Commit | Line | Data |
---|---|---|
d95a8903 AC |
1 | /**************************************************************************** |
2 | ||
3 | THIS SOFTWARE IS NOT COPYRIGHTED | |
4 | ||
5 | HP offers the following for use in the public domain. HP makes no | |
6 | warranty with regard to the software or it's performance and the | |
7 | user accepts the software "AS IS" with all faults. | |
8 | ||
9 | HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD | |
10 | TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES | |
11 | OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. | |
12 | ||
13 | ****************************************************************************/ | |
14 | ||
15 | /**************************************************************************** | |
16 | * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ | |
17 | * | |
18 | * Module name: remcom.c $ | |
19 | * Revision: 1.34 $ | |
20 | * Date: 91/03/09 12:29:49 $ | |
21 | * Contributor: Lake Stevens Instrument Division$ | |
22 | * | |
23 | * Description: low level support for gdb debugger. $ | |
24 | * | |
25 | * Considerations: only works on target hardware $ | |
26 | * | |
27 | * Written by: Glenn Engel $ | |
28 | * ModuleState: Experimental $ | |
29 | * | |
30 | * NOTES: See Below $ | |
31 | * | |
32 | * Modified for M32R by Michael Snyder, Cygnus Support. | |
33 | * | |
34 | * To enable debugger support, two things need to happen. One, a | |
35 | * call to set_debug_traps() is necessary in order to allow any breakpoints | |
36 | * or error conditions to be properly intercepted and reported to gdb. | |
37 | * Two, a breakpoint needs to be generated to begin communication. This | |
38 | * is most easily accomplished by a call to breakpoint(). Breakpoint() | |
39 | * simulates a breakpoint by executing a trap #1. | |
40 | * | |
41 | * The external function exceptionHandler() is | |
42 | * used to attach a specific handler to a specific M32R vector number. | |
43 | * It should use the same privilege level it runs at. It should | |
44 | * install it as an interrupt gate so that interrupts are masked | |
45 | * while the handler runs. | |
46 | * | |
47 | * Because gdb will sometimes write to the stack area to execute function | |
48 | * calls, this program cannot rely on using the supervisor stack so it | |
49 | * uses it's own stack area reserved in the int array remcomStack. | |
50 | * | |
51 | ************* | |
52 | * | |
53 | * The following gdb commands are supported: | |
54 | * | |
55 | * command function Return value | |
56 | * | |
57 | * g return the value of the CPU registers hex data or ENN | |
58 | * G set the value of the CPU registers OK or ENN | |
59 | * | |
60 | * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN | |
61 | * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN | |
62 | * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN | |
63 | * AA..AA | |
64 | * | |
65 | * c Resume at current address SNN ( signal NN) | |
66 | * cAA..AA Continue at address AA..AA SNN | |
67 | * | |
68 | * s Step one instruction SNN | |
69 | * sAA..AA Step one instruction from AA..AA SNN | |
70 | * | |
71 | * k kill | |
72 | * | |
73 | * ? What was the last sigval ? SNN (signal NN) | |
74 | * | |
75 | * All commands and responses are sent with a packet which includes a | |
76 | * checksum. A packet consists of | |
77 | * | |
78 | * $<packet info>#<checksum>. | |
79 | * | |
80 | * where | |
81 | * <packet info> :: <characters representing the command or response> | |
82 | * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>> | |
83 | * | |
84 | * When a packet is received, it is first acknowledged with either '+' or '-'. | |
85 | * '+' indicates a successful transfer. '-' indicates a failed transfer. | |
86 | * | |
87 | * Example: | |
88 | * | |
89 | * Host: Reply: | |
90 | * $m0,10#2a +$00010203040506070809101112131415#42 | |
91 | * | |
92 | ****************************************************************************/ | |
93 | ||
94 | ||
95 | /************************************************************************ | |
96 | * | |
97 | * external low-level support routines | |
98 | */ | |
99 | extern void putDebugChar (); /* write a single character */ | |
100 | extern int getDebugChar (); /* read and return a single char */ | |
101 | extern void exceptionHandler (); /* assign an exception handler */ | |
102 | ||
103 | /***************************************************************************** | |
104 | * BUFMAX defines the maximum number of characters in inbound/outbound buffers | |
105 | * at least NUMREGBYTES*2 are needed for register packets | |
106 | */ | |
107 | #define BUFMAX 400 | |
108 | ||
109 | static char initialized; /* boolean flag. != 0 means we've been initialized */ | |
110 | ||
111 | int remote_debug; | |
112 | /* debug > 0 prints ill-formed commands in valid packets & checksum errors */ | |
113 | ||
114 | static const unsigned char hexchars[] = "0123456789abcdef"; | |
115 | ||
116 | #define NUMREGS 24 | |
117 | ||
118 | /* Number of bytes of registers. */ | |
119 | #define NUMREGBYTES (NUMREGS * 4) | |
120 | enum regnames | |
121 | { R0, R1, R2, R3, R4, R5, R6, R7, | |
122 | R8, R9, R10, R11, R12, R13, R14, R15, | |
123 | PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH | |
124 | }; | |
125 | ||
126 | enum SYS_calls | |
127 | { | |
128 | SYS_null, | |
129 | SYS_exit, | |
130 | SYS_open, | |
131 | SYS_close, | |
132 | SYS_read, | |
133 | SYS_write, | |
134 | SYS_lseek, | |
135 | SYS_unlink, | |
136 | SYS_getpid, | |
137 | SYS_kill, | |
138 | SYS_fstat, | |
139 | SYS_sbrk, | |
140 | SYS_fork, | |
141 | SYS_execve, | |
142 | SYS_wait4, | |
143 | SYS_link, | |
144 | SYS_chdir, | |
145 | SYS_stat, | |
146 | SYS_utime, | |
147 | SYS_chown, | |
148 | SYS_chmod, | |
149 | SYS_time, | |
150 | SYS_pipe | |
151 | }; | |
152 | ||
153 | static int registers[NUMREGS]; | |
154 | ||
155 | #define STACKSIZE 8096 | |
156 | static unsigned char remcomInBuffer[BUFMAX]; | |
157 | static unsigned char remcomOutBuffer[BUFMAX]; | |
158 | static int remcomStack[STACKSIZE / sizeof (int)]; | |
159 | static int *stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1]; | |
160 | ||
161 | static unsigned int save_vectors[18]; /* previous exception vectors */ | |
162 | ||
163 | /* Indicate to caller of mem2hex or hex2mem that there has been an error. */ | |
164 | static volatile int mem_err = 0; | |
165 | ||
166 | /* Store the vector number here (since GDB only gets the signal | |
167 | number through the usual means, and that's not very specific). */ | |
168 | int gdb_m32r_vector = -1; | |
169 | ||
170 | #if 0 | |
171 | #include "syscall.h" /* for SYS_exit, SYS_write etc. */ | |
172 | #endif | |
173 | ||
174 | /* Global entry points: | |
175 | */ | |
176 | ||
177 | extern void handle_exception (int); | |
178 | extern void set_debug_traps (void); | |
179 | extern void breakpoint (void); | |
180 | ||
181 | /* Local functions: | |
182 | */ | |
183 | ||
184 | static int computeSignal (int); | |
185 | static void putpacket (unsigned char *); | |
186 | static unsigned char *getpacket (void); | |
187 | ||
188 | static unsigned char *mem2hex (unsigned char *, unsigned char *, int, int); | |
189 | static unsigned char *hex2mem (unsigned char *, unsigned char *, int, int); | |
190 | static int hexToInt (unsigned char **, int *); | |
191 | static unsigned char *bin2mem (unsigned char *, unsigned char *, int, int); | |
192 | static void stash_registers (void); | |
193 | static void restore_registers (void); | |
