Pass return_method to _push_dummy_call
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
e2882c85 3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
931aecf5 4
ffe1f3ee 5 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8 6
a9762ec7
JB
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
78073dd8 21
78073dd8 22
82c230c2
SC
23#include "defs.h"
24#include "frame.h"
1ea653ae
SC
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "dwarf2-frame.h"
28#include "trad-frame.h"
82c230c2
SC
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
82c230c2
SC
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "arch-utils.h"
4e052eda 39#include "regcache.h"
b631436b 40#include "reggroups.h"
78073dd8 41
82c230c2
SC
42#include "target.h"
43#include "opcode/m68hc11.h"
81967506
SC
44#include "elf/m68hc11.h"
45#include "elf-bfd.h"
78073dd8 46
7df11f59
SC
47/* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59 58
025bb325 59#define MSYMBOL_SET_RTC(msym) \
b887350f 60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
7df11f59 61
025bb325 62#define MSYMBOL_SET_RTI(msym) \
b887350f 63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
7df11f59
SC
64
65#define MSYMBOL_IS_RTC(msym) \
b887350f 66 MSYMBOL_TARGET_FLAG_1 (msym)
7df11f59
SC
67
68#define MSYMBOL_IS_RTI(msym) \
b887350f 69 MSYMBOL_TARGET_FLAG_2 (msym)
7df11f59 70
7df11f59
SC
71enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75};
76
77
7157eed4 78/* Register numbers of various important registers. */
78073dd8 79
82c230c2
SC
80#define HARD_X_REGNUM 0
81#define HARD_D_REGNUM 1
82#define HARD_Y_REGNUM 2
83#define HARD_SP_REGNUM 3
84#define HARD_PC_REGNUM 4
85
86#define HARD_A_REGNUM 5
87#define HARD_B_REGNUM 6
88#define HARD_CCR_REGNUM 7
5706502a
SC
89
90/* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
f57d151a 93 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
94 For this it has the same number as Z register (which is not used). */
95#define HARD_PAGE_REGNUM 8
96#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
97
98/* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101#define SOFT_Z_REGNUM 8
102
103/* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106#define SOFT_FP_REGNUM 9
107#define SOFT_TMP_REGNUM 10
108#define SOFT_ZS_REGNUM 11
109#define SOFT_XY_REGNUM 12
f91a8b6b
SC
110#define SOFT_UNUSED_REGNUM 13
111#define SOFT_D1_REGNUM 14
82c230c2
SC
112#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113#define M68HC11_MAX_SOFT_REGS 32
114
a714b0d6 115#define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
82c230c2
SC
116#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119#define M68HC11_REG_SIZE (2)
120
548bcbec
SC
121#define M68HC12_NUM_REGS (9)
122#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
908f682f 125struct insn_sequence;
82c230c2
SC
126struct gdbarch_tdep
127 {
5d1a66bd
SC
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
908f682f
SC
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
81967506 136
7df11f59
SC
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
81967506
SC
141 /* ELF flags for ABI. */
142 int elf_flags;
82c230c2
SC
143 };
144
be8626e0
MD
145#define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146#define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
5d1a66bd 147
1ea653ae
SC
148struct m68hc11_unwind_cache
149{
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
165};
166
82c230c2
SC
167/* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
a121b7c1 169static const char *
82c230c2
SC
170m68hc11_register_names[] =
171{
172 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179};
78073dd8 180
82c230c2
SC
181struct m68hc11_soft_reg
182{
183 const char *name;
184 CORE_ADDR addr;
185};
78073dd8 186
82c230c2 187static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 188
82c230c2 189#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 190
82c230c2
SC
191static int soft_min_addr;
192static int soft_max_addr;
193static int soft_reg_initialized = 0;
78073dd8 194
82c230c2
SC
195/* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198static void
199m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200{
3b7344d5 201 struct bound_minimal_symbol msymbol;
78073dd8 202
82c230c2 203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
3b7344d5 204 if (msymbol.minsym)
82c230c2 205 {
77e371c0 206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
82c230c2
SC
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220}
78073dd8 221
82c230c2
SC
222/* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225m68hc11_initialize_register_info (void)
226{
227 int i;
78073dd8 228
82c230c2
SC
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 244
82c230c2
SC
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
78073dd8 248
08850b56 249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
82c230c2
SC
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
78073dd8 252
82c230c2 253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
82c230c2
SC
256 soft_reg_initialized = 1;
257}
78073dd8 258
82c230c2
SC
259/* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261static int
262m68hc11_which_soft_register (CORE_ADDR addr)
263{
