*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
0fd88904 3 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
931aecf5
AC
4 Foundation, Inc.
5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8
AC
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
78073dd8 24
82c230c2
SC
25#include "defs.h"
26#include "frame.h"
1ea653ae
SC
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "dwarf2-frame.h"
30#include "trad-frame.h"
82c230c2
SC
31#include "symtab.h"
32#include "gdbtypes.h"
33#include "gdbcmd.h"
34#include "gdbcore.h"
35#include "gdb_string.h"
36#include "value.h"
37#include "inferior.h"
38#include "dis-asm.h"
39#include "symfile.h"
40#include "objfiles.h"
41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
b631436b 43#include "reggroups.h"
78073dd8 44
82c230c2
SC
45#include "target.h"
46#include "opcode/m68hc11.h"
81967506
SC
47#include "elf/m68hc11.h"
48#include "elf-bfd.h"
78073dd8 49
7df11f59
SC
50/* Macros for setting and testing a bit in a minimal symbol.
51 For 68HC11/68HC12 we have two flags that tell which return
52 type the function is using. This is used for prologue and frame
53 analysis to compute correct stack frame layout.
54
55 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
56
57 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
58 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
59 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 60 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59
SC
61
62#define MSYMBOL_SET_RTC(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66#define MSYMBOL_SET_RTI(msym) \
67 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
68 | 0x40000000)
69
70#define MSYMBOL_IS_RTC(msym) \
71 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
72
73#define MSYMBOL_IS_RTI(msym) \
74 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
75
7df11f59
SC
76enum insn_return_kind {
77 RETURN_RTS,
78 RETURN_RTC,
79 RETURN_RTI
80};
81
82
78073dd8
AC
83/* Register numbers of various important registers.
84 Note that some of these values are "real" register numbers,
85 and correspond to the general registers of the machine,
86 and some are "phony" register numbers which are too large
87 to be actual register numbers as far as the user is concerned
88 but do serve to get the desired values when passed to read_register. */
89
82c230c2
SC
90#define HARD_X_REGNUM 0
91#define HARD_D_REGNUM 1
92#define HARD_Y_REGNUM 2
93#define HARD_SP_REGNUM 3
94#define HARD_PC_REGNUM 4
95
96#define HARD_A_REGNUM 5
97#define HARD_B_REGNUM 6
98#define HARD_CCR_REGNUM 7
5706502a
SC
99
100/* 68HC12 page number register.
101 Note: to keep a compatibility with gcc register naming, we must
102 not have to rename FP and other soft registers. The page register
103 is a real hard register and must therefore be counted by NUM_REGS.
104 For this it has the same number as Z register (which is not used). */
105#define HARD_PAGE_REGNUM 8
106#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
107
108/* Z is replaced by X or Y by gcc during machine reorg.
109 ??? There is no way to get it and even know whether
110 it's in X or Y or in ZS. */
111#define SOFT_Z_REGNUM 8
112
113/* Soft registers. These registers are special. There are treated
114 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
115 They are physically located in memory. */
116#define SOFT_FP_REGNUM 9
117#define SOFT_TMP_REGNUM 10
118#define SOFT_ZS_REGNUM 11
119#define SOFT_XY_REGNUM 12
f91a8b6b
SC
120#define SOFT_UNUSED_REGNUM 13
121#define SOFT_D1_REGNUM 14
82c230c2
SC
122#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
123#define M68HC11_MAX_SOFT_REGS 32
124
125#define M68HC11_NUM_REGS (8)
126#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
127#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
128
129#define M68HC11_REG_SIZE (2)
130
548bcbec
SC
131#define M68HC12_NUM_REGS (9)
132#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
133#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
134
908f682f 135struct insn_sequence;
82c230c2
SC
136struct gdbarch_tdep
137 {
5d1a66bd
SC
138 /* Stack pointer correction value. For 68hc11, the stack pointer points
139 to the next push location. An offset of 1 must be applied to obtain
140 the address where the last value is saved. For 68hc12, the stack
141 pointer points to the last value pushed. No offset is necessary. */
142 int stack_correction;
908f682f
SC
143
144 /* Description of instructions in the prologue. */
145 struct insn_sequence *prologue;
81967506 146
7df11f59
SC
147 /* True if the page memory bank register is available
148 and must be used. */
149 int use_page_register;
150
81967506
SC
151 /* ELF flags for ABI. */
152 int elf_flags;
82c230c2
SC
153 };
154
5d1a66bd
SC
155#define M6811_TDEP gdbarch_tdep (current_gdbarch)
156#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 157#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 158
1ea653ae
SC
159struct m68hc11_unwind_cache
160{
161 /* The previous frame's inner most stack address. Used as this
162 frame ID's stack_addr. */
163 CORE_ADDR prev_sp;
164 /* The frame's base, optionally used by the high-level debug info. */
165 CORE_ADDR base;
166 CORE_ADDR pc;
167 int size;
168 int prologue_type;
169 CORE_ADDR return_pc;
170 CORE_ADDR sp_offset;
171 int frameless;
172 enum insn_return_kind return_kind;
173
174 /* Table indicating the location of each and every register. */
175 struct trad_frame_saved_reg *saved_regs;
176};
177
82c230c2
SC
178/* Table of registers for 68HC11. This includes the hard registers
179 and the soft registers used by GCC. */
180static char *
181m68hc11_register_names[] =
182{
183 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 184 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
185 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
186 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
187 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
188 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
189 "d29", "d30", "d31", "d32"
190};
78073dd8 191
82c230c2
SC
192struct m68hc11_soft_reg
193{
194 const char *name;
195 CORE_ADDR addr;
196};
78073dd8 197
82c230c2 198static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 199
