2004-04-30 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5
AC
2
3 Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software
4 Foundation, Inc.
5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8
AC
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
78073dd8 24
82c230c2
SC
25#include "defs.h"
26#include "frame.h"
1ea653ae
SC
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "dwarf2-frame.h"
30#include "trad-frame.h"
82c230c2
SC
31#include "symtab.h"
32#include "gdbtypes.h"
33#include "gdbcmd.h"
34#include "gdbcore.h"
35#include "gdb_string.h"
36#include "value.h"
37#include "inferior.h"
38#include "dis-asm.h"
39#include "symfile.h"
40#include "objfiles.h"
41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
b631436b 43#include "reggroups.h"
78073dd8 44
82c230c2
SC
45#include "target.h"
46#include "opcode/m68hc11.h"
81967506
SC
47#include "elf/m68hc11.h"
48#include "elf-bfd.h"
78073dd8 49
7df11f59
SC
50/* Macros for setting and testing a bit in a minimal symbol.
51 For 68HC11/68HC12 we have two flags that tell which return
52 type the function is using. This is used for prologue and frame
53 analysis to compute correct stack frame layout.
54
55 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
56
57 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
58 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
59 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 60 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59
SC
61
62#define MSYMBOL_SET_RTC(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66#define MSYMBOL_SET_RTI(msym) \
67 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
68 | 0x40000000)
69
70#define MSYMBOL_IS_RTC(msym) \
71 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
72
73#define MSYMBOL_IS_RTI(msym) \
74 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
75
7df11f59
SC
76enum insn_return_kind {
77 RETURN_RTS,
78 RETURN_RTC,
79 RETURN_RTI
80};
81
82
78073dd8
AC
83/* Register numbers of various important registers.
84 Note that some of these values are "real" register numbers,
85 and correspond to the general registers of the machine,
86 and some are "phony" register numbers which are too large
87 to be actual register numbers as far as the user is concerned
88 but do serve to get the desired values when passed to read_register. */
89
82c230c2
SC
90#define HARD_X_REGNUM 0
91#define HARD_D_REGNUM 1
92#define HARD_Y_REGNUM 2
93#define HARD_SP_REGNUM 3
94#define HARD_PC_REGNUM 4
95
96#define HARD_A_REGNUM 5
97#define HARD_B_REGNUM 6
98#define HARD_CCR_REGNUM 7
5706502a
SC
99
100/* 68HC12 page number register.
101 Note: to keep a compatibility with gcc register naming, we must
102 not have to rename FP and other soft registers. The page register
103 is a real hard register and must therefore be counted by NUM_REGS.
104 For this it has the same number as Z register (which is not used). */
105#define HARD_PAGE_REGNUM 8
106#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
107
108/* Z is replaced by X or Y by gcc during machine reorg.
109 ??? There is no way to get it and even know whether
110 it's in X or Y or in ZS. */
111#define SOFT_Z_REGNUM 8
112
113/* Soft registers. These registers are special. There are treated
114 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
115 They are physically located in memory. */
116#define SOFT_FP_REGNUM 9
117#define SOFT_TMP_REGNUM 10
118#define SOFT_ZS_REGNUM 11
119#define SOFT_XY_REGNUM 12
f91a8b6b
SC
120#define SOFT_UNUSED_REGNUM 13
121#define SOFT_D1_REGNUM 14
82c230c2
SC
122#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
123#define M68HC11_MAX_SOFT_REGS 32
124
125#define M68HC11_NUM_REGS (8)
126#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
127#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
128
129#define M68HC11_REG_SIZE (2)
130
548bcbec
SC
131#define M68HC12_NUM_REGS (9)
132#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
133#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
134
908f682f 135struct insn_sequence;
82c230c2
SC
136struct gdbarch_tdep
137 {
5d1a66bd
SC
138 /* Stack pointer correction value. For 68hc11, the stack pointer points
139 to the next push location. An offset of 1 must be applied to obtain
140 the address where the last value is saved. For 68hc12, the stack
141 pointer points to the last value pushed. No offset is necessary. */
142 int stack_correction;
908f682f
SC
143
144 /* Description of instructions in the prologue. */
145 struct insn_sequence *prologue;
81967506 146
7df11f59
SC
147 /* True if the page memory bank register is available
148 and must be used. */
149 int use_page_register;
150
81967506
SC
151 /* ELF flags for ABI. */
152 int elf_flags;
82c230c2
SC
153 };
154
5d1a66bd
SC
155#define M6811_TDEP gdbarch_tdep (current_gdbarch)
156#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 157#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 158
1ea653ae
SC
159struct m68hc11_unwind_cache
160{
161 /* The previous frame's inner most stack address. Used as this
162 frame ID's stack_addr. */
163 CORE_ADDR prev_sp;
164 /* The frame's base, optionally used by the high-level debug info. */
165 CORE_ADDR base;
166 CORE_ADDR pc;
167 int size;
168 int prologue_type;
169 CORE_ADDR return_pc;
170 CORE_ADDR sp_offset;
171 int frameless;
172 enum insn_return_kind return_kind;
173
174 /* Table indicating the location of each and every register. */
175 struct trad_frame_saved_reg *saved_regs;
176};
177
82c230c2
SC
178/* Table of registers for 68HC11. This includes the hard registers
179 and the soft registers used by GCC. */
180static char *
181m68hc11_register_names[] =
182{
183 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 184 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
185 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
186 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
187 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
188 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
189 "d29", "d30", "d31", "d32"
190};
78073dd8 191
82c230c2
SC
192struct m68hc11_soft_reg
193{
194 const char *name;
195 CORE_ADDR addr;
196};
78073dd8 197
82c230c2 198static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 199
