*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
197e01b6 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
931aecf5
AC
4 Foundation, Inc.
5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8
AC
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
197e01b6
EZ
22Foundation, Inc., 51 Franklin Street, Fifth Floor,
23Boston, MA 02110-1301, USA. */
78073dd8 24
78073dd8 25
82c230c2
SC
26#include "defs.h"
27#include "frame.h"
1ea653ae
SC
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "dwarf2-frame.h"
31#include "trad-frame.h"
82c230c2
SC
32#include "symtab.h"
33#include "gdbtypes.h"
34#include "gdbcmd.h"
35#include "gdbcore.h"
36#include "gdb_string.h"
37#include "value.h"
38#include "inferior.h"
39#include "dis-asm.h"
40#include "symfile.h"
41#include "objfiles.h"
42#include "arch-utils.h"
4e052eda 43#include "regcache.h"
b631436b 44#include "reggroups.h"
78073dd8 45
82c230c2
SC
46#include "target.h"
47#include "opcode/m68hc11.h"
81967506
SC
48#include "elf/m68hc11.h"
49#include "elf-bfd.h"
78073dd8 50
7df11f59
SC
51/* Macros for setting and testing a bit in a minimal symbol.
52 For 68HC11/68HC12 we have two flags that tell which return
53 type the function is using. This is used for prologue and frame
54 analysis to compute correct stack frame layout.
55
56 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
57
58 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
59 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
60 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 61 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59
SC
62
63#define MSYMBOL_SET_RTC(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67#define MSYMBOL_SET_RTI(msym) \
68 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
69 | 0x40000000)
70
71#define MSYMBOL_IS_RTC(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
73
74#define MSYMBOL_IS_RTI(msym) \
75 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
76
7df11f59
SC
77enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81};
82
83
78073dd8
AC
84/* Register numbers of various important registers.
85 Note that some of these values are "real" register numbers,
86 and correspond to the general registers of the machine,
87 and some are "phony" register numbers which are too large
88 to be actual register numbers as far as the user is concerned
89 but do serve to get the desired values when passed to read_register. */
90
82c230c2
SC
91#define HARD_X_REGNUM 0
92#define HARD_D_REGNUM 1
93#define HARD_Y_REGNUM 2
94#define HARD_SP_REGNUM 3
95#define HARD_PC_REGNUM 4
96
97#define HARD_A_REGNUM 5
98#define HARD_B_REGNUM 6
99#define HARD_CCR_REGNUM 7
5706502a
SC
100
101/* 68HC12 page number register.
102 Note: to keep a compatibility with gcc register naming, we must
103 not have to rename FP and other soft registers. The page register
104 is a real hard register and must therefore be counted by NUM_REGS.
105 For this it has the same number as Z register (which is not used). */
106#define HARD_PAGE_REGNUM 8
107#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
108
109/* Z is replaced by X or Y by gcc during machine reorg.
110 ??? There is no way to get it and even know whether
111 it's in X or Y or in ZS. */
112#define SOFT_Z_REGNUM 8
113
114/* Soft registers. These registers are special. There are treated
115 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
116 They are physically located in memory. */
117#define SOFT_FP_REGNUM 9
118#define SOFT_TMP_REGNUM 10
119#define SOFT_ZS_REGNUM 11
120#define SOFT_XY_REGNUM 12
f91a8b6b
SC
121#define SOFT_UNUSED_REGNUM 13
122#define SOFT_D1_REGNUM 14
82c230c2
SC
123#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
124#define M68HC11_MAX_SOFT_REGS 32
125
126#define M68HC11_NUM_REGS (8)
127#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
128#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
129
130#define M68HC11_REG_SIZE (2)
131
548bcbec
SC
132#define M68HC12_NUM_REGS (9)
133#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
134#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
135
908f682f 136struct insn_sequence;
82c230c2
SC
137struct gdbarch_tdep
138 {
5d1a66bd
SC
139 /* Stack pointer correction value. For 68hc11, the stack pointer points
140 to the next push location. An offset of 1 must be applied to obtain
141 the address where the last value is saved. For 68hc12, the stack
142 pointer points to the last value pushed. No offset is necessary. */
143 int stack_correction;
908f682f
SC
144
145 /* Description of instructions in the prologue. */
146 struct insn_sequence *prologue;
81967506 147
7df11f59
SC
148 /* True if the page memory bank register is available
149 and must be used. */
150 int use_page_register;
151
81967506
SC
152 /* ELF flags for ABI. */
153 int elf_flags;
82c230c2
SC
154 };
155
5d1a66bd
SC
156#define M6811_TDEP gdbarch_tdep (current_gdbarch)
157#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 158#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 159
1ea653ae
SC
160struct m68hc11_unwind_cache
161{
162 /* The previous frame's inner most stack address. Used as this
163 frame ID's stack_addr. */
164 CORE_ADDR prev_sp;
165 /* The frame's base, optionally used by the high-level debug info. */
166 CORE_ADDR base;
167 CORE_ADDR pc;
168 int size;
169 int prologue_type;
170 CORE_ADDR return_pc;
171 CORE_ADDR sp_offset;
172 int frameless;
173 enum insn_return_kind return_kind;
174
175 /* Table indicating the location of each and every register. */
176 struct trad_frame_saved_reg *saved_regs;
177};
178
82c230c2
SC
179/* Table of registers for 68HC11. This includes the hard registers
180 and the soft registers used by GCC. */
181static char *
182m68hc11_register_names[] =
183{
184 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 185 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
186 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
187 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
188 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
189 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
190 "d29", "d30", "d31", "d32"
191};
78073dd8 192
82c230c2
SC
193struct m68hc11_soft_reg
194{
195 const char *name;
196 CORE_ADDR addr;
197};
78073dd8 198
82c230c2 199static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 200
