2000-12-03 Stephane Carrez <Stephane.Carrez@worldnet.fr>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
78073dd8
AC
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez, stcarrez@worldnet.fr
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
78073dd8 21
82c230c2
SC
22#include "defs.h"
23#include "frame.h"
24#include "obstack.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "gdb_string.h"
30#include "value.h"
31#include "inferior.h"
32#include "dis-asm.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "arch-utils.h"
78073dd8 36
82c230c2
SC
37#include "target.h"
38#include "opcode/m68hc11.h"
78073dd8
AC
39
40/* Register numbers of various important registers.
41 Note that some of these values are "real" register numbers,
42 and correspond to the general registers of the machine,
43 and some are "phony" register numbers which are too large
44 to be actual register numbers as far as the user is concerned
45 but do serve to get the desired values when passed to read_register. */
46
82c230c2
SC
47#define HARD_X_REGNUM 0
48#define HARD_D_REGNUM 1
49#define HARD_Y_REGNUM 2
50#define HARD_SP_REGNUM 3
51#define HARD_PC_REGNUM 4
52
53#define HARD_A_REGNUM 5
54#define HARD_B_REGNUM 6
55#define HARD_CCR_REGNUM 7
56#define M68HC11_LAST_HARD_REG (HARD_CCR_REGNUM)
57
58/* Z is replaced by X or Y by gcc during machine reorg.
59 ??? There is no way to get it and even know whether
60 it's in X or Y or in ZS. */
61#define SOFT_Z_REGNUM 8
62
63/* Soft registers. These registers are special. There are treated
64 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
65 They are physically located in memory. */
66#define SOFT_FP_REGNUM 9
67#define SOFT_TMP_REGNUM 10
68#define SOFT_ZS_REGNUM 11
69#define SOFT_XY_REGNUM 12
f91a8b6b
SC
70#define SOFT_UNUSED_REGNUM 13
71#define SOFT_D1_REGNUM 14
82c230c2
SC
72#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
73#define M68HC11_MAX_SOFT_REGS 32
74
75#define M68HC11_NUM_REGS (8)
76#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
77#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
78
79#define M68HC11_REG_SIZE (2)
80
908f682f 81struct insn_sequence;
82c230c2
SC
82struct gdbarch_tdep
83 {
5d1a66bd
SC
84 /* Stack pointer correction value. For 68hc11, the stack pointer points
85 to the next push location. An offset of 1 must be applied to obtain
86 the address where the last value is saved. For 68hc12, the stack
87 pointer points to the last value pushed. No offset is necessary. */
88 int stack_correction;
908f682f
SC
89
90 /* Description of instructions in the prologue. */
91 struct insn_sequence *prologue;
82c230c2
SC
92 };
93
5d1a66bd
SC
94#define M6811_TDEP gdbarch_tdep (current_gdbarch)
95#define STACK_CORRECTION (M6811_TDEP->stack_correction)
96
82c230c2
SC
97struct frame_extra_info
98{
99 int frame_reg;
100 CORE_ADDR return_pc;
101 CORE_ADDR dummy;
102 int frameless;
103 int size;
104};
78073dd8 105
82c230c2
SC
106/* Table of registers for 68HC11. This includes the hard registers
107 and the soft registers used by GCC. */
108static char *
109m68hc11_register_names[] =
110{
111 "x", "d", "y", "sp", "pc", "a", "b",
f91a8b6b 112 "ccr", "z", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
113 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
114 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
115 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
116 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
117 "d29", "d30", "d31", "d32"
118};
78073dd8 119
82c230c2
SC
120struct m68hc11_soft_reg
121{
122 const char *name;
123 CORE_ADDR addr;
124};
78073dd8 125
82c230c2 126static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 127
82c230c2 128#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 129
82c230c2
SC
130static int soft_min_addr;
131static int soft_max_addr;
132static int soft_reg_initialized = 0;
78073dd8 133
82c230c2
SC
134/* Look in the symbol table for the address of a pseudo register
135 in memory. If we don't find it, pretend the register is not used
136 and not available. */
137static void
138m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
139{
140 struct minimal_symbol *msymbol;
78073dd8 141
82c230c2
SC
142 msymbol = lookup_minimal_symbol (name, NULL, NULL);
143 if (msymbol)
