Commit | Line | Data |
---|---|---|
d95a8903 AC |
1 | /* Target-dependent code for Renesas M32R, for GDB. |
2 | ||
28e7fd62 | 3 | Copyright (C) 1996-2013 Free Software Foundation, Inc. |
d95a8903 AC |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
d95a8903 AC |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
d95a8903 AC |
19 | |
20 | #include "defs.h" | |
21 | #include "frame.h" | |
22 | #include "frame-unwind.h" | |
23 | #include "frame-base.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "gdbcmd.h" | |
27 | #include "gdbcore.h" | |
28 | #include "gdb_string.h" | |
29 | #include "value.h" | |
30 | #include "inferior.h" | |
31 | #include "symfile.h" | |
32 | #include "objfiles.h" | |
c46b0409 | 33 | #include "osabi.h" |
d95a8903 AC |
34 | #include "language.h" |
35 | #include "arch-utils.h" | |
36 | #include "regcache.h" | |
37 | #include "trad-frame.h" | |
73e8eb51 | 38 | #include "dis-asm.h" |
d95a8903 AC |
39 | |
40 | #include "gdb_assert.h" | |
41 | ||
9b32d526 | 42 | #include "m32r-tdep.h" |
d95a8903 AC |
43 | |
44 | /* Local functions */ | |
45 | ||
46 | extern void _initialize_m32r_tdep (void); | |
47 | ||
48 | static CORE_ADDR | |
49 | m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
50 | { | |
51 | /* Align to the size of an instruction (so that they can safely be | |
52 | pushed onto the stack. */ | |
53 | return sp & ~3; | |
54 | } | |
55 | ||
d95a8903 | 56 | |
9f0b0322 KI |
57 | /* Breakpoints |
58 | ||
025bb325 | 59 | The little endian mode of M32R is unique. In most of architectures, |
9f0b0322 KI |
60 | two 16-bit instructions, A and B, are placed as the following: |
61 | ||
62 | Big endian: | |
63 | A0 A1 B0 B1 | |
64 | ||
65 | Little endian: | |
66 | A1 A0 B1 B0 | |
67 | ||
68 | In M32R, they are placed like this: | |
69 | ||
70 | Big endian: | |
71 | A0 A1 B0 B1 | |
72 | ||
73 | Little endian: | |
74 | B1 B0 A1 A0 | |
75 | ||
76 | This is because M32R always fetches instructions in 32-bit. | |
77 | ||
025bb325 | 78 | The following functions take care of this behavior. */ |
d95a8903 AC |
79 | |
80 | static int | |
ae4b2284 MD |
81 | m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, |
82 | struct bp_target_info *bp_tgt) | |
d95a8903 | 83 | { |
8181d85f | 84 | CORE_ADDR addr = bp_tgt->placed_address; |
d95a8903 | 85 | int val; |
16ac4ab5 | 86 | gdb_byte buf[4]; |
35c63cd8 | 87 | gdb_byte contents_cache[4]; |
16ac4ab5 | 88 | gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ |
d95a8903 AC |
89 | |
90 | /* Save the memory contents. */ | |
9f0b0322 | 91 | val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); |
d95a8903 AC |
92 | if (val != 0) |
93 | return val; /* return error */ | |
94 | ||
35c63cd8 | 95 | memcpy (bp_tgt->shadow_contents, contents_cache, 4); |
8181d85f DJ |
96 | bp_tgt->placed_size = bp_tgt->shadow_len = 4; |
97 | ||
d95a8903 | 98 | /* Determine appropriate breakpoint contents and size for this address. */ |
ae4b2284 | 99 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
d95a8903 | 100 | { |
9f0b0322 | 101 | if ((addr & 3) == 0) |
d95a8903 | 102 | { |
9f0b0322 KI |
103 | buf[0] = bp_entry[0]; |
104 | buf[1] = bp_entry[1]; | |
105 | buf[2] = contents_cache[2] & 0x7f; | |
106 | buf[3] = contents_cache[3]; | |
d95a8903 AC |
107 | } |
108 | else | |
109 | { | |
9f0b0322 KI |
110 | buf[0] = contents_cache[0]; |
111 | buf[1] = contents_cache[1]; | |
112 | buf[2] = bp_entry[0]; | |
113 | buf[3] = bp_entry[1]; | |
d95a8903 AC |
114 | } |
115 | } | |
9f0b0322 KI |
116 | else /* little-endian */ |
117 | { | |
118 | if ((addr & 3) == 0) | |
d95a8903 | 119 | { |
9f0b0322 KI |
120 | buf[0] = contents_cache[0]; |
121 | buf[1] = contents_cache[1] & 0x7f; | |
122 | buf[2] = bp_entry[1]; | |
123 | buf[3] = bp_entry[0]; | |
d95a8903 AC |
124 | } |
125 | else | |
126 | { | |
9f0b0322 KI |
127 | buf[0] = bp_entry[1]; |
128 | buf[1] = bp_entry[0]; | |
129 | buf[2] = contents_cache[2]; | |
130 | buf[3] = contents_cache[3]; | |
d95a8903 AC |
131 | } |
132 | } | |
133 | ||
134 | /* Write the breakpoint. */ | |
9f0b0322 | 135 | val = target_write_memory (addr & 0xfffffffc, buf, 4); |
d95a8903 AC |
136 | return val; |
137 | } | |
138 | ||
139 | static int | |
ae4b2284 MD |
140 | m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, |
141 | struct bp_target_info *bp_tgt) | |
d95a8903 | 142 | { |
8181d85f | 143 | CORE_ADDR addr = bp_tgt->placed_address; |
d95a8903 | 144 | int val; |
16ac4ab5 | 145 | gdb_byte buf[4]; |
8181d85f | 146 | gdb_byte *contents_cache = bp_tgt->shadow_contents; |
d95a8903 | 147 | |
