* gdbarch.sh (SIGTRAMP_START, SIGTRAMP_END): New methods.
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
70ed8774 2 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
ffe1f3ee 3 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8
AC
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
78073dd8 21
82c230c2
SC
22#include "defs.h"
23#include "frame.h"
82c230c2
SC
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "gdbcmd.h"
27#include "gdbcore.h"
28#include "gdb_string.h"
29#include "value.h"
30#include "inferior.h"
31#include "dis-asm.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "arch-utils.h"
4e052eda 35#include "regcache.h"
78073dd8 36
82c230c2
SC
37#include "target.h"
38#include "opcode/m68hc11.h"
81967506
SC
39#include "elf/m68hc11.h"
40#include "elf-bfd.h"
78073dd8 41
7df11f59
SC
42/* Macros for setting and testing a bit in a minimal symbol.
43 For 68HC11/68HC12 we have two flags that tell which return
44 type the function is using. This is used for prologue and frame
45 analysis to compute correct stack frame layout.
46
47 The MSB of the minimal symbol's "info" field is used for this purpose.
48 This field is already being used to store the symbol size, so the
49 assumption is that the symbol size cannot exceed 2^30.
50
51 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
52 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
53 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
54 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol.
55 MSYMBOL_SIZE Returns the size of the minimal symbol,
56 i.e. the "info" field with the "special" bit
57 masked out. */
58
59#define MSYMBOL_SET_RTC(msym) \
60 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
61 | 0x80000000)
62
63#define MSYMBOL_SET_RTI(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x40000000)
66
67#define MSYMBOL_IS_RTC(msym) \
68 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
69
70#define MSYMBOL_IS_RTI(msym) \
71 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
72
73#define MSYMBOL_SIZE(msym) \
74 ((long) MSYMBOL_INFO (msym) & 0x3fffffff)
75
76enum insn_return_kind {
77 RETURN_RTS,
78 RETURN_RTC,
79 RETURN_RTI
80};
81
82
78073dd8
AC
83/* Register numbers of various important registers.
84 Note that some of these values are "real" register numbers,
85 and correspond to the general registers of the machine,
86 and some are "phony" register numbers which are too large
87 to be actual register numbers as far as the user is concerned
88 but do serve to get the desired values when passed to read_register. */
89
82c230c2
SC
90#define HARD_X_REGNUM 0
91#define HARD_D_REGNUM 1
92#define HARD_Y_REGNUM 2
93#define HARD_SP_REGNUM 3
94#define HARD_PC_REGNUM 4
95
96#define HARD_A_REGNUM 5
97#define HARD_B_REGNUM 6
98#define HARD_CCR_REGNUM 7
5706502a
SC
99
100/* 68HC12 page number register.
101 Note: to keep a compatibility with gcc register naming, we must
102 not have to rename FP and other soft registers. The page register
103 is a real hard register and must therefore be counted by NUM_REGS.
104 For this it has the same number as Z register (which is not used). */
105#define HARD_PAGE_REGNUM 8
106#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
107
108/* Z is replaced by X or Y by gcc during machine reorg.
109 ??? There is no way to get it and even know whether
110 it's in X or Y or in ZS. */
111#define SOFT_Z_REGNUM 8
112
113/* Soft registers. These registers are special. There are treated
114 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
115 They are physically located in memory. */
116#define SOFT_FP_REGNUM 9
117#define SOFT_TMP_REGNUM 10
118#define SOFT_ZS_REGNUM 11
119#define SOFT_XY_REGNUM 12
f91a8b6b
SC
120#define SOFT_UNUSED_REGNUM 13
121#define SOFT_D1_REGNUM 14
82c230c2
SC
122#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
123#define M68HC11_MAX_SOFT_REGS 32
124
125#define M68HC11_NUM_REGS (8)
126#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
127#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
128
129#define M68HC11_REG_SIZE (2)
130
548bcbec
SC
131#define M68HC12_NUM_REGS (9)
132#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
133#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
134
908f682f 135struct insn_sequence;
82c230c2
SC
136struct gdbarch_tdep
137 {
5d1a66bd
SC
138 /* Stack pointer correction value. For 68hc11, the stack pointer points
139 to the next push location. An offset of 1 must be applied to obtain
140 the address where the last value is saved. For 68hc12, the stack
141 pointer points to the last value pushed. No offset is necessary. */
142 int stack_correction;
908f682f
SC
143
144 /* Description of instructions in the prologue. */
145 struct insn_sequence *prologue;
81967506 146
7df11f59
SC
147 /* True if the page memory bank register is available
148 and must be used. */
149 int use_page_register;
150
81967506
SC
151 /* ELF flags for ABI. */
152 int elf_flags;
82c230c2
SC
153 };
154
5d1a66bd
SC
155#define M6811_TDEP gdbarch_tdep (current_gdbarch)
156#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 157#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 158
82c230c2
SC
159struct frame_extra_info
160{
82c230c2 161 CORE_ADDR return_pc;
82c230c2
SC
162 int frameless;
163 int size;
7df11f59 164 enum insn_return_kind return_kind;
82c230c2 165};
78073dd8 166
82c230c2
SC
167/* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
169static char *
170m68hc11_register_names[] =
171{
172 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179};
78073dd8 180
82c230c2
SC
181struct m68hc11_soft_reg
182{
183 const char *name;
184 CORE_ADDR addr;
185};
78073dd8 186
82c230c2 187static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 188
82c230c2 189#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 190
82c230c2
SC
191static int soft_min_addr;
192static int soft_max_addr;
193static int soft_reg_initialized = 0;
78073dd8 194
82c230c2
SC
195/* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198static void
199m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200{
201 struct minimal_symbol *msymbol;
78073dd8 202
82c230c2
SC
203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
204 if (msymbol)
205 {
206 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220}
78073dd8 221
82c230c2
SC
