ld:
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
9b254dd1 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
6aba47ca 4 Free Software Foundation, Inc.
931aecf5 5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8 7
a9762ec7
JB
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
78073dd8 22
78073dd8 23
82c230c2
SC
24#include "defs.h"
25#include "frame.h"
1ea653ae
SC
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "dwarf2-frame.h"
29#include "trad-frame.h"
82c230c2
SC
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "gdb_string.h"
35#include "value.h"
36#include "inferior.h"
37#include "dis-asm.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
b631436b 42#include "reggroups.h"
78073dd8 43
82c230c2
SC
44#include "target.h"
45#include "opcode/m68hc11.h"
81967506
SC
46#include "elf/m68hc11.h"
47#include "elf-bfd.h"
78073dd8 48
7df11f59
SC
49/* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59
SC
60
61#define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
63 | 0x80000000)
64
65#define MSYMBOL_SET_RTI(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x40000000)
68
69#define MSYMBOL_IS_RTC(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72#define MSYMBOL_IS_RTI(msym) \
73 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
74
7df11f59
SC
75enum insn_return_kind {
76 RETURN_RTS,
77 RETURN_RTC,
78 RETURN_RTI
79};
80
81
7157eed4 82/* Register numbers of various important registers. */
78073dd8 83
82c230c2
SC
84#define HARD_X_REGNUM 0
85#define HARD_D_REGNUM 1
86#define HARD_Y_REGNUM 2
87#define HARD_SP_REGNUM 3
88#define HARD_PC_REGNUM 4
89
90#define HARD_A_REGNUM 5
91#define HARD_B_REGNUM 6
92#define HARD_CCR_REGNUM 7
5706502a
SC
93
94/* 68HC12 page number register.
95 Note: to keep a compatibility with gcc register naming, we must
96 not have to rename FP and other soft registers. The page register
f57d151a 97 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
98 For this it has the same number as Z register (which is not used). */
99#define HARD_PAGE_REGNUM 8
100#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
101
102/* Z is replaced by X or Y by gcc during machine reorg.
103 ??? There is no way to get it and even know whether
104 it's in X or Y or in ZS. */
105#define SOFT_Z_REGNUM 8
106
107/* Soft registers. These registers are special. There are treated
108 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
109 They are physically located in memory. */
110#define SOFT_FP_REGNUM 9
111#define SOFT_TMP_REGNUM 10
112#define SOFT_ZS_REGNUM 11
113#define SOFT_XY_REGNUM 12
f91a8b6b
SC
114#define SOFT_UNUSED_REGNUM 13
115#define SOFT_D1_REGNUM 14
82c230c2
SC
116#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
117#define M68HC11_MAX_SOFT_REGS 32
118
119#define M68HC11_NUM_REGS (8)
120#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
121#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
122
123#define M68HC11_REG_SIZE (2)
124
548bcbec
SC
125#define M68HC12_NUM_REGS (9)
126#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
127#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
128
908f682f 129struct insn_sequence;
82c230c2
SC
130struct gdbarch_tdep
131 {
5d1a66bd
SC
132 /* Stack pointer correction value. For 68hc11, the stack pointer points
133 to the next push location. An offset of 1 must be applied to obtain
134 the address where the last value is saved. For 68hc12, the stack
135 pointer points to the last value pushed. No offset is necessary. */
136 int stack_correction;
908f682f
SC
137
138 /* Description of instructions in the prologue. */
139 struct insn_sequence *prologue;
81967506 140
7df11f59
SC
141 /* True if the page memory bank register is available
142 and must be used. */
143 int use_page_register;
144
81967506
SC
145 /* ELF flags for ABI. */
146 int elf_flags;
82c230c2
SC
147 };
148
5d1a66bd
SC
149#define M6811_TDEP gdbarch_tdep (current_gdbarch)
150#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 151#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 152
1ea653ae
SC
153struct m68hc11_unwind_cache
154{
155 /* The previous frame's inner most stack address. Used as this
156 frame ID's stack_addr. */
157 CORE_ADDR prev_sp;
158 /* The frame's base, optionally used by the high-level debug info. */
159 CORE_ADDR base;
160 CORE_ADDR pc;
161 int size;
162 int prologue_type;
163 CORE_ADDR return_pc;
164 CORE_ADDR sp_offset;
165 int frameless;
166 enum insn_return_kind return_kind;
167
168 /* Table indicating the location of each and every register. */
169 struct trad_frame_saved_reg *saved_regs;
170};
171
82c230c2
SC
172/* Table of registers for 68HC11. This includes the hard registers
173 and the soft registers used by GCC. */
174static char *
175m68hc11_register_names[] =
176{
177 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 178 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
179 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
180 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
181 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
182 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
183 "d29", "d30", "d31", "d32"
184};
78073dd8 185
82c230c2
SC
186struct m68hc11_soft_reg
187{
188 const char *name;
189 CORE_ADDR addr;
190};
78073dd8 191
82c230c2 192static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 193
82c230c2 194#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 195
82c230c2
SC
196static int soft_min_addr;
197static int soft_max_addr;
198static int soft_reg_initialized = 0;
78073dd8 199
82c230c2
SC
200/* Look in the symbol table for the address of a pseudo register
201 in memory. If we don't find it, pretend the register is not used