9f0b0322 KI |
148 | buf[0] = contents_cache[0]; |
149 | buf[1] = contents_cache[1]; | |
150 | buf[2] = contents_cache[2]; | |
151 | buf[3] = contents_cache[3]; | |
152 | ||
153 | /* Remove parallel bit. */ | |
ae4b2284 | 154 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
d95a8903 | 155 | { |
9f0b0322 KI |
156 | if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) |
157 | buf[2] &= 0x7f; | |
d95a8903 | 158 | } |
9f0b0322 | 159 | else /* little-endian */ |
d95a8903 | 160 | { |
9f0b0322 KI |
161 | if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) |
162 | buf[1] &= 0x7f; | |
d95a8903 AC |
163 | } |
164 | ||
165 | /* Write contents. */ | |
dd110abf | 166 | val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); |
d95a8903 AC |
167 | return val; |
168 | } | |
169 | ||
16ac4ab5 | 170 | static const gdb_byte * |
025bb325 MS |
171 | m32r_breakpoint_from_pc (struct gdbarch *gdbarch, |
172 | CORE_ADDR *pcptr, int *lenptr) | |
d95a8903 | 173 | { |
025bb325 MS |
174 | static gdb_byte be_bp_entry[] = { |
175 | 0x10, 0xf1, 0x70, 0x00 | |
176 | }; /* dpt -> nop */ | |
177 | static gdb_byte le_bp_entry[] = { | |
178 | 0x00, 0x70, 0xf1, 0x10 | |
179 | }; /* dpt -> nop */ | |
16ac4ab5 | 180 | gdb_byte *bp; |
d95a8903 AC |
181 | |
182 | /* Determine appropriate breakpoint. */ | |
67d57894 | 183 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
d95a8903 AC |
184 | { |
185 | if ((*pcptr & 3) == 0) | |
186 | { | |
9f0b0322 KI |
187 | bp = be_bp_entry; |
188 | *lenptr = 4; | |
d95a8903 AC |
189 | } |
190 | else | |
191 | { | |
9f0b0322 KI |
192 | bp = be_bp_entry; |
193 | *lenptr = 2; | |
d95a8903 AC |
194 | } |
195 | } | |
196 | else | |
197 | { | |
198 | if ((*pcptr & 3) == 0) | |
199 | { | |
9f0b0322 KI |
200 | bp = le_bp_entry; |
201 | *lenptr = 4; | |
d95a8903 AC |
202 | } |
203 | else | |
204 | { | |
9f0b0322 KI |
205 | bp = le_bp_entry + 2; |
206 | *lenptr = 2; | |
d95a8903 AC |
207 | } |
208 | } | |
209 | ||
210 | return bp; | |
211 | } | |
212 | ||
213 | ||
214 | char *m32r_register_names[] = { | |
215 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
216 | "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", | |
217 | "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", | |
218 | "evb" | |
219 | }; | |
220 | ||
d95a8903 | 221 | static const char * |
d93859e2 | 222 | m32r_register_name (struct gdbarch *gdbarch, int reg_nr) |
d95a8903 AC |
223 | { |
224 | if (reg_nr < 0) | |
225 | return NULL; | |
9b32d526 | 226 | if (reg_nr >= M32R_NUM_REGS) |
d95a8903 AC |
227 | return NULL; |
228 | return m32r_register_names[reg_nr]; | |
229 | } | |
230 | ||
231 | ||
232 | /* Return the GDB type object for the "standard" data type | |
233 | of data in register N. */ | |
234 | ||
235 | static struct type * | |
236 | m32r_register_type (struct gdbarch *gdbarch, int reg_nr) | |
237 | { | |
238 | if (reg_nr == M32R_PC_REGNUM) | |
0dfff4cb | 239 | return builtin_type (gdbarch)->builtin_func_ptr; |
d95a8903 | 240 | else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) |
0dfff4cb | 241 | return builtin_type (gdbarch)->builtin_data_ptr; |
d95a8903 | 242 | else |
df4df182 | 243 | return builtin_type (gdbarch)->builtin_int32; |
d95a8903 AC |
244 | } |
245 | ||
246 | ||
247 | /* Write into appropriate registers a function return value | |
025bb325 | 248 | of type TYPE, given in virtual format. |
d95a8903 | 249 | |
025bb325 | 250 | Things always get returned in RET1_REGNUM, RET2_REGNUM. */ |
d95a8903 AC |
251 | |
252 | static void | |
253 | m32r_store_return_value (struct type *type, struct regcache *regcache, | |
254 | const void *valbuf) | |
255 | { | |
e17a4113 UW |
256 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
257 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
d95a8903 AC |
258 | CORE_ADDR regval; |
259 | int len = TYPE_LENGTH (type); | |
260 | ||
e17a4113 | 261 | regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); |
d95a8903 AC |
262 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); |
263 | ||
264 | if (len > 4) | |
265 | { | |
e17a4113 UW |
266 | regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, |
267 | len - 4, byte_order); | |
d95a8903 AC |
268 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); |
269 | } | |
270 | } | |
271 | ||
025bb325 | 272 | /* This is required by skip_prologue. The results of decoding a prologue |
d95a8903 AC |
273 | should be cached because this thrashing is getting nuts. */ |
274 | ||
cea15572 | 275 | static int |
e17a4113 UW |
276 | decode_prologue (struct gdbarch *gdbarch, |
