum register_status
96309189
MS
387m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
388{
389 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
390 m32c_raw_write (reg->rx, cache, buf);
391 else
392 m32c_banked_write (reg, cache, buf);
05d1431c
PA
393
394 return REG_VALID;
96309189
MS
395}
396
397
398/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
399 and *LEN_P to the offset and length, in bytes, of the part REG
400 occupies in its underlying register. The offset is from the
401 lower-addressed end, regardless of the architecture's endianness.
402 (The M32C family is always little-endian, but let's keep those
403 assumptions out of here.) */
404static void
405m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
406{
407 /* The length of the containing register, of which REG is one part. */
408 int containing_len = TYPE_LENGTH (reg->rx->type);
409
410 /* The length of one "element" in our imaginary array. */
411 int elt_len = TYPE_LENGTH (reg->type);
412
413 /* The offset of REG's "element" from the least significant end of
414 the containing register. */
415 int elt_offset = reg->n * elt_len;
416
417 /* If we extend off the end, trim the length of the element. */
418 if (elt_offset + elt_len > containing_len)
419 {
420 elt_len = containing_len - elt_offset;
421 /* We shouldn't be declaring partial registers that go off the
422 end of their containing registers. */
423 gdb_assert (elt_len > 0);
424 }
425
426 /* Flip the offset around if we're big-endian. */
427 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
428 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
429
430 *offset_p = elt_offset;
431 *len_p = elt_len;
432}
433
434
435/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
436 to BUF. Treating the value of the register REG->rx as an array of
437 REG->type values, where higher indices refer to more significant
438 bits, read the value of the REG->n'th element. */
05d1431c 439static enum register_status
96309189
MS
440m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
441{
442 int offset, len;
05d1431c 443
96309189
MS
444 memset (buf, 0, TYPE_LENGTH (reg->type));
445 m32c_find_part (reg, &offset, &len);
05d1431c 446 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
96309189
MS
447}
448
449
450/* Move the value of a banked register from BUF to CACHE.
451 Treating the value of the register REG->rx as an array of REG->type
452 values, where higher indices refer to more significant bits, write
453 the value of the REG->n'th element. */
05d1431c 454static enum register_status
96309189
MS
455m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
456{
457 int offset, len;
05d1431c 458
96309189
MS
459 m32c_find_part (reg, &offset, &len);
460 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
05d1431c
PA
461
462 return REG_VALID;
96309189
MS
463}
464
465
466/* Move the value of REG from CACHE to BUF. REG's value is the
467 concatenation of the values of the registers REG->rx and REG->ry,
468 with REG->rx contributing the more significant bits. */
05d1431c 469static enum register_status
96309189
MS
470m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
471{
472 int high_bytes = TYPE_LENGTH (reg->rx->type);
473 int low_bytes = TYPE_LENGTH (reg->ry->type);
474 /* For address arithmetic. */
475 unsigned char *cbuf = buf;
05d1431c 476 enum register_status status;
96309189
MS
477
478 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
479
480 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
481 {
05d1431c
PA
482 status = regcache_cooked_read (cache, reg->rx->num, cbuf);
483 if (status == REG_VALID)
484 status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
96309189
MS
485 }
486 else
487 {
05d1431c
PA
488 status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
489 if (status == REG_VALID)
490 status = regcache_cooked_read (cache, reg->ry->num, cbuf);
96309189 491 }
05d1431c
PA
492
493 return status;
96309189
MS
494}
495
496
497/* Move the value of REG from CACHE to BUF. REG's value is the
498 concatenation of the values of the registers REG->rx and REG->ry,
499 with REG->rx contributing the more significant bits. */
05d1431c 500static enum register_status
96309189
MS
501m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
502{
503 int high_bytes = TYPE_LENGTH (reg->rx->type);
504 int low_bytes = TYPE_LENGTH (reg->ry->type);
505 /* For address arithmetic. */
506 unsigned char *cbuf = buf;
507
508 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
509
510 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
511 {
512 regcache_cooked_write (cache, reg->rx->num, cbuf);
513 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
514 }
515 else
516 {
517 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
518 regcache_cooked_write (cache, reg->ry->num, cbuf);
519 }
05d1431c
PA
520
521 return REG_VALID;
96309189
MS
522}
523
524
525/* Copy the value of the raw register REG from CACHE to BUF. REG is
526 the concatenation (from most significant to least) of r3, r2, r1,
527 and r0. */
05d1431c 528static enum register_status
96309189
MS
529m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
530{
531 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
532 int len = TYPE_LENGTH (tdep->r0->type);
05d1431c 533 enum register_status status;
96309189
MS
534
535 /* For address arithmetic. */
536 unsigned char *cbuf = buf;
537
538 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
539 {
05d1431c
PA
540 status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
541 if (status == REG_VALID)
542 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
543 if (status == REG_VALID)
544 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
545 if (status == REG_VALID)
546 status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
96309189
MS
547 }
548 else
549 {
05d1431c
PA
550 status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
551 if (status == REG_VALID)
552 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
553 if (status == REG_VALID)
554 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
555 if (status == REG_VALID)
556 status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
96309189 557 }
05d1431c
PA
558
559 return status;
96309189
MS
560}
561
562
563/* Copy the value of the raw register REG from BUF to CACHE. REG is
564 the concatenation (from most significant to least) of r3, r2, r1,
565 and r0. */
05d1431c 566static enum register_status
96309189
MS
567m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
568{
569 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
570 int len = TYPE_LENGTH (tdep->r0->type);
571
572 /* For address arithmetic. */
573 unsigned char *cbuf = buf;
574
575 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
576 {
577 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
578 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
579 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
580 regcache_cooked_write (cache, tdep->r3->num, cbuf);
581 }
582 else
583 {
584 regcache_cooked_write (cache, tdep->r0->num, cbuf);
585 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
586 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
587 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
588 }
05d1431c
PA
589
590 return REG_VALID;
96309189
MS
591}
592
593
05d1431c 594static enum register_status
96309189
MS
595m32c_pseudo_register_read (struct gdbarch *arch,
596 struct regcache *cache,
597 int cookednum,
598 gdb_byte *buf)
599{
600 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
601 struct m32c_reg *reg;
602
603 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
604 gdb_assert (arch == get_regcache_arch (cache));
605 gdb_assert (arch == tdep->regs[cookednum].arch);
606 reg = &tdep->regs[cookednum];
607
05d1431c 608 return reg->read (reg, cache, buf);
96309189
MS
609}
610
611
612static void
613m32c_pseudo_register_write (struct gdbarch *arch,
614 struct regcache *cache,
615 int cookednum,
616 const gdb_byte *buf)
617{
618 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
619 struct m32c_reg *reg;
620
621 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
622 gdb_assert (arch == get_regcache_arch (cache));
623 gdb_assert (arch == tdep->regs[cookednum].arch);
624 reg = &tdep->regs[cookednum];
625
626 reg->write (reg, cache, (void *) buf);
627}
628
629
630/* Add a register with the given fields to the end of ARCH's table.
631 Return a pointer to the newly added register. */
632static struct m32c_reg *
633add_reg (struct gdbarch *arch,
634 const char *name,
635 struct type *type,
636 int sim_num,
637 m32c_move_reg_t *read,
638 m32c_move_reg_t *write,
639 struct m32c_reg *rx,
640 struct m32c_reg *ry,
641 int n)
642{
643 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
644 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
645
646 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
647
648 r->name = name;
649 r->type = type;
650 r->arch = arch;
651 r->num = tdep->num_regs;
652 r->sim_num = sim_num;
653 r->dwarf_num = -1;
654 r->general_p = 0;
655 r->dma_p = 0;
656 r->system_p = 0;
657 r->save_restore_p = 0;
658 r->read = read;
659 r->write = write;
660 r->rx = rx;
661 r->ry = ry;
662 r->n = n;
663
664 tdep->num_regs++;
665
666 return r;
667}
668
669
670/* Record NUM as REG's DWARF register number. */
671static void
672set_dwarf_regnum (struct m32c_reg *reg, int num)
673{
674 gdb_assert (num < M32C_MAX_NUM_REGS);
675
676 /* Update the reg->DWARF mapping. Only count the first number
677 assigned to this register. */
678 if (reg->dwarf_num == -1)
679 reg->dwarf_num = num;
680
681 /* Update the DWARF->reg mapping. */
682 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
683}
684
685
686/* Mark REG as a general-purpose register, and return it. */
687static struct m32c_reg *
688mark_general (struct m32c_reg *reg)
689{
690 reg->general_p = 1;
691 return reg;
692}
693
694
695/* Mark REG as a DMA register, and return it. */
696static struct m32c_reg *
697mark_dma (struct m32c_reg *reg)
698{
699 reg->dma_p = 1;
700 return reg;
701}
702
703
704/* Mark REG as a SYSTEM register, and return it. */
705static struct m32c_reg *
706mark_system (struct m32c_reg *reg)
707{
708 reg->system_p = 1;
709 return reg;
710}
711
712
713/* Mark REG as a save-restore register, and return it. */
714static struct m32c_reg *
715mark_save_restore (struct m32c_reg *reg)
716{
717 reg->save_restore_p = 1;
718 return reg;
719}
720
721
722#define FLAGBIT_B 0x0010
723#define FLAGBIT_U 0x0080
724
725/* Handy macros for declaring registers. These all evaluate to
726 pointers to the register declared. Macros that define two
727 registers evaluate to a pointer to the first. */
728
729/* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
730#define R(name, type, sim_num) \
731 (add_reg (arch, (name), (type), (sim_num), \
732 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
733
734/* The simulator register number for a raw register named NAME. */
735#define SIM(name) (m32c_sim_reg_ ## name)
736
737/* A raw unsigned 16-bit data register named NAME.