82c230c2 201#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 202
82c230c2
SC
203static int soft_min_addr;
204static int soft_max_addr;
205static int soft_reg_initialized = 0;
78073dd8 206
82c230c2
SC
207/* Look in the symbol table for the address of a pseudo register
208 in memory. If we don't find it, pretend the register is not used
209 and not available. */
210static void
211m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
212{
213 struct minimal_symbol *msymbol;
78073dd8 214
82c230c2
SC
215 msymbol = lookup_minimal_symbol (name, NULL, NULL);
216 if (msymbol)
217 {
218 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
219 reg->name = xstrdup (name);
220
221 /* Keep track of the address range for soft registers. */
222 if (reg->addr < (CORE_ADDR) soft_min_addr)
223 soft_min_addr = reg->addr;
224 if (reg->addr > (CORE_ADDR) soft_max_addr)
225 soft_max_addr = reg->addr;
226 }
227 else
228 {
229 reg->name = 0;
230 reg->addr = 0;
231 }
232}
78073dd8 233
82c230c2
SC
234/* Initialize the table of soft register addresses according
235 to the symbol table. */
236 static void
237m68hc11_initialize_register_info (void)
238{
239 int i;
78073dd8 240
82c230c2
SC
241 if (soft_reg_initialized)
242 return;
243
244 soft_min_addr = INT_MAX;
245 soft_max_addr = 0;
246 for (i = 0; i < M68HC11_ALL_REGS; i++)
247 {
248 soft_regs[i].name = 0;
249 }
250
251 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
252 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
253 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
254 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
255 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 256
82c230c2
SC
257 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
258 {
259 char buf[10];
78073dd8 260
82c230c2
SC
261 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
262 m68hc11_get_register_info (&soft_regs[i], buf);
263 }
78073dd8 264
82c230c2 265 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
266 warning (_("No frame soft register found in the symbol table.\n"
267 "Stack backtrace will not work."));
82c230c2
SC
268 soft_reg_initialized = 1;
269}
78073dd8 270
82c230c2
SC
271/* Given an address in memory, return the soft register number if
272 that address corresponds to a soft register. Returns -1 if not. */
273static int
274m68hc11_which_soft_register (CORE_ADDR addr)
275{
276 int i;
277
278 if (addr < soft_min_addr || addr > soft_max_addr)
279 return -1;
280
281 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
282 {
283 if (soft_regs[i].name && soft_regs[i].addr == addr)
284 return i;
285 }
286 return -1;
287}
78073dd8 288
82c230c2
SC
289/* Fetch a pseudo register. The 68hc11 soft registers are treated like
290 pseudo registers. They are located in memory. Translate the register
291 fetch into a memory read. */
46ce284d
AC
292static void
293m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
294 struct regcache *regcache,
ff1e98b9 295 int regno, gdb_byte *buf)
82c230c2 296{
548bcbec
SC
297 /* The PC is a pseudo reg only for 68HC12 with the memory bank
298 addressing mode. */
299 if (regno == M68HC12_HARD_PC_REGNUM)
300 {
4db73d49 301 ULONGEST pc;
548bcbec 302 const int regsize = TYPE_LENGTH (builtin_type_uint32);
548bcbec 303
4db73d49 304 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
548bcbec
SC
305 if (pc >= 0x8000 && pc < 0xc000)
306 {
4db73d49
SC
307 ULONGEST page;
308
309 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
310 pc -= 0x8000;
311 pc += (page << 14);
312 pc += 0x1000000;
313 }
314 store_unsigned_integer (buf, regsize, pc);
315 return;
316 }
317
82c230c2
SC
318 m68hc11_initialize_register_info ();
319
320 /* Fetch a soft register: translate into a memory read. */
321 if (soft_regs[regno].name)
322 {
323 target_read_memory (soft_regs[regno].addr, buf, 2);
324 }
325 else
326 {
327 memset (buf, 0, 2);
328 }
82c230c2 329}
78073dd8 330
82c230c2
SC
331/* Store a pseudo register. Translate the register store
332 into a memory write. */
333static void
46ce284d
AC
334m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
335 struct regcache *regcache,
ff1e98b9 336 int regno, const gdb_byte *buf)
82c230c2 337{
548bcbec
SC
338 /* The PC is a pseudo reg only for 68HC12 with the memory bank
339 addressing mode. */
340 if (regno == M68HC12_HARD_PC_REGNUM)
341 {
342 const int regsize = TYPE_LENGTH (builtin_type_uint32);
343 char *tmp = alloca (regsize);
344 CORE_ADDR pc;
345
346 memcpy (tmp, buf, regsize);
347 pc = extract_unsigned_integer (tmp, regsize);
348 if (pc >= 0x1000000)
349 {
350 pc -= 0x1000000;
4db73d49
SC
351 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
352 (pc >> 14) & 0x0ff);
548bcbec 353 pc &= 0x03fff;
4db73d49
SC
354 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
355 pc + 0x8000);
548bcbec
SC
356 }
357 else
4db73d49 358 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
359 return;
360 }
361
82c230c2 362 m68hc11_initialize_register_info ();
78073dd8 363
82c230c2
SC
364 /* Store a soft register: translate into a memory write. */
365 if (soft_regs[regno].name)
366 {
46ce284d
AC
367 const int regsize = 2;
368 char *tmp = alloca (regsize);
369 memcpy (tmp, buf, regsize);
370 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
371 }
372}
78073dd8 373
fa88f677 374static const char *
82c230c2 375m68hc11_register_name (int reg_nr)
78073dd8 376{
548bcbec
SC
377 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
378 return "pc";
379 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
380 return "ppc";
381
82c230c2
SC
382 if (reg_nr < 0)
383 return NULL;
384 if (reg_nr >= M68HC11_ALL_REGS)
385 return NULL;
386
65760afb
SC
387 m68hc11_initialize_register_info ();
388
82c230c2
SC
389 /* If we don't know the address of a soft register, pretend it
390 does not exist. */
391 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
392 return NULL;
393 return m68hc11_register_names[reg_nr];
394}
78073dd8 395
f4f9705a 396static const unsigned char *
82c230c2 397m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 398{
82c230c2
SC
399 static unsigned char breakpoint[] = {0x0};
400
401 *lenptr = sizeof (breakpoint);
402 return breakpoint;
78073dd8
AC
403}
404
908f682f
SC
405\f
406/* 68HC11 & 68HC12 prologue analysis.
