*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
4c38e0a4 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
7b6bb8da 4 2010, 2011 Free Software Foundation, Inc.
931aecf5 5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8 7
a9762ec7
JB
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
78073dd8 22
78073dd8 23
82c230c2
SC
24#include "defs.h"
25#include "frame.h"
1ea653ae
SC
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "dwarf2-frame.h"
29#include "trad-frame.h"
82c230c2
SC
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "gdb_string.h"
35#include "value.h"
36#include "inferior.h"
37#include "dis-asm.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
b631436b 42#include "reggroups.h"
78073dd8 43
82c230c2
SC
44#include "target.h"
45#include "opcode/m68hc11.h"
81967506
SC
46#include "elf/m68hc11.h"
47#include "elf-bfd.h"
78073dd8 48
7df11f59
SC
49/* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59 60
025bb325 61#define MSYMBOL_SET_RTC(msym) \
b887350f 62 MSYMBOL_TARGET_FLAG_1 (msym) = 1
7df11f59 63
025bb325 64#define MSYMBOL_SET_RTI(msym) \
b887350f 65 MSYMBOL_TARGET_FLAG_2 (msym) = 1
7df11f59
SC
66
67#define MSYMBOL_IS_RTC(msym) \
b887350f 68 MSYMBOL_TARGET_FLAG_1 (msym)
7df11f59
SC
69
70#define MSYMBOL_IS_RTI(msym) \
b887350f 71 MSYMBOL_TARGET_FLAG_2 (msym)
7df11f59 72
7df11f59
SC
73enum insn_return_kind {
74 RETURN_RTS,
75 RETURN_RTC,
76 RETURN_RTI
77};
78
79
7157eed4 80/* Register numbers of various important registers. */
78073dd8 81
82c230c2
SC
82#define HARD_X_REGNUM 0
83#define HARD_D_REGNUM 1
84#define HARD_Y_REGNUM 2
85#define HARD_SP_REGNUM 3
86#define HARD_PC_REGNUM 4
87
88#define HARD_A_REGNUM 5
89#define HARD_B_REGNUM 6
90#define HARD_CCR_REGNUM 7
5706502a
SC
91
92/* 68HC12 page number register.
93 Note: to keep a compatibility with gcc register naming, we must
94 not have to rename FP and other soft registers. The page register
f57d151a 95 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
96 For this it has the same number as Z register (which is not used). */
97#define HARD_PAGE_REGNUM 8
98#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
99
100/* Z is replaced by X or Y by gcc during machine reorg.
101 ??? There is no way to get it and even know whether
102 it's in X or Y or in ZS. */
103#define SOFT_Z_REGNUM 8
104
105/* Soft registers. These registers are special. There are treated
106 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
107 They are physically located in memory. */
108#define SOFT_FP_REGNUM 9
109#define SOFT_TMP_REGNUM 10
110#define SOFT_ZS_REGNUM 11
111#define SOFT_XY_REGNUM 12
f91a8b6b
SC
112#define SOFT_UNUSED_REGNUM 13
113#define SOFT_D1_REGNUM 14
82c230c2
SC
114#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
115#define M68HC11_MAX_SOFT_REGS 32
116
117#define M68HC11_NUM_REGS (8)
118#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
119#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
120
121#define M68HC11_REG_SIZE (2)
122
548bcbec
SC
123#define M68HC12_NUM_REGS (9)
124#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
125#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
126
908f682f 127struct insn_sequence;
82c230c2
SC
128struct gdbarch_tdep
129 {
5d1a66bd
SC
130 /* Stack pointer correction value. For 68hc11, the stack pointer points
131 to the next push location. An offset of 1 must be applied to obtain
132 the address where the last value is saved. For 68hc12, the stack
133 pointer points to the last value pushed. No offset is necessary. */
134 int stack_correction;
908f682f
SC
135
136 /* Description of instructions in the prologue. */
137 struct insn_sequence *prologue;
81967506 138
7df11f59
SC
139 /* True if the page memory bank register is available
140 and must be used. */
141 int use_page_register;
142
81967506
SC
143 /* ELF flags for ABI. */
144 int elf_flags;
82c230c2
SC
145 };
146
be8626e0
MD
147#define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
148#define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
5d1a66bd 149
1ea653ae
SC
150struct m68hc11_unwind_cache
151{
152 /* The previous frame's inner most stack address. Used as this
153 frame ID's stack_addr. */
154 CORE_ADDR prev_sp;
155 /* The frame's base, optionally used by the high-level debug info. */
156 CORE_ADDR base;
157 CORE_ADDR pc;
158 int size;
159 int prologue_type;
160 CORE_ADDR return_pc;
161 CORE_ADDR sp_offset;
162 int frameless;
163 enum insn_return_kind return_kind;
164
165 /* Table indicating the location of each and every register. */
166 struct trad_frame_saved_reg *saved_regs;
167};
168
82c230c2
SC
169/* Table of registers for 68HC11. This includes the hard registers
170 and the soft registers used by GCC. */
171static char *
172m68hc11_register_names[] =
173{
174 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 175 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
176 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
177 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
178 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
179 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
180 "d29", "d30", "d31", "d32"
181};
78073dd8 182
82c230c2
SC
183struct m68hc11_soft_reg
184{
185 const char *name;
186 CORE_ADDR addr;
187};
78073dd8 188
82c230c2 189static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 190
82c230c2 191#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 192
82c230c2
SC
193static int soft_min_addr;
194static int soft_max_addr;
195static int soft_reg_initialized = 0;
78073dd8 196
82c230c2
SC
197/* Look in the symbol table for the address of a pseudo register
198 in memory. If we don't find it, pretend the register is not used
199 and not available. */
200static void
201m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
202{
203 struct minimal_symbol *msymbol;
78073dd8 204
82c230c2
SC