202 and not available. */
203static void
204m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
205{
206 struct minimal_symbol *msymbol;
78073dd8 207
82c230c2
SC
208 msymbol = lookup_minimal_symbol (name, NULL, NULL);
209 if (msymbol)
210 {
211 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
212 reg->name = xstrdup (name);
213
214 /* Keep track of the address range for soft registers. */
215 if (reg->addr < (CORE_ADDR) soft_min_addr)
216 soft_min_addr = reg->addr;
217 if (reg->addr > (CORE_ADDR) soft_max_addr)
218 soft_max_addr = reg->addr;
219 }
220 else
221 {
222 reg->name = 0;
223 reg->addr = 0;
224 }
225}
78073dd8 226
82c230c2
SC
227/* Initialize the table of soft register addresses according
228 to the symbol table. */
229 static void
230m68hc11_initialize_register_info (void)
231{
232 int i;
78073dd8 233
82c230c2
SC
234 if (soft_reg_initialized)
235 return;
236
237 soft_min_addr = INT_MAX;
238 soft_max_addr = 0;
239 for (i = 0; i < M68HC11_ALL_REGS; i++)
240 {
241 soft_regs[i].name = 0;
242 }
243
244 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
245 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
246 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
247 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
248 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 249
82c230c2
SC
250 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
251 {
252 char buf[10];
78073dd8 253
82c230c2
SC
254 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
255 m68hc11_get_register_info (&soft_regs[i], buf);
256 }
78073dd8 257
82c230c2 258 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
259 warning (_("No frame soft register found in the symbol table.\n"
260 "Stack backtrace will not work."));
82c230c2
SC
261 soft_reg_initialized = 1;
262}
78073dd8 263
82c230c2
SC
264/* Given an address in memory, return the soft register number if
265 that address corresponds to a soft register. Returns -1 if not. */
266static int
267m68hc11_which_soft_register (CORE_ADDR addr)
268{
269 int i;
270
271 if (addr < soft_min_addr || addr > soft_max_addr)
272 return -1;
273
274 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
275 {
276 if (soft_regs[i].name && soft_regs[i].addr == addr)
277 return i;
278 }
279 return -1;
280}
78073dd8 281
82c230c2
SC
282/* Fetch a pseudo register. The 68hc11 soft registers are treated like
283 pseudo registers. They are located in memory. Translate the register
284 fetch into a memory read. */
46ce284d
AC
285static void
286m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
287 struct regcache *regcache,
ff1e98b9 288 int regno, gdb_byte *buf)
82c230c2 289{
548bcbec
SC
290 /* The PC is a pseudo reg only for 68HC12 with the memory bank
291 addressing mode. */
292 if (regno == M68HC12_HARD_PC_REGNUM)
293 {
4db73d49 294 ULONGEST pc;
548bcbec 295 const int regsize = TYPE_LENGTH (builtin_type_uint32);
548bcbec 296
4db73d49 297 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
548bcbec
SC
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
4db73d49
SC
300 ULONGEST page;
301
302 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, pc);
308 return;
309 }
310
82c230c2
SC
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
82c230c2 322}
78073dd8 323
82c230c2
SC
324/* Store a pseudo register. Translate the register store
325 into a memory write. */
326static void
46ce284d
AC
327m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
328 struct regcache *regcache,
ff1e98b9 329 int regno, const gdb_byte *buf)
82c230c2 330{
548bcbec
SC
331 /* The PC is a pseudo reg only for 68HC12 with the memory bank
332 addressing mode. */
333 if (regno == M68HC12_HARD_PC_REGNUM)
334 {
335 const int regsize = TYPE_LENGTH (builtin_type_uint32);
336 char *tmp = alloca (regsize);
337 CORE_ADDR pc;
338
339 memcpy (tmp, buf, regsize);
340 pc = extract_unsigned_integer (tmp, regsize);
341 if (pc >= 0x1000000)
342 {
343 pc -= 0x1000000;
4db73d49
SC
344 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
345 (pc >> 14) & 0x0ff);
548bcbec 346 pc &= 0x03fff;
4db73d49
SC
347 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
348 pc + 0x8000);
548bcbec
SC
349 }
350 else
4db73d49 351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
352 return;
353 }
354
82c230c2 355 m68hc11_initialize_register_info ();
78073dd8 356
82c230c2
SC
357 /* Store a soft register: translate into a memory write. */
358 if (soft_regs[regno].name)
359 {
46ce284d
AC
360 const int regsize = 2;
361 char *tmp = alloca (regsize);
362 memcpy (tmp, buf, regsize);
363 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
364 }
365}
78073dd8 366
fa88f677 367static const char *
d93859e2 368m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
78073dd8 369{
548bcbec
SC
370 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
371 return "pc";
372 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
373 return "ppc";
374
82c230c2
SC
375 if (reg_nr < 0)
376 return NULL;
377 if (reg_nr >= M68HC11_ALL_REGS)
378 return NULL;
379
65760afb
SC
380 m68hc11_initialize_register_info ();
381
82c230c2
SC
382 /* If we don't know the address of a soft register, pretend it
383 does not exist. */
384 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
385 return NULL;
386 return m68hc11_register_names[reg_nr];
387}
78073dd8 388
f4f9705a 389static const unsigned char *
67d57894
MD
390m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
391 int *lenptr)
78073dd8 392{
82c230c2 393 static unsigned char breakpoint[] = {0x0};
67d57894 394
82c230c2
SC
395 *lenptr = sizeof (breakpoint);
396 return breakpoint;
78073dd8
AC
397}
398
908f682f
SC
399\f
400/* 68HC11 & 68HC12 prologue analysis.