407
408 */
409#define MAX_CODES 12
410
411/* 68HC11 opcodes. */
412#undef M6811_OP_PAGE2
b94a41a1
SC
413#define M6811_OP_PAGE2 (0x18)
414#define M6811_OP_LDX (0xde)
415#define M6811_OP_LDX_EXT (0xfe)
416#define M6811_OP_PSHX (0x3c)
417#define M6811_OP_STS (0x9f)
418#define M6811_OP_STS_EXT (0xbf)
419#define M6811_OP_TSX (0x30)
420#define M6811_OP_XGDX (0x8f)
421#define M6811_OP_ADDD (0xc3)
422#define M6811_OP_TXS (0x35)
423#define M6811_OP_DES (0x34)
908f682f
SC
424
425/* 68HC12 opcodes. */
b94a41a1
SC
426#define M6812_OP_PAGE2 (0x18)
427#define M6812_OP_MOVW (0x01)
428#define M6812_PB_PSHW (0xae)
429#define M6812_OP_STS (0x5f)
430#define M6812_OP_STS_EXT (0x7f)
431#define M6812_OP_LEAS (0x1b)
432#define M6812_OP_PSHX (0x34)
433#define M6812_OP_PSHY (0x35)
908f682f
SC
434
435/* Operand extraction. */
436#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
437#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
438#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
439#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
440
441/* Identification of the sequence. */
442enum m6811_seq_type
443{
444 P_LAST = 0,
445 P_SAVE_REG, /* Save a register on the stack. */
446 P_SET_FRAME, /* Setup the frame pointer. */
447 P_LOCAL_1, /* Allocate 1 byte for locals. */
448 P_LOCAL_2, /* Allocate 2 bytes for locals. */
449 P_LOCAL_N /* Allocate N bytes for locals. */
450};
451
452struct insn_sequence {
453 enum m6811_seq_type type;
454 unsigned length;
455 unsigned short code[MAX_CODES];
456};
457
458/* Sequence of instructions in the 68HC11 function prologue. */
459static struct insn_sequence m6811_prologue[] = {
460 /* Sequences to save a soft-register. */
461 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
462 M6811_OP_PSHX } },
463 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
464 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
465 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
466 M6811_OP_PSHX } },
467 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
468 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
469
470 /* Sequences to allocate local variables. */
471 { P_LOCAL_N, 7, { M6811_OP_TSX,
472 M6811_OP_XGDX,
473 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
474 M6811_OP_XGDX,
475 M6811_OP_TXS } },
476 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
477 M6811_OP_PAGE2, M6811_OP_XGDX,
478 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
479 M6811_OP_PAGE2, M6811_OP_XGDX,
480 M6811_OP_PAGE2, M6811_OP_TXS } },
481 { P_LOCAL_1, 1, { M6811_OP_DES } },
482 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
483 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
484
485 /* Initialize the frame pointer. */
486 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 487 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
488 { P_LAST, 0, { 0 } }
489};
490
491
492/* Sequence of instructions in the 68HC12 function prologue. */
493static struct insn_sequence m6812_prologue[] = {
494 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
495 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
496 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
497 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 498 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
499 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
500 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
501 { P_LAST, 0 }
502};
503
504
505/* Analyze the sequence of instructions starting at the given address.
506 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 507 the optional value (constant/address) associated with it. */
908f682f 508static struct insn_sequence *
c8a7f6ac 509m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
510 CORE_ADDR *val)
511{
512 unsigned char buffer[MAX_CODES];
513 unsigned bufsize;
514 unsigned j;
515 CORE_ADDR cur_val;
516 short v = 0;
517
518 bufsize = 0;
519 for (; seq->type != P_LAST; seq++)
520 {
521 cur_val = 0;
522 for (j = 0; j < seq->length; j++)
523 {
524 if (bufsize < j + 1)
525 {
c8a7f6ac 526 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
908f682f
SC
527 1);
528 bufsize++;
529 }
530 /* Continue while we match the opcode. */
531 if (seq->code[j] == buffer[j])
532 continue;
533
534 if ((seq->code[j] & 0xf00) == 0)
535 break;
536
537 /* Extract a sequence parameter (address or constant). */
538 switch (seq->code[j])
539 {
540 case OP_DIRECT:
541 cur_val = (CORE_ADDR) buffer[j];
542 break;
543
544 case OP_IMM_HIGH:
545 cur_val = cur_val & 0x0ff;
546 cur_val |= (buffer[j] << 8);
547 break;
548
549 case OP_IMM_LOW:
550 cur_val &= 0x0ff00;
551 cur_val |= buffer[j];
552 break;
553
554 case OP_PBYTE:
555 if ((buffer[j] & 0xE0) == 0x80)
556 {
557 v = buffer[j] & 0x1f;
558 if (v & 0x10)
559 v |= 0xfff0;
560 }
561 else if ((buffer[j] & 0xfe) == 0xf0)
562 {
c8a7f6ac 563 v = read_memory_unsigned_integer (pc + j + 1, 1);
908f682f
SC
564 if (buffer[j] & 1)
565 v |= 0xff00;
566 }
567 else if (buffer[j] == 0xf2)
568 {
c8a7f6ac 569 v = read_memory_unsigned_integer (pc + j + 1, 2);
908f682f
SC
570 }
571 cur_val = v;
572 break;
573 }
574 }
575
576 /* We have a full match. */
577 if (j == seq->length)
578 {
579 *val = cur_val;
908f682f
SC
580 return seq;
581 }
582 }
583 return 0;
584}
585
7df11f59
SC
586/* Return the instruction that the function at the PC is using. */
587static enum insn_return_kind
588m68hc11_get_return_insn (CORE_ADDR pc)
589{
590 struct minimal_symbol *sym;
591
592 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
593 function is stored by elfread.c in the high bit of the info field.