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275}
78073dd8 276
82c230c2
SC
277/* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
05d1431c 280static enum register_status
46ce284d 281m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 282 readable_regcache *regcache,
ff1e98b9 283 int regno, gdb_byte *buf)
82c230c2 284{
e17a4113
UW
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
548bcbec
SC
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
4db73d49 291 ULONGEST pc;
df4df182 292 const int regsize = 4;
05d1431c 293 enum register_status status;
548bcbec 294
11f57cb6 295 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
05d1431c
PA
296 if (status != REG_VALID)
297 return status;
548bcbec
SC
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
4db73d49
SC
300 ULONGEST page;
301
11f57cb6 302 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
548bcbec
SC
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
e17a4113 307 store_unsigned_integer (buf, regsize, byte_order, pc);
05d1431c 308 return REG_VALID;
548bcbec
SC
309 }
310
82c230c2
SC
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
05d1431c
PA
322
323 return REG_VALID;
82c230c2 324}
78073dd8 325
82c230c2
SC
326/* Store a pseudo register. Translate the register store
327 into a memory write. */
328static void
46ce284d
AC
329m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
ff1e98b9 331 int regno, const gdb_byte *buf)
82c230c2 332{
e17a4113
UW
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
548bcbec
SC
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
df4df182 339 const int regsize = 4;
224c3ddb 340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
548bcbec
SC
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
e17a4113 344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
548bcbec
SC
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
4db73d49
SC
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
548bcbec 350 pc &= 0x03fff;
4db73d49
SC
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
548bcbec
SC
353 }
354 else
4db73d49 355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
356 return;
357 }
358
82c230c2 359 m68hc11_initialize_register_info ();
78073dd8 360
82c230c2
SC
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
46ce284d 364 const int regsize = 2;
224c3ddb 365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
46ce284d
AC
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
368 }
369}
78073dd8 370
fa88f677 371static const char *
d93859e2 372m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
78073dd8 373{
be8626e0 374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec 375 return "pc";
be8626e0 376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec
SC
377 return "ppc";
378
82c230c2
SC
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
65760afb
SC
384 m68hc11_initialize_register_info ();
385
82c230c2
SC
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391}
78073dd8 392
04180708 393constexpr gdb_byte m68hc11_break_insn[] = {0x0};
78073dd8 394
04180708 395typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
908f682f 396\f
025bb325 397/* 68HC11 & 68HC12 prologue analysis. */
908f682f 398
908f682f
SC
399#define MAX_CODES 12
400
401/* 68HC11 opcodes. */
402#undef M6811_OP_PAGE2
b94a41a1
SC
403#define M6811_OP_PAGE2 (0x18)
404#define M6811_OP_LDX (0xde)
405#define M6811_OP_LDX_EXT (0xfe)
406#define M6811_OP_PSHX (0x3c)
407#define M6811_OP_STS (0x9f)
408#define M6811_OP_STS_EXT (0xbf)
409#define M6811_OP_TSX (0x30)
410#define M6811_OP_XGDX (0x8f)
411#define M6811_OP_ADDD (0xc3)
412#define M6811_OP_TXS (0x35)
413#define M6811_OP_DES (0x34)
908f682f
SC
414
415/* 68HC12 opcodes. */
b94a41a1
SC
416#define M6812_OP_PAGE2 (0x18)
417#define M6812_OP_MOVW (0x01)
418#define M6812_PB_PSHW (0xae)
419#define M6812_OP_STS (0x5f)
420#define M6812_OP_STS_EXT (0x7f)
421#define M6812_OP_LEAS (0x1b)
422#define M6812_OP_PSHX (0x34)
423#define M6812_OP_PSHY (0x35)
908f682f
SC
424
425/* Operand extraction. */
426#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
430
431/* Identification of the sequence. */
432enum m6811_seq_type
433{
434 P_LAST = 0,
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
440};
441
442struct insn_sequence {
443 enum m6811_seq_type type;
444 unsigned length;
445 unsigned short code[MAX_CODES];
446};
447
448/* Sequence of instructions in the 68HC11 function prologue. */
449static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
452 M6811_OP_PSHX } },
453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
454 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
459
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
462 M6811_OP_XGDX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_XGDX,
465 M6811_OP_TXS } },
466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
474
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
478 { P_LAST, 0, { 0 } }
479};
480
481
482/* Sequence of instructions in the 68HC12 function prologue. */
483static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
485 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
491 { P_LAST, 0 }
492};
493
494
