2003-03-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
51603483 2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
ffe1f3ee 3 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8
AC
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
78073dd8 21
82c230c2
SC
22#include "defs.h"
23#include "frame.h"
82c230c2
SC
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "gdbcmd.h"
27#include "gdbcore.h"
28#include "gdb_string.h"
29#include "value.h"
30#include "inferior.h"
31#include "dis-asm.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "arch-utils.h"
4e052eda 35#include "regcache.h"
b631436b 36#include "reggroups.h"
78073dd8 37
82c230c2
SC
38#include "target.h"
39#include "opcode/m68hc11.h"
81967506
SC
40#include "elf/m68hc11.h"
41#include "elf-bfd.h"
78073dd8 42
7df11f59
SC
43/* Macros for setting and testing a bit in a minimal symbol.
44 For 68HC11/68HC12 we have two flags that tell which return
45 type the function is using. This is used for prologue and frame
46 analysis to compute correct stack frame layout.
47
48 The MSB of the minimal symbol's "info" field is used for this purpose.
49 This field is already being used to store the symbol size, so the
50 assumption is that the symbol size cannot exceed 2^30.
51
52 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
53 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
54 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
55 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol.
56 MSYMBOL_SIZE Returns the size of the minimal symbol,
57 i.e. the "info" field with the "special" bit
58 masked out. */
59
60#define MSYMBOL_SET_RTC(msym) \
61 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
62 | 0x80000000)
63
64#define MSYMBOL_SET_RTI(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x40000000)
67
68#define MSYMBOL_IS_RTC(msym) \
69 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
70
71#define MSYMBOL_IS_RTI(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
73
74#define MSYMBOL_SIZE(msym) \
75 ((long) MSYMBOL_INFO (msym) & 0x3fffffff)
76
77enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81};
82
83
78073dd8
AC
84/* Register numbers of various important registers.
85 Note that some of these values are "real" register numbers,
86 and correspond to the general registers of the machine,
87 and some are "phony" register numbers which are too large
88 to be actual register numbers as far as the user is concerned
89 but do serve to get the desired values when passed to read_register. */
90
82c230c2
SC
91#define HARD_X_REGNUM 0
92#define HARD_D_REGNUM 1
93#define HARD_Y_REGNUM 2
94#define HARD_SP_REGNUM 3
95#define HARD_PC_REGNUM 4
96
97#define HARD_A_REGNUM 5
98#define HARD_B_REGNUM 6
99#define HARD_CCR_REGNUM 7
5706502a
SC
100
101/* 68HC12 page number register.
102 Note: to keep a compatibility with gcc register naming, we must
103 not have to rename FP and other soft registers. The page register
104 is a real hard register and must therefore be counted by NUM_REGS.
105 For this it has the same number as Z register (which is not used). */
106#define HARD_PAGE_REGNUM 8
107#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
108
109/* Z is replaced by X or Y by gcc during machine reorg.
110 ??? There is no way to get it and even know whether
111 it's in X or Y or in ZS. */
112#define SOFT_Z_REGNUM 8
113
114/* Soft registers. These registers are special. There are treated
115 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
116 They are physically located in memory. */
117#define SOFT_FP_REGNUM 9
118#define SOFT_TMP_REGNUM 10
119#define SOFT_ZS_REGNUM 11
120#define SOFT_XY_REGNUM 12
f91a8b6b
SC
121#define SOFT_UNUSED_REGNUM 13
122#define SOFT_D1_REGNUM 14
82c230c2
SC
123#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
124#define M68HC11_MAX_SOFT_REGS 32
125
126#define M68HC11_NUM_REGS (8)
127#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
128#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
129
130#define M68HC11_REG_SIZE (2)
131
548bcbec
SC
132#define M68HC12_NUM_REGS (9)
133#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
134#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
135
908f682f 136struct insn_sequence;
82c230c2
SC
137struct gdbarch_tdep
138 {
5d1a66bd
SC
139 /* Stack pointer correction value. For 68hc11, the stack pointer points
140 to the next push location. An offset of 1 must be applied to obtain
141 the address where the last value is saved. For 68hc12, the stack
142 pointer points to the last value pushed. No offset is necessary. */
143 int stack_correction;
908f682f
SC
144
145 /* Description of instructions in the prologue. */
146 struct insn_sequence *prologue;
81967506 147
7df11f59
SC
148 /* True if the page memory bank register is available
149 and must be used. */
150 int use_page_register;
151
81967506
SC
152 /* ELF flags for ABI. */
153 int elf_flags;
82c230c2
SC
154 };
155
5d1a66bd
SC
156#define M6811_TDEP gdbarch_tdep (current_gdbarch)
157#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 158#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 159
82c230c2
SC
160struct frame_extra_info
161{
82c230c2 162 CORE_ADDR return_pc;
82c230c2
SC
163 int frameless;
164 int size;
7df11f59 165 enum insn_return_kind return_kind;
82c230c2 166};
78073dd8 167
82c230c2
SC
168/* Table of registers for 68HC11. This includes the hard registers
169 and the soft registers used by GCC. */
170static char *
171m68hc11_register_names[] =
172{
173 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 174 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
175 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
176 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
177 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
178 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
179 "d29", "d30", "d31", "d32"
180};
78073dd8 181
82c230c2
SC
182struct m68hc11_soft_reg
183{
184 const char *name;
185 CORE_ADDR addr;
186};
78073dd8 187