594 Use this to decide which instruction the function uses to return. */
595 sym = lookup_minimal_symbol_by_pc (pc);
596 if (sym == 0)
597 return RETURN_RTS;
598
599 if (MSYMBOL_IS_RTC (sym))
600 return RETURN_RTC;
601 else if (MSYMBOL_IS_RTI (sym))
602 return RETURN_RTI;
603 else
604 return RETURN_RTS;
605}
606
78073dd8
AC
607/* Analyze the function prologue to find some information
608 about the function:
609 - the PC of the first line (for m68hc11_skip_prologue)
610 - the offset of the previous frame saved address (from current frame)
611 - the soft registers which are pushed. */
1ea653ae
SC
612static CORE_ADDR
613m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
614 struct m68hc11_unwind_cache *info)
78073dd8 615{
1ea653ae 616 LONGEST save_addr;
78073dd8 617 CORE_ADDR func_end;
78073dd8
AC
618 int size;
619 int found_frame_point;
82c230c2 620 int saved_reg;
908f682f
SC
621 int done = 0;
622 struct insn_sequence *seq_table;
1ea653ae
SC
623
624 info->size = 0;
625 info->sp_offset = 0;
626 if (pc >= current_pc)
627 return current_pc;
628
78073dd8
AC
629 size = 0;
630
82c230c2 631 m68hc11_initialize_register_info ();
1ea653ae 632 if (pc == 0)
78073dd8 633 {
1ea653ae
SC
634 info->size = 0;
635 return pc;
78073dd8
AC
636 }
637
908f682f
SC
638 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
639
78073dd8
AC
640 /* The 68hc11 stack is as follows:
641
642
643 | |
644 +-----------+
645 | |
646 | args |
647 | |
648 +-----------+
649 | PC-return |
650 +-----------+
651 | Old frame |
652 +-----------+
653 | |
654 | Locals |
655 | |
656 +-----------+ <--- current frame
657 | |
658
659 With most processors (like 68K) the previous frame can be computed
660 easily because it is always at a fixed offset (see link/unlink).
661 That is, locals are accessed with negative offsets, arguments are
662 accessed with positive ones. Since 68hc11 only supports offsets
663 in the range [0..255], the frame is defined at the bottom of
664 locals (see picture).
665
666 The purpose of the analysis made here is to find out the size
667 of locals in this function. An alternative to this is to use
668 DWARF2 info. This would be better but I don't know how to
669 access dwarf2 debug from this function.
670
671 Walk from the function entry point to the point where we save
672 the frame. While walking instructions, compute the size of bytes
673 which are pushed. This gives us the index to access the previous
674 frame.
675
676 We limit the search to 128 bytes so that the algorithm is bounded
677 in case of random and wrong code. We also stop and abort if
678 we find an instruction which is not supposed to appear in the
679 prologue (as generated by gcc 2.95, 2.96).
680 */
78073dd8 681 func_end = pc + 128;
78073dd8 682 found_frame_point = 0;
1ea653ae
SC
683 info->size = 0;
684 save_addr = 0;
908f682f 685 while (!done && pc + 2 < func_end)
78073dd8 686 {
908f682f
SC
687 struct insn_sequence *seq;
688 CORE_ADDR val;
1ea653ae 689
c8a7f6ac 690 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
908f682f
SC
691 if (seq == 0)
692 break;
78073dd8 693
c8a7f6ac
SC
694 /* If we are within the instruction group, we can't advance the
695 pc nor the stack offset. Otherwise the caller's stack computed
696 from the current stack can be wrong. */
697 if (pc + seq->length > current_pc)
698 break;
699
700 pc = pc + seq->length;
908f682f 701 if (seq->type == P_SAVE_REG)
78073dd8 702 {
908f682f
SC
703 if (found_frame_point)
704 {
705 saved_reg = m68hc11_which_soft_register (val);
706 if (saved_reg < 0)
707 break;
78073dd8 708
908f682f 709 save_addr -= 2;
ff1e98b9
SC
710 if (info->saved_regs)
711 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
712 }
713 else
714 {
715 size += 2;
716 }
78073dd8 717 }
908f682f 718 else if (seq->type == P_SET_FRAME)
78073dd8
AC
719 {
720 found_frame_point = 1;
1ea653ae 721 info->size = size;
78073dd8 722 }
908f682f 723 else if (seq->type == P_LOCAL_1)
78073dd8 724 {
6148eca7
SC
725 size += 1;
726 }
908f682f 727 else if (seq->type == P_LOCAL_2)
78073dd8 728 {
908f682f 729 size += 2;
78073dd8 730 }
908f682f 731 else if (seq->type == P_LOCAL_N)
78073dd8 732 {
908f682f
SC
733 /* Stack pointer is decremented for the allocation. */
734 if (val & 0x8000)
735 size -= (int) (val) | 0xffff0000;
736 else
737 size -= val;
78073dd8
AC
738 }
739 }
1ea653ae
SC
740 if (found_frame_point == 0)
741 info->sp_offset = size;
742 else
743 info->sp_offset = -1;
744 return pc;
78073dd8
AC
745}
746
82c230c2 747static CORE_ADDR
78073dd8
AC
748m68hc11_skip_prologue (CORE_ADDR pc)
749{
750 CORE_ADDR func_addr, func_end;
751 struct symtab_and_line sal;
1ea653ae 752 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 753
82c230c2
SC
754 /* If we have line debugging information, then the end of the
755 prologue should be the first assembly instruction of the
78073dd8
AC
756 first source line. */
757 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
758 {
759 sal = find_pc_line (func_addr, 0);
760 if (sal.end && sal.end < func_end)
761 return sal.end;
762 }
763
1ea653ae 764 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
765 return pc;
766}
767
1ea653ae
SC
768static CORE_ADDR
769m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
770{
771 ULONGEST pc;
772
773 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
774 &pc);
775 return pc;
776}
777
778/* Put here the code to store, into fi->saved_regs, the addresses of
779 the saved registers of frame described by FRAME_INFO. This
780 includes special registers such as pc and fp saved in special ways
781 in the stack frame. sp is even more special: the address we return
782 for it IS the sp for the next frame. */
783
784struct m68hc11_unwind_cache *