205 msymbol = lookup_minimal_symbol (name, NULL, NULL);
206 if (msymbol)
207 {
208 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
209 reg->name = xstrdup (name);
210
211 /* Keep track of the address range for soft registers. */
212 if (reg->addr < (CORE_ADDR) soft_min_addr)
213 soft_min_addr = reg->addr;
214 if (reg->addr > (CORE_ADDR) soft_max_addr)
215 soft_max_addr = reg->addr;
216 }
217 else
218 {
219 reg->name = 0;
220 reg->addr = 0;
221 }
222}
78073dd8 223
82c230c2
SC
224/* Initialize the table of soft register addresses according
225 to the symbol table. */
226 static void
227m68hc11_initialize_register_info (void)
228{
229 int i;
78073dd8 230
82c230c2
SC
231 if (soft_reg_initialized)
232 return;
233
234 soft_min_addr = INT_MAX;
235 soft_max_addr = 0;
236 for (i = 0; i < M68HC11_ALL_REGS; i++)
237 {
238 soft_regs[i].name = 0;
239 }
240
241 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
242 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
243 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
244 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
245 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 246
82c230c2
SC
247 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
248 {
249 char buf[10];
78073dd8 250
82c230c2
SC
251 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
252 m68hc11_get_register_info (&soft_regs[i], buf);
253 }
78073dd8 254
82c230c2 255 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
256 warning (_("No frame soft register found in the symbol table.\n"
257 "Stack backtrace will not work."));
82c230c2
SC
258 soft_reg_initialized = 1;
259}
78073dd8 260
82c230c2
SC
261/* Given an address in memory, return the soft register number if
262 that address corresponds to a soft register. Returns -1 if not. */
263static int
264m68hc11_which_soft_register (CORE_ADDR addr)
265{
266 int i;
267
268 if (addr < soft_min_addr || addr > soft_max_addr)
269 return -1;
270
271 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
272 {
273 if (soft_regs[i].name && soft_regs[i].addr == addr)
274 return i;
275 }
276 return -1;
277}
78073dd8 278
82c230c2
SC
279/* Fetch a pseudo register. The 68hc11 soft registers are treated like
280 pseudo registers. They are located in memory. Translate the register
281 fetch into a memory read. */
05d1431c 282static enum register_status
46ce284d
AC
283m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
284 struct regcache *regcache,
ff1e98b9 285 int regno, gdb_byte *buf)
82c230c2 286{
e17a4113
UW
287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
288
548bcbec
SC
289 /* The PC is a pseudo reg only for 68HC12 with the memory bank
290 addressing mode. */
291 if (regno == M68HC12_HARD_PC_REGNUM)
292 {
4db73d49 293 ULONGEST pc;
df4df182 294 const int regsize = 4;
05d1431c 295 enum register_status status;
548bcbec 296
05d1431c
PA
297 status = regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
298 if (status != REG_VALID)
299 return status;
548bcbec
SC
300 if (pc >= 0x8000 && pc < 0xc000)
301 {
4db73d49
SC
302 ULONGEST page;
303
304 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
305 pc -= 0x8000;
306 pc += (page << 14);
307 pc += 0x1000000;
308 }
e17a4113 309 store_unsigned_integer (buf, regsize, byte_order, pc);
05d1431c 310 return REG_VALID;
548bcbec
SC
311 }
312
82c230c2
SC
313 m68hc11_initialize_register_info ();
314
315 /* Fetch a soft register: translate into a memory read. */
316 if (soft_regs[regno].name)
317 {
318 target_read_memory (soft_regs[regno].addr, buf, 2);
319 }
320 else
321 {
322 memset (buf, 0, 2);
323 }
05d1431c
PA
324
325 return REG_VALID;
82c230c2 326}
78073dd8 327
82c230c2
SC
328/* Store a pseudo register. Translate the register store
329 into a memory write. */
330static void
46ce284d
AC
331m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
332 struct regcache *regcache,
ff1e98b9 333 int regno, const gdb_byte *buf)
82c230c2 334{
e17a4113
UW
335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
336
548bcbec
SC
337 /* The PC is a pseudo reg only for 68HC12 with the memory bank
338 addressing mode. */
339 if (regno == M68HC12_HARD_PC_REGNUM)
340 {
df4df182 341 const int regsize = 4;
548bcbec
SC
342 char *tmp = alloca (regsize);
343 CORE_ADDR pc;
344
345 memcpy (tmp, buf, regsize);
e17a4113 346 pc = extract_unsigned_integer (tmp, regsize, byte_order);
548bcbec
SC
347 if (pc >= 0x1000000)
348 {
349 pc -= 0x1000000;
4db73d49
SC
350 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
351 (pc >> 14) & 0x0ff);
548bcbec 352 pc &= 0x03fff;
4db73d49
SC
353 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
354 pc + 0x8000);
548bcbec
SC
355 }
356 else
4db73d49 357 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
358 return;
359 }
360
82c230c2 361 m68hc11_initialize_register_info ();
78073dd8 362
82c230c2
SC
363 /* Store a soft register: translate into a memory write. */
364 if (soft_regs[regno].name)
365 {
46ce284d
AC
366 const int regsize = 2;
367 char *tmp = alloca (regsize);
368 memcpy (tmp, buf, regsize);
369 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
370 }
371}
78073dd8 372
fa88f677 373static const char *
d93859e2 374m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
78073dd8 375{
be8626e0 376 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec 377 return "pc";
be8626e0 378 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
548bcbec
SC
379 return "ppc";
380
82c230c2
SC
381 if (reg_nr < 0)
382 return NULL;
383 if (reg_nr >= M68HC11_ALL_REGS)
384 return NULL;
385
65760afb
SC
386 m68hc11_initialize_register_info ();
387
82c230c2
SC
388 /* If we don't know the address of a soft register, pretend it
389 does not exist. */
390 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
391 return NULL;
392 return m68hc11_register_names[reg_nr];
393}
78073dd8 394
f4f9705a 395static const unsigned char *
67d57894
MD