82c230c2 200#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 201
82c230c2
SC
202static int soft_min_addr;
203static int soft_max_addr;
204static int soft_reg_initialized = 0;
78073dd8 205
82c230c2
SC
206/* Look in the symbol table for the address of a pseudo register
207 in memory. If we don't find it, pretend the register is not used
208 and not available. */
209static void
210m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
211{
212 struct minimal_symbol *msymbol;
78073dd8 213
82c230c2
SC
214 msymbol = lookup_minimal_symbol (name, NULL, NULL);
215 if (msymbol)
216 {
217 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
218 reg->name = xstrdup (name);
219
220 /* Keep track of the address range for soft registers. */
221 if (reg->addr < (CORE_ADDR) soft_min_addr)
222 soft_min_addr = reg->addr;
223 if (reg->addr > (CORE_ADDR) soft_max_addr)
224 soft_max_addr = reg->addr;
225 }
226 else
227 {
228 reg->name = 0;
229 reg->addr = 0;
230 }
231}
78073dd8 232
82c230c2
SC
233/* Initialize the table of soft register addresses according
234 to the symbol table. */
235 static void
236m68hc11_initialize_register_info (void)
237{
238 int i;
78073dd8 239
82c230c2
SC
240 if (soft_reg_initialized)
241 return;
242
243 soft_min_addr = INT_MAX;
244 soft_max_addr = 0;
245 for (i = 0; i < M68HC11_ALL_REGS; i++)
246 {
247 soft_regs[i].name = 0;
248 }
249
250 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
251 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
252 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
253 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
254 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 255
82c230c2
SC
256 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
257 {
258 char buf[10];
78073dd8 259
82c230c2
SC
260 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
261 m68hc11_get_register_info (&soft_regs[i], buf);
262 }
78073dd8 263
82c230c2
SC
264 if (soft_regs[SOFT_FP_REGNUM].name == 0)
265 {
266 warning ("No frame soft register found in the symbol table.\n");
267 warning ("Stack backtrace will not work.\n");
268 }
269 soft_reg_initialized = 1;
270}
78073dd8 271
82c230c2
SC
272/* Given an address in memory, return the soft register number if
273 that address corresponds to a soft register. Returns -1 if not. */
274static int
275m68hc11_which_soft_register (CORE_ADDR addr)
276{
277 int i;
278
279 if (addr < soft_min_addr || addr > soft_max_addr)
280 return -1;
281
282 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
283 {
284 if (soft_regs[i].name && soft_regs[i].addr == addr)
285 return i;
286 }
287 return -1;
288}
78073dd8 289
82c230c2
SC
290/* Fetch a pseudo register. The 68hc11 soft registers are treated like
291 pseudo registers. They are located in memory. Translate the register
292 fetch into a memory read. */
46ce284d
AC
293static void
294m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
295 struct regcache *regcache,
296 int regno, void *buf)
82c230c2 297{
548bcbec
SC
298 /* The PC is a pseudo reg only for 68HC12 with the memory bank
299 addressing mode. */
300 if (regno == M68HC12_HARD_PC_REGNUM)
301 {
4db73d49 302 ULONGEST pc;
548bcbec 303 const int regsize = TYPE_LENGTH (builtin_type_uint32);
548bcbec 304
4db73d49 305 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
548bcbec
SC
306 if (pc >= 0x8000 && pc < 0xc000)
307 {
4db73d49
SC
308 ULONGEST page;
309
310 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
311 pc -= 0x8000;
312 pc += (page << 14);
313 pc += 0x1000000;
314 }
315 store_unsigned_integer (buf, regsize, pc);
316 return;
317 }
318
82c230c2
SC
319 m68hc11_initialize_register_info ();
320
321 /* Fetch a soft register: translate into a memory read. */
322 if (soft_regs[regno].name)
323 {
324 target_read_memory (soft_regs[regno].addr, buf, 2);
325 }
326 else
327 {
328 memset (buf, 0, 2);
329 }
82c230c2 330}
78073dd8 331
82c230c2
SC
332/* Store a pseudo register. Translate the register store
333 into a memory write. */
334static void
46ce284d
AC
335m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
336 struct regcache *regcache,
337 int regno, const void *buf)
82c230c2 338{
548bcbec
SC
339 /* The PC is a pseudo reg only for 68HC12 with the memory bank
340 addressing mode. */
341 if (regno == M68HC12_HARD_PC_REGNUM)
342 {
343 const int regsize = TYPE_LENGTH (builtin_type_uint32);
344 char *tmp = alloca (regsize);
345 CORE_ADDR pc;
346
347 memcpy (tmp, buf, regsize);
348 pc = extract_unsigned_integer (tmp, regsize);
349 if (pc >= 0x1000000)
350 {
351 pc -= 0x1000000;
4db73d49
SC
352 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
353 (pc >> 14) & 0x0ff);
548bcbec 354 pc &= 0x03fff;
4db73d49
SC
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
356 pc + 0x8000);
548bcbec
SC
357 }
358 else
4db73d49 359 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
360 return;
361 }
362
82c230c2 363 m68hc11_initialize_register_info ();
78073dd8 364
82c230c2
SC
365 /* Store a soft register: translate into a memory write. */
366 if (soft_regs[regno].name)
367 {
46ce284d
AC
368 const int regsize = 2;
369 char *tmp = alloca (regsize);
370 memcpy (tmp, buf, regsize);
371 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
372 }
373}
78073dd8 374
fa88f677 375static const char *
82c230c2 376m68hc11_register_name (int reg_nr)
78073dd8 377{
548bcbec
SC
378 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
379 return "pc";
380 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
381 return "ppc";
382
82c230c2
SC
383 if (reg_nr < 0)
384 return NULL;
385 if (reg_nr >= M68HC11_ALL_REGS)
386 return NULL;
387
65760afb
SC
388 m68hc11_initialize_register_info ();
389
82c230c2
SC
390 /* If we don't know the address of a soft register, pretend it
391 does not exist. */
392 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
393 return NULL;
394 return m68hc11_register_names[reg_nr];
395}
78073dd8 396
f4f9705a 397static const unsigned char *
82c230c2 398m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 399{
82c230c2
SC
400 static unsigned char breakpoint[] = {0x0};
401
402 *lenptr = sizeof (breakpoint);
403 return breakpoint;
78073dd8
AC
404}
405
908f682f
SC
406\f
407/* 68HC11 & 68HC12 prologue analysis.