785m68hc11_frame_unwind_cache (struct frame_info *next_frame,
786 void **this_prologue_cache)
787{
788 ULONGEST prev_sp;
789 ULONGEST this_base;
790 struct m68hc11_unwind_cache *info;
791 CORE_ADDR current_pc;
792 int i;
793
794 if ((*this_prologue_cache))
795 return (*this_prologue_cache);
796
797 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
798 (*this_prologue_cache) = info;
799 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
800
801 info->pc = frame_func_unwind (next_frame);
802
803 info->size = 0;
804 info->return_kind = m68hc11_get_return_insn (info->pc);
805
806 /* The SP was moved to the FP. This indicates that a new frame
807 was created. Get THIS frame's FP value by unwinding it from
808 the next frame. */
809 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
810 if (this_base == 0)
811 {
812 info->base = 0;
813 return info;
814 }
815
816 current_pc = frame_pc_unwind (next_frame);
817 if (info->pc != 0)
818 m68hc11_scan_prologue (info->pc, current_pc, info);
819
820 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
821
822 if (info->sp_offset != (CORE_ADDR) -1)
823 {
824 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
825 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
826 prev_sp = this_base + info->sp_offset + 2;
827 this_base += STACK_CORRECTION;
828 }
829 else
830 {
831 /* The FP points at the last saved register. Adjust the FP back
832 to before the first saved register giving the SP. */
833 prev_sp = this_base + info->size + 2;
834
835 this_base += STACK_CORRECTION;
836 if (soft_regs[SOFT_FP_REGNUM].name)
837 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
838 }
839
840 if (info->return_kind == RETURN_RTC)
841 {
842 prev_sp += 1;
843 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
844 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
845 }
846 else if (info->return_kind == RETURN_RTI)
847 {
848 prev_sp += 7;
849 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
850 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
851 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
852 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
853 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
854 }
855
856 /* Add 1 here to adjust for the post-decrement nature of the push
857 instruction.*/
858 info->prev_sp = prev_sp;
859
860 info->base = this_base;
861
862 /* Adjust all the saved registers so that they contain addresses and not
863 offsets. */
864 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
865 if (trad_frame_addr_p (info->saved_regs, i))
866 {
867 info->saved_regs[i].addr += this_base;
868 }
869
870 /* The previous frame's SP needed to be computed. Save the computed
871 value. */
872 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
873
874 return info;
875}
876
877/* Given a GDB frame, determine the address of the calling function's
878 frame. This will be used to create a new GDB frame struct. */
879
880static void
881m68hc11_frame_this_id (struct frame_info *next_frame,
882 void **this_prologue_cache,
883 struct frame_id *this_id)
884{
885 struct m68hc11_unwind_cache *info
886 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
887 CORE_ADDR base;
888 CORE_ADDR func;
889 struct frame_id id;
890
891 /* The FUNC is easy. */
892 func = frame_func_unwind (next_frame);
893
1ea653ae
SC
894 /* Hopefully the prologue analysis either correctly determined the
895 frame's base (which is the SP from the previous frame), or set
896 that base to "NULL". */
897 base = info->prev_sp;
898 if (base == 0)
899 return;
900
901 id = frame_id_build (base, func);
1ea653ae
SC
902 (*this_id) = id;
903}
904
905static void
906m68hc11_frame_prev_register (struct frame_info *next_frame,
907 void **this_prologue_cache,
908 int regnum, int *optimizedp,
909 enum lval_type *lvalp, CORE_ADDR *addrp,
ff1e98b9 910 int *realnump, gdb_byte *bufferp)
1ea653ae
SC
911{
912 struct m68hc11_unwind_cache *info
913 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
914
1f67027d
AC
915 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
916 optimizedp, lvalp, addrp, realnump, bufferp);
1ea653ae
SC
917
918 if (regnum == HARD_PC_REGNUM)
919 {
920 /* Take into account the 68HC12 specific call (PC + page). */
921 if (info->return_kind == RETURN_RTC
922 && *addrp >= 0x08000 && *addrp < 0x0c000
923 && USE_PAGE_REGISTER)
924 {
925 int page_optimized;
926
927 CORE_ADDR page;
928
1f67027d
AC
929 trad_frame_get_prev_register (next_frame, info->saved_regs,
930 HARD_PAGE_REGNUM, &page_optimized,
931 0, &page, 0, 0);
1ea653ae
SC
932 *addrp -= 0x08000;
933 *addrp += ((page & 0x0ff) << 14);
934 *addrp += 0x1000000;
935 }
936 }
937}
938
939static const struct frame_unwind m68hc11_frame_unwind = {
940 NORMAL_FRAME,
941 m68hc11_frame_this_id,
942 m68hc11_frame_prev_register
943};
944
945const struct frame_unwind *
1a241548 946m68hc11_frame_sniffer (struct frame_info *next_frame)
1ea653ae
SC
947{
948 return &m68hc11_frame_unwind;
949}
950
951static CORE_ADDR
952m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
953{
954 struct m68hc11_unwind_cache *info
955 = m68hc11_frame_unwind_cache (next_frame, this_cache);
956
957 return info->base;
958}
959
960static CORE_ADDR
961m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
962{
963 CORE_ADDR addr;
964 struct m68hc11_unwind_cache *info
965 = m68hc11_frame_unwind_cache (next_frame, this_cache);
966
967 addr = info->base + info->size;
968 if (info->return_kind == RETURN_RTC)
969 addr += 1;
970 else if (info->return_kind == RETURN_RTI)
971 addr += 7;
972
973 return addr;
974}
975
976static const struct frame_base m68hc11_frame_base = {
977 &m68hc11_frame_unwind,