401
402 */
403#define MAX_CODES 12
404
405/* 68HC11 opcodes. */
406#undef M6811_OP_PAGE2
b94a41a1
SC
407#define M6811_OP_PAGE2 (0x18)
408#define M6811_OP_LDX (0xde)
409#define M6811_OP_LDX_EXT (0xfe)
410#define M6811_OP_PSHX (0x3c)
411#define M6811_OP_STS (0x9f)
412#define M6811_OP_STS_EXT (0xbf)
413#define M6811_OP_TSX (0x30)
414#define M6811_OP_XGDX (0x8f)
415#define M6811_OP_ADDD (0xc3)
416#define M6811_OP_TXS (0x35)
417#define M6811_OP_DES (0x34)
908f682f
SC
418
419/* 68HC12 opcodes. */
b94a41a1
SC
420#define M6812_OP_PAGE2 (0x18)
421#define M6812_OP_MOVW (0x01)
422#define M6812_PB_PSHW (0xae)
423#define M6812_OP_STS (0x5f)
424#define M6812_OP_STS_EXT (0x7f)
425#define M6812_OP_LEAS (0x1b)
426#define M6812_OP_PSHX (0x34)
427#define M6812_OP_PSHY (0x35)
908f682f
SC
428
429/* Operand extraction. */
430#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
431#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
432#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
433#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
434
435/* Identification of the sequence. */
436enum m6811_seq_type
437{
438 P_LAST = 0,
439 P_SAVE_REG, /* Save a register on the stack. */
440 P_SET_FRAME, /* Setup the frame pointer. */
441 P_LOCAL_1, /* Allocate 1 byte for locals. */
442 P_LOCAL_2, /* Allocate 2 bytes for locals. */
443 P_LOCAL_N /* Allocate N bytes for locals. */
444};
445
446struct insn_sequence {
447 enum m6811_seq_type type;
448 unsigned length;
449 unsigned short code[MAX_CODES];
450};
451
452/* Sequence of instructions in the 68HC11 function prologue. */
453static struct insn_sequence m6811_prologue[] = {
454 /* Sequences to save a soft-register. */
455 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
459 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
460 M6811_OP_PSHX } },
461 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
462 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
463
464 /* Sequences to allocate local variables. */
465 { P_LOCAL_N, 7, { M6811_OP_TSX,
466 M6811_OP_XGDX,
467 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
468 M6811_OP_XGDX,
469 M6811_OP_TXS } },
470 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
471 M6811_OP_PAGE2, M6811_OP_XGDX,
472 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
473 M6811_OP_PAGE2, M6811_OP_XGDX,
474 M6811_OP_PAGE2, M6811_OP_TXS } },
475 { P_LOCAL_1, 1, { M6811_OP_DES } },
476 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
477 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
478
479 /* Initialize the frame pointer. */
480 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 481 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
482 { P_LAST, 0, { 0 } }
483};
484
485
486/* Sequence of instructions in the 68HC12 function prologue. */
487static struct insn_sequence m6812_prologue[] = {
488 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
489 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
490 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
491 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 492 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
493 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
494 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
495 { P_LAST, 0 }
496};
497
498
499/* Analyze the sequence of instructions starting at the given address.
500 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 501 the optional value (constant/address) associated with it. */
908f682f 502static struct insn_sequence *
c8a7f6ac 503m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
504 CORE_ADDR *val)
505{
506 unsigned char buffer[MAX_CODES];
507 unsigned bufsize;
508 unsigned j;
509 CORE_ADDR cur_val;
510 short v = 0;
511
512 bufsize = 0;
513 for (; seq->type != P_LAST; seq++)
514 {
515 cur_val = 0;
516 for (j = 0; j < seq->length; j++)
517 {
518 if (bufsize < j + 1)
519 {
c8a7f6ac 520 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
908f682f
SC
521 1);
522 bufsize++;
523 }
524 /* Continue while we match the opcode. */
525 if (seq->code[j] == buffer[j])
526 continue;
527
528 if ((seq->code[j] & 0xf00) == 0)
529 break;
530
531 /* Extract a sequence parameter (address or constant). */
532 switch (seq->code[j])
533 {
534 case OP_DIRECT:
535 cur_val = (CORE_ADDR) buffer[j];
536 break;
537
538 case OP_IMM_HIGH:
539 cur_val = cur_val & 0x0ff;
540 cur_val |= (buffer[j] << 8);
541 break;
542
543 case OP_IMM_LOW:
544 cur_val &= 0x0ff00;
545 cur_val |= buffer[j];
546 break;
547
548 case OP_PBYTE:
549 if ((buffer[j] & 0xE0) == 0x80)
550 {
551 v = buffer[j] & 0x1f;
552 if (v & 0x10)
553 v |= 0xfff0;
554 }
555 else if ((buffer[j] & 0xfe) == 0xf0)
556 {
c8a7f6ac 557 v = read_memory_unsigned_integer (pc + j + 1, 1);
908f682f
SC
558 if (buffer[j] & 1)
559 v |= 0xff00;
560 }
561 else if (buffer[j] == 0xf2)
562 {
c8a7f6ac 563 v = read_memory_unsigned_integer (pc + j + 1, 2);
908f682f
SC
564 }
565 cur_val = v;
566 break;
567 }
568 }
569
570 /* We have a full match. */
571 if (j == seq->length)
572 {
573 *val = cur_val;
908f682f
SC
574 return seq;
575 }
576 }
577 return 0;
578}
579
7df11f59
SC
580/* Return the instruction that the function at the PC is using. */
581static enum insn_return_kind
582m68hc11_get_return_insn (CORE_ADDR pc)
583{
584 struct minimal_symbol *sym;
585
586 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
587 function is stored by elfread.c in the high bit of the info field.