82c230c2 200#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 201
82c230c2
SC
202static int soft_min_addr;
203static int soft_max_addr;
204static int soft_reg_initialized = 0;
78073dd8 205
82c230c2
SC
206/* Look in the symbol table for the address of a pseudo register
207 in memory. If we don't find it, pretend the register is not used
208 and not available. */
209static void
210m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
211{
212 struct minimal_symbol *msymbol;
78073dd8 213
82c230c2
SC
214 msymbol = lookup_minimal_symbol (name, NULL, NULL);
215 if (msymbol)
216 {
217 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
218 reg->name = xstrdup (name);
219
220 /* Keep track of the address range for soft registers. */
221 if (reg->addr < (CORE_ADDR) soft_min_addr)
222 soft_min_addr = reg->addr;
223 if (reg->addr > (CORE_ADDR) soft_max_addr)
224 soft_max_addr = reg->addr;
225 }
226 else
227 {
228 reg->name = 0;
229 reg->addr = 0;
230 }
231}
78073dd8 232
82c230c2
SC
233/* Initialize the table of soft register addresses according
234 to the symbol table. */
235 static void
236m68hc11_initialize_register_info (void)
237{
238 int i;
78073dd8 239
82c230c2
SC
240 if (soft_reg_initialized)
241 return;
242
243 soft_min_addr = INT_MAX;
244 soft_max_addr = 0;
245 for (i = 0; i < M68HC11_ALL_REGS; i++)
246 {
247 soft_regs[i].name = 0;
248 }
249
250 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
251 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
252 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
253 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
254 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 255
82c230c2
SC
256 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
257 {
258 char buf[10];
78073dd8 259
82c230c2
SC
260 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
261 m68hc11_get_register_info (&soft_regs[i], buf);
262 }
78073dd8 263
82c230c2 264 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
265 warning (_("No frame soft register found in the symbol table.\n"
266 "Stack backtrace will not work."));
82c230c2
SC
267 soft_reg_initialized = 1;
268}
78073dd8 269
82c230c2
SC
270/* Given an address in memory, return the soft register number if
271 that address corresponds to a soft register. Returns -1 if not. */
272static int
273m68hc11_which_soft_register (CORE_ADDR addr)
274{
275 int i;
276
277 if (addr < soft_min_addr || addr > soft_max_addr)
278 return -1;
279
280 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
281 {
282 if (soft_regs[i].name && soft_regs[i].addr == addr)
283 return i;
284 }
285 return -1;
286}
78073dd8 287
82c230c2
SC
288/* Fetch a pseudo register. The 68hc11 soft registers are treated like
289 pseudo registers. They are located in memory. Translate the register
290 fetch into a memory read. */
46ce284d
AC
291static void
292m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
293 struct regcache *regcache,
294 int regno, void *buf)
82c230c2 295{
548bcbec
SC
296 /* The PC is a pseudo reg only for 68HC12 with the memory bank
297 addressing mode. */
298 if (regno == M68HC12_HARD_PC_REGNUM)
299 {
4db73d49 300 ULONGEST pc;
548bcbec 301 const int regsize = TYPE_LENGTH (builtin_type_uint32);
548bcbec 302
4db73d49 303 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
548bcbec
SC
304 if (pc >= 0x8000 && pc < 0xc000)
305 {
4db73d49
SC
306 ULONGEST page;
307
308 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
309 pc -= 0x8000;
310 pc += (page << 14);
311 pc += 0x1000000;
312 }
313 store_unsigned_integer (buf, regsize, pc);
314 return;
315 }
316
82c230c2
SC
317 m68hc11_initialize_register_info ();
318
319 /* Fetch a soft register: translate into a memory read. */
320 if (soft_regs[regno].name)
321 {
322 target_read_memory (soft_regs[regno].addr, buf, 2);
323 }
324 else
325 {
326 memset (buf, 0, 2);
327 }
82c230c2 328}
78073dd8 329
82c230c2
SC
330/* Store a pseudo register. Translate the register store
331 into a memory write. */
332static void
46ce284d
AC
333m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
334 struct regcache *regcache,
335 int regno, const void *buf)
82c230c2 336{
548bcbec
SC
337 /* The PC is a pseudo reg only for 68HC12 with the memory bank
338 addressing mode. */
339 if (regno == M68HC12_HARD_PC_REGNUM)
340 {
341 const int regsize = TYPE_LENGTH (builtin_type_uint32);
342 char *tmp = alloca (regsize);
343 CORE_ADDR pc;
344
345 memcpy (tmp, buf, regsize);
346 pc = extract_unsigned_integer (tmp, regsize);
347 if (pc >= 0x1000000)
348 {
349 pc -= 0x1000000;
4db73d49
SC
350 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
351 (pc >> 14) & 0x0ff);
548bcbec 352 pc &= 0x03fff;
4db73d49
SC
353 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
354 pc + 0x8000);
548bcbec
SC
355 }
356 else
4db73d49 357 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
358 return;
359 }
360
82c230c2 361 m68hc11_initialize_register_info ();
78073dd8 362
82c230c2
SC
363 /* Store a soft register: translate into a memory write. */
364 if (soft_regs[regno].name)
365 {
46ce284d
AC
366 const int regsize = 2;
367 char *tmp = alloca (regsize);
368 memcpy (tmp, buf, regsize);
369 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
370 }
371}
78073dd8 372
fa88f677 373static const char *
82c230c2 374m68hc11_register_name (int reg_nr)
78073dd8 375{
548bcbec
SC
376 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
377 return "pc";
378 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
379 return "ppc";
380
82c230c2
SC
381 if (reg_nr < 0)
382 return NULL;
383 if (reg_nr >= M68HC11_ALL_REGS)
384 return NULL;
385
65760afb
SC
386 m68hc11_initialize_register_info ();
387
82c230c2
SC
388 /* If we don't know the address of a soft register, pretend it
389 does not exist. */
390 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
391 return NULL;
392 return m68hc11_register_names[reg_nr];
393}
78073dd8 394
f4f9705a 395static const unsigned char *
82c230c2 396m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 397{
82c230c2
SC
398 static unsigned char breakpoint[] = {0x0};
399
400 *lenptr = sizeof (breakpoint);
401 return breakpoint;
78073dd8
AC
402}
403
908f682f
SC
404\f
405/* 68HC11 & 68HC12 prologue analysis.