82c230c2 188static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 189
82c230c2 190#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 191
82c230c2
SC
192static int soft_min_addr;
193static int soft_max_addr;
194static int soft_reg_initialized = 0;
78073dd8 195
82c230c2
SC
196/* Look in the symbol table for the address of a pseudo register
197 in memory. If we don't find it, pretend the register is not used
198 and not available. */
199static void
200m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
201{
202 struct minimal_symbol *msymbol;
78073dd8 203
82c230c2
SC
204 msymbol = lookup_minimal_symbol (name, NULL, NULL);
205 if (msymbol)
206 {
207 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
208 reg->name = xstrdup (name);
209
210 /* Keep track of the address range for soft registers. */
211 if (reg->addr < (CORE_ADDR) soft_min_addr)
212 soft_min_addr = reg->addr;
213 if (reg->addr > (CORE_ADDR) soft_max_addr)
214 soft_max_addr = reg->addr;
215 }
216 else
217 {
218 reg->name = 0;
219 reg->addr = 0;
220 }
221}
78073dd8 222
82c230c2
SC
223/* Initialize the table of soft register addresses according
224 to the symbol table. */
225 static void
226m68hc11_initialize_register_info (void)
227{
228 int i;
78073dd8 229
82c230c2
SC
230 if (soft_reg_initialized)
231 return;
232
233 soft_min_addr = INT_MAX;
234 soft_max_addr = 0;
235 for (i = 0; i < M68HC11_ALL_REGS; i++)
236 {
237 soft_regs[i].name = 0;
238 }
239
240 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
241 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
242 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
243 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
244 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 245
82c230c2
SC
246 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
247 {
248 char buf[10];
78073dd8 249
82c230c2
SC
250 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
251 m68hc11_get_register_info (&soft_regs[i], buf);
252 }
78073dd8 253
82c230c2
SC
254 if (soft_regs[SOFT_FP_REGNUM].name == 0)
255 {
256 warning ("No frame soft register found in the symbol table.\n");
257 warning ("Stack backtrace will not work.\n");
258 }
259 soft_reg_initialized = 1;
260}
78073dd8 261
82c230c2
SC
262/* Given an address in memory, return the soft register number if
263 that address corresponds to a soft register. Returns -1 if not. */
264static int
265m68hc11_which_soft_register (CORE_ADDR addr)
266{
267 int i;
268
269 if (addr < soft_min_addr || addr > soft_max_addr)
270 return -1;
271
272 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
273 {
274 if (soft_regs[i].name && soft_regs[i].addr == addr)
275 return i;
276 }
277 return -1;
278}
78073dd8 279
82c230c2
SC
280/* Fetch a pseudo register. The 68hc11 soft registers are treated like
281 pseudo registers. They are located in memory. Translate the register
282 fetch into a memory read. */
46ce284d
AC
283static void
284m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
285 struct regcache *regcache,
286 int regno, void *buf)
82c230c2 287{
548bcbec
SC
288 /* The PC is a pseudo reg only for 68HC12 with the memory bank
289 addressing mode. */
290 if (regno == M68HC12_HARD_PC_REGNUM)
291 {
292 const int regsize = TYPE_LENGTH (builtin_type_uint32);
293 CORE_ADDR pc = read_register (HARD_PC_REGNUM);
294 int page = read_register (HARD_PAGE_REGNUM);
295
296 if (pc >= 0x8000 && pc < 0xc000)
297 {
298 pc -= 0x8000;
299 pc += (page << 14);
300 pc += 0x1000000;
301 }
302 store_unsigned_integer (buf, regsize, pc);
303 return;
304 }
305
82c230c2
SC
306 m68hc11_initialize_register_info ();
307
308 /* Fetch a soft register: translate into a memory read. */
309 if (soft_regs[regno].name)
310 {
311 target_read_memory (soft_regs[regno].addr, buf, 2);
312 }
313 else
314 {
315 memset (buf, 0, 2);
316 }
82c230c2 317}
78073dd8 318
82c230c2
SC
319/* Store a pseudo register. Translate the register store
320 into a memory write. */
321static void
46ce284d
AC
322m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
323 struct regcache *regcache,
324 int regno, const void *buf)
82c230c2 325{
548bcbec
SC
326 /* The PC is a pseudo reg only for 68HC12 with the memory bank
327 addressing mode. */
328 if (regno == M68HC12_HARD_PC_REGNUM)
329 {
330 const int regsize = TYPE_LENGTH (builtin_type_uint32);
331 char *tmp = alloca (regsize);
332 CORE_ADDR pc;
333
334 memcpy (tmp, buf, regsize);
335 pc = extract_unsigned_integer (tmp, regsize);
336 if (pc >= 0x1000000)
337 {
338 pc -= 0x1000000;
339 write_register (HARD_PAGE_REGNUM, (pc >> 14) & 0x0ff);
340 pc &= 0x03fff;
341 write_register (HARD_PC_REGNUM, pc + 0x8000);
342 }
343 else
344 write_register (HARD_PC_REGNUM, pc);
345 return;
346 }
347
82c230c2 348 m68hc11_initialize_register_info ();
78073dd8 349
82c230c2
SC
350 /* Store a soft register: translate into a memory write. */
351 if (soft_regs[regno].name)
352 {
46ce284d
AC
353 const int regsize = 2;
354 char *tmp = alloca (regsize);
355 memcpy (tmp, buf, regsize);
356 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
357 }
358}
78073dd8 359
fa88f677 360static const char *
82c230c2 361m68hc11_register_name (int reg_nr)
78073dd8 362{
548bcbec
SC
363 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
364 return "pc";
365 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
366 return "ppc";
367
82c230c2
SC
368 if (reg_nr < 0)
369 return NULL;
370 if (reg_nr >= M68HC11_ALL_REGS)
371 return NULL;
372
373 /* If we don't know the address of a soft register, pretend it
374 does not exist. */
375 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
376 return NULL;
377 return m68hc11_register_names[reg_nr];
378}
78073dd8 379
f4f9705a 380static const unsigned char *
82c230c2 381m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 382{
82c230c2
SC
383 static unsigned char breakpoint[] = {0x0};
384
385 *lenptr = sizeof (breakpoint);
386 return breakpoint;
78073dd8
AC
387}
388
389/* Immediately after a function call, return the saved pc before the frame