222/* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225m68hc11_initialize_register_info (void)
226{
227 int i;
78073dd8 228
82c230c2
SC
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 244
82c230c2
SC
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
78073dd8 248
82c230c2
SC
249 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
78073dd8 252
82c230c2
SC
253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
254 {
255 warning ("No frame soft register found in the symbol table.\n");
256 warning ("Stack backtrace will not work.\n");
257 }
258 soft_reg_initialized = 1;
259}
78073dd8 260
82c230c2
SC
261/* Given an address in memory, return the soft register number if
262 that address corresponds to a soft register. Returns -1 if not. */
263static int
264m68hc11_which_soft_register (CORE_ADDR addr)
265{
266 int i;
267
268 if (addr < soft_min_addr || addr > soft_max_addr)
269 return -1;
270
271 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
272 {
273 if (soft_regs[i].name && soft_regs[i].addr == addr)
274 return i;
275 }
276 return -1;
277}
78073dd8 278
82c230c2
SC
279/* Fetch a pseudo register. The 68hc11 soft registers are treated like
280 pseudo registers. They are located in memory. Translate the register
281 fetch into a memory read. */
46ce284d
AC
282static void
283m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
284 struct regcache *regcache,
285 int regno, void *buf)
82c230c2 286{
548bcbec
SC
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
291 const int regsize = TYPE_LENGTH (builtin_type_uint32);
292 CORE_ADDR pc = read_register (HARD_PC_REGNUM);
293 int page = read_register (HARD_PAGE_REGNUM);
294
295 if (pc >= 0x8000 && pc < 0xc000)
296 {
297 pc -= 0x8000;
298 pc += (page << 14);
299 pc += 0x1000000;
300 }
301 store_unsigned_integer (buf, regsize, pc);
302 return;
303 }
304
82c230c2
SC
305 m68hc11_initialize_register_info ();
306
307 /* Fetch a soft register: translate into a memory read. */
308 if (soft_regs[regno].name)
309 {
310 target_read_memory (soft_regs[regno].addr, buf, 2);
311 }
312 else
313 {
314 memset (buf, 0, 2);
315 }
82c230c2 316}
78073dd8 317
82c230c2
SC
318/* Store a pseudo register. Translate the register store
319 into a memory write. */
320static void
46ce284d
AC
321m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
322 struct regcache *regcache,
323 int regno, const void *buf)
82c230c2 324{
548bcbec
SC
325 /* The PC is a pseudo reg only for 68HC12 with the memory bank
326 addressing mode. */
327 if (regno == M68HC12_HARD_PC_REGNUM)
328 {
329 const int regsize = TYPE_LENGTH (builtin_type_uint32);
330 char *tmp = alloca (regsize);
331 CORE_ADDR pc;
332
333 memcpy (tmp, buf, regsize);
334 pc = extract_unsigned_integer (tmp, regsize);
335 if (pc >= 0x1000000)
336 {
337 pc -= 0x1000000;
338 write_register (HARD_PAGE_REGNUM, (pc >> 14) & 0x0ff);
339 pc &= 0x03fff;
340 write_register (HARD_PC_REGNUM, pc + 0x8000);
341 }
342 else
343 write_register (HARD_PC_REGNUM, pc);
344 return;
345 }
346
82c230c2 347 m68hc11_initialize_register_info ();
78073dd8 348
82c230c2
SC
349 /* Store a soft register: translate into a memory write. */
350 if (soft_regs[regno].name)
351 {
46ce284d
AC
352 const int regsize = 2;
353 char *tmp = alloca (regsize);
354 memcpy (tmp, buf, regsize);
355 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
356 }
357}
78073dd8 358
fa88f677 359static const char *
82c230c2 360m68hc11_register_name (int reg_nr)
78073dd8 361{
548bcbec
SC
362 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
363 return "pc";
364 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
365 return "ppc";
366
82c230c2
SC
367 if (reg_nr < 0)
368 return NULL;
369 if (reg_nr >= M68HC11_ALL_REGS)
370 return NULL;
371
372 /* If we don't know the address of a soft register, pretend it
373 does not exist. */
374 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
375 return NULL;
376 return m68hc11_register_names[reg_nr];
377}
78073dd8 378
f4f9705a 379static const unsigned char *
82c230c2 380m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 381{
82c230c2
SC
382 static unsigned char breakpoint[] = {0x0};
383
384 *lenptr = sizeof (breakpoint);
385 return breakpoint;
78073dd8
AC
386}
387
388/* Immediately after a function call, return the saved pc before the frame
82c230c2 389 is setup. */
78073dd8 390
82c230c2 391static CORE_ADDR
78073dd8
AC
392m68hc11_saved_pc_after_call (struct frame_info *frame)
393{
82c230c2
SC
394 CORE_ADDR addr;
395
5d1a66bd 396 addr = read_register (HARD_SP_REGNUM) + STACK_CORRECTION;
78073dd8
AC
397 addr &= 0x0ffff;
398 return read_memory_integer (addr, 2) & 0x0FFFF;
399}
400
82c230c2
SC
401static CORE_ADDR
402m68hc11_frame_saved_pc (struct frame_info *frame)
403{
404 return frame->extra_info->return_pc;
405}
406
407static CORE_ADDR
408m68hc11_frame_args_address (struct frame_info *frame)
409{
7df11f59
SC
410 CORE_ADDR addr;
411
412 addr = frame->frame + frame->extra_info->size + STACK_CORRECTION + 2;
413 if (frame->extra_info->return_kind == RETURN_RTC)
414 addr += 1;
415 else if (frame->extra_info->return_kind == RETURN_RTI)
416 addr += 7;
417
418 return addr;
82c230c2
SC
419}
420
421static CORE_ADDR
422m68hc11_frame_locals_address (struct frame_info *frame)
423{
424 return frame->frame;
425}
426
78073dd8
AC
427/* Discard from the stack the innermost frame, restoring all saved
428 registers. */
429
82c230c2 430static void
fba45db2 431m68hc11_pop_frame (void)
78073dd8 432{
82c230c2
SC
433 register struct frame_info *frame = get_current_frame ();
434 register CORE_ADDR fp, sp;
435 register int regnum;
436
437 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
438 generic_pop_dummy_frame ();
439 else
440 {
441 fp = FRAME_FP (frame);
442 FRAME_INIT_SAVED_REGS (frame);
443
444 /* Copy regs from where they were saved in the frame. */
445 for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
446 if (frame->saved_regs[regnum])
447 write_register (regnum,
448 read_memory_integer (frame->saved_regs[regnum], 2));
449
450 write_register (HARD_PC_REGNUM, frame->extra_info->return_pc);
b4fa4770 451 sp = (fp + frame->extra_info->size + 2) & 0x0ffff;
82c230c2
SC
452 write_register (HARD_SP_REGNUM, sp);
453 }
454 flush_cached_frames ();
78073dd8
AC
455}
456
908f682f
SC
457\f
458/* 68HC11 & 68HC12 prologue analysis.
