Commit | Line | Data |
---|---|---|
d95a8903 AC |
1 | /* Target-dependent code for Renesas M32R, for GDB. |
2 | ||
6aba47ca DJ |
3 | Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 |
4 | Free Software Foundation, Inc. | |
d95a8903 AC |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
20 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
21 | Boston, MA 02110-1301, USA. */ | |
d95a8903 AC |
22 | |
23 | #include "defs.h" | |
24 | #include "frame.h" | |
25 | #include "frame-unwind.h" | |
26 | #include "frame-base.h" | |
27 | #include "symtab.h" | |
28 | #include "gdbtypes.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "gdbcore.h" | |
31 | #include "gdb_string.h" | |
32 | #include "value.h" | |
33 | #include "inferior.h" | |
34 | #include "symfile.h" | |
35 | #include "objfiles.h" | |
c46b0409 | 36 | #include "osabi.h" |
d95a8903 AC |
37 | #include "language.h" |
38 | #include "arch-utils.h" | |
39 | #include "regcache.h" | |
40 | #include "trad-frame.h" | |
73e8eb51 | 41 | #include "dis-asm.h" |
d95a8903 AC |
42 | |
43 | #include "gdb_assert.h" | |
44 | ||
9b32d526 | 45 | #include "m32r-tdep.h" |
d95a8903 AC |
46 | |
47 | /* Local functions */ | |
48 | ||
49 | extern void _initialize_m32r_tdep (void); | |
50 | ||
51 | static CORE_ADDR | |
52 | m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
53 | { | |
54 | /* Align to the size of an instruction (so that they can safely be | |
55 | pushed onto the stack. */ | |
56 | return sp & ~3; | |
57 | } | |
58 | ||
d95a8903 | 59 | |
9f0b0322 KI |
60 | /* Breakpoints |
61 | ||
62 | The little endian mode of M32R is unique. In most of architectures, | |
63 | two 16-bit instructions, A and B, are placed as the following: | |
64 | ||
65 | Big endian: | |
66 | A0 A1 B0 B1 | |
67 | ||
68 | Little endian: | |
69 | A1 A0 B1 B0 | |
70 | ||
71 | In M32R, they are placed like this: | |
72 | ||
73 | Big endian: | |
74 | A0 A1 B0 B1 | |
75 | ||
76 | Little endian: | |
77 | B1 B0 A1 A0 | |
78 | ||
79 | This is because M32R always fetches instructions in 32-bit. | |
80 | ||
81 | The following functions take care of this behavior. */ | |
d95a8903 AC |
82 | |
83 | static int | |
8181d85f | 84 | m32r_memory_insert_breakpoint (struct bp_target_info *bp_tgt) |
d95a8903 | 85 | { |
8181d85f | 86 | CORE_ADDR addr = bp_tgt->placed_address; |
d95a8903 | 87 | int val; |
16ac4ab5 | 88 | gdb_byte buf[4]; |
8181d85f | 89 | gdb_byte *contents_cache = bp_tgt->shadow_contents; |
16ac4ab5 | 90 | gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ |
d95a8903 AC |
91 | |
92 | /* Save the memory contents. */ | |
9f0b0322 | 93 | val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); |
d95a8903 AC |
94 | if (val != 0) |
95 | return val; /* return error */ | |
96 | ||
8181d85f DJ |
97 | bp_tgt->placed_size = bp_tgt->shadow_len = 4; |
98 | ||
d95a8903 | 99 | /* Determine appropriate breakpoint contents and size for this address. */ |
4c6b5505 | 100 | if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) |
d95a8903 | 101 | { |
9f0b0322 | 102 | if ((addr & 3) == 0) |
d95a8903 | 103 | { |
9f0b0322 KI |
104 | buf[0] = bp_entry[0]; |
105 | buf[1] = bp_entry[1]; | |
106 | buf[2] = contents_cache[2] & 0x7f; | |
107 | buf[3] = contents_cache[3]; | |
d95a8903 AC |
108 | } |
109 | else | |
110 | { | |
9f0b0322 KI |
111 | buf[0] = contents_cache[0]; |
112 | buf[1] = contents_cache[1]; | |
113 | buf[2] = bp_entry[0]; | |
114 | buf[3] = bp_entry[1]; | |
d95a8903 AC |
115 | } |
116 | } | |
9f0b0322 KI |
117 | else /* little-endian */ |
118 | { | |
119 | if ((addr & 3) == 0) | |
d95a8903 | 120 | { |
9f0b0322 KI |
121 | buf[0] = contents_cache[0]; |
122 | buf[1] = contents_cache[1] & 0x7f; | |
123 | buf[2] = bp_entry[1]; | |
124 | buf[3] = bp_entry[0]; | |
d95a8903 AC |
125 | } |
126 | else | |
127 | { | |
9f0b0322 KI |
128 | buf[0] = bp_entry[1]; |
129 | buf[1] = bp_entry[0]; | |
130 | buf[2] = contents_cache[2]; | |
131 | buf[3] = contents_cache[3]; | |
d95a8903 AC |
132 | } |
133 | } | |
134 | ||
135 | /* Write the breakpoint. */ | |
9f0b0322 | 136 | val = target_write_memory (addr & 0xfffffffc, buf, 4); |
d95a8903 AC |
137 | return val; |
138 | } | |
139 | ||
140 | static int | |
8181d85f | 141 | m32r_memory_remove_breakpoint (struct bp_target_info *bp_tgt) |
d95a8903 | 142 | { |
8181d85f | 143 | CORE_ADDR addr = bp_tgt->placed_address; |