82c230c2 390 is setup. */
78073dd8 391
82c230c2 392static CORE_ADDR
78073dd8
AC
393m68hc11_saved_pc_after_call (struct frame_info *frame)
394{
82c230c2
SC
395 CORE_ADDR addr;
396
5d1a66bd 397 addr = read_register (HARD_SP_REGNUM) + STACK_CORRECTION;
78073dd8
AC
398 addr &= 0x0ffff;
399 return read_memory_integer (addr, 2) & 0x0FFFF;
400}
401
82c230c2
SC
402static CORE_ADDR
403m68hc11_frame_saved_pc (struct frame_info *frame)
404{
da50a4b7 405 return get_frame_extra_info (frame)->return_pc;
82c230c2
SC
406}
407
408static CORE_ADDR
409m68hc11_frame_args_address (struct frame_info *frame)
410{
7df11f59
SC
411 CORE_ADDR addr;
412
da50a4b7
AC
413 addr = get_frame_base (frame) + get_frame_extra_info (frame)->size + STACK_CORRECTION + 2;
414 if (get_frame_extra_info (frame)->return_kind == RETURN_RTC)
7df11f59 415 addr += 1;
da50a4b7 416 else if (get_frame_extra_info (frame)->return_kind == RETURN_RTI)
7df11f59
SC
417 addr += 7;
418
419 return addr;
82c230c2
SC
420}
421
422static CORE_ADDR
423m68hc11_frame_locals_address (struct frame_info *frame)
424{
1e2330ba 425 return get_frame_base (frame);
82c230c2
SC
426}
427
78073dd8
AC
428/* Discard from the stack the innermost frame, restoring all saved
429 registers. */
430
82c230c2 431static void
fba45db2 432m68hc11_pop_frame (void)
78073dd8 433{
82c230c2
SC
434 register struct frame_info *frame = get_current_frame ();
435 register CORE_ADDR fp, sp;
436 register int regnum;
437
1e2330ba
AC
438 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
439 get_frame_base (frame),
440 get_frame_base (frame)))
82c230c2
SC
441 generic_pop_dummy_frame ();
442 else
443 {
c193f6ac 444 fp = get_frame_base (frame);
f30ee0bc 445 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
82c230c2
SC
446
447 /* Copy regs from where they were saved in the frame. */
448 for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
b2fb4676 449 if (get_frame_saved_regs (frame)[regnum])
82c230c2 450 write_register (regnum,
b2fb4676 451 read_memory_integer (get_frame_saved_regs (frame)[regnum], 2));
82c230c2 452
da50a4b7
AC
453 write_register (HARD_PC_REGNUM, get_frame_extra_info (frame)->return_pc);
454 sp = (fp + get_frame_extra_info (frame)->size + 2) & 0x0ffff;
82c230c2
SC
455 write_register (HARD_SP_REGNUM, sp);
456 }
457 flush_cached_frames ();
78073dd8
AC
458}
459
908f682f
SC
460\f
461/* 68HC11 & 68HC12 prologue analysis.
462
463 */
464#define MAX_CODES 12
465
466/* 68HC11 opcodes. */
467#undef M6811_OP_PAGE2
b94a41a1
SC
468#define M6811_OP_PAGE2 (0x18)
469#define M6811_OP_LDX (0xde)
470#define M6811_OP_LDX_EXT (0xfe)
471#define M6811_OP_PSHX (0x3c)
472#define M6811_OP_STS (0x9f)
473#define M6811_OP_STS_EXT (0xbf)
474#define M6811_OP_TSX (0x30)
475#define M6811_OP_XGDX (0x8f)
476#define M6811_OP_ADDD (0xc3)
477#define M6811_OP_TXS (0x35)
478#define M6811_OP_DES (0x34)
908f682f
SC
479
480/* 68HC12 opcodes. */
b94a41a1
SC
481#define M6812_OP_PAGE2 (0x18)
482#define M6812_OP_MOVW (0x01)
483#define M6812_PB_PSHW (0xae)
484#define M6812_OP_STS (0x5f)
485#define M6812_OP_STS_EXT (0x7f)
486#define M6812_OP_LEAS (0x1b)
487#define M6812_OP_PSHX (0x34)
488#define M6812_OP_PSHY (0x35)
908f682f
SC
489
490/* Operand extraction. */
491#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
492#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
493#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
494#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
495
496/* Identification of the sequence. */
497enum m6811_seq_type
498{
499 P_LAST = 0,
500 P_SAVE_REG, /* Save a register on the stack. */
501 P_SET_FRAME, /* Setup the frame pointer. */
502 P_LOCAL_1, /* Allocate 1 byte for locals. */
503 P_LOCAL_2, /* Allocate 2 bytes for locals. */
504 P_LOCAL_N /* Allocate N bytes for locals. */
505};
506
507struct insn_sequence {
508 enum m6811_seq_type type;
509 unsigned length;
510 unsigned short code[MAX_CODES];
511};
512
513/* Sequence of instructions in the 68HC11 function prologue. */
514static struct insn_sequence m6811_prologue[] = {
515 /* Sequences to save a soft-register. */
516 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
517 M6811_OP_PSHX } },
518 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
519 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
520 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
521 M6811_OP_PSHX } },
522 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
523 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
524
525 /* Sequences to allocate local variables. */
526 { P_LOCAL_N, 7, { M6811_OP_TSX,
527 M6811_OP_XGDX,
528 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
529 M6811_OP_XGDX,
530 M6811_OP_TXS } },
531 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
532 M6811_OP_PAGE2, M6811_OP_XGDX,
533 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
534 M6811_OP_PAGE2, M6811_OP_XGDX,
535 M6811_OP_PAGE2, M6811_OP_TXS } },
536 { P_LOCAL_1, 1, { M6811_OP_DES } },
537 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
538 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
539
540 /* Initialize the frame pointer. */
541 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 542 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
543 { P_LAST, 0, { 0 } }
544};
545
546
547/* Sequence of instructions in the 68HC12 function prologue. */
548static struct insn_sequence m6812_prologue[] = {
549 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
550 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
551 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
552 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 553 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
554 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
555 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
556 { P_LAST, 0 }
557};
558
559
560/* Analyze the sequence of instructions starting at the given address.
561 Returns a pointer to the sequence when it is recognized and
562 the optional value (constant/address) associated with it.