738 NAME should be an identifier, not a string. */
739#define R16U(name) \
740 (R(#name, tdep->uint16, SIM (name)))
741
742/* A raw data address register named NAME.
743 NAME should be an identifier, not a string. */
744#define RA(name) \
745 (R(#name, tdep->data_addr_reg_type, SIM (name)))
746
747/* A raw code address register named NAME. NAME should
748 be an identifier, not a string. */
749#define RC(name) \
750 (R(#name, tdep->code_addr_reg_type, SIM (name)))
751
752/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
753 NAME should be an identifier, not a string. */
754#define RP(name, type) \
755 (R(#name "0", (type), SIM (name ## 0)), \
756 R(#name "1", (type), SIM (name ## 1)) - 1)
757
758/* A raw banked general-purpose data register named NAME.
759 NAME should be an identifier, not a string. */
760#define RBD(name) \
761 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
762 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
763
764/* A raw banked data address register named NAME.
765 NAME should be an identifier, not a string. */
766#define RBA(name) \
767 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
768 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
769
770/* A cooked register named NAME referring to a raw banked register
771 from the bank selected by the current value of FLG. RAW_PAIR
772 should be a pointer to the first register in the banked pair.
773 NAME must be an identifier, not a string. */
774#define CB(name, raw_pair) \
775 (add_reg (arch, #name, (raw_pair)->type, 0, \
776 m32c_banked_read, m32c_banked_write, \
777 (raw_pair), (raw_pair + 1), FLAGBIT_B))
778
779/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
780 access the top and bottom halves of the register pointed to by
781 NAME. NAME should be an identifier. */
782#define CHL(name, type) \
783 (add_reg (arch, #name "h", (type), 0, \
784 m32c_part_read, m32c_part_write, name, NULL, 1), \
785 add_reg (arch, #name "l", (type), 0, \
786 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
787
788/* A register constructed by concatenating the two registers HIGH and
789 LOW, whose name is HIGHLOW and whose type is TYPE. */
790#define CCAT(high, low, type) \
791 (add_reg (arch, #high #low, (type), 0, \
792 m32c_cat_read, m32c_cat_write, (high), (low), 0))
793
794/* Abbreviations for marking register group membership. */
795#define G(reg) (mark_general (reg))
796#define S(reg) (mark_system (reg))
797#define DMA(reg) (mark_dma (reg))
798
799
800/* Construct the register set for ARCH. */
801static void
802make_regs (struct gdbarch *arch)
803{
804 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
805 int mach = gdbarch_bfd_arch_info (arch)->mach;
f79b9530
DJ
806 int num_raw_regs;
807 int num_cooked_regs;
808
809 struct m32c_reg *r0;
810 struct m32c_reg *r1;
811 struct m32c_reg *r2;
812 struct m32c_reg *r3;
813 struct m32c_reg *a0;
814 struct m32c_reg *a1;
815 struct m32c_reg *fb;
816 struct m32c_reg *sb;
817 struct m32c_reg *sp;
818 struct m32c_reg *r0hl;
819 struct m32c_reg *r1hl;
820 struct m32c_reg *r2hl;
821 struct m32c_reg *r3hl;
822 struct m32c_reg *intbhl;
823 struct m32c_reg *r2r0;
824 struct m32c_reg *r3r1;
825 struct m32c_reg *r3r1r2r0;
826 struct m32c_reg *r3r2r1r0;
827 struct m32c_reg *a1a0;
96309189
MS
828
829 struct m32c_reg *raw_r0_pair = RBD (r0);
830 struct m32c_reg *raw_r1_pair = RBD (r1);
831 struct m32c_reg *raw_r2_pair = RBD (r2);
832 struct m32c_reg *raw_r3_pair = RBD (r3);
833 struct m32c_reg *raw_a0_pair = RBA (a0);
834 struct m32c_reg *raw_a1_pair = RBA (a1);
835 struct m32c_reg *raw_fb_pair = RBA (fb);
836
837 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
838 We always declare both raw registers, and deal with the distinction
839 in the pseudoregister. */
840 struct m32c_reg *raw_sb_pair = RBA (sb);
841
842 struct m32c_reg *usp = S (RA (usp));
843 struct m32c_reg *isp = S (RA (isp));
844 struct m32c_reg *intb = S (RC (intb));
845 struct m32c_reg *pc = G (RC (pc));
846 struct m32c_reg *flg = G (R16U (flg));
847
848 if (mach == bfd_mach_m32c)
849 {
850 struct m32c_reg *svf = S (R16U (svf));
851 struct m32c_reg *svp = S (RC (svp));
852 struct m32c_reg *vct = S (RC (vct));
853
854 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
855 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
856 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
857 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
858 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
859 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
860 }
861
f79b9530 862 num_raw_regs = tdep->num_regs;
96309189 863
f79b9530
DJ
864 r0 = G (CB (r0, raw_r0_pair));
865 r1 = G (CB (r1, raw_r1_pair));
866 r2 = G (CB (r2, raw_r2_pair));
867 r3 = G (CB (r3, raw_r3_pair));
868 a0 = G (CB (a0, raw_a0_pair));
869 a1 = G (CB (a1, raw_a1_pair));
870 fb = G (CB (fb, raw_fb_pair));
96309189
MS
871
872 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
873 Specify custom read/write functions that do the right thing. */
f79b9530
DJ
874 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
875 m32c_sb_read, m32c_sb_write,
876 raw_sb_pair, raw_sb_pair + 1, 0));
96309189
MS
877
878 /* The current sp is either usp or isp, depending on the value of
879 the FLG register's U bit. */
f79b9530
DJ
880 sp = G (add_reg (arch, "sp", usp->type, 0,
881 m32c_banked_read, m32c_banked_write,
882 isp, usp, FLAGBIT_U));
96309189 883
f79b9530
DJ
884 r0hl = CHL (r0, tdep->int8);
885 r1hl = CHL (r1, tdep->int8);
886 r2hl = CHL (r2, tdep->int8);
887 r3hl = CHL (r3, tdep->int8);
888 intbhl = CHL (intb, tdep->int16);
96309189 889
f79b9530
DJ
890 r2r0 = CCAT (r2, r0, tdep->int32);
891 r3r1 = CCAT (r3, r1, tdep->int32);
892 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
96309189 893
f79b9530 894 r3r2r1r0
96309189
MS
895 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
896 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
897
96309189
MS
898 if (mach == bfd_mach_m16c)
899 a1a0 = CCAT (a1, a0, tdep->int32);
900 else
901 a1a0 = NULL;
902
f79b9530 903 num_cooked_regs = tdep->num_regs - num_raw_regs;
96309189
MS
904
905 tdep->pc = pc;
906 tdep->flg = flg;
907 tdep->r0 = r0;
908 tdep->r1 = r1;
909 tdep->r2 = r2;
910 tdep->r3 = r3;
911 tdep->r2r0 = r2r0;
912 tdep->r3r2r1r0 = r3r2r1r0;
913 tdep->r3r1r2r0 = r3r1r2r0;
914 tdep->a0 = a0;
915 tdep->a1 = a1;
916 tdep->sb = sb;
917 tdep->fb = fb;
918 tdep->sp = sp;
919
920 /* Set up the DWARF register table. */
921 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
922 set_dwarf_regnum (r0hl + 1, 0x01);
923 set_dwarf_regnum (r0hl + 0, 0x02);
924 set_dwarf_regnum (r1hl + 1, 0x03);
925 set_dwarf_regnum (r1hl + 0, 0x04);
926 set_dwarf_regnum (r0, 0x05);
927 set_dwarf_regnum (r1, 0x06);
928 set_dwarf_regnum (r2, 0x07);
929 set_dwarf_regnum (r3, 0x08);
930 set_dwarf_regnum (a0, 0x09);
931 set_dwarf_regnum (a1, 0x0a);
932 set_dwarf_regnum (fb, 0x0b);
933 set_dwarf_regnum (sp, 0x0c);
934 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
935 set_dwarf_regnum (sb, 0x13);
936 set_dwarf_regnum (r2r0, 0x15);
937 set_dwarf_regnum (r3r1, 0x16);
938 if (a1a0)
939 set_dwarf_regnum (a1a0, 0x17);
940
941 /* Enumerate the save/restore register group.
942
943 The regcache_save and regcache_restore functions apply their read
944 function to each register in this group.
945
946 Since frame_pop supplies frame_unwind_register as its read
947 function, the registers meaningful to the Dwarf unwinder need to
948 be in this group.
949
950 On the other hand, when we make inferior calls, save_inferior_status
951 and restore_inferior_status use them to preserve the current register
952 values across the inferior call. For this, you'd kind of like to
953 preserve all the raw registers, to protect the interrupted code from
954 any sort of bank switching the callee might have done. But we handle
955 those cases so badly anyway --- for example, it matters whether we
956 restore FLG before or after we restore the general-purpose registers,
957 but there's no way to express that --- that it isn't worth worrying
958 about.