d95a8903 | 144 | int val; |
16ac4ab5 | 145 | gdb_byte buf[4]; |
8181d85f | 146 | gdb_byte *contents_cache = bp_tgt->shadow_contents; |
d95a8903 | 147 | |
9f0b0322 KI |
148 | buf[0] = contents_cache[0]; |
149 | buf[1] = contents_cache[1]; | |
150 | buf[2] = contents_cache[2]; | |
151 | buf[3] = contents_cache[3]; | |
152 | ||
153 | /* Remove parallel bit. */ | |
4c6b5505 | 154 | if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) |
d95a8903 | 155 | { |
9f0b0322 KI |
156 | if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) |
157 | buf[2] &= 0x7f; | |
d95a8903 | 158 | } |
9f0b0322 | 159 | else /* little-endian */ |
d95a8903 | 160 | { |
9f0b0322 KI |
161 | if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) |
162 | buf[1] &= 0x7f; | |
d95a8903 AC |
163 | } |
164 | ||
165 | /* Write contents. */ | |
9f0b0322 | 166 | val = target_write_memory (addr & 0xfffffffc, buf, 4); |
d95a8903 AC |
167 | return val; |
168 | } | |
169 | ||
16ac4ab5 | 170 | static const gdb_byte * |
d95a8903 AC |
171 | m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
172 | { | |
16ac4ab5 KI |
173 | static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */ |
174 | static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */ | |
175 | gdb_byte *bp; | |
d95a8903 AC |
176 | |
177 | /* Determine appropriate breakpoint. */ | |
4c6b5505 | 178 | if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) |
d95a8903 AC |
179 | { |
180 | if ((*pcptr & 3) == 0) | |
181 | { | |
9f0b0322 KI |
182 | bp = be_bp_entry; |
183 | *lenptr = 4; | |
d95a8903 AC |
184 | } |
185 | else | |
186 | { | |
9f0b0322 KI |
187 | bp = be_bp_entry; |
188 | *lenptr = 2; | |
d95a8903 AC |
189 | } |
190 | } | |
191 | else | |
192 | { | |
193 | if ((*pcptr & 3) == 0) | |
194 | { | |
9f0b0322 KI |
195 | bp = le_bp_entry; |
196 | *lenptr = 4; | |
d95a8903 AC |
197 | } |
198 | else | |
199 | { | |
9f0b0322 KI |
200 | bp = le_bp_entry + 2; |
201 | *lenptr = 2; | |
d95a8903 AC |
202 | } |
203 | } | |
204 | ||
205 | return bp; | |
206 | } | |
207 | ||
208 | ||
209 | char *m32r_register_names[] = { | |
210 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
211 | "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", | |
212 | "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", | |
213 | "evb" | |
214 | }; | |
215 | ||
d95a8903 AC |
216 | static const char * |
217 | m32r_register_name (int reg_nr) | |
218 | { | |
219 | if (reg_nr < 0) | |
220 | return NULL; | |
9b32d526 | 221 | if (reg_nr >= M32R_NUM_REGS) |
d95a8903 AC |
222 | return NULL; |
223 | return m32r_register_names[reg_nr]; | |
224 | } | |
225 | ||
226 | ||
227 | /* Return the GDB type object for the "standard" data type | |
228 | of data in register N. */ | |
229 | ||
230 | static struct type * | |
231 | m32r_register_type (struct gdbarch *gdbarch, int reg_nr) | |
232 | { | |
233 | if (reg_nr == M32R_PC_REGNUM) | |
234 | return builtin_type_void_func_ptr; | |
235 | else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) | |
236 | return builtin_type_void_data_ptr; | |
237 | else | |
238 | return builtin_type_int32; | |
239 | } | |
240 | ||
241 | ||
242 | /* Write into appropriate registers a function return value | |
243 | of type TYPE, given in virtual format. | |
244 | ||
245 | Things always get returned in RET1_REGNUM, RET2_REGNUM. */ | |
246 | ||
247 | static void | |
248 | m32r_store_return_value (struct type *type, struct regcache *regcache, | |
249 | const void *valbuf) | |
250 | { | |
251 | CORE_ADDR regval; | |
252 | int len = TYPE_LENGTH (type); | |
253 | ||
254 | regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len); | |
255 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); | |
256 | ||
257 | if (len > 4) | |
258 | { | |
16ac4ab5 | 259 | regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, len - 4); |
d95a8903 AC |
260 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); |
261 | } | |
262 | } | |
263 | ||
d95a8903 AC |
264 | /* This is required by skip_prologue. The results of decoding a prologue |
265 | should be cached because this thrashing is getting nuts. */ | |
266 | ||
cea15572 | 267 | static int |
d95a8903 | 268 | decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, |
cea15572 | 269 | CORE_ADDR *pl_endptr, unsigned long *framelength) |
d95a8903 AC |
270 | { |