396m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
397 int *lenptr)
78073dd8 398{
82c230c2 399 static unsigned char breakpoint[] = {0x0};
67d57894 400
82c230c2
SC
401 *lenptr = sizeof (breakpoint);
402 return breakpoint;
78073dd8
AC
403}
404
908f682f 405\f
025bb325 406/* 68HC11 & 68HC12 prologue analysis. */
908f682f 407
908f682f
SC
408#define MAX_CODES 12
409
410/* 68HC11 opcodes. */
411#undef M6811_OP_PAGE2
b94a41a1
SC
412#define M6811_OP_PAGE2 (0x18)
413#define M6811_OP_LDX (0xde)
414#define M6811_OP_LDX_EXT (0xfe)
415#define M6811_OP_PSHX (0x3c)
416#define M6811_OP_STS (0x9f)
417#define M6811_OP_STS_EXT (0xbf)
418#define M6811_OP_TSX (0x30)
419#define M6811_OP_XGDX (0x8f)
420#define M6811_OP_ADDD (0xc3)
421#define M6811_OP_TXS (0x35)
422#define M6811_OP_DES (0x34)
908f682f
SC
423
424/* 68HC12 opcodes. */
b94a41a1
SC
425#define M6812_OP_PAGE2 (0x18)
426#define M6812_OP_MOVW (0x01)
427#define M6812_PB_PSHW (0xae)
428#define M6812_OP_STS (0x5f)
429#define M6812_OP_STS_EXT (0x7f)
430#define M6812_OP_LEAS (0x1b)
431#define M6812_OP_PSHX (0x34)
432#define M6812_OP_PSHY (0x35)
908f682f
SC
433
434/* Operand extraction. */
435#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
436#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
437#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
438#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
439
440/* Identification of the sequence. */
441enum m6811_seq_type
442{
443 P_LAST = 0,
444 P_SAVE_REG, /* Save a register on the stack. */
445 P_SET_FRAME, /* Setup the frame pointer. */
446 P_LOCAL_1, /* Allocate 1 byte for locals. */
447 P_LOCAL_2, /* Allocate 2 bytes for locals. */
448 P_LOCAL_N /* Allocate N bytes for locals. */
449};
450
451struct insn_sequence {
452 enum m6811_seq_type type;
453 unsigned length;
454 unsigned short code[MAX_CODES];
455};
456
457/* Sequence of instructions in the 68HC11 function prologue. */
458static struct insn_sequence m6811_prologue[] = {
459 /* Sequences to save a soft-register. */
460 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
464 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
465 M6811_OP_PSHX } },
466 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
468
469 /* Sequences to allocate local variables. */
470 { P_LOCAL_N, 7, { M6811_OP_TSX,
471 M6811_OP_XGDX,
472 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
473 M6811_OP_XGDX,
474 M6811_OP_TXS } },
475 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
476 M6811_OP_PAGE2, M6811_OP_XGDX,
477 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
478 M6811_OP_PAGE2, M6811_OP_XGDX,
479 M6811_OP_PAGE2, M6811_OP_TXS } },
480 { P_LOCAL_1, 1, { M6811_OP_DES } },
481 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
482 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
483
484 /* Initialize the frame pointer. */
485 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 486 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
487 { P_LAST, 0, { 0 } }
488};
489
490
491/* Sequence of instructions in the 68HC12 function prologue. */
492static struct insn_sequence m6812_prologue[] = {
493 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
494 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
495 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
496 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 497 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
498 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
499 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
500 { P_LAST, 0 }
501};
502
503
504/* Analyze the sequence of instructions starting at the given address.
505 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 506 the optional value (constant/address) associated with it. */
908f682f 507static struct insn_sequence *
e17a4113
UW
508m68hc11_analyze_instruction (struct gdbarch *gdbarch,
509 struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
510 CORE_ADDR *val)
511{
e17a4113 512 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
908f682f
SC
513 unsigned char buffer[MAX_CODES];
514 unsigned bufsize;
515 unsigned j;
516 CORE_ADDR cur_val;
517 short v = 0;
518
519 bufsize = 0;
520 for (; seq->type != P_LAST; seq++)
521 {
522 cur_val = 0;
523 for (j = 0; j < seq->length; j++)
524 {
525 if (bufsize < j + 1)
526 {
c8a7f6ac 527 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
e17a4113 528 1, byte_order);
908f682f
SC
529 bufsize++;
530 }
531 /* Continue while we match the opcode. */
532 if (seq->code[j] == buffer[j])
533 continue;
534
535 if ((seq->code[j] & 0xf00) == 0)
536 break;
537
538 /* Extract a sequence parameter (address or constant). */
539 switch (seq->code[j])
540 {
541 case OP_DIRECT:
542 cur_val = (CORE_ADDR) buffer[j];
543 break;
544
545 case OP_IMM_HIGH:
546 cur_val = cur_val & 0x0ff;
547 cur_val |= (buffer[j] << 8);
548 break;
549
550 case OP_IMM_LOW:
551 cur_val &= 0x0ff00;
552 cur_val |= buffer[j];
553 break;
554
555 case OP_PBYTE:
556 if ((buffer[j] & 0xE0) == 0x80)
557 {
558 v = buffer[j] & 0x1f;
559 if (v & 0x10)
560 v |= 0xfff0;
561 }
562 else if ((buffer[j] & 0xfe) == 0xf0)
563 {
e17a4113 564 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
908f682f
SC
565 if (buffer[j] & 1)
566 v |= 0xff00;
567 }
568 else if (buffer[j] == 0xf2)
569 {
e17a4113 570 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
908f682f
SC
571 }
572 cur_val = v;
573 break;
574 }
575 }
576
577 /* We have a full match. */
578 if (j == seq->length)
579 {
580 *val = cur_val;
908f682f
SC
581 return seq;
582 }
583 }
584 return 0;
585}
586
7df11f59
SC
587/* Return the instruction that the function at the PC is using. */
588static enum insn_return_kind
589m68hc11_get_return_insn (CORE_ADDR pc)
590{
591 struct minimal_symbol *sym;
592
593 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
594 function is stored by elfread.c in the high bit of the info field.