563 Advance the pc for the next sequence. */
564static struct insn_sequence *
565m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR *pc,
566 CORE_ADDR *val)
567{
568 unsigned char buffer[MAX_CODES];
569 unsigned bufsize;
570 unsigned j;
571 CORE_ADDR cur_val;
572 short v = 0;
573
574 bufsize = 0;
575 for (; seq->type != P_LAST; seq++)
576 {
577 cur_val = 0;
578 for (j = 0; j < seq->length; j++)
579 {
580 if (bufsize < j + 1)
581 {
582 buffer[bufsize] = read_memory_unsigned_integer (*pc + bufsize,
583 1);
584 bufsize++;
585 }
586 /* Continue while we match the opcode. */
587 if (seq->code[j] == buffer[j])
588 continue;
589
590 if ((seq->code[j] & 0xf00) == 0)
591 break;
592
593 /* Extract a sequence parameter (address or constant). */
594 switch (seq->code[j])
595 {
596 case OP_DIRECT:
597 cur_val = (CORE_ADDR) buffer[j];
598 break;
599
600 case OP_IMM_HIGH:
601 cur_val = cur_val & 0x0ff;
602 cur_val |= (buffer[j] << 8);
603 break;
604
605 case OP_IMM_LOW:
606 cur_val &= 0x0ff00;
607 cur_val |= buffer[j];
608 break;
609
610 case OP_PBYTE:
611 if ((buffer[j] & 0xE0) == 0x80)
612 {
613 v = buffer[j] & 0x1f;
614 if (v & 0x10)
615 v |= 0xfff0;
616 }
617 else if ((buffer[j] & 0xfe) == 0xf0)
618 {
619 v = read_memory_unsigned_integer (*pc + j + 1, 1);
620 if (buffer[j] & 1)
621 v |= 0xff00;
b4fa4770 622 *pc = *pc + 1;
908f682f
SC
623 }
624 else if (buffer[j] == 0xf2)
625 {
626 v = read_memory_unsigned_integer (*pc + j + 1, 2);
b4fa4770 627 *pc = *pc + 2;
908f682f
SC
628 }
629 cur_val = v;
630 break;
631 }
632 }
633
634 /* We have a full match. */
635 if (j == seq->length)
636 {
637 *val = cur_val;
638 *pc = *pc + j;
639 return seq;
640 }
641 }
642 return 0;
643}
644
7df11f59
SC
645/* Return the instruction that the function at the PC is using. */
646static enum insn_return_kind
647m68hc11_get_return_insn (CORE_ADDR pc)
648{
649 struct minimal_symbol *sym;
650
651 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
652 function is stored by elfread.c in the high bit of the info field.
653 Use this to decide which instruction the function uses to return. */
654 sym = lookup_minimal_symbol_by_pc (pc);
655 if (sym == 0)
656 return RETURN_RTS;
657
658 if (MSYMBOL_IS_RTC (sym))
659 return RETURN_RTC;
660 else if (MSYMBOL_IS_RTI (sym))
661 return RETURN_RTI;
662 else
663 return RETURN_RTS;
664}
665
666
78073dd8
AC
667/* Analyze the function prologue to find some information
668 about the function:
669 - the PC of the first line (for m68hc11_skip_prologue)
670 - the offset of the previous frame saved address (from current frame)
671 - the soft registers which are pushed. */
672static void
82c230c2
SC
673m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
674 CORE_ADDR *first_line,
675 int *frame_offset, CORE_ADDR *pushed_regs)
78073dd8 676{
82c230c2 677 CORE_ADDR save_addr;
78073dd8 678 CORE_ADDR func_end;
78073dd8
AC
679 int size;
680 int found_frame_point;
82c230c2 681 int saved_reg;
78073dd8 682 CORE_ADDR first_pc;
908f682f
SC
683 int done = 0;
684 struct insn_sequence *seq_table;
78073dd8
AC
685
686 first_pc = get_pc_function_start (pc);
687 size = 0;
688
82c230c2 689 m68hc11_initialize_register_info ();
78073dd8
AC
690 if (first_pc == 0)
691 {
692 *frame_offset = 0;
78073dd8
AC
693 *first_line = pc;
694 return;
695 }
696
908f682f
SC
697 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
698
78073dd8
AC
699 /* The 68hc11 stack is as follows:
700
701
702 | |
703 +-----------+
704 | |
705 | args |
706 | |
707 +-----------+
708 | PC-return |
709 +-----------+
710 | Old frame |
711 +-----------+
712 | |
713 | Locals |
714 | |
715 +-----------+ <--- current frame
716 | |
717
718 With most processors (like 68K) the previous frame can be computed
719 easily because it is always at a fixed offset (see link/unlink).
720 That is, locals are accessed with negative offsets, arguments are
721 accessed with positive ones. Since 68hc11 only supports offsets
722 in the range [0..255], the frame is defined at the bottom of
723 locals (see picture).
724
725 The purpose of the analysis made here is to find out the size
726 of locals in this function. An alternative to this is to use
727 DWARF2 info. This would be better but I don't know how to
728 access dwarf2 debug from this function.
729
730 Walk from the function entry point to the point where we save
731 the frame. While walking instructions, compute the size of bytes
732 which are pushed. This gives us the index to access the previous
733 frame.
734
735 We limit the search to 128 bytes so that the algorithm is bounded
736 in case of random and wrong code. We also stop and abort if
737 we find an instruction which is not supposed to appear in the
738 prologue (as generated by gcc 2.95, 2.96).