194 | static int prepare_to_step (int); | |
195 | static int finish_from_step (void); | |
196 | static unsigned long crc32 (unsigned char *, int, unsigned long); | |
197 | ||
198 | static void gdb_error (char *, char *); | |
199 | static int gdb_putchar (int), gdb_puts (char *), gdb_write (char *, int); | |
200 | ||
201 | static unsigned char *strcpy (unsigned char *, const unsigned char *); | |
202 | static int strlen (const unsigned char *); | |
203 | ||
204 | /* | |
205 | * This function does all command procesing for interfacing to gdb. | |
206 | */ | |
207 | ||
208 | void | |
209 | handle_exception (int exceptionVector) | |
210 | { | |
211 | int sigval, stepping; | |
212 | int addr, length, i; | |
213 | unsigned char *ptr; | |
214 | unsigned char buf[16]; | |
215 | int binary; | |
216 | ||
217 | if (!finish_from_step ()) | |
218 | return; /* "false step": let the target continue */ | |
219 | ||
220 | gdb_m32r_vector = exceptionVector; | |
221 | ||
222 | if (remote_debug) | |
223 | { | |
224 | mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0); | |
225 | gdb_error ("Handle exception %s, ", buf); | |
226 | mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0); | |
227 | gdb_error ("PC == 0x%s\n", buf); | |
228 | } | |
229 | ||
230 | /* reply to host that an exception has occurred */ | |
231 | sigval = computeSignal (exceptionVector); | |
232 | ||
233 | ptr = remcomOutBuffer; | |
234 | ||
235 | *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */ | |
236 | *ptr++ = hexchars[sigval >> 4]; | |
237 | *ptr++ = hexchars[sigval & 0xf]; | |
238 | ||
239 | *ptr++ = hexchars[PC >> 4]; | |
240 | *ptr++ = hexchars[PC & 0xf]; | |
241 | *ptr++ = ':'; | |
242 | ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0); /* PC */ | |
243 | *ptr++ = ';'; | |
244 | ||
245 | *ptr++ = hexchars[R13 >> 4]; | |
246 | *ptr++ = hexchars[R13 & 0xf]; | |
247 | *ptr++ = ':'; | |
248 | ptr = mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0); /* FP */ | |
249 | *ptr++ = ';'; | |
250 | ||
251 | *ptr++ = hexchars[R15 >> 4]; | |
252 | *ptr++ = hexchars[R15 & 0xf]; | |
253 | *ptr++ = ':'; | |
254 | ptr = mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0); /* SP */ | |
255 | *ptr++ = ';'; | |
256 | *ptr++ = 0; | |
257 | ||
258 | if (exceptionVector == 0) /* simulated SYS call stuff */ | |
259 | { | |
260 | mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0); | |
261 | switch (registers[R0]) | |
262 | { | |
263 | case SYS_exit: | |
264 | gdb_error ("Target program has exited at %s\n", buf); | |
265 | ptr = remcomOutBuffer; | |
266 | *ptr++ = 'W'; | |
267 | sigval = registers[R1] & 0xff; | |
268 | *ptr++ = hexchars[sigval >> 4]; | |
269 | *ptr++ = hexchars[sigval & 0xf]; | |
270 | *ptr++ = 0; | |
271 | break; | |
272 | case SYS_open: | |
273 | gdb_error ("Target attempts SYS_open call at %s\n", buf); | |
274 | break; | |
275 | case SYS_close: | |
276 | gdb_error ("Target attempts SYS_close call at %s\n", buf); | |
277 | break; | |
278 | case SYS_read: | |
279 | gdb_error ("Target attempts SYS_read call at %s\n", buf); | |
280 | break; | |
281 | case SYS_write: | |
282 | if (registers[R1] == 1 || /* write to stdout */ | |
283 | registers[R1] == 2) /* write to stderr */ | |
284 | { /* (we can do that) */ | |
285 | registers[R0] = | |
286 | gdb_write ((void *) registers[R2], registers[R3]); | |
287 | return; | |
288 | } | |
289 | else | |
290 | gdb_error ("Target attempts SYS_write call at %s\n", buf); | |
291 | break; | |
292 | case SYS_lseek: | |
293 | gdb_error ("Target attempts SYS_lseek call at %s\n", buf); | |
294 | break; | |
295 | case SYS_unlink: | |
296 | gdb_error ("Target attempts SYS_unlink call at %s\n", buf); | |
297 | break; | |
298 | case SYS_getpid: | |
299 | gdb_error ("Target attempts SYS_getpid call at %s\n", buf); | |
300 | break; | |
301 | case SYS_kill: | |
302 | gdb_error ("Target attempts SYS_kill call at %s\n", buf); | |
303 | break; | |
304 | case SYS_fstat: | |
305 | gdb_error ("Target attempts SYS_fstat call at %s\n", buf); | |
306 | break; | |
307 | default: | |
308 | gdb_error ("Target attempts unknown SYS call at %s\n", buf); | |
309 | break; | |
310 | } | |
311 | } | |
312 | ||
313 | putpacket (remcomOutBuffer); | |
314 | ||
315 | stepping = 0; | |
316 | ||
317 | while (1 == 1) | |
318 | { | |
319 | remcomOutBuffer[0] = 0; | |
320 | ptr = getpacket (); | |
321 | binary = 0; | |
322 | switch (*ptr++) | |
323 | { | |
324 | default: /* Unknown code. Return an empty reply message. */ | |
325 | break; | |
326 | case 'R': | |
327 | if (hexToInt (&ptr, &addr)) | |
328 | registers[PC] = addr; | |
329 | strcpy (remcomOutBuffer, "OK"); | |
330 | break; | |
331 | case '!': | |
332 | strcpy (remcomOutBuffer, "OK"); | |
333 | break; | |
334 | case 'X': /* XAA..AA,LLLL:<binary data>#cs */ | |
335 | binary = 1; | |
336 | case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ | |
337 | /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */ | |
338 | { | |
339 | if (hexToInt (&ptr, &addr)) | |
340 | if (*(ptr++) == ',') | |
341 | if (hexToInt (&ptr, &length)) | |
342 | if (*(ptr++) == ':') | |
343 | { | |
344 | mem_err = 0; | |
345 | if (binary) | |
346 | bin2mem (ptr, (unsigned char *) addr, length, 1); | |
347 | else | |
348 | hex2mem (ptr, (unsigned char *) addr, length, 1); | |
349 | if (mem_err) | |
350 | { | |
351 | strcpy (remcomOutBuffer, "E03"); | |
352 | gdb_error ("memory fault", ""); | |
353 | } | |
354 | else | |
355 | { | |
356 | strcpy (remcomOutBuffer, "OK"); | |
357 | } | |
358 | ptr = 0; | |
359 | } | |
360 | if (ptr) | |
361 | { | |
362 | strcpy (remcomOutBuffer, "E02"); | |
363 | } | |
364 | } | |
365 | break; | |
366 | case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ | |
367 | /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */ | |
368 | if (hexToInt (&ptr, &addr)) | |
369 | if (*(ptr++) == ',') | |
370 | if (hexToInt (&ptr, &length)) | |
371 | { | |
372 | ptr = 0; | |
373 | mem_err = 0; | |
374 | mem2hex ((unsigned char *) addr, remcomOutBuffer, length, | |
375 | 1); | |
376 | if (mem_err) | |
377 | { | |
378 | strcpy (remcomOutBuffer, "E03"); | |
379 | gdb_error ("memory fault", ""); | |
380 | } | |
381 | } | |
382 | if (ptr) | |
383 | { | |
384 | strcpy (remcomOutBuffer, "E01"); | |
385 | } | |
386 | break; | |
387 | case '?': | |
388 | remcomOutBuffer[0] = 'S'; | |
389 | remcomOutBuffer[1] = hexchars[sigval >> 4]; | |
390 | remcomOutBuffer[2] = hexchars[sigval % 16]; | |
391 | remcomOutBuffer[3] = 0; | |
392 | break; | |
393 | case 'd': | |
394 | remote_debug = !(remote_debug); /* toggle debug flag */ | |
395 | break; | |
396 | case 'g': /* return the value of the CPU registers */ | |
397 | mem2hex ((unsigned char *) registers, remcomOutBuffer, NUMREGBYTES, | |
398 | 0); | |
399 | break; | |
400 | case 'P': /* set the value of a single CPU register - return OK */ | |
401 | { | |
402 | int regno; | |
403 | ||
404 | if (hexToInt (&ptr, ®no) && *ptr++ == '=') | |
405 | if (regno >= 0 && regno < NUMREGS) | |
406 | { | |
407 | int stackmode; | |
408 | ||
409 | hex2mem (ptr, (unsigned char *) ®isters[regno], 4, 0); | |
410 | /* | |
411 | * Since we just changed a single CPU register, let's | |
412 | * make sure to keep the several stack pointers consistant. | |
413 | */ | |
414 | stackmode = registers[PSW] & 0x80; | |
415 | if (regno == R15) /* stack pointer changed */ | |
416 | { /* need to change SPI or SPU */ | |
417 | if (stackmode == 0) | |
418 | registers[SPI] = registers[R15]; | |
419 | else | |
420 | registers[SPU] = registers[R15]; | |