959
960 We omit control registers like inthl: if you call a function that
961 changes those, it's probably because you wanted that change to be
962 visible to the interrupted code. */
963 mark_save_restore (r0);
964 mark_save_restore (r1);
965 mark_save_restore (r2);
966 mark_save_restore (r3);
967 mark_save_restore (a0);
968 mark_save_restore (a1);
969 mark_save_restore (sb);
970 mark_save_restore (fb);
971 mark_save_restore (sp);
972 mark_save_restore (pc);
973 mark_save_restore (flg);
974
975 set_gdbarch_num_regs (arch, num_raw_regs);
976 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
977 set_gdbarch_pc_regnum (arch, pc->num);
978 set_gdbarch_sp_regnum (arch, sp->num);
979 set_gdbarch_register_name (arch, m32c_register_name);
980 set_gdbarch_register_type (arch, m32c_register_type);
981 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
982 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
983 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
984 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
96309189
MS
985 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
986 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
987
988 reggroup_add (arch, general_reggroup);
989 reggroup_add (arch, all_reggroup);
990 reggroup_add (arch, save_reggroup);
991 reggroup_add (arch, restore_reggroup);
992 reggroup_add (arch, system_reggroup);
993 reggroup_add (arch, m32c_dma_reggroup);
994}
995
996
997\f
998/* Breakpoints. */
999
1000static const unsigned char *
67d57894 1001m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
96309189
MS
1002{
1003 static unsigned char break_insn[] = { 0x00 }; /* brk */
1004
1005 *len = sizeof (break_insn);
1006 return break_insn;
1007}
1008
1009
1010\f
1011/* Prologue analysis. */
1012
52059ffd
TT
1013enum m32c_prologue_kind
1014{
1015 /* This function uses a frame pointer. */
1016 prologue_with_frame_ptr,
1017
1018 /* This function has no frame pointer. */
1019 prologue_sans_frame_ptr,
1020
1021 /* This function sets up the stack, so its frame is the first
1022 frame on the stack. */
1023 prologue_first_frame
1024};
1025
96309189
MS
1026struct m32c_prologue
1027{
1028 /* For consistency with the DWARF 2 .debug_frame info generated by
1029 GCC, a frame's CFA is the address immediately after the saved
1030 return address. */
1031
1032 /* The architecture for which we generated this prologue info. */
1033 struct gdbarch *arch;
1034
52059ffd 1035 enum m32c_prologue_kind kind;
96309189
MS
1036
1037 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1038 CFA to where the frame pointer points. This is always zero or
1039 negative. */
1040 LONGEST frame_ptr_offset;
1041
1042 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1043 the stack pointer --- always zero or negative.
1044
1045 Calling this a "size" is a bit misleading, but given that the
1046 stack grows downwards, using offsets for everything keeps one
1047 from going completely sign-crazy: you never change anything's
1048 sign for an ADD instruction; always change the second operand's
1049 sign for a SUB instruction; and everything takes care of
1050 itself.
1051
1052 Functions that use alloca don't have a constant frame size. But
1053 they always have frame pointers, so we must use that to find the
1054 CFA (and perhaps to unwind the stack pointer). */
1055 LONGEST frame_size;
1056
1057 /* The address of the first instruction at which the frame has been
1058 set up and the arguments are where the debug info says they are
1059 --- as best as we can tell. */
1060 CORE_ADDR prologue_end;
1061
1062 /* reg_offset[R] is the offset from the CFA at which register R is
1063 saved, or 1 if register R has not been saved. (Real values are
1064 always zero or negative.) */
1065 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1066};
1067
1068
1069/* The longest I've seen, anyway. */
1070#define M32C_MAX_INSN_LEN (9)
1071
1072/* Processor state, for the prologue analyzer. */
1073struct m32c_pv_state
1074{
1075 struct gdbarch *arch;
1076 pv_t r0, r1, r2, r3;
1077 pv_t a0, a1;
1078 pv_t sb, fb, sp;
1079 pv_t pc;
1080 struct pv_area *stack;
1081
1082 /* Bytes from the current PC, the address they were read from,
1083 and the address of the next unconsumed byte. */
1084 gdb_byte insn[M32C_MAX_INSN_LEN];
1085 CORE_ADDR scan_pc, next_addr;
1086};
1087
1088
1089/* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1090 all went well, or non-zero if simulating the action would trash our
1091 state. */
1092static int
1093m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1094{
1095 if (pv_area_store_would_trash (state->stack, state->sp))
1096 return 1;
1097
1098 state->sp = pv_add_constant (state->sp, -size);
1099 pv_area_store (state->stack, state->sp, size, value);
1100
1101 return 0;
1102}
1103
1104
52059ffd
TT
1105enum srcdest_kind
1106{
1107 srcdest_reg,
1108 srcdest_partial_reg,
1109 srcdest_mem
1110};
1111
96309189
MS
1112/* A source or destination location for an m16c or m32c
1113 instruction. */
1114struct srcdest
1115{
1116 /* If srcdest_reg, the location is a register pointed to by REG.
1117 If srcdest_partial_reg, the location is part of a register pointed
1118 to by REG. We don't try to handle this too well.
1119 If srcdest_mem, the location is memory whose address is ADDR. */
52059ffd 1120 enum srcdest_kind kind;
96309189
MS
1121 pv_t *reg, addr;
1122};
1123
1124
1125/* Return the SIZE-byte value at LOC in STATE. */
1126static pv_t
1127m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1128{
1129 if (loc.kind == srcdest_mem)
1130 return pv_area_fetch (state->stack, loc.addr, size);
1131 else if (loc.kind == srcdest_partial_reg)
1132 return pv_unknown ();
1133 else
1134 return *loc.reg;
1135}
1136
1137
1138/* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1139 all went well, or non-zero if simulating the store would trash our
1140 state. */
1141static int
1142m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1143 pv_t value, int size)
1144{
1145 if (loc.kind == srcdest_mem)
1146 {
1147 if (pv_area_store_would_trash (state->stack, loc.addr))
1148 return 1;
1149 pv_area_store (state->stack, loc.addr, size, value);
1150 }
1151 else if (loc.kind == srcdest_partial_reg)
1152 *loc.reg = pv_unknown ();
1153 else
1154 *loc.reg = value;
1155
1156 return 0;
1157}
1158
1159
1160static int
1161m32c_sign_ext (int v, int bits)
1162{
1163 int mask = 1 << (bits - 1);
1164 return (v ^ mask) - mask;
1165}
1166
1167static unsigned int
1168m32c_next_byte (struct m32c_pv_state *st)
1169{
1170 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1171 return st->insn[st->next_addr++ - st->scan_pc];
1172}
1173
1174static int
1175m32c_udisp8 (struct m32c_pv_state *st)
1176{
1177 return m32c_next_byte (st);
1178}
1179
1180
1181static int
1182m32c_sdisp8 (struct m32c_pv_state *st)
1183{
1184 return m32c_sign_ext (m32c_next_byte (st), 8);
1185}
1186
1187
1188static int
1189m32c_udisp16 (struct m32c_pv_state *st)
1190{
1191 int low = m32c_next_byte (st);
1192 int high = m32c_next_byte (st);
1193
1194 return low + (high << 8);
1195}
1196
1197
1198static int
1199m32c_sdisp16 (struct m32c_pv_state *st)
1200{
1201 int low = m32c_next_byte (st);
1202 int high = m32c_next_byte (st);
1203
1204 return m32c_sign_ext (low + (high << 8), 16);
1205}
1206
1207
1208static int
1209m32c_udisp24 (struct m32c_pv_state *st)
1210{
1211 int low = m32c_next_byte (st);
1212 int mid = m32c_next_byte (st);
1213 int high = m32c_next_byte (st);
1214
1215 return low + (mid << 8) + (high << 16);
1216}
1217
1218
1219/* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1220static int
1221m32c_get_src23 (unsigned char *i)
1222{
1223 return (((i[0] & 0x70) >> 2)
1224 | ((i[1] & 0x30) >> 4));
1225}
1226
1227
1228/* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1229static int
1230m32c_get_dest23 (unsigned char *i)
1231{
1232 return (((i[0] & 0x0e) << 1)
1233 | ((i[1] & 0xc0) >> 6));
1234}
1235
1236
1237static struct srcdest
1238m32c_decode_srcdest4 (struct m32c_pv_state *st,
1239 int code, int size)
1240{
1241 struct srcdest sd;
1242
1243 if (code < 6)
1244 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1245 else
1246 sd.kind = srcdest_mem;
1247
d56874a7
DD
1248 sd.addr = pv_unknown ();
1249 sd.reg = 0;
1250
96309189
MS
1251 switch (code)
1252 {
1253 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1254 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1255 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1256 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1257
1258 case 0x4: sd.reg = &st->a0; break;
1259 case 0x5: sd.reg = &st->a1; break;
1260
1261 case 0x6: sd.addr = st->a0; break;
1262 case 0x7: sd.addr = st->a1; break;
1263
1264 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1265 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1266 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1267 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1268
1269 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1270 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1271 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1272 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1273
1274 default:
f3574227 1275 gdb_assert_not_reached ("unexpected srcdest4");
96309189
MS
1276 }
1277
1278 return sd;
1279}
1280
1281
1282static struct srcdest
1283m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1284{
1285 struct srcdest sd;
1286
d56874a7
DD
1287 sd.addr = pv_unknown ();
1288 sd.reg = 0;
1289
96309189
MS
1290 switch (code)
1291 {
1292 case 0x12:
1293 case 0x13:
1294 case 0x10:
1295 case 0x11:
1296 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1297 break;
1298
1299 case 0x02:
1300 case 0x03:
1301 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1302 break;
1303
1304 default:
1305 sd.kind = srcdest_mem;
1306 break;
1307
1308 }
1309
1310 switch (code)
1311 {
1312 case 0x12: sd.reg = &st->r0; break;
1313 case 0x13: sd.reg = &st->r1; break;
1314 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1315 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1316 case 0x02: sd.reg = &st->a0; break;
1317 case 0x03: sd.reg = &st->a1; break;
1318
1319 case 0x00: sd.addr = st->a0; break;
1320 case 0x01: sd.addr = st->a1; break;
1321 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1322 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1323 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1324 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1325 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1326 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1327 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1328 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1329 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1330 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1331 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1332 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1333 default:
f3574227 1334 gdb_assert_not_reached ("unexpected sd23");
96309189
MS
1335 }
1336
1337 if (ind)
1338 {
1339 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1340 sd.kind = srcdest_mem;
1341 }
1342
1343 return sd;
1344}
1345
1346
1347/* The r16c and r32c machines have instructions with similar
1348 semantics, but completely different machine language encodings. So
1349 we break out the semantics into their own functions, and leave
1350 machine-specific decoding in m32c_analyze_prologue.