495/* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 497 the optional value (constant/address) associated with it. */
908f682f 498static struct insn_sequence *
e17a4113
UW
499m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
501 CORE_ADDR *val)
502{
e17a4113 503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
908f682f
SC
504 unsigned char buffer[MAX_CODES];
505 unsigned bufsize;
506 unsigned j;
507 CORE_ADDR cur_val;
508 short v = 0;
509
510 bufsize = 0;
511 for (; seq->type != P_LAST; seq++)
512 {
513 cur_val = 0;
514 for (j = 0; j < seq->length; j++)
515 {
516 if (bufsize < j + 1)
517 {
c8a7f6ac 518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
e17a4113 519 1, byte_order);
908f682f
SC
520 bufsize++;
521 }
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
524 continue;
525
526 if ((seq->code[j] & 0xf00) == 0)
527 break;
528
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
531 {
532 case OP_DIRECT:
533 cur_val = (CORE_ADDR) buffer[j];
534 break;
535
536 case OP_IMM_HIGH:
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
539 break;
540
541 case OP_IMM_LOW:
542 cur_val &= 0x0ff00;
543 cur_val |= buffer[j];
544 break;
545
546 case OP_PBYTE:
547 if ((buffer[j] & 0xE0) == 0x80)
548 {
549 v = buffer[j] & 0x1f;
550 if (v & 0x10)
551 v |= 0xfff0;
552 }
553 else if ((buffer[j] & 0xfe) == 0xf0)
554 {
e17a4113 555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
908f682f
SC
556 if (buffer[j] & 1)
557 v |= 0xff00;
558 }
559 else if (buffer[j] == 0xf2)
560 {
e17a4113 561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
908f682f
SC
562 }
563 cur_val = v;
564 break;
565 }
566 }
567
568 /* We have a full match. */
569 if (j == seq->length)
570 {
571 *val = cur_val;
908f682f
SC
572 return seq;
573 }
574 }
575 return 0;
576}
577
7df11f59
SC
578/* Return the instruction that the function at the PC is using. */
579static enum insn_return_kind
580m68hc11_get_return_insn (CORE_ADDR pc)
581{
7cbd4a93 582 struct bound_minimal_symbol sym;
7df11f59
SC
583
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 588 if (sym.minsym == 0)
7df11f59
SC
589 return RETURN_RTS;
590
7cbd4a93 591 if (MSYMBOL_IS_RTC (sym.minsym))
7df11f59 592 return RETURN_RTC;
7cbd4a93 593 else if (MSYMBOL_IS_RTI (sym.minsym))
7df11f59
SC
594 return RETURN_RTI;
595 else
596 return RETURN_RTS;
597}
598
78073dd8
AC
599/* Analyze the function prologue to find some information
600 about the function:
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
1ea653ae 604static CORE_ADDR
be8626e0
MD
605m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
78073dd8 607{
1ea653ae 608 LONGEST save_addr;
78073dd8 609 CORE_ADDR func_end;
78073dd8
AC
610 int size;
611 int found_frame_point;
82c230c2 612 int saved_reg;
908f682f
SC
613 int done = 0;
614 struct insn_sequence *seq_table;
1ea653ae
SC
615
616 info->size = 0;
617 info->sp_offset = 0;
618 if (pc >= current_pc)
619 return current_pc;
620
78073dd8
AC
621 size = 0;
622
82c230c2 623 m68hc11_initialize_register_info ();
1ea653ae 624 if (pc == 0)
78073dd8 625 {
1ea653ae
SC
626 info->size = 0;
627 return pc;
78073dd8
AC
628 }
629
be8626e0 630 seq_table = gdbarch_tdep (gdbarch)->prologue;
908f682f 631
78073dd8
AC
632 /* The 68hc11 stack is as follows:
633
634
635 | |
636 +-----------+
637 | |
638 | args |
639 | |
640 +-----------+
641 | PC-return |
642 +-----------+
643 | Old frame |
644 +-----------+
645 | |
646 | Locals |
647 | |
648 +-----------+ <--- current frame
649 | |
650
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
657
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
662
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
666 frame.
667
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
025bb325
MS
671 prologue (as generated by gcc 2.95, 2.96). */
672
78073dd8 673 func_end = pc + 128;
78073dd8 674 found_frame_point = 0;
1ea653ae
SC
675 info->size = 0;
676 save_addr = 0;
908f682f 677 while (!done && pc + 2 < func_end)
78073dd8 678 {
908f682f
SC
679 struct insn_sequence *seq;
680 CORE_ADDR val;
1ea653ae 681
e17a4113 682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
908f682f
SC
683 if (seq == 0)
684 break;
78073dd8 685
c8a7f6ac
SC
686 /* If we are within the instruction group, we can't advance the
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
689 if (pc + seq->length > current_pc)
690 break;
691
692 pc = pc + seq->length;
908f682f 693 if (seq->type == P_SAVE_REG)
78073dd8 694 {
908f682f
SC
695 if (found_frame_point)
696 {
697 saved_reg = m68hc11_which_soft_register (val);
698 if (saved_reg < 0)
699 break;
78073dd8 700
908f682f 701 save_addr -= 2;
ff1e98b9
SC
702 if (info->saved_regs)
703 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
704 }
705 else
706 {
707 size += 2;
708 }
78073dd8 709 }
908f682f 710 else if (seq->type == P_SET_FRAME)
78073dd8
AC
711 {
712 found_frame_point = 1;
1ea653ae 713 info->size = size;
78073dd8 714 }
908f682f 715 else if (seq->type == P_LOCAL_1)
78073dd8 716 {
6148eca7
SC
717 size += 1;
718 }
908f682f 719 else if (seq->type == P_LOCAL_2)
78073dd8 720 {
908f682f 721 size += 2;
78073dd8 722 }
908f682f 723 else if (seq->type == P_LOCAL_N)
78073dd8 724 {
908f682f
SC