271 | unsigned long framesize; | |
272 | int insn; | |
273 | int op1; | |
d95a8903 | 274 | CORE_ADDR after_prologue = 0; |
cea15572 | 275 | CORE_ADDR after_push = 0; |
d95a8903 AC |
276 | CORE_ADDR after_stack_adjust = 0; |
277 | CORE_ADDR current_pc; | |
cea15572 | 278 | LONGEST return_value; |
d95a8903 AC |
279 | |
280 | framesize = 0; | |
281 | after_prologue = 0; | |
282 | ||
283 | for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) | |
284 | { | |
cea15572 KI |
285 | /* Check if current pc's location is readable. */ |
286 | if (!safe_read_memory_integer (current_pc, 2, &return_value)) | |
287 | return -1; | |
288 | ||
d95a8903 AC |
289 | insn = read_memory_unsigned_integer (current_pc, 2); |
290 | ||
cea15572 KI |
291 | if (insn == 0x0000) |
292 | break; | |
293 | ||
d95a8903 AC |
294 | /* If this is a 32 bit instruction, we dont want to examine its |
295 | immediate data as though it were an instruction */ | |
296 | if (current_pc & 0x02) | |
297 | { | |
d95a8903 AC |
298 | /* decode this instruction further */ |
299 | insn &= 0x7fff; | |
300 | } | |
301 | else | |
302 | { | |
d95a8903 AC |
303 | if (insn & 0x8000) |
304 | { | |
305 | if (current_pc == scan_limit) | |
306 | scan_limit += 2; /* extend the search */ | |
cea15572 | 307 | |
d95a8903 | 308 | current_pc += 2; /* skip the immediate data */ |
cea15572 KI |
309 | |
310 | /* Check if current pc's location is readable. */ | |
311 | if (!safe_read_memory_integer (current_pc, 2, &return_value)) | |
312 | return -1; | |
313 | ||
d95a8903 AC |
314 | if (insn == 0x8faf) /* add3 sp, sp, xxxx */ |
315 | /* add 16 bit sign-extended offset */ | |
316 | { | |
317 | framesize += | |
318 | -((short) read_memory_unsigned_integer (current_pc, 2)); | |
319 | } | |
320 | else | |
321 | { | |
7e3dd49e | 322 | if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ |
cea15572 KI |
323 | && safe_read_memory_integer (current_pc + 2, 2, |
324 | &return_value) | |
7e3dd49e AC |
325 | && read_memory_unsigned_integer (current_pc + 2, |
326 | 2) == 0x0f24) | |
d95a8903 AC |
327 | /* subtract 24 bit sign-extended negative-offset */ |
328 | { | |
329 | insn = read_memory_unsigned_integer (current_pc - 2, 4); | |
330 | if (insn & 0x00800000) /* sign extend */ | |
331 | insn |= 0xff000000; /* negative */ | |
332 | else | |
333 | insn &= 0x00ffffff; /* positive */ | |
334 | framesize += insn; | |
335 | } | |
336 | } | |
cea15572 | 337 | after_push = current_pc + 2; |
d95a8903 AC |
338 | continue; |
339 | } | |
340 | } | |
341 | op1 = insn & 0xf000; /* isolate just the first nibble */ | |
342 | ||
343 | if ((insn & 0xf0ff) == 0x207f) | |
344 | { /* st reg, @-sp */ | |
345 | int regno; | |
346 | framesize += 4; | |
347 | regno = ((insn >> 8) & 0xf); | |
348 | after_prologue = 0; | |
349 | continue; | |
350 | } | |
351 | if ((insn >> 8) == 0x4f) /* addi sp, xx */ | |
352 | /* add 8 bit sign-extended offset */ | |
353 | { | |
16ac4ab5 | 354 | int stack_adjust = (gdb_byte) (insn & 0xff); |
d95a8903 AC |
355 | |
356 | /* there are probably two of these stack adjustments: | |
357 | 1) A negative one in the prologue, and | |
358 | 2) A positive one in the epilogue. | |
359 | We are only interested in the first one. */ | |
360 | ||
361 | if (stack_adjust < 0) | |
362 | { | |
363 | framesize -= stack_adjust; | |
364 | after_prologue = 0; | |
365 | /* A frameless function may have no "mv fp, sp". | |
366 | In that case, this is the end of the prologue. */ | |
367 | after_stack_adjust = current_pc + 2; | |
368 | } | |
369 | continue; | |
370 | } | |
371 | if (insn == 0x1d8f) | |
372 | { /* mv fp, sp */ | |
373 | after_prologue = current_pc + 2; | |
374 | break; /* end of stack adjustments */ | |
375 | } | |
cea15572 | 376 | |
d95a8903 AC |
377 | /* Nop looks like a branch, continue explicitly */ |
378 | if (insn == 0x7000) | |
379 | { | |
380 | after_prologue = current_pc + 2; | |
381 | continue; /* nop occurs between pushes */ | |
382 | } | |
cea15572 KI |
383 | /* End of prolog if any of these are trap instructions */ |
384 | if ((insn & 0xfff0) == 0x10f0) | |
385 | { | |
386 | after_prologue = current_pc; | |
387 | break; | |
388 | } | |
d95a8903 AC |
389 | /* End of prolog if any of these are branch instructions */ |
390 | if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) | |
391 | { | |
392 | after_prologue = current_pc; | |