1351
1352 The following functions all expect their arguments already decoded,
1353 and they all return zero if analysis should continue past this
1354 instruction, or non-zero if analysis should stop. */
1355
1356
1357/* Simulate an 'enter SIZE' instruction in STATE. */
1358static int
1359m32c_pv_enter (struct m32c_pv_state *state, int size)
1360{
1361 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1362
1363 /* If simulating this store would require us to forget
1364 everything we know about the stack frame in the name of
1365 accuracy, it would be better to just quit now. */
1366 if (pv_area_store_would_trash (state->stack, state->sp))
1367 return 1;
1368
1369 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1370 return 1;
1371 state->fb = state->sp;
1372 state->sp = pv_add_constant (state->sp, -size);
1373
1374 return 0;
1375}
1376
1377
1378static int
1379m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1380 int bit, int src, int size)
1381{
1382 if (bit & src)
1383 {
1384 if (m32c_pv_push (state, reg, size))
1385 return 1;
1386 }
1387
1388 return 0;
1389}
1390
1391
1392/* Simulate a 'pushm SRC' instruction in STATE. */
1393static int
1394m32c_pv_pushm (struct m32c_pv_state *state, int src)
1395{
1396 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1397
1398 /* The bits in SRC indicating which registers to save are:
1399 r0 r1 r2 r3 a0 a1 sb fb */
1400 return
1401 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1402 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1403 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1404 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1405 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1406 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1407 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1408 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1409}
1410
1411/* Return non-zero if VALUE is the first incoming argument register. */
1412
1413static int
1414m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1415{
1416 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1417 return (value.kind == pvk_register
1418 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1419 ? (value.reg == tdep->r1->num)
1420 : (value.reg == tdep->r0->num))
1421 && value.k == 0);
1422}
1423
1424/* Return non-zero if VALUE is an incoming argument register. */
1425
1426static int
1427m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1428{
1429 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1430 return (value.kind == pvk_register
1431 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1432 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1433 : (value.reg == tdep->r0->num))
1434 && value.k == 0);
1435}
1436
1437/* Return non-zero if a store of VALUE to LOC is probably spilling an
1438 argument register to its stack slot in STATE. Such instructions
1439 should be included in the prologue, if possible.
1440
1441 The store is a spill if:
1442 - the value being stored is the original value of an argument register;
1443 - the value has not already been stored somewhere in STACK; and
1444 - LOC is a stack slot (e.g., a memory location whose address is
1445 relative to the original value of the SP). */
1446
1447static int
1448m32c_is_arg_spill (struct m32c_pv_state *st,
1449 struct srcdest loc,
1450 pv_t value)
1451{
1452 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1453
1454 return (m32c_is_arg_reg (st, value)
1455 && loc.kind == srcdest_mem
1456 && pv_is_register (loc.addr, tdep->sp->num)
1457 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1458}
1459
1460/* Return non-zero if a store of VALUE to LOC is probably
1461 copying the struct return address into an address register
1462 for immediate use. This is basically a "spill" into the
1463 address register, instead of onto the stack.
1464
1465 The prerequisites are:
1466 - value being stored is original value of the FIRST arg register;
1467 - value has not already been stored on stack; and
1468 - LOC is an address register (a0 or a1). */
1469
1470static int
1471m32c_is_struct_return (struct m32c_pv_state *st,
1472 struct srcdest loc,
1473 pv_t value)
1474{
1475 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1476
1477 return (m32c_is_1st_arg_reg (st, value)
1478 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1479 && loc.kind == srcdest_reg
1480 && (pv_is_register (*loc.reg, tdep->a0->num)
1481 || pv_is_register (*loc.reg, tdep->a1->num)));
1482}
1483
1484/* Return non-zero if a 'pushm' saving the registers indicated by SRC
1485 was a register save:
1486 - all the named registers should have their original values, and
1487 - the stack pointer should be at a constant offset from the
1488 original stack pointer. */
1489static int
1490m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1491{
1492 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1493 /* The bits in SRC indicating which registers to save are:
1494 r0 r1 r2 r3 a0 a1 sb fb */
1495 return
1496 (pv_is_register (st->sp, tdep->sp->num)
1497 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1498 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1499 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1500 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1501 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1502 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1503 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1504 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1505}
1506
1507
1508/* Function for finding saved registers in a 'struct pv_area'; we pass
1509 this to pv_area_scan.
1510
1511 If VALUE is a saved register, ADDR says it was saved at a constant
1512 offset from the frame base, and SIZE indicates that the whole
1513 register was saved, record its offset in RESULT_UNTYPED. */
1514static void
1515check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1516{
1517 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1518 struct gdbarch *arch = prologue->arch;
1519 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1520
1521 /* Is this the unchanged value of some register being saved on the
1522 stack? */
1523 if (value.kind == pvk_register
1524 && value.k == 0
1525 && pv_is_register (addr, tdep->sp->num))
1526 {
1527 /* Some registers require special handling: they're saved as a
1528 larger value than the register itself. */
1529 CORE_ADDR saved_size = register_size (arch, value.reg);
1530
1531 if (value.reg == tdep->pc->num)
1532 saved_size = tdep->ret_addr_bytes;
7b9ee6a8 1533 else if (register_type (arch, value.reg)
96309189
MS
1534 == tdep->data_addr_reg_type)
1535 saved_size = tdep->push_addr_bytes;
1536
1537 if (size == saved_size)
1538 {
1539 /* Find which end of the saved value corresponds to our
1540 register. */
1541 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1542 prologue->reg_offset[value.reg]
1543 = (addr.k + saved_size - register_size (arch, value.reg));
1544 else
1545 prologue->reg_offset[value.reg] = addr.k;
1546 }
1547 }
1548}
1549
1550
1551/* Analyze the function prologue for ARCH at START, going no further
1552 than LIMIT, and place a description of what we found in
1553 PROLOGUE. */
63807e1d 1554static void
96309189
MS
1555m32c_analyze_prologue (struct gdbarch *arch,
1556 CORE_ADDR start, CORE_ADDR limit,
1557 struct m32c_prologue *prologue)
1558{
1559 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1560 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1561 CORE_ADDR after_last_frame_related_insn;
1562 struct cleanup *back_to;
1563 struct m32c_pv_state st;
1564
1565 st.arch = arch;
1566 st.r0 = pv_register (tdep->r0->num, 0);
1567 st.r1 = pv_register (tdep->r1->num, 0);
1568 st.r2 = pv_register (tdep->r2->num, 0);
1569 st.r3 = pv_register (tdep->r3->num, 0);
1570 st.a0 = pv_register (tdep->a0->num, 0);
1571 st.a1 = pv_register (tdep->a1->num, 0);
1572 st.sb = pv_register (tdep->sb->num, 0);
1573 st.fb = pv_register (tdep->fb->num, 0);
1574 st.sp = pv_register (tdep->sp->num, 0);
1575 st.pc = pv_register (tdep->pc->num, 0);
55f960e1 1576 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
96309189
MS
1577 back_to = make_cleanup_free_pv_area (st.stack);
1578
1579 /* Record that the call instruction has saved the return address on
1580 the stack. */
1581 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1582
1583 memset (prologue, 0, sizeof (*prologue));
1584 prologue->arch = arch;
1585 {
1586 int i;
1587 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1588 prologue->reg_offset[i] = 1;
1589 }
1590
1591 st.scan_pc = after_last_frame_related_insn = start;
1592
1593 while (st.scan_pc < limit)
1594 {
1595 pv_t pre_insn_fb = st.fb;
1596 pv_t pre_insn_sp = st.sp;
1597
1598 /* In theory we could get in trouble by trying to read ahead
1599 here, when we only know we're expecting one byte. In
1600 practice I doubt anyone will care, and it makes the rest of
1601 the code easier. */
1602 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1603 /* If we can't fetch the instruction from memory, stop here
1604 and hope for the best. */
1605 break;
1606 st.next_addr = st.scan_pc;
1607
1608 /* The assembly instructions are written as they appear in the
1609 section of the processor manuals that describe the
1610 instruction encodings.
1611
1612 When a single assembly language instruction has several
1613 different machine-language encodings, the manual
1614 distinguishes them by a number in parens, before the
1615 mnemonic. Those numbers are included, as well.