459
460 */
461#define MAX_CODES 12
462
463/* 68HC11 opcodes. */
464#undef M6811_OP_PAGE2
465#define M6811_OP_PAGE2 (0x18)
466#define M6811_OP_LDX (0xde)
467#define M6811_OP_PSHX (0x3c)
468#define M6811_OP_STS (0x9f)
469#define M6811_OP_TSX (0x30)
470#define M6811_OP_XGDX (0x8f)
471#define M6811_OP_ADDD (0xc3)
472#define M6811_OP_TXS (0x35)
473#define M6811_OP_DES (0x34)
474
475/* 68HC12 opcodes. */
476#define M6812_OP_PAGE2 (0x18)
477#define M6812_OP_MOVW (0x01)
478#define M6812_PB_PSHW (0xae)
479#define M6812_OP_STS (0x7f)
480#define M6812_OP_LEAS (0x1b)
ffe1f3ee
SC
481#define M6812_OP_PSHX (0x34)
482#define M6812_OP_PSHY (0x35)
908f682f
SC
483
484/* Operand extraction. */
485#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
486#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
487#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
488#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
489
490/* Identification of the sequence. */
491enum m6811_seq_type
492{
493 P_LAST = 0,
494 P_SAVE_REG, /* Save a register on the stack. */
495 P_SET_FRAME, /* Setup the frame pointer. */
496 P_LOCAL_1, /* Allocate 1 byte for locals. */
497 P_LOCAL_2, /* Allocate 2 bytes for locals. */
498 P_LOCAL_N /* Allocate N bytes for locals. */
499};
500
501struct insn_sequence {
502 enum m6811_seq_type type;
503 unsigned length;
504 unsigned short code[MAX_CODES];
505};
506
507/* Sequence of instructions in the 68HC11 function prologue. */
508static struct insn_sequence m6811_prologue[] = {
509 /* Sequences to save a soft-register. */
510 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
511 M6811_OP_PSHX } },
512 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
513 M6811_OP_PAGE2, M6811_OP_PSHX } },
514
515 /* Sequences to allocate local variables. */
516 { P_LOCAL_N, 7, { M6811_OP_TSX,
517 M6811_OP_XGDX,
518 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
519 M6811_OP_XGDX,
520 M6811_OP_TXS } },
521 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
522 M6811_OP_PAGE2, M6811_OP_XGDX,
523 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
524 M6811_OP_PAGE2, M6811_OP_XGDX,
525 M6811_OP_PAGE2, M6811_OP_TXS } },
526 { P_LOCAL_1, 1, { M6811_OP_DES } },
527 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
528 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
529
530 /* Initialize the frame pointer. */
531 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
532 { P_LAST, 0, { 0 } }
533};
534
535
536/* Sequence of instructions in the 68HC12 function prologue. */
537static struct insn_sequence m6812_prologue[] = {
538 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
539 OP_IMM_HIGH, OP_IMM_LOW } },
540 { P_SET_FRAME, 3, { M6812_OP_STS, OP_IMM_HIGH, OP_IMM_LOW } },
541 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
542 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
543 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
544 { P_LAST, 0 }
545};
546
547
548/* Analyze the sequence of instructions starting at the given address.
549 Returns a pointer to the sequence when it is recognized and
550 the optional value (constant/address) associated with it.
551 Advance the pc for the next sequence. */
552static struct insn_sequence *
553m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR *pc,
554 CORE_ADDR *val)
555{
556 unsigned char buffer[MAX_CODES];
557 unsigned bufsize;
558 unsigned j;
559 CORE_ADDR cur_val;
560 short v = 0;
561
562 bufsize = 0;
563 for (; seq->type != P_LAST; seq++)
564 {
565 cur_val = 0;
566 for (j = 0; j < seq->length; j++)
567 {
568 if (bufsize < j + 1)
569 {
570 buffer[bufsize] = read_memory_unsigned_integer (*pc + bufsize,
571 1);
572 bufsize++;
573 }
574 /* Continue while we match the opcode. */
575 if (seq->code[j] == buffer[j])
576 continue;
577
578 if ((seq->code[j] & 0xf00) == 0)
579 break;
580
581 /* Extract a sequence parameter (address or constant). */
582 switch (seq->code[j])
583 {
584 case OP_DIRECT:
585 cur_val = (CORE_ADDR) buffer[j];
586 break;
587
588 case OP_IMM_HIGH:
589 cur_val = cur_val & 0x0ff;
590 cur_val |= (buffer[j] << 8);
591 break;
592
593 case OP_IMM_LOW:
594 cur_val &= 0x0ff00;
595 cur_val |= buffer[j];
596 break;
597
598 case OP_PBYTE:
599 if ((buffer[j] & 0xE0) == 0x80)
600 {
601 v = buffer[j] & 0x1f;
602 if (v & 0x10)
603 v |= 0xfff0;
604 }
605 else if ((buffer[j] & 0xfe) == 0xf0)
606 {
607 v = read_memory_unsigned_integer (*pc + j + 1, 1);
608 if (buffer[j] & 1)
609 v |= 0xff00;
b4fa4770 610 *pc = *pc + 1;
908f682f
SC
611 }
612 else if (buffer[j] == 0xf2)
613 {
614 v = read_memory_unsigned_integer (*pc + j + 1, 2);
b4fa4770 615 *pc = *pc + 2;
908f682f
SC
616 }
617 cur_val = v;
618 break;
619 }
620 }
621
622 /* We have a full match. */
623 if (j == seq->length)
624 {
625 *val = cur_val;
626 *pc = *pc + j;
627 return seq;
628 }
629 }
630 return 0;
631}
632
7df11f59
SC
633/* Return the instruction that the function at the PC is using. */
634static enum insn_return_kind
635m68hc11_get_return_insn (CORE_ADDR pc)
636{
637 struct minimal_symbol *sym;
638
639 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
640 function is stored by elfread.c in the high bit of the info field.