421 | } | |
422 | else if (regno == SPU) /* "user" stack pointer changed */ | |
423 | { | |
424 | if (stackmode != 0) /* stack in user mode: copy SP */ | |
425 | registers[R15] = registers[SPU]; | |
426 | } | |
427 | else if (regno == SPI) /* "interrupt" stack pointer changed */ | |
428 | { | |
429 | if (stackmode == 0) /* stack in interrupt mode: copy SP */ | |
430 | registers[R15] = registers[SPI]; | |
431 | } | |
432 | else if (regno == PSW) /* stack mode may have changed! */ | |
433 | { /* force SP to either SPU or SPI */ | |
434 | if (stackmode == 0) /* stack in user mode */ | |
435 | registers[R15] = registers[SPI]; | |
436 | else /* stack in interrupt mode */ | |
437 | registers[R15] = registers[SPU]; | |
438 | } | |
439 | strcpy (remcomOutBuffer, "OK"); | |
440 | break; | |
441 | } | |
442 | strcpy (remcomOutBuffer, "E01"); | |
443 | break; | |
444 | } | |
445 | case 'G': /* set the value of the CPU registers - return OK */ | |
446 | hex2mem (ptr, (unsigned char *) registers, NUMREGBYTES, 0); | |
447 | strcpy (remcomOutBuffer, "OK"); | |
448 | break; | |
449 | case 's': /* sAA..AA Step one instruction from AA..AA(optional) */ | |
450 | stepping = 1; | |
451 | case 'c': /* cAA..AA Continue from address AA..AA(optional) */ | |
452 | /* try to read optional parameter, pc unchanged if no parm */ | |
453 | if (hexToInt (&ptr, &addr)) | |
454 | registers[PC] = addr; | |
455 | ||
456 | if (stepping) /* single-stepping */ | |
457 | { | |
458 | if (!prepare_to_step (0)) /* set up for single-step */ | |
459 | { | |
460 | /* prepare_to_step has already emulated the target insn: | |
461 | Send SIGTRAP to gdb, don't resume the target at all. */ | |
462 | ptr = remcomOutBuffer; | |
463 | *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */ | |
464 | *ptr++ = '0'; | |
465 | *ptr++ = '5'; | |
466 | ||
467 | *ptr++ = hexchars[PC >> 4]; /* send PC */ | |
468 | *ptr++ = hexchars[PC & 0xf]; | |
469 | *ptr++ = ':'; | |
470 | ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0); | |
471 | *ptr++ = ';'; | |
472 | ||
473 | *ptr++ = hexchars[R13 >> 4]; /* send FP */ | |
474 | *ptr++ = hexchars[R13 & 0xf]; | |
475 | *ptr++ = ':'; | |
476 | ptr = | |
477 | mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0); | |
478 | *ptr++ = ';'; | |
479 | ||
480 | *ptr++ = hexchars[R15 >> 4]; /* send SP */ | |
481 | *ptr++ = hexchars[R15 & 0xf]; | |
482 | *ptr++ = ':'; | |
483 | ptr = | |
484 | mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0); | |
485 | *ptr++ = ';'; | |
486 | *ptr++ = 0; | |
487 | ||
488 | break; | |
489 | } | |
490 | } | |
491 | else /* continuing, not single-stepping */ | |
492 | { | |
493 | /* OK, about to do a "continue". First check to see if the | |
494 | target pc is on an odd boundary (second instruction in the | |
495 | word). If so, we must do a single-step first, because | |
496 | ya can't jump or return back to an odd boundary! */ | |
497 | if ((registers[PC] & 2) != 0) | |
498 | prepare_to_step (1); | |
499 | } | |
500 | ||
501 | return; | |
502 | ||
503 | case 'D': /* Detach */ | |
504 | #if 0 | |
505 | /* I am interpreting this to mean, release the board from control | |
506 | by the remote stub. To do this, I am restoring the original | |
507 | (or at least previous) exception vectors. | |
508 | */ | |
509 | for (i = 0; i < 18; i++) | |
510 | exceptionHandler (i, save_vectors[i]); | |
511 | putpacket ("OK"); | |
512 | return; /* continue the inferior */ | |
513 | #else | |
514 | strcpy (remcomOutBuffer, "OK"); | |
515 | break; | |
516 | #endif | |
517 | case 'q': | |
518 | if (*ptr++ == 'C' && | |
519 | *ptr++ == 'R' && *ptr++ == 'C' && *ptr++ == ':') | |
520 | { | |
521 | unsigned long start, len, our_crc; | |
522 | ||
523 | if (hexToInt (&ptr, (int *) &start) && | |
524 | *ptr++ == ',' && hexToInt (&ptr, (int *) &len)) | |
525 | { | |
526 | remcomOutBuffer[0] = 'C'; | |
527 | our_crc = crc32 ((unsigned char *) start, len, 0xffffffff); | |
528 | mem2hex ((char *) &our_crc, | |
529 | &remcomOutBuffer[1], sizeof (long), 0); | |
530 | } /* else do nothing */ | |
531 | } /* else do nothing */ | |
532 | break; | |
533 | ||
534 | case 'k': /* kill the program */ | |
535 | continue; | |
536 | } /* switch */ | |
537 | ||
538 | /* reply to the request */ | |
539 | putpacket (remcomOutBuffer); | |
540 | } | |
541 | } | |
542 | ||
543 | /* qCRC support */ | |
544 | ||
545 | /* Table used by the crc32 function to calcuate the checksum. */ | |
546 | static unsigned long crc32_table[256] = { 0, 0 }; | |
547 | ||
548 | static unsigned long | |
549 | crc32 (unsigned char *buf, int len, unsigned long crc) | |
550 | { | |
551 | if (!crc32_table[1]) | |
552 | { | |
553 | /* Initialize the CRC table and the decoding table. */ | |
554 | int i, j; | |
555 | unsigned long c; | |
556 | ||
557 | for (i = 0; i < 256; i++) | |
558 | { | |
559 | for (c = i << 24, j = 8; j > 0; --j) | |
560 | c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); | |
561 | crc32_table[i] = c; | |
562 | } | |
563 | } | |
564 | ||
565 | while (len--) | |
566 | { | |
567 | crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255]; | |
568 | buf++; | |
569 | } | |
570 | return crc; | |
571 | } | |
572 | ||
573 | static int | |
574 | hex (unsigned char ch) | |
575 | { | |
576 | if ((ch >= 'a') && (ch <= 'f')) | |
577 | return (ch - 'a' + 10); | |
578 | if ((ch >= '0') && (ch <= '9')) | |
579 | return (ch - '0'); | |
580 | if ((ch >= 'A') && (ch <= 'F')) | |
581 | return (ch - 'A' + 10); | |
582 | return (-1); | |
583 | } | |
584 | ||
585 | /* scan for the sequence $<data>#<checksum> */ | |
586 | ||
587 | unsigned char * | |
588 | getpacket (void) | |
589 | { | |
590 | unsigned char *buffer = &remcomInBuffer[0]; | |
591 | unsigned char checksum; | |
592 | unsigned char xmitcsum; | |
593 | int count; | |
594 | char ch; | |
595 | ||
596 | while (1) | |
597 | { | |
598 | /* wait around for the start character, ignore all other characters */ | |
599 | while ((ch = getDebugChar ()) != '$') | |
600 | ; | |
601 | ||
602 | retry: | |
603 | checksum = 0; | |
604 | xmitcsum = -1; | |
605 | count = 0; | |
606 | ||
607 | /* now, read until a # or end of buffer is found */ | |
608 | while (count < BUFMAX) | |
609 | { | |
610 | ch = getDebugChar (); | |
611 | if (ch == '$') | |
612 | goto retry; | |
613 | if (ch == '#') | |
614 | break; | |
615 | checksum = checksum + ch; | |
616 | buffer[count] = ch; | |
617 | count = count + 1; | |
618 | } | |
619 | buffer[count] = 0; | |
620 | ||
621 | if (ch == '#') | |
622 | { | |
623 | ch = getDebugChar (); | |
624 | xmitcsum = hex (ch) << 4; | |
625 | ch = getDebugChar (); | |
626 | xmitcsum += hex (ch); | |
627 | ||
628 | if (checksum != xmitcsum) | |
629 | { | |
630 | if (remote_debug) | |
631 | { | |
632 | unsigned char buf[16]; | |
633 | ||
634 | mem2hex ((unsigned char *) &checksum, buf, 4, 0); | |
635 | gdb_error ("Bad checksum: my count = %s, ", buf); | |
636 | mem2hex ((unsigned char *) &xmitcsum, buf, 4, 0); | |
637 | gdb_error ("sent count = %s\n", buf); | |
638 | gdb_error (" -- Bad buffer: \"%s\"\n", buffer); | |
639 | } | |
640 | putDebugChar ('-'); /* failed checksum */ | |
641 | } | |
642 | else | |
643 | { | |
644 | putDebugChar ('+'); /* successful transfer */ | |
645 | ||
646 | /* if a sequence char is present, reply the sequence ID */ | |
647 | if (buffer[2] == ':') | |
648 | { | |
649 | putDebugChar (buffer[0]); | |
650 | putDebugChar (buffer[1]); | |
651 | ||
652 | return &buffer[3]; | |
653 | } | |
654 | ||
655 | return &buffer[0]; | |
656 | } | |
657 | } | |