595 Use this to decide which instruction the function uses to return. */
596 sym = lookup_minimal_symbol_by_pc (pc);
597 if (sym == 0)
598 return RETURN_RTS;
599
600 if (MSYMBOL_IS_RTC (sym))
601 return RETURN_RTC;
602 else if (MSYMBOL_IS_RTI (sym))
603 return RETURN_RTI;
604 else
605 return RETURN_RTS;
606}
607
78073dd8
AC
608/* Analyze the function prologue to find some information
609 about the function:
610 - the PC of the first line (for m68hc11_skip_prologue)
611 - the offset of the previous frame saved address (from current frame)
612 - the soft registers which are pushed. */
1ea653ae 613static CORE_ADDR
be8626e0
MD
614m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
615 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
78073dd8 616{
1ea653ae 617 LONGEST save_addr;
78073dd8 618 CORE_ADDR func_end;
78073dd8
AC
619 int size;
620 int found_frame_point;
82c230c2 621 int saved_reg;
908f682f
SC
622 int done = 0;
623 struct insn_sequence *seq_table;
1ea653ae
SC
624
625 info->size = 0;
626 info->sp_offset = 0;
627 if (pc >= current_pc)
628 return current_pc;
629
78073dd8
AC
630 size = 0;
631
82c230c2 632 m68hc11_initialize_register_info ();
1ea653ae 633 if (pc == 0)
78073dd8 634 {
1ea653ae
SC
635 info->size = 0;
636 return pc;
78073dd8
AC
637 }
638
be8626e0 639 seq_table = gdbarch_tdep (gdbarch)->prologue;
908f682f 640
78073dd8
AC
641 /* The 68hc11 stack is as follows:
642
643
644 | |
645 +-----------+
646 | |
647 | args |
648 | |
649 +-----------+
650 | PC-return |
651 +-----------+
652 | Old frame |
653 +-----------+
654 | |
655 | Locals |
656 | |
657 +-----------+ <--- current frame
658 | |
659
660 With most processors (like 68K) the previous frame can be computed
661 easily because it is always at a fixed offset (see link/unlink).
662 That is, locals are accessed with negative offsets, arguments are
663 accessed with positive ones. Since 68hc11 only supports offsets
664 in the range [0..255], the frame is defined at the bottom of
665 locals (see picture).
666
667 The purpose of the analysis made here is to find out the size
668 of locals in this function. An alternative to this is to use
669 DWARF2 info. This would be better but I don't know how to
670 access dwarf2 debug from this function.
671
672 Walk from the function entry point to the point where we save
673 the frame. While walking instructions, compute the size of bytes
674 which are pushed. This gives us the index to access the previous
675 frame.
676
677 We limit the search to 128 bytes so that the algorithm is bounded
678 in case of random and wrong code. We also stop and abort if
679 we find an instruction which is not supposed to appear in the
025bb325
MS
680 prologue (as generated by gcc 2.95, 2.96). */
681
78073dd8 682 func_end = pc + 128;
78073dd8 683 found_frame_point = 0;
1ea653ae
SC
684 info->size = 0;
685 save_addr = 0;
908f682f 686 while (!done && pc + 2 < func_end)
78073dd8 687 {
908f682f
SC
688 struct insn_sequence *seq;
689 CORE_ADDR val;
1ea653ae 690
e17a4113 691 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
908f682f
SC
692 if (seq == 0)
693 break;
78073dd8 694
c8a7f6ac
SC
695 /* If we are within the instruction group, we can't advance the
696 pc nor the stack offset. Otherwise the caller's stack computed
697 from the current stack can be wrong. */
698 if (pc + seq->length > current_pc)
699 break;
700
701 pc = pc + seq->length;
908f682f 702 if (seq->type == P_SAVE_REG)
78073dd8 703 {
908f682f
SC
704 if (found_frame_point)
705 {
706 saved_reg = m68hc11_which_soft_register (val);
707 if (saved_reg < 0)
708 break;
78073dd8 709
908f682f 710 save_addr -= 2;
ff1e98b9
SC
711 if (info->saved_regs)
712 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
713 }
714 else
715 {
716 size += 2;
717 }
78073dd8 718 }
908f682f 719 else if (seq->type == P_SET_FRAME)
78073dd8
AC
720 {
721 found_frame_point = 1;
1ea653ae 722 info->size = size;
78073dd8 723 }
908f682f 724 else if (seq->type == P_LOCAL_1)
78073dd8 725 {
6148eca7
SC
726 size += 1;
727 }
908f682f 728 else if (seq->type == P_LOCAL_2)
78073dd8 729 {
908f682f 730 size += 2;
78073dd8 731 }
908f682f 732 else if (seq->type == P_LOCAL_N)
78073dd8 733 {
908f682f
SC
734 /* Stack pointer is decremented for the allocation. */
735 if (val & 0x8000)
736 size -= (int) (val) | 0xffff0000;
737 else
738 size -= val;
78073dd8
AC
739 }
740 }
1ea653ae
SC
741 if (found_frame_point == 0)
742 info->sp_offset = size;
743 else
744 info->sp_offset = -1;
745 return pc;
78073dd8
AC
746}
747
82c230c2 748static CORE_ADDR
6093d2eb 749m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
78073dd8
AC
750{
751 CORE_ADDR func_addr, func_end;
752 struct symtab_and_line sal;
1ea653ae 753 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 754
82c230c2
SC
755 /* If we have line debugging information, then the end of the
756 prologue should be the first assembly instruction of the
78073dd8
AC
757 first source line. */
758 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
759 {
760 sal = find_pc_line (func_addr, 0);
761 if (sal.end && sal.end < func_end)
762 return sal.end;
763 }
764
be8626e0 765 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
766 return pc;
767}
768
1ea653ae
SC
769static CORE_ADDR
770m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
771{
772 ULONGEST pc;
773
025bb325
MS
774 pc = frame_unwind_register_unsigned (next_frame,
775 gdbarch_pc_regnum (gdbarch));
1ea653ae
SC
776 return pc;
777}
778
779/* Put here the code to store, into fi->saved_regs, the addresses of
780 the saved registers of frame described by FRAME_INFO. This
781 includes special registers such as pc and fp saved in special ways
782 in the stack frame. sp is even more special: the address we return
025bb325 783 for it IS the sp for the next frame. */
1ea653ae 784
63807e1d 785static struct m68hc11_unwind_cache *
94afd7a6 786m68hc11_frame_unwind_cache (struct frame_info *this_frame,
1ea653ae
SC
787 void **this_prologue_cache)
788{