588 Use this to decide which instruction the function uses to return. */
589 sym = lookup_minimal_symbol_by_pc (pc);
590 if (sym == 0)
591 return RETURN_RTS;
592
593 if (MSYMBOL_IS_RTC (sym))
594 return RETURN_RTC;
595 else if (MSYMBOL_IS_RTI (sym))
596 return RETURN_RTI;
597 else
598 return RETURN_RTS;
599}
600
78073dd8
AC
601/* Analyze the function prologue to find some information
602 about the function:
603 - the PC of the first line (for m68hc11_skip_prologue)
604 - the offset of the previous frame saved address (from current frame)
605 - the soft registers which are pushed. */
1ea653ae
SC
606static CORE_ADDR
607m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
608 struct m68hc11_unwind_cache *info)
78073dd8 609{
1ea653ae 610 LONGEST save_addr;
78073dd8 611 CORE_ADDR func_end;
78073dd8
AC
612 int size;
613 int found_frame_point;
82c230c2 614 int saved_reg;
908f682f
SC
615 int done = 0;
616 struct insn_sequence *seq_table;
1ea653ae
SC
617
618 info->size = 0;
619 info->sp_offset = 0;
620 if (pc >= current_pc)
621 return current_pc;
622
78073dd8
AC
623 size = 0;
624
82c230c2 625 m68hc11_initialize_register_info ();
1ea653ae 626 if (pc == 0)
78073dd8 627 {
1ea653ae
SC
628 info->size = 0;
629 return pc;
78073dd8
AC
630 }
631
908f682f
SC
632 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
633
78073dd8
AC
634 /* The 68hc11 stack is as follows:
635
636
637 | |
638 +-----------+
639 | |
640 | args |
641 | |
642 +-----------+
643 | PC-return |
644 +-----------+
645 | Old frame |
646 +-----------+
647 | |
648 | Locals |
649 | |
650 +-----------+ <--- current frame
651 | |
652
653 With most processors (like 68K) the previous frame can be computed
654 easily because it is always at a fixed offset (see link/unlink).
655 That is, locals are accessed with negative offsets, arguments are
656 accessed with positive ones. Since 68hc11 only supports offsets
657 in the range [0..255], the frame is defined at the bottom of
658 locals (see picture).
659
660 The purpose of the analysis made here is to find out the size
661 of locals in this function. An alternative to this is to use
662 DWARF2 info. This would be better but I don't know how to
663 access dwarf2 debug from this function.
664
665 Walk from the function entry point to the point where we save
666 the frame. While walking instructions, compute the size of bytes
667 which are pushed. This gives us the index to access the previous
668 frame.
669
670 We limit the search to 128 bytes so that the algorithm is bounded
671 in case of random and wrong code. We also stop and abort if
672 we find an instruction which is not supposed to appear in the
673 prologue (as generated by gcc 2.95, 2.96).
674 */
78073dd8 675 func_end = pc + 128;
78073dd8 676 found_frame_point = 0;
1ea653ae
SC
677 info->size = 0;
678 save_addr = 0;
908f682f 679 while (!done && pc + 2 < func_end)
78073dd8 680 {
908f682f
SC
681 struct insn_sequence *seq;
682 CORE_ADDR val;
1ea653ae 683
c8a7f6ac 684 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
908f682f
SC
685 if (seq == 0)
686 break;
78073dd8 687
c8a7f6ac
SC
688 /* If we are within the instruction group, we can't advance the
689 pc nor the stack offset. Otherwise the caller's stack computed
690 from the current stack can be wrong. */
691 if (pc + seq->length > current_pc)
692 break;
693
694 pc = pc + seq->length;
908f682f 695 if (seq->type == P_SAVE_REG)
78073dd8 696 {
908f682f
SC
697 if (found_frame_point)
698 {
699 saved_reg = m68hc11_which_soft_register (val);
700 if (saved_reg < 0)
701 break;
78073dd8 702
908f682f 703 save_addr -= 2;
ff1e98b9
SC
704 if (info->saved_regs)
705 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
706 }
707 else
708 {
709 size += 2;
710 }
78073dd8 711 }
908f682f 712 else if (seq->type == P_SET_FRAME)
78073dd8
AC
713 {
714 found_frame_point = 1;
1ea653ae 715 info->size = size;
78073dd8 716 }
908f682f 717 else if (seq->type == P_LOCAL_1)
78073dd8 718 {
6148eca7
SC
719 size += 1;
720 }
908f682f 721 else if (seq->type == P_LOCAL_2)
78073dd8 722 {
908f682f 723 size += 2;
78073dd8 724 }
908f682f 725 else if (seq->type == P_LOCAL_N)
78073dd8 726 {
908f682f
SC
727 /* Stack pointer is decremented for the allocation. */
728 if (val & 0x8000)
729 size -= (int) (val) | 0xffff0000;
730 else
731 size -= val;
78073dd8
AC
732 }
733 }
1ea653ae
SC
734 if (found_frame_point == 0)
735 info->sp_offset = size;
736 else
737 info->sp_offset = -1;
738 return pc;
78073dd8
AC
739}
740
82c230c2 741static CORE_ADDR
78073dd8
AC
742m68hc11_skip_prologue (CORE_ADDR pc)
743{
744 CORE_ADDR func_addr, func_end;
745 struct symtab_and_line sal;
1ea653ae 746 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 747
82c230c2
SC
748 /* If we have line debugging information, then the end of the
749 prologue should be the first assembly instruction of the
78073dd8
AC
750 first source line. */
751 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
752 {
753 sal = find_pc_line (func_addr, 0);
754 if (sal.end && sal.end < func_end)
755 return sal.end;
756 }
757
1ea653ae 758 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
759 return pc;
760}
761
1ea653ae
SC
762static CORE_ADDR
763m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
764{
765 ULONGEST pc;
766
11411de3 767 pc = frame_unwind_register_unsigned (next_frame, gdbarch_pc_regnum (gdbarch));
1ea653ae
SC
768 return pc;
769}
770
771/* Put here the code to store, into fi->saved_regs, the addresses of
772 the saved registers of frame described by FRAME_INFO. This
773 includes special registers such as pc and fp saved in special ways