406
407 */
408#define MAX_CODES 12
409
410/* 68HC11 opcodes. */
411#undef M6811_OP_PAGE2
b94a41a1
SC
412#define M6811_OP_PAGE2 (0x18)
413#define M6811_OP_LDX (0xde)
414#define M6811_OP_LDX_EXT (0xfe)
415#define M6811_OP_PSHX (0x3c)
416#define M6811_OP_STS (0x9f)
417#define M6811_OP_STS_EXT (0xbf)
418#define M6811_OP_TSX (0x30)
419#define M6811_OP_XGDX (0x8f)
420#define M6811_OP_ADDD (0xc3)
421#define M6811_OP_TXS (0x35)
422#define M6811_OP_DES (0x34)
908f682f
SC
423
424/* 68HC12 opcodes. */
b94a41a1
SC
425#define M6812_OP_PAGE2 (0x18)
426#define M6812_OP_MOVW (0x01)
427#define M6812_PB_PSHW (0xae)
428#define M6812_OP_STS (0x5f)
429#define M6812_OP_STS_EXT (0x7f)
430#define M6812_OP_LEAS (0x1b)
431#define M6812_OP_PSHX (0x34)
432#define M6812_OP_PSHY (0x35)
908f682f
SC
433
434/* Operand extraction. */
435#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
436#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
437#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
438#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
439
440/* Identification of the sequence. */
441enum m6811_seq_type
442{
443 P_LAST = 0,
444 P_SAVE_REG, /* Save a register on the stack. */
445 P_SET_FRAME, /* Setup the frame pointer. */
446 P_LOCAL_1, /* Allocate 1 byte for locals. */
447 P_LOCAL_2, /* Allocate 2 bytes for locals. */
448 P_LOCAL_N /* Allocate N bytes for locals. */
449};
450
451struct insn_sequence {
452 enum m6811_seq_type type;
453 unsigned length;
454 unsigned short code[MAX_CODES];
455};
456
457/* Sequence of instructions in the 68HC11 function prologue. */
458static struct insn_sequence m6811_prologue[] = {
459 /* Sequences to save a soft-register. */
460 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
464 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
465 M6811_OP_PSHX } },
466 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
468
469 /* Sequences to allocate local variables. */
470 { P_LOCAL_N, 7, { M6811_OP_TSX,
471 M6811_OP_XGDX,
472 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
473 M6811_OP_XGDX,
474 M6811_OP_TXS } },
475 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
476 M6811_OP_PAGE2, M6811_OP_XGDX,
477 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
478 M6811_OP_PAGE2, M6811_OP_XGDX,
479 M6811_OP_PAGE2, M6811_OP_TXS } },
480 { P_LOCAL_1, 1, { M6811_OP_DES } },
481 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
482 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
483
484 /* Initialize the frame pointer. */
485 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 486 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
487 { P_LAST, 0, { 0 } }
488};
489
490
491/* Sequence of instructions in the 68HC12 function prologue. */
492static struct insn_sequence m6812_prologue[] = {
493 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
494 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
495 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
496 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 497 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
498 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
499 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
500 { P_LAST, 0 }
501};
502
503
504/* Analyze the sequence of instructions starting at the given address.
505 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 506 the optional value (constant/address) associated with it. */
908f682f 507static struct insn_sequence *
c8a7f6ac 508m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
509 CORE_ADDR *val)
510{
511 unsigned char buffer[MAX_CODES];
512 unsigned bufsize;
513 unsigned j;
514 CORE_ADDR cur_val;
515 short v = 0;
516
517 bufsize = 0;
518 for (; seq->type != P_LAST; seq++)
519 {
520 cur_val = 0;
521 for (j = 0; j < seq->length; j++)
522 {
523 if (bufsize < j + 1)
524 {
c8a7f6ac 525 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
908f682f
SC
526 1);
527 bufsize++;
528 }
529 /* Continue while we match the opcode. */
530 if (seq->code[j] == buffer[j])
531 continue;
532
533 if ((seq->code[j] & 0xf00) == 0)
534 break;
535
536 /* Extract a sequence parameter (address or constant). */
537 switch (seq->code[j])
538 {
539 case OP_DIRECT:
540 cur_val = (CORE_ADDR) buffer[j];
541 break;
542
543 case OP_IMM_HIGH:
544 cur_val = cur_val & 0x0ff;
545 cur_val |= (buffer[j] << 8);
546 break;
547
548 case OP_IMM_LOW:
549 cur_val &= 0x0ff00;
550 cur_val |= buffer[j];
551 break;
552
553 case OP_PBYTE:
554 if ((buffer[j] & 0xE0) == 0x80)
555 {
556 v = buffer[j] & 0x1f;
557 if (v & 0x10)
558 v |= 0xfff0;
559 }
560 else if ((buffer[j] & 0xfe) == 0xf0)
561 {
c8a7f6ac 562 v = read_memory_unsigned_integer (pc + j + 1, 1);
908f682f
SC
563 if (buffer[j] & 1)
564 v |= 0xff00;
565 }
566 else if (buffer[j] == 0xf2)
567 {
c8a7f6ac 568 v = read_memory_unsigned_integer (pc + j + 1, 2);
908f682f
SC
569 }
570 cur_val = v;
571 break;
572 }
573 }
574
575 /* We have a full match. */
576 if (j == seq->length)
577 {
578 *val = cur_val;
908f682f
SC
579 return seq;
580 }
581 }
582 return 0;
583}
584
7df11f59
SC
585/* Return the instruction that the function at the PC is using. */
586static enum insn_return_kind
587m68hc11_get_return_insn (CORE_ADDR pc)
588{
589 struct minimal_symbol *sym;
590
591 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
592 function is stored by elfread.c in the high bit of the info field.