94afd7a6 789 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1ea653ae
SC
790 ULONGEST prev_sp;
791 ULONGEST this_base;
792 struct m68hc11_unwind_cache *info;
793 CORE_ADDR current_pc;
794 int i;
795
796 if ((*this_prologue_cache))
797 return (*this_prologue_cache);
798
799 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
800 (*this_prologue_cache) = info;
94afd7a6 801 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1ea653ae 802
94afd7a6 803 info->pc = get_frame_func (this_frame);
1ea653ae
SC
804
805 info->size = 0;
806 info->return_kind = m68hc11_get_return_insn (info->pc);
807
808 /* The SP was moved to the FP. This indicates that a new frame
809 was created. Get THIS frame's FP value by unwinding it from
810 the next frame. */
94afd7a6 811 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
812 if (this_base == 0)
813 {
814 info->base = 0;
815 return info;
816 }
817
94afd7a6 818 current_pc = get_frame_pc (this_frame);
1ea653ae 819 if (info->pc != 0)
be8626e0 820 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
1ea653ae
SC
821
822 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
823
824 if (info->sp_offset != (CORE_ADDR) -1)
825 {
826 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
94afd7a6 827 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
1ea653ae 828 prev_sp = this_base + info->sp_offset + 2;
be8626e0 829 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
830 }
831 else
832 {
833 /* The FP points at the last saved register. Adjust the FP back
834 to before the first saved register giving the SP. */
835 prev_sp = this_base + info->size + 2;
836
be8626e0 837 this_base += STACK_CORRECTION (gdbarch);
1ea653ae
SC
838 if (soft_regs[SOFT_FP_REGNUM].name)
839 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
840 }
841
842 if (info->return_kind == RETURN_RTC)
843 {
844 prev_sp += 1;
845 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
847 }
848 else if (info->return_kind == RETURN_RTI)
849 {
850 prev_sp += 7;
851 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
852 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
853 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
854 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
855 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
856 }
857
858 /* Add 1 here to adjust for the post-decrement nature of the push
025bb325 859 instruction. */
1ea653ae
SC
860 info->prev_sp = prev_sp;
861
862 info->base = this_base;
863
864 /* Adjust all the saved registers so that they contain addresses and not
865 offsets. */
f57d151a 866 for (i = 0;
be8626e0
MD
867 i < gdbarch_num_regs (gdbarch)
868 + gdbarch_num_pseudo_regs (gdbarch) - 1;
f57d151a 869 i++)
1ea653ae
SC
870 if (trad_frame_addr_p (info->saved_regs, i))
871 {
872 info->saved_regs[i].addr += this_base;
873 }
874
875 /* The previous frame's SP needed to be computed. Save the computed
876 value. */
877 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
878
879 return info;
880}
881
882/* Given a GDB frame, determine the address of the calling function's
883 frame. This will be used to create a new GDB frame struct. */
884
885static void
94afd7a6 886m68hc11_frame_this_id (struct frame_info *this_frame,
1ea653ae
SC
887 void **this_prologue_cache,
888 struct frame_id *this_id)
889{
890 struct m68hc11_unwind_cache *info
94afd7a6 891 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae
SC
892 CORE_ADDR base;
893 CORE_ADDR func;
894 struct frame_id id;
895
896 /* The FUNC is easy. */
94afd7a6 897 func = get_frame_func (this_frame);
1ea653ae 898
1ea653ae
SC
899 /* Hopefully the prologue analysis either correctly determined the
900 frame's base (which is the SP from the previous frame), or set
901 that base to "NULL". */
902 base = info->prev_sp;
903 if (base == 0)
904 return;
905
906 id = frame_id_build (base, func);
1ea653ae
SC
907 (*this_id) = id;
908}
909
94afd7a6
UW
910static struct value *
911m68hc11_frame_prev_register (struct frame_info *this_frame,
912 void **this_prologue_cache, int regnum)
1ea653ae 913{
94afd7a6 914 struct value *value;
1ea653ae 915 struct m68hc11_unwind_cache *info
94afd7a6 916 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
1ea653ae 917
94afd7a6 918 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1ea653ae 919
94afd7a6
UW
920 /* Take into account the 68HC12 specific call (PC + page). */
921 if (regnum == HARD_PC_REGNUM
922 && info->return_kind == RETURN_RTC
923 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
1ea653ae 924 {
94afd7a6
UW
925 CORE_ADDR pc = value_as_long (value);
926 if (pc >= 0x08000 && pc < 0x0c000)
1ea653ae 927 {
1ea653ae
SC
928 CORE_ADDR page;
929
94afd7a6
UW
930 release_value (value);
931 value_free (value);
932
933 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
934 HARD_PAGE_REGNUM);
935 page = value_as_long (value);
936 release_value (value);
937 value_free (value);
938
939 pc -= 0x08000;
940 pc += ((page & 0x0ff) << 14);
941 pc += 0x1000000;
942
943 return frame_unwind_got_constant (this_frame, regnum, pc);
1ea653ae
SC
944 }
945 }
94afd7a6
UW
946
947 return value;
1ea653ae
SC
948}
949
950static const struct frame_unwind m68hc11_frame_unwind = {
951 NORMAL_FRAME,
8fbca658 952 default_frame_unwind_stop_reason,
1ea653ae 953 m68hc11_frame_this_id,
94afd7a6
UW
954 m68hc11_frame_prev_register,
955 NULL,
956 default_frame_sniffer
1ea653ae
SC
957};
958
1ea653ae 959static CORE_ADDR
94afd7a6 960m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
961{
962 struct m68hc11_unwind_cache *info
94afd7a6 963 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
964
965 return info->base;
966}
967
968static CORE_ADDR
94afd7a6 969m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
1ea653ae
SC
970{
971 CORE_ADDR addr;
972 struct m68hc11_unwind_cache *info
94afd7a6 973 = m68hc11_frame_unwind_cache (this_frame, this_cache);
1ea653ae
SC
974
975 addr = info->base + info->size;
976 if (info->return_kind == RETURN_RTC)
977 addr += 1;