408
409 */
410#define MAX_CODES 12
411
412/* 68HC11 opcodes. */
413#undef M6811_OP_PAGE2
b94a41a1
SC
414#define M6811_OP_PAGE2 (0x18)
415#define M6811_OP_LDX (0xde)
416#define M6811_OP_LDX_EXT (0xfe)
417#define M6811_OP_PSHX (0x3c)
418#define M6811_OP_STS (0x9f)
419#define M6811_OP_STS_EXT (0xbf)
420#define M6811_OP_TSX (0x30)
421#define M6811_OP_XGDX (0x8f)
422#define M6811_OP_ADDD (0xc3)
423#define M6811_OP_TXS (0x35)
424#define M6811_OP_DES (0x34)
908f682f
SC
425
426/* 68HC12 opcodes. */
b94a41a1
SC
427#define M6812_OP_PAGE2 (0x18)
428#define M6812_OP_MOVW (0x01)
429#define M6812_PB_PSHW (0xae)
430#define M6812_OP_STS (0x5f)
431#define M6812_OP_STS_EXT (0x7f)
432#define M6812_OP_LEAS (0x1b)
433#define M6812_OP_PSHX (0x34)
434#define M6812_OP_PSHY (0x35)
908f682f
SC
435
436/* Operand extraction. */
437#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
438#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
439#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
440#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
441
442/* Identification of the sequence. */
443enum m6811_seq_type
444{
445 P_LAST = 0,
446 P_SAVE_REG, /* Save a register on the stack. */
447 P_SET_FRAME, /* Setup the frame pointer. */
448 P_LOCAL_1, /* Allocate 1 byte for locals. */
449 P_LOCAL_2, /* Allocate 2 bytes for locals. */
450 P_LOCAL_N /* Allocate N bytes for locals. */
451};
452
453struct insn_sequence {
454 enum m6811_seq_type type;
455 unsigned length;
456 unsigned short code[MAX_CODES];
457};
458
459/* Sequence of instructions in the 68HC11 function prologue. */
460static struct insn_sequence m6811_prologue[] = {
461 /* Sequences to save a soft-register. */
462 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
463 M6811_OP_PSHX } },
464 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
465 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
466 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_PSHX } },
468 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
470
471 /* Sequences to allocate local variables. */
472 { P_LOCAL_N, 7, { M6811_OP_TSX,
473 M6811_OP_XGDX,
474 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
475 M6811_OP_XGDX,
476 M6811_OP_TXS } },
477 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
478 M6811_OP_PAGE2, M6811_OP_XGDX,
479 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
480 M6811_OP_PAGE2, M6811_OP_XGDX,
481 M6811_OP_PAGE2, M6811_OP_TXS } },
482 { P_LOCAL_1, 1, { M6811_OP_DES } },
483 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
484 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
485
486 /* Initialize the frame pointer. */
487 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 488 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
489 { P_LAST, 0, { 0 } }
490};
491
492
493/* Sequence of instructions in the 68HC12 function prologue. */
494static struct insn_sequence m6812_prologue[] = {
495 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
496 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
497 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
498 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 499 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
500 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
501 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
502 { P_LAST, 0 }
503};
504
505
506/* Analyze the sequence of instructions starting at the given address.
507 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 508 the optional value (constant/address) associated with it. */
908f682f 509static struct insn_sequence *
c8a7f6ac 510m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
511 CORE_ADDR *val)
512{
513 unsigned char buffer[MAX_CODES];
514 unsigned bufsize;
515 unsigned j;
516 CORE_ADDR cur_val;
517 short v = 0;
518
519 bufsize = 0;
520 for (; seq->type != P_LAST; seq++)
521 {
522 cur_val = 0;
523 for (j = 0; j < seq->length; j++)
524 {
525 if (bufsize < j + 1)
526 {
c8a7f6ac 527 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
908f682f
SC
528 1);
529 bufsize++;
530 }
531 /* Continue while we match the opcode. */
532 if (seq->code[j] == buffer[j])
533 continue;
534
535 if ((seq->code[j] & 0xf00) == 0)
536 break;
537
538 /* Extract a sequence parameter (address or constant). */
539 switch (seq->code[j])
540 {
541 case OP_DIRECT:
542 cur_val = (CORE_ADDR) buffer[j];
543 break;
544
545 case OP_IMM_HIGH:
546 cur_val = cur_val & 0x0ff;
547 cur_val |= (buffer[j] << 8);
548 break;
549
550 case OP_IMM_LOW:
551 cur_val &= 0x0ff00;
552 cur_val |= buffer[j];
553 break;
554
555 case OP_PBYTE:
556 if ((buffer[j] & 0xE0) == 0x80)
557 {
558 v = buffer[j] & 0x1f;
559 if (v & 0x10)
560 v |= 0xfff0;
561 }
562 else if ((buffer[j] & 0xfe) == 0xf0)
563 {
c8a7f6ac 564 v = read_memory_unsigned_integer (pc + j + 1, 1);
908f682f
SC
565 if (buffer[j] & 1)
566 v |= 0xff00;
567 }
568 else if (buffer[j] == 0xf2)
569 {
c8a7f6ac 570 v = read_memory_unsigned_integer (pc + j + 1, 2);
908f682f
SC
571 }
572 cur_val = v;
573 break;
574 }
575 }
576
577 /* We have a full match. */
578 if (j == seq->length)
579 {
580 *val = cur_val;
908f682f
SC
581 return seq;
582 }
583 }
584 return 0;
585}
586
7df11f59
SC
587/* Return the instruction that the function at the PC is using. */
588static enum insn_return_kind
589m68hc11_get_return_insn (CORE_ADDR pc)
590{
591 struct minimal_symbol *sym;
592
593 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
594 function is stored by elfread.c in the high bit of the info field.