641 Use this to decide which instruction the function uses to return. */
642 sym = lookup_minimal_symbol_by_pc (pc);
643 if (sym == 0)
644 return RETURN_RTS;
645
646 if (MSYMBOL_IS_RTC (sym))
647 return RETURN_RTC;
648 else if (MSYMBOL_IS_RTI (sym))
649 return RETURN_RTI;
650 else
651 return RETURN_RTS;
652}
653
654
78073dd8
AC
655/* Analyze the function prologue to find some information
656 about the function:
657 - the PC of the first line (for m68hc11_skip_prologue)
658 - the offset of the previous frame saved address (from current frame)
659 - the soft registers which are pushed. */
660static void
82c230c2
SC
661m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
662 CORE_ADDR *first_line,
663 int *frame_offset, CORE_ADDR *pushed_regs)
78073dd8 664{
82c230c2 665 CORE_ADDR save_addr;
78073dd8 666 CORE_ADDR func_end;
78073dd8
AC
667 int size;
668 int found_frame_point;
82c230c2 669 int saved_reg;
78073dd8 670 CORE_ADDR first_pc;
908f682f
SC
671 int done = 0;
672 struct insn_sequence *seq_table;
78073dd8
AC
673
674 first_pc = get_pc_function_start (pc);
675 size = 0;
676
82c230c2 677 m68hc11_initialize_register_info ();
78073dd8
AC
678 if (first_pc == 0)
679 {
680 *frame_offset = 0;
78073dd8
AC
681 *first_line = pc;
682 return;
683 }
684
908f682f
SC
685 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
686
78073dd8
AC
687 /* The 68hc11 stack is as follows:
688
689
690 | |
691 +-----------+
692 | |
693 | args |
694 | |
695 +-----------+
696 | PC-return |
697 +-----------+
698 | Old frame |
699 +-----------+
700 | |
701 | Locals |
702 | |
703 +-----------+ <--- current frame
704 | |
705
706 With most processors (like 68K) the previous frame can be computed
707 easily because it is always at a fixed offset (see link/unlink).
708 That is, locals are accessed with negative offsets, arguments are
709 accessed with positive ones. Since 68hc11 only supports offsets
710 in the range [0..255], the frame is defined at the bottom of
711 locals (see picture).
712
713 The purpose of the analysis made here is to find out the size
714 of locals in this function. An alternative to this is to use
715 DWARF2 info. This would be better but I don't know how to
716 access dwarf2 debug from this function.
717
718 Walk from the function entry point to the point where we save
719 the frame. While walking instructions, compute the size of bytes
720 which are pushed. This gives us the index to access the previous
721 frame.
722
723 We limit the search to 128 bytes so that the algorithm is bounded
724 in case of random and wrong code. We also stop and abort if
725 we find an instruction which is not supposed to appear in the
726 prologue (as generated by gcc 2.95, 2.96).
727 */
728 pc = first_pc;
729 func_end = pc + 128;
78073dd8 730 found_frame_point = 0;
908f682f 731 *frame_offset = 0;
b4fa4770 732 save_addr = fp + STACK_CORRECTION;
908f682f 733 while (!done && pc + 2 < func_end)
78073dd8 734 {
908f682f
SC
735 struct insn_sequence *seq;
736 CORE_ADDR val;
78073dd8 737
908f682f
SC
738 seq = m68hc11_analyze_instruction (seq_table, &pc, &val);
739 if (seq == 0)
740 break;
78073dd8 741
908f682f 742 if (seq->type == P_SAVE_REG)
78073dd8 743 {
908f682f
SC
744 if (found_frame_point)
745 {
746 saved_reg = m68hc11_which_soft_register (val);
747 if (saved_reg < 0)
748 break;
78073dd8 749
908f682f
SC
750 save_addr -= 2;
751 if (pushed_regs)
752 pushed_regs[saved_reg] = save_addr;
753 }
754 else
755 {
756 size += 2;
757 }
78073dd8 758 }
908f682f 759 else if (seq->type == P_SET_FRAME)
78073dd8
AC
760 {
761 found_frame_point = 1;
908f682f 762 *frame_offset = size;
78073dd8 763 }
908f682f 764 else if (seq->type == P_LOCAL_1)
78073dd8 765 {
6148eca7
SC
766 size += 1;
767 }
908f682f 768 else if (seq->type == P_LOCAL_2)
78073dd8 769 {
908f682f 770 size += 2;
78073dd8 771 }
908f682f 772 else if (seq->type == P_LOCAL_N)
78073dd8 773 {
908f682f
SC
774 /* Stack pointer is decremented for the allocation. */
775 if (val & 0x8000)
776 size -= (int) (val) | 0xffff0000;
777 else
778 size -= val;
78073dd8
AC
779 }
780 }
78073dd8
AC
781 *first_line = pc;
782}
783
82c230c2 784static CORE_ADDR
78073dd8
AC
785m68hc11_skip_prologue (CORE_ADDR pc)
786{
787 CORE_ADDR func_addr, func_end;
788 struct symtab_and_line sal;
789 int frame_offset;
78073dd8 790
82c230c2
SC
791 /* If we have line debugging information, then the end of the
792 prologue should be the first assembly instruction of the
78073dd8
AC
793 first source line. */
794 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
795 {
796 sal = find_pc_line (func_addr, 0);
797 if (sal.end && sal.end < func_end)
798 return sal.end;
799 }
800
82c230c2 801 m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
78073dd8
AC
802 return pc;
803}
804
805/* Given a GDB frame, determine the address of the calling function's frame.