978 m68hc11_frame_base_address,
979 m68hc11_frame_base_address,
980 m68hc11_frame_args_address
981};
982
983static CORE_ADDR
984m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
985{
986 ULONGEST sp;
987 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
988 return sp;
989}
990
991/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
992 dummy frame. The frame ID's base needs to match the TOS value
993 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
994 breakpoint. */
995
996static struct frame_id
997m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
998{
999 ULONGEST tos;
1000 CORE_ADDR pc = frame_pc_unwind (next_frame);
1001
1002 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1003 tos += 2;
1004 return frame_id_build (tos, pc);
1005}
78073dd8 1006
e286caf2
SC
1007\f
1008/* Get and print the register from the given frame. */
78073dd8 1009static void
e286caf2
SC
1010m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1011 struct frame_info *frame, int regno)
78073dd8 1012{
e286caf2
SC
1013 LONGEST rval;
1014
1015 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1016 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1017 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1018 else
7f5f525d 1019 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1020
1021 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1022 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1023 {
e286caf2
SC
1024 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1025 if (regno != HARD_CCR_REGNUM)
1026 print_longest (file, 'd', 1, rval);
7df11f59 1027 }
e286caf2
SC
1028 else
1029 {
1030 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1031 {
1032 ULONGEST page;
7df11f59 1033
7f5f525d 1034 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1035 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1036 (unsigned) rval);
1037 }
1038 else
1039 {
1040 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1041 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1042 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1043 print_longest (file, 'd', 1, rval);
1044 }
1045 }
1046
1047 if (regno == HARD_CCR_REGNUM)
78073dd8 1048 {
e286caf2
SC
1049 /* CCR register */
1050 int C, Z, N, V;
1051 unsigned char l = rval & 0xff;
1052
1053 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1054 l & M6811_S_BIT ? 'S' : '-',
1055 l & M6811_X_BIT ? 'X' : '-',
1056 l & M6811_H_BIT ? 'H' : '-',
1057 l & M6811_I_BIT ? 'I' : '-',
1058 l & M6811_N_BIT ? 'N' : '-',
1059 l & M6811_Z_BIT ? 'Z' : '-',
1060 l & M6811_V_BIT ? 'V' : '-',
1061 l & M6811_C_BIT ? 'C' : '-');
1062 N = (l & M6811_N_BIT) != 0;
1063 Z = (l & M6811_Z_BIT) != 0;
1064 V = (l & M6811_V_BIT) != 0;
1065 C = (l & M6811_C_BIT) != 0;
1066
1067 /* Print flags following the h8300 */
1068 if ((C | Z) == 0)
1069 fprintf_filtered (file, "u> ");
1070 else if ((C | Z) == 1)
1071 fprintf_filtered (file, "u<= ");
1072 else if (C == 0)
1073 fprintf_filtered (file, "u< ");
1074
1075 if (Z == 0)
1076 fprintf_filtered (file, "!= ");
1077 else
1078 fprintf_filtered (file, "== ");
1079
1080 if ((N ^ V) == 0)
1081 fprintf_filtered (file, ">= ");
1082 else
1083 fprintf_filtered (file, "< ");
1084
1085 if ((Z | (N ^ V)) == 0)
1086 fprintf_filtered (file, "> ");
78073dd8 1087 else
e286caf2 1088 fprintf_filtered (file, "<= ");
78073dd8 1089 }
e286caf2
SC
1090}
1091
1092/* Same as 'info reg' but prints the registers in a different way. */
1093static void
1094m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1095 struct frame_info *frame, int regno, int cpregs)
1096{
1097 if (regno >= 0)
1098 {
1099 const char *name = gdbarch_register_name (gdbarch, regno);
1100
1101 if (!name || !*name)
1102 return;
1103
1104 fprintf_filtered (file, "%-10s ", name);
1105 m68hc11_print_register (gdbarch, file, frame, regno);
1106 fprintf_filtered (file, "\n");
1107 }
1108 else
1109 {
1110 int i, nr;
1111
1112 fprintf_filtered (file, "PC=");
1113 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1114
1115 fprintf_filtered (file, " SP=");
1116 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1117
1118 fprintf_filtered (file, " FP=");
1119 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1120
1121 fprintf_filtered (file, "\nCCR=");
1122 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1123
1124 fprintf_filtered (file, "\nD=");
1125 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1126
1127 fprintf_filtered (file, " X=");
1128 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1129
1130 fprintf_filtered (file, " Y=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1132
1133 if (gdbarch_tdep (gdbarch)->use_page_register)
1134 {
1135 fprintf_filtered (file, "\nPage=");
1136 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1137 }
1138 fprintf_filtered (file, "\n");
1139
1140 nr = 0;
1141 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1142 {
1143 /* Skip registers which are not defined in the symbol table. */
1144 if (soft_regs[i].name == 0)
1145 continue;
1146
1147 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1148 m68hc11_print_register (gdbarch, file, frame, i);
1149 nr++;
1150 if ((nr % 8) == 7)
1151 fprintf_filtered (file, "\n");
1152 else
1153 fprintf_filtered (file, " ");
1154 }
1155 if (nr && (nr % 8) != 7)
1156 fprintf_filtered (file, "\n");
1157 }
1158}
1159
82c230c2 1160static CORE_ADDR
7d9b040b 1161m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1162 struct regcache *regcache, CORE_ADDR bp_addr,
1163 int nargs, struct value **args, CORE_ADDR sp,
1164 int struct_return, CORE_ADDR struct_addr)
78073dd8 1165{
82c230c2
SC
1166 int argnum;
1167 int first_stack_argnum;
82c230c2
SC
1168 struct type *type;