739 */
740 pc = first_pc;
741 func_end = pc + 128;
78073dd8 742 found_frame_point = 0;
908f682f 743 *frame_offset = 0;
b4fa4770 744 save_addr = fp + STACK_CORRECTION;
908f682f 745 while (!done && pc + 2 < func_end)
78073dd8 746 {
908f682f
SC
747 struct insn_sequence *seq;
748 CORE_ADDR val;
78073dd8 749
908f682f
SC
750 seq = m68hc11_analyze_instruction (seq_table, &pc, &val);
751 if (seq == 0)
752 break;
78073dd8 753
908f682f 754 if (seq->type == P_SAVE_REG)
78073dd8 755 {
908f682f
SC
756 if (found_frame_point)
757 {
758 saved_reg = m68hc11_which_soft_register (val);
759 if (saved_reg < 0)
760 break;
78073dd8 761
908f682f
SC
762 save_addr -= 2;
763 if (pushed_regs)
764 pushed_regs[saved_reg] = save_addr;
765 }
766 else
767 {
768 size += 2;
769 }
78073dd8 770 }
908f682f 771 else if (seq->type == P_SET_FRAME)
78073dd8
AC
772 {
773 found_frame_point = 1;
908f682f 774 *frame_offset = size;
78073dd8 775 }
908f682f 776 else if (seq->type == P_LOCAL_1)
78073dd8 777 {
6148eca7
SC
778 size += 1;
779 }
908f682f 780 else if (seq->type == P_LOCAL_2)
78073dd8 781 {
908f682f 782 size += 2;
78073dd8 783 }
908f682f 784 else if (seq->type == P_LOCAL_N)
78073dd8 785 {
908f682f
SC
786 /* Stack pointer is decremented for the allocation. */
787 if (val & 0x8000)
788 size -= (int) (val) | 0xffff0000;
789 else
790 size -= val;
78073dd8
AC
791 }
792 }
78073dd8
AC
793 *first_line = pc;
794}
795
82c230c2 796static CORE_ADDR
78073dd8
AC
797m68hc11_skip_prologue (CORE_ADDR pc)
798{
799 CORE_ADDR func_addr, func_end;
800 struct symtab_and_line sal;
801 int frame_offset;
78073dd8 802
82c230c2
SC
803 /* If we have line debugging information, then the end of the
804 prologue should be the first assembly instruction of the
78073dd8
AC
805 first source line. */
806 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
807 {
808 sal = find_pc_line (func_addr, 0);
809 if (sal.end && sal.end < func_end)
810 return sal.end;
811 }
812
82c230c2 813 m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
78073dd8
AC
814 return pc;
815}
816
a5afb99f
AC
817/* Given a GDB frame, determine the address of the calling function's
818 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
819 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
820 will be called for the new frame. */
78073dd8 821
82c230c2 822static CORE_ADDR
78073dd8
AC
823m68hc11_frame_chain (struct frame_info *frame)
824{
82c230c2 825 CORE_ADDR addr;
78073dd8 826
1e2330ba
AC
827 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
828 get_frame_base (frame),
829 get_frame_base (frame)))
830 return get_frame_base (frame); /* dummy frame same as caller's frame */
6148eca7 831
da50a4b7
AC
832 if (get_frame_extra_info (frame)->return_pc == 0
833 || inside_entry_file (get_frame_extra_info (frame)->return_pc))
82c230c2 834 return (CORE_ADDR) 0;
78073dd8 835
1e2330ba 836 if (get_frame_base (frame) == 0)
78073dd8
AC
837 {
838 return (CORE_ADDR) 0;
839 }
840
da50a4b7 841 addr = get_frame_base (frame) + get_frame_extra_info (frame)->size + STACK_CORRECTION - 2;
78073dd8 842 addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
78073dd8
AC
843 return addr;
844}
845
846/* Put here the code to store, into a struct frame_saved_regs, the
847 addresses of the saved registers of frame described by FRAME_INFO.
848 This includes special registers such as pc and fp saved in special
849 ways in the stack frame. sp is even more special: the address we
850 return for it IS the sp for the next frame. */
82c230c2
SC
851static void
852m68hc11_frame_init_saved_regs (struct frame_info *fi)
78073dd8
AC
853{
854 CORE_ADDR pc;
184651e3 855 CORE_ADDR addr;
7df11f59 856
b2fb4676 857 if (get_frame_saved_regs (fi) == NULL)
82c230c2
SC
858 frame_saved_regs_zalloc (fi);
859 else
b2fb4676 860 memset (get_frame_saved_regs (fi), 0, SIZEOF_FRAME_SAVED_REGS);
82c230c2 861
50abf9e5 862 pc = get_frame_pc (fi);
da50a4b7
AC
863 get_frame_extra_info (fi)->return_kind = m68hc11_get_return_insn (pc);
864 m68hc11_guess_from_prologue (pc, get_frame_base (fi), &pc,
865 &get_frame_extra_info (fi)->size,
b2fb4676 866 get_frame_saved_regs (fi));
82c230c2 867
da50a4b7 868 addr = get_frame_base (fi) + get_frame_extra_info (fi)->size + STACK_CORRECTION;
908f682f 869 if (soft_regs[SOFT_FP_REGNUM].name)
b2fb4676 870 get_frame_saved_regs (fi)[SOFT_FP_REGNUM] = addr - 2;
7df11f59
SC
871
872 /* Take into account how the function was called/returns. */
da50a4b7 873 if (get_frame_extra_info (fi)->return_kind == RETURN_RTC)
7df11f59 874 {
b2fb4676 875 get_frame_saved_regs (fi)[HARD_PAGE_REGNUM] = addr;
7df11f59
SC
876 addr++;
877 }
da50a4b7 878 else if (get_frame_extra_info (fi)->return_kind == RETURN_RTI)
7df11f59 879 {
b2fb4676
AC
880 get_frame_saved_regs (fi)[HARD_CCR_REGNUM] = addr;
881 get_frame_saved_regs (fi)[HARD_D_REGNUM] = addr + 1;
882 get_frame_saved_regs (fi)[HARD_X_REGNUM] = addr + 3;
883 get_frame_saved_regs (fi)[HARD_Y_REGNUM] = addr + 5;
7df11f59
SC
884 addr += 7;
885 }
b2fb4676
AC
886 get_frame_saved_regs (fi)[HARD_SP_REGNUM] = addr;
887 get_frame_saved_regs (fi)[HARD_PC_REGNUM] = get_frame_saved_regs (fi)[HARD_SP_REGNUM];
78073dd8
AC
888}
889
82c230c2 890static void
78073dd8
AC
891m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
892{
82c230c2 893 CORE_ADDR addr;
78073dd8 894
a00a19e9 895 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
82c230c2 896
11c02a10
AC
897 if (get_next_frame (fi))
898 deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (get_next_frame (fi)));
82c230c2
SC
899