144 {
145 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
146 reg->name = xstrdup (name);
147
148 /* Keep track of the address range for soft registers. */
149 if (reg->addr < (CORE_ADDR) soft_min_addr)
150 soft_min_addr = reg->addr;
151 if (reg->addr > (CORE_ADDR) soft_max_addr)
152 soft_max_addr = reg->addr;
153 }
154 else
155 {
156 reg->name = 0;
157 reg->addr = 0;
158 }
159}
78073dd8 160
82c230c2
SC
161/* Initialize the table of soft register addresses according
162 to the symbol table. */
163 static void
164m68hc11_initialize_register_info (void)
165{
166 int i;
78073dd8 167
82c230c2
SC
168 if (soft_reg_initialized)
169 return;
170
171 soft_min_addr = INT_MAX;
172 soft_max_addr = 0;
173 for (i = 0; i < M68HC11_ALL_REGS; i++)
174 {
175 soft_regs[i].name = 0;
176 }
177
178 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
179 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
180 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
181 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
182 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 183
82c230c2
SC
184 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
185 {
186 char buf[10];
78073dd8 187
82c230c2
SC
188 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
189 m68hc11_get_register_info (&soft_regs[i], buf);
190 }
78073dd8 191
82c230c2
SC
192 if (soft_regs[SOFT_FP_REGNUM].name == 0)
193 {
194 warning ("No frame soft register found in the symbol table.\n");
195 warning ("Stack backtrace will not work.\n");
196 }
197 soft_reg_initialized = 1;
198}
78073dd8 199
82c230c2
SC
200/* Given an address in memory, return the soft register number if
201 that address corresponds to a soft register. Returns -1 if not. */
202static int
203m68hc11_which_soft_register (CORE_ADDR addr)
204{
205 int i;
206
207 if (addr < soft_min_addr || addr > soft_max_addr)
208 return -1;
209
210 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
211 {
212 if (soft_regs[i].name && soft_regs[i].addr == addr)
213 return i;
214 }
215 return -1;
216}
78073dd8 217
82c230c2
SC
218/* Fetch a pseudo register. The 68hc11 soft registers are treated like
219 pseudo registers. They are located in memory. Translate the register
220 fetch into a memory read. */
221void
222m68hc11_fetch_pseudo_register (int regno)
223{
224 char buf[MAX_REGISTER_RAW_SIZE];
78073dd8 225
82c230c2
SC
226 m68hc11_initialize_register_info ();
227
228 /* Fetch a soft register: translate into a memory read. */
229 if (soft_regs[regno].name)
230 {
231 target_read_memory (soft_regs[regno].addr, buf, 2);
232 }
233 else
234 {
235 memset (buf, 0, 2);
236 }
237 supply_register (regno, buf);
238}
78073dd8 239
82c230c2
SC
240/* Store a pseudo register. Translate the register store
241 into a memory write. */
242static void
243m68hc11_store_pseudo_register (int regno)
244{
245 m68hc11_initialize_register_info ();
78073dd8 246
82c230c2
SC
247 /* Store a soft register: translate into a memory write. */
248 if (soft_regs[regno].name)
249 {
250 char buf[MAX_REGISTER_RAW_SIZE];
78073dd8 251
82c230c2
SC
252 read_register_gen (regno, buf);
253 target_write_memory (soft_regs[regno].addr, buf, 2);
254 }
255}
78073dd8 256
82c230c2
SC
257static char *
258m68hc11_register_name (int reg_nr)
78073dd8 259{
82c230c2
SC
260 if (reg_nr < 0)
261 return NULL;
262 if (reg_nr >= M68HC11_ALL_REGS)
263 return NULL;
264
265 /* If we don't know the address of a soft register, pretend it
266 does not exist. */
267 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
268 return NULL;
269 return m68hc11_register_names[reg_nr];
270}
78073dd8 271
82c230c2
SC
272static unsigned char *
273m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 274{
82c230c2
SC
275 static unsigned char breakpoint[] = {0x0};
276
277 *lenptr = sizeof (breakpoint);
278 return breakpoint;
78073dd8
AC
279}
280
281/* Immediately after a function call, return the saved pc before the frame
82c230c2 282 is setup. */
78073dd8 283
82c230c2 284static CORE_ADDR
78073dd8
AC
285m68hc11_saved_pc_after_call (struct frame_info *frame)
286{
82c230c2
SC
287 CORE_ADDR addr;
288
5d1a66bd 289 addr = read_register (HARD_SP_REGNUM) + STACK_CORRECTION;
78073dd8
AC
290 addr &= 0x0ffff;
291 return read_memory_integer (addr, 2) & 0x0FFFF;
292}