277 | CORE_ADDR start_pc, CORE_ADDR scan_limit, | |
cea15572 | 278 | CORE_ADDR *pl_endptr, unsigned long *framelength) |
d95a8903 | 279 | { |
e17a4113 | 280 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d95a8903 AC |
281 | unsigned long framesize; |
282 | int insn; | |
283 | int op1; | |
d95a8903 | 284 | CORE_ADDR after_prologue = 0; |
cea15572 | 285 | CORE_ADDR after_push = 0; |
d95a8903 AC |
286 | CORE_ADDR after_stack_adjust = 0; |
287 | CORE_ADDR current_pc; | |
cea15572 | 288 | LONGEST return_value; |
d95a8903 AC |
289 | |
290 | framesize = 0; | |
291 | after_prologue = 0; | |
292 | ||
293 | for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) | |
294 | { | |
025bb325 | 295 | /* Check if current pc's location is readable. */ |
e17a4113 | 296 | if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) |
cea15572 KI |
297 | return -1; |
298 | ||
e17a4113 | 299 | insn = read_memory_unsigned_integer (current_pc, 2, byte_order); |
d95a8903 | 300 | |
cea15572 KI |
301 | if (insn == 0x0000) |
302 | break; | |
303 | ||
d95a8903 | 304 | /* If this is a 32 bit instruction, we dont want to examine its |
025bb325 | 305 | immediate data as though it were an instruction. */ |
d95a8903 AC |
306 | if (current_pc & 0x02) |
307 | { | |
025bb325 | 308 | /* Decode this instruction further. */ |
d95a8903 AC |
309 | insn &= 0x7fff; |
310 | } | |
311 | else | |
312 | { | |
d95a8903 AC |
313 | if (insn & 0x8000) |
314 | { | |
315 | if (current_pc == scan_limit) | |
316 | scan_limit += 2; /* extend the search */ | |
cea15572 | 317 | |
d95a8903 | 318 | current_pc += 2; /* skip the immediate data */ |
cea15572 | 319 | |
025bb325 | 320 | /* Check if current pc's location is readable. */ |
e17a4113 UW |
321 | if (!safe_read_memory_integer (current_pc, 2, byte_order, |
322 | &return_value)) | |
cea15572 KI |
323 | return -1; |
324 | ||
d95a8903 AC |
325 | if (insn == 0x8faf) /* add3 sp, sp, xxxx */ |
326 | /* add 16 bit sign-extended offset */ | |
327 | { | |
328 | framesize += | |
e17a4113 UW |
329 | -((short) read_memory_unsigned_integer (current_pc, |
330 | 2, byte_order)); | |
d95a8903 AC |
331 | } |
332 | else | |
333 | { | |
025bb325 | 334 | if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ |
e17a4113 UW |
335 | && safe_read_memory_integer (current_pc + 2, |
336 | 2, byte_order, | |
cea15572 | 337 | &return_value) |
7e3dd49e | 338 | && read_memory_unsigned_integer (current_pc + 2, |
e17a4113 UW |
339 | 2, byte_order) |
340 | == 0x0f24) | |
d95a8903 | 341 | { |
025bb325 | 342 | /* Subtract 24 bit sign-extended negative-offset. */ |
e17a4113 UW |
343 | insn = read_memory_unsigned_integer (current_pc - 2, |
344 | 4, byte_order); | |
d95a8903 AC |
345 | if (insn & 0x00800000) /* sign extend */ |
346 | insn |= 0xff000000; /* negative */ | |
347 | else | |
348 | insn &= 0x00ffffff; /* positive */ | |
349 | framesize += insn; | |
350 | } | |
351 | } | |
cea15572 | 352 | after_push = current_pc + 2; |
d95a8903 AC |
353 | continue; |
354 | } | |
355 | } | |
025bb325 | 356 | op1 = insn & 0xf000; /* Isolate just the first nibble. */ |
d95a8903 AC |
357 | |
358 | if ((insn & 0xf0ff) == 0x207f) | |
359 | { /* st reg, @-sp */ | |
360 | int regno; | |
361 | framesize += 4; | |
362 | regno = ((insn >> 8) & 0xf); | |
363 | after_prologue = 0; | |
364 | continue; | |
365 | } | |
366 | if ((insn >> 8) == 0x4f) /* addi sp, xx */ | |
025bb325 | 367 | /* Add 8 bit sign-extended offset. */ |
d95a8903 | 368 | { |
9ffbf372 | 369 | int stack_adjust = (signed char) (insn & 0xff); |
d95a8903 AC |
370 | |
371 | /* there are probably two of these stack adjustments: | |
372 | 1) A negative one in the prologue, and | |
373 | 2) A positive one in the epilogue. | |
374 | We are only interested in the first one. */ | |
375 | ||
376 | if (stack_adjust < 0) | |
377 | { | |
378 | framesize -= stack_adjust; | |
379 | after_prologue = 0; | |
380 | /* A frameless function may have no "mv fp, sp". | |
381 | In that case, this is the end of the prologue. */ | |
382 | after_stack_adjust = current_pc + 2; | |
383 | } | |
384 | continue; | |
385 | } | |
386 | if (insn == 0x1d8f) | |
387 | { /* mv fp, sp */ | |
388 | after_prologue = current_pc + 2; | |
389 | break; /* end of stack adjustments */ | |
390 | } | |
cea15572 | 391 | |
025bb325 | 392 | /* Nop looks like a branch, continue explicitly. */ |
d95a8903 AC |
393 | if (insn == 0x7000) |
394 | { | |
395 | after_prologue = current_pc + 2; | |
025bb325 | 396 | continue; /* nop occurs between pushes. */ |
d95a8903 | 397 | } |