900 m68hc11_frame_init_saved_regs (fi);
78073dd8
AC
901
902 if (fromleaf)
903 {
da50a4b7
AC
904 get_frame_extra_info (fi)->return_kind = m68hc11_get_return_insn (get_frame_pc (fi));
905 get_frame_extra_info (fi)->return_pc = m68hc11_saved_pc_after_call (fi);
78073dd8
AC
906 }
907 else
908 {
b2fb4676 909 addr = get_frame_saved_regs (fi)[HARD_PC_REGNUM];
82c230c2 910 addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
7df11f59
SC
911
912 /* Take into account the 68HC12 specific call (PC + page). */
da50a4b7 913 if (get_frame_extra_info (fi)->return_kind == RETURN_RTC
7df11f59
SC
914 && addr >= 0x08000 && addr < 0x0c000
915 && USE_PAGE_REGISTER)
916 {
b2fb4676 917 CORE_ADDR page_addr = get_frame_saved_regs (fi)[HARD_PAGE_REGNUM];
7df11f59
SC
918
919 unsigned page = read_memory_unsigned_integer (page_addr, 1);
920 addr -= 0x08000;
921 addr += ((page & 0x0ff) << 14);
922 addr += 0x1000000;
923 }
da50a4b7 924 get_frame_extra_info (fi)->return_pc = addr;
78073dd8
AC
925 }
926}
927
928/* Same as 'info reg' but prints the registers in a different way. */
929static void
930show_regs (char *args, int from_tty)
931{
82c230c2 932 int ccr = read_register (HARD_CCR_REGNUM);
78073dd8 933 int i;
82c230c2
SC
934 int nr;
935
78073dd8 936 printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
82c230c2
SC
937 (int) read_register (HARD_PC_REGNUM),
938 (int) read_register (HARD_SP_REGNUM),
939 (int) read_register (SOFT_FP_REGNUM),
78073dd8
AC
940 ccr,
941 ccr & M6811_S_BIT ? 'S' : '-',
942 ccr & M6811_X_BIT ? 'X' : '-',
943 ccr & M6811_H_BIT ? 'H' : '-',
944 ccr & M6811_I_BIT ? 'I' : '-',
945 ccr & M6811_N_BIT ? 'N' : '-',
946 ccr & M6811_Z_BIT ? 'Z' : '-',
947 ccr & M6811_V_BIT ? 'V' : '-',
948 ccr & M6811_C_BIT ? 'C' : '-');
949
7df11f59 950 printf_filtered ("D=%04x IX=%04x IY=%04x",
82c230c2
SC
951 (int) read_register (HARD_D_REGNUM),
952 (int) read_register (HARD_X_REGNUM),
953 (int) read_register (HARD_Y_REGNUM));
954
7df11f59
SC
955 if (USE_PAGE_REGISTER)
956 {
957 printf_filtered (" Page=%02x",
958 (int) read_register (HARD_PAGE_REGNUM));
959 }
960 printf_filtered ("\n");
961
82c230c2
SC
962 nr = 0;
963 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
78073dd8 964 {
82c230c2
SC
965 /* Skip registers which are not defined in the symbol table. */
966 if (soft_regs[i].name == 0)
967 continue;
968
969 printf_filtered ("D%d=%04x",
970 i - SOFT_D1_REGNUM + 1,
971 (int) read_register (i));
972 nr++;
973 if ((nr % 8) == 7)
78073dd8
AC
974 printf_filtered ("\n");
975 else
976 printf_filtered (" ");
977 }
82c230c2
SC
978 if (nr && (nr % 8) != 7)
979 printf_filtered ("\n");
78073dd8
AC
980}
981
22df305e
SC
982static CORE_ADDR
983m68hc11_stack_align (CORE_ADDR addr)
984{
985 return ((addr + 1) & -2);
986}
987
82c230c2 988static CORE_ADDR
78073dd8 989m68hc11_push_arguments (int nargs,
ea7c478f 990 struct value **args,
78073dd8
AC
991 CORE_ADDR sp,
992 int struct_return,
993 CORE_ADDR struct_addr)
994{
82c230c2
SC
995 int stack_alloc;
996 int argnum;
997 int first_stack_argnum;
998 int stack_offset;
999 struct type *type;
1000 char *val;
1001 int len;
1002
1003 stack_alloc = 0;
1004 first_stack_argnum = 0;
1005 if (struct_return)
1006 {
184651e3
SC
1007 /* The struct is allocated on the stack and gdb used the stack
1008 pointer for the address of that struct. We must apply the
1009 stack offset on the address. */
5d1a66bd 1010 write_register (HARD_D_REGNUM, struct_addr + STACK_CORRECTION);
82c230c2
SC
1011 }
1012 else if (nargs > 0)
1013 {
1014 type = VALUE_TYPE (args[0]);
1015 len = TYPE_LENGTH (type);
1016
1017 /* First argument is passed in D and X registers. */
1018 if (len <= 4)
1019 {
1020 LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1021 first_stack_argnum = 1;
1022 write_register (HARD_D_REGNUM, v);
1023 if (len > 2)
1024 {
1025 v >>= 16;
1026 write_register (HARD_X_REGNUM, v);
1027 }
1028 }
1029 }
1030 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1031 {
1032 type = VALUE_TYPE (args[argnum]);
22df305e 1033 stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
82c230c2
SC
1034 }
1035 sp -= stack_alloc;
1036
5d1a66bd 1037 stack_offset = STACK_CORRECTION;
82c230c2
SC
1038 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1039 {
1040 type = VALUE_TYPE (args[argnum]);
1041 len = TYPE_LENGTH (type);
1042
1043 val = (char*) VALUE_CONTENTS (args[argnum]);
1044 write_memory (sp + stack_offset, val, len);
1045 stack_offset += len;
22df305e
SC
1046 if (len & 1)
1047 {
1048 static char zero = 0;
1049
1050 write_memory (sp + stack_offset, &zero, 1);
1051 stack_offset++;
1052 }
82c230c2
SC
1053 }
1054 return sp;
78073dd8
AC
1055}
1056
1057
82c230c2
SC
1058/* Return a location where we can set a breakpoint that will be hit
1059 when an inferior function call returns. */
78073dd8 1060CORE_ADDR
fba45db2 1061m68hc11_call_dummy_address (void)
78073dd8 1062{
22df305e 1063 return entry_point_address ();
78073dd8
AC
1064}
1065
82c230c2
SC
1066static struct type *
1067m68hc11_register_virtual_type (int reg_nr)
1068{
5706502a
SC
1069 switch (reg_nr)
1070 {
1071 case HARD_PAGE_REGNUM:
1072 case HARD_A_REGNUM:
1073 case HARD_B_REGNUM:
1074 case HARD_CCR_REGNUM:
1075 return builtin_type_uint8;
1076
548bcbec
SC
1077 case M68HC12_HARD_PC_REGNUM:
1078 return builtin_type_uint32;
1079
5706502a
SC
1080 default:
1081 return builtin_type_uint16;
1082 }
82c230c2
SC
1083}
1084
1085static void
1086m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1087{
184651e3
SC
1088 /* The struct address computed by gdb is on the stack.