978 else if (info->return_kind == RETURN_RTI)
979 addr += 7;
980
981 return addr;
982}
983
984static const struct frame_base m68hc11_frame_base = {
985 &m68hc11_frame_unwind,
986 m68hc11_frame_base_address,
987 m68hc11_frame_base_address,
988 m68hc11_frame_args_address
989};
990
991static CORE_ADDR
992m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
993{
994 ULONGEST sp;
11411de3 995 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
1ea653ae
SC
996 return sp;
997}
998
94afd7a6
UW
999/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1000 frame. The frame ID's base needs to match the TOS value saved by
1001 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1ea653ae
SC
1002
1003static struct frame_id
94afd7a6 1004m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1ea653ae
SC
1005{
1006 ULONGEST tos;
94afd7a6 1007 CORE_ADDR pc = get_frame_pc (this_frame);
1ea653ae 1008
94afd7a6 1009 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1ea653ae
SC
1010 tos += 2;
1011 return frame_id_build (tos, pc);
1012}
78073dd8 1013
e286caf2
SC
1014\f
1015/* Get and print the register from the given frame. */
78073dd8 1016static void
e286caf2
SC
1017m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1018 struct frame_info *frame, int regno)
78073dd8 1019{
e286caf2
SC
1020 LONGEST rval;
1021
1022 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1023 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1024 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1025 else
7f5f525d 1026 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1027
1028 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1029 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1030 {
e286caf2
SC
1031 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1032 if (regno != HARD_CCR_REGNUM)
1033 print_longest (file, 'd', 1, rval);
7df11f59 1034 }
e286caf2
SC
1035 else
1036 {
1037 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1038 {
1039 ULONGEST page;
7df11f59 1040
7f5f525d 1041 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1042 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1043 (unsigned) rval);
1044 }
1045 else
1046 {
1047 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1048 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1049 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1050 print_longest (file, 'd', 1, rval);
1051 }
1052 }
1053
1054 if (regno == HARD_CCR_REGNUM)
78073dd8 1055 {
e286caf2
SC
1056 /* CCR register */
1057 int C, Z, N, V;
1058 unsigned char l = rval & 0xff;
1059
1060 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1061 l & M6811_S_BIT ? 'S' : '-',
1062 l & M6811_X_BIT ? 'X' : '-',
1063 l & M6811_H_BIT ? 'H' : '-',
1064 l & M6811_I_BIT ? 'I' : '-',
1065 l & M6811_N_BIT ? 'N' : '-',
1066 l & M6811_Z_BIT ? 'Z' : '-',
1067 l & M6811_V_BIT ? 'V' : '-',
1068 l & M6811_C_BIT ? 'C' : '-');
1069 N = (l & M6811_N_BIT) != 0;
1070 Z = (l & M6811_Z_BIT) != 0;
1071 V = (l & M6811_V_BIT) != 0;
1072 C = (l & M6811_C_BIT) != 0;
1073
025bb325 1074 /* Print flags following the h8300. */
e286caf2
SC
1075 if ((C | Z) == 0)
1076 fprintf_filtered (file, "u> ");
1077 else if ((C | Z) == 1)
1078 fprintf_filtered (file, "u<= ");
1079 else if (C == 0)
1080 fprintf_filtered (file, "u< ");
1081
1082 if (Z == 0)
1083 fprintf_filtered (file, "!= ");
1084 else
1085 fprintf_filtered (file, "== ");
1086
1087 if ((N ^ V) == 0)
1088 fprintf_filtered (file, ">= ");
1089 else
1090 fprintf_filtered (file, "< ");
1091
1092 if ((Z | (N ^ V)) == 0)
1093 fprintf_filtered (file, "> ");
78073dd8 1094 else
e286caf2 1095 fprintf_filtered (file, "<= ");
78073dd8 1096 }
e286caf2
SC
1097}
1098
1099/* Same as 'info reg' but prints the registers in a different way. */
1100static void
1101m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1102 struct frame_info *frame, int regno, int cpregs)
1103{
1104 if (regno >= 0)
1105 {
1106 const char *name = gdbarch_register_name (gdbarch, regno);
1107
1108 if (!name || !*name)
1109 return;
1110
1111 fprintf_filtered (file, "%-10s ", name);
1112 m68hc11_print_register (gdbarch, file, frame, regno);
1113 fprintf_filtered (file, "\n");
1114 }
1115 else
1116 {
1117 int i, nr;
1118
1119 fprintf_filtered (file, "PC=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1121
1122 fprintf_filtered (file, " SP=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1124
1125 fprintf_filtered (file, " FP=");
1126 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1127
1128 fprintf_filtered (file, "\nCCR=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1130
1131 fprintf_filtered (file, "\nD=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1133
1134 fprintf_filtered (file, " X=");
1135 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1136
1137 fprintf_filtered (file, " Y=");
1138 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1139
1140 if (gdbarch_tdep (gdbarch)->use_page_register)
1141 {
1142 fprintf_filtered (file, "\nPage=");
1143 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1144 }
1145 fprintf_filtered (file, "\n");
1146
1147 nr = 0;
1148 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1149 {
1150 /* Skip registers which are not defined in the symbol table. */
1151 if (soft_regs[i].name == 0)
1152 continue;
1153
1154 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1155 m68hc11_print_register (gdbarch, file, frame, i);
1156 nr++;
1157 if ((nr % 8) == 7)
1158 fprintf_filtered (file, "\n");
1159 else
1160 fprintf_filtered (file, " ");
1161 }
1162 if (nr && (nr % 8) != 7)
1163 fprintf_filtered (file, "\n");
1164 }
1165}
1166
82c230c2 1167static CORE_ADDR
7d9b040b 1168m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1169 struct regcache *regcache, CORE_ADDR bp_addr,
1170 int nargs, struct value **args, CORE_ADDR sp,
1171 int struct_return, CORE_ADDR struct_addr)
78073dd8 1172{
e17a4113 1173 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
82c230c2
SC
1174 int argnum;