d95a8903 AC |
393 | continue; |
394 | } | |
395 | /* Some of the branch instructions are mixed with other types */ | |
396 | if (op1 == 0x1000) | |
397 | { | |
398 | int subop = insn & 0x0ff0; | |
399 | if ((subop == 0x0ec0) || (subop == 0x0fc0)) | |
400 | { | |
401 | after_prologue = current_pc; | |
d95a8903 AC |
402 | continue; /* jmp , jl */ |
403 | } | |
404 | } | |
405 | } | |
406 | ||
cea15572 KI |
407 | if (framelength) |
408 | *framelength = framesize; | |
409 | ||
d95a8903 AC |
410 | if (current_pc >= scan_limit) |
411 | { | |
412 | if (pl_endptr) | |
413 | { | |
414 | if (after_stack_adjust != 0) | |
415 | /* We did not find a "mv fp,sp", but we DID find | |
416 | a stack_adjust. Is it safe to use that as the | |
417 | end of the prologue? I just don't know. */ | |
418 | { | |
419 | *pl_endptr = after_stack_adjust; | |
420 | } | |
cea15572 KI |
421 | else if (after_push != 0) |
422 | /* We did not find a "mv fp,sp", but we DID find | |
423 | a push. Is it safe to use that as the | |
424 | end of the prologue? I just don't know. */ | |
425 | { | |
426 | *pl_endptr = after_push; | |
427 | } | |
d95a8903 AC |
428 | else |
429 | /* We reached the end of the loop without finding the end | |
430 | of the prologue. No way to win -- we should report failure. | |
431 | The way we do that is to return the original start_pc. | |
432 | GDB will set a breakpoint at the start of the function (etc.) */ | |
433 | *pl_endptr = start_pc; | |
434 | } | |
cea15572 | 435 | return 0; |
d95a8903 | 436 | } |
cea15572 | 437 | |
d95a8903 AC |
438 | if (after_prologue == 0) |
439 | after_prologue = current_pc; | |
440 | ||
441 | if (pl_endptr) | |
442 | *pl_endptr = after_prologue; | |
cea15572 KI |
443 | |
444 | return 0; | |
d95a8903 AC |
445 | } /* decode_prologue */ |
446 | ||
447 | /* Function: skip_prologue | |
448 | Find end of function prologue */ | |
449 | ||
cea15572 | 450 | #define DEFAULT_SEARCH_LIMIT 128 |
d95a8903 AC |
451 | |
452 | CORE_ADDR | |
453 | m32r_skip_prologue (CORE_ADDR pc) | |
454 | { | |
455 | CORE_ADDR func_addr, func_end; | |
456 | struct symtab_and_line sal; | |
cea15572 | 457 | LONGEST return_value; |
d95a8903 AC |
458 | |
459 | /* See what the symbol table says */ | |
460 | ||
461 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
462 | { | |
463 | sal = find_pc_line (func_addr, 0); | |
464 | ||
465 | if (sal.line != 0 && sal.end <= func_end) | |
466 | { | |
467 | func_end = sal.end; | |
468 | } | |
469 | else | |
470 | /* Either there's no line info, or the line after the prologue is after | |
471 | the end of the function. In this case, there probably isn't a | |
472 | prologue. */ | |
473 | { | |
474 | func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); | |
475 | } | |
476 | } | |
477 | else | |
478 | func_end = pc + DEFAULT_SEARCH_LIMIT; | |
cea15572 KI |
479 | |
480 | /* If pc's location is not readable, just quit. */ | |
481 | if (!safe_read_memory_integer (pc, 4, &return_value)) | |
482 | return pc; | |
483 | ||
484 | /* Find the end of prologue. */ | |
485 | if (decode_prologue (pc, func_end, &sal.end, NULL) < 0) | |
486 | return pc; | |
487 | ||
d95a8903 AC |
488 | return sal.end; |
489 | } | |
490 | ||
d95a8903 AC |
491 | struct m32r_unwind_cache |
492 | { | |
493 | /* The previous frame's inner most stack address. Used as this | |
494 | frame ID's stack_addr. */ | |
495 | CORE_ADDR prev_sp; | |
496 | /* The frame's base, optionally used by the high-level debug info. */ | |
497 | CORE_ADDR base; | |
498 | int size; | |
499 | /* How far the SP and r13 (FP) have been offset from the start of | |
500 | the stack frame (as defined by the previous frame's stack | |
501 | pointer). */ | |
502 | LONGEST sp_offset; | |
503 | LONGEST r13_offset; | |
504 | int uses_frame; | |
505 | /* Table indicating the location of each and every register. */ | |
506 | struct trad_frame_saved_reg *saved_regs; | |
507 | }; | |
508 | ||
509 | /* Put here the code to store, into fi->saved_regs, the addresses of | |
510 | the saved registers of frame described by FRAME_INFO. This | |
511 | includes special registers such as pc and fp saved in special ways | |
512 | in the stack frame. sp is even more special: the address we return | |
513 | for it IS the sp for the next frame. */ | |
514 | ||
515 | static struct m32r_unwind_cache * | |