725 /* Stack pointer is decremented for the allocation. */
726 if (val & 0x8000)
727 size -= (int) (val) | 0xffff0000;
728 else
729 size -= val;
78073dd8
AC
730 }
731 }
1ea653ae
SC
732 if (found_frame_point == 0)
733 info->sp_offset = size;
734 else
735 info->sp_offset = -1;
736 return pc;
78073dd8
AC
737}
738
82c230c2 739static CORE_ADDR
6093d2eb 740m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
78073dd8
AC
741{
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
1ea653ae 744 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 745
82c230c2
SC
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
78073dd8
AC
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
750 {
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
753 return sal.end;
754 }
755
be8626e0 756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
757 return pc;
758}
759
1ea653ae
SC
760static CORE_ADDR
761m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
762{
763 ULONGEST pc;
764
025bb325
MS
765 pc = frame_unwind_register_unsigned (next_frame,
766 gdbarch_pc_regnum (gdbarch));
1ea653ae
SC
767 return pc;
768}
769
770/* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
025bb325 774 for it IS the sp for the next frame. */
1ea653ae 775
63807e1d 776static struct m68hc11_unwind_cache *
94afd7a6 777m68hc11_frame_unwind_cache (struct frame_info *this_frame,
1ea653ae
SC
778 void **this_prologue_cache)
779{
94afd7a6 780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1ea653ae
SC
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
786
787 if ((*this_prologue_cache))
9a3c8263 788 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
1ea653ae
SC
789
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
94afd7a6 792 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1ea653ae 793
94afd7a6 794 info->pc = get_frame_func (this_frame);
1ea653ae
SC
795
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
798
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
94afd7a6 802 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
803 if (this_base == 0)
804 {
805 info->base = 0;
806 return info;
807 }
808
94afd7a6 809 current_pc = get_frame_pc (this_frame);
1ea653ae 810 if (info->pc != 0)
be8626e0 811 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
1ea653ae
SC
812
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
814
815 if (info->sp_offset != (CORE_ADDR) -1)
816 {
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
94afd7a6 818 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
1ea653ae 819 prev_sp = this_base + info->sp_offset + 2;
be8626e0 820 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
821 }
822 else
823 {
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
827
be8626e0 828 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
831 }
832
833 if (info->return_kind == RETURN_RTC)
834 {
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
838 }
839 else if (info->return_kind == RETURN_RTI)
840 {
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
847 }
848
849 /* Add 1 here to adjust for the post-decrement nature of the push
025bb325 850 instruction. */
1ea653ae
SC
851 info->prev_sp = prev_sp;
852
853 info->base = this_base;
854
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
f6efe3f8 857 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
1ea653ae
SC
858 if (trad_frame_addr_p (info->saved_regs, i))
859 {
860 info->saved_regs[i].addr += this_base;
861 }
862
863 /* The previous frame's SP needed to be computed. Save the computed
864 value. */
865 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
866
867 return info;
868}
869
870/* Given a GDB frame, determine the address of the calling function's
871 frame. This will be used to create a new GDB frame struct. */
872
873static void
94afd7a6 874m68hc11_frame_this_id (struct frame_info *this_frame,
1ea653ae
SC
875 void **this_prologue_cache,
876 struct frame_id *this_id)
877{
878 struct m68hc11_unwind_cache *info
94afd7a6 879 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae
SC
880 CORE_ADDR base;
881 CORE_ADDR func;
882 struct frame_id id;
883
884 /* The FUNC is easy. */
94afd7a6 885 func = get_frame_func (this_frame);
1ea653ae 886
1ea653ae
SC
887 /* Hopefully the prologue analysis either correctly determined the
888 frame's base (which is the SP from the previous frame), or set
889 that base to "NULL". */
890 base = info->prev_sp;
891 if (base == 0)
892 return;
893
894 id = frame_id_build (base, func);
1ea653ae
SC
895 (*this_id) = id;
896}
897
94afd7a6
UW
898static struct value *
899m68hc11_frame_prev_register (struct frame_info *this_frame,
900 void **this_prologue_cache, int regnum)
1ea653ae 901{
94afd7a6 902 struct value *value;
1ea653ae 903 struct m68hc11_unwind_cache *info
94afd7a6 904 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae 905
94afd7a6 906 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1ea653ae 907
94afd7a6
UW
908 /* Take into account the 68HC12 specific call (PC + page). */
909 if (regnum == HARD_PC_REGNUM
910 && info->return_kind == RETURN_RTC
911 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
1ea653ae 912 {
94afd7a6
UW
913 CORE_ADDR pc = value_as_long (value);
914 if (pc >= 0x08000 && pc < 0x0c000)