806 This will be used to create a new GDB frame struct, and then
807 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
808*/
809
82c230c2 810static CORE_ADDR
78073dd8
AC
811m68hc11_frame_chain (struct frame_info *frame)
812{
82c230c2 813 CORE_ADDR addr;
78073dd8 814
6148eca7
SC
815 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
816 return frame->frame; /* dummy frame same as caller's frame */
817
82c230c2
SC
818 if (frame->extra_info->return_pc == 0
819 || inside_entry_file (frame->extra_info->return_pc))
820 return (CORE_ADDR) 0;
78073dd8
AC
821
822 if (frame->frame == 0)
823 {
824 return (CORE_ADDR) 0;
825 }
826
5d1a66bd 827 addr = frame->frame + frame->extra_info->size + STACK_CORRECTION - 2;
78073dd8 828 addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
78073dd8
AC
829 return addr;
830}
831
832/* Put here the code to store, into a struct frame_saved_regs, the
833 addresses of the saved registers of frame described by FRAME_INFO.
834 This includes special registers such as pc and fp saved in special
835 ways in the stack frame. sp is even more special: the address we
836 return for it IS the sp for the next frame. */
82c230c2
SC
837static void
838m68hc11_frame_init_saved_regs (struct frame_info *fi)
78073dd8
AC
839{
840 CORE_ADDR pc;
184651e3 841 CORE_ADDR addr;
7df11f59 842
82c230c2
SC
843 if (fi->saved_regs == NULL)
844 frame_saved_regs_zalloc (fi);
845 else
846 memset (fi->saved_regs, 0, sizeof (fi->saved_regs));
847
78073dd8 848 pc = fi->pc;
7df11f59 849 fi->extra_info->return_kind = m68hc11_get_return_insn (pc);
82c230c2
SC
850 m68hc11_guess_from_prologue (pc, fi->frame, &pc, &fi->extra_info->size,
851 fi->saved_regs);
852
5d1a66bd 853 addr = fi->frame + fi->extra_info->size + STACK_CORRECTION;
908f682f
SC
854 if (soft_regs[SOFT_FP_REGNUM].name)
855 fi->saved_regs[SOFT_FP_REGNUM] = addr - 2;
7df11f59
SC
856
857 /* Take into account how the function was called/returns. */
858 if (fi->extra_info->return_kind == RETURN_RTC)
859 {
860 fi->saved_regs[HARD_PAGE_REGNUM] = addr;
861 addr++;
862 }
863 else if (fi->extra_info->return_kind == RETURN_RTI)
864 {
865 fi->saved_regs[HARD_CCR_REGNUM] = addr;
866 fi->saved_regs[HARD_D_REGNUM] = addr + 1;
867 fi->saved_regs[HARD_X_REGNUM] = addr + 3;
868 fi->saved_regs[HARD_Y_REGNUM] = addr + 5;
869 addr += 7;
870 }
184651e3 871 fi->saved_regs[HARD_SP_REGNUM] = addr;
82c230c2 872 fi->saved_regs[HARD_PC_REGNUM] = fi->saved_regs[HARD_SP_REGNUM];
78073dd8
AC
873}
874
82c230c2 875static void
78073dd8
AC
876m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
877{
82c230c2 878 CORE_ADDR addr;
78073dd8 879
82c230c2
SC
880 fi->extra_info = (struct frame_extra_info *)
881 frame_obstack_alloc (sizeof (struct frame_extra_info));
882
883 if (fi->next)
884 fi->pc = FRAME_SAVED_PC (fi->next);
885
886 m68hc11_frame_init_saved_regs (fi);
78073dd8
AC
887
888 if (fromleaf)
889 {
7df11f59 890 fi->extra_info->return_kind = m68hc11_get_return_insn (fi->pc);
82c230c2 891 fi->extra_info->return_pc = m68hc11_saved_pc_after_call (fi);
78073dd8
AC
892 }
893 else
894 {
7df11f59 895 addr = fi->saved_regs[HARD_PC_REGNUM];
82c230c2 896 addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
7df11f59
SC
897
898 /* Take into account the 68HC12 specific call (PC + page). */
899 if (fi->extra_info->return_kind == RETURN_RTC
900 && addr >= 0x08000 && addr < 0x0c000
901 && USE_PAGE_REGISTER)
902 {
903 CORE_ADDR page_addr = fi->saved_regs[HARD_PAGE_REGNUM];
904
905 unsigned page = read_memory_unsigned_integer (page_addr, 1);
906 addr -= 0x08000;
907 addr += ((page & 0x0ff) << 14);
908 addr += 0x1000000;
909 }
82c230c2 910 fi->extra_info->return_pc = addr;
78073dd8
AC
911 }
912}
913
914/* Same as 'info reg' but prints the registers in a different way. */
915static void
916show_regs (char *args, int from_tty)
917{
82c230c2 918 int ccr = read_register (HARD_CCR_REGNUM);
78073dd8 919 int i;
82c230c2
SC
920 int nr;
921
78073dd8 922 printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
82c230c2
SC
923 (int) read_register (HARD_PC_REGNUM),
924 (int) read_register (HARD_SP_REGNUM),