025bb325 | 398 | /* End of prolog if any of these are trap instructions. */ |
cea15572 KI |
399 | if ((insn & 0xfff0) == 0x10f0) |
400 | { | |
401 | after_prologue = current_pc; | |
402 | break; | |
403 | } | |
025bb325 | 404 | /* End of prolog if any of these are branch instructions. */ |
d95a8903 AC |
405 | if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) |
406 | { | |
407 | after_prologue = current_pc; | |
d95a8903 AC |
408 | continue; |
409 | } | |
025bb325 | 410 | /* Some of the branch instructions are mixed with other types. */ |
d95a8903 AC |
411 | if (op1 == 0x1000) |
412 | { | |
413 | int subop = insn & 0x0ff0; | |
414 | if ((subop == 0x0ec0) || (subop == 0x0fc0)) | |
415 | { | |
416 | after_prologue = current_pc; | |
d95a8903 AC |
417 | continue; /* jmp , jl */ |
418 | } | |
419 | } | |
420 | } | |
421 | ||
cea15572 KI |
422 | if (framelength) |
423 | *framelength = framesize; | |
424 | ||
d95a8903 AC |
425 | if (current_pc >= scan_limit) |
426 | { | |
427 | if (pl_endptr) | |
428 | { | |
429 | if (after_stack_adjust != 0) | |
430 | /* We did not find a "mv fp,sp", but we DID find | |
431 | a stack_adjust. Is it safe to use that as the | |
025bb325 | 432 | end of the prologue? I just don't know. */ |
d95a8903 AC |
433 | { |
434 | *pl_endptr = after_stack_adjust; | |
435 | } | |
cea15572 KI |
436 | else if (after_push != 0) |
437 | /* We did not find a "mv fp,sp", but we DID find | |
438 | a push. Is it safe to use that as the | |
025bb325 | 439 | end of the prologue? I just don't know. */ |
cea15572 KI |
440 | { |
441 | *pl_endptr = after_push; | |
442 | } | |
d95a8903 AC |
443 | else |
444 | /* We reached the end of the loop without finding the end | |
025bb325 MS |
445 | of the prologue. No way to win -- we should report |
446 | failure. The way we do that is to return the original | |
447 | start_pc. GDB will set a breakpoint at the start of | |
448 | the function (etc.) */ | |
d95a8903 AC |
449 | *pl_endptr = start_pc; |
450 | } | |
cea15572 | 451 | return 0; |
d95a8903 | 452 | } |
cea15572 | 453 | |
d95a8903 AC |
454 | if (after_prologue == 0) |
455 | after_prologue = current_pc; | |
456 | ||
457 | if (pl_endptr) | |
458 | *pl_endptr = after_prologue; | |
cea15572 KI |
459 | |
460 | return 0; | |
d95a8903 AC |
461 | } /* decode_prologue */ |
462 | ||
463 | /* Function: skip_prologue | |
025bb325 | 464 | Find end of function prologue. */ |
d95a8903 | 465 | |
cea15572 | 466 | #define DEFAULT_SEARCH_LIMIT 128 |
d95a8903 | 467 | |
63807e1d | 468 | static CORE_ADDR |
6093d2eb | 469 | m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
d95a8903 | 470 | { |
e17a4113 | 471 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d95a8903 AC |
472 | CORE_ADDR func_addr, func_end; |
473 | struct symtab_and_line sal; | |
cea15572 | 474 | LONGEST return_value; |
d95a8903 | 475 | |
025bb325 | 476 | /* See what the symbol table says. */ |
d95a8903 AC |
477 | |
478 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
479 | { | |
480 | sal = find_pc_line (func_addr, 0); | |
481 | ||
482 | if (sal.line != 0 && sal.end <= func_end) | |
483 | { | |
484 | func_end = sal.end; | |
485 | } | |
486 | else | |
487 | /* Either there's no line info, or the line after the prologue is after | |
488 | the end of the function. In this case, there probably isn't a | |
489 | prologue. */ | |
490 | { | |
491 | func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); | |
492 | } | |
493 | } | |
494 | else | |
495 | func_end = pc + DEFAULT_SEARCH_LIMIT; | |
cea15572 | 496 | |
025bb325 | 497 | /* If pc's location is not readable, just quit. */ |
e17a4113 | 498 | if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) |
cea15572 KI |
499 | return pc; |
500 | ||
501 | /* Find the end of prologue. */ | |
e17a4113 | 502 | if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) |
cea15572 KI |
503 | return pc; |
504 | ||
d95a8903 AC |
505 | return sal.end; |
506 | } | |
507 | ||
d95a8903 AC |
508 | struct m32r_unwind_cache |
509 | { | |
510 | /* The previous frame's inner most stack address. Used as this | |
511 | frame ID's stack_addr. */ | |
512 | CORE_ADDR prev_sp; | |
513 | /* The frame's base, optionally used by the high-level debug info. */ | |
514 | CORE_ADDR base; | |
515 | int size; | |
516 | /* How far the SP and r13 (FP) have been offset from the start of | |
517 | the stack frame (as defined by the previous frame's stack | |
518 | pointer). */ | |
519 | LONGEST sp_offset; | |
520 | LONGEST r13_offset; | |
521 | int uses_frame; | |