593 Use this to decide which instruction the function uses to return. */
594 sym = lookup_minimal_symbol_by_pc (pc);
595 if (sym == 0)
596 return RETURN_RTS;
597
598 if (MSYMBOL_IS_RTC (sym))
599 return RETURN_RTC;
600 else if (MSYMBOL_IS_RTI (sym))
601 return RETURN_RTI;
602 else
603 return RETURN_RTS;
604}
605
78073dd8
AC
606/* Analyze the function prologue to find some information
607 about the function:
608 - the PC of the first line (for m68hc11_skip_prologue)
609 - the offset of the previous frame saved address (from current frame)
610 - the soft registers which are pushed. */
1ea653ae
SC
611static CORE_ADDR
612m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
613 struct m68hc11_unwind_cache *info)
78073dd8 614{
1ea653ae 615 LONGEST save_addr;
78073dd8 616 CORE_ADDR func_end;
78073dd8
AC
617 int size;
618 int found_frame_point;
82c230c2 619 int saved_reg;
908f682f
SC
620 int done = 0;
621 struct insn_sequence *seq_table;
1ea653ae
SC
622
623 info->size = 0;
624 info->sp_offset = 0;
625 if (pc >= current_pc)
626 return current_pc;
627
78073dd8
AC
628 size = 0;
629
82c230c2 630 m68hc11_initialize_register_info ();
1ea653ae 631 if (pc == 0)
78073dd8 632 {
1ea653ae
SC
633 info->size = 0;
634 return pc;
78073dd8
AC
635 }
636
908f682f
SC
637 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
638
78073dd8
AC
639 /* The 68hc11 stack is as follows:
640
641
642 | |
643 +-----------+
644 | |
645 | args |
646 | |
647 +-----------+
648 | PC-return |
649 +-----------+
650 | Old frame |
651 +-----------+
652 | |
653 | Locals |
654 | |
655 +-----------+ <--- current frame
656 | |
657
658 With most processors (like 68K) the previous frame can be computed
659 easily because it is always at a fixed offset (see link/unlink).
660 That is, locals are accessed with negative offsets, arguments are
661 accessed with positive ones. Since 68hc11 only supports offsets
662 in the range [0..255], the frame is defined at the bottom of
663 locals (see picture).
664
665 The purpose of the analysis made here is to find out the size
666 of locals in this function. An alternative to this is to use
667 DWARF2 info. This would be better but I don't know how to
668 access dwarf2 debug from this function.
669
670 Walk from the function entry point to the point where we save
671 the frame. While walking instructions, compute the size of bytes
672 which are pushed. This gives us the index to access the previous
673 frame.
674
675 We limit the search to 128 bytes so that the algorithm is bounded
676 in case of random and wrong code. We also stop and abort if
677 we find an instruction which is not supposed to appear in the
678 prologue (as generated by gcc 2.95, 2.96).
679 */
78073dd8 680 func_end = pc + 128;
78073dd8 681 found_frame_point = 0;
1ea653ae
SC
682 info->size = 0;
683 save_addr = 0;
908f682f 684 while (!done && pc + 2 < func_end)
78073dd8 685 {
908f682f
SC
686 struct insn_sequence *seq;
687 CORE_ADDR val;
1ea653ae 688
c8a7f6ac 689 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
908f682f
SC
690 if (seq == 0)
691 break;
78073dd8 692
c8a7f6ac
SC
693 /* If we are within the instruction group, we can't advance the
694 pc nor the stack offset. Otherwise the caller's stack computed
695 from the current stack can be wrong. */
696 if (pc + seq->length > current_pc)
697 break;
698
699 pc = pc + seq->length;
908f682f 700 if (seq->type == P_SAVE_REG)
78073dd8 701 {
908f682f
SC
702 if (found_frame_point)
703 {
704 saved_reg = m68hc11_which_soft_register (val);
705 if (saved_reg < 0)
706 break;
78073dd8 707
908f682f 708 save_addr -= 2;
1ea653ae 709 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
710 }
711 else
712 {
713 size += 2;
714 }
78073dd8 715 }
908f682f 716 else if (seq->type == P_SET_FRAME)
78073dd8
AC
717 {
718 found_frame_point = 1;
1ea653ae 719 info->size = size;
78073dd8 720 }
908f682f 721 else if (seq->type == P_LOCAL_1)
78073dd8 722 {
6148eca7
SC
723 size += 1;
724 }
908f682f 725 else if (seq->type == P_LOCAL_2)
78073dd8 726 {
908f682f 727 size += 2;
78073dd8 728 }
908f682f 729 else if (seq->type == P_LOCAL_N)
78073dd8 730 {
908f682f
SC
731 /* Stack pointer is decremented for the allocation. */
732 if (val & 0x8000)
733 size -= (int) (val) | 0xffff0000;
734 else
735 size -= val;
78073dd8
AC
736 }
737 }
1ea653ae
SC
738 if (found_frame_point == 0)
739 info->sp_offset = size;
740 else
741 info->sp_offset = -1;
742 return pc;
78073dd8
AC
743}
744
82c230c2 745static CORE_ADDR
78073dd8
AC
746m68hc11_skip_prologue (CORE_ADDR pc)
747{
748 CORE_ADDR func_addr, func_end;
749 struct symtab_and_line sal;
1ea653ae 750 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 751
82c230c2
SC
752 /* If we have line debugging information, then the end of the
753 prologue should be the first assembly instruction of the
78073dd8
AC
754 first source line. */
755 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
756 {
757 sal = find_pc_line (func_addr, 0);
758 if (sal.end && sal.end < func_end)
759 return sal.end;
760 }
761
1ea653ae 762 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
763 return pc;
764}
765
1ea653ae
SC
766static CORE_ADDR
767m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
768{
769 ULONGEST pc;
770
771 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
772 &pc);
773 return pc;
774}
775
776/* Put here the code to store, into fi->saved_regs, the addresses of
777 the saved registers of frame described by FRAME_INFO. This
778 includes special registers such as pc and fp saved in special ways
779 in the stack frame. sp is even more special: the address we return
780 for it IS the sp for the next frame. */
781
782struct m68hc11_unwind_cache *
783m68hc11_frame_unwind_cache (struct frame_info *next_frame,