595 Use this to decide which instruction the function uses to return. */
596 sym = lookup_minimal_symbol_by_pc (pc);
597 if (sym == 0)
598 return RETURN_RTS;
599
600 if (MSYMBOL_IS_RTC (sym))
601 return RETURN_RTC;
602 else if (MSYMBOL_IS_RTI (sym))
603 return RETURN_RTI;
604 else
605 return RETURN_RTS;
606}
607
78073dd8
AC
608/* Analyze the function prologue to find some information
609 about the function:
610 - the PC of the first line (for m68hc11_skip_prologue)
611 - the offset of the previous frame saved address (from current frame)
612 - the soft registers which are pushed. */
1ea653ae
SC
613static CORE_ADDR
614m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
615 struct m68hc11_unwind_cache *info)
78073dd8 616{
1ea653ae 617 LONGEST save_addr;
78073dd8 618 CORE_ADDR func_end;
78073dd8
AC
619 int size;
620 int found_frame_point;
82c230c2 621 int saved_reg;
908f682f
SC
622 int done = 0;
623 struct insn_sequence *seq_table;
1ea653ae
SC
624
625 info->size = 0;
626 info->sp_offset = 0;
627 if (pc >= current_pc)
628 return current_pc;
629
78073dd8
AC
630 size = 0;
631
82c230c2 632 m68hc11_initialize_register_info ();
1ea653ae 633 if (pc == 0)
78073dd8 634 {
1ea653ae
SC
635 info->size = 0;
636 return pc;
78073dd8
AC
637 }
638
908f682f
SC
639 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
640
78073dd8
AC
641 /* The 68hc11 stack is as follows:
642
643
644 | |
645 +-----------+
646 | |
647 | args |
648 | |
649 +-----------+
650 | PC-return |
651 +-----------+
652 | Old frame |
653 +-----------+
654 | |
655 | Locals |
656 | |
657 +-----------+ <--- current frame
658 | |
659
660 With most processors (like 68K) the previous frame can be computed
661 easily because it is always at a fixed offset (see link/unlink).
662 That is, locals are accessed with negative offsets, arguments are
663 accessed with positive ones. Since 68hc11 only supports offsets
664 in the range [0..255], the frame is defined at the bottom of
665 locals (see picture).
666
667 The purpose of the analysis made here is to find out the size
668 of locals in this function. An alternative to this is to use
669 DWARF2 info. This would be better but I don't know how to
670 access dwarf2 debug from this function.
671
672 Walk from the function entry point to the point where we save
673 the frame. While walking instructions, compute the size of bytes
674 which are pushed. This gives us the index to access the previous
675 frame.
676
677 We limit the search to 128 bytes so that the algorithm is bounded
678 in case of random and wrong code. We also stop and abort if
679 we find an instruction which is not supposed to appear in the
680 prologue (as generated by gcc 2.95, 2.96).
681 */
78073dd8 682 func_end = pc + 128;
78073dd8 683 found_frame_point = 0;
1ea653ae
SC
684 info->size = 0;
685 save_addr = 0;
908f682f 686 while (!done && pc + 2 < func_end)
78073dd8 687 {
908f682f
SC
688 struct insn_sequence *seq;
689 CORE_ADDR val;
1ea653ae 690
c8a7f6ac 691 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
908f682f
SC
692 if (seq == 0)
693 break;
78073dd8 694
c8a7f6ac
SC
695 /* If we are within the instruction group, we can't advance the
696 pc nor the stack offset. Otherwise the caller's stack computed
697 from the current stack can be wrong. */
698 if (pc + seq->length > current_pc)
699 break;
700
701 pc = pc + seq->length;
908f682f 702 if (seq->type == P_SAVE_REG)
78073dd8 703 {
908f682f
SC
704 if (found_frame_point)
705 {
706 saved_reg = m68hc11_which_soft_register (val);
707 if (saved_reg < 0)
708 break;
78073dd8 709
908f682f 710 save_addr -= 2;
1ea653ae 711 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
712 }
713 else
714 {
715 size += 2;
716 }
78073dd8 717 }
908f682f 718 else if (seq->type == P_SET_FRAME)
78073dd8
AC
719 {
720 found_frame_point = 1;
1ea653ae 721 info->size = size;
78073dd8 722 }
908f682f 723 else if (seq->type == P_LOCAL_1)
78073dd8 724 {
6148eca7
SC
725 size += 1;
726 }
908f682f 727 else if (seq->type == P_LOCAL_2)
78073dd8 728 {
908f682f 729 size += 2;
78073dd8 730 }
908f682f 731 else if (seq->type == P_LOCAL_N)
78073dd8 732 {
908f682f
SC
733 /* Stack pointer is decremented for the allocation. */
734 if (val & 0x8000)
735 size -= (int) (val) | 0xffff0000;
736 else
737 size -= val;
78073dd8
AC
738 }
739 }
1ea653ae
SC
740 if (found_frame_point == 0)
741 info->sp_offset = size;
742 else
743 info->sp_offset = -1;
744 return pc;
78073dd8
AC
745}
746
82c230c2 747static CORE_ADDR
78073dd8
AC
748m68hc11_skip_prologue (CORE_ADDR pc)
749{
750 CORE_ADDR func_addr, func_end;
751 struct symtab_and_line sal;
1ea653ae 752 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 753
82c230c2
SC
754 /* If we have line debugging information, then the end of the
755 prologue should be the first assembly instruction of the
78073dd8
AC
756 first source line. */
757 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
758 {
759 sal = find_pc_line (func_addr, 0);
760 if (sal.end && sal.end < func_end)
761 return sal.end;
762 }
763
1ea653ae 764 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
765 return pc;
766}
767
1ea653ae
SC
768static CORE_ADDR
769m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
770{
771 ULONGEST pc;
772
773 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
774 &pc);
775 return pc;
776}
777
778/* Put here the code to store, into fi->saved_regs, the addresses of
779 the saved registers of frame described by FRAME_INFO. This
780 includes special registers such as pc and fp saved in special ways
781 in the stack frame. sp is even more special: the address we return
782 for it IS the sp for the next frame. */
783
784struct m68hc11_unwind_cache *
785m68hc11_frame_unwind_cache (struct frame_info *next_frame,
786 void **this_prologue_cache)
787{
788 ULONGEST prev_sp;
789 ULONGEST this_base;
790 struct m68hc11_unwind_cache *info;