522 | /* Table indicating the location of each and every register. */ | |
523 | struct trad_frame_saved_reg *saved_regs; | |
524 | }; | |
525 | ||
526 | /* Put here the code to store, into fi->saved_regs, the addresses of | |
527 | the saved registers of frame described by FRAME_INFO. This | |
528 | includes special registers such as pc and fp saved in special ways | |
529 | in the stack frame. sp is even more special: the address we return | |
025bb325 | 530 | for it IS the sp for the next frame. */ |
d95a8903 AC |
531 | |
532 | static struct m32r_unwind_cache * | |
94afd7a6 | 533 | m32r_frame_unwind_cache (struct frame_info *this_frame, |
d95a8903 AC |
534 | void **this_prologue_cache) |
535 | { | |
cea15572 | 536 | CORE_ADDR pc, scan_limit; |
d95a8903 AC |
537 | ULONGEST prev_sp; |
538 | ULONGEST this_base; | |
22e048c9 | 539 | unsigned long op; |
d95a8903 AC |
540 | int i; |
541 | struct m32r_unwind_cache *info; | |
542 | ||
cea15572 | 543 | |
d95a8903 AC |
544 | if ((*this_prologue_cache)) |
545 | return (*this_prologue_cache); | |
546 | ||
547 | info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); | |
548 | (*this_prologue_cache) = info; | |
94afd7a6 | 549 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
d95a8903 AC |
550 | |
551 | info->size = 0; | |
552 | info->sp_offset = 0; | |
d95a8903 | 553 | info->uses_frame = 0; |
cea15572 | 554 | |
94afd7a6 UW |
555 | scan_limit = get_frame_pc (this_frame); |
556 | for (pc = get_frame_func (this_frame); | |
cea15572 | 557 | pc > 0 && pc < scan_limit; pc += 2) |
d95a8903 AC |
558 | { |
559 | if ((pc & 2) == 0) | |
560 | { | |
94afd7a6 | 561 | op = get_frame_memory_unsigned (this_frame, pc, 4); |
d95a8903 AC |
562 | if ((op & 0x80000000) == 0x80000000) |
563 | { | |
564 | /* 32-bit instruction */ | |
565 | if ((op & 0xffff0000) == 0x8faf0000) | |
566 | { | |
567 | /* add3 sp,sp,xxxx */ | |
568 | short n = op & 0xffff; | |
569 | info->sp_offset += n; | |
570 | } | |
cea15572 | 571 | else if (((op >> 8) == 0xe4) |
94afd7a6 | 572 | && get_frame_memory_unsigned (this_frame, pc + 2, |
7e3dd49e | 573 | 2) == 0x0f24) |
d95a8903 | 574 | { |
cea15572 | 575 | /* ld24 r4, xxxxxx; sub sp, r4 */ |
d95a8903 AC |
576 | unsigned long n = op & 0xffffff; |
577 | info->sp_offset += n; | |
cea15572 | 578 | pc += 2; /* skip sub instruction */ |
d95a8903 | 579 | } |
d95a8903 | 580 | |
cea15572 KI |
581 | if (pc == scan_limit) |
582 | scan_limit += 2; /* extend the search */ | |
583 | pc += 2; /* skip the immediate data */ | |
d95a8903 AC |
584 | continue; |
585 | } | |
586 | } | |
587 | ||
588 | /* 16-bit instructions */ | |
94afd7a6 | 589 | op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; |
d95a8903 AC |
590 | if ((op & 0xf0ff) == 0x207f) |
591 | { | |
592 | /* st rn, @-sp */ | |
593 | int regno = ((op >> 8) & 0xf); | |
594 | info->sp_offset -= 4; | |
595 | info->saved_regs[regno].addr = info->sp_offset; | |
596 | } | |
597 | else if ((op & 0xff00) == 0x4f00) | |
598 | { | |
599 | /* addi sp, xx */ | |
9ffbf372 | 600 | int n = (signed char) (op & 0xff); |
d95a8903 AC |
601 | info->sp_offset += n; |
602 | } | |
603 | else if (op == 0x1d8f) | |
604 | { | |
605 | /* mv fp, sp */ | |
606 | info->uses_frame = 1; | |
607 | info->r13_offset = info->sp_offset; | |
cea15572 KI |
608 | break; /* end of stack adjustments */ |
609 | } | |
610 | else if ((op & 0xfff0) == 0x10f0) | |
611 | { | |
025bb325 MS |
612 | /* End of prologue if this is a trap instruction. */ |
613 | break; /* End of stack adjustments. */ | |
d95a8903 | 614 | } |
d95a8903 AC |
615 | } |
616 | ||
617 | info->size = -info->sp_offset; | |
618 | ||
619 | /* Compute the previous frame's stack pointer (which is also the | |
620 | frame's ID's stack address), and this frame's base pointer. */ | |
621 | if (info->uses_frame) | |
622 | { | |
623 | /* The SP was moved to the FP. This indicates that a new frame | |
624 | was created. Get THIS frame's FP value by unwinding it from | |
625 | the next frame. */ | |
94afd7a6 | 626 | this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); |
d95a8903 AC |
627 | /* The FP points at the last saved register. Adjust the FP back |
628 | to before the first saved register giving the SP. */ | |
629 | prev_sp = this_base + info->size; | |
630 | } | |
631 | else | |
632 | { | |
633 | /* Assume that the FP is this frame's SP but with that pushed | |
634 | stack space added back. */ | |
94afd7a6 | 635 | this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); |
d95a8903 AC |
636 | prev_sp = this_base + info->size; |
637 | } | |
638 | ||