774 in the stack frame. sp is even more special: the address we return
775 for it IS the sp for the next frame. */
776
777struct m68hc11_unwind_cache *
778m68hc11_frame_unwind_cache (struct frame_info *next_frame,
779 void **this_prologue_cache)
780{
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
786
787 if ((*this_prologue_cache))
788 return (*this_prologue_cache);
789
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
792 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
793
93d42b30 794 info->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1ea653ae
SC
795
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
798
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
11411de3 802 this_base = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
1ea653ae
SC
803 if (this_base == 0)
804 {
805 info->base = 0;
806 return info;
807 }
808
809 current_pc = frame_pc_unwind (next_frame);
810 if (info->pc != 0)
811 m68hc11_scan_prologue (info->pc, current_pc, info);
812
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
814
815 if (info->sp_offset != (CORE_ADDR) -1)
816 {
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
11411de3 818 this_base = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
1ea653ae
SC
819 prev_sp = this_base + info->sp_offset + 2;
820 this_base += STACK_CORRECTION;
821 }
822 else
823 {
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
827
828 this_base += STACK_CORRECTION;
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
831 }
832
833 if (info->return_kind == RETURN_RTC)
834 {
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
838 }
839 else if (info->return_kind == RETURN_RTI)
840 {
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
847 }
848
849 /* Add 1 here to adjust for the post-decrement nature of the push
850 instruction.*/
851 info->prev_sp = prev_sp;
852
853 info->base = this_base;
854
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
f57d151a
UW
857 for (i = 0;
858 i < gdbarch_num_regs (current_gdbarch)
859 + gdbarch_num_pseudo_regs (current_gdbarch) - 1;
860 i++)
1ea653ae
SC
861 if (trad_frame_addr_p (info->saved_regs, i))
862 {
863 info->saved_regs[i].addr += this_base;
864 }
865
866 /* The previous frame's SP needed to be computed. Save the computed
867 value. */
868 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
869
870 return info;
871}
872
873/* Given a GDB frame, determine the address of the calling function's
874 frame. This will be used to create a new GDB frame struct. */
875
876static void
877m68hc11_frame_this_id (struct frame_info *next_frame,
878 void **this_prologue_cache,
879 struct frame_id *this_id)
880{
881 struct m68hc11_unwind_cache *info
882 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
883 CORE_ADDR base;
884 CORE_ADDR func;
885 struct frame_id id;
886
887 /* The FUNC is easy. */
93d42b30 888 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1ea653ae 889
1ea653ae
SC
890 /* Hopefully the prologue analysis either correctly determined the
891 frame's base (which is the SP from the previous frame), or set
892 that base to "NULL". */
893 base = info->prev_sp;
894 if (base == 0)
895 return;
896
897 id = frame_id_build (base, func);
1ea653ae
SC
898 (*this_id) = id;
899}
900
901static void
902m68hc11_frame_prev_register (struct frame_info *next_frame,
903 void **this_prologue_cache,
904 int regnum, int *optimizedp,
905 enum lval_type *lvalp, CORE_ADDR *addrp,
ff1e98b9 906 int *realnump, gdb_byte *bufferp)
1ea653ae
SC
907{
908 struct m68hc11_unwind_cache *info
909 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
910
1f67027d
AC
911 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
912 optimizedp, lvalp, addrp, realnump, bufferp);
1ea653ae
SC
913
914 if (regnum == HARD_PC_REGNUM)
915 {
916 /* Take into account the 68HC12 specific call (PC + page). */
917 if (info->return_kind == RETURN_RTC
918 && *addrp >= 0x08000 && *addrp < 0x0c000
919 && USE_PAGE_REGISTER)
920 {
921 int page_optimized;
922
923 CORE_ADDR page;
924
1f67027d
AC
925 trad_frame_get_prev_register (next_frame, info->saved_regs,
926 HARD_PAGE_REGNUM, &page_optimized,
927 0, &page, 0, 0);
1ea653ae
SC
928 *addrp -= 0x08000;
929 *addrp += ((page & 0x0ff) << 14);
930 *addrp += 0x1000000;
931 }
932 }
933}
934
935static const struct frame_unwind m68hc11_frame_unwind = {
936 NORMAL_FRAME,
937 m68hc11_frame_this_id,
938 m68hc11_frame_prev_register
939};
940
941const struct frame_unwind *
1a241548 942m68hc11_frame_sniffer (struct frame_info *next_frame)
1ea653ae
SC
943{
944 return &m68hc11_frame_unwind;
945}
946
947static CORE_ADDR
948m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
949{
950 struct m68hc11_unwind_cache *info
951 = m68hc11_frame_unwind_cache (next_frame, this_cache);
952
953 return info->base;
954}
955
956static CORE_ADDR
957m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
958{
959 CORE_ADDR addr;
960 struct m68hc11_unwind_cache *info
961 = m68hc11_frame_unwind_cache (next_frame, this_cache);
962
963 addr = info->base + info->size;
964 if (info->return_kind == RETURN_RTC)
965 addr += 1;
966 else if (info->return_kind == RETURN_RTI)
967 addr += 7;
968
969 return addr;
970}
971
972static const struct frame_base m68hc11_frame_base = {
973 &m68hc11_frame_unwind,
974 m68hc11_frame_base_address,
975 m68hc11_frame_base_address,
976 m68hc11_frame_args_address
977};
978
979static CORE_ADDR
980m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
981{
982 ULONGEST sp;
11411de3 983 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
1ea653ae