791 CORE_ADDR current_pc;
792 int i;
793
794 if ((*this_prologue_cache))
795 return (*this_prologue_cache);
796
797 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
798 (*this_prologue_cache) = info;
799 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
800
801 info->pc = frame_func_unwind (next_frame);
802
803 info->size = 0;
804 info->return_kind = m68hc11_get_return_insn (info->pc);
805
806 /* The SP was moved to the FP. This indicates that a new frame
807 was created. Get THIS frame's FP value by unwinding it from
808 the next frame. */
809 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
810 if (this_base == 0)
811 {
812 info->base = 0;
813 return info;
814 }
815
816 current_pc = frame_pc_unwind (next_frame);
817 if (info->pc != 0)
818 m68hc11_scan_prologue (info->pc, current_pc, info);
819
820 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
821
822 if (info->sp_offset != (CORE_ADDR) -1)
823 {
824 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
825 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
826 prev_sp = this_base + info->sp_offset + 2;
827 this_base += STACK_CORRECTION;
828 }
829 else
830 {
831 /* The FP points at the last saved register. Adjust the FP back
832 to before the first saved register giving the SP. */
833 prev_sp = this_base + info->size + 2;
834
835 this_base += STACK_CORRECTION;
836 if (soft_regs[SOFT_FP_REGNUM].name)
837 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
838 }
839
840 if (info->return_kind == RETURN_RTC)
841 {
842 prev_sp += 1;
843 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
844 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
845 }
846 else if (info->return_kind == RETURN_RTI)
847 {
848 prev_sp += 7;
849 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
850 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
851 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
852 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
853 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
854 }
855
856 /* Add 1 here to adjust for the post-decrement nature of the push
857 instruction.*/
858 info->prev_sp = prev_sp;
859
860 info->base = this_base;
861
862 /* Adjust all the saved registers so that they contain addresses and not
863 offsets. */
864 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
865 if (trad_frame_addr_p (info->saved_regs, i))
866 {
867 info->saved_regs[i].addr += this_base;
868 }
869
870 /* The previous frame's SP needed to be computed. Save the computed
871 value. */
872 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
873
874 return info;
875}
876
877/* Given a GDB frame, determine the address of the calling function's
878 frame. This will be used to create a new GDB frame struct. */
879
880static void
881m68hc11_frame_this_id (struct frame_info *next_frame,
882 void **this_prologue_cache,
883 struct frame_id *this_id)
884{
885 struct m68hc11_unwind_cache *info
886 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
887 CORE_ADDR base;
888 CORE_ADDR func;
889 struct frame_id id;
890
891 /* The FUNC is easy. */
892 func = frame_func_unwind (next_frame);
893
1ea653ae
SC
894 /* Hopefully the prologue analysis either correctly determined the
895 frame's base (which is the SP from the previous frame), or set
896 that base to "NULL". */
897 base = info->prev_sp;
898 if (base == 0)
899 return;
900
901 id = frame_id_build (base, func);
1ea653ae
SC
902 (*this_id) = id;
903}
904
905static void
906m68hc11_frame_prev_register (struct frame_info *next_frame,
907 void **this_prologue_cache,
908 int regnum, int *optimizedp,
909 enum lval_type *lvalp, CORE_ADDR *addrp,
910 int *realnump, void *bufferp)
911{
912 struct m68hc11_unwind_cache *info
913 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
914
915 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
916 optimizedp, lvalp, addrp, realnump, bufferp);
917
918 if (regnum == HARD_PC_REGNUM)
919 {
920 /* Take into account the 68HC12 specific call (PC + page). */
921 if (info->return_kind == RETURN_RTC
922 && *addrp >= 0x08000 && *addrp < 0x0c000
923 && USE_PAGE_REGISTER)
924 {
925 int page_optimized;
926
927 CORE_ADDR page;
928
929 trad_frame_prev_register (next_frame, info->saved_regs,
930 HARD_PAGE_REGNUM, &page_optimized,
931 0, &page, 0, 0);
932 *addrp -= 0x08000;
933 *addrp += ((page & 0x0ff) << 14);
934 *addrp += 0x1000000;
935 }
936 }
937}
938
939static const struct frame_unwind m68hc11_frame_unwind = {
940 NORMAL_FRAME,
941 m68hc11_frame_this_id,
942 m68hc11_frame_prev_register
943};
944
945const struct frame_unwind *
1a241548 946m68hc11_frame_sniffer (struct frame_info *next_frame)
1ea653ae
SC
947{
948 return &m68hc11_frame_unwind;
949}
950
951static CORE_ADDR
952m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
953{
954 struct m68hc11_unwind_cache *info
955 = m68hc11_frame_unwind_cache (next_frame, this_cache);
956
957 return info->base;
958}
959
960static CORE_ADDR
961m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
962{
963 CORE_ADDR addr;
964 struct m68hc11_unwind_cache *info
965 = m68hc11_frame_unwind_cache (next_frame, this_cache);
966
967 addr = info->base + info->size;
968 if (info->return_kind == RETURN_RTC)
969 addr += 1;
970 else if (info->return_kind == RETURN_RTI)
971 addr += 7;
972
973 return addr;
974}
975
976static const struct frame_base m68hc11_frame_base = {
977 &m68hc11_frame_unwind,
978 m68hc11_frame_base_address,
979 m68hc11_frame_base_address,
980 m68hc11_frame_args_address
981};
982
983static CORE_ADDR
984m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
985{
986 ULONGEST sp;
987 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
988 return sp;
989}
990
991/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
992 dummy frame. The frame ID's base needs to match the TOS value
993 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