516 | m32r_frame_unwind_cache (struct frame_info *next_frame, | |
517 | void **this_prologue_cache) | |
518 | { | |
cea15572 | 519 | CORE_ADDR pc, scan_limit; |
d95a8903 AC |
520 | ULONGEST prev_sp; |
521 | ULONGEST this_base; | |
cea15572 | 522 | unsigned long op, op2; |
d95a8903 AC |
523 | int i; |
524 | struct m32r_unwind_cache *info; | |
525 | ||
cea15572 | 526 | |
d95a8903 AC |
527 | if ((*this_prologue_cache)) |
528 | return (*this_prologue_cache); | |
529 | ||
530 | info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); | |
531 | (*this_prologue_cache) = info; | |
532 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
533 | ||
534 | info->size = 0; | |
535 | info->sp_offset = 0; | |
d95a8903 | 536 | info->uses_frame = 0; |
cea15572 KI |
537 | |
538 | scan_limit = frame_pc_unwind (next_frame); | |
93d42b30 | 539 | for (pc = frame_func_unwind (next_frame, NORMAL_FRAME); |
cea15572 | 540 | pc > 0 && pc < scan_limit; pc += 2) |
d95a8903 AC |
541 | { |
542 | if ((pc & 2) == 0) | |
543 | { | |
544 | op = get_frame_memory_unsigned (next_frame, pc, 4); | |
545 | if ((op & 0x80000000) == 0x80000000) | |
546 | { | |
547 | /* 32-bit instruction */ | |
548 | if ((op & 0xffff0000) == 0x8faf0000) | |
549 | { | |
550 | /* add3 sp,sp,xxxx */ | |
551 | short n = op & 0xffff; | |
552 | info->sp_offset += n; | |
553 | } | |
cea15572 KI |
554 | else if (((op >> 8) == 0xe4) |
555 | && get_frame_memory_unsigned (next_frame, pc + 2, | |
7e3dd49e | 556 | 2) == 0x0f24) |
d95a8903 | 557 | { |
cea15572 | 558 | /* ld24 r4, xxxxxx; sub sp, r4 */ |
d95a8903 AC |
559 | unsigned long n = op & 0xffffff; |
560 | info->sp_offset += n; | |
cea15572 | 561 | pc += 2; /* skip sub instruction */ |
d95a8903 | 562 | } |
d95a8903 | 563 | |
cea15572 KI |
564 | if (pc == scan_limit) |
565 | scan_limit += 2; /* extend the search */ | |
566 | pc += 2; /* skip the immediate data */ | |
d95a8903 AC |
567 | continue; |
568 | } | |
569 | } | |
570 | ||
571 | /* 16-bit instructions */ | |
572 | op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff; | |
573 | if ((op & 0xf0ff) == 0x207f) | |
574 | { | |
575 | /* st rn, @-sp */ | |
576 | int regno = ((op >> 8) & 0xf); | |
577 | info->sp_offset -= 4; | |
578 | info->saved_regs[regno].addr = info->sp_offset; | |
579 | } | |
580 | else if ((op & 0xff00) == 0x4f00) | |
581 | { | |
582 | /* addi sp, xx */ | |
16ac4ab5 | 583 | int n = (gdb_byte) (op & 0xff); |
d95a8903 AC |
584 | info->sp_offset += n; |
585 | } | |
586 | else if (op == 0x1d8f) | |
587 | { | |
588 | /* mv fp, sp */ | |
589 | info->uses_frame = 1; | |
590 | info->r13_offset = info->sp_offset; | |
cea15572 KI |
591 | break; /* end of stack adjustments */ |
592 | } | |
593 | else if ((op & 0xfff0) == 0x10f0) | |
594 | { | |
595 | /* end of prologue if this is a trap instruction */ | |
596 | break; /* end of stack adjustments */ | |
d95a8903 | 597 | } |
d95a8903 AC |
598 | } |
599 | ||
600 | info->size = -info->sp_offset; | |
601 | ||
602 | /* Compute the previous frame's stack pointer (which is also the | |
603 | frame's ID's stack address), and this frame's base pointer. */ | |
604 | if (info->uses_frame) | |
605 | { | |
606 | /* The SP was moved to the FP. This indicates that a new frame | |
607 | was created. Get THIS frame's FP value by unwinding it from | |
608 | the next frame. */ | |
7e3dd49e | 609 | this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM); |
d95a8903 AC |
610 | /* The FP points at the last saved register. Adjust the FP back |
611 | to before the first saved register giving the SP. */ | |
612 | prev_sp = this_base + info->size; | |
613 | } | |
614 | else | |
615 | { | |
616 | /* Assume that the FP is this frame's SP but with that pushed | |
617 | stack space added back. */ | |
7e3dd49e | 618 | this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); |
d95a8903 AC |
619 | prev_sp = this_base + info->size; |
620 | } | |
621 | ||
622 | /* Convert that SP/BASE into real addresses. */ | |
623 | info->prev_sp = prev_sp; | |
624 | info->base = this_base; | |
625 | ||
626 | /* Adjust all the saved registers so that they contain addresses and | |
627 | not offsets. */ | |
f57d151a | 628 | for (i = 0; i < gdbarch_num_regs (current_gdbarch) - 1; i++) |
d95a8903 AC |
629 | if (trad_frame_addr_p (info->saved_regs, i)) |