925 (int) read_register (SOFT_FP_REGNUM),
78073dd8
AC
926 ccr,
927 ccr & M6811_S_BIT ? 'S' : '-',
928 ccr & M6811_X_BIT ? 'X' : '-',
929 ccr & M6811_H_BIT ? 'H' : '-',
930 ccr & M6811_I_BIT ? 'I' : '-',
931 ccr & M6811_N_BIT ? 'N' : '-',
932 ccr & M6811_Z_BIT ? 'Z' : '-',
933 ccr & M6811_V_BIT ? 'V' : '-',
934 ccr & M6811_C_BIT ? 'C' : '-');
935
7df11f59 936 printf_filtered ("D=%04x IX=%04x IY=%04x",
82c230c2
SC
937 (int) read_register (HARD_D_REGNUM),
938 (int) read_register (HARD_X_REGNUM),
939 (int) read_register (HARD_Y_REGNUM));
940
7df11f59
SC
941 if (USE_PAGE_REGISTER)
942 {
943 printf_filtered (" Page=%02x",
944 (int) read_register (HARD_PAGE_REGNUM));
945 }
946 printf_filtered ("\n");
947
82c230c2
SC
948 nr = 0;
949 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
78073dd8 950 {
82c230c2
SC
951 /* Skip registers which are not defined in the symbol table. */
952 if (soft_regs[i].name == 0)
953 continue;
954
955 printf_filtered ("D%d=%04x",
956 i - SOFT_D1_REGNUM + 1,
957 (int) read_register (i));
958 nr++;
959 if ((nr % 8) == 7)
78073dd8
AC
960 printf_filtered ("\n");
961 else
962 printf_filtered (" ");
963 }
82c230c2
SC
964 if (nr && (nr % 8) != 7)
965 printf_filtered ("\n");
78073dd8
AC
966}
967
22df305e
SC
968static CORE_ADDR
969m68hc11_stack_align (CORE_ADDR addr)
970{
971 return ((addr + 1) & -2);
972}
973
82c230c2 974static CORE_ADDR
78073dd8 975m68hc11_push_arguments (int nargs,
ea7c478f 976 struct value **args,
78073dd8
AC
977 CORE_ADDR sp,
978 int struct_return,
979 CORE_ADDR struct_addr)
980{
82c230c2
SC
981 int stack_alloc;
982 int argnum;
983 int first_stack_argnum;
984 int stack_offset;
985 struct type *type;
986 char *val;
987 int len;
988
989 stack_alloc = 0;
990 first_stack_argnum = 0;
991 if (struct_return)
992 {
184651e3
SC
993 /* The struct is allocated on the stack and gdb used the stack
994 pointer for the address of that struct. We must apply the
995 stack offset on the address. */
5d1a66bd 996 write_register (HARD_D_REGNUM, struct_addr + STACK_CORRECTION);
82c230c2
SC
997 }
998 else if (nargs > 0)
999 {
1000 type = VALUE_TYPE (args[0]);
1001 len = TYPE_LENGTH (type);
1002
1003 /* First argument is passed in D and X registers. */
1004 if (len <= 4)
1005 {
1006 LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1007 first_stack_argnum = 1;
1008 write_register (HARD_D_REGNUM, v);
1009 if (len > 2)
1010 {
1011 v >>= 16;
1012 write_register (HARD_X_REGNUM, v);
1013 }
1014 }
1015 }
1016 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1017 {
1018 type = VALUE_TYPE (args[argnum]);
22df305e 1019 stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
82c230c2
SC
1020 }
1021 sp -= stack_alloc;
1022
5d1a66bd 1023 stack_offset = STACK_CORRECTION;
82c230c2
SC
1024 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1025 {
1026 type = VALUE_TYPE (args[argnum]);
1027 len = TYPE_LENGTH (type);
1028
1029 val = (char*) VALUE_CONTENTS (args[argnum]);
1030 write_memory (sp + stack_offset, val, len);
1031 stack_offset += len;
22df305e
SC
1032 if (len & 1)
1033 {
1034 static char zero = 0;
1035
1036 write_memory (sp + stack_offset, &zero, 1);
1037 stack_offset++;
1038 }
82c230c2
SC
1039 }
1040 return sp;
78073dd8
AC
1041}
1042
1043
82c230c2
SC
1044/* Return a location where we can set a breakpoint that will be hit
1045 when an inferior function call returns. */
78073dd8 1046CORE_ADDR
fba45db2 1047m68hc11_call_dummy_address (void)
78073dd8 1048{
22df305e 1049 return entry_point_address ();
78073dd8
AC
1050}
1051
82c230c2
SC
1052static struct type *
1053m68hc11_register_virtual_type (int reg_nr)
1054{
5706502a
SC
1055 switch (reg_nr)
1056 {
1057 case HARD_PAGE_REGNUM:
1058 case HARD_A_REGNUM:
1059 case HARD_B_REGNUM:
1060 case HARD_CCR_REGNUM:
1061 return builtin_type_uint8;
1062
548bcbec
SC
1063 case M68HC12_HARD_PC_REGNUM:
1064 return builtin_type_uint32;
1065
5706502a
SC
1066 default:
1067 return builtin_type_uint16;
1068 }
82c230c2
SC
1069}
1070
1071static void
1072m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1073{
184651e3
SC
1074 /* The struct address computed by gdb is on the stack.