1175 int first_stack_argnum;
82c230c2
SC
1176 struct type *type;
1177 char *val;
1178 int len;
3dc990bf 1179 char buf[2];
82c230c2 1180
82c230c2
SC
1181 first_stack_argnum = 0;
1182 if (struct_return)
1183 {
ff1e98b9 1184 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1185 }
1186 else if (nargs > 0)
1187 {
4991999e 1188 type = value_type (args[0]);
82c230c2 1189 len = TYPE_LENGTH (type);
3dc990bf 1190
82c230c2
SC
1191 /* First argument is passed in D and X registers. */
1192 if (len <= 4)
1193 {
3dc990bf
SC
1194 ULONGEST v;
1195
e17a4113
UW
1196 v = extract_unsigned_integer (value_contents (args[0]),
1197 len, byte_order);
82c230c2 1198 first_stack_argnum = 1;
3dc990bf
SC
1199
1200 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1201 if (len > 2)
1202 {
1203 v >>= 16;
3dc990bf 1204 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1205 }
1206 }
1207 }
82c230c2 1208
3dc990bf 1209 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1210 {
4991999e 1211 type = value_type (args[argnum]);
82c230c2
SC
1212 len = TYPE_LENGTH (type);
1213
22df305e
SC
1214 if (len & 1)
1215 {
1216 static char zero = 0;
1217
3dc990bf
SC
1218 sp--;
1219 write_memory (sp, &zero, 1);
22df305e 1220 }
0fd88904 1221 val = (char*) value_contents (args[argnum]);
3dc990bf
SC
1222 sp -= len;
1223 write_memory (sp, val, len);
82c230c2 1224 }
3dc990bf
SC
1225
1226 /* Store return address. */
1227 sp -= 2;
e17a4113 1228 store_unsigned_integer (buf, 2, byte_order, bp_addr);
3dc990bf
SC
1229 write_memory (sp, buf, 2);
1230
1231 /* Finally, update the stack pointer... */
be8626e0 1232 sp -= STACK_CORRECTION (gdbarch);
3dc990bf
SC
1233 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1234
1235 /* ...and fake a frame pointer. */
1236 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1237
1238 /* DWARF2/GCC uses the stack address *before* the function call as a
1239 frame's CFA. */
1240 return sp + 2;
78073dd8
AC
1241}
1242
1243
4db73d49
SC
1244/* Return the GDB type object for the "standard" data type
1245 of data in register N. */
1246
82c230c2 1247static struct type *
4db73d49 1248m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1249{
5706502a
SC
1250 switch (reg_nr)
1251 {
1252 case HARD_PAGE_REGNUM:
1253 case HARD_A_REGNUM:
1254 case HARD_B_REGNUM:
1255 case HARD_CCR_REGNUM:
df4df182 1256 return builtin_type (gdbarch)->builtin_uint8;
5706502a 1257
548bcbec 1258 case M68HC12_HARD_PC_REGNUM:
df4df182 1259 return builtin_type (gdbarch)->builtin_uint32;
548bcbec 1260
5706502a 1261 default:
df4df182 1262 return builtin_type (gdbarch)->builtin_uint16;
5706502a 1263 }
82c230c2
SC
1264}
1265
82c230c2 1266static void
4db73d49
SC
1267m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1268 const void *valbuf)
82c230c2 1269{
22df305e
SC
1270 int len;
1271
1272 len = TYPE_LENGTH (type);
1273
1274 /* First argument is passed in D and X registers. */
4db73d49
SC
1275 if (len <= 2)
1276 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1277 else if (len <= 4)
22df305e 1278 {
4db73d49
SC
1279 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1280 len - 2, valbuf);
1281 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1282 }
1283 else
8a3fe4f8 1284 error (_("return of value > 4 is not supported."));
82c230c2
SC
1285}
1286
1287
ef2b8fcd 1288/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1289 extract and copy its value into `valbuf'. */
1290
82c230c2 1291static void
ef2b8fcd
SC
1292m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1293 void *valbuf)
78073dd8 1294{
82c230c2 1295 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1296 char buf[M68HC11_REG_SIZE];
1297
1298 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1299 switch (len)
82c230c2 1300 {
22df305e 1301 case 1:
ef2b8fcd 1302 memcpy (valbuf, buf + 1, 1);
22df305e 1303 break;
ef2b8fcd 1304
22df305e 1305 case 2:
ef2b8fcd 1306 memcpy (valbuf, buf, 2);
22df305e 1307 break;
ef2b8fcd 1308
22df305e 1309 case 3:
ef2b8fcd
SC
1310 memcpy ((char*) valbuf + 1, buf, 2);
1311 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1312 memcpy (valbuf, buf + 1, 1);
22df305e 1313 break;
ef2b8fcd 1314
22df305e 1315 case 4:
ef2b8fcd
SC
1316 memcpy ((char*) valbuf + 2, buf, 2);
1317 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1318 memcpy (valbuf, buf, 2);
22df305e
SC
1319 break;
1320
1321 default:
8a3fe4f8 1322 error (_("bad size for return value"));
82c230c2
SC
1323 }
1324}
1325
63807e1d 1326static enum return_value_convention
c055b101
CV
1327m68hc11_return_value (struct gdbarch *gdbarch, struct type *func_type,
1328 struct type *valtype, struct regcache *regcache,
1329 gdb_byte *readbuf, const gdb_byte *writebuf)
82c230c2 1330{
97092415
AC
1331 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1332 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1333 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1334 || TYPE_LENGTH (valtype) > 4)
1335 return RETURN_VALUE_STRUCT_CONVENTION;
1336 else
1337 {
1338 if (readbuf != NULL)
1339 m68hc11_extract_return_value (valtype, regcache, readbuf);
1340 if (writebuf != NULL)
1341 m68hc11_store_return_value (valtype, regcache, writebuf);
1342 return RETURN_VALUE_REGISTER_CONVENTION;
1343 }
82c230c2
SC
1344}
1345
7df11f59
SC
1346/* Test whether the ELF symbol corresponds to a function using rtc or
1347 rti to return. */
1348
1349static void
1350m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1351{
1352 unsigned char flags;
1353
1354 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1355 if (flags & STO_M68HC12_FAR)
1356 MSYMBOL_SET_RTC (msym);
1357 if (flags & STO_M68HC12_INTERRUPT)
1358 MSYMBOL_SET_RTI (msym);
1359}
1360
ea3881d9
SC
1361static int
1362gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1363{
9dae60cc 1364 if (info->arch == bfd_arch_m68hc11)
ea3881d9
SC
1365 return print_insn_m68hc11 (memaddr, info);
1366 else
1367 return print_insn_m68hc12 (memaddr, info);
1368}
1369
b631436b
SC
1370\f
1371
1372/* 68HC11/68HC12 register groups.
