* alpha-linux-tdep.c (alpha_linux_pc_in_sigtramp): New function.
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
b6ba6518 2 Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
c906108c 3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c
SS
20
21#include "defs.h"
22#include "frame.h"
23#include "inferior.h"
24#include "obstack.h"
25#include "target.h"
26#include "value.h"
27#include "bfd.h"
28#include "gdb_string.h"
29#include "gdbcore.h"
30#include "symfile.h"
4e052eda 31#include "regcache.h"
c906108c
SS
32
33/* Function: m32r_use_struct_convention
34 Return nonzero if call_function should allocate stack space for a
35 struct return? */
36int
fba45db2 37m32r_use_struct_convention (int gcc_p, struct type *type)
c906108c
SS
38{
39 return (TYPE_LENGTH (type) > 8);
40}
41
42/* Function: frame_find_saved_regs
43 Return the frame_saved_regs structure for the frame.
44 Doesn't really work for dummy frames, but it does pass back
45 an empty frame_saved_regs, so I guess that's better than total failure */
46
c5aa993b 47void
fba45db2
KB
48m32r_frame_find_saved_regs (struct frame_info *fi,
49 struct frame_saved_regs *regaddr)
c906108c 50{
c5aa993b 51 memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
c906108c
SS
52}
53
54/* Turn this on if you want to see just how much instruction decoding
55 if being done, its quite a lot
c5aa993b 56 */
c906108c 57#if 0
c5aa993b
JM
58static void
59dump_insn (char *commnt, CORE_ADDR pc, int insn)
c906108c 60{
c5aa993b
JM
61 printf_filtered (" %s %08x %08x ",
62 commnt, (unsigned int) pc, (unsigned int) insn);
2bf0cb65 63 TARGET_PRINT_INSN (pc, &tm_print_insn_info);
c5aa993b 64 printf_filtered ("\n");
c906108c
SS
65}
66#define insn_debug(args) { printf_filtered args; }
67#else
68#define dump_insn(a,b,c) {}
69#define insn_debug(args) {}
70#endif
71
c5aa993b 72#define DEFAULT_SEARCH_LIMIT 44
c906108c
SS
73
74/* Function: scan_prologue
75 This function decodes the target function prologue to determine
76 1) the size of the stack frame, and 2) which registers are saved on it.
77 It saves the offsets of saved regs in the frame_saved_regs argument,
78 and returns the frame size. */
79
80/*
c5aa993b
JM
81 The sequence it currently generates is:
82
83 if (varargs function) { ddi sp,#n }
84 push registers
85 if (additional stack <= 256) { addi sp,#-stack }
86 else if (additional stack < 65k) { add3 sp,sp,#-stack
87
88 } else if (additional stack) {
89 seth sp,#(stack & 0xffff0000)
90 or3 sp,sp,#(stack & 0x0000ffff)
91 sub sp,r4
92 }
93 if (frame pointer) {
94 mv sp,fp
95 }
c906108c 96
c5aa993b
JM
97 These instructions are scheduled like everything else, so you should stop at
98 the first branch instruction.
99
100 */
c906108c
SS
101
102/* This is required by skip prologue and by m32r_init_extra_frame_info.
103 The results of decoding a prologue should be cached because this
104 thrashing is getting nuts.
105 I am thinking of making a container class with two indexes, name and
106 address. It may be better to extend the symbol table.