1ea653ae 915 {
1ea653ae
SC
916 CORE_ADDR page;
917
94afd7a6 918 release_value (value);
94afd7a6
UW
919
920 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
921 HARD_PAGE_REGNUM);
922 page = value_as_long (value);
923 release_value (value);
94afd7a6
UW
924
925 pc -= 0x08000;
926 pc += ((page & 0x0ff) << 14);
927 pc += 0x1000000;
928
929 return frame_unwind_got_constant (this_frame, regnum, pc);
1ea653ae
SC
930 }
931 }
94afd7a6
UW
932
933 return value;
1ea653ae
SC
934}
935
936static const struct frame_unwind m68hc11_frame_unwind = {
937 NORMAL_FRAME,
8fbca658 938 default_frame_unwind_stop_reason,
1ea653ae 939 m68hc11_frame_this_id,
94afd7a6
UW
940 m68hc11_frame_prev_register,
941 NULL,
942 default_frame_sniffer
1ea653ae
SC
943};
944
1ea653ae 945static CORE_ADDR
94afd7a6 946m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
947{
948 struct m68hc11_unwind_cache *info
94afd7a6 949 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
950
951 return info->base;
952}
953
954static CORE_ADDR
94afd7a6 955m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
956{
957 CORE_ADDR addr;
958 struct m68hc11_unwind_cache *info
94afd7a6 959 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
960
961 addr = info->base + info->size;
962 if (info->return_kind == RETURN_RTC)
963 addr += 1;
964 else if (info->return_kind == RETURN_RTI)
965 addr += 7;
966
967 return addr;
968}
969
970static const struct frame_base m68hc11_frame_base = {
971 &m68hc11_frame_unwind,
972 m68hc11_frame_base_address,
973 m68hc11_frame_base_address,
974 m68hc11_frame_args_address
975};
976
977static CORE_ADDR
978m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
979{
980 ULONGEST sp;
11411de3 981 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
1ea653ae
SC
982 return sp;
983}
984
94afd7a6
UW
985/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
986 frame. The frame ID's base needs to match the TOS value saved by
987 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1ea653ae
SC
988
989static struct frame_id
94afd7a6 990m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1ea653ae
SC
991{
992 ULONGEST tos;
94afd7a6 993 CORE_ADDR pc = get_frame_pc (this_frame);
1ea653ae 994
94afd7a6 995 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
996 tos += 2;
997 return frame_id_build (tos, pc);
998}
78073dd8 999
e286caf2
SC
1000\f
1001/* Get and print the register from the given frame. */
78073dd8 1002static void
e286caf2
SC
1003m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1004 struct frame_info *frame, int regno)
78073dd8 1005{
e286caf2
SC
1006 LONGEST rval;
1007
1008 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1009 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1010 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1011 else
7f5f525d 1012 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1013
1014 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1015 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1016 {
e286caf2
SC
1017 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1018 if (regno != HARD_CCR_REGNUM)
1019 print_longest (file, 'd', 1, rval);
7df11f59 1020 }
e286caf2
SC
1021 else
1022 {
1023 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1024 {
1025 ULONGEST page;
7df11f59 1026
7f5f525d 1027 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1028 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1029 (unsigned) rval);
1030 }
1031 else
1032 {
1033 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1034 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1035 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1036 print_longest (file, 'd', 1, rval);
1037 }
1038 }
1039
1040 if (regno == HARD_CCR_REGNUM)
78073dd8 1041 {
e286caf2
SC
1042 /* CCR register */
1043 int C, Z, N, V;
1044 unsigned char l = rval & 0xff;
1045
1046 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1047 l & M6811_S_BIT ? 'S' : '-',
1048 l & M6811_X_BIT ? 'X' : '-',
1049 l & M6811_H_BIT ? 'H' : '-',
1050 l & M6811_I_BIT ? 'I' : '-',
1051 l & M6811_N_BIT ? 'N' : '-',
1052 l & M6811_Z_BIT ? 'Z' : '-',
1053 l & M6811_V_BIT ? 'V' : '-',
1054 l & M6811_C_BIT ? 'C' : '-');
1055 N = (l & M6811_N_BIT) != 0;
1056 Z = (l & M6811_Z_BIT) != 0;
1057 V = (l & M6811_V_BIT) != 0;
1058 C = (l & M6811_C_BIT) != 0;
1059
025bb325 1060 /* Print flags following the h8300. */
e286caf2
SC
1061 if ((C | Z) == 0)
1062 fprintf_filtered (file, "u> ");
1063 else if ((C | Z) == 1)
1064 fprintf_filtered (file, "u<= ");
1065 else if (C == 0)
1066 fprintf_filtered (file, "u< ");
1067
1068 if (Z == 0)
1069 fprintf_filtered (file, "!= ");
1070 else
1071 fprintf_filtered (file, "== ");
1072
1073 if ((N ^ V) == 0)
1074 fprintf_filtered (file, ">= ");
1075 else
1076 fprintf_filtered (file, "< ");
1077
1078 if ((Z | (N ^ V)) == 0)
1079 fprintf_filtered (file, "> ");
78073dd8 1080 else
e286caf2 1081 fprintf_filtered (file, "<= ");
78073dd8 1082 }
e286caf2
SC
1083}
1084
1085/* Same as 'info reg' but prints the registers in a different way. */
1086static void
1087m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1088 struct frame_info *frame, int regno, int cpregs)
1089{
1090 if (regno >= 0)