639 | /* Convert that SP/BASE into real addresses. */ | |
640 | info->prev_sp = prev_sp; | |
641 | info->base = this_base; | |
642 | ||
643 | /* Adjust all the saved registers so that they contain addresses and | |
644 | not offsets. */ | |
94afd7a6 | 645 | for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) |
d95a8903 AC |
646 | if (trad_frame_addr_p (info->saved_regs, i)) |
647 | info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); | |
648 | ||
649 | /* The call instruction moves the caller's PC in the callee's LR. | |
650 | Since this is an unwind, do the reverse. Copy the location of LR | |
651 | into PC (the address / regnum) so that a request for PC will be | |
652 | converted into a request for the LR. */ | |
653 | info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; | |
654 | ||
655 | /* The previous frame's SP needed to be computed. Save the computed | |
656 | value. */ | |
657 | trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); | |
658 | ||
659 | return info; | |
660 | } | |
661 | ||
662 | static CORE_ADDR | |
61a1198a | 663 | m32r_read_pc (struct regcache *regcache) |
d95a8903 | 664 | { |
7e3dd49e | 665 | ULONGEST pc; |
61a1198a | 666 | regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc); |
d95a8903 AC |
667 | return pc; |
668 | } | |
669 | ||
d95a8903 AC |
670 | static CORE_ADDR |
671 | m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
672 | { | |
7e3dd49e | 673 | return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); |
d95a8903 AC |
674 | } |
675 | ||
676 | ||
677 | static CORE_ADDR | |
7d9b040b | 678 | m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
d95a8903 AC |
679 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
680 | struct value **args, CORE_ADDR sp, int struct_return, | |
681 | CORE_ADDR struct_addr) | |
682 | { | |
e17a4113 | 683 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d95a8903 AC |
684 | int stack_offset, stack_alloc; |
685 | int argreg = ARG1_REGNUM; | |
686 | int argnum; | |
687 | struct type *type; | |
688 | enum type_code typecode; | |
689 | CORE_ADDR regval; | |
16ac4ab5 KI |
690 | gdb_byte *val; |
691 | gdb_byte valbuf[MAX_REGISTER_SIZE]; | |
d95a8903 | 692 | int len; |
d95a8903 | 693 | |
025bb325 | 694 | /* First force sp to a 4-byte alignment. */ |
d95a8903 AC |
695 | sp = sp & ~3; |
696 | ||
697 | /* Set the return address. For the m32r, the return breakpoint is | |
698 | always at BP_ADDR. */ | |
699 | regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); | |
700 | ||
701 | /* If STRUCT_RETURN is true, then the struct return address (in | |
702 | STRUCT_ADDR) will consume the first argument-passing register. | |
703 | Both adjust the register count and store that value. */ | |
704 | if (struct_return) | |
705 | { | |
706 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); | |
707 | argreg++; | |
708 | } | |
709 | ||
025bb325 | 710 | /* Now make sure there's space on the stack. */ |
d95a8903 | 711 | for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) |
4991999e | 712 | stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3); |
025bb325 | 713 | sp -= stack_alloc; /* Make room on stack for args. */ |
d95a8903 AC |
714 | |
715 | for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) | |
716 | { | |
4991999e | 717 | type = value_type (args[argnum]); |
d95a8903 AC |
718 | typecode = TYPE_CODE (type); |
719 | len = TYPE_LENGTH (type); | |
720 | ||
721 | memset (valbuf, 0, sizeof (valbuf)); | |
722 | ||
723 | /* Passes structures that do not fit in 2 registers by reference. */ | |
724 | if (len > 8 | |
725 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | |
726 | { | |
e17a4113 UW |
727 | store_unsigned_integer (valbuf, 4, byte_order, |
728 | value_address (args[argnum])); | |
d95a8903 AC |
729 | typecode = TYPE_CODE_PTR; |
730 | len = 4; | |
731 | val = valbuf; | |
732 | } | |
733 | else if (len < 4) | |
734 | { | |
025bb325 | 735 | /* Value gets right-justified in the register or stack word. */ |
7e3dd49e | 736 | memcpy (valbuf + (register_size (gdbarch, argreg) - len), |
16ac4ab5 | 737 | (gdb_byte *) value_contents (args[argnum]), len); |
d95a8903 AC |
738 | val = valbuf; |
739 | } | |
740 | else | |
16ac4ab5 | 741 | val = (gdb_byte *) value_contents (args[argnum]); |
d95a8903 AC |
742 | |
743 | while (len > 0) | |
744 | { | |
745 | if (argreg > ARGN_REGNUM) | |
746 | { | |
025bb325 | 747 | /* Must go on the stack. */ |
d95a8903 AC |
748 | write_memory (sp + stack_offset, val, 4); |
749 | stack_offset += 4; | |
750 | } | |