784 void **this_prologue_cache)
785{
786 ULONGEST prev_sp;
787 ULONGEST this_base;
788 struct m68hc11_unwind_cache *info;
789 CORE_ADDR current_pc;
790 int i;
791
792 if ((*this_prologue_cache))
793 return (*this_prologue_cache);
794
795 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
796 (*this_prologue_cache) = info;
797 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
798
799 info->pc = frame_func_unwind (next_frame);
800
801 info->size = 0;
802 info->return_kind = m68hc11_get_return_insn (info->pc);
803
804 /* The SP was moved to the FP. This indicates that a new frame
805 was created. Get THIS frame's FP value by unwinding it from
806 the next frame. */
807 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
808 if (this_base == 0)
809 {
810 info->base = 0;
811 return info;
812 }
813
814 current_pc = frame_pc_unwind (next_frame);
815 if (info->pc != 0)
816 m68hc11_scan_prologue (info->pc, current_pc, info);
817
818 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
819
820 if (info->sp_offset != (CORE_ADDR) -1)
821 {
822 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
823 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
824 prev_sp = this_base + info->sp_offset + 2;
825 this_base += STACK_CORRECTION;
826 }
827 else
828 {
829 /* The FP points at the last saved register. Adjust the FP back
830 to before the first saved register giving the SP. */
831 prev_sp = this_base + info->size + 2;
832
833 this_base += STACK_CORRECTION;
834 if (soft_regs[SOFT_FP_REGNUM].name)
835 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
836 }
837
838 if (info->return_kind == RETURN_RTC)
839 {
840 prev_sp += 1;
841 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
842 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
843 }
844 else if (info->return_kind == RETURN_RTI)
845 {
846 prev_sp += 7;
847 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
848 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
849 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
850 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
851 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
852 }
853
854 /* Add 1 here to adjust for the post-decrement nature of the push
855 instruction.*/
856 info->prev_sp = prev_sp;
857
858 info->base = this_base;
859
860 /* Adjust all the saved registers so that they contain addresses and not
861 offsets. */
862 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
863 if (trad_frame_addr_p (info->saved_regs, i))
864 {
865 info->saved_regs[i].addr += this_base;
866 }
867
868 /* The previous frame's SP needed to be computed. Save the computed
869 value. */
870 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
871
872 return info;
873}
874
875/* Given a GDB frame, determine the address of the calling function's
876 frame. This will be used to create a new GDB frame struct. */
877
878static void
879m68hc11_frame_this_id (struct frame_info *next_frame,
880 void **this_prologue_cache,
881 struct frame_id *this_id)
882{
883 struct m68hc11_unwind_cache *info
884 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
885 CORE_ADDR base;
886 CORE_ADDR func;
887 struct frame_id id;
888
889 /* The FUNC is easy. */
890 func = frame_func_unwind (next_frame);
891
1ea653ae
SC
892 /* Hopefully the prologue analysis either correctly determined the
893 frame's base (which is the SP from the previous frame), or set
894 that base to "NULL". */
895 base = info->prev_sp;
896 if (base == 0)
897 return;
898
899 id = frame_id_build (base, func);
1ea653ae
SC
900 (*this_id) = id;
901}
902
903static void
904m68hc11_frame_prev_register (struct frame_info *next_frame,
905 void **this_prologue_cache,
906 int regnum, int *optimizedp,
907 enum lval_type *lvalp, CORE_ADDR *addrp,
908 int *realnump, void *bufferp)
909{
910 struct m68hc11_unwind_cache *info
911 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
912
1f67027d
AC
913 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
914 optimizedp, lvalp, addrp, realnump, bufferp);
1ea653ae
SC
915
916 if (regnum == HARD_PC_REGNUM)
917 {
918 /* Take into account the 68HC12 specific call (PC + page). */
919 if (info->return_kind == RETURN_RTC
920 && *addrp >= 0x08000 && *addrp < 0x0c000
921 && USE_PAGE_REGISTER)
922 {
923 int page_optimized;
924
925 CORE_ADDR page;
926
1f67027d
AC
927 trad_frame_get_prev_register (next_frame, info->saved_regs,
928 HARD_PAGE_REGNUM, &page_optimized,
929 0, &page, 0, 0);
1ea653ae
SC
930 *addrp -= 0x08000;
931 *addrp += ((page & 0x0ff) << 14);
932 *addrp += 0x1000000;
933 }
934 }
935}
936
937static const struct frame_unwind m68hc11_frame_unwind = {
938 NORMAL_FRAME,
939 m68hc11_frame_this_id,
940 m68hc11_frame_prev_register
941};
942
943const struct frame_unwind *
1a241548 944m68hc11_frame_sniffer (struct frame_info *next_frame)
1ea653ae
SC
945{
946 return &m68hc11_frame_unwind;
947}
948
949static CORE_ADDR
950m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
951{
952 struct m68hc11_unwind_cache *info
953 = m68hc11_frame_unwind_cache (next_frame, this_cache);
954
955 return info->base;
956}
957
958static CORE_ADDR
959m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
960{
961 CORE_ADDR addr;
962 struct m68hc11_unwind_cache *info
963 = m68hc11_frame_unwind_cache (next_frame, this_cache);
964
965 addr = info->base + info->size;
966 if (info->return_kind == RETURN_RTC)
967 addr += 1;
968 else if (info->return_kind == RETURN_RTI)
969 addr += 7;
970
971 return addr;
972}
973
974static const struct frame_base m68hc11_frame_base = {
975 &m68hc11_frame_unwind,
976 m68hc11_frame_base_address,
977 m68hc11_frame_base_address,
978 m68hc11_frame_args_address
979};
980
981static CORE_ADDR
982m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