SC
984 return sp;
985}
986
987/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
988 dummy frame. The frame ID's base needs to match the TOS value
989 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
990 breakpoint. */
991
992static struct frame_id
993m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
994{
995 ULONGEST tos;
996 CORE_ADDR pc = frame_pc_unwind (next_frame);
997
11411de3 998 tos = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
1ea653ae
SC
999 tos += 2;
1000 return frame_id_build (tos, pc);
1001}
78073dd8 1002
e286caf2
SC
1003\f
1004/* Get and print the register from the given frame. */
78073dd8 1005static void
e286caf2
SC
1006m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1007 struct frame_info *frame, int regno)
78073dd8 1008{
e286caf2
SC
1009 LONGEST rval;
1010
1011 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1012 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1013 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1014 else
7f5f525d 1015 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1016
1017 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1018 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1019 {
e286caf2
SC
1020 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1021 if (regno != HARD_CCR_REGNUM)
1022 print_longest (file, 'd', 1, rval);
7df11f59 1023 }
e286caf2
SC
1024 else
1025 {
1026 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1027 {
1028 ULONGEST page;
7df11f59 1029
7f5f525d 1030 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1031 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1032 (unsigned) rval);
1033 }
1034 else
1035 {
1036 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1037 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1038 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1039 print_longest (file, 'd', 1, rval);
1040 }
1041 }
1042
1043 if (regno == HARD_CCR_REGNUM)
78073dd8 1044 {
e286caf2
SC
1045 /* CCR register */
1046 int C, Z, N, V;
1047 unsigned char l = rval & 0xff;
1048
1049 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1050 l & M6811_S_BIT ? 'S' : '-',
1051 l & M6811_X_BIT ? 'X' : '-',
1052 l & M6811_H_BIT ? 'H' : '-',
1053 l & M6811_I_BIT ? 'I' : '-',
1054 l & M6811_N_BIT ? 'N' : '-',
1055 l & M6811_Z_BIT ? 'Z' : '-',
1056 l & M6811_V_BIT ? 'V' : '-',
1057 l & M6811_C_BIT ? 'C' : '-');
1058 N = (l & M6811_N_BIT) != 0;
1059 Z = (l & M6811_Z_BIT) != 0;
1060 V = (l & M6811_V_BIT) != 0;
1061 C = (l & M6811_C_BIT) != 0;
1062
1063 /* Print flags following the h8300 */
1064 if ((C | Z) == 0)
1065 fprintf_filtered (file, "u> ");
1066 else if ((C | Z) == 1)
1067 fprintf_filtered (file, "u<= ");
1068 else if (C == 0)
1069 fprintf_filtered (file, "u< ");
1070
1071 if (Z == 0)
1072 fprintf_filtered (file, "!= ");
1073 else
1074 fprintf_filtered (file, "== ");
1075
1076 if ((N ^ V) == 0)
1077 fprintf_filtered (file, ">= ");
1078 else
1079 fprintf_filtered (file, "< ");
1080
1081 if ((Z | (N ^ V)) == 0)
1082 fprintf_filtered (file, "> ");
78073dd8 1083 else
e286caf2 1084 fprintf_filtered (file, "<= ");
78073dd8 1085 }
e286caf2
SC
1086}
1087
1088/* Same as 'info reg' but prints the registers in a different way. */
1089static void
1090m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1091 struct frame_info *frame, int regno, int cpregs)
1092{
1093 if (regno >= 0)
1094 {
1095 const char *name = gdbarch_register_name (gdbarch, regno);
1096
1097 if (!name || !*name)
1098 return;
1099
1100 fprintf_filtered (file, "%-10s ", name);
1101 m68hc11_print_register (gdbarch, file, frame, regno);
1102 fprintf_filtered (file, "\n");
1103 }
1104 else
1105 {
1106 int i, nr;
1107
1108 fprintf_filtered (file, "PC=");
1109 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1110
1111 fprintf_filtered (file, " SP=");
1112 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1113
1114 fprintf_filtered (file, " FP=");
1115 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1116
1117 fprintf_filtered (file, "\nCCR=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1119
1120 fprintf_filtered (file, "\nD=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1122
1123 fprintf_filtered (file, " X=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1125
1126 fprintf_filtered (file, " Y=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1128
1129 if (gdbarch_tdep (gdbarch)->use_page_register)
1130 {
1131 fprintf_filtered (file, "\nPage=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1133 }
1134 fprintf_filtered (file, "\n");
1135
1136 nr = 0;
1137 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1138 {
1139 /* Skip registers which are not defined in the symbol table. */
1140 if (soft_regs[i].name == 0)
1141 continue;
1142
1143 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1144 m68hc11_print_register (gdbarch, file, frame, i);
1145 nr++;
1146 if ((nr % 8) == 7)
1147 fprintf_filtered (file, "\n");
1148 else
1149 fprintf_filtered (file, " ");
1150 }
1151 if (nr && (nr % 8) != 7)
1152 fprintf_filtered (file, "\n");
1153 }
1154}
1155
82c230c2 1156static CORE_ADDR
7d9b040b 1157m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1158 struct regcache *regcache, CORE_ADDR bp_addr,
1159 int nargs, struct value **args, CORE_ADDR sp,
1160 int struct_return, CORE_ADDR struct_addr)
78073dd8 1161{
82c230c2
SC
1162 int argnum;
1163 int first_stack_argnum;
82c230c2
SC
1164 struct type *type;
1165 char *val;
1166 int len;
3dc990bf 1167 char buf[2];
82c230c2 1168
82c230c2
SC
1169 first_stack_argnum = 0;
1170 if (struct_return)
1171 {