c5aa993b 107 */
c906108c 108
c5aa993b 109static void
fba45db2
KB
110decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */
111 unsigned long *framelength, struct frame_info *fi,
112 struct frame_saved_regs *fsr)
c906108c
SS
113{
114 unsigned long framesize;
115 int insn;
116 int op1;
117 int maybe_one_more = 0;
118 CORE_ADDR after_prologue = 0;
119 CORE_ADDR after_stack_adjust = 0;
120 CORE_ADDR current_pc;
121
122
123 framesize = 0;
124 after_prologue = 0;
c5aa993b 125 insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
c906108c
SS
126
127 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
128 {
129
130 insn = read_memory_unsigned_integer (current_pc, 2);
c5aa993b
JM
131 dump_insn ("insn-1", current_pc, insn); /* MTZ */
132
133 /* If this is a 32 bit instruction, we dont want to examine its
134 immediate data as though it were an instruction */
c906108c 135 if (current_pc & 0x02)
c5aa993b 136 { /* Clear the parallel execution bit from 16 bit instruction */
c906108c 137 if (maybe_one_more)
c5aa993b
JM
138 { /* The last instruction was a branch, usually terminates
139 the series, but if this is a parallel instruction,
140 it may be a stack framing instruction */
141 if (!(insn & 0x8000))
142 {
143 insn_debug (("Really done"));
144 break; /* nope, we are really done */
c906108c
SS
145 }
146 }
c5aa993b 147 insn &= 0x7fff; /* decode this instruction further */
c906108c
SS
148 }
149 else
150 {
c5aa993b
JM
151 if (maybe_one_more)
152 break; /* This isnt the one more */
c906108c
SS
153 if (insn & 0x8000)
154 {
c5aa993b 155 insn_debug (("32 bit insn\n"));
c906108c 156 if (current_pc == scan_limit)
c5aa993b
JM
157 scan_limit += 2; /* extend the search */
158 current_pc += 2; /* skip the immediate data */
159 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
c906108c 160 /* add 16 bit sign-extended offset */
c5aa993b
JM
161 {
162 insn_debug (("stack increment\n"));
163 framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
c906108c
SS
164 }
165 else
166 {
c5aa993b
JM
167 if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
168 read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
169 { /* subtract 24 bit sign-extended negative-offset */
170 dump_insn ("insn-2", current_pc + 2, insn);
c906108c 171 insn = read_memory_unsigned_integer (current_pc - 2, 4);
c5aa993b 172 dump_insn ("insn-3(l4)", current_pc - 2, insn);
c906108c 173 if (insn & 0x00800000) /* sign extend */
c5aa993b 174 insn |= 0xff000000; /* negative */
c906108c 175 else
c5aa993b 176 insn &= 0x00ffffff; /* positive */
c906108c
SS
177 framesize += insn;
178 }
179 }
180 after_prologue = current_pc;
181 continue;
182 }
183 }
c5aa993b
JM
184 op1 = insn & 0xf000; /* isolate just the first nibble */
185
c906108c 186 if ((insn & 0xf0ff) == 0x207f)
c5aa993b 187 { /* st reg, @-sp */
c906108c 188 int regno;
c5aa993b
JM
189 insn_debug (("push\n"));
190#if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
191 if (((insn & 0xffff) == 0x2d7f) && fi)
c906108c
SS
192 fi->using_frame_pointer = 1;
193#endif
c5aa993b
JM
194 framesize += 4;
195#if 0
c906108c
SS
196/* Why should we increase the scan limit, just because we did a push?
197 And if there is a reason, surely we would only want to do it if we
198 had already reached the scan limit... */
199 if (current_pc == scan_limit)
200 scan_limit += 2;
201#endif
202 regno = ((insn >> 8) & 0xf);
c5aa993b 203 if (fsr) /* save_regs offset */
c906108c
SS
204 fsr->regs[regno] = framesize;
205 after_prologue = 0;
c5aa993b 206 continue;
c906108c 207 }
c5aa993b 208 if ((insn >> 8) == 0x4f) /* addi sp, xx */
c906108c
SS
209 /* add 8 bit sign-extended offset */
210 {
211 int stack_adjust = (char) (insn & 0xff);
212
213 /* there are probably two of these stack adjustments:
214 1) A negative one in the prologue, and
215 2) A positive one in the epilogue.