751 | else if (argreg <= ARGN_REGNUM) | |
752 | { | |
025bb325 | 753 | /* There's room in a register. */ |
d95a8903 | 754 | regval = |
7e3dd49e | 755 | extract_unsigned_integer (val, |
e17a4113 UW |
756 | register_size (gdbarch, argreg), |
757 | byte_order); | |
d95a8903 AC |
758 | regcache_cooked_write_unsigned (regcache, argreg++, regval); |
759 | } | |
760 | ||
761 | /* Store the value 4 bytes at a time. This means that things | |
762 | larger than 4 bytes may go partly in registers and partly | |
763 | on the stack. */ | |
7e3dd49e AC |
764 | len -= register_size (gdbarch, argreg); |
765 | val += register_size (gdbarch, argreg); | |
d95a8903 AC |
766 | } |
767 | } | |
768 | ||
769 | /* Finally, update the SP register. */ | |
770 | regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); | |
771 | ||
772 | return sp; | |
773 | } | |
774 | ||
775 | ||
776 | /* Given a return value in `regbuf' with a type `valtype', | |
777 | extract and copy its value into `valbuf'. */ | |
778 | ||
779 | static void | |
780 | m32r_extract_return_value (struct type *type, struct regcache *regcache, | |
781 | void *dst) | |
782 | { | |
e17a4113 UW |
783 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
784 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
d95a8903 AC |
785 | bfd_byte *valbuf = dst; |
786 | int len = TYPE_LENGTH (type); | |
787 | ULONGEST tmp; | |
788 | ||
789 | /* By using store_unsigned_integer we avoid having to do | |
790 | anything special for small big-endian values. */ | |
791 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); | |
e17a4113 | 792 | store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp); |
d95a8903 AC |
793 | |
794 | /* Ignore return values more than 8 bytes in size because the m32r | |
025bb325 | 795 | returns anything more than 8 bytes in the stack. */ |
d95a8903 AC |
796 | if (len > 4) |
797 | { | |
798 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); | |
e17a4113 | 799 | store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp); |
d95a8903 AC |
800 | } |
801 | } | |
802 | ||
63807e1d | 803 | static enum return_value_convention |
6a3a010b | 804 | m32r_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
805 | struct type *valtype, struct regcache *regcache, |
806 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
14588880 KI |
807 | { |
808 | if (TYPE_LENGTH (valtype) > 8) | |
809 | return RETURN_VALUE_STRUCT_CONVENTION; | |
810 | else | |
811 | { | |
812 | if (readbuf != NULL) | |
813 | m32r_extract_return_value (valtype, regcache, readbuf); | |
814 | if (writebuf != NULL) | |
815 | m32r_store_return_value (valtype, regcache, writebuf); | |
816 | return RETURN_VALUE_REGISTER_CONVENTION; | |
817 | } | |
818 | } | |
819 | ||
820 | ||
d95a8903 AC |
821 | |
822 | static CORE_ADDR | |
823 | m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
824 | { | |
7e3dd49e | 825 | return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); |
d95a8903 AC |
826 | } |
827 | ||
828 | /* Given a GDB frame, determine the address of the calling function's | |
829 | frame. This will be used to create a new GDB frame struct. */ | |
830 | ||
831 | static void | |
94afd7a6 | 832 | m32r_frame_this_id (struct frame_info *this_frame, |
d95a8903 AC |
833 | void **this_prologue_cache, struct frame_id *this_id) |
834 | { | |
835 | struct m32r_unwind_cache *info | |
94afd7a6 | 836 | = m32r_frame_unwind_cache (this_frame, this_prologue_cache); |
d95a8903 AC |
837 | CORE_ADDR base; |
838 | CORE_ADDR func; | |
839 | struct minimal_symbol *msym_stack; | |
840 | struct frame_id id; | |
841 | ||
842 | /* The FUNC is easy. */ | |
94afd7a6 | 843 | func = get_frame_func (this_frame); |
d95a8903 | 844 | |
d95a8903 AC |
845 | /* Check if the stack is empty. */ |
846 | msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); | |
847 | if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) | |
848 | return; | |
849 | ||
850 | /* Hopefully the prologue analysis either correctly determined the | |
851 | frame's base (which is the SP from the previous frame), or set | |
852 | that base to "NULL". */ | |
853 | base = info->prev_sp; | |
854 | if (base == 0) | |
855 | return; | |
856 | ||
857 | id = frame_id_build (base, func); | |
d95a8903 AC |
858 | (*this_id) = id; |
859 | } | |
860 | ||
94afd7a6 UW |
861 | static struct value * |
862 | m32r_frame_prev_register (struct frame_info *this_frame, | |
863 | void **this_prologue_cache, int regnum) | |
d95a8903 AC |
864 | { |
865 | struct m32r_unwind_cache *info | |
94afd7a6 UW |