1075 It uses the stack pointer so we must apply the stack
1076 correction offset. */
5d1a66bd 1077 write_register (HARD_D_REGNUM, addr + STACK_CORRECTION);
82c230c2
SC
1078}
1079
1080static void
1081m68hc11_store_return_value (struct type *type, char *valbuf)
1082{
22df305e
SC
1083 int len;
1084
1085 len = TYPE_LENGTH (type);
1086
1087 /* First argument is passed in D and X registers. */
1088 if (len <= 4)
1089 {
1090 LONGEST v = extract_unsigned_integer (valbuf, len);
1091
1092 write_register (HARD_D_REGNUM, v);
1093 if (len > 2)
1094 {
1095 v >>= 16;
1096 write_register (HARD_X_REGNUM, v);
1097 }
1098 }
1099 else
1100 error ("return of value > 4 is not supported.");
82c230c2
SC
1101}
1102
1103
1104/* Given a return value in `regbuf' with a type `type',
78073dd8
AC
1105 extract and copy its value into `valbuf'. */
1106
82c230c2
SC
1107static void
1108m68hc11_extract_return_value (struct type *type,
78073dd8
AC
1109 char *regbuf,
1110 char *valbuf)
1111{
82c230c2
SC
1112 int len = TYPE_LENGTH (type);
1113
22df305e 1114 switch (len)
82c230c2 1115 {
22df305e
SC
1116 case 1:
1117 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2 + 1], len);
1118 break;
1119
1120 case 2:
1121 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2], len);
1122 break;
1123
1124 case 3:
1125 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2 + 1], 1);
1126 memcpy (&valbuf[1], &regbuf[HARD_D_REGNUM * 2], 2);
1127 break;
1128
1129 case 4:
1130 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2], 2);
1131 memcpy (&valbuf[2], &regbuf[HARD_D_REGNUM * 2], 2);
1132 break;
1133
1134 default:
82c230c2
SC
1135 error ("bad size for return value");
1136 }
1137}
1138
1139/* Should call_function allocate stack space for a struct return? */
1140static int
1141m68hc11_use_struct_convention (int gcc_p, struct type *type)
1142{
22df305e
SC
1143 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1144 || TYPE_CODE (type) == TYPE_CODE_UNION
1145 || TYPE_LENGTH (type) > 4);
82c230c2
SC
1146}
1147
1148static int
1149m68hc11_return_value_on_stack (struct type *type)
1150{
22df305e 1151 return TYPE_LENGTH (type) > 4;
82c230c2
SC
1152}
1153
1154/* Extract from an array REGBUF containing the (raw) register state
1155 the address in which a function should return its structure value,
1156 as a CORE_ADDR (or an expression that can be used as one). */
1157static CORE_ADDR
1158m68hc11_extract_struct_value_address (char *regbuf)
1159{
1160 return extract_address (&regbuf[HARD_D_REGNUM * 2],
1161 REGISTER_RAW_SIZE (HARD_D_REGNUM));
1162}
1163
1164/* Function: push_return_address (pc)
1165 Set up the return address for the inferior function call.
1166 Needed for targets where we don't actually execute a JSR/BSR instruction */
1167
1168static CORE_ADDR
1169m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1170{
1171 char valbuf[2];
1172
22df305e 1173 pc = CALL_DUMMY_ADDRESS ();
82c230c2
SC
1174 sp -= 2;
1175 store_unsigned_integer (valbuf, 2, pc);
5d1a66bd 1176 write_memory (sp + STACK_CORRECTION, valbuf, 2);
82c230c2
SC
1177 return sp;
1178}
1179
1180/* Index within `registers' of the first byte of the space for
1181 register N. */
1182static int
1183m68hc11_register_byte (int reg_nr)
1184{
1185 return (reg_nr * M68HC11_REG_SIZE);
1186}
1187
1188static int
1189m68hc11_register_raw_size (int reg_nr)
1190{
5706502a
SC
1191 switch (reg_nr)
1192 {
1193 case HARD_PAGE_REGNUM:
1194 case HARD_A_REGNUM:
1195 case HARD_B_REGNUM:
1196 case HARD_CCR_REGNUM:
1197 return 1;
1198
548bcbec
SC
1199 case M68HC12_HARD_PC_REGNUM:
1200 return 4;
1201
5706502a
SC
1202 default:
1203 return M68HC11_REG_SIZE;
1204 }
82c230c2
SC
1205}
1206
7df11f59
SC
1207/* Test whether the ELF symbol corresponds to a function using rtc or
1208 rti to return. */
1209
1210static void
1211m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1212{
1213 unsigned char flags;
1214
1215 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1216 if (flags & STO_M68HC12_FAR)
1217 MSYMBOL_SET_RTC (msym);
1218 if (flags & STO_M68HC12_INTERRUPT)
1219 MSYMBOL_SET_RTI (msym);
1220}
1221
ea3881d9
SC
1222static int
1223gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1224{
1225 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1226 return print_insn_m68hc11 (memaddr, info);
1227 else
1228 return print_insn_m68hc12 (memaddr, info);
1229}
1230
82c230c2
SC
1231static struct gdbarch *
1232m68hc11_gdbarch_init (struct gdbarch_info info,
1233 struct gdbarch_list *arches)
1234{
1235 static LONGEST m68hc11_call_dummy_words[] =
1236 {0};
1237 struct gdbarch *gdbarch;
1238 struct gdbarch_tdep *tdep;
81967506 1239 int elf_flags;
82c230c2
SC
1240
1241 soft_reg_initialized = 0;
81967506
SC
1242
1243 /* Extract the elf_flags if available. */
1244 if (info.abfd != NULL
1245 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1246 elf_flags = elf_elfheader (info.abfd)->e_flags;
1247 else
1248 elf_flags = 0;
1249
82c230c2
SC
1250 /* try to find a pre-existing architecture */
1251 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1252 arches != NULL;
1253 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1254 {
81967506
SC
1255 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1256 continue;
1257
82c230c2
SC
1258 return arches->gdbarch;
1259 }
1260
1261 /* Need a new architecture. Fill in a target specific vector. */
1262 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1263 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1264 tdep->elf_flags = elf_flags;
ed99b3d0 1265
5d1a66bd
SC
1266 switch (info.bfd_arch_info->arch)
1267 {
1268 case bfd_arch_m68hc11:
1269 tdep->stack_correction = 1;
7df11f59 1270 tdep->use_page_register = 0;
908f682f 1271 tdep->prologue = m6811_prologue;
548bcbec
SC
1272 set_gdbarch_addr_bit (gdbarch, 16);
1273 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1274 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1275 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1276 break;
82c230c2 1277
5d1a66bd
SC
1278 case bfd_arch_m68hc12:
1279 tdep->stack_correction = 0;
7df11f59 1280 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1281 tdep->prologue = m6812_prologue;
548bcbec
SC
1282 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1283 set_gdbarch_num_pseudo_regs (gdbarch,
1284 elf_flags & E_M68HC12_BANKS
1285 ? M68HC12_NUM_PSEUDO_REGS
1286 : M68HC11_NUM_PSEUDO_REGS);
1287 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1288 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1289 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1290 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1291 break;
1292
1293 default:
1294 break;
1295 }
7d32ba20
SC
1296
1297 /* Initially set everything according to the ABI.