1091 {
1092 const char *name = gdbarch_register_name (gdbarch, regno);
1093
1094 if (!name || !*name)
1095 return;
1096
1097 fprintf_filtered (file, "%-10s ", name);
1098 m68hc11_print_register (gdbarch, file, frame, regno);
1099 fprintf_filtered (file, "\n");
1100 }
1101 else
1102 {
1103 int i, nr;
1104
1105 fprintf_filtered (file, "PC=");
1106 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1107
1108 fprintf_filtered (file, " SP=");
1109 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1110
1111 fprintf_filtered (file, " FP=");
1112 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1113
1114 fprintf_filtered (file, "\nCCR=");
1115 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1116
1117 fprintf_filtered (file, "\nD=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1119
1120 fprintf_filtered (file, " X=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1122
1123 fprintf_filtered (file, " Y=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1125
1126 if (gdbarch_tdep (gdbarch)->use_page_register)
1127 {
1128 fprintf_filtered (file, "\nPage=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1130 }
1131 fprintf_filtered (file, "\n");
1132
1133 nr = 0;
1134 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1135 {
1136 /* Skip registers which are not defined in the symbol table. */
1137 if (soft_regs[i].name == 0)
1138 continue;
1139
1140 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1141 m68hc11_print_register (gdbarch, file, frame, i);
1142 nr++;
1143 if ((nr % 8) == 7)
1144 fprintf_filtered (file, "\n");
1145 else
1146 fprintf_filtered (file, " ");
1147 }
1148 if (nr && (nr % 8) != 7)
1149 fprintf_filtered (file, "\n");
1150 }
1151}
1152
82c230c2 1153static CORE_ADDR
7d9b040b 1154m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1155 struct regcache *regcache, CORE_ADDR bp_addr,
1156 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1157 function_call_return_method return_method,
1158 CORE_ADDR struct_addr)
78073dd8 1159{
e17a4113 1160 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
82c230c2
SC
1161 int argnum;
1162 int first_stack_argnum;
82c230c2 1163 struct type *type;
948f8e3d 1164 const gdb_byte *val;
e362b510 1165 gdb_byte buf[2];
82c230c2 1166
82c230c2 1167 first_stack_argnum = 0;
cf84fa6b
AH
1168 if (return_method == return_method_struct)
1169 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1170 else if (nargs > 0)
1171 {
4991999e 1172 type = value_type (args[0]);
3dc990bf 1173
82c230c2 1174 /* First argument is passed in D and X registers. */
744a8059 1175 if (TYPE_LENGTH (type) <= 4)
82c230c2 1176 {
3dc990bf
SC
1177 ULONGEST v;
1178
e17a4113 1179 v = extract_unsigned_integer (value_contents (args[0]),
744a8059 1180 TYPE_LENGTH (type), byte_order);
82c230c2 1181 first_stack_argnum = 1;
3dc990bf
SC
1182
1183 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
744a8059 1184 if (TYPE_LENGTH (type) > 2)
82c230c2
SC
1185 {
1186 v >>= 16;
3dc990bf 1187 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1188 }
1189 }
1190 }
82c230c2 1191
3dc990bf 1192 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1193 {
4991999e 1194 type = value_type (args[argnum]);
82c230c2 1195
744a8059 1196 if (TYPE_LENGTH (type) & 1)
22df305e 1197 {
948f8e3d 1198 static gdb_byte zero = 0;
22df305e 1199
3dc990bf
SC
1200 sp--;
1201 write_memory (sp, &zero, 1);
22df305e 1202 }
948f8e3d 1203 val = value_contents (args[argnum]);
744a8059
SP
1204 sp -= TYPE_LENGTH (type);
1205 write_memory (sp, val, TYPE_LENGTH (type));
82c230c2 1206 }
3dc990bf
SC
1207
1208 /* Store return address. */
1209 sp -= 2;
e17a4113 1210 store_unsigned_integer (buf, 2, byte_order, bp_addr);
3dc990bf
SC
1211 write_memory (sp, buf, 2);
1212
1213 /* Finally, update the stack pointer... */
be8626e0 1214 sp -= STACK_CORRECTION (gdbarch);
3dc990bf
SC
1215 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1216
1217 /* ...and fake a frame pointer. */
1218 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1219
1220 /* DWARF2/GCC uses the stack address *before* the function call as a
1221 frame's CFA. */
1222 return sp + 2;
78073dd8
AC
1223}
1224
1225
4db73d49
SC
1226/* Return the GDB type object for the "standard" data type
1227 of data in register N. */
1228
82c230c2 1229static struct type *
4db73d49 1230m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1231{
5706502a
SC
1232 switch (reg_nr)
1233 {
1234 case HARD_PAGE_REGNUM:
1235 case HARD_A_REGNUM:
1236 case HARD_B_REGNUM:
1237 case HARD_CCR_REGNUM:
df4df182 1238 return builtin_type (gdbarch)->builtin_uint8;
5706502a 1239
548bcbec 1240 case M68HC12_HARD_PC_REGNUM:
df4df182 1241 return builtin_type (gdbarch)->builtin_uint32;
548bcbec 1242
5706502a 1243 default:
df4df182 1244 return builtin_type (gdbarch)->builtin_uint16;
5706502a 1245 }
82c230c2
SC
1246}
1247
82c230c2 1248static void
4db73d49 1249m68hc11_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1250 const gdb_byte *valbuf)
82c230c2 1251{
22df305e
SC
1252 int len;
1253
1254 len = TYPE_LENGTH (type);
1255
1256 /* First argument is passed in D and X registers. */
4db73d49 1257 if (len <= 2)
4f0420fd 1258 regcache->raw_write_part (HARD_D_REGNUM, 2 - len, len, valbuf);