1169 char *val;
1170 int len;
3dc990bf 1171 char buf[2];
82c230c2 1172
82c230c2
SC
1173 first_stack_argnum = 0;
1174 if (struct_return)
1175 {
ff1e98b9 1176 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1177 }
1178 else if (nargs > 0)
1179 {
4991999e 1180 type = value_type (args[0]);
82c230c2 1181 len = TYPE_LENGTH (type);
3dc990bf 1182
82c230c2
SC
1183 /* First argument is passed in D and X registers. */
1184 if (len <= 4)
1185 {
3dc990bf
SC
1186 ULONGEST v;
1187
0fd88904 1188 v = extract_unsigned_integer (value_contents (args[0]), len);
82c230c2 1189 first_stack_argnum = 1;
3dc990bf
SC
1190
1191 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1192 if (len > 2)
1193 {
1194 v >>= 16;
3dc990bf 1195 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1196 }
1197 }
1198 }
82c230c2 1199
3dc990bf 1200 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1201 {
4991999e 1202 type = value_type (args[argnum]);
82c230c2
SC
1203 len = TYPE_LENGTH (type);
1204
22df305e
SC
1205 if (len & 1)
1206 {
1207 static char zero = 0;
1208
3dc990bf
SC
1209 sp--;
1210 write_memory (sp, &zero, 1);
22df305e 1211 }
0fd88904 1212 val = (char*) value_contents (args[argnum]);
3dc990bf
SC
1213 sp -= len;
1214 write_memory (sp, val, len);
82c230c2 1215 }
3dc990bf
SC
1216
1217 /* Store return address. */
1218 sp -= 2;
1219 store_unsigned_integer (buf, 2, bp_addr);
1220 write_memory (sp, buf, 2);
1221
1222 /* Finally, update the stack pointer... */
1223 sp -= STACK_CORRECTION;
1224 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1225
1226 /* ...and fake a frame pointer. */
1227 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1228
1229 /* DWARF2/GCC uses the stack address *before* the function call as a
1230 frame's CFA. */
1231 return sp + 2;
78073dd8
AC
1232}
1233
1234
4db73d49
SC
1235/* Return the GDB type object for the "standard" data type
1236 of data in register N. */
1237
82c230c2 1238static struct type *
4db73d49 1239m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1240{
5706502a
SC
1241 switch (reg_nr)
1242 {
1243 case HARD_PAGE_REGNUM:
1244 case HARD_A_REGNUM:
1245 case HARD_B_REGNUM:
1246 case HARD_CCR_REGNUM:
1247 return builtin_type_uint8;
1248
548bcbec
SC
1249 case M68HC12_HARD_PC_REGNUM:
1250 return builtin_type_uint32;
1251
5706502a
SC
1252 default:
1253 return builtin_type_uint16;
1254 }
82c230c2
SC
1255}
1256
82c230c2 1257static void
4db73d49
SC
1258m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1259 const void *valbuf)
82c230c2 1260{
22df305e
SC
1261 int len;
1262
1263 len = TYPE_LENGTH (type);
1264
1265 /* First argument is passed in D and X registers. */
4db73d49
SC
1266 if (len <= 2)
1267 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1268 else if (len <= 4)
22df305e 1269 {
4db73d49
SC
1270 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1271 len - 2, valbuf);
1272 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1273 }
1274 else
8a3fe4f8 1275 error (_("return of value > 4 is not supported."));
82c230c2
SC
1276}
1277
1278
ef2b8fcd 1279/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1280 extract and copy its value into `valbuf'. */
1281
82c230c2 1282static void
ef2b8fcd
SC
1283m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1284 void *valbuf)
78073dd8 1285{
82c230c2 1286 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1287 char buf[M68HC11_REG_SIZE];
1288
1289 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1290 switch (len)
82c230c2 1291 {
22df305e 1292 case 1:
ef2b8fcd 1293 memcpy (valbuf, buf + 1, 1);
22df305e 1294 break;
ef2b8fcd 1295
22df305e 1296 case 2:
ef2b8fcd 1297 memcpy (valbuf, buf, 2);
22df305e 1298 break;
ef2b8fcd 1299
22df305e 1300 case 3:
ef2b8fcd
SC
1301 memcpy ((char*) valbuf + 1, buf, 2);
1302 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1303 memcpy (valbuf, buf + 1, 1);
22df305e 1304 break;
ef2b8fcd 1305
22df305e 1306 case 4:
ef2b8fcd
SC
1307 memcpy ((char*) valbuf + 2, buf, 2);
1308 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1309 memcpy (valbuf, buf, 2);
22df305e
SC
1310 break;
1311
1312 default:
8a3fe4f8 1313 error (_("bad size for return value"));
82c230c2
SC
1314 }
1315}
1316
97092415
AC
1317enum return_value_convention
1318m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
ff1e98b9
SC
1319 struct regcache *regcache, gdb_byte *readbuf,
1320 const gdb_byte *writebuf)
82c230c2 1321{
97092415
AC
1322 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1323 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1324 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1325 || TYPE_LENGTH (valtype) > 4)
1326 return RETURN_VALUE_STRUCT_CONVENTION;
1327 else
1328 {
1329 if (readbuf != NULL)
1330 m68hc11_extract_return_value (valtype, regcache, readbuf);
1331 if (writebuf != NULL)
1332 m68hc11_store_return_value (valtype, regcache, writebuf);
1333 return RETURN_VALUE_REGISTER_CONVENTION;
1334 }
82c230c2
SC
1335}
1336
7df11f59
SC
1337/* Test whether the ELF symbol corresponds to a function using rtc or
1338 rti to return. */
1339
1340static void
1341m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1342{
1343 unsigned char flags;
1344
1345 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1346 if (flags & STO_M68HC12_FAR)
1347 MSYMBOL_SET_RTC (msym);
1348 if (flags & STO_M68HC12_INTERRUPT)
1349 MSYMBOL_SET_RTI (msym);
1350}
1351
ea3881d9
SC
1352static int
1353gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1354{
1355 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1356 return print_insn_m68hc11 (memaddr, info);
1357 else
1358 return print_insn_m68hc12 (memaddr, info);
1359}
1360
b631436b
SC
1361\f
1362
1363/* 68HC11/68HC12 register groups.