1298 Use 16-bit integers since it will be the case for most
1299 programs. The size of these types should normally be set
1300 according to the dwarf2 debug information. */
82c230c2 1301 set_gdbarch_short_bit (gdbarch, 16);
81967506 1302 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1303 set_gdbarch_float_bit (gdbarch, 32);
81967506
SC
1304 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1305 set_gdbarch_long_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
82c230c2
SC
1306 set_gdbarch_long_bit (gdbarch, 32);
1307 set_gdbarch_ptr_bit (gdbarch, 16);
1308 set_gdbarch_long_long_bit (gdbarch, 64);
1309
1310 /* Set register info. */
1311 set_gdbarch_fp0_regnum (gdbarch, -1);
1312 set_gdbarch_max_register_raw_size (gdbarch, 2);
1313 set_gdbarch_max_register_virtual_size (gdbarch, 2);
1314 set_gdbarch_register_raw_size (gdbarch, m68hc11_register_raw_size);
1315 set_gdbarch_register_virtual_size (gdbarch, m68hc11_register_raw_size);
1316 set_gdbarch_register_byte (gdbarch, m68hc11_register_byte);
1317 set_gdbarch_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
1318 set_gdbarch_frame_args_skip (gdbarch, 0);
1319
1320 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1321 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1322 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
82c230c2
SC
1323 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1324 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1325
82c230c2
SC
1326 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1327 set_gdbarch_fp_regnum (gdbarch, SOFT_FP_REGNUM);
82c230c2
SC
1328 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1329 set_gdbarch_register_size (gdbarch, 2);
1330 set_gdbarch_register_bytes (gdbarch, M68HC11_ALL_REGS * 2);
1331 set_gdbarch_register_virtual_type (gdbarch, m68hc11_register_virtual_type);
46ce284d
AC
1332 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1333 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2
SC
1334
1335 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1336 set_gdbarch_call_dummy_length (gdbarch, 0);
1337 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1338 set_gdbarch_call_dummy_address (gdbarch, m68hc11_call_dummy_address);
1339 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
1340 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1341 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1342 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1343 set_gdbarch_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
1344 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1345 sizeof (m68hc11_call_dummy_words));
1346 set_gdbarch_call_dummy_p (gdbarch, 1);
1347 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1348 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1349 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
26e9b323 1350 set_gdbarch_deprecated_extract_return_value (gdbarch, m68hc11_extract_return_value);
82c230c2
SC
1351 set_gdbarch_push_arguments (gdbarch, m68hc11_push_arguments);
1352 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1353 set_gdbarch_push_return_address (gdbarch, m68hc11_push_return_address);
1354 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1355
1356 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
ebba8386 1357 set_gdbarch_deprecated_store_return_value (gdbarch, m68hc11_store_return_value);
26e9b323 1358 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
82c230c2
SC
1359 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1360
1361
1362 set_gdbarch_frame_chain (gdbarch, m68hc11_frame_chain);
1363 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1364 set_gdbarch_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
1365 set_gdbarch_frame_args_address (gdbarch, m68hc11_frame_args_address);
1366 set_gdbarch_frame_locals_address (gdbarch, m68hc11_frame_locals_address);
1367 set_gdbarch_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
1368 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1369
1370 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1371 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1372
1373 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
ebba8386 1374 set_gdbarch_deprecated_store_return_value (gdbarch, m68hc11_store_return_value);
26e9b323 1375 set_gdbarch_deprecated_extract_struct_value_address
82c230c2
SC
1376 (gdbarch, m68hc11_extract_struct_value_address);
1377 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1378 set_gdbarch_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
1379 set_gdbarch_pop_frame (gdbarch, m68hc11_pop_frame);
1380 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1381 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1382 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1383 set_gdbarch_function_start_offset (gdbarch, 0);
1384 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
22df305e 1385 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
70ed8774 1386 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1387
7df11f59
SC
1388 /* Minsymbol frobbing. */
1389 set_gdbarch_elf_make_msymbol_special (gdbarch,
1390 m68hc11_elf_make_msymbol_special);
1391
82c230c2 1392 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1393
1394 return gdbarch;
78073dd8
AC
1395}
1396
1397void
fba45db2 1398_initialize_m68hc11_tdep (void)
78073dd8 1399{
82c230c2 1400 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1401 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
78073dd8
AC
1402
1403 add_com ("regs", class_vars, show_regs, "Print all registers");
1404}
1405
This page took 0.422731 seconds and 4 git commands to generate.