1616
1617 The srcdest decoding instructions have the same names as the
1618 analogous functions in the simulator. */
1619 if (mach == bfd_mach_m16c)
1620 {
1621 /* (1) ENTER #imm8 */
1622 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1623 {
1624 if (m32c_pv_enter (&st, st.insn[2]))
1625 break;
1626 st.next_addr += 3;
1627 }
1628 /* (1) PUSHM src */
1629 else if (st.insn[0] == 0xec)
1630 {
1631 int src = st.insn[1];
1632 if (m32c_pv_pushm (&st, src))
1633 break;
1634 st.next_addr += 2;
1635
1636 if (m32c_pushm_is_reg_save (&st, src))
1637 after_last_frame_related_insn = st.next_addr;
1638 }
1639
1640 /* (6) MOV.size:G src, dest */
1641 else if ((st.insn[0] & 0xfe) == 0x72)
1642 {
1643 int size = (st.insn[0] & 0x01) ? 2 : 1;
f79b9530
DJ
1644 struct srcdest src;
1645 struct srcdest dest;
1646 pv_t src_value;
96309189
MS
1647 st.next_addr += 2;
1648
f79b9530 1649 src
96309189 1650 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
f79b9530 1651 dest
96309189 1652 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
f79b9530 1653 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1654
1655 if (m32c_is_arg_spill (&st, dest, src_value))
1656 after_last_frame_related_insn = st.next_addr;
1657 else if (m32c_is_struct_return (&st, dest, src_value))
1658 after_last_frame_related_insn = st.next_addr;
1659
1660 if (m32c_srcdest_store (&st, dest, src_value, size))
1661 break;
1662 }
1663
1664 /* (1) LDC #IMM16, sp */
1665 else if (st.insn[0] == 0xeb
1666 && st.insn[1] == 0x50)
1667 {
1668 st.next_addr += 2;
1669 st.sp = pv_constant (m32c_udisp16 (&st));
1670 }
1671
1672 else
1673 /* We've hit some instruction we don't know how to simulate.
1674 Strictly speaking, we should set every value we're
1675 tracking to "unknown". But we'll be optimistic, assume
1676 that we have enough information already, and stop
1677 analysis here. */
1678 break;
1679 }
1680 else
1681 {
1682 int src_indirect = 0;
1683 int dest_indirect = 0;
1684 int i = 0;
1685
1686 gdb_assert (mach == bfd_mach_m32c);
1687
1688 /* Check for prefix bytes indicating indirect addressing. */
1689 if (st.insn[0] == 0x41)
1690 {
1691 src_indirect = 1;
1692 i++;
1693 }
1694 else if (st.insn[0] == 0x09)
1695 {
1696 dest_indirect = 1;
1697 i++;
1698 }
1699 else if (st.insn[0] == 0x49)
1700 {
1701 src_indirect = dest_indirect = 1;
1702 i++;
1703 }
1704
1705 /* (1) ENTER #imm8 */
1706 if (st.insn[i] == 0xec)
1707 {
1708 if (m32c_pv_enter (&st, st.insn[i + 1]))
1709 break;
1710 st.next_addr += 2;
1711 }
1712
1713 /* (1) PUSHM src */
1714 else if (st.insn[i] == 0x8f)
1715 {
1716 int src = st.insn[i + 1];
1717 if (m32c_pv_pushm (&st, src))
1718 break;
1719 st.next_addr += 2;
1720
1721 if (m32c_pushm_is_reg_save (&st, src))
1722 after_last_frame_related_insn = st.next_addr;
1723 }
1724
1725 /* (7) MOV.size:G src, dest */
1726 else if ((st.insn[i] & 0x80) == 0x80
1727 && (st.insn[i + 1] & 0x0f) == 0x0b
1728 && m32c_get_src23 (&st.insn[i]) < 20
1729 && m32c_get_dest23 (&st.insn[i]) < 20)
1730 {
f79b9530
DJ
1731 struct srcdest src;
1732 struct srcdest dest;
1733 pv_t src_value;
96309189
MS
1734 int bw = st.insn[i] & 0x01;
1735 int size = bw ? 2 : 1;
96309189
MS
1736 st.next_addr += 2;
1737
f79b9530 1738 src
96309189
MS
1739 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1740 size, src_indirect);
f79b9530 1741 dest
96309189
MS
1742 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1743 size, dest_indirect);
f79b9530 1744 src_value = m32c_srcdest_fetch (&st, src, size);
96309189
MS
1745
1746 if (m32c_is_arg_spill (&st, dest, src_value))
1747 after_last_frame_related_insn = st.next_addr;
1748
1749 if (m32c_srcdest_store (&st, dest, src_value, size))
1750 break;
1751 }
1752 /* (2) LDC #IMM24, sp */
1753 else if (st.insn[i] == 0xd5
1754 && st.insn[i + 1] == 0x29)
1755 {
1756 st.next_addr += 2;
1757 st.sp = pv_constant (m32c_udisp24 (&st));
1758 }
1759 else
1760 /* We've hit some instruction we don't know how to simulate.
1761 Strictly speaking, we should set every value we're
1762 tracking to "unknown". But we'll be optimistic, assume
1763 that we have enough information already, and stop
1764 analysis here. */
1765 break;
1766 }
1767
1768 /* If this instruction changed the FB or decreased the SP (i.e.,
1769 allocated more stack space), then this may be a good place to
1770 declare the prologue finished. However, there are some
1771 exceptions:
1772
1773 - If the instruction just changed the FB back to its original
1774 value, then that's probably a restore instruction. The
1775 prologue should definitely end before that.
1776
1777 - If the instruction increased the value of the SP (that is,
1778 shrunk the frame), then it's probably part of a frame
1779 teardown sequence, and the prologue should end before
1780 that. */
1781
1782 if (! pv_is_identical (st.fb, pre_insn_fb))
1783 {
1784 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1785 after_last_frame_related_insn = st.next_addr;
1786 }
1787 else if (! pv_is_identical (st.sp, pre_insn_sp))
1788 {
1789 /* The comparison of the constants looks odd, there, because
1790 .k is unsigned. All it really means is that the SP is
1791 lower than it was before the instruction. */
1792 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1793 && pv_is_register (st.sp, tdep->sp->num)
1794 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1795 after_last_frame_related_insn = st.next_addr;
1796 }
1797
1798 st.scan_pc = st.next_addr;
1799 }
1800
1801 /* Did we load a constant value into the stack pointer? */
1802 if (pv_is_constant (st.sp))
1803 prologue->kind = prologue_first_frame;
1804
1805 /* Alternatively, did we initialize the frame pointer? Remember
1806 that the CFA is the address after the return address. */
1807 if (pv_is_register (st.fb, tdep->sp->num))
1808 {
1809 prologue->kind = prologue_with_frame_ptr;
1810 prologue->frame_ptr_offset = st.fb.k;
1811 }
1812
1813 /* Is the frame size a known constant? Remember that frame_size is
1814 actually the offset from the CFA to the SP (i.e., a negative
1815 value). */
1816 else if (pv_is_register (st.sp, tdep->sp->num))
1817 {
1818 prologue->kind = prologue_sans_frame_ptr;
1819 prologue->frame_size = st.sp.k;
1820 }
1821
1822 /* We haven't been able to make sense of this function's frame. Treat
1823 it as the first frame. */
1824 else
1825 prologue->kind = prologue_first_frame;
1826
1827 /* Record where all the registers were saved. */
1828 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1829
1830 prologue->prologue_end = after_last_frame_related_insn;
1831
1832 do_cleanups (back_to);
1833}
1834
1835
1836static CORE_ADDR
6093d2eb 1837m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
96309189 1838{
2c02bd72 1839 const char *name;
96309189
MS
1840 CORE_ADDR func_addr, func_end, sal_end;
1841 struct m32c_prologue p;
1842
1843 /* Try to find the extent of the function that contains IP. */
1844 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1845 return ip;
1846
1847 /* Find end by prologue analysis. */
6093d2eb 1848 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
96309189 1849 /* Find end by line info. */
d80b854b 1850 sal_end = skip_prologue_using_sal (gdbarch, ip);
96309189
MS
1851 /* Return whichever is lower. */
1852 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1853 return sal_end;
1854 else
1855 return p.prologue_end;
1856}
1857
1858
1859\f
1860/* Stack unwinding. */
1861
1862static struct m32c_prologue *
94afd7a6 1863m32c_analyze_frame_prologue (struct frame_info *this_frame,
96309189
MS
1864 void **this_prologue_cache)
1865{
1866 if (! *this_prologue_cache)
1867 {
94afd7a6
UW
1868 CORE_ADDR func_start = get_frame_func (this_frame);
1869 CORE_ADDR stop_addr = get_frame_pc (this_frame);
96309189
MS
1870
1871 /* If we couldn't find any function containing the PC, then
1872 just initialize the prologue cache, but don't do anything. */
1873 if (! func_start)
1874 stop_addr = func_start;
1875
1876 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
94afd7a6 1877 m32c_analyze_prologue (get_frame_arch (this_frame),
9a3c8263
SM
1878 func_start, stop_addr,
1879 (struct m32c_prologue *) *this_prologue_cache);
96309189
MS
1880 }
1881
9a3c8263 1882 return (struct m32c_prologue *) *this_prologue_cache;
96309189
MS
1883}
1884
1885
1886static CORE_ADDR
94afd7a6 1887m32c_frame_base (struct frame_info *this_frame,
96309189
MS
1888 void **this_prologue_cache)
1889{
1890 struct m32c_prologue *p
94afd7a6
UW
1891 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1892 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189
MS
1893
1894 /* In functions that use alloca, the distance between the stack
1895 pointer and the frame base varies dynamically, so we can't use
1896 the SP plus static information like prologue analysis to find the
1897 frame base. However, such functions must have a frame pointer,
1898 to be able to restore the SP on exit. So whenever we do have a
1899 frame pointer, use that to find the base. */
1900 switch (p->kind)
1901 {
1902 case prologue_with_frame_ptr:
1903 {
1904 CORE_ADDR fb
94afd7a6 1905 = get_frame_register_unsigned (this_frame, tdep->fb->num);
96309189
MS
1906 return fb - p->frame_ptr_offset;
1907 }
1908
1909 case prologue_sans_frame_ptr:
1910 {
1911 CORE_ADDR sp
94afd7a6 1912 = get_frame_register_unsigned (this_frame, tdep->sp->num);
96309189
MS
1913 return sp - p->frame_size;
1914 }
1915
1916 case prologue_first_frame:
1917 return 0;
1918
1919 default:
f3574227 1920 gdb_assert_not_reached ("unexpected prologue kind");
96309189
MS
1921 }
1922}
1923
1924
1925static void
94afd7a6 1926m32c_this_id (struct frame_info *this_frame,
96309189
MS
1927 void **this_prologue_cache,
1928 struct frame_id *this_id)
1929{
94afd7a6 1930 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
96309189
MS
1931
1932 if (base)
94afd7a6 1933 *this_id = frame_id_build (base, get_frame_func (this_frame));
96309189
MS
1934 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1935}
1936
1937
94afd7a6
UW
1938static struct value *
1939m32c_prev_register (struct frame_info *this_frame,
1940 void **this_prologue_cache, int regnum)
96309189 1941{
94afd7a6 1942 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
96309189 1943 struct m32c_prologue *p
94afd7a6
UW
1944 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1945 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1946 int reg_size = register_size (get_frame_arch (this_frame), regnum);
96309189
MS
1947
1948 if (regnum == tdep->sp->num)
94afd7a6 1949 return frame_unwind_got_constant (this_frame, regnum, frame_base);
96309189
MS
1950
1951 /* If prologue analysis says we saved this register somewhere,
1952 return a description of the stack slot holding it. */
94afd7a6
UW
1953 if (p->reg_offset[regnum] != 1)
1954 return frame_unwind_got_memory (this_frame, regnum,
1955 frame_base + p->reg_offset[regnum]);
96309189
MS
1956
1957 /* Otherwise, presume we haven't changed the value of this
1958 register, and get it from the next frame. */
94afd7a6 1959 return frame_unwind_got_register (this_frame, regnum, regnum);
96309189
MS
1960}
1961
1962
1963static const struct frame_unwind m32c_unwind = {
1964 NORMAL_FRAME,
8fbca658 1965 default_frame_unwind_stop_reason,
96309189 1966 m32c_this_id,
94afd7a6
UW
1967 m32c_prev_register,
1968 NULL,
1969 default_frame_sniffer
96309189
MS
1970};
1971
1972
96309189
MS
1973static CORE_ADDR
1974m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1975{
1976 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1977 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1978}
1979
1980
1981static CORE_ADDR
1982m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1983{
1984 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1985 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1986}
1987
1988\f
1989/* Inferior calls. */
1990
1991/* The calling conventions, according to GCC:
1992
1993 r8c, m16c
1994 ---------
1995 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1996 HImode), (2) is named, and (3) is an integer or pointer type (no
1997 structs, floats, etc). Otherwise, it's passed on the stack.
1998
1999 Second arg may be passed in r2, same restrictions (but not QImode),
2000 even if the first arg is passed on the stack.
2001
2002 Third and further args are passed on the stack. No padding is
2003 used, stack "alignment" is 8 bits.
2004
2005 m32cm, m32c
2006 -----------
2007
2008 First arg may be passed in r0l or r0, same restrictions as above.
2009
2010 Second and further args are passed on the stack. Padding is used
2011 after QImode parameters (i.e. lower-addressed byte is the value,
2012 higher-addressed byte is the padding), stack "alignment" is 16
2013 bits. */
2014
2015
2016/* Return true if TYPE is a type that can be passed in registers. (We
2017 ignore the size, and pay attention only to the type code;
2018 acceptable sizes depends on which register is being considered to
2019 hold it.) */
2020static int
2021m32c_reg_arg_type (struct type *type)
2022{
2023 enum type_code code = TYPE_CODE (type);
2024
2025 return (code == TYPE_CODE_INT
2026 || code == TYPE_CODE_ENUM
2027 || code == TYPE_CODE_PTR
2028 || code == TYPE_CODE_REF
2029 || code == TYPE_CODE_BOOL
2030 || code == TYPE_CODE_CHAR);
2031}
2032
2033
2034static CORE_ADDR
2035m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2036 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2037 struct value **args, CORE_ADDR sp, int struct_return,
2038 CORE_ADDR struct_addr)
2039{
2040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2041 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2042 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2043 CORE_ADDR cfa;
2044 int i;
2045
2046 /* The number of arguments given in this function's prototype, or
2047 zero if it has a non-prototyped function type. The m32c ABI
2048 passes arguments mentioned in the prototype differently from
2049 those in the ellipsis of a varargs function, or from those passed
2050 to a non-prototyped function. */
2051 int num_prototyped_args = 0;
2052
2053 {
2054 struct type *func_type = value_type (function);
2055
ed09d7da
KB
2056 /* Dereference function pointer types. */
2057 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2058 func_type = TYPE_TARGET_TYPE (func_type);
2059
96309189
MS
2060 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2061 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2062
2063#if 0
2064 /* The ABI description in gcc/config/m32c/m32c.abi says that
2065 we need to handle prototyped and non-prototyped functions
2066 separately, but the code in GCC doesn't actually do so. */
2067 if (TYPE_PROTOTYPED (func_type))
2068#endif
2069 num_prototyped_args = TYPE_NFIELDS (func_type);
2070 }
2071
2072 /* First, if the function returns an aggregate by value, push a
2073 pointer to a buffer for it. This doesn't affect the way
2074 subsequent arguments are allocated to registers. */
2075 if (struct_return)
2076 {
2077 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2078 sp -= ptr_len;
e17a4113 2079 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
96309189
MS
2080 }
2081
2082 /* Push the arguments. */
2083 for (i = nargs - 1; i >= 0; i--)
2084 {
2085 struct value *arg = args[i];
2086 const gdb_byte *arg_bits = value_contents (arg);
2087 struct type *arg_type = value_type (arg);
2088 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2089
2090 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2091 if (i == 0
2092 && arg_size <= 2
2093 && i < num_prototyped_args
2094 && m32c_reg_arg_type (arg_type))
2095 {
2096 /* Extract and re-store as an integer as a terse way to make
2097 sure it ends up in the least significant end of r1. (GDB
2098 should avoid assuming endianness, even on uni-endian
2099 processors.) */
e17a4113
UW
2100 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2101 byte_order);
96309189
MS
2102 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2103 regcache_cooked_write_unsigned (regcache, reg->num, u);
2104 }
2105
2106 /* Can it go in r2? */
2107 else if (mach == bfd_mach_m16c
2108 && i == 1
2109 && arg_size == 2
2110 && i < num_prototyped_args
2111 && m32c_reg_arg_type (arg_type))
2112 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2113
2114 /* Everything else goes on the stack. */
2115 else
2116 {
2117 sp -= arg_size;
2118
2119 /* Align the stack. */
2120 if (mach == bfd_mach_m32c)
2121 sp &= ~1;
2122
2123 write_memory (sp, arg_bits, arg_size);
2124 }
2125 }
2126
2127 /* This is the CFA we use to identify the dummy frame. */
2128 cfa = sp;
2129
2130 /* Push the return address. */
2131 sp -= tdep->ret_addr_bytes;
e17a4113
UW
2132 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2133 bp_addr);
96309189
MS
2134
2135 /* Update the stack pointer. */
2136 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2137
2138 /* We need to borrow an odd trick from the i386 target here.
2139
2140 The value we return from this function gets used as the stack
2141 address (the CFA) for the dummy frame's ID. The obvious thing is
2142 to return the new TOS. However, that points at the return
2143 address, saved on the stack, which is inconsistent with the CFA's
2144 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2145 .debug_frame info uses the address immediately after the saved
2146 return address. So you end up with a dummy frame whose CFA
2147 points at the return address, but the frame for the function
2148 being called has a CFA pointing after the return address: the
2149 younger CFA is *greater than* the older CFA. The sanity checks
2150 in frame.c don't like that.
2151
2152 So we try to be consistent with the CFA's used by DWARF 2.
2153 Having a dummy frame and a real frame with the *same* CFA is
2154 tolerable. */
2155 return cfa;
2156}
2157
2158
2159static struct frame_id
94afd7a6 2160m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
96309189
MS
2161{
2162 /* This needs to return a frame ID whose PC is the return address
2163 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2164 m32c_push_dummy_call returned.