4db73d49 1259 else if (len <= 4)
22df305e 1260 {
4f0420fd 1261 regcache->raw_write_part (HARD_X_REGNUM, 4 - len, len - 2, valbuf);
10eaee5f 1262 regcache->raw_write (HARD_D_REGNUM, valbuf + (len - 2));
22df305e
SC
1263 }
1264 else
8a3fe4f8 1265 error (_("return of value > 4 is not supported."));
82c230c2
SC
1266}
1267
1268
ef2b8fcd 1269/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1270 extract and copy its value into `valbuf'. */
1271
82c230c2 1272static void
ef2b8fcd
SC
1273m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1274 void *valbuf)
78073dd8 1275{
e362b510 1276 gdb_byte buf[M68HC11_REG_SIZE];
ef2b8fcd 1277
0b883586 1278 regcache->raw_read (HARD_D_REGNUM, buf);
744a8059 1279 switch (TYPE_LENGTH (type))
82c230c2 1280 {
22df305e 1281 case 1:
ef2b8fcd 1282 memcpy (valbuf, buf + 1, 1);
22df305e 1283 break;
ef2b8fcd 1284
22df305e 1285 case 2:
ef2b8fcd 1286 memcpy (valbuf, buf, 2);
22df305e 1287 break;
ef2b8fcd 1288
22df305e 1289 case 3:
ef2b8fcd 1290 memcpy ((char*) valbuf + 1, buf, 2);
0b883586 1291 regcache->raw_read (HARD_X_REGNUM, buf);
ef2b8fcd 1292 memcpy (valbuf, buf + 1, 1);
22df305e 1293 break;
ef2b8fcd 1294
22df305e 1295 case 4:
ef2b8fcd 1296 memcpy ((char*) valbuf + 2, buf, 2);
0b883586 1297 regcache->raw_read (HARD_X_REGNUM, buf);
ef2b8fcd 1298 memcpy (valbuf, buf, 2);
22df305e
SC
1299 break;
1300
1301 default:
8a3fe4f8 1302 error (_("bad size for return value"));
82c230c2
SC
1303 }
1304}
1305
63807e1d 1306static enum return_value_convention
6a3a010b 1307m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1308 struct type *valtype, struct regcache *regcache,
1309 gdb_byte *readbuf, const gdb_byte *writebuf)
82c230c2 1310{
97092415
AC
1311 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1312 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1313 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1314 || TYPE_LENGTH (valtype) > 4)
1315 return RETURN_VALUE_STRUCT_CONVENTION;
1316 else
1317 {
1318 if (readbuf != NULL)
1319 m68hc11_extract_return_value (valtype, regcache, readbuf);
1320 if (writebuf != NULL)
1321 m68hc11_store_return_value (valtype, regcache, writebuf);
1322 return RETURN_VALUE_REGISTER_CONVENTION;
1323 }
82c230c2
SC
1324}
1325
7df11f59
SC
1326/* Test whether the ELF symbol corresponds to a function using rtc or
1327 rti to return. */
1328
1329static void
1330m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1331{
1332 unsigned char flags;
1333
1334 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1335 if (flags & STO_M68HC12_FAR)
1336 MSYMBOL_SET_RTC (msym);
1337 if (flags & STO_M68HC12_INTERRUPT)
1338 MSYMBOL_SET_RTI (msym);
1339}
b631436b
SC
1340\f
1341
1342/* 68HC11/68HC12 register groups.
1343 Identify real hard registers and soft registers used by gcc. */
1344
1345static struct reggroup *m68hc11_soft_reggroup;
1346static struct reggroup *m68hc11_hard_reggroup;
1347
1348static void
1349m68hc11_init_reggroups (void)
1350{
1351 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1352 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1353}
1354
1355static void
1356m68hc11_add_reggroups (struct gdbarch *gdbarch)
1357{
1358 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1359 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1360 reggroup_add (gdbarch, general_reggroup);
1361 reggroup_add (gdbarch, float_reggroup);
1362 reggroup_add (gdbarch, all_reggroup);
1363 reggroup_add (gdbarch, save_reggroup);
1364 reggroup_add (gdbarch, restore_reggroup);
1365 reggroup_add (gdbarch, vector_reggroup);
1366 reggroup_add (gdbarch, system_reggroup);
1367}
1368
1369static int
1370m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1371 struct reggroup *group)
1372{
1373 /* We must save the real hard register as well as gcc
1374 soft registers including the frame pointer. */
1375 if (group == save_reggroup || group == restore_reggroup)
1376 {
1377 return (regnum <= gdbarch_num_regs (gdbarch)
1378 || ((regnum == SOFT_FP_REGNUM
1379 || regnum == SOFT_TMP_REGNUM
1380 || regnum == SOFT_ZS_REGNUM
1381 || regnum == SOFT_XY_REGNUM)
d93859e2 1382 && m68hc11_register_name (gdbarch, regnum)));
b631436b
SC
1383 }
1384
1385 /* Group to identify gcc soft registers (d1..dN). */
1386 if (group == m68hc11_soft_reggroup)
1387 {
d93859e2
UW
1388 return regnum >= SOFT_D1_REGNUM
1389 && m68hc11_register_name (gdbarch, regnum);
b631436b
SC
1390 }
1391
1392 if (group == m68hc11_hard_reggroup)
1393 {
1394 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1395 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1396 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1397 }
1398 return default_register_reggroup_p (gdbarch, regnum, group);
1399}
1400
82c230c2
SC
1401static struct gdbarch *
1402m68hc11_gdbarch_init (struct gdbarch_info info,
1403 struct gdbarch_list *arches)
1404{
82c230c2
SC
1405 struct gdbarch *gdbarch;
1406 struct gdbarch_tdep *tdep;
81967506 1407 int elf_flags;
82c230c2
SC
1408
1409 soft_reg_initialized = 0;
81967506
SC
1410
1411 /* Extract the elf_flags if available. */
1412 if (info.abfd != NULL
1413 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1414 elf_flags = elf_elfheader (info.abfd)->e_flags;