216 We are only interested in the first one. */
217
218 if (stack_adjust < 0)
219 {
220 framesize -= stack_adjust;
221 after_prologue = 0;
222 /* A frameless function may have no "mv fp, sp".
c5aa993b 223 In that case, this is the end of the prologue. */
c906108c
SS
224 after_stack_adjust = current_pc + 2;
225 }
226 continue;
227 }
c5aa993b
JM
228 if (insn == 0x1d8f)
229 { /* mv fp, sp */
230 if (fi)
231 fi->using_frame_pointer = 1; /* fp is now valid */
232 insn_debug (("done fp found\n"));
233 after_prologue = current_pc + 2;
234 break; /* end of stack adjustments */
235 }
236 if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
237 {
238 insn_debug (("nop\n"));
239 after_prologue = current_pc + 2;
240 continue; /* nop occurs between pushes */
c906108c
SS
241 }
242 /* End of prolog if any of these are branch instructions */
243 if ((op1 == 0x7000)
c5aa993b 244 || (op1 == 0xb000)
cff3e48b 245 || (op1 == 0xf000))
c906108c
SS
246 {
247 after_prologue = current_pc;
c5aa993b 248 insn_debug (("Done: branch\n"));
c906108c
SS
249 maybe_one_more = 1;
250 continue;
251 }
252 /* Some of the branch instructions are mixed with other types */
253 if (op1 == 0x1000)
c5aa993b
JM
254 {
255 int subop = insn & 0x0ff0;
c906108c 256 if ((subop == 0x0ec0) || (subop == 0x0fc0))
c5aa993b
JM
257 {
258 insn_debug (("done: jmp\n"));
c906108c
SS
259 after_prologue = current_pc;
260 maybe_one_more = 1;
c5aa993b 261 continue; /* jmp , jl */
c906108c
SS
262 }
263 }
264 }
265
266 if (current_pc >= scan_limit)
267 {
c5aa993b 268 if (pl_endptr)
7a292a7a 269 {
c906108c 270#if 1
7a292a7a
SS
271 if (after_stack_adjust != 0)
272 /* We did not find a "mv fp,sp", but we DID find
273 a stack_adjust. Is it safe to use that as the
274 end of the prologue? I just don't know. */
275 {
276 *pl_endptr = after_stack_adjust;
277 if (framelength)
278 *framelength = framesize;
279 }
280 else
c906108c 281#endif
7a292a7a
SS
282 /* We reached the end of the loop without finding the end
283 of the prologue. No way to win -- we should report failure.
284 The way we do that is to return the original start_pc.
285 GDB will set a breakpoint at the start of the function (etc.) */
286 *pl_endptr = start_pc;
c5aa993b 287 }
c906108c
SS
288 return;
289 }
c5aa993b 290 if (after_prologue == 0)
c906108c
SS
291 after_prologue = current_pc;
292
c5aa993b
JM
293 insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
294 if (framelength)
c906108c 295 *framelength = framesize;
c5aa993b 296 if (pl_endptr)
c906108c 297 *pl_endptr = after_prologue;
c5aa993b 298} /* decode_prologue */
c906108c
SS
299
300/* Function: skip_prologue
301 Find end of function prologue */
302
303CORE_ADDR
fba45db2 304m32r_skip_prologue (CORE_ADDR pc)
c906108c
SS
305{
306 CORE_ADDR func_addr, func_end;
307 struct symtab_and_line sal;
308
309 /* See what the symbol table says */
310
311 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
312 {
313 sal = find_pc_line (func_addr, 0);
314
315 if (sal.line != 0 && sal.end <= func_end)
316 {
c5aa993b
JM
317
318 insn_debug (("BP after prologue %08x\n", sal.end));
c906108c
SS
319 func_end = sal.end;
320 }
321 else
322 /* Either there's no line info, or the line after the prologue is after
323 the end of the function. In this case, there probably isn't a
324 prologue. */
325 {
c5aa993b
JM
326 insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
327 sal.line, sal.end, func_end));
328 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
c906108c
SS
329 }
330 }
c5aa993b 331 else
c906108c
SS
332 func_end = pc + DEFAULT_SEARCH_LIMIT;
333 decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
334 return sal.end;
335}
336
337static unsigned long
fba45db2 338m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
c906108c
SS
339{
340 struct symtab_and_line sal;
341 CORE_ADDR prologue_start, prologue_end, current_pc;
cff3e48b 342 unsigned long framesize = 0;
c906108c
SS
343
344 /* this code essentially duplicates skip_prologue,
345 but we need the start address below. */
346