1089 It uses the stack pointer so we must apply the stack
1090 correction offset. */
5d1a66bd 1091 write_register (HARD_D_REGNUM, addr + STACK_CORRECTION);
82c230c2
SC
1092}
1093
1094static void
1095m68hc11_store_return_value (struct type *type, char *valbuf)
1096{
22df305e
SC
1097 int len;
1098
1099 len = TYPE_LENGTH (type);
1100
1101 /* First argument is passed in D and X registers. */
1102 if (len <= 4)
1103 {
1104 LONGEST v = extract_unsigned_integer (valbuf, len);
1105
1106 write_register (HARD_D_REGNUM, v);
1107 if (len > 2)
1108 {
1109 v >>= 16;
1110 write_register (HARD_X_REGNUM, v);
1111 }
1112 }
1113 else
1114 error ("return of value > 4 is not supported.");
82c230c2
SC
1115}
1116
1117
1118/* Given a return value in `regbuf' with a type `type',
78073dd8
AC
1119 extract and copy its value into `valbuf'. */
1120
82c230c2
SC
1121static void
1122m68hc11_extract_return_value (struct type *type,
78073dd8
AC
1123 char *regbuf,
1124 char *valbuf)
1125{
82c230c2
SC
1126 int len = TYPE_LENGTH (type);
1127
22df305e 1128 switch (len)
82c230c2 1129 {
22df305e
SC
1130 case 1:
1131 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2 + 1], len);
1132 break;
1133
1134 case 2:
1135 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2], len);
1136 break;
1137
1138 case 3:
1139 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2 + 1], 1);
1140 memcpy (&valbuf[1], &regbuf[HARD_D_REGNUM * 2], 2);
1141 break;
1142
1143 case 4:
1144 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2], 2);
1145 memcpy (&valbuf[2], &regbuf[HARD_D_REGNUM * 2], 2);
1146 break;
1147
1148 default:
82c230c2
SC
1149 error ("bad size for return value");
1150 }
1151}
1152
1153/* Should call_function allocate stack space for a struct return? */
1154static int
1155m68hc11_use_struct_convention (int gcc_p, struct type *type)
1156{
22df305e
SC
1157 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1158 || TYPE_CODE (type) == TYPE_CODE_UNION
1159 || TYPE_LENGTH (type) > 4);
82c230c2
SC
1160}
1161
1162static int
1163m68hc11_return_value_on_stack (struct type *type)
1164{
22df305e 1165 return TYPE_LENGTH (type) > 4;
82c230c2
SC
1166}
1167
1168/* Extract from an array REGBUF containing the (raw) register state
1169 the address in which a function should return its structure value,
1170 as a CORE_ADDR (or an expression that can be used as one). */
1171static CORE_ADDR
1172m68hc11_extract_struct_value_address (char *regbuf)
1173{
1174 return extract_address (&regbuf[HARD_D_REGNUM * 2],
1175 REGISTER_RAW_SIZE (HARD_D_REGNUM));
1176}
1177
1178/* Function: push_return_address (pc)
1179 Set up the return address for the inferior function call.
1180 Needed for targets where we don't actually execute a JSR/BSR instruction */
1181
1182static CORE_ADDR
1183m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1184{
1185 char valbuf[2];
1186
22df305e 1187 pc = CALL_DUMMY_ADDRESS ();
82c230c2
SC
1188 sp -= 2;
1189 store_unsigned_integer (valbuf, 2, pc);
5d1a66bd 1190 write_memory (sp + STACK_CORRECTION, valbuf, 2);
82c230c2
SC
1191 return sp;
1192}
1193
7df11f59
SC
1194/* Test whether the ELF symbol corresponds to a function using rtc or
1195 rti to return. */
1196
1197static void
1198m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1199{
1200 unsigned char flags;
1201
1202 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1203 if (flags & STO_M68HC12_FAR)
1204 MSYMBOL_SET_RTC (msym);
1205 if (flags & STO_M68HC12_INTERRUPT)
1206 MSYMBOL_SET_RTI (msym);
1207}
1208
ea3881d9
SC
1209static int
1210gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1211{
1212 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1213 return print_insn_m68hc11 (memaddr, info);
1214 else
1215 return print_insn_m68hc12 (memaddr, info);
1216}
1217
b631436b
SC
1218\f
1219
1220/* 68HC11/68HC12 register groups.
1221 Identify real hard registers and soft registers used by gcc. */
1222
1223static struct reggroup *m68hc11_soft_reggroup;
1224static struct reggroup *m68hc11_hard_reggroup;
1225
1226static void
1227m68hc11_init_reggroups (void)
1228{
1229 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1230 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1231}
1232
1233static void
1234m68hc11_add_reggroups (struct gdbarch *gdbarch)
1235{
1236 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1237 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1238 reggroup_add (gdbarch, general_reggroup);
1239 reggroup_add (gdbarch, float_reggroup);
1240 reggroup_add (gdbarch, all_reggroup);
1241 reggroup_add (gdbarch, save_reggroup);
1242 reggroup_add (gdbarch, restore_reggroup);
1243 reggroup_add (gdbarch, vector_reggroup);
1244 reggroup_add (gdbarch, system_reggroup);
1245}
1246
1247static int
1248m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1249 struct reggroup *group)
1250{
1251 /* We must save the real hard register as well as gcc
1252 soft registers including the frame pointer. */
1253 if (group == save_reggroup || group == restore_reggroup)
1254 {
1255 return (regnum <= gdbarch_num_regs (gdbarch)
1256 || ((regnum == SOFT_FP_REGNUM
1257 || regnum == SOFT_TMP_REGNUM
1258 || regnum == SOFT_ZS_REGNUM
1259 || regnum == SOFT_XY_REGNUM)
1260 && m68hc11_register_name (regnum)));
1261 }
1262
1263 /* Group to identify gcc soft registers (d1..dN). */
1264 if (group == m68hc11_soft_reggroup)
1265 {
1266 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1267 }
1268
1269 if (group == m68hc11_hard_reggroup)
1270 {
1271 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1272 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1273 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1274 }
1275 return default_register_reggroup_p (gdbarch, regnum, group);
1276}
1277
82c230c2
SC
1278static struct gdbarch *
1279m68hc11_gdbarch_init (struct gdbarch_info info,
1280 struct gdbarch_list *arches)
1281{
1282 static LONGEST m68hc11_call_dummy_words[] =
1283 {0};
1284 struct gdbarch *gdbarch;
1285 struct gdbarch_tdep *tdep;
81967506 1286 int elf_flags;
82c230c2
SC
1287
1288 soft_reg_initialized = 0;
81967506
SC
1289
1290 /* Extract the elf_flags if available. */
1291 if (info.abfd != NULL
1292 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1293 elf_flags = elf_elfheader (info.abfd)->e_flags;
1294 else
1295 elf_flags = 0;
1296
82c230c2
SC
1297 /* try to find a pre-existing architecture */
1298 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1299 arches != NULL;
1300 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1301 {
81967506
SC
1302 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1303 continue;
1304
82c230c2
SC
1305 return arches->gdbarch;
1306 }
1307
1308 /* Need a new architecture. Fill in a target specific vector. */
1309 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1310 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1311 tdep->elf_flags = elf_flags;