293
82c230c2
SC
294static CORE_ADDR
295m68hc11_frame_saved_pc (struct frame_info *frame)
296{
297 return frame->extra_info->return_pc;
298}
299
300static CORE_ADDR
301m68hc11_frame_args_address (struct frame_info *frame)
302{
908f682f 303 return frame->frame + frame->extra_info->size + STACK_CORRECTION + 2;
82c230c2
SC
304}
305
306static CORE_ADDR
307m68hc11_frame_locals_address (struct frame_info *frame)
308{
309 return frame->frame;
310}
311
78073dd8
AC
312/* Discard from the stack the innermost frame, restoring all saved
313 registers. */
314
82c230c2 315static void
fba45db2 316m68hc11_pop_frame (void)
78073dd8 317{
82c230c2
SC
318 register struct frame_info *frame = get_current_frame ();
319 register CORE_ADDR fp, sp;
320 register int regnum;
321
322 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
323 generic_pop_dummy_frame ();
324 else
325 {
326 fp = FRAME_FP (frame);
327 FRAME_INIT_SAVED_REGS (frame);
328
329 /* Copy regs from where they were saved in the frame. */
330 for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
331 if (frame->saved_regs[regnum])
332 write_register (regnum,
333 read_memory_integer (frame->saved_regs[regnum], 2));
334
335 write_register (HARD_PC_REGNUM, frame->extra_info->return_pc);
336 sp = fp + frame->extra_info->size;
337 write_register (HARD_SP_REGNUM, sp);
338 }
339 flush_cached_frames ();
78073dd8
AC
340}
341
908f682f
SC
342\f
343/* 68HC11 & 68HC12 prologue analysis.
344
345 */
346#define MAX_CODES 12
347
348/* 68HC11 opcodes. */
349#undef M6811_OP_PAGE2
350#define M6811_OP_PAGE2 (0x18)
351#define M6811_OP_LDX (0xde)
352#define M6811_OP_PSHX (0x3c)
353#define M6811_OP_STS (0x9f)
354#define M6811_OP_TSX (0x30)
355#define M6811_OP_XGDX (0x8f)
356#define M6811_OP_ADDD (0xc3)
357#define M6811_OP_TXS (0x35)
358#define M6811_OP_DES (0x34)
359
360/* 68HC12 opcodes. */
361#define M6812_OP_PAGE2 (0x18)
362#define M6812_OP_MOVW (0x01)
363#define M6812_PB_PSHW (0xae)
364#define M6812_OP_STS (0x7f)
365#define M6812_OP_LEAS (0x1b)
366
367/* Operand extraction. */
368#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
369#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
370#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
371#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
372
373/* Identification of the sequence. */
374enum m6811_seq_type
375{
376 P_LAST = 0,
377 P_SAVE_REG, /* Save a register on the stack. */
378 P_SET_FRAME, /* Setup the frame pointer. */
379 P_LOCAL_1, /* Allocate 1 byte for locals. */
380 P_LOCAL_2, /* Allocate 2 bytes for locals. */
381 P_LOCAL_N /* Allocate N bytes for locals. */
382};
383
384struct insn_sequence {
385 enum m6811_seq_type type;
386 unsigned length;
387 unsigned short code[MAX_CODES];
388};
389
390/* Sequence of instructions in the 68HC11 function prologue. */
391static struct insn_sequence m6811_prologue[] = {
392 /* Sequences to save a soft-register. */
393 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
394 M6811_OP_PSHX } },
395 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
396 M6811_OP_PAGE2, M6811_OP_PSHX } },
397
398 /* Sequences to allocate local variables. */
399 { P_LOCAL_N, 7, { M6811_OP_TSX,
400 M6811_OP_XGDX,
401 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
402 M6811_OP_XGDX,
403 M6811_OP_TXS } },
404 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
405 M6811_OP_PAGE2, M6811_OP_XGDX,
406 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
407 M6811_OP_PAGE2, M6811_OP_XGDX,
408 M6811_OP_PAGE2, M6811_OP_TXS } },
409 { P_LOCAL_1, 1, { M6811_OP_DES } },
410 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
411 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
412
413 /* Initialize the frame pointer. */
414 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
415 { P_LAST, 0, { 0 } }
416};
417
418
419/* Sequence of instructions in the 68HC12 function prologue. */
420static struct insn_sequence m6812_prologue[] = {
421 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
422 OP_IMM_HIGH, OP_IMM_LOW } },
423 { P_SET_FRAME, 3, { M6812_OP_STS, OP_IMM_HIGH, OP_IMM_LOW } },
424 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
425 { P_LAST, 0 }
426};
427
428
429/* Analyze the sequence of instructions starting at the given address.