ff1e98b9 1172 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1173 }
1174 else if (nargs > 0)
1175 {
4991999e 1176 type = value_type (args[0]);
82c230c2 1177 len = TYPE_LENGTH (type);
3dc990bf 1178
82c230c2
SC
1179 /* First argument is passed in D and X registers. */
1180 if (len <= 4)
1181 {
3dc990bf
SC
1182 ULONGEST v;
1183
0fd88904 1184 v = extract_unsigned_integer (value_contents (args[0]), len);
82c230c2 1185 first_stack_argnum = 1;
3dc990bf
SC
1186
1187 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1188 if (len > 2)
1189 {
1190 v >>= 16;
3dc990bf 1191 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1192 }
1193 }
1194 }
82c230c2 1195
3dc990bf 1196 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1197 {
4991999e 1198 type = value_type (args[argnum]);
82c230c2
SC
1199 len = TYPE_LENGTH (type);
1200
22df305e
SC
1201 if (len & 1)
1202 {
1203 static char zero = 0;
1204
3dc990bf
SC
1205 sp--;
1206 write_memory (sp, &zero, 1);
22df305e 1207 }
0fd88904 1208 val = (char*) value_contents (args[argnum]);
3dc990bf
SC
1209 sp -= len;
1210 write_memory (sp, val, len);
82c230c2 1211 }
3dc990bf
SC
1212
1213 /* Store return address. */
1214 sp -= 2;
1215 store_unsigned_integer (buf, 2, bp_addr);
1216 write_memory (sp, buf, 2);
1217
1218 /* Finally, update the stack pointer... */
1219 sp -= STACK_CORRECTION;
1220 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1221
1222 /* ...and fake a frame pointer. */
1223 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1224
1225 /* DWARF2/GCC uses the stack address *before* the function call as a
1226 frame's CFA. */
1227 return sp + 2;
78073dd8
AC
1228}
1229
1230
4db73d49
SC
1231/* Return the GDB type object for the "standard" data type
1232 of data in register N. */
1233
82c230c2 1234static struct type *
4db73d49 1235m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1236{
5706502a
SC
1237 switch (reg_nr)
1238 {
1239 case HARD_PAGE_REGNUM:
1240 case HARD_A_REGNUM:
1241 case HARD_B_REGNUM:
1242 case HARD_CCR_REGNUM:
1243 return builtin_type_uint8;
1244
548bcbec
SC
1245 case M68HC12_HARD_PC_REGNUM:
1246 return builtin_type_uint32;
1247
5706502a
SC
1248 default:
1249 return builtin_type_uint16;
1250 }
82c230c2
SC
1251}
1252
82c230c2 1253static void
4db73d49
SC
1254m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1255 const void *valbuf)
82c230c2 1256{
22df305e
SC
1257 int len;
1258
1259 len = TYPE_LENGTH (type);
1260
1261 /* First argument is passed in D and X registers. */
4db73d49
SC
1262 if (len <= 2)
1263 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1264 else if (len <= 4)
22df305e 1265 {
4db73d49
SC
1266 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1267 len - 2, valbuf);
1268 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1269 }
1270 else
8a3fe4f8 1271 error (_("return of value > 4 is not supported."));
82c230c2
SC
1272}
1273
1274
ef2b8fcd 1275/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1276 extract and copy its value into `valbuf'. */
1277
82c230c2 1278static void
ef2b8fcd
SC
1279m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1280 void *valbuf)
78073dd8 1281{
82c230c2 1282 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1283 char buf[M68HC11_REG_SIZE];
1284
1285 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1286 switch (len)
82c230c2 1287 {
22df305e 1288 case 1:
ef2b8fcd 1289 memcpy (valbuf, buf + 1, 1);
22df305e 1290 break;
ef2b8fcd 1291
22df305e 1292 case 2:
ef2b8fcd 1293 memcpy (valbuf, buf, 2);
22df305e 1294 break;
ef2b8fcd 1295
22df305e 1296 case 3:
ef2b8fcd
SC
1297 memcpy ((char*) valbuf + 1, buf, 2);
1298 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1299 memcpy (valbuf, buf + 1, 1);
22df305e 1300 break;
ef2b8fcd 1301
22df305e 1302 case 4:
ef2b8fcd
SC
1303 memcpy ((char*) valbuf + 2, buf, 2);
1304 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1305 memcpy (valbuf, buf, 2);
22df305e
SC
1306 break;
1307
1308 default:
8a3fe4f8 1309 error (_("bad size for return value"));
82c230c2
SC
1310 }
1311}
1312
97092415
AC
1313enum return_value_convention
1314m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
ff1e98b9
SC
1315 struct regcache *regcache, gdb_byte *readbuf,
1316 const gdb_byte *writebuf)
82c230c2 1317{
97092415
AC
1318 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1319 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1320 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1321 || TYPE_LENGTH (valtype) > 4)
1322 return RETURN_VALUE_STRUCT_CONVENTION;
1323 else
1324 {
1325 if (readbuf != NULL)
1326 m68hc11_extract_return_value (valtype, regcache, readbuf);
1327 if (writebuf != NULL)
1328 m68hc11_store_return_value (valtype, regcache, writebuf);
1329 return RETURN_VALUE_REGISTER_CONVENTION;
1330 }
82c230c2
SC
1331}
1332
7df11f59
SC
1333/* Test whether the ELF symbol corresponds to a function using rtc or
1334 rti to return. */
1335
1336static void
1337m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1338{
1339 unsigned char flags;
1340
1341 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1342 if (flags & STO_M68HC12_FAR)
1343 MSYMBOL_SET_RTC (msym);
1344 if (flags & STO_M68HC12_INTERRUPT)
1345 MSYMBOL_SET_RTI (msym);
1346}
1347
ea3881d9
SC
1348static int
1349gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1350{
1143fffb 1351 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_m68hc11)
ea3881d9
SC
1352 return print_insn_m68hc11 (memaddr, info);
1353 else
1354 return print_insn_m68hc12 (memaddr, info);
1355}
1356
b631436b
SC
1357\f
1358
1359/* 68HC11/68HC12 register groups.