1364 Identify real hard registers and soft registers used by gcc. */
1365
1366static struct reggroup *m68hc11_soft_reggroup;
1367static struct reggroup *m68hc11_hard_reggroup;
1368
1369static void
1370m68hc11_init_reggroups (void)
1371{
1372 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1373 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1374}
1375
1376static void
1377m68hc11_add_reggroups (struct gdbarch *gdbarch)
1378{
1379 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1380 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1381 reggroup_add (gdbarch, general_reggroup);
1382 reggroup_add (gdbarch, float_reggroup);
1383 reggroup_add (gdbarch, all_reggroup);
1384 reggroup_add (gdbarch, save_reggroup);
1385 reggroup_add (gdbarch, restore_reggroup);
1386 reggroup_add (gdbarch, vector_reggroup);
1387 reggroup_add (gdbarch, system_reggroup);
1388}
1389
1390static int
1391m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1392 struct reggroup *group)
1393{
1394 /* We must save the real hard register as well as gcc
1395 soft registers including the frame pointer. */
1396 if (group == save_reggroup || group == restore_reggroup)
1397 {
1398 return (regnum <= gdbarch_num_regs (gdbarch)
1399 || ((regnum == SOFT_FP_REGNUM
1400 || regnum == SOFT_TMP_REGNUM
1401 || regnum == SOFT_ZS_REGNUM
1402 || regnum == SOFT_XY_REGNUM)
1403 && m68hc11_register_name (regnum)));
1404 }
1405
1406 /* Group to identify gcc soft registers (d1..dN). */
1407 if (group == m68hc11_soft_reggroup)
1408 {
1409 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1410 }
1411
1412 if (group == m68hc11_hard_reggroup)
1413 {
1414 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1415 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1416 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1417 }
1418 return default_register_reggroup_p (gdbarch, regnum, group);
1419}
1420
82c230c2
SC
1421static struct gdbarch *
1422m68hc11_gdbarch_init (struct gdbarch_info info,
1423 struct gdbarch_list *arches)
1424{
82c230c2
SC
1425 struct gdbarch *gdbarch;
1426 struct gdbarch_tdep *tdep;
81967506 1427 int elf_flags;
82c230c2
SC
1428
1429 soft_reg_initialized = 0;
81967506
SC
1430
1431 /* Extract the elf_flags if available. */
1432 if (info.abfd != NULL
1433 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1434 elf_flags = elf_elfheader (info.abfd)->e_flags;
1435 else
1436 elf_flags = 0;
1437
82c230c2
SC
1438 /* try to find a pre-existing architecture */
1439 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1440 arches != NULL;
1441 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1442 {
81967506
SC
1443 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1444 continue;
1445
82c230c2
SC
1446 return arches->gdbarch;
1447 }
1448
1449 /* Need a new architecture. Fill in a target specific vector. */
1450 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1451 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1452 tdep->elf_flags = elf_flags;
ed99b3d0 1453
5d1a66bd
SC
1454 switch (info.bfd_arch_info->arch)
1455 {
1456 case bfd_arch_m68hc11:
1457 tdep->stack_correction = 1;
7df11f59 1458 tdep->use_page_register = 0;
908f682f 1459 tdep->prologue = m6811_prologue;
548bcbec
SC
1460 set_gdbarch_addr_bit (gdbarch, 16);
1461 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1462 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1463 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1464 break;
82c230c2 1465
5d1a66bd
SC
1466 case bfd_arch_m68hc12:
1467 tdep->stack_correction = 0;
7df11f59 1468 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1469 tdep->prologue = m6812_prologue;
548bcbec
SC
1470 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1471 set_gdbarch_num_pseudo_regs (gdbarch,
1472 elf_flags & E_M68HC12_BANKS
1473 ? M68HC12_NUM_PSEUDO_REGS
1474 : M68HC11_NUM_PSEUDO_REGS);
1475 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1476 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1477 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1478 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1479 break;
1480
1481 default:
1482 break;
1483 }
7d32ba20
SC
1484
1485 /* Initially set everything according to the ABI.
1486 Use 16-bit integers since it will be the case for most
1487 programs. The size of these types should normally be set
1488 according to the dwarf2 debug information. */
82c230c2 1489 set_gdbarch_short_bit (gdbarch, 16);
81967506 1490 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1491 set_gdbarch_float_bit (gdbarch, 32);
81967506 1492 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1493 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1494 set_gdbarch_long_bit (gdbarch, 32);
1495 set_gdbarch_ptr_bit (gdbarch, 16);
1496 set_gdbarch_long_long_bit (gdbarch, 64);
1497
b2a02dda
SC
1498 /* Characters are unsigned. */
1499 set_gdbarch_char_signed (gdbarch, 0);
1500
1ea653ae
SC
1501 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1502 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1503
82c230c2
SC
1504 /* Set register info. */
1505 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1506
82c230c2 1507 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
82c230c2 1508
82c230c2 1509 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1510 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1511 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1512 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1513 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1514
3dc990bf
SC
1515 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1516
97092415 1517 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1518 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1519 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1520 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
70ed8774 1521 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1522
b631436b
SC
1523 m68hc11_add_reggroups (gdbarch);
1524 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1525 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1526
1ea653ae
SC
1527 /* Hook in the DWARF CFI frame unwinder. */
1528 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1ea653ae 1529
1a241548 1530 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1ea653ae
SC
1531 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1532
1533 /* Methods for saving / extracting a dummy frame's ID. The ID's
1534 stack address must match the SP value returned by
1535 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1536 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1537
1538 /* Return the unwound PC value. */
1539 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1540
7df11f59
SC
1541 /* Minsymbol frobbing. */
1542 set_gdbarch_elf_make_msymbol_special (gdbarch,
1543 m68hc11_elf_make_msymbol_special);
1544
82c230c2 1545 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1546
1547 return gdbarch;
78073dd8
AC
1548}
1549
a78f21af
AC
1550extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1551
78073dd8 1552void
fba45db2 1553_initialize_m68hc11_tdep (void)
78073dd8 1554{
82c230c2 1555 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1556 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1557 m68hc11_init_reggroups ();
78073dd8
AC
1558}
1559
This page took 0.58426 seconds and 4 git commands to generate.