658 | } | |
659 | } | |
660 | ||
661 | /* send the packet in buffer. */ | |
662 | ||
663 | static void | |
664 | putpacket (unsigned char *buffer) | |
665 | { | |
666 | unsigned char checksum; | |
667 | int count; | |
668 | char ch; | |
669 | ||
670 | /* $<packet info>#<checksum>. */ | |
671 | do | |
672 | { | |
673 | putDebugChar ('$'); | |
674 | checksum = 0; | |
675 | count = 0; | |
676 | ||
677 | while (ch = buffer[count]) | |
678 | { | |
679 | putDebugChar (ch); | |
680 | checksum += ch; | |
681 | count += 1; | |
682 | } | |
683 | putDebugChar ('#'); | |
684 | putDebugChar (hexchars[checksum >> 4]); | |
685 | putDebugChar (hexchars[checksum % 16]); | |
686 | } | |
687 | while (getDebugChar () != '+'); | |
688 | } | |
689 | ||
690 | /* Address of a routine to RTE to if we get a memory fault. */ | |
691 | ||
692 | static void (*volatile mem_fault_routine) () = 0; | |
693 | ||
694 | static void | |
695 | set_mem_err (void) | |
696 | { | |
697 | mem_err = 1; | |
698 | } | |
699 | ||
700 | /* Check the address for safe access ranges. As currently defined, | |
701 | this routine will reject the "expansion bus" address range(s). | |
702 | To make those ranges useable, someone must implement code to detect | |
703 | whether there's anything connected to the expansion bus. */ | |
704 | ||
705 | static int | |
706 | mem_safe (unsigned char *addr) | |
707 | { | |
708 | #define BAD_RANGE_ONE_START ((unsigned char *) 0x600000) | |
709 | #define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000) | |
710 | #define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000) | |
711 | #define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000) | |
712 | ||
713 | if (addr < BAD_RANGE_ONE_START) | |
714 | return 1; /* safe */ | |
715 | if (addr < BAD_RANGE_ONE_END) | |
716 | return 0; /* unsafe */ | |
717 | if (addr < BAD_RANGE_TWO_START) | |
718 | return 1; /* safe */ | |
719 | if (addr < BAD_RANGE_TWO_END) | |
720 | return 0; /* unsafe */ | |
721 | } | |
722 | ||
723 | /* These are separate functions so that they are so short and sweet | |
724 | that the compiler won't save any registers (if there is a fault | |
725 | to mem_fault, they won't get restored, so there better not be any | |
726 | saved). */ | |
727 | static int | |
728 | get_char (unsigned char *addr) | |
729 | { | |
730 | #if 1 | |
731 | if (mem_fault_routine && !mem_safe (addr)) | |
732 | { | |
733 | mem_fault_routine (); | |
734 | return 0; | |
735 | } | |
736 | #endif | |
737 | return *addr; | |
738 | } | |
739 | ||
740 | static void | |
741 | set_char (unsigned char *addr, unsigned char val) | |
742 | { | |
743 | #if 1 | |
744 | if (mem_fault_routine && !mem_safe (addr)) | |
745 | { | |
746 | mem_fault_routine (); | |
747 | return; | |
748 | } | |
749 | #endif | |
750 | *addr = val; | |
751 | } | |
752 | ||
753 | /* Convert the memory pointed to by mem into hex, placing result in buf. | |
754 | Return a pointer to the last char put in buf (null). | |
755 | If MAY_FAULT is non-zero, then we should set mem_err in response to | |
756 | a fault; if zero treat a fault like any other fault in the stub. */ | |
757 | ||
758 | static unsigned char * | |
759 | mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault) | |
760 | { | |
761 | int i; | |
762 | unsigned char ch; | |
763 | ||
764 | if (may_fault) | |
765 | mem_fault_routine = set_mem_err; | |
766 | for (i = 0; i < count; i++) | |
767 | { | |
768 | ch = get_char (mem++); | |
769 | if (may_fault && mem_err) | |
770 | return (buf); | |
771 | *buf++ = hexchars[ch >> 4]; | |
772 | *buf++ = hexchars[ch % 16]; | |
773 | } | |
774 | *buf = 0; | |
775 | if (may_fault) | |
776 | mem_fault_routine = 0; | |
777 | return (buf); | |
778 | } | |
779 | ||
780 | /* Convert the hex array pointed to by buf into binary to be placed in mem. | |
781 | Return a pointer to the character AFTER the last byte written. */ | |
782 | ||
783 | static unsigned char * | |
784 | hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) | |
785 | { | |
786 | int i; | |
787 | unsigned char ch; | |
788 | ||
789 | if (may_fault) | |
790 | mem_fault_routine = set_mem_err; | |
791 | for (i = 0; i < count; i++) | |
792 | { | |
793 | ch = hex (*buf++) << 4; | |
794 | ch = ch + hex (*buf++); | |
795 | set_char (mem++, ch); | |
796 | if (may_fault && mem_err) | |
797 | return (mem); | |
798 | } | |
799 | if (may_fault) | |
800 | mem_fault_routine = 0; | |
801 | return (mem); | |
802 | } | |
803 | ||
804 | /* Convert the binary stream in BUF to memory. | |
805 | ||
806 | Gdb will escape $, #, and the escape char (0x7d). | |
807 | COUNT is the total number of bytes to write into | |
808 | memory. */ | |
809 | static unsigned char * | |
810 | bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) | |
811 | { | |
812 | int i; | |
813 | unsigned char ch; | |
814 | ||
815 | if (may_fault) | |
816 | mem_fault_routine = set_mem_err; | |
817 | for (i = 0; i < count; i++) | |
818 | { | |
819 | /* Check for any escaped characters. Be paranoid and | |
820 | only unescape chars that should be escaped. */ | |
821 | if (*buf == 0x7d) | |
822 | { | |
823 | switch (*(buf + 1)) | |
824 | { | |
825 | case 0x3: /* # */ | |
826 | case 0x4: /* $ */ | |
827 | case 0x5d: /* escape char */ | |
828 | buf++; | |
829 | *buf |= 0x20; | |
830 | break; | |
831 | default: | |
832 | /* nothing */ | |
833 | break; | |
834 | } | |
835 | } | |
836 | ||
837 | set_char (mem++, *buf++); | |
838 | ||
839 | if (may_fault && mem_err) | |
840 | return mem; | |
841 | } | |
842 | ||
843 | if (may_fault) | |
844 | mem_fault_routine = 0; | |
845 | return mem; | |
846 | } | |
847 | ||
848 | /* this function takes the m32r exception vector and attempts to | |
849 | translate this number into a unix compatible signal value */ | |
850 | ||
851 | static int | |
852 | computeSignal (int exceptionVector) | |
853 | { | |
854 | int sigval; | |
855 | switch (exceptionVector) | |
856 | { | |
857 | case 0: | |
858 | sigval = 23; | |
859 | break; /* I/O trap */ | |
860 | case 1: | |
861 | sigval = 5; | |
862 | break; /* breakpoint */ | |
863 | case 2: | |
864 | sigval = 5; | |
865 | break; /* breakpoint */ | |
866 | case 3: | |
867 | sigval = 5; | |
868 | break; /* breakpoint */ | |
869 | case 4: | |
870 | sigval = 5; | |
871 | break; /* breakpoint */ | |
872 | case 5: | |
873 | sigval = 5; | |
874 | break; /* breakpoint */ | |
875 | case 6: | |
876 | sigval = 5; | |
877 | break; /* breakpoint */ | |
878 | case 7: | |
879 | sigval = 5; | |
880 | break; /* breakpoint */ | |
881 | case 8: | |
882 | sigval = 5; | |
883 | break; /* breakpoint */ | |
884 | case 9: | |
885 | sigval = 5; | |
886 | break; /* breakpoint */ | |
887 | case 10: | |
888 | sigval = 5; | |
889 | break; /* breakpoint */ | |
890 | case 11: | |
891 | sigval = 5; | |
892 | break; /* breakpoint */ | |
893 | case 12: | |
894 | sigval = 5; | |
895 | break; /* breakpoint */ | |
896 | case 13: | |
897 | sigval = 5; | |
898 | break; /* breakpoint */ | |
899 | case 14: | |
900 | sigval = 5; | |
901 | break; /* breakpoint */ | |
902 | case 15: | |
903 | sigval = 5; | |
904 | break; /* breakpoint */ | |
905 | case 16: | |
906 | sigval = 10; | |
907 | break; /* BUS ERROR (alignment) */ | |
908 | case 17: | |
909 | sigval = 2; | |
910 | break; /* INTerrupt */ | |
911 | default: | |
912 | sigval = 7; | |
913 | break; /* "software generated" */ | |
914 | } | |
915 | return (sigval); | |
916 | } | |
917 | ||
918 | /**********************************************/ | |
919 | /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */ | |
920 | /* RETURN NUMBER OF CHARS PROCESSED */ | |
921 | /**********************************************/ | |
922 | static int | |
923 | hexToInt (unsigned char **ptr, int *intValue) | |
924 | { | |
925 | int numChars = 0; | |
926 | int hexValue; | |
927 | ||
928 | *intValue = 0; | |
929 | while (**ptr) | |
930 | { | |
931 | hexValue = hex (**ptr); | |
932 | if (hexValue >= 0) | |
933 | { | |
934 | *intValue = (*intValue << 4) | hexValue; | |
935 | numChars++; | |
936 | } | |
937 | else | |
938 | break; | |
939 | (*ptr)++; | |
940 | } | |
941 | return (numChars); | |
942 | } | |
943 | ||
944 | /* | |
945 | Table of branch instructions: | |
946 | ||
947 | 10B6 RTE return from trap or exception | |
948 | 1FCr JMP jump | |
949 | 1ECr JL jump and link | |
950 | 7Fxx BRA branch | |
951 | FFxxxxxx BRA branch (long) | |
952 | B09rxxxx BNEZ branch not-equal-zero | |
953 | Br1rxxxx BNE branch not-equal | |
954 | 7Dxx BNC branch not-condition | |
955 | FDxxxxxx BNC branch not-condition (long) | |
956 | B0Arxxxx BLTZ branch less-than-zero | |
957 | B0Crxxxx BLEZ branch less-equal-zero | |
958 | 7Exx BL branch and link | |
959 | FExxxxxx BL branch and link (long) | |
960 | B0Drxxxx BGTZ branch greater-than-zero | |
961 | B0Brxxxx BGEZ branch greater-equal-zero | |
962 | B08rxxxx BEQZ branch equal-zero | |
963 | Br0rxxxx BEQ branch equal | |
964 | 7Cxx BC branch condition | |
965 | FCxxxxxx BC branch condition (long) | |
966 | */ | |
967 | ||
968 | static int | |
969 | isShortBranch (unsigned char *instr) | |
970 | { | |
971 | unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */ | |
972 | ||
973 | if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */ | |
974 | return 1; /* return from trap or exception */ | |
975 | ||
976 | if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */ | |
977 | if ((instr[1] & 0xF0) == 0xC0) | |
978 | return 2; /* jump thru a register */ | |
979 | ||
980 | if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */ | |
981 | instr0 == 0x7E || instr0 == 0x7F) | |
982 | return 3; /* eight bit PC offset */ | |
983 | ||
984 | return 0; | |
985 | } | |
986 | ||
987 | static int | |
988 | isLongBranch (unsigned char *instr) | |
989 | { | |
990 | if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */ | |
991 | instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */ | |
992 | return 4; | |
993 | if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */ | |
994 | { | |
995 | if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */ | |
996 | (instr[1] & 0xF0) == 0x10) | |
997 | return 5; | |
998 | if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */ | |
999 | if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 || | |
1000 | (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 || | |
1001 | (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0) | |
1002 | return 6; | |
1003 | } | |
1004 | return 0; | |
1005 | } | |
1006 | ||
1007 | /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero, | |
1008 | then it's a 2-byte instruction, else it's a 4-byte instruction. */ | |
1009 | ||
1010 | #define INSTRUCTION_SIZE(addr) \ | |
1011 | ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4) | |
1012 | ||
1013 | static int | |
1014 | isBranch (unsigned char *instr) | |
1015 | { | |
1016 | if (INSTRUCTION_SIZE (instr) == 2) | |
1017 | return isShortBranch (instr); | |
1018 | else | |
1019 | return isLongBranch (instr); | |
1020 | } | |
1021 | ||
1022 | static int | |
1023 | willBranch (unsigned char *instr, int branchCode) | |
1024 | { | |
1025 | switch (branchCode) | |
1026 | { | |
1027 | case 0: | |
1028 | return 0; /* not a branch */ | |
1029 | case 1: | |
1030 | return 1; /* RTE */ | |
1031 | case 2: | |
1032 | return 1; /* JL or JMP */ | |
1033 | case 3: /* BC, BNC, BL, BRA (short) */ | |
1034 | case 4: /* BC, BNC, BL, BRA (long) */ | |
1035 | switch (instr[0] & 0x0F) | |
1036 | { | |
1037 | case 0xC: /* Branch if Condition Register */ | |
1038 | return (registers[CBR] != 0); | |
1039 | case 0xD: /* Branch if NOT Condition Register */ | |
1040 | return (registers[CBR] == 0); | |
1041 | case 0xE: /* Branch and Link */ | |
1042 | case 0xF: /* Branch (unconditional) */ | |
1043 | return 1; | |
1044 | default: /* oops? */ | |
1045 | return 0; | |
1046 | } | |
1047 | case 5: /* BNE, BEQ */ | |
1048 | switch (instr[1] & 0xF0) | |
1049 | { | |
1050 | case 0x00: /* Branch if r1 equal to r2 */ | |
1051 | return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]); | |
1052 | case 0x10: /* Branch if r1 NOT equal to r2 */ | |
1053 | return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]); | |
1054 | default: /* oops? */ | |
1055 | return 0; | |
1056 | } | |
1057 | case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */ | |
1058 | switch (instr[1] & 0xF0) | |
1059 | { | |
1060 | case 0x80: /* Branch if reg equal to zero */ | |
1061 | return (registers[instr[1] & 0x0F] == 0); | |
1062 | case 0x90: /* Branch if reg NOT equal to zero */ | |
1063 | return (registers[instr[1] & 0x0F] != 0); | |
1064 | case 0xA0: /* Branch if reg less than zero */ | |
1065 | return (registers[instr[1] & 0x0F] < 0); | |
1066 | case 0xB0: /* Branch if reg greater or equal to zero */ | |
1067 | return (registers[instr[1] & 0x0F] >= 0); | |
1068 | case 0xC0: /* Branch if reg less than or equal to zero */ | |
1069 | return (registers[instr[1] & 0x0F] <= 0); | |
1070 | case 0xD0: /* Branch if reg greater than zero */ | |
1071 | return (registers[instr[1] & 0x0F] > 0); | |
1072 | default: /* oops? */ | |
1073 | return 0; | |
1074 | } | |
1075 | default: /* oops? */ | |
1076 | return 0; | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | static int | |
1081 | branchDestination (unsigned char *instr, int branchCode) | |
1082 | { | |
1083 | switch (branchCode) | |
1084 | { | |
1085 | default: | |
1086 | case 0: /* not a branch */ | |
1087 | return 0; | |
1088 | case 1: /* RTE */ | |
1089 | return registers[BPC] & ~3; /* pop BPC into PC */ | |
1090 | case 2: /* JL or JMP */ | |
1091 | return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */ | |
1092 | case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */ | |
1093 | return (((int) instr) & ~3) + ((char) instr[1] << 2); | |
1094 | case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */ | |
1095 | return ((int) instr + | |
1096 | ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << | |
1097 | 2)); | |
1098 | case 5: /* BNE, BEQ (16-bit relative offset) */ | |
1099 | case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */ | |
1100 | return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2)); | |
1101 | } | |
1102 | ||
1103 | /* An explanatory note: in the last three return expressions, I have | |
1104 | cast the most-significant byte of the return offset to char. | |
1105 | What this accomplishes is sign extension. If the other | |
1106 | less-significant bytes were signed as well, they would get sign | |
1107 | extended too and, if negative, their leading bits would clobber | |
1108 | the bits of the more-significant bytes ahead of them. There are | |
1109 | other ways I could have done this, but sign extension from | |
1110 | odd-sized integers is always a pain. */ | |
1111 | } | |
1112 | ||
1113 | static void | |
1114 | branchSideEffects (unsigned char *instr, int branchCode) | |
1115 | { | |
1116 | switch (branchCode) | |
1117 | { | |
1118 | case 1: /* RTE */ | |
1119 | return; /* I <THINK> this is already handled... */ | |
1120 | case 2: /* JL (or JMP) */ | |
1121 | case 3: /* BL (or BC, BNC, BRA) */ | |