1415 else
1416 elf_flags = 0;
1417
025bb325 1418 /* Try to find a pre-existing architecture. */
82c230c2
SC
1419 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1420 arches != NULL;
1421 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1422 {
81967506
SC
1423 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1424 continue;
1425
82c230c2
SC
1426 return arches->gdbarch;
1427 }
1428
025bb325 1429 /* Need a new architecture. Fill in a target specific vector. */
cdd238da 1430 tdep = XCNEW (struct gdbarch_tdep);
82c230c2 1431 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1432 tdep->elf_flags = elf_flags;
ed99b3d0 1433
5d1a66bd
SC
1434 switch (info.bfd_arch_info->arch)
1435 {
1436 case bfd_arch_m68hc11:
1437 tdep->stack_correction = 1;
7df11f59 1438 tdep->use_page_register = 0;
908f682f 1439 tdep->prologue = m6811_prologue;
548bcbec
SC
1440 set_gdbarch_addr_bit (gdbarch, 16);
1441 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1442 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1443 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1444 break;
82c230c2 1445
5d1a66bd
SC
1446 case bfd_arch_m68hc12:
1447 tdep->stack_correction = 0;
7df11f59 1448 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1449 tdep->prologue = m6812_prologue;
548bcbec
SC
1450 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1451 set_gdbarch_num_pseudo_regs (gdbarch,
1452 elf_flags & E_M68HC12_BANKS
1453 ? M68HC12_NUM_PSEUDO_REGS
1454 : M68HC11_NUM_PSEUDO_REGS);
1455 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1456 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1457 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1458 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1459 break;
1460
1461 default:
1462 break;
1463 }
7d32ba20
SC
1464
1465 /* Initially set everything according to the ABI.
1466 Use 16-bit integers since it will be the case for most
1467 programs. The size of these types should normally be set
1468 according to the dwarf2 debug information. */
82c230c2 1469 set_gdbarch_short_bit (gdbarch, 16);
81967506 1470 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1471 set_gdbarch_float_bit (gdbarch, 32);
f92589cb
TS
1472 if (elf_flags & E_M68HC11_F64)
1473 {
1474 set_gdbarch_double_bit (gdbarch, 64);
1475 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1476 }
1477 else
1478 {
1479 set_gdbarch_double_bit (gdbarch, 32);
1480 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1481 }
2417dd25 1482 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1483 set_gdbarch_long_bit (gdbarch, 32);
1484 set_gdbarch_ptr_bit (gdbarch, 16);
1485 set_gdbarch_long_long_bit (gdbarch, 64);
1486
b2a02dda
SC
1487 /* Characters are unsigned. */
1488 set_gdbarch_char_signed (gdbarch, 0);
1489
1ea653ae
SC
1490 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1491 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1492
82c230c2
SC
1493 /* Set register info. */
1494 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1495
82c230c2 1496 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1497 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1498 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1499 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1500 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1501
3dc990bf
SC
1502 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1503
97092415 1504 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1505 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1506 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
1507 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1508 m68hc11_breakpoint::kind_from_pc);
1509 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1510 m68hc11_breakpoint::bp_from_kind);
82c230c2 1511
b631436b
SC
1512 m68hc11_add_reggroups (gdbarch);
1513 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1514 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1515
1ea653ae 1516 /* Hook in the DWARF CFI frame unwinder. */
94afd7a6 1517 dwarf2_append_unwinders (gdbarch);
1ea653ae 1518
94afd7a6 1519 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1ea653ae
SC
1520 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1521
1522 /* Methods for saving / extracting a dummy frame's ID. The ID's
1523 stack address must match the SP value returned by
1524 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1525 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1ea653ae
SC
1526
1527 /* Return the unwound PC value. */
1528 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1529
7df11f59
SC
1530 /* Minsymbol frobbing. */
1531 set_gdbarch_elf_make_msymbol_special (gdbarch,
1532 m68hc11_elf_make_msymbol_special);
1533
82c230c2 1534 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1535
1536 return gdbarch;
78073dd8
AC
1537}
1538
1539void
fba45db2 1540_initialize_m68hc11_tdep (void)
78073dd8 1541{
82c230c2 1542 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1543 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1544 m68hc11_init_reggroups ();
78073dd8
AC
1545}
1546
This page took 1.610878 seconds and 4 git commands to generate.