1373 Identify real hard registers and soft registers used by gcc. */
1374
1375static struct reggroup *m68hc11_soft_reggroup;
1376static struct reggroup *m68hc11_hard_reggroup;
1377
1378static void
1379m68hc11_init_reggroups (void)
1380{
1381 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1382 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1383}
1384
1385static void
1386m68hc11_add_reggroups (struct gdbarch *gdbarch)
1387{
1388 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1389 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1390 reggroup_add (gdbarch, general_reggroup);
1391 reggroup_add (gdbarch, float_reggroup);
1392 reggroup_add (gdbarch, all_reggroup);
1393 reggroup_add (gdbarch, save_reggroup);
1394 reggroup_add (gdbarch, restore_reggroup);
1395 reggroup_add (gdbarch, vector_reggroup);
1396 reggroup_add (gdbarch, system_reggroup);
1397}
1398
1399static int
1400m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1401 struct reggroup *group)
1402{
1403 /* We must save the real hard register as well as gcc
1404 soft registers including the frame pointer. */
1405 if (group == save_reggroup || group == restore_reggroup)
1406 {
1407 return (regnum <= gdbarch_num_regs (gdbarch)
1408 || ((regnum == SOFT_FP_REGNUM
1409 || regnum == SOFT_TMP_REGNUM
1410 || regnum == SOFT_ZS_REGNUM
1411 || regnum == SOFT_XY_REGNUM)
d93859e2 1412 && m68hc11_register_name (gdbarch, regnum)));
b631436b
SC
1413 }
1414
1415 /* Group to identify gcc soft registers (d1..dN). */
1416 if (group == m68hc11_soft_reggroup)
1417 {
d93859e2
UW
1418 return regnum >= SOFT_D1_REGNUM
1419 && m68hc11_register_name (gdbarch, regnum);
b631436b
SC
1420 }
1421
1422 if (group == m68hc11_hard_reggroup)
1423 {
1424 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1425 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1426 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1427 }
1428 return default_register_reggroup_p (gdbarch, regnum, group);
1429}
1430
82c230c2
SC
1431static struct gdbarch *
1432m68hc11_gdbarch_init (struct gdbarch_info info,
1433 struct gdbarch_list *arches)
1434{
82c230c2
SC
1435 struct gdbarch *gdbarch;
1436 struct gdbarch_tdep *tdep;
81967506 1437 int elf_flags;
82c230c2
SC
1438
1439 soft_reg_initialized = 0;
81967506
SC
1440
1441 /* Extract the elf_flags if available. */
1442 if (info.abfd != NULL
1443 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1444 elf_flags = elf_elfheader (info.abfd)->e_flags;
1445 else
1446 elf_flags = 0;
1447
025bb325 1448 /* Try to find a pre-existing architecture. */
82c230c2
SC
1449 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1450 arches != NULL;
1451 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1452 {
81967506
SC
1453 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1454 continue;
1455
82c230c2
SC
1456 return arches->gdbarch;
1457 }
1458
025bb325 1459 /* Need a new architecture. Fill in a target specific vector. */
82c230c2
SC
1460 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1461 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1462 tdep->elf_flags = elf_flags;
ed99b3d0 1463
5d1a66bd
SC
1464 switch (info.bfd_arch_info->arch)
1465 {
1466 case bfd_arch_m68hc11:
1467 tdep->stack_correction = 1;
7df11f59 1468 tdep->use_page_register = 0;
908f682f 1469 tdep->prologue = m6811_prologue;
548bcbec
SC
1470 set_gdbarch_addr_bit (gdbarch, 16);
1471 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1472 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1473 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1474 break;
82c230c2 1475
5d1a66bd
SC
1476 case bfd_arch_m68hc12:
1477 tdep->stack_correction = 0;
7df11f59 1478 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1479 tdep->prologue = m6812_prologue;
548bcbec
SC
1480 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1481 set_gdbarch_num_pseudo_regs (gdbarch,
1482 elf_flags & E_M68HC12_BANKS
1483 ? M68HC12_NUM_PSEUDO_REGS
1484 : M68HC11_NUM_PSEUDO_REGS);
1485 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1486 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1487 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1488 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1489 break;
1490
1491 default:
1492 break;
1493 }
7d32ba20
SC
1494
1495 /* Initially set everything according to the ABI.
1496 Use 16-bit integers since it will be the case for most
1497 programs. The size of these types should normally be set
1498 according to the dwarf2 debug information. */
82c230c2 1499 set_gdbarch_short_bit (gdbarch, 16);
81967506 1500 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1501 set_gdbarch_float_bit (gdbarch, 32);
81967506 1502 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1503 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1504 set_gdbarch_long_bit (gdbarch, 32);
1505 set_gdbarch_ptr_bit (gdbarch, 16);
1506 set_gdbarch_long_long_bit (gdbarch, 64);
1507
b2a02dda
SC
1508 /* Characters are unsigned. */
1509 set_gdbarch_char_signed (gdbarch, 0);
1510
1ea653ae
SC
1511 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1512 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1513
82c230c2
SC
1514 /* Set register info. */
1515 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1516
82c230c2 1517 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1518 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1519 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1520 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1521 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1522
3dc990bf
SC
1523 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1524
97092415 1525 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1526 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1527 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1528 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
70ed8774 1529 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1530
b631436b
SC
1531 m68hc11_add_reggroups (gdbarch);
1532 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1533 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1534
1ea653ae 1535 /* Hook in the DWARF CFI frame unwinder. */
94afd7a6 1536 dwarf2_append_unwinders (gdbarch);
1ea653ae 1537
94afd7a6 1538 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1ea653ae
SC
1539 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1540
1541 /* Methods for saving / extracting a dummy frame's ID. The ID's
1542 stack address must match the SP value returned by
1543 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1544 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1ea653ae
SC
1545
1546 /* Return the unwound PC value. */
1547 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1548
7df11f59
SC
1549 /* Minsymbol frobbing. */
1550 set_gdbarch_elf_make_msymbol_special (gdbarch,
1551 m68hc11_elf_make_msymbol_special);
1552
82c230c2 1553 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1554
1555 return gdbarch;
78073dd8
AC
1556}
1557
025bb325
MS
1558/* -Wmissing-prototypes */
1559extern initialize_file_ftype _initialize_m68hc11_tdep;
a78f21af 1560
78073dd8 1561void
fba45db2 1562_initialize_m68hc11_tdep (void)
78073dd8 1563{
82c230c2 1564 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1565 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1566 m68hc11_init_reggroups ();
78073dd8
AC
1567}
1568
This page took 0.931343 seconds and 4 git commands to generate.