1122 | case 4: | |
1123 | if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */ | |
1124 | registers[R14] = (registers[PC] & ~3) + 4; | |
1125 | return; | |
1126 | default: /* any other branch has no side effects */ | |
1127 | return; | |
1128 | } | |
1129 | } | |
1130 | ||
1131 | static struct STEPPING_CONTEXT | |
1132 | { | |
1133 | int stepping; /* true when we've started a single-step */ | |
1134 | unsigned long target_addr; /* the instr we're trying to execute */ | |
1135 | unsigned long target_size; /* the size of the target instr */ | |
1136 | unsigned long noop_addr; /* where we've inserted a no-op, if any */ | |
1137 | unsigned long trap1_addr; /* the trap following the target instr */ | |
1138 | unsigned long trap2_addr; /* the trap at a branch destination, if any */ | |
1139 | unsigned short noop_save; /* instruction overwritten by our no-op */ | |
1140 | unsigned short trap1_save; /* instruction overwritten by trap1 */ | |
1141 | unsigned short trap2_save; /* instruction overwritten by trap2 */ | |
1142 | unsigned short continue_p; /* true if NOT returning to gdb after step */ | |
1143 | } stepping; | |
1144 | ||
1145 | /* Function: prepare_to_step | |
1146 | Called from handle_exception to prepare the user program to single-step. | |
1147 | Places a trap instruction after the target instruction, with special | |
1148 | extra handling for branch instructions and for instructions in the | |
1149 | second half-word of a word. | |
1150 | ||
1151 | Returns: True if we should actually execute the instruction; | |
1152 | False if we are going to emulate executing the instruction, | |
1153 | in which case we simply report to GDB that the instruction | |
1154 | has already been executed. */ | |
1155 | ||
1156 | #define TRAP1 0x10f1; /* trap #1 instruction */ | |
1157 | #define NOOP 0x7000; /* noop instruction */ | |
1158 | ||
1159 | static unsigned short trap1 = TRAP1; | |
1160 | static unsigned short noop = NOOP; | |
1161 | ||
1162 | static int | |
1163 | prepare_to_step (continue_p) | |
1164 | int continue_p; /* if this isn't REALLY a single-step (see below) */ | |
1165 | { | |
1166 | unsigned long pc = registers[PC]; | |
1167 | int branchCode = isBranch ((unsigned char *) pc); | |
1168 | unsigned char *p; | |
1169 | ||
1170 | /* zero out the stepping context | |
1171 | (paranoia -- it should already be zeroed) */ | |
1172 | for (p = (unsigned char *) &stepping; | |
1173 | p < ((unsigned char *) &stepping) + sizeof (stepping); p++) | |
1174 | *p = 0; | |
1175 | ||
1176 | if (branchCode != 0) /* next instruction is a branch */ | |
1177 | { | |
1178 | branchSideEffects ((unsigned char *) pc, branchCode); | |
1179 | if (willBranch ((unsigned char *) pc, branchCode)) | |
1180 | registers[PC] = branchDestination ((unsigned char *) pc, branchCode); | |
1181 | else | |
1182 | registers[PC] = pc + INSTRUCTION_SIZE (pc); | |
1183 | return 0; /* branch "executed" -- just notify GDB */ | |
1184 | } | |
1185 | else if (((int) pc & 2) != 0) /* "second-slot" instruction */ | |
1186 | { | |
1187 | /* insert no-op before pc */ | |
1188 | stepping.noop_addr = pc - 2; | |
1189 | stepping.noop_save = *(unsigned short *) stepping.noop_addr; | |
1190 | *(unsigned short *) stepping.noop_addr = noop; | |
1191 | /* insert trap after pc */ | |
1192 | stepping.trap1_addr = pc + 2; | |
1193 | stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; | |
1194 | *(unsigned short *) stepping.trap1_addr = trap1; | |
1195 | } | |
1196 | else /* "first-slot" instruction */ | |
1197 | { | |
1198 | /* insert trap after pc */ | |
1199 | stepping.trap1_addr = pc + INSTRUCTION_SIZE (pc); | |
1200 | stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; | |
1201 | *(unsigned short *) stepping.trap1_addr = trap1; | |
1202 | } | |
1203 | /* "continue_p" means that we are actually doing a continue, and not | |
1204 | being requested to single-step by GDB. Sometimes we have to do | |
1205 | one single-step before continuing, because the PC is on a half-word | |
1206 | boundary. There's no way to simply resume at such an address. */ | |
1207 | stepping.continue_p = continue_p; | |
1208 | stepping.stepping = 1; /* starting a single-step */ | |
1209 | return 1; | |
1210 | } | |
1211 | ||
1212 | /* Function: finish_from_step | |
1213 | Called from handle_exception to finish up when the user program | |
1214 | returns from a single-step. Replaces the instructions that had | |
1215 | been overwritten by traps or no-ops, | |
1216 | ||
1217 | Returns: True if we should notify GDB that the target stopped. | |
1218 | False if we only single-stepped because we had to before we | |
1219 | could continue (ie. we were trying to continue at a | |
1220 | half-word boundary). In that case don't notify GDB: | |
1221 | just "continue continuing". */ | |
1222 | ||
1223 | static int | |
1224 | finish_from_step (void) | |
1225 | { | |
1226 | if (stepping.stepping) /* anything to do? */ | |
1227 | { | |
1228 | int continue_p = stepping.continue_p; | |
1229 | unsigned char *p; | |
1230 | ||
1231 | if (stepping.noop_addr) /* replace instr "under" our no-op */ | |
1232 | *(unsigned short *) stepping.noop_addr = stepping.noop_save; | |
1233 | if (stepping.trap1_addr) /* replace instr "under" our trap */ | |
1234 | *(unsigned short *) stepping.trap1_addr = stepping.trap1_save; | |
1235 | if (stepping.trap2_addr) /* ditto our other trap, if any */ | |
1236 | *(unsigned short *) stepping.trap2_addr = stepping.trap2_save; | |
1237 | ||
1238 | for (p = (unsigned char *) &stepping; /* zero out the stepping context */ | |
1239 | p < ((unsigned char *) &stepping) + sizeof (stepping); p++) | |
1240 | *p = 0; | |
1241 | ||
1242 | return !(continue_p); | |
1243 | } | |
1244 | else /* we didn't single-step, therefore this must be a legitimate stop */ | |
1245 | return 1; | |
1246 | } | |
1247 | ||
1248 | struct PSWreg | |
1249 | { /* separate out the bit flags in the PSW register */ | |
1250 | int pad1:16; | |
1251 | int bsm:1; | |
1252 | int bie:1; | |
1253 | int pad2:5; | |
1254 | int bc:1; | |
1255 | int sm:1; | |
1256 | int ie:1; | |
1257 | int pad3:5; | |
1258 | int c:1; | |
1259 | } *psw; | |
1260 | ||
1261 | /* Upon entry the value for LR to save has been pushed. | |
1262 | We unpush that so that the value for the stack pointer saved is correct. | |
1263 | Upon entry, all other registers are assumed to have not been modified | |
1264 | since the interrupt/trap occured. */ | |
1265 | ||
1266 | asm ("\n\ | |
1267 | stash_registers:\n\ | |
1268 | push r0\n\ | |
1269 | push r1\n\ | |
1270 | seth r1, #shigh(registers)\n\ | |
1271 | add3 r1, r1, #low(registers)\n\ | |
1272 | pop r0 ; r1\n\ | |
1273 | st r0, @(4,r1)\n\ | |
1274 | pop r0 ; r0\n\ | |
1275 | st r0, @r1\n\ | |
1276 | addi r1, #4 ; only add 4 as subsequent saves are `pre inc'\n\ | |
1277 | st r2, @+r1\n\ | |
1278 | st r3, @+r1\n\ | |
1279 | st r4, @+r1\n\ | |
1280 | st r5, @+r1\n\ | |
1281 | st r6, @+r1\n\ | |
1282 | st r7, @+r1\n\ | |
1283 | st r8, @+r1\n\ | |
1284 | st r9, @+r1\n\ | |
1285 | st r10, @+r1\n\ | |
1286 | st r11, @+r1\n\ | |
1287 | st r12, @+r1\n\ | |
1288 | st r13, @+r1 ; fp\n\ | |
1289 | pop r0 ; lr (r14)\n\ | |
1290 | st r0, @+r1\n\ | |
1291 | st sp, @+r1 ; sp contains right value at this point\n\ | |
1292 | mvfc r0, cr0\n\ | |
1293 | st r0, @+r1 ; cr0 == PSW\n\ | |
1294 | mvfc r0, cr1\n\ | |
1295 | st r0, @+r1 ; cr1 == CBR\n\ | |
1296 | mvfc r0, cr2\n\ | |
1297 | st r0, @+r1 ; cr2 == SPI\n\ | |
1298 | mvfc r0, cr3\n\ | |
1299 | st r0, @+r1 ; cr3 == SPU\n\ | |
1300 | mvfc r0, cr6\n\ | |