ed99b3d0 1312
a5afb99f
AC
1313 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1314 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1315 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1316
5d1a66bd
SC
1317 switch (info.bfd_arch_info->arch)
1318 {
1319 case bfd_arch_m68hc11:
1320 tdep->stack_correction = 1;
7df11f59 1321 tdep->use_page_register = 0;
908f682f 1322 tdep->prologue = m6811_prologue;
548bcbec
SC
1323 set_gdbarch_addr_bit (gdbarch, 16);
1324 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1325 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1326 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1327 break;
82c230c2 1328
5d1a66bd
SC
1329 case bfd_arch_m68hc12:
1330 tdep->stack_correction = 0;
7df11f59 1331 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1332 tdep->prologue = m6812_prologue;
548bcbec
SC
1333 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1334 set_gdbarch_num_pseudo_regs (gdbarch,
1335 elf_flags & E_M68HC12_BANKS
1336 ? M68HC12_NUM_PSEUDO_REGS
1337 : M68HC11_NUM_PSEUDO_REGS);
1338 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1339 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1340 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1341 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1342 break;
1343
1344 default:
1345 break;
1346 }
7d32ba20
SC
1347
1348 /* Initially set everything according to the ABI.
1349 Use 16-bit integers since it will be the case for most
1350 programs. The size of these types should normally be set
1351 according to the dwarf2 debug information. */
82c230c2 1352 set_gdbarch_short_bit (gdbarch, 16);
81967506 1353 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1354 set_gdbarch_float_bit (gdbarch, 32);
81967506 1355 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1356 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1357 set_gdbarch_long_bit (gdbarch, 32);
1358 set_gdbarch_ptr_bit (gdbarch, 16);
1359 set_gdbarch_long_long_bit (gdbarch, 64);
1360
1361 /* Set register info. */
1362 set_gdbarch_fp0_regnum (gdbarch, -1);
a0ed5532
AC
1363 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 2);
1364 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 2);
f30ee0bc 1365 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
82c230c2
SC
1366 set_gdbarch_frame_args_skip (gdbarch, 0);
1367
1368 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1369 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1370 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
82c230c2
SC
1371 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1372 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1373
82c230c2
SC
1374 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1375 set_gdbarch_fp_regnum (gdbarch, SOFT_FP_REGNUM);
82c230c2
SC
1376 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1377 set_gdbarch_register_size (gdbarch, 2);
1378 set_gdbarch_register_bytes (gdbarch, M68HC11_ALL_REGS * 2);
1379 set_gdbarch_register_virtual_type (gdbarch, m68hc11_register_virtual_type);
46ce284d
AC
1380 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1381 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1382
82c230c2 1383 set_gdbarch_call_dummy_length (gdbarch, 0);
82c230c2
SC
1384 set_gdbarch_call_dummy_address (gdbarch, m68hc11_call_dummy_address);
1385 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
1386 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1387 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
82c230c2
SC
1388 set_gdbarch_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
1389 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1390 sizeof (m68hc11_call_dummy_words));
1391 set_gdbarch_call_dummy_p (gdbarch, 1);
1392 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
bdcdd535 1393 set_gdbarch_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
82c230c2 1394 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
26e9b323 1395 set_gdbarch_deprecated_extract_return_value (gdbarch, m68hc11_extract_return_value);
82c230c2 1396 set_gdbarch_push_arguments (gdbarch, m68hc11_push_arguments);
82c230c2
SC
1397 set_gdbarch_push_return_address (gdbarch, m68hc11_push_return_address);
1398 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1399
1400 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
ebba8386 1401 set_gdbarch_deprecated_store_return_value (gdbarch, m68hc11_store_return_value);
26e9b323 1402 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
82c230c2
SC
1403 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1404
1405
1406 set_gdbarch_frame_chain (gdbarch, m68hc11_frame_chain);
82c230c2
SC
1407 set_gdbarch_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
1408 set_gdbarch_frame_args_address (gdbarch, m68hc11_frame_args_address);
1409 set_gdbarch_frame_locals_address (gdbarch, m68hc11_frame_locals_address);
1410 set_gdbarch_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
1411 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1412
bdcdd535 1413 set_gdbarch_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
82c230c2
SC
1414
1415 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
ebba8386 1416 set_gdbarch_deprecated_store_return_value (gdbarch, m68hc11_store_return_value);
26e9b323 1417 set_gdbarch_deprecated_extract_struct_value_address
82c230c2
SC
1418 (gdbarch, m68hc11_extract_struct_value_address);
1419 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
e9582e71 1420 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
82c230c2
SC
1421 set_gdbarch_pop_frame (gdbarch, m68hc11_pop_frame);
1422 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1423 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1424 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1425 set_gdbarch_function_start_offset (gdbarch, 0);
1426 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
22df305e 1427 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
70ed8774 1428 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1429
b631436b
SC
1430 m68hc11_add_reggroups (gdbarch);
1431 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1432
7df11f59
SC
1433 /* Minsymbol frobbing. */
1434 set_gdbarch_elf_make_msymbol_special (gdbarch,
1435 m68hc11_elf_make_msymbol_special);
1436
82c230c2 1437 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1438
1439 return gdbarch;
78073dd8
AC
1440}
1441
1442void
fba45db2 1443_initialize_m68hc11_tdep (void)
78073dd8 1444{
82c230c2 1445 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1446 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1447 m68hc11_init_reggroups ();
78073dd8
AC
1448
1449 add_com ("regs", class_vars, show_regs, "Print all registers");
1450}
1451
This page took 0.300736 seconds and 4 git commands to generate.