430 Returns a pointer to the sequence when it is recognized and
431 the optional value (constant/address) associated with it.
432 Advance the pc for the next sequence. */
433static struct insn_sequence *
434m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR *pc,
435 CORE_ADDR *val)
436{
437 unsigned char buffer[MAX_CODES];
438 unsigned bufsize;
439 unsigned j;
440 CORE_ADDR cur_val;
441 short v = 0;
442
443 bufsize = 0;
444 for (; seq->type != P_LAST; seq++)
445 {
446 cur_val = 0;
447 for (j = 0; j < seq->length; j++)
448 {
449 if (bufsize < j + 1)
450 {
451 buffer[bufsize] = read_memory_unsigned_integer (*pc + bufsize,
452 1);
453 bufsize++;
454 }
455 /* Continue while we match the opcode. */
456 if (seq->code[j] == buffer[j])
457 continue;
458
459 if ((seq->code[j] & 0xf00) == 0)
460 break;
461
462 /* Extract a sequence parameter (address or constant). */
463 switch (seq->code[j])
464 {
465 case OP_DIRECT:
466 cur_val = (CORE_ADDR) buffer[j];
467 break;
468
469 case OP_IMM_HIGH:
470 cur_val = cur_val & 0x0ff;
471 cur_val |= (buffer[j] << 8);
472 break;
473
474 case OP_IMM_LOW:
475 cur_val &= 0x0ff00;
476 cur_val |= buffer[j];
477 break;
478
479 case OP_PBYTE:
480 if ((buffer[j] & 0xE0) == 0x80)
481 {
482 v = buffer[j] & 0x1f;
483 if (v & 0x10)
484 v |= 0xfff0;
485 }
486 else if ((buffer[j] & 0xfe) == 0xf0)
487 {
488 v = read_memory_unsigned_integer (*pc + j + 1, 1);
489 if (buffer[j] & 1)
490 v |= 0xff00;
491 }
492 else if (buffer[j] == 0xf2)
493 {
494 v = read_memory_unsigned_integer (*pc + j + 1, 2);
495 }
496 cur_val = v;
497 break;
498 }
499 }
500
501 /* We have a full match. */
502 if (j == seq->length)
503 {
504 *val = cur_val;
505 *pc = *pc + j;
506 return seq;
507 }
508 }
509 return 0;
510}
511
78073dd8
AC
512/* Analyze the function prologue to find some information
513 about the function:
514 - the PC of the first line (for m68hc11_skip_prologue)
515 - the offset of the previous frame saved address (from current frame)
516 - the soft registers which are pushed. */
517static void
82c230c2
SC
518m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
519 CORE_ADDR *first_line,
520 int *frame_offset, CORE_ADDR *pushed_regs)
78073dd8 521{
82c230c2 522 CORE_ADDR save_addr;
78073dd8 523 CORE_ADDR func_end;
78073dd8
AC
524 int size;
525 int found_frame_point;
82c230c2 526 int saved_reg;
78073dd8 527 CORE_ADDR first_pc;
908f682f
SC
528 int done = 0;
529 struct insn_sequence *seq_table;
78073dd8
AC
530
531 first_pc = get_pc_function_start (pc);
532 size = 0;
533
82c230c2 534 m68hc11_initialize_register_info ();
78073dd8
AC
535 if (first_pc == 0)
536 {
537 *frame_offset = 0;
78073dd8
AC
538 *first_line = pc;
539 return;
540 }
541
908f682f
SC
542 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
543
78073dd8
AC
544 /* The 68hc11 stack is as follows:
545
546
547 | |
548 +-----------+
549 | |
550 | args |
551 | |
552 +-----------+
553 | PC-return |
554 +-----------+
555 | Old frame |
556 +-----------+
557 | |
558 | Locals |
559 | |
560 +-----------+ <--- current frame
561 | |
562
563 With most processors (like 68K) the previous frame can be computed
564 easily because it is always at a fixed offset (see link/unlink).
565 That is, locals are accessed with negative offsets, arguments are
566 accessed with positive ones. Since 68hc11 only supports offsets
567 in the range [0..255], the frame is defined at the bottom of
568 locals (see picture).
569
570 The purpose of the analysis made here is to find out the size
571 of locals in this function. An alternative to this is to use
572 DWARF2 info. This would be better but I don't know how to
573 access dwarf2 debug from this function.