2165
2166 m32c_unwind_sp gives us the CFA, which is the value the SP had
2167 before the return address was pushed. */
94afd7a6
UW
2168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2169 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2170 return frame_id_build (sp, get_frame_pc (this_frame));
96309189
MS
2171}
2172
2173
2174\f
2175/* Return values. */
2176
2177/* Return value conventions, according to GCC:
2178
2179 r8c, m16c
2180 ---------
2181
2182 QImode in r0l
2183 HImode in r0
2184 SImode in r2r0
2185 near pointer in r0
2186 far pointer in r2r0
2187
2188 Aggregate values (regardless of size) are returned by pushing a
2189 pointer to a temporary area on the stack after the args are pushed.
2190 The function fills in this area with the value. Note that this
2191 pointer on the stack does not affect how register arguments, if any,
2192 are configured.
2193
2194 m32cm, m32c
2195 -----------
2196 Same. */
2197
2198/* Return non-zero if values of type TYPE are returned by storing them
2199 in a buffer whose address is passed on the stack, ahead of the
2200 other arguments. */
2201static int
2202m32c_return_by_passed_buf (struct type *type)
2203{
2204 enum type_code code = TYPE_CODE (type);
2205
2206 return (code == TYPE_CODE_STRUCT
2207 || code == TYPE_CODE_UNION);
2208}
2209
2210static enum return_value_convention
2211m32c_return_value (struct gdbarch *gdbarch,
6a3a010b 2212 struct value *function,
96309189
MS
2213 struct type *valtype,
2214 struct regcache *regcache,
2215 gdb_byte *readbuf,
2216 const gdb_byte *writebuf)
2217{
2218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2219 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2220 enum return_value_convention conv;
2221 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2222
2223 if (m32c_return_by_passed_buf (valtype))
2224 conv = RETURN_VALUE_STRUCT_CONVENTION;
2225 else
2226 conv = RETURN_VALUE_REGISTER_CONVENTION;
2227
2228 if (readbuf)
2229 {
2230 /* We should never be called to find values being returned by
2231 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2232 unless we made the call ourselves. */
2233 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2234
2235 gdb_assert (valtype_len <= 8);
2236
2237 /* Anything that fits in r0 is returned there. */
2238 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2239 {
2240 ULONGEST u;
2241 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
e17a4113 2242 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
96309189
MS
2243 }
2244 else
2245 {
2246 /* Everything else is passed in mem0, using as many bytes as
2247 needed. This is not what the Renesas tools do, but it's
2248 what GCC does at the moment. */
3b7344d5 2249 struct bound_minimal_symbol mem0
96309189
MS
2250 = lookup_minimal_symbol ("mem0", NULL, NULL);
2251
3b7344d5 2252 if (! mem0.minsym)
a73c6dcd
MS
2253 error (_("The return value is stored in memory at 'mem0', "
2254 "but GDB cannot find\n"
2255 "its address."));
77e371c0 2256 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
96309189
MS
2257 }
2258 }
2259
2260 if (writebuf)
2261 {
2262 /* We should never be called to store values to be returned
2263 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2264 finding the buffer, unless we made the call ourselves. */
2265 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2266
2267 gdb_assert (valtype_len <= 8);
2268
2269 /* Anything that fits in r0 is returned there. */
2270 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2271 {
e17a4113
UW
2272 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2273 byte_order);
96309189
MS
2274 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2275 }
2276 else
2277 {
2278 /* Everything else is passed in mem0, using as many bytes as
2279 needed. This is not what the Renesas tools do, but it's
2280 what GCC does at the moment. */
3b7344d5 2281 struct bound_minimal_symbol mem0
96309189
MS
2282 = lookup_minimal_symbol ("mem0", NULL, NULL);
2283
3b7344d5 2284 if (! mem0.minsym)
a73c6dcd
MS
2285 error (_("The return value is stored in memory at 'mem0', "
2286 "but GDB cannot find\n"
2287 " its address."));
77e371c0 2288 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
96309189
MS
2289 }
2290 }
2291
2292 return conv;
2293}
2294
2295
2296\f
2297/* Trampolines. */
2298
2299/* The m16c and m32c use a trampoline function for indirect function
2300 calls. An indirect call looks like this:
2301
2302 ... push arguments ...
2303 ... push target function address ...
2304 jsr.a m32c_jsri16
2305
2306 The code for m32c_jsri16 looks like this:
2307
2308 m32c_jsri16:
2309
2310 # Save return address.
2311 pop.w m32c_jsri_ret
2312 pop.b m32c_jsri_ret+2
2313
2314 # Store target function address.
2315 pop.w m32c_jsri_addr
2316
2317 # Re-push return address.
2318 push.b m32c_jsri_ret+2
2319 push.w m32c_jsri_ret
2320
2321 # Call the target function.
2322 jmpi.a m32c_jsri_addr
2323
2324 Without further information, GDB will treat calls to m32c_jsri16
2325 like calls to any other function. Since m32c_jsri16 doesn't have
2326 debugging information, that normally means that GDB sets a step-
2327 resume breakpoint and lets the program continue --- which is not
2328 what the user wanted. (Giving the trampoline debugging info
2329 doesn't help: the user expects the program to stop in the function
2330 their program is calling, not in some trampoline code they've never
2331 seen before.)
2332
e76f05fa 2333 The gdbarch_skip_trampoline_code method tells GDB how to step
96309189
MS
2334 through such trampoline functions transparently to the user. When
2335 given the address of a trampoline function's first instruction,
e76f05fa 2336 gdbarch_skip_trampoline_code should return the address of the first
96309189
MS
2337 instruction of the function really being called. If GDB decides it
2338 wants to step into that function, it will set a breakpoint there
2339 and silently continue to it.
2340
2341 We recognize the trampoline by name, and extract the target address
2342 directly from the stack. This isn't great, but recognizing by its
2343 code sequence seems more fragile. */
2344
2345static CORE_ADDR
52f729a7 2346m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
96309189 2347{
e17a4113
UW
2348 struct gdbarch *gdbarch = get_frame_arch (frame);
2349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96309189
MS
2351
2352 /* It would be nicer to simply look up the addresses of known
2353 trampolines once, and then compare stop_pc with them. However,
2354 we'd need to ensure that that cached address got invalidated when
2355 someone loaded a new executable, and I'm not quite sure of the
2356 best way to do that. find_pc_partial_function does do some
2357 caching, so we'll see how this goes. */
2c02bd72 2358 const char *name;
96309189
MS
2359 CORE_ADDR start, end;
2360
2361 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2362 {
2363 /* Are we stopped at the beginning of the trampoline function? */
2364 if (strcmp (name, "m32c_jsri16") == 0
2365 && stop_pc == start)
2366 {
2367 /* Get the stack pointer. The return address is at the top,
2368 and the target function's address is just below that. We
2369 know it's a two-byte address, since the trampoline is
2370 m32c_jsri*16*. */
2371 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2372 CORE_ADDR target
e17a4113
UW
2373 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2374 2, byte_order);
96309189
MS
2375
2376 /* What we have now is the address of a jump instruction.
2377 What we need is the destination of that jump.
025bb325
MS
2378 The opcode is 1 byte, and the destination is the next 3 bytes. */
2379
e17a4113 2380 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
96309189
MS
2381 return target;
2382 }
2383 }
2384
2385 return 0;
2386}
2387
2388
2389/* Address/pointer conversions. */
2390
2391/* On the m16c, there is a 24-bit address space, but only a very few
2392 instructions can generate addresses larger than 0xffff: jumps,
2393 jumps to subroutines, and the lde/std (load/store extended)
2394 instructions.
2395
2396 Since GCC can only support one size of pointer, we can't have
2397 distinct 'near' and 'far' pointer types; we have to pick one size
2398 for everything. If we wanted to use 24-bit pointers, then GCC
2399 would have to use lde and ste for all memory references, which
2400 would be terrible for performance and code size. So the GNU
2401 toolchain uses 16-bit pointers for everything, and gives up the
2402 ability to have pointers point outside the first 64k of memory.
2403
2404 However, as a special hack, we let the linker place functions at
2405 addresses above 0xffff, as long as it also places a trampoline in
2406 the low 64k for every function whose address is taken. Each
2407 trampoline consists of a single jmp.a instruction that jumps to the
2408 function's real entry point. Pointers to functions can be 16 bits
2409 long, even though the functions themselves are at higher addresses:
2410 the pointers refer to the trampolines, not the functions.
2411
2412 This complicates things for GDB, however: given the address of a
2413 function (from debug info or linker symbols, say) which could be
2414 anywhere in the 24-bit address space, how can we find an
2415 appropriate 16-bit value to use as a pointer to it?
2416
2417 If the linker has not generated a trampoline for the function,
2418 we're out of luck. Well, I guess we could malloc some space and
2419 write a jmp.a instruction to it, but I'm not going to get into that
2420 at the moment.
2421
2422 If the linker has generated a trampoline for the function, then it
2423 also emitted a symbol for the trampoline: if the function's linker
2424 symbol is named NAME, then the function's trampoline's linker
2425 symbol is named NAME.plt.
2426
2427 So, given a code address:
2428 - We try to find a linker symbol at that address.
2429 - If we find such a symbol named NAME, we look for a linker symbol
2430 named NAME.plt.
2431 - If we find such a symbol, we assume it is a trampoline, and use
2432 its address as the pointer value.
2433
2434 And, given a function pointer:
2435 - We try to find a linker symbol at that address named NAME.plt.
2436 - If we find such a symbol, we look for a linker symbol named NAME.
2437 - If we find that, we provide that as the function's address.