1301 | st r0, @+r1 ; cr6 == BPC\n\ | |
1302 | st r0, @+r1 ; PC == BPC\n\ | |
1303 | mvfaclo r0\n\ | |
1304 | st r0, @+r1 ; ACCL\n\ | |
1305 | mvfachi r0\n\ | |
1306 | st r0, @+r1 ; ACCH\n\ | |
1307 | jmp lr"); | |
1308 | ||
1309 | /* C routine to clean up what stash_registers did. | |
1310 | It is called after calling stash_registers. | |
1311 | This is separate from stash_registers as we want to do this in C | |
1312 | but doing stash_registers in C isn't straightforward. */ | |
1313 | ||
1314 | static void | |
1315 | cleanup_stash (void) | |
1316 | { | |
1317 | psw = (struct PSWreg *) ®isters[PSW]; /* fields of PSW register */ | |
1318 | psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */ | |
1319 | psw->ie = psw->bie; | |
1320 | psw->c = psw->bc; | |
1321 | registers[CBR] = psw->bc; /* fix up pre-trap "C" register */ | |
1322 | ||
1323 | #if 0 /* FIXME: Was in previous version. Necessary? | |
1324 | (Remember that we use the "rte" insn to return from the | |
1325 | trap/interrupt so the values of bsm, bie, bc are important. */ | |
1326 | psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */ | |
1327 | #endif | |
1328 | ||
1329 | /* FIXME: Copied from previous version. This can probably be deleted | |
1330 | since methinks stash_registers has already done this. */ | |
1331 | registers[PC] = registers[BPC]; /* pre-trap PC */ | |
1332 | ||
1333 | /* FIXME: Copied from previous version. Necessary? */ | |
1334 | if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */ | |
1335 | registers[SPU] = registers[R15]; | |
1336 | else | |
1337 | registers[SPI] = registers[R15]; | |
1338 | } | |
1339 | ||
1340 | asm ("\n\ | |
1341 | restore_and_return:\n\ | |
1342 | seth r0, #shigh(registers+8)\n\ | |
1343 | add3 r0, r0, #low(registers+8)\n\ | |
1344 | ld r2, @r0+ ; restore r2\n\ | |
1345 | ld r3, @r0+ ; restore r3\n\ | |
1346 | ld r4, @r0+ ; restore r4\n\ | |
1347 | ld r5, @r0+ ; restore r5\n\ | |
1348 | ld r6, @r0+ ; restore r6\n\ | |
1349 | ld r7, @r0+ ; restore r7\n\ | |
1350 | ld r8, @r0+ ; restore r8\n\ | |
1351 | ld r9, @r0+ ; restore r9\n\ | |
1352 | ld r10, @r0+ ; restore r10\n\ | |
1353 | ld r11, @r0+ ; restore r11\n\ | |
1354 | ld r12, @r0+ ; restore r12\n\ | |
1355 | ld r13, @r0+ ; restore r13\n\ | |
1356 | ld r14, @r0+ ; restore r14\n\ | |
1357 | ld r15, @r0+ ; restore r15\n\ | |
1358 | ld r1, @r0+ ; restore cr0 == PSW\n\ | |
1359 | mvtc r1, cr0\n\ | |
1360 | ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)\n\ | |
1361 | mvtc r1, cr1\n\ | |
1362 | ld r1, @r0+ ; restore cr2 == SPI\n\ | |
1363 | mvtc r1, cr2\n\ | |
1364 | ld r1, @r0+ ; restore cr3 == SPU\n\ | |
1365 | mvtc r1, cr3\n\ | |
1366 | addi r0, #4 ; skip BPC\n\ | |
1367 | ld r1, @r0+ ; restore cr6 (BPC) == PC\n\ | |
1368 | mvtc r1, cr6\n\ | |
1369 | ld r1, @r0+ ; restore ACCL\n\ | |
1370 | mvtaclo r1\n\ | |
1371 | ld r1, @r0+ ; restore ACCH\n\ | |
1372 | mvtachi r1\n\ | |
1373 | seth r0, #shigh(registers)\n\ | |
1374 | add3 r0, r0, #low(registers)\n\ | |
1375 | ld r1, @(4,r0) ; restore r1\n\ | |
1376 | ld r0, @r0 ; restore r0\n\ | |
1377 | rte"); | |
1378 | ||
1379 | /* General trap handler, called after the registers have been stashed. | |
1380 | NUM is the trap/exception number. */ | |
1381 | ||
1382 | static void | |
1383 | process_exception (int num) | |
1384 | { | |
1385 | cleanup_stash (); | |
1386 | asm volatile ("\n\ | |
1387 | seth r1, #shigh(stackPtr)\n\ | |
1388 | add3 r1, r1, #low(stackPtr)\n\ | |
1389 | ld r15, @r1 ; setup local stack (protect user stack)\n\ | |
1390 | mv r0, %0\n\ | |
1391 | bl handle_exception\n\ | |
1392 | bl restore_and_return"::"r" (num):"r0", "r1"); | |
1393 | } | |
1394 | ||
1395 | void _catchException0 (); | |
1396 | ||
1397 | asm ("\n\ | |
1398 | _catchException0:\n\ | |
1399 | push lr\n\ | |
1400 | bl stash_registers\n\ | |
1401 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1402 | ldi r0, #0\n\ | |
1403 | bl process_exception"); | |
1404 | ||
1405 | void _catchException1 (); | |
1406 | ||
1407 | asm ("\n\ | |
1408 | _catchException1:\n\ | |
1409 | push lr\n\ | |
1410 | bl stash_registers\n\ | |
1411 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1412 | bl cleanup_stash\n\ | |
1413 | seth r1, #shigh(stackPtr)\n\ | |
1414 | add3 r1, r1, #low(stackPtr)\n\ | |
1415 | ld r15, @r1 ; setup local stack (protect user stack)\n\ | |
1416 | seth r1, #shigh(registers + 21*4) ; PC\n\ | |
1417 | add3 r1, r1, #low(registers + 21*4)\n\ | |
1418 | ld r0, @r1\n\ | |
1419 | addi r0, #-4 ; back up PC for breakpoint trap.\n\ | |
1420 | st r0, @r1 ; FIXME: what about bp in right slot?\n\ | |
1421 | ldi r0, #1\n\ | |
1422 | bl handle_exception\n\ | |
1423 | bl restore_and_return"); | |
1424 | ||
1425 | void _catchException2 (); | |
1426 | ||
1427 | asm ("\n\ | |
1428 | _catchException2:\n\ | |
1429 | push lr\n\ | |
1430 | bl stash_registers\n\ | |
1431 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1432 | ldi r0, #2\n\ | |
1433 | bl process_exception"); | |
1434 | ||
1435 | void _catchException3 (); | |
1436 | ||
1437 | asm ("\n\ | |
1438 | _catchException3:\n\ | |
1439 | push lr\n\ | |
1440 | bl stash_registers\n\ | |
1441 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1442 | ldi r0, #3\n\ | |
1443 | bl process_exception"); | |
1444 | ||
1445 | void _catchException4 (); | |
1446 | ||
1447 | asm ("\n\ | |
1448 | _catchException4:\n\ | |
1449 | push lr\n\ | |
1450 | bl stash_registers\n\ | |
1451 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1452 | ldi r0, #4\n\ | |
1453 | bl process_exception"); | |
1454 | ||
1455 | void _catchException5 (); | |
1456 | ||
1457 | asm ("\n\ | |
1458 | _catchException5:\n\ | |
1459 | push lr\n\ | |
1460 | bl stash_registers\n\ | |
1461 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1462 | ldi r0, #5\n\ | |
1463 | bl process_exception"); | |
1464 | ||
1465 | void _catchException6 (); | |
1466 | ||
1467 | asm ("\n\ | |
1468 | _catchException6:\n\ | |
1469 | push lr\n\ | |
1470 | bl stash_registers\n\ | |
1471 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1472 | ldi r0, #6\n\ | |
1473 | bl process_exception"); | |
1474 | ||
1475 | void _catchException7 (); | |
1476 | ||
1477 | asm ("\n\ | |
1478 | _catchException7:\n\ | |
1479 | push lr\n\ | |
1480 | bl stash_registers\n\ | |
1481 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1482 | ldi r0, #7\n\ | |
1483 | bl process_exception"); | |
1484 | ||
1485 | void _catchException8 (); | |
1486 | ||
1487 | asm ("\n\ | |
1488 | _catchException8:\n\ | |
1489 | push lr\n\ | |
1490 | bl stash_registers\n\ | |
1491 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1492 | ldi r0, #8\n\ | |
1493 | bl process_exception"); | |
1494 | ||
1495 | void _catchException9 (); | |
1496 | ||
1497 | asm ("\n\ | |
1498 | _catchException9:\n\ | |
1499 | push lr\n\ | |
1500 | bl stash_registers\n\ | |
1501 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1502 | ldi r0, #9\n\ | |
1503 | bl process_exception"); | |
1504 | ||
1505 | void _catchException10 (); | |
1506 | ||
1507 | asm ("\n\ | |
1508 | _catchException10:\n\ | |
1509 | push lr\n\ | |
1510 | bl stash_registers\n\ | |
1511 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1512 | ldi r0, #10\n\ | |
1513 | bl process_exception"); | |
1514 | ||
1515 | void _catchException11 (); | |
1516 | ||
1517 | asm ("\n\ | |
1518 | _catchException11:\n\ | |
1519 | push lr\n\ | |
1520 | bl stash_registers\n\ | |
1521 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1522 | ldi r0, #11\n\ | |
1523 | bl process_exception"); | |
1524 | ||