983{
984 ULONGEST sp;
985 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
986 return sp;
987}
988
989/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
990 dummy frame. The frame ID's base needs to match the TOS value
991 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
992 breakpoint. */
993
994static struct frame_id
995m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
996{
997 ULONGEST tos;
998 CORE_ADDR pc = frame_pc_unwind (next_frame);
999
1000 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1001 tos += 2;
1002 return frame_id_build (tos, pc);
1003}
78073dd8 1004
e286caf2
SC
1005\f
1006/* Get and print the register from the given frame. */
78073dd8 1007static void
e286caf2
SC
1008m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1009 struct frame_info *frame, int regno)
78073dd8 1010{
e286caf2
SC
1011 LONGEST rval;
1012
1013 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1014 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1015 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1016 else
7f5f525d 1017 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1018
1019 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1020 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1021 {
e286caf2
SC
1022 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1023 if (regno != HARD_CCR_REGNUM)
1024 print_longest (file, 'd', 1, rval);
7df11f59 1025 }
e286caf2
SC
1026 else
1027 {
1028 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1029 {
1030 ULONGEST page;
7df11f59 1031
7f5f525d 1032 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1033 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1034 (unsigned) rval);
1035 }
1036 else
1037 {
1038 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1039 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1040 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1041 print_longest (file, 'd', 1, rval);
1042 }
1043 }
1044
1045 if (regno == HARD_CCR_REGNUM)
78073dd8 1046 {
e286caf2
SC
1047 /* CCR register */
1048 int C, Z, N, V;
1049 unsigned char l = rval & 0xff;
1050
1051 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1052 l & M6811_S_BIT ? 'S' : '-',
1053 l & M6811_X_BIT ? 'X' : '-',
1054 l & M6811_H_BIT ? 'H' : '-',
1055 l & M6811_I_BIT ? 'I' : '-',
1056 l & M6811_N_BIT ? 'N' : '-',
1057 l & M6811_Z_BIT ? 'Z' : '-',
1058 l & M6811_V_BIT ? 'V' : '-',
1059 l & M6811_C_BIT ? 'C' : '-');
1060 N = (l & M6811_N_BIT) != 0;
1061 Z = (l & M6811_Z_BIT) != 0;
1062 V = (l & M6811_V_BIT) != 0;
1063 C = (l & M6811_C_BIT) != 0;
1064
1065 /* Print flags following the h8300 */
1066 if ((C | Z) == 0)
1067 fprintf_filtered (file, "u> ");
1068 else if ((C | Z) == 1)
1069 fprintf_filtered (file, "u<= ");
1070 else if (C == 0)
1071 fprintf_filtered (file, "u< ");
1072
1073 if (Z == 0)
1074 fprintf_filtered (file, "!= ");
1075 else
1076 fprintf_filtered (file, "== ");
1077
1078 if ((N ^ V) == 0)
1079 fprintf_filtered (file, ">= ");
1080 else
1081 fprintf_filtered (file, "< ");
1082
1083 if ((Z | (N ^ V)) == 0)
1084 fprintf_filtered (file, "> ");
78073dd8 1085 else
e286caf2 1086 fprintf_filtered (file, "<= ");
78073dd8 1087 }
e286caf2
SC
1088}
1089
1090/* Same as 'info reg' but prints the registers in a different way. */
1091static void
1092m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1093 struct frame_info *frame, int regno, int cpregs)
1094{
1095 if (regno >= 0)
1096 {
1097 const char *name = gdbarch_register_name (gdbarch, regno);
1098
1099 if (!name || !*name)
1100 return;
1101
1102 fprintf_filtered (file, "%-10s ", name);
1103 m68hc11_print_register (gdbarch, file, frame, regno);
1104 fprintf_filtered (file, "\n");
1105 }
1106 else
1107 {
1108 int i, nr;
1109
1110 fprintf_filtered (file, "PC=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1112
1113 fprintf_filtered (file, " SP=");
1114 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1115
1116 fprintf_filtered (file, " FP=");
1117 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1118
1119 fprintf_filtered (file, "\nCCR=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1121
1122 fprintf_filtered (file, "\nD=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1124
1125 fprintf_filtered (file, " X=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1127
1128 fprintf_filtered (file, " Y=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1130
1131 if (gdbarch_tdep (gdbarch)->use_page_register)
1132 {
1133 fprintf_filtered (file, "\nPage=");
1134 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1135 }
1136 fprintf_filtered (file, "\n");
1137
1138 nr = 0;
1139 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1140 {
1141 /* Skip registers which are not defined in the symbol table. */
1142 if (soft_regs[i].name == 0)
1143 continue;
1144
1145 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1146 m68hc11_print_register (gdbarch, file, frame, i);
1147 nr++;
1148 if ((nr % 8) == 7)
1149 fprintf_filtered (file, "\n");
1150 else
1151 fprintf_filtered (file, " ");
1152 }
1153 if (nr && (nr % 8) != 7)
1154 fprintf_filtered (file, "\n");
1155 }
1156}
1157
22df305e
SC
1158static CORE_ADDR
1159m68hc11_stack_align (CORE_ADDR addr)
1160{
1161 return ((addr + 1) & -2);
1162}
1163
82c230c2 1164static CORE_ADDR
7d9b040b 1165m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1166 struct regcache *regcache, CORE_ADDR bp_addr,
1167 int nargs, struct value **args, CORE_ADDR sp,
1168 int struct_return, CORE_ADDR struct_addr)
78073dd8 1169{
82c230c2
SC
1170 int argnum;
1171 int first_stack_argnum;
82c230c2
SC
1172 struct type *type;
1173 char *val;
1174 int len;
3dc990bf 1175 char buf[2];
82c230c2 1176
82c230c2
SC
1177 first_stack_argnum = 0;
1178 if (struct_return)
1179 {
184651e3