347 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
348 {
349 sal = find_pc_line (prologue_start, 0);
350
c5aa993b 351 if (sal.line == 0) /* no line info, use current PC */
c906108c
SS
352 if (prologue_start == entry_point_address ())
353 return 0;
354 }
355 else
356 {
357 prologue_start = fi->pc;
c5aa993b
JM
358 prologue_end = prologue_start + 48; /* We're in the boondocks:
359 allow for 16 pushes, an add,
360 and "mv fp,sp" */
c906108c
SS
361 }
362#if 0
363 prologue_end = min (prologue_end, fi->pc);
364#endif
c5aa993b
JM
365 insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
366 fi->pc, prologue_start, prologue_end));
367 prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
368 decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
369 fi, fsr);
c906108c
SS
370 return framesize;
371}
372
373/* Function: init_extra_frame_info
374 This function actually figures out the frame address for a given pc and
375 sp. This is tricky on the m32r because we sometimes don't use an explicit
376 frame pointer, and the previous stack pointer isn't necessarily recorded
377 on the stack. The only reliable way to get this info is to
378 examine the prologue. */
379
380void
fba45db2 381m32r_init_extra_frame_info (struct frame_info *fi)
c906108c
SS
382{
383 int reg;
384
385 if (fi->next)
386 fi->pc = FRAME_SAVED_PC (fi->next);
387
388 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
389
390 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
391 {
392 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
c5aa993b 393 by assuming it's always FP. */
c906108c
SS
394 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
395 fi->framesize = 0;
396 return;
397 }
c5aa993b 398 else
c906108c
SS
399 {
400 fi->using_frame_pointer = 0;
401 fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
402
403 if (!fi->next)
404 if (fi->using_frame_pointer)
405 {
406 fi->frame = read_register (FP_REGNUM);
407 }
408 else
409 fi->frame = read_register (SP_REGNUM);
c5aa993b
JM
410 else
411 /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
412 /* we have an FP */
413 if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
414 fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
c906108c
SS
415 for (reg = 0; reg < NUM_REGS; reg++)
416 if (fi->fsr.regs[reg] != 0)
417 fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
418 }
419}
420
4b33390a 421/* Function: m32r_virtual_frame_pointer
c906108c
SS
422 Return the register that the function uses for a frame pointer,
423 plus any necessary offset to be applied to the register before
424 any frame pointer offsets. */
425
426void
fba45db2 427m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
c906108c
SS
428{
429 struct frame_info fi;
430
431 /* Set up a dummy frame_info. */
432 fi.next = NULL;
433 fi.prev = NULL;
434 fi.frame = 0;
435 fi.pc = pc;
436
437 /* Analyze the prolog and fill in the extra info. */
438 m32r_init_extra_frame_info (&fi);
439
440
441 /* Results will tell us which type of frame it uses. */
442 if (fi.using_frame_pointer)
443 {
c5aa993b 444 *reg = FP_REGNUM;
c906108c
SS
445 *offset = 0;
446 }
447 else
448 {
c5aa993b 449 *reg = SP_REGNUM;
c906108c
SS
450 *offset = 0;
451 }
452}
453
454/* Function: find_callers_reg
455 Find REGNUM on the stack. Otherwise, it's in an active register. One thing
456 we might want to do here is to check REGNUM against the clobber mask, and
457 somehow flag it as invalid if it isn't saved on the stack somewhere. This
458 would provide a graceful failure mode when trying to get the value of
459 caller-saves registers for an inner frame. */
460
461CORE_ADDR
fba45db2 462m32r_find_callers_reg (struct frame_info *fi, int regnum)
c906108c
SS
463{
464 for (; fi; fi = fi->next)
465 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
466 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
467 else if (fi->fsr.regs[regnum] != 0)
c5aa993b
JM
468 return read_memory_integer (fi->fsr.regs[regnum],
469 REGISTER_RAW_SIZE (regnum));
c906108c
SS
470 return read_register (regnum);