1360 Identify real hard registers and soft registers used by gcc. */
1361
1362static struct reggroup *m68hc11_soft_reggroup;
1363static struct reggroup *m68hc11_hard_reggroup;
1364
1365static void
1366m68hc11_init_reggroups (void)
1367{
1368 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1369 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1370}
1371
1372static void
1373m68hc11_add_reggroups (struct gdbarch *gdbarch)
1374{
1375 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1376 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1377 reggroup_add (gdbarch, general_reggroup);
1378 reggroup_add (gdbarch, float_reggroup);
1379 reggroup_add (gdbarch, all_reggroup);
1380 reggroup_add (gdbarch, save_reggroup);
1381 reggroup_add (gdbarch, restore_reggroup);
1382 reggroup_add (gdbarch, vector_reggroup);
1383 reggroup_add (gdbarch, system_reggroup);
1384}
1385
1386static int
1387m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1388 struct reggroup *group)
1389{
1390 /* We must save the real hard register as well as gcc
1391 soft registers including the frame pointer. */
1392 if (group == save_reggroup || group == restore_reggroup)
1393 {
1394 return (regnum <= gdbarch_num_regs (gdbarch)
1395 || ((regnum == SOFT_FP_REGNUM
1396 || regnum == SOFT_TMP_REGNUM
1397 || regnum == SOFT_ZS_REGNUM
1398 || regnum == SOFT_XY_REGNUM)
d93859e2 1399 && m68hc11_register_name (gdbarch, regnum)));
b631436b
SC
1400 }
1401
1402 /* Group to identify gcc soft registers (d1..dN). */
1403 if (group == m68hc11_soft_reggroup)
1404 {
d93859e2
UW
1405 return regnum >= SOFT_D1_REGNUM
1406 && m68hc11_register_name (gdbarch, regnum);
b631436b
SC
1407 }
1408
1409 if (group == m68hc11_hard_reggroup)
1410 {
1411 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1412 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1413 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1414 }
1415 return default_register_reggroup_p (gdbarch, regnum, group);
1416}
1417
82c230c2
SC
1418static struct gdbarch *
1419m68hc11_gdbarch_init (struct gdbarch_info info,
1420 struct gdbarch_list *arches)
1421{
82c230c2
SC
1422 struct gdbarch *gdbarch;
1423 struct gdbarch_tdep *tdep;
81967506 1424 int elf_flags;
82c230c2
SC
1425
1426 soft_reg_initialized = 0;
81967506
SC
1427
1428 /* Extract the elf_flags if available. */
1429 if (info.abfd != NULL
1430 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1431 elf_flags = elf_elfheader (info.abfd)->e_flags;
1432 else
1433 elf_flags = 0;
1434
82c230c2
SC
1435 /* try to find a pre-existing architecture */
1436 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1437 arches != NULL;
1438 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1439 {
81967506
SC
1440 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1441 continue;
1442
82c230c2
SC
1443 return arches->gdbarch;
1444 }
1445
1446 /* Need a new architecture. Fill in a target specific vector. */
1447 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1448 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1449 tdep->elf_flags = elf_flags;
ed99b3d0 1450
5d1a66bd
SC
1451 switch (info.bfd_arch_info->arch)
1452 {
1453 case bfd_arch_m68hc11:
1454 tdep->stack_correction = 1;
7df11f59 1455 tdep->use_page_register = 0;
908f682f 1456 tdep->prologue = m6811_prologue;
548bcbec
SC
1457 set_gdbarch_addr_bit (gdbarch, 16);
1458 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1459 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1460 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1461 break;
82c230c2 1462
5d1a66bd
SC
1463 case bfd_arch_m68hc12:
1464 tdep->stack_correction = 0;
7df11f59 1465 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1466 tdep->prologue = m6812_prologue;
548bcbec
SC
1467 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1468 set_gdbarch_num_pseudo_regs (gdbarch,
1469 elf_flags & E_M68HC12_BANKS
1470 ? M68HC12_NUM_PSEUDO_REGS
1471 : M68HC11_NUM_PSEUDO_REGS);
1472 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1473 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1474 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1475 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1476 break;
1477
1478 default:
1479 break;
1480 }
7d32ba20
SC
1481
1482 /* Initially set everything according to the ABI.
1483 Use 16-bit integers since it will be the case for most
1484 programs. The size of these types should normally be set
1485 according to the dwarf2 debug information. */
82c230c2 1486 set_gdbarch_short_bit (gdbarch, 16);
81967506 1487 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1488 set_gdbarch_float_bit (gdbarch, 32);
81967506 1489 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1490 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1491 set_gdbarch_long_bit (gdbarch, 32);
1492 set_gdbarch_ptr_bit (gdbarch, 16);
1493 set_gdbarch_long_long_bit (gdbarch, 64);
1494
b2a02dda
SC
1495 /* Characters are unsigned. */
1496 set_gdbarch_char_signed (gdbarch, 0);
1497
1ea653ae
SC
1498 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1499 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1500
82c230c2
SC
1501 /* Set register info. */
1502 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1503
82c230c2 1504 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1505 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1506 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1507 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1508 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1509
3dc990bf
SC
1510 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1511
97092415 1512 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1513 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1514 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1515 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
70ed8774 1516 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1517
b631436b
SC
1518 m68hc11_add_reggroups (gdbarch);
1519 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1520 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1521
1ea653ae
SC
1522 /* Hook in the DWARF CFI frame unwinder. */
1523 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1ea653ae 1524
1a241548 1525 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1ea653ae
SC
1526 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1527
1528 /* Methods for saving / extracting a dummy frame's ID. The ID's
1529 stack address must match the SP value returned by
1530 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1531 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1532
1533 /* Return the unwound PC value. */
1534 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1535
7df11f59
SC
1536 /* Minsymbol frobbing. */
1537 set_gdbarch_elf_make_msymbol_special (gdbarch,
1538 m68hc11_elf_make_msymbol_special);
1539
82c230c2 1540 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1541
1542 return gdbarch;
78073dd8
AC
1543}
1544
a78f21af
AC
1545extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1546
78073dd8 1547void
fba45db2 1548_initialize_m68hc11_tdep (void)
78073dd8 1549{
82c230c2 1550 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1551 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1552 m68hc11_init_reggroups ();
78073dd8
AC
1553}
1554
This page took 0.635895 seconds and 4 git commands to generate.