SC
1180 /* The struct is allocated on the stack and gdb used the stack
1181 pointer for the address of that struct. We must apply the
1182 stack offset on the address. */
3dc990bf
SC
1183 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM,
1184 struct_addr + STACK_CORRECTION);
82c230c2
SC
1185 }
1186 else if (nargs > 0)
1187 {
4991999e 1188 type = value_type (args[0]);
82c230c2 1189 len = TYPE_LENGTH (type);
3dc990bf 1190
82c230c2
SC
1191 /* First argument is passed in D and X registers. */
1192 if (len <= 4)
1193 {
3dc990bf
SC
1194 ULONGEST v;
1195
0fd88904 1196 v = extract_unsigned_integer (value_contents (args[0]), len);
82c230c2 1197 first_stack_argnum = 1;
3dc990bf
SC
1198
1199 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1200 if (len > 2)
1201 {
1202 v >>= 16;
3dc990bf 1203 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1204 }
1205 }
1206 }
82c230c2 1207
3dc990bf 1208 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1209 {
4991999e 1210 type = value_type (args[argnum]);
82c230c2
SC
1211 len = TYPE_LENGTH (type);
1212
22df305e
SC
1213 if (len & 1)
1214 {
1215 static char zero = 0;
1216
3dc990bf
SC
1217 sp--;
1218 write_memory (sp, &zero, 1);
22df305e 1219 }
0fd88904 1220 val = (char*) value_contents (args[argnum]);
3dc990bf
SC
1221 sp -= len;
1222 write_memory (sp, val, len);
82c230c2 1223 }
3dc990bf
SC
1224
1225 /* Store return address. */
1226 sp -= 2;
1227 store_unsigned_integer (buf, 2, bp_addr);
1228 write_memory (sp, buf, 2);
1229
1230 /* Finally, update the stack pointer... */
1231 sp -= STACK_CORRECTION;
1232 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1233
1234 /* ...and fake a frame pointer. */
1235 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1236
1237 /* DWARF2/GCC uses the stack address *before* the function call as a
1238 frame's CFA. */
1239 return sp + 2;
78073dd8
AC
1240}
1241
1242
4db73d49
SC
1243/* Return the GDB type object for the "standard" data type
1244 of data in register N. */
1245
82c230c2 1246static struct type *
4db73d49 1247m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1248{
5706502a
SC
1249 switch (reg_nr)
1250 {
1251 case HARD_PAGE_REGNUM:
1252 case HARD_A_REGNUM:
1253 case HARD_B_REGNUM:
1254 case HARD_CCR_REGNUM:
1255 return builtin_type_uint8;
1256
548bcbec
SC
1257 case M68HC12_HARD_PC_REGNUM:
1258 return builtin_type_uint32;
1259
5706502a
SC
1260 default:
1261 return builtin_type_uint16;
1262 }
82c230c2
SC
1263}
1264
82c230c2 1265static void
4db73d49
SC
1266m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1267 const void *valbuf)
82c230c2 1268{
22df305e
SC
1269 int len;
1270
1271 len = TYPE_LENGTH (type);
1272
1273 /* First argument is passed in D and X registers. */
4db73d49
SC
1274 if (len <= 2)
1275 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1276 else if (len <= 4)
22df305e 1277 {
4db73d49
SC
1278 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1279 len - 2, valbuf);
1280 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1281 }
1282 else
8a3fe4f8 1283 error (_("return of value > 4 is not supported."));
82c230c2
SC
1284}
1285
1286
ef2b8fcd 1287/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1288 extract and copy its value into `valbuf'. */
1289
82c230c2 1290static void
ef2b8fcd
SC
1291m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1292 void *valbuf)
78073dd8 1293{
82c230c2 1294 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1295 char buf[M68HC11_REG_SIZE];
1296
1297 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1298 switch (len)
82c230c2 1299 {
22df305e 1300 case 1:
ef2b8fcd 1301 memcpy (valbuf, buf + 1, 1);
22df305e 1302 break;
ef2b8fcd 1303
22df305e 1304 case 2:
ef2b8fcd 1305 memcpy (valbuf, buf, 2);
22df305e 1306 break;
ef2b8fcd 1307
22df305e 1308 case 3:
ef2b8fcd
SC
1309 memcpy ((char*) valbuf + 1, buf, 2);
1310 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1311 memcpy (valbuf, buf + 1, 1);
22df305e 1312 break;
ef2b8fcd 1313
22df305e 1314 case 4:
ef2b8fcd
SC
1315 memcpy ((char*) valbuf + 2, buf, 2);
1316 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1317 memcpy (valbuf, buf, 2);
22df305e
SC
1318 break;
1319
1320 default:
8a3fe4f8 1321 error (_("bad size for return value"));
82c230c2
SC
1322 }
1323}
1324
97092415
AC
1325enum return_value_convention
1326m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
1327 struct regcache *regcache, void *readbuf,
1328 const void *writebuf)
82c230c2 1329{
97092415
AC
1330 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1331 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1332 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1333 || TYPE_LENGTH (valtype) > 4)
1334 return RETURN_VALUE_STRUCT_CONVENTION;
1335 else
1336 {
1337 if (readbuf != NULL)
1338 m68hc11_extract_return_value (valtype, regcache, readbuf);
1339 if (writebuf != NULL)
1340 m68hc11_store_return_value (valtype, regcache, writebuf);
1341 return RETURN_VALUE_REGISTER_CONVENTION;
1342 }
82c230c2
SC
1343}
1344
7df11f59
SC
1345/* Test whether the ELF symbol corresponds to a function using rtc or
1346 rti to return. */
1347
1348static void
1349m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1350{
1351 unsigned char flags;
1352
1353 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1354 if (flags & STO_M68HC12_FAR)
1355 MSYMBOL_SET_RTC (msym);
1356 if (flags & STO_M68HC12_INTERRUPT)
1357 MSYMBOL_SET_RTI (msym);
1358}
1359
ea3881d9
SC
1360static int
1361gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1362{
1363 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1364 return print_insn_m68hc11 (memaddr, info);
1365 else
1366 return print_insn_m68hc12 (memaddr, info);
1367}
1368
b631436b
SC
1369\f
1370
1371/* 68HC11/68HC12 register groups.