471}
472
473/* Function: frame_chain
474 Given a GDB frame, determine the address of the calling function's frame.
475 This will be used to create a new GDB frame struct, and then
476 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
477 For m32r, we save the frame size when we initialize the frame_info. */
478
479CORE_ADDR
fba45db2 480m32r_frame_chain (struct frame_info *fi)
c906108c
SS
481{
482 CORE_ADDR fn_start, callers_pc, fp;
483
484 /* is this a dummy frame? */
c5aa993b
JM
485 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
486 return fi->frame; /* dummy frame same as caller's frame */
c906108c
SS
487
488 /* is caller-of-this a dummy frame? */
c5aa993b 489 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
c906108c 490 fp = m32r_find_callers_reg (fi, FP_REGNUM);
c5aa993b
JM
491 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
492 return fp; /* dummy frame's frame may bear no relation to ours */
c906108c
SS
493
494 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
495 if (fn_start == entry_point_address ())
c5aa993b 496 return 0; /* in _start fn, don't chain further */
c906108c
SS
497 if (fi->framesize == 0)
498 {
d4f3574e
SS
499 printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
500 paddr (fi->frame),
501 paddr (fi->pc));
c906108c
SS
502 return 0;
503 }
c5aa993b 504 insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
c906108c
SS
505 return fi->frame + fi->framesize;
506}
507
508/* Function: push_return_address (pc)
509 Set up the return address for the inferior function call.
510 Necessary for targets that don't actually execute a JSR/BSR instruction
511 (ie. when using an empty CALL_DUMMY) */
512
513CORE_ADDR
fba45db2 514m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c
SS
515{
516 write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
517 return sp;
518}
519
520
521/* Function: pop_frame
522 Discard from the stack the innermost frame,
523 restoring all saved registers. */
524
525struct frame_info *
fba45db2 526m32r_pop_frame (struct frame_info *frame)
c906108c
SS
527{
528 int regnum;
529
530 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
531 generic_pop_dummy_frame ();
532 else
533 {
534 for (regnum = 0; regnum < NUM_REGS; regnum++)
535 if (frame->fsr.regs[regnum] != 0)
c5aa993b 536 write_register (regnum,
c906108c
SS
537 read_memory_integer (frame->fsr.regs[regnum], 4));
538
539 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
540 write_register (SP_REGNUM, read_register (FP_REGNUM));
541 if (read_register (PSW_REGNUM) & 0x80)
542 write_register (SPU_REGNUM, read_register (SP_REGNUM));
543 else
544 write_register (SPI_REGNUM, read_register (SP_REGNUM));
545 }
546 flush_cached_frames ();
547 return NULL;
548}
549
550/* Function: frame_saved_pc
551 Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
552 in the stack anywhere, otherwise we get it from the registers. */
553
554CORE_ADDR
fba45db2 555m32r_frame_saved_pc (struct frame_info *fi)
c906108c 556{
c5aa993b
JM
557 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
558 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
c906108c
SS
559 else
560 return m32r_find_callers_reg (fi, RP_REGNUM);
561}
562
563/* Function: push_arguments
564 Setup the function arguments for calling a function in the inferior.
565
566 On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
567 which are dedicated for passing function arguments. Up to the first
568 four arguments (depending on size) may go into these registers.
569 The rest go on the stack.
570
571 Arguments that are smaller than 4 bytes will still take up a whole
572 register or a whole 32-bit word on the stack, and will be
573 right-justified in the register or the stack word. This includes
574 chars, shorts, and small aggregate types.
c5aa993b 575
c906108c
SS
576 Arguments of 8 bytes size are split between two registers, if
577 available. If only one register is available, the argument will
578 be split between the register and the stack. Otherwise it is
579 passed entirely on the stack. Aggregate types with sizes between
580 4 and 8 bytes are passed entirely on the stack, and are left-justified
581 within the double-word (as opposed to aggregates smaller than 4 bytes
582 which are right-justified).
583
584 Aggregates of greater than 8 bytes are first copied onto the stack,
585 and then a pointer to the copy is passed in the place of the normal
586 argument (either in a register if available, or on the stack).