630 | info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); | |
631 | ||
632 | /* The call instruction moves the caller's PC in the callee's LR. | |
633 | Since this is an unwind, do the reverse. Copy the location of LR | |
634 | into PC (the address / regnum) so that a request for PC will be | |
635 | converted into a request for the LR. */ | |
636 | info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; | |
637 | ||
638 | /* The previous frame's SP needed to be computed. Save the computed | |
639 | value. */ | |
640 | trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); | |
641 | ||
642 | return info; | |
643 | } | |
644 | ||
645 | static CORE_ADDR | |
61a1198a | 646 | m32r_read_pc (struct regcache *regcache) |
d95a8903 | 647 | { |
7e3dd49e | 648 | ULONGEST pc; |
61a1198a | 649 | regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc); |
d95a8903 AC |
650 | return pc; |
651 | } | |
652 | ||
653 | static void | |
61a1198a | 654 | m32r_write_pc (struct regcache *regcache, CORE_ADDR val) |
d95a8903 | 655 | { |
61a1198a | 656 | regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val); |
d95a8903 AC |
657 | } |
658 | ||
659 | static CORE_ADDR | |
660 | m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
661 | { | |
7e3dd49e | 662 | return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); |
d95a8903 AC |
663 | } |
664 | ||
665 | ||
666 | static CORE_ADDR | |
7d9b040b | 667 | m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
d95a8903 AC |
668 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
669 | struct value **args, CORE_ADDR sp, int struct_return, | |
670 | CORE_ADDR struct_addr) | |
671 | { | |
672 | int stack_offset, stack_alloc; | |
673 | int argreg = ARG1_REGNUM; | |
674 | int argnum; | |
675 | struct type *type; | |
676 | enum type_code typecode; | |
677 | CORE_ADDR regval; | |
16ac4ab5 KI |
678 | gdb_byte *val; |
679 | gdb_byte valbuf[MAX_REGISTER_SIZE]; | |
d95a8903 AC |
680 | int len; |
681 | int odd_sized_struct; | |
682 | ||
683 | /* first force sp to a 4-byte alignment */ | |
684 | sp = sp & ~3; | |
685 | ||
686 | /* Set the return address. For the m32r, the return breakpoint is | |
687 | always at BP_ADDR. */ | |
688 | regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); | |
689 | ||
690 | /* If STRUCT_RETURN is true, then the struct return address (in | |
691 | STRUCT_ADDR) will consume the first argument-passing register. | |
692 | Both adjust the register count and store that value. */ | |
693 | if (struct_return) | |
694 | { | |
695 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); | |
696 | argreg++; | |
697 | } | |
698 | ||
699 | /* Now make sure there's space on the stack */ | |
700 | for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) | |
4991999e | 701 | stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3); |
d95a8903 AC |
702 | sp -= stack_alloc; /* make room on stack for args */ |
703 | ||
704 | for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) | |
705 | { | |
4991999e | 706 | type = value_type (args[argnum]); |
d95a8903 AC |
707 | typecode = TYPE_CODE (type); |
708 | len = TYPE_LENGTH (type); | |
709 | ||
710 | memset (valbuf, 0, sizeof (valbuf)); | |
711 | ||
712 | /* Passes structures that do not fit in 2 registers by reference. */ | |
713 | if (len > 8 | |
714 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | |
715 | { | |
716 | store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum])); | |
717 | typecode = TYPE_CODE_PTR; | |
718 | len = 4; | |
719 | val = valbuf; | |
720 | } | |
721 | else if (len < 4) | |
722 | { | |
723 | /* value gets right-justified in the register or stack word */ | |
7e3dd49e | 724 | memcpy (valbuf + (register_size (gdbarch, argreg) - len), |
16ac4ab5 | 725 | (gdb_byte *) value_contents (args[argnum]), len); |
d95a8903 AC |
726 | val = valbuf; |
727 | } | |
728 | else | |
16ac4ab5 | 729 | val = (gdb_byte *) value_contents (args[argnum]); |
d95a8903 AC |
730 | |
731 | while (len > 0) | |
732 | { | |
733 | if (argreg > ARGN_REGNUM) | |
734 | { | |
735 | /* must go on the stack */ | |
736 | write_memory (sp + stack_offset, val, 4); | |
737 | stack_offset += 4; | |
738 | } | |
739 | else if (argreg <= ARGN_REGNUM) | |
740 | { | |
741 | /* there's room in a register */ | |
742 | regval = | |
7e3dd49e AC |
743 | extract_unsigned_integer (val, |