1372 Identify real hard registers and soft registers used by gcc. */
1373
1374static struct reggroup *m68hc11_soft_reggroup;
1375static struct reggroup *m68hc11_hard_reggroup;
1376
1377static void
1378m68hc11_init_reggroups (void)
1379{
1380 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1381 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1382}
1383
1384static void
1385m68hc11_add_reggroups (struct gdbarch *gdbarch)
1386{
1387 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1388 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1389 reggroup_add (gdbarch, general_reggroup);
1390 reggroup_add (gdbarch, float_reggroup);
1391 reggroup_add (gdbarch, all_reggroup);
1392 reggroup_add (gdbarch, save_reggroup);
1393 reggroup_add (gdbarch, restore_reggroup);
1394 reggroup_add (gdbarch, vector_reggroup);
1395 reggroup_add (gdbarch, system_reggroup);
1396}
1397
1398static int
1399m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1400 struct reggroup *group)
1401{
1402 /* We must save the real hard register as well as gcc
1403 soft registers including the frame pointer. */
1404 if (group == save_reggroup || group == restore_reggroup)
1405 {
1406 return (regnum <= gdbarch_num_regs (gdbarch)
1407 || ((regnum == SOFT_FP_REGNUM
1408 || regnum == SOFT_TMP_REGNUM
1409 || regnum == SOFT_ZS_REGNUM
1410 || regnum == SOFT_XY_REGNUM)
1411 && m68hc11_register_name (regnum)));
1412 }
1413
1414 /* Group to identify gcc soft registers (d1..dN). */
1415 if (group == m68hc11_soft_reggroup)
1416 {
1417 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1418 }
1419
1420 if (group == m68hc11_hard_reggroup)
1421 {
1422 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1423 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1424 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1425 }
1426 return default_register_reggroup_p (gdbarch, regnum, group);
1427}
1428
82c230c2
SC
1429static struct gdbarch *
1430m68hc11_gdbarch_init (struct gdbarch_info info,
1431 struct gdbarch_list *arches)
1432{
82c230c2
SC
1433 struct gdbarch *gdbarch;
1434 struct gdbarch_tdep *tdep;
81967506 1435 int elf_flags;
82c230c2
SC
1436
1437 soft_reg_initialized = 0;
81967506
SC
1438
1439 /* Extract the elf_flags if available. */
1440 if (info.abfd != NULL
1441 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1442 elf_flags = elf_elfheader (info.abfd)->e_flags;
1443 else
1444 elf_flags = 0;
1445
82c230c2
SC
1446 /* try to find a pre-existing architecture */
1447 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1448 arches != NULL;
1449 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1450 {
81967506
SC
1451 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1452 continue;
1453
82c230c2
SC
1454 return arches->gdbarch;
1455 }
1456
1457 /* Need a new architecture. Fill in a target specific vector. */
1458 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1459 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1460 tdep->elf_flags = elf_flags;
ed99b3d0 1461
5d1a66bd
SC
1462 switch (info.bfd_arch_info->arch)
1463 {
1464 case bfd_arch_m68hc11:
1465 tdep->stack_correction = 1;
7df11f59 1466 tdep->use_page_register = 0;
908f682f 1467 tdep->prologue = m6811_prologue;
548bcbec
SC
1468 set_gdbarch_addr_bit (gdbarch, 16);
1469 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1470 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1471 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1472 break;
82c230c2 1473
5d1a66bd
SC
1474 case bfd_arch_m68hc12:
1475 tdep->stack_correction = 0;
7df11f59 1476 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1477 tdep->prologue = m6812_prologue;
548bcbec
SC
1478 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1479 set_gdbarch_num_pseudo_regs (gdbarch,
1480 elf_flags & E_M68HC12_BANKS
1481 ? M68HC12_NUM_PSEUDO_REGS
1482 : M68HC11_NUM_PSEUDO_REGS);
1483 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1484 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1485 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1486 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1487 break;
1488
1489 default:
1490 break;
1491 }
7d32ba20
SC
1492
1493 /* Initially set everything according to the ABI.
1494 Use 16-bit integers since it will be the case for most
1495 programs. The size of these types should normally be set
1496 according to the dwarf2 debug information. */
82c230c2 1497 set_gdbarch_short_bit (gdbarch, 16);
81967506 1498 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1499 set_gdbarch_float_bit (gdbarch, 32);
81967506 1500 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1501 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1502 set_gdbarch_long_bit (gdbarch, 32);
1503 set_gdbarch_ptr_bit (gdbarch, 16);
1504 set_gdbarch_long_long_bit (gdbarch, 64);
1505
b2a02dda
SC
1506 /* Characters are unsigned. */
1507 set_gdbarch_char_signed (gdbarch, 0);
1508
1ea653ae
SC
1509 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1510 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1511
82c230c2
SC
1512 /* Set register info. */
1513 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1514
82c230c2 1515 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
82c230c2 1516
82c230c2 1517 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1518 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1519 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1520 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1521 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1522
3dc990bf
SC
1523 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1524
97092415 1525 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1526 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1527 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1528 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
f27dd7fd 1529 set_gdbarch_deprecated_stack_align (gdbarch, m68hc11_stack_align);
70ed8774 1530 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1531
b631436b
SC
1532 m68hc11_add_reggroups (gdbarch);
1533 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1534 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1535
1ea653ae
SC
1536 /* Hook in the DWARF CFI frame unwinder. */
1537 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1ea653ae 1538
1a241548 1539 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1ea653ae
SC
1540 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1541
1542 /* Methods for saving / extracting a dummy frame's ID. The ID's
1543 stack address must match the SP value returned by
1544 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1545 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1546
1547 /* Return the unwound PC value. */
1548 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1549
7df11f59
SC
1550 /* Minsymbol frobbing. */
1551 set_gdbarch_elf_make_msymbol_special (gdbarch,
1552 m68hc11_elf_make_msymbol_special);
1553
82c230c2 1554 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1555
1556 return gdbarch;
78073dd8
AC
1557}
1558
a78f21af
AC
1559extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1560
78073dd8 1561void
fba45db2 1562_initialize_m68hc11_tdep (void)
78073dd8 1563{
82c230c2 1564 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1565 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1566 m68hc11_init_reggroups ();
78073dd8
AC
1567}
1568
This page took 0.498373 seconds and 4 git commands to generate.