994 breakpoint. */
995
996static struct frame_id
997m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
998{
999 ULONGEST tos;
1000 CORE_ADDR pc = frame_pc_unwind (next_frame);
1001
1002 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1003 tos += 2;
1004 return frame_id_build (tos, pc);
1005}
78073dd8 1006
e286caf2
SC
1007\f
1008/* Get and print the register from the given frame. */
78073dd8 1009static void
e286caf2
SC
1010m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1011 struct frame_info *frame, int regno)
78073dd8 1012{
e286caf2
SC
1013 LONGEST rval;
1014
1015 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1016 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1017 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1018 else
7f5f525d 1019 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1020
1021 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1022 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1023 {
e286caf2
SC
1024 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1025 if (regno != HARD_CCR_REGNUM)
1026 print_longest (file, 'd', 1, rval);
7df11f59 1027 }
e286caf2
SC
1028 else
1029 {
1030 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1031 {
1032 ULONGEST page;
7df11f59 1033
7f5f525d 1034 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1035 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1036 (unsigned) rval);
1037 }
1038 else
1039 {
1040 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1041 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1042 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1043 print_longest (file, 'd', 1, rval);
1044 }
1045 }
1046
1047 if (regno == HARD_CCR_REGNUM)
78073dd8 1048 {
e286caf2
SC
1049 /* CCR register */
1050 int C, Z, N, V;
1051 unsigned char l = rval & 0xff;
1052
1053 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1054 l & M6811_S_BIT ? 'S' : '-',
1055 l & M6811_X_BIT ? 'X' : '-',
1056 l & M6811_H_BIT ? 'H' : '-',
1057 l & M6811_I_BIT ? 'I' : '-',
1058 l & M6811_N_BIT ? 'N' : '-',
1059 l & M6811_Z_BIT ? 'Z' : '-',
1060 l & M6811_V_BIT ? 'V' : '-',
1061 l & M6811_C_BIT ? 'C' : '-');
1062 N = (l & M6811_N_BIT) != 0;
1063 Z = (l & M6811_Z_BIT) != 0;
1064 V = (l & M6811_V_BIT) != 0;
1065 C = (l & M6811_C_BIT) != 0;
1066
1067 /* Print flags following the h8300 */
1068 if ((C | Z) == 0)
1069 fprintf_filtered (file, "u> ");
1070 else if ((C | Z) == 1)
1071 fprintf_filtered (file, "u<= ");
1072 else if (C == 0)
1073 fprintf_filtered (file, "u< ");
1074
1075 if (Z == 0)
1076 fprintf_filtered (file, "!= ");
1077 else
1078 fprintf_filtered (file, "== ");
1079
1080 if ((N ^ V) == 0)
1081 fprintf_filtered (file, ">= ");
1082 else
1083 fprintf_filtered (file, "< ");
1084
1085 if ((Z | (N ^ V)) == 0)
1086 fprintf_filtered (file, "> ");
78073dd8 1087 else
e286caf2 1088 fprintf_filtered (file, "<= ");
78073dd8 1089 }
e286caf2
SC
1090}
1091
1092/* Same as 'info reg' but prints the registers in a different way. */
1093static void
1094m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1095 struct frame_info *frame, int regno, int cpregs)
1096{
1097 if (regno >= 0)
1098 {
1099 const char *name = gdbarch_register_name (gdbarch, regno);
1100
1101 if (!name || !*name)
1102 return;
1103
1104 fprintf_filtered (file, "%-10s ", name);
1105 m68hc11_print_register (gdbarch, file, frame, regno);
1106 fprintf_filtered (file, "\n");
1107 }
1108 else
1109 {
1110 int i, nr;
1111
1112 fprintf_filtered (file, "PC=");
1113 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1114
1115 fprintf_filtered (file, " SP=");
1116 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1117
1118 fprintf_filtered (file, " FP=");
1119 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1120
1121 fprintf_filtered (file, "\nCCR=");
1122 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1123
1124 fprintf_filtered (file, "\nD=");
1125 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1126
1127 fprintf_filtered (file, " X=");
1128 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1129
1130 fprintf_filtered (file, " Y=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1132
1133 if (gdbarch_tdep (gdbarch)->use_page_register)
1134 {
1135 fprintf_filtered (file, "\nPage=");
1136 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1137 }
1138 fprintf_filtered (file, "\n");
1139
1140 nr = 0;
1141 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1142 {
1143 /* Skip registers which are not defined in the symbol table. */
1144 if (soft_regs[i].name == 0)
1145 continue;
1146
1147 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1148 m68hc11_print_register (gdbarch, file, frame, i);
1149 nr++;
1150 if ((nr % 8) == 7)
1151 fprintf_filtered (file, "\n");
1152 else
1153 fprintf_filtered (file, " ");
1154 }
1155 if (nr && (nr % 8) != 7)
1156 fprintf_filtered (file, "\n");
1157 }
1158}
1159
1160/* Same as 'info reg' but prints the registers in a different way. */
1161static void
1162show_regs (char *args, int from_tty)
1163{
1164 m68hc11_print_registers_info (current_gdbarch, gdb_stdout,
1165 get_current_frame (), -1, 1);
78073dd8
AC
1166}
1167
22df305e
SC
1168static CORE_ADDR
1169m68hc11_stack_align (CORE_ADDR addr)
1170{
1171 return ((addr + 1) & -2);
1172}
1173
82c230c2 1174static CORE_ADDR
3dc990bf
SC
1175m68hc11_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1176 struct regcache *regcache, CORE_ADDR bp_addr,
1177 int nargs, struct value **args, CORE_ADDR sp,
1178 int struct_return, CORE_ADDR struct_addr)
78073dd8 1179{
82c230c2
SC
1180 int argnum;
1181 int first_stack_argnum;
82c230c2
SC
1182 struct type *type;
1183 char *val;
1184 int len;
3dc990bf 1185 char buf[2];
82c230c2 1186
82c230c2
SC
1187 first_stack_argnum = 0;
1188 if (struct_return)
1189 {
184651e3
SC
1190 /* The struct is allocated on the stack and gdb used the stack