587
588 Functions that must return an aggregate type can return it in the
589 normal return value registers (R0 and R1) if its size is 8 bytes or
590 less. For larger return values, the caller must allocate space for
591 the callee to copy the return value to. A pointer to this space is
592 passed as an implicit first argument, always in R0. */
593
594CORE_ADDR
ea7c478f 595m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 596 unsigned char struct_return, CORE_ADDR struct_addr)
c906108c
SS
597{
598 int stack_offset, stack_alloc;
599 int argreg;
600 int argnum;
601 struct type *type;
602 CORE_ADDR regval;
603 char *val;
604 char valbuf[4];
605 int len;
606 int odd_sized_struct;
607
608 /* first force sp to a 4-byte alignment */
609 sp = sp & ~3;
610
c5aa993b 611 argreg = ARG0_REGNUM;
c906108c
SS
612 /* The "struct return pointer" pseudo-argument goes in R0 */
613 if (struct_return)
c5aa993b
JM
614 write_register (argreg++, struct_addr);
615
c906108c
SS
616 /* Now make sure there's space on the stack */
617 for (argnum = 0, stack_alloc = 0;
618 argnum < nargs; argnum++)
c5aa993b
JM
619 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
620 sp -= stack_alloc; /* make room on stack for args */
621
622
c906108c
SS
623 /* Now load as many as possible of the first arguments into
624 registers, and push the rest onto the stack. There are 16 bytes
625 in four registers available. Loop thru args from first to last. */
c5aa993b 626
c906108c
SS
627 argreg = ARG0_REGNUM;
628 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
629 {
630 type = VALUE_TYPE (args[argnum]);
c5aa993b
JM
631 len = TYPE_LENGTH (type);
632 memset (valbuf, 0, sizeof (valbuf));
c906108c 633 if (len < 4)
c5aa993b
JM
634 { /* value gets right-justified in the register or stack word */
635 memcpy (valbuf + (4 - len),
636 (char *) VALUE_CONTENTS (args[argnum]), len);
637 val = valbuf;
638 }
c906108c 639 else
c5aa993b
JM
640 val = (char *) VALUE_CONTENTS (args[argnum]);
641
c906108c 642 if (len > 4 && (len & 3) != 0)
c5aa993b 643 odd_sized_struct = 1; /* such structs go entirely on stack */
c906108c 644 else
c5aa993b 645 odd_sized_struct = 0;
c906108c 646 while (len > 0)
c5aa993b
JM
647 {
648 if (argreg > ARGLAST_REGNUM || odd_sized_struct)
649 { /* must go on the stack */
650 write_memory (sp + stack_offset, val, 4);
651 stack_offset += 4;
652 }
653 /* NOTE WELL!!!!! This is not an "else if" clause!!!
654 That's because some *&^%$ things get passed on the stack
655 AND in the registers! */
656 if (argreg <= ARGLAST_REGNUM)
657 { /* there's room in a register */
658 regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
659 write_register (argreg++, regval);
660 }
661 /* Store the value 4 bytes at a time. This means that things
662 larger than 4 bytes may go partly in registers and partly
663 on the stack. */
664 len -= REGISTER_RAW_SIZE (argreg);
665 val += REGISTER_RAW_SIZE (argreg);
666 }
c906108c
SS
667 }
668 return sp;
669}
670
671/* Function: fix_call_dummy
672 If there is real CALL_DUMMY code (eg. on the stack), this function
673 has the responsability to insert the address of the actual code that
674 is the target of the target function call. */
675
676void
fba45db2 677m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 678 struct value **args, struct type *type, int gcc_p)
c906108c
SS
679{
680 /* ld24 r8, <(imm24) fun> */
681 *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
682}
683
c906108c
SS
684
685/* Function: m32r_write_sp
686 Because SP is really a read-only register that mirrors either SPU or SPI,
687 we must actually write one of those two as well, depending on PSW. */
688
689void
fba45db2 690m32r_write_sp (CORE_ADDR val)
c906108c
SS
691{
692 unsigned long psw = read_register (PSW_REGNUM);
693
c5aa993b 694 if (psw & 0x80) /* stack mode: user or interrupt */
c906108c
SS
695 write_register (SPU_REGNUM, val);
696 else
697 write_register (SPI_REGNUM, val);
698 write_register (SP_REGNUM, val);
699}
700
701void
fba45db2 702_initialize_m32r_tdep (void)
c906108c
SS
703{
704 tm_print_insn = print_insn_m32r;
705}
This page took 0.200898 seconds and 4 git commands to generate.