744 | register_size (gdbarch, argreg)); | |
d95a8903 AC |
745 | regcache_cooked_write_unsigned (regcache, argreg++, regval); |
746 | } | |
747 | ||
748 | /* Store the value 4 bytes at a time. This means that things | |
749 | larger than 4 bytes may go partly in registers and partly | |
750 | on the stack. */ | |
7e3dd49e AC |
751 | len -= register_size (gdbarch, argreg); |
752 | val += register_size (gdbarch, argreg); | |
d95a8903 AC |
753 | } |
754 | } | |
755 | ||
756 | /* Finally, update the SP register. */ | |
757 | regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); | |
758 | ||
759 | return sp; | |
760 | } | |
761 | ||
762 | ||
763 | /* Given a return value in `regbuf' with a type `valtype', | |
764 | extract and copy its value into `valbuf'. */ | |
765 | ||
766 | static void | |
767 | m32r_extract_return_value (struct type *type, struct regcache *regcache, | |
768 | void *dst) | |
769 | { | |
770 | bfd_byte *valbuf = dst; | |
771 | int len = TYPE_LENGTH (type); | |
772 | ULONGEST tmp; | |
773 | ||
774 | /* By using store_unsigned_integer we avoid having to do | |
775 | anything special for small big-endian values. */ | |
776 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); | |
777 | store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp); | |
778 | ||
779 | /* Ignore return values more than 8 bytes in size because the m32r | |
780 | returns anything more than 8 bytes in the stack. */ | |
781 | if (len > 4) | |
782 | { | |
783 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); | |
784 | store_unsigned_integer (valbuf + len - 4, 4, tmp); | |
785 | } | |
786 | } | |
787 | ||
14588880 KI |
788 | enum return_value_convention |
789 | m32r_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
16ac4ab5 KI |
790 | struct regcache *regcache, gdb_byte *readbuf, |
791 | const gdb_byte *writebuf) | |
14588880 KI |
792 | { |
793 | if (TYPE_LENGTH (valtype) > 8) | |
794 | return RETURN_VALUE_STRUCT_CONVENTION; | |
795 | else | |
796 | { | |
797 | if (readbuf != NULL) | |
798 | m32r_extract_return_value (valtype, regcache, readbuf); | |
799 | if (writebuf != NULL) | |
800 | m32r_store_return_value (valtype, regcache, writebuf); | |
801 | return RETURN_VALUE_REGISTER_CONVENTION; | |
802 | } | |
803 | } | |
804 | ||
805 | ||
d95a8903 AC |
806 | |
807 | static CORE_ADDR | |
808 | m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
809 | { | |
7e3dd49e | 810 | return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); |
d95a8903 AC |
811 | } |
812 | ||
813 | /* Given a GDB frame, determine the address of the calling function's | |
814 | frame. This will be used to create a new GDB frame struct. */ | |
815 | ||
816 | static void | |
817 | m32r_frame_this_id (struct frame_info *next_frame, | |
818 | void **this_prologue_cache, struct frame_id *this_id) | |
819 | { | |
820 | struct m32r_unwind_cache *info | |
821 | = m32r_frame_unwind_cache (next_frame, this_prologue_cache); | |
822 | CORE_ADDR base; | |
823 | CORE_ADDR func; | |
824 | struct minimal_symbol *msym_stack; | |
825 | struct frame_id id; | |
826 | ||
827 | /* The FUNC is easy. */ | |
93d42b30 | 828 | func = frame_func_unwind (next_frame, NORMAL_FRAME); |
d95a8903 | 829 | |
d95a8903 AC |
830 | /* Check if the stack is empty. */ |
831 | msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); | |
832 | if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) | |
833 | return; | |
834 | ||
835 | /* Hopefully the prologue analysis either correctly determined the | |
836 | frame's base (which is the SP from the previous frame), or set | |
837 | that base to "NULL". */ | |
838 | base = info->prev_sp; | |
839 | if (base == 0) | |
840 | return; | |
841 | ||
842 | id = frame_id_build (base, func); | |
d95a8903 AC |
843 | (*this_id) = id; |
844 | } | |
845 | ||
846 | static void | |
847 | m32r_frame_prev_register (struct frame_info *next_frame, | |
848 | void **this_prologue_cache, | |
849 | int regnum, int *optimizedp, | |
850 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
16ac4ab5 | 851 | int *realnump, gdb_byte *bufferp) |
d95a8903 AC |
852 | { |
853 | struct m32r_unwind_cache *info | |
854 | = m32r_frame_unwind_cache (next_frame, this_prologue_cache); | |
1f67027d AC |
855 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
856 | optimizedp, lvalp, addrp, realnump, bufferp); | |