2438 - If any of the above steps fail, we return the original address
2439 unchanged; it might really be a function in the low 64k.
2440
2441 See? You *knew* there was a reason you wanted to be a computer
2442 programmer! :) */
2443
2444static void
9898f801
UW
2445m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2446 struct type *type, gdb_byte *buf, CORE_ADDR addr)
96309189 2447{
e17a4113 2448 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530 2449 enum type_code target_code;
96309189
MS
2450 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2451 TYPE_CODE (type) == TYPE_CODE_REF);
2452
f79b9530 2453 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2454
2455 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2456 {
0d5cff50 2457 const char *func_name;
f79b9530 2458 char *tramp_name;
3b7344d5 2459 struct bound_minimal_symbol tramp_msym;
f79b9530 2460
96309189 2461 /* Try to find a linker symbol at this address. */
7cbd4a93
TT
2462 struct bound_minimal_symbol func_msym
2463 = lookup_minimal_symbol_by_pc (addr);
96309189 2464
7cbd4a93 2465 if (! func_msym.minsym)
d77b48cf
KB
2466 error (_("Cannot convert code address %s to function pointer:\n"
2467 "couldn't find a symbol at that address, to find trampoline."),
5af949e3 2468 paddress (gdbarch, addr));
96309189 2469
efd66ac6 2470 func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
224c3ddb 2471 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
96309189
MS
2472 strcpy (tramp_name, func_name);
2473 strcat (tramp_name, ".plt");
2474
2475 /* Try to find a linker symbol for the trampoline. */
f79b9530 2476 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
96309189
MS
2477
2478 /* We've either got another copy of the name now, or don't need
2479 the name any more. */
2480 xfree (tramp_name);
2481
3b7344d5 2482 if (! tramp_msym.minsym)
d77b48cf
KB
2483 {
2484 CORE_ADDR ptrval;
2485
2486 /* No PLT entry found. Mask off the upper bits of the address
2487 to make a pointer. As noted in the warning to the user
2488 below, this value might be useful if converted back into
2489 an address by GDB, but will otherwise, almost certainly,
2490 be garbage.
2491
2492 Using this masked result does seem to be useful
2493 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2494 PASSes. These results appear to be correct as well.
2495
2496 We print a warning here so that the user can make a
2497 determination about whether the result is useful or not. */
2498 ptrval = addr & 0xffff;
2499
2500 warning (_("Cannot convert code address %s to function pointer:\n"
2501 "couldn't find trampoline named '%s.plt'.\n"
2502 "Returning pointer value %s instead; this may produce\n"
2503 "a useful result if converted back into an address by GDB,\n"
2504 "but will most likely not be useful otherwise.\n"),
2505 paddress (gdbarch, addr), func_name,
2506 paddress (gdbarch, ptrval));
2507
2508 addr = ptrval;
96309189 2509
d77b48cf
KB
2510 }
2511 else
2512 {
2513 /* The trampoline's address is our pointer. */
77e371c0 2514 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
d77b48cf 2515 }
96309189
MS
2516 }
2517
e17a4113 2518 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
96309189
MS
2519}
2520
2521
2522static CORE_ADDR
9898f801
UW
2523m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2524 struct type *type, const gdb_byte *buf)
96309189 2525{
e17a4113 2526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f79b9530
DJ
2527 CORE_ADDR ptr;
2528 enum type_code target_code;
2529
96309189
MS
2530 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2531 TYPE_CODE (type) == TYPE_CODE_REF);
2532
e17a4113 2533 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
96309189 2534
f79b9530 2535 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
96309189
MS
2536
2537 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2538 {
2539 /* See if there is a minimal symbol at that address whose name is
2540 "NAME.plt". */
7cbd4a93 2541 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
96309189 2542
7cbd4a93 2543 if (ptr_msym.minsym)
96309189 2544 {
efd66ac6 2545 const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
96309189
MS
2546 int len = strlen (ptr_msym_name);
2547
2548 if (len > 4
2549 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2550 {
3b7344d5 2551 struct bound_minimal_symbol func_msym;
96309189
MS
2552 /* We have a .plt symbol; try to find the symbol for the
2553 corresponding function.
2554
2555 Since the trampoline contains a jump instruction, we
2556 could also just extract the jump's target address. I
2557 don't see much advantage one way or the other. */
224c3ddb 2558 char *func_name = (char *) xmalloc (len - 4 + 1);
96309189
MS
2559 memcpy (func_name, ptr_msym_name, len - 4);
2560 func_name[len - 4] = '\0';
f79b9530 2561 func_msym
96309189
MS
2562 = lookup_minimal_symbol (func_name, NULL, NULL);
2563
2564 /* If we do have such a symbol, return its value as the
2565 function's true address. */
3b7344d5 2566 if (func_msym.minsym)
77e371c0 2567 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
96309189
MS
2568 }
2569 }
d77b48cf
KB
2570 else
2571 {
2572 int aspace;
2573
2574 for (aspace = 1; aspace <= 15; aspace++)
2575 {
2576 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2577
7cbd4a93 2578 if (ptr_msym.minsym)
d77b48cf
KB
2579 ptr |= aspace << 16;
2580 }
2581 }
96309189
MS
2582 }
2583
2584 return ptr;
2585}
2586
63807e1d 2587static void
a54fba4c 2588m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
7830cb4f
CV
2589 int *frame_regnum,
2590 LONGEST *frame_offset)
2591{
2c02bd72 2592 const char *name;
22e048c9 2593 CORE_ADDR func_addr, func_end;
7830cb4f
CV
2594 struct m32c_prologue p;
2595
594f7785 2596 struct regcache *regcache = get_current_regcache ();
a54fba4c 2597 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7830cb4f
CV
2598
2599 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
025bb325
MS
2600 internal_error (__FILE__, __LINE__,
2601 _("No virtual frame pointer available"));
7830cb4f 2602
a54fba4c 2603 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
7830cb4f
CV
2604 switch (p.kind)
2605 {
2606 case prologue_with_frame_ptr:
594f7785 2607 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
7830cb4f
CV
2608 *frame_offset = p.frame_ptr_offset;
2609 break;
2610 case prologue_sans_frame_ptr:
594f7785 2611 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2612 *frame_offset = p.frame_size;
2613 break;
2614 default:
594f7785 2615 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
7830cb4f
CV
2616 *frame_offset = 0;
2617 break;
2618 }
2619 /* Sanity check */
a54fba4c 2620 if (*frame_regnum > gdbarch_num_regs (gdbarch))
025bb325
MS
2621 internal_error (__FILE__, __LINE__,
2622 _("No virtual frame pointer available"));
7830cb4f 2623}
96309189
MS
2624
2625\f
2626/* Initialization. */
2627
2628static struct gdbarch *
2629m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2630{
2631 struct gdbarch *arch;
2632 struct gdbarch_tdep *tdep;
2633 unsigned long mach = info.bfd_arch_info->mach;
2634
2635 /* Find a candidate among the list of architectures we've created
2636 already. */
2637 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2638 arches != NULL;
2639 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2640 return arches->gdbarch;
2641
8d749320 2642 tdep = XCNEW (struct gdbarch_tdep);
96309189
MS
2643 arch = gdbarch_alloc (&info, tdep);
2644
2645 /* Essential types. */
2646 make_types (arch);
2647
2648 /* Address/pointer conversions. */
2649 if (mach == bfd_mach_m16c)
2650 {
2651 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2652 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2653 }
2654
2655 /* Register set. */
2656 make_regs (arch);
2657
2658 /* Disassembly. */
2659 set_gdbarch_print_insn (arch, print_insn_m32c);
2660
2661 /* Breakpoints. */
2662 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2663
2664 /* Prologue analysis and unwinding. */
2665 set_gdbarch_inner_than (arch, core_addr_lessthan);
2666 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2667 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2668 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2669#if 0
2670 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2671 They may be in the dwarf2 cfi code in GDB, or they may be in
2672 the debug info emitted by the upstream toolchain. I don't
2673 know which, but I do know that the prologue analyzer works better.
025bb325 2674 MVS 04/13/06 */
94afd7a6 2675 dwarf2_append_sniffers (arch);
96309189 2676#endif
94afd7a6 2677 frame_unwind_append_unwinder (arch, &m32c_unwind);
96309189
MS
2678
2679 /* Inferior calls. */
2680 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2681 set_gdbarch_return_value (arch, m32c_return_value);
94afd7a6 2682 set_gdbarch_dummy_id (arch, m32c_dummy_id);
96309189
MS
2683
2684 /* Trampolines. */
2685 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2686
7830cb4f
CV
2687 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2688
ed09d7da
KB
2689 /* m32c function boundary addresses are not necessarily even.
2690 Therefore, the `vbit', which indicates a pointer to a virtual
2691 member function, is stored in the delta field, rather than as
025bb325 2692 the low bit of a function pointer address.
ed09d7da
KB
2693
2694 In order to verify this, see the definition of
2695 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2696 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2697 set_gdbarch_vbit_in_delta (arch, 1);
2698
96309189
MS
2699 return arch;
2700}
2701
63807e1d
PA
2702/* Provide a prototype to silence -Wmissing-prototypes. */
2703extern initialize_file_ftype _initialize_m32c_tdep;
96309189
MS
2704
2705void
2706_initialize_m32c_tdep (void)
2707{
2708 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2709
2710 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2711}
This page took 0.91602 seconds and 4 git commands to generate.