1525 | void _catchException12 (); | |
1526 | ||
1527 | asm ("\n\ | |
1528 | _catchException12:\n\ | |
1529 | push lr\n\ | |
1530 | bl stash_registers\n\ | |
1531 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1532 | ldi r0, #12\n\ | |
1533 | bl process_exception"); | |
1534 | ||
1535 | void _catchException13 (); | |
1536 | ||
1537 | asm ("\n\ | |
1538 | _catchException13:\n\ | |
1539 | push lr\n\ | |
1540 | bl stash_registers\n\ | |
1541 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1542 | ldi r0, #13\n\ | |
1543 | bl process_exception"); | |
1544 | ||
1545 | void _catchException14 (); | |
1546 | ||
1547 | asm ("\n\ | |
1548 | _catchException14:\n\ | |
1549 | push lr\n\ | |
1550 | bl stash_registers\n\ | |
1551 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1552 | ldi r0, #14\n\ | |
1553 | bl process_exception"); | |
1554 | ||
1555 | void _catchException15 (); | |
1556 | ||
1557 | asm ("\n\ | |
1558 | _catchException15:\n\ | |
1559 | push lr\n\ | |
1560 | bl stash_registers\n\ | |
1561 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1562 | ldi r0, #15\n\ | |
1563 | bl process_exception"); | |
1564 | ||
1565 | void _catchException16 (); | |
1566 | ||
1567 | asm ("\n\ | |
1568 | _catchException16:\n\ | |
1569 | push lr\n\ | |
1570 | bl stash_registers\n\ | |
1571 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1572 | ldi r0, #16\n\ | |
1573 | bl process_exception"); | |
1574 | ||
1575 | void _catchException17 (); | |
1576 | ||
1577 | asm ("\n\ | |
1578 | _catchException17:\n\ | |
1579 | push lr\n\ | |
1580 | bl stash_registers\n\ | |
1581 | ; Note that at this point the pushed value of `lr' has been popped\n\ | |
1582 | ldi r0, #17\n\ | |
1583 | bl process_exception"); | |
1584 | ||
1585 | ||
1586 | /* this function is used to set up exception handlers for tracing and | |
1587 | breakpoints */ | |
1588 | void | |
1589 | set_debug_traps (void) | |
1590 | { | |
1591 | /* extern void remcomHandler(); */ | |
1592 | int i; | |
1593 | ||
1594 | for (i = 0; i < 18; i++) /* keep a copy of old vectors */ | |
1595 | if (save_vectors[i] == 0) /* only copy them the first time */ | |
1596 | save_vectors[i] = getExceptionHandler (i); | |
1597 | ||
1598 | stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1]; | |
1599 | ||
1600 | exceptionHandler (0, _catchException0); | |
1601 | exceptionHandler (1, _catchException1); | |
1602 | exceptionHandler (2, _catchException2); | |
1603 | exceptionHandler (3, _catchException3); | |
1604 | exceptionHandler (4, _catchException4); | |
1605 | exceptionHandler (5, _catchException5); | |
1606 | exceptionHandler (6, _catchException6); | |
1607 | exceptionHandler (7, _catchException7); | |
1608 | exceptionHandler (8, _catchException8); | |
1609 | exceptionHandler (9, _catchException9); | |
1610 | exceptionHandler (10, _catchException10); | |
1611 | exceptionHandler (11, _catchException11); | |
1612 | exceptionHandler (12, _catchException12); | |
1613 | exceptionHandler (13, _catchException13); | |
1614 | exceptionHandler (14, _catchException14); | |
1615 | exceptionHandler (15, _catchException15); | |
1616 | exceptionHandler (16, _catchException16); | |
1617 | /* exceptionHandler (17, _catchException17); */ | |
1618 | ||
1619 | initialized = 1; | |
1620 | } | |
1621 | ||
1622 | /* This function will generate a breakpoint exception. It is used at the | |
1623 | beginning of a program to sync up with a debugger and can be used | |
1624 | otherwise as a quick means to stop program execution and "break" into | |
1625 | the debugger. */ | |
1626 | ||
1627 | #define BREAKPOINT() asm volatile (" trap #2"); | |
1628 | ||
1629 | void | |
1630 | breakpoint (void) | |
1631 | { | |
1632 | if (initialized) | |
1633 | BREAKPOINT (); | |
1634 | } | |
1635 | ||
1636 | /* STDOUT section: | |
1637 | Stuff pertaining to simulating stdout by sending chars to gdb to be echoed. | |
1638 | Functions: gdb_putchar(char ch) | |
1639 | gdb_puts(char *str) | |
1640 | gdb_write(char *str, int len) | |
1641 | gdb_error(char *format, char *parm) | |
1642 | */ | |
1643 | ||
1644 | /* Function: gdb_putchar(int) | |
1645 | Make gdb write a char to stdout. | |
1646 | Returns: the char */ | |
1647 | ||
1648 | static int | |
1649 | gdb_putchar (int ch) | |
1650 | { | |
1651 | char buf[4]; | |
1652 | ||
1653 | buf[0] = 'O'; | |
1654 | buf[1] = hexchars[ch >> 4]; | |
1655 | buf[2] = hexchars[ch & 0x0F]; | |
1656 | buf[3] = 0; | |
1657 | putpacket (buf); | |
1658 | return ch; | |
1659 | } | |
1660 | ||
1661 | /* Function: gdb_write(char *, int) | |
1662 | Make gdb write n bytes to stdout (not assumed to be null-terminated). | |
1663 | Returns: number of bytes written */ | |
1664 | ||
1665 | static int | |
1666 | gdb_write (char *data, int len) | |
1667 | { | |
1668 | char *buf, *cpy; | |
1669 | int i; | |
1670 | ||
1671 | buf = remcomOutBuffer; | |
1672 | buf[0] = 'O'; | |
1673 | i = 0; | |
1674 | while (i < len) | |
1675 | { | |
1676 | for (cpy = buf + 1; | |
1677 | i < len && cpy < buf + sizeof (remcomOutBuffer) - 3; i++) | |
1678 | { | |
1679 | *cpy++ = hexchars[data[i] >> 4]; | |
1680 | *cpy++ = hexchars[data[i] & 0x0F]; | |
1681 | } | |
1682 | *cpy = 0; | |
1683 | putpacket (buf); | |
1684 | } | |
1685 | return len; | |
1686 | } | |
1687 | ||
1688 | /* Function: gdb_puts(char *) | |
1689 | Make gdb write a null-terminated string to stdout. | |
1690 | Returns: the length of the string */ | |
1691 | ||
1692 | static int | |
1693 | gdb_puts (char *str) | |
1694 | { | |
1695 | return gdb_write (str, strlen (str)); | |
1696 | } | |
1697 | ||
1698 | /* Function: gdb_error(char *, char *) | |
1699 | Send an error message to gdb's stdout. | |
1700 | First string may have 1 (one) optional "%s" in it, which | |
1701 | will cause the optional second string to be inserted. */ | |
1702 | ||
1703 | static void | |
1704 | gdb_error (char *format, char *parm) | |
1705 | { | |
1706 | char buf[400], *cpy; | |
1707 | int len; | |
1708 | ||
1709 | if (remote_debug) | |
1710 | { | |
1711 | if (format && *format) | |
1712 | len = strlen (format); | |
1713 | else | |
1714 | return; /* empty input */ | |
1715 | ||
1716 | if (parm && *parm) | |
1717 | len += strlen (parm); | |
1718 | ||
1719 | for (cpy = buf; *format;) | |
1720 | { | |
1721 | if (format[0] == '%' && format[1] == 's') /* include second string */ | |
1722 | { | |
1723 | format += 2; /* advance two chars instead of just one */ | |
1724 | while (parm && *parm) | |
1725 | *cpy++ = *parm++; | |
1726 | } | |
1727 | else | |
1728 | *cpy++ = *format++; | |
1729 | } | |
1730 | *cpy = '\0'; | |
1731 | gdb_puts (buf); | |
1732 | } | |
1733 | } | |
1734 | ||
1735 | static unsigned char * | |
1736 | strcpy (unsigned char *dest, const unsigned char *src) | |
1737 | { | |
1738 | unsigned char *ret = dest; | |
1739 | ||
1740 | if (dest && src) | |
1741 | { | |
1742 | while (*src) | |
1743 | *dest++ = *src++; | |
1744 | *dest = 0; | |
1745 | } | |
1746 | return ret; | |
1747 | } | |
1748 | ||
1749 | static int | |
1750 | strlen (const unsigned char *src) | |
1751 | { | |
1752 | int ret; | |
1753 | ||
1754 | for (ret = 0; *src; src++) | |
1755 | ret++; | |
1756 | ||
1757 | return ret; | |
1758 | } | |
1759 | ||
1760 | #if 0 | |
1761 | void | |
1762 | exit (code) | |
1763 | int code; | |
1764 | { | |
1765 | _exit (code); | |
1766 | } | |
1767 | ||
1768 | int | |
1769 | atexit (void *p) | |
1770 | { | |
1771 | return 0; | |
1772 | } | |
1773 | ||
1774 | void | |
1775 | abort (void) | |
1776 | { | |
1777 | _exit (1); | |
1778 | } | |
1779 | #endif |