d95a8903 AC |
857 | } |
858 | ||
859 | static const struct frame_unwind m32r_frame_unwind = { | |
860 | NORMAL_FRAME, | |
861 | m32r_frame_this_id, | |
862 | m32r_frame_prev_register | |
863 | }; | |
864 | ||
865 | static const struct frame_unwind * | |
7e3dd49e | 866 | m32r_frame_sniffer (struct frame_info *next_frame) |
d95a8903 AC |
867 | { |
868 | return &m32r_frame_unwind; | |
869 | } | |
870 | ||
871 | static CORE_ADDR | |
872 | m32r_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
873 | { | |
874 | struct m32r_unwind_cache *info | |
875 | = m32r_frame_unwind_cache (next_frame, this_cache); | |
876 | return info->base; | |
877 | } | |
878 | ||
879 | static const struct frame_base m32r_frame_base = { | |
880 | &m32r_frame_unwind, | |
881 | m32r_frame_base_address, | |
882 | m32r_frame_base_address, | |
883 | m32r_frame_base_address | |
884 | }; | |
885 | ||
886 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that | |
887 | dummy frame. The frame ID's base needs to match the TOS value | |
888 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
889 | breakpoint. */ | |
890 | ||
891 | static struct frame_id | |
892 | m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
893 | { | |
894 | return frame_id_build (m32r_unwind_sp (gdbarch, next_frame), | |
895 | frame_pc_unwind (next_frame)); | |
896 | } | |
897 | ||
898 | ||
899 | static gdbarch_init_ftype m32r_gdbarch_init; | |
900 | ||
901 | static struct gdbarch * | |
902 | m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
903 | { | |
904 | struct gdbarch *gdbarch; | |
905 | struct gdbarch_tdep *tdep; | |
906 | ||
907 | /* If there is already a candidate, use it. */ | |
908 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
909 | if (arches != NULL) | |
910 | return arches->gdbarch; | |
911 | ||
912 | /* Allocate space for the new architecture. */ | |
913 | tdep = XMALLOC (struct gdbarch_tdep); | |
914 | gdbarch = gdbarch_alloc (&info, tdep); | |
915 | ||
916 | set_gdbarch_read_pc (gdbarch, m32r_read_pc); | |
917 | set_gdbarch_write_pc (gdbarch, m32r_write_pc); | |
918 | set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); | |
919 | ||
9b32d526 | 920 | set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); |
d95a8903 AC |
921 | set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); |
922 | set_gdbarch_register_name (gdbarch, m32r_register_name); | |
923 | set_gdbarch_register_type (gdbarch, m32r_register_type); | |
924 | ||
d95a8903 | 925 | set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); |
14588880 | 926 | set_gdbarch_return_value (gdbarch, m32r_return_value); |
d95a8903 AC |
927 | |
928 | set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); | |
929 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
d95a8903 AC |
930 | set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc); |
931 | set_gdbarch_memory_insert_breakpoint (gdbarch, | |
932 | m32r_memory_insert_breakpoint); | |
933 | set_gdbarch_memory_remove_breakpoint (gdbarch, | |
934 | m32r_memory_remove_breakpoint); | |
935 | ||
d95a8903 AC |
936 | set_gdbarch_frame_align (gdbarch, m32r_frame_align); |
937 | ||
d95a8903 AC |
938 | frame_base_set_default (gdbarch, &m32r_frame_base); |
939 | ||
940 | /* Methods for saving / extracting a dummy frame's ID. The ID's | |
941 | stack address must match the SP value returned by | |
942 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
943 | set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id); | |
944 | ||
945 | /* Return the unwound PC value. */ | |
946 | set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); | |
947 | ||
948 | set_gdbarch_print_insn (gdbarch, print_insn_m32r); | |
949 | ||
c46b0409 KI |
950 | /* Hook in ABI-specific overrides, if they have been registered. */ |
951 | gdbarch_init_osabi (info, gdbarch); | |
952 | ||
953 | /* Hook in the default unwinders. */ | |
954 | frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer); | |
955 | ||
1c772458 UW |
956 | /* Support simple overlay manager. */ |
957 | set_gdbarch_overlay_update (gdbarch, simple_overlay_update); | |
958 | ||
d95a8903 AC |
959 | return gdbarch; |
960 | } | |
961 | ||
962 | void | |
963 | _initialize_m32r_tdep (void) | |
964 | { | |
965 | register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); | |
966 | } |