866 | = m32r_frame_unwind_cache (this_frame, this_prologue_cache); |
867 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
d95a8903 AC |
868 | } |
869 | ||
870 | static const struct frame_unwind m32r_frame_unwind = { | |
871 | NORMAL_FRAME, | |
8fbca658 | 872 | default_frame_unwind_stop_reason, |
d95a8903 | 873 | m32r_frame_this_id, |
94afd7a6 UW |
874 | m32r_frame_prev_register, |
875 | NULL, | |
876 | default_frame_sniffer | |
d95a8903 AC |
877 | }; |
878 | ||
d95a8903 | 879 | static CORE_ADDR |
94afd7a6 | 880 | m32r_frame_base_address (struct frame_info *this_frame, void **this_cache) |
d95a8903 AC |
881 | { |
882 | struct m32r_unwind_cache *info | |
94afd7a6 | 883 | = m32r_frame_unwind_cache (this_frame, this_cache); |
d95a8903 AC |
884 | return info->base; |
885 | } | |
886 | ||
887 | static const struct frame_base m32r_frame_base = { | |
888 | &m32r_frame_unwind, | |
889 | m32r_frame_base_address, | |
890 | m32r_frame_base_address, | |
891 | m32r_frame_base_address | |
892 | }; | |
893 | ||
94afd7a6 UW |
894 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy |
895 | frame. The frame ID's base needs to match the TOS value saved by | |
896 | save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ | |
d95a8903 AC |
897 | |
898 | static struct frame_id | |
94afd7a6 | 899 | m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
d95a8903 | 900 | { |
94afd7a6 UW |
901 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); |
902 | return frame_id_build (sp, get_frame_pc (this_frame)); | |
d95a8903 AC |
903 | } |
904 | ||
905 | ||
906 | static gdbarch_init_ftype m32r_gdbarch_init; | |
907 | ||
908 | static struct gdbarch * | |
909 | m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
910 | { | |
911 | struct gdbarch *gdbarch; | |
912 | struct gdbarch_tdep *tdep; | |
913 | ||
914 | /* If there is already a candidate, use it. */ | |
915 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
916 | if (arches != NULL) | |
917 | return arches->gdbarch; | |
918 | ||
919 | /* Allocate space for the new architecture. */ | |
920 | tdep = XMALLOC (struct gdbarch_tdep); | |
921 | gdbarch = gdbarch_alloc (&info, tdep); | |
922 | ||
923 | set_gdbarch_read_pc (gdbarch, m32r_read_pc); | |
d95a8903 AC |
924 | set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); |
925 | ||
e839132d | 926 | set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); |
d27b54ad | 927 | set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); |
d95a8903 AC |
928 | set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); |
929 | set_gdbarch_register_name (gdbarch, m32r_register_name); | |
930 | set_gdbarch_register_type (gdbarch, m32r_register_type); | |
931 | ||
d95a8903 | 932 | set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); |
14588880 | 933 | set_gdbarch_return_value (gdbarch, m32r_return_value); |
d95a8903 AC |
934 | |
935 | set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); | |
936 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
d95a8903 AC |
937 | set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc); |
938 | set_gdbarch_memory_insert_breakpoint (gdbarch, | |
939 | m32r_memory_insert_breakpoint); | |
940 | set_gdbarch_memory_remove_breakpoint (gdbarch, | |
941 | m32r_memory_remove_breakpoint); | |
942 | ||
d95a8903 AC |
943 | set_gdbarch_frame_align (gdbarch, m32r_frame_align); |
944 | ||
d95a8903 AC |
945 | frame_base_set_default (gdbarch, &m32r_frame_base); |
946 | ||
947 | /* Methods for saving / extracting a dummy frame's ID. The ID's | |
948 | stack address must match the SP value returned by | |
949 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
94afd7a6 | 950 | set_gdbarch_dummy_id (gdbarch, m32r_dummy_id); |
d95a8903 AC |
951 | |
952 | /* Return the unwound PC value. */ | |
953 | set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); | |
954 | ||
955 | set_gdbarch_print_insn (gdbarch, print_insn_m32r); | |
956 | ||
c46b0409 KI |
957 | /* Hook in ABI-specific overrides, if they have been registered. */ |
958 | gdbarch_init_osabi (info, gdbarch); | |
959 | ||
960 | /* Hook in the default unwinders. */ | |
94afd7a6 | 961 | frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); |
c46b0409 | 962 | |
1c772458 UW |
963 | /* Support simple overlay manager. */ |
964 | set_gdbarch_overlay_update (gdbarch, simple_overlay_update); | |
965 | ||
d95a8903 AC |
966 | return gdbarch; |
967 | } | |
968 | ||
969 | void | |
970 | _initialize_m32r_tdep (void) | |
971 | { | |
972 | register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); | |
973 | } |