1191 pointer for the address of that struct. We must apply the
1192 stack offset on the address. */
3dc990bf
SC
1193 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM,
1194 struct_addr + STACK_CORRECTION);
82c230c2
SC
1195 }
1196 else if (nargs > 0)
1197 {
1198 type = VALUE_TYPE (args[0]);
1199 len = TYPE_LENGTH (type);
3dc990bf 1200
82c230c2
SC
1201 /* First argument is passed in D and X registers. */
1202 if (len <= 4)
1203 {
3dc990bf
SC
1204 ULONGEST v;
1205
1206 v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
82c230c2 1207 first_stack_argnum = 1;
3dc990bf
SC
1208
1209 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1210 if (len > 2)
1211 {
1212 v >>= 16;
3dc990bf 1213 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1214 }
1215 }
1216 }
82c230c2 1217
3dc990bf 1218 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2
SC
1219 {
1220 type = VALUE_TYPE (args[argnum]);
1221 len = TYPE_LENGTH (type);
1222
22df305e
SC
1223 if (len & 1)
1224 {
1225 static char zero = 0;
1226
3dc990bf
SC
1227 sp--;
1228 write_memory (sp, &zero, 1);
22df305e 1229 }
3dc990bf
SC
1230 val = (char*) VALUE_CONTENTS (args[argnum]);
1231 sp -= len;
1232 write_memory (sp, val, len);
82c230c2 1233 }
3dc990bf
SC
1234
1235 /* Store return address. */
1236 sp -= 2;
1237 store_unsigned_integer (buf, 2, bp_addr);
1238 write_memory (sp, buf, 2);
1239
1240 /* Finally, update the stack pointer... */
1241 sp -= STACK_CORRECTION;
1242 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1243
1244 /* ...and fake a frame pointer. */
1245 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1246
1247 /* DWARF2/GCC uses the stack address *before* the function call as a
1248 frame's CFA. */
1249 return sp + 2;
78073dd8
AC
1250}
1251
1252
4db73d49
SC
1253/* Return the GDB type object for the "standard" data type
1254 of data in register N. */
1255
82c230c2 1256static struct type *
4db73d49 1257m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1258{
5706502a
SC
1259 switch (reg_nr)
1260 {
1261 case HARD_PAGE_REGNUM:
1262 case HARD_A_REGNUM:
1263 case HARD_B_REGNUM:
1264 case HARD_CCR_REGNUM:
1265 return builtin_type_uint8;
1266
548bcbec
SC
1267 case M68HC12_HARD_PC_REGNUM:
1268 return builtin_type_uint32;
1269
5706502a
SC
1270 default:
1271 return builtin_type_uint16;
1272 }
82c230c2
SC
1273}
1274
82c230c2 1275static void
4db73d49
SC
1276m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1277 const void *valbuf)
82c230c2 1278{
22df305e
SC
1279 int len;
1280
1281 len = TYPE_LENGTH (type);
1282
1283 /* First argument is passed in D and X registers. */
4db73d49
SC
1284 if (len <= 2)
1285 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1286 else if (len <= 4)
22df305e 1287 {
4db73d49
SC
1288 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1289 len - 2, valbuf);
1290 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1291 }
1292 else
1293 error ("return of value > 4 is not supported.");
82c230c2
SC
1294}
1295
1296
ef2b8fcd 1297/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1298 extract and copy its value into `valbuf'. */
1299
82c230c2 1300static void
ef2b8fcd
SC
1301m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1302 void *valbuf)
78073dd8 1303{
82c230c2 1304 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1305 char buf[M68HC11_REG_SIZE];
1306
1307 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1308 switch (len)
82c230c2 1309 {
22df305e 1310 case 1:
ef2b8fcd 1311 memcpy (valbuf, buf + 1, 1);
22df305e 1312 break;
ef2b8fcd 1313
22df305e 1314 case 2:
ef2b8fcd 1315 memcpy (valbuf, buf, 2);
22df305e 1316 break;
ef2b8fcd 1317
22df305e 1318 case 3:
ef2b8fcd
SC
1319 memcpy ((char*) valbuf + 1, buf, 2);
1320 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1321 memcpy (valbuf, buf + 1, 1);
22df305e 1322 break;
ef2b8fcd 1323
22df305e 1324 case 4:
ef2b8fcd
SC
1325 memcpy ((char*) valbuf + 2, buf, 2);
1326 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1327 memcpy (valbuf, buf, 2);
22df305e
SC
1328 break;
1329
1330 default:
82c230c2
SC
1331 error ("bad size for return value");
1332 }
1333}
1334
1335/* Should call_function allocate stack space for a struct return? */
1336static int
1337m68hc11_use_struct_convention (int gcc_p, struct type *type)
1338{
22df305e
SC
1339 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1340 || TYPE_CODE (type) == TYPE_CODE_UNION
1341 || TYPE_LENGTH (type) > 4);
82c230c2
SC
1342}
1343
1344static int
1345m68hc11_return_value_on_stack (struct type *type)
1346{
22df305e 1347 return TYPE_LENGTH (type) > 4;
82c230c2
SC
1348}
1349
1350/* Extract from an array REGBUF containing the (raw) register state
1351 the address in which a function should return its structure value,
1352 as a CORE_ADDR (or an expression that can be used as one). */
1353static CORE_ADDR
4db73d49 1354m68hc11_extract_struct_value_address (struct regcache *regcache)
82c230c2 1355{
4db73d49
SC
1356 char buf[M68HC11_REG_SIZE];
1357
1358 regcache_cooked_read (regcache, HARD_D_REGNUM, buf);
1359 return extract_unsigned_integer (buf, M68HC11_REG_SIZE);
82c230c2
SC
1360}
1361
7df11f59
SC
1362/* Test whether the ELF symbol corresponds to a function using rtc or
1363 rti to return. */
1364
1365static void
1366m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1367{
1368 unsigned char flags;
1369
1370 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1371 if (flags & STO_M68HC12_FAR)
1372 MSYMBOL_SET_RTC (msym);
1373 if (flags & STO_M68HC12_INTERRUPT)
1374 MSYMBOL_SET_RTI (msym);
1375}
1376
ea3881d9
SC
1377static int
1378gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1379{
1380 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1381 return print_insn_m68hc11 (memaddr, info);
1382 else
1383 return print_insn_m68hc12 (memaddr, info);
1384}
1385
b631436b
SC
1386\f
1387
1388/* 68HC11/68HC12 register groups.
1389 Identify real hard registers and soft registers used by gcc. */
1390
1391static struct reggroup *m68hc11_soft_reggroup;
1392static struct reggroup *m68hc11_hard_reggroup;
1393
1394static void
1395m68hc11_init_reggroups (void)
1396{
1397 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1398 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1399}
1400
1401static void
1402m68hc11_add_reggroups (struct gdbarch *gdbarch)
1403{
1404 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1405 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1406 reggroup_add (gdbarch, general_reggroup);
1407 reggroup_add (gdbarch, float_reggroup);
1408 reggroup_add (gdbarch, all_reggroup);
1409 reggroup_add (gdbarch, save_reggroup);
1410 reggroup_add (gdbarch, restore_reggroup);
1411 reggroup_add (gdbarch, vector_reggroup);
1412 reggroup_add (gdbarch, system_reggroup);
1413}
1414
1415static int
1416m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1417 struct reggroup *group)
1418{
1419 /* We must save the real hard register as well as gcc
1420 soft registers including the frame pointer. */
1421 if (group == save_reggroup || group == restore_reggroup)
1422 {
1423 return (regnum <= gdbarch_num_regs (gdbarch)
1424 || ((regnum == SOFT_FP_REGNUM
1425 || regnum == SOFT_TMP_REGNUM
1426 || regnum == SOFT_ZS_REGNUM
1427 || regnum == SOFT_XY_REGNUM)
1428 && m68hc11_register_name (regnum)));
1429 }
1430
1431 /* Group to identify gcc soft registers (d1..dN). */
1432 if (group == m68hc11_soft_reggroup)
1433 {
1434 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1435 }
1436
1437 if (group == m68hc11_hard_reggroup)
1438 {
1439 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1440 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1441 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1442 }
1443 return default_register_reggroup_p (gdbarch, regnum, group);
1444}
1445
82c230c2
SC
1446static struct gdbarch *
1447m68hc11_gdbarch_init (struct gdbarch_info info,
1448 struct gdbarch_list *arches)
1449{
82c230c2
SC
1450 struct gdbarch *gdbarch;
1451 struct gdbarch_tdep *tdep;
81967506 1452 int elf_flags;
82c230c2
SC
1453
1454 soft_reg_initialized = 0;
81967506
SC
1455
1456 /* Extract the elf_flags if available. */
1457 if (info.abfd != NULL
1458 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1459 elf_flags = elf_elfheader (info.abfd)->e_flags;
1460 else
1461 elf_flags = 0;
1462
82c230c2
SC
1463 /* try to find a pre-existing architecture */
1464 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1465 arches != NULL;
1466 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1467 {
81967506
SC
1468 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1469 continue;
1470
82c230c2
SC
1471 return arches->gdbarch;
1472 }
1473
1474 /* Need a new architecture. Fill in a target specific vector. */
1475 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1476 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1477 tdep->elf_flags = elf_flags;
ed99b3d0 1478
5d1a66bd
SC
1479 switch (info.bfd_arch_info->arch)
1480 {
1481 case bfd_arch_m68hc11:
1482 tdep->stack_correction = 1;
7df11f59 1483 tdep->use_page_register = 0;
908f682f 1484 tdep->prologue = m6811_prologue;
548bcbec
SC
1485 set_gdbarch_addr_bit (gdbarch, 16);
1486 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1487 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1488 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1489 break;
82c230c2 1490
5d1a66bd
SC
1491 case bfd_arch_m68hc12:
1492 tdep->stack_correction = 0;
7df11f59 1493 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1494 tdep->prologue = m6812_prologue;
548bcbec
SC
1495 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1496 set_gdbarch_num_pseudo_regs (gdbarch,
1497 elf_flags & E_M68HC12_BANKS
1498 ? M68HC12_NUM_PSEUDO_REGS
1499 : M68HC11_NUM_PSEUDO_REGS);
1500 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1501 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1502 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1503 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1504 break;
1505
1506 default:
1507 break;
1508 }
7d32ba20
SC
1509
1510 /* Initially set everything according to the ABI.
1511 Use 16-bit integers since it will be the case for most
1512 programs. The size of these types should normally be set
1513 according to the dwarf2 debug information. */
82c230c2 1514 set_gdbarch_short_bit (gdbarch, 16);
81967506 1515 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1516 set_gdbarch_float_bit (gdbarch, 32);
81967506 1517 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1518 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1519 set_gdbarch_long_bit (gdbarch, 32);
1520 set_gdbarch_ptr_bit (gdbarch, 16);
1521 set_gdbarch_long_long_bit (gdbarch, 64);
1522
b2a02dda
SC
1523 /* Characters are unsigned. */
1524 set_gdbarch_char_signed (gdbarch, 0);
1525
1ea653ae
SC
1526 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1527 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1528
82c230c2
SC
1529 /* Set register info. */
1530 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1531
82c230c2 1532 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
82c230c2 1533
82c230c2 1534 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1535 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1536 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1537 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1538 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1539
3dc990bf
SC
1540 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1541
ef2b8fcd 1542 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
82c230c2
SC
1543 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1544
0880807f 1545 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
74055713 1546 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
82c230c2 1547 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
82c230c2
SC
1548 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1549 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1550 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
f27dd7fd 1551 set_gdbarch_deprecated_stack_align (gdbarch, m68hc11_stack_align);
70ed8774 1552 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1553
b631436b
SC
1554 m68hc11_add_reggroups (gdbarch);
1555 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1556 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1557
1ea653ae
SC
1558 /* Hook in the DWARF CFI frame unwinder. */
1559 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1ea653ae 1560
1a241548 1561 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1ea653ae
SC
1562 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1563
1564 /* Methods for saving / extracting a dummy frame's ID. The ID's
1565 stack address must match the SP value returned by
1566 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1567 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1568
1569 /* Return the unwound PC value. */
1570 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1571
7df11f59
SC
1572 /* Minsymbol frobbing. */
1573 set_gdbarch_elf_make_msymbol_special (gdbarch,
1574 m68hc11_elf_make_msymbol_special);
1575
82c230c2 1576 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1577
1578 return gdbarch;
78073dd8
AC
1579}
1580
a78f21af
AC
1581extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1582
78073dd8 1583void
fba45db2 1584_initialize_m68hc11_tdep (void)
78073dd8 1585{
82c230c2 1586 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1587 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1588 m68hc11_init_reggroups ();
78073dd8 1589
e286caf2
SC
1590 deprecate_cmd (add_com ("regs", class_vars, show_regs,
1591 "Print all registers"),
1592 "info registers");
78073dd8
AC
1593}
1594
This page took 0.424117 seconds and 4 git commands to generate.