574
575 Walk from the function entry point to the point where we save
576 the frame. While walking instructions, compute the size of bytes
577 which are pushed. This gives us the index to access the previous
578 frame.
579
580 We limit the search to 128 bytes so that the algorithm is bounded
581 in case of random and wrong code. We also stop and abort if
582 we find an instruction which is not supposed to appear in the
583 prologue (as generated by gcc 2.95, 2.96).
584 */
585 pc = first_pc;
586 func_end = pc + 128;
78073dd8 587 found_frame_point = 0;
908f682f
SC
588 *frame_offset = 0;
589 save_addr = fp;
590 while (!done && pc + 2 < func_end)
78073dd8 591 {
908f682f
SC
592 struct insn_sequence *seq;
593 CORE_ADDR val;
78073dd8 594
908f682f
SC
595 seq = m68hc11_analyze_instruction (seq_table, &pc, &val);
596 if (seq == 0)
597 break;
78073dd8 598
908f682f 599 if (seq->type == P_SAVE_REG)
78073dd8 600 {
908f682f
SC
601 if (found_frame_point)
602 {
603 saved_reg = m68hc11_which_soft_register (val);
604 if (saved_reg < 0)
605 break;
78073dd8 606
908f682f
SC
607 save_addr -= 2;
608 if (pushed_regs)
609 pushed_regs[saved_reg] = save_addr;
610 }
611 else
612 {
613 size += 2;
614 }
78073dd8 615 }
908f682f 616 else if (seq->type == P_SET_FRAME)
78073dd8
AC
617 {
618 found_frame_point = 1;
908f682f 619 *frame_offset = size;
78073dd8 620 }
908f682f 621 else if (seq->type == P_LOCAL_1)
78073dd8 622 {
6148eca7
SC
623 size += 1;
624 }
908f682f 625 else if (seq->type == P_LOCAL_2)
78073dd8 626 {
908f682f 627 size += 2;
78073dd8 628 }
908f682f 629 else if (seq->type == P_LOCAL_N)
78073dd8 630 {
908f682f
SC
631 /* Stack pointer is decremented for the allocation. */
632 if (val & 0x8000)
633 size -= (int) (val) | 0xffff0000;
634 else
635 size -= val;
78073dd8
AC
636 }
637 }
78073dd8
AC
638 *first_line = pc;
639}
640
82c230c2 641static CORE_ADDR
78073dd8
AC
642m68hc11_skip_prologue (CORE_ADDR pc)
643{
644 CORE_ADDR func_addr, func_end;
645 struct symtab_and_line sal;
646 int frame_offset;
78073dd8 647
82c230c2
SC
648 /* If we have line debugging information, then the end of the
649 prologue should be the first assembly instruction of the
78073dd8
AC
650 first source line. */
651 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
652 {
653 sal = find_pc_line (func_addr, 0);
654 if (sal.end && sal.end < func_end)
655 return sal.end;
656 }
657
82c230c2 658 m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
78073dd8
AC
659 return pc;
660}
661
662/* Given a GDB frame, determine the address of the calling function's frame.
663 This will be used to create a new GDB frame struct, and then
664 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
665*/
666
82c230c2 667static CORE_ADDR
78073dd8
AC
668m68hc11_frame_chain (struct frame_info *frame)
669{
82c230c2 670 CORE_ADDR addr;
78073dd8 671
6148eca7
SC
672 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
673 return frame->frame; /* dummy frame same as caller's frame */
674
82c230c2
SC
675 if (frame->extra_info->return_pc == 0
676 || inside_entry_file (frame->extra_info->return_pc))
677 return (CORE_ADDR) 0;
78073dd8
AC
678
679 if (frame->frame == 0)
680 {
681 return (CORE_ADDR) 0;
682 }
683
5d1a66bd 684 addr = frame->frame + frame->extra_info->size + STACK_CORRECTION - 2;
78073dd8
AC
685 addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
686 if (addr == 0)
687 {
82c230c2 688 return (CORE_ADDR) 0;
78073dd8
AC
689 }
690
691 return addr;
692}
693
694/* Put here the code to store, into a struct frame_saved_regs, the
695 addresses of the saved registers of frame described by FRAME_INFO.
696 This includes special registers such as pc and fp saved in special
697 ways in the stack frame. sp is even more special: the address we
698 return for it IS the sp for the next frame. */
82c230c2
SC
699static void
700m68hc11_frame_init_saved_regs (struct frame_info *fi)
78073dd8
AC
701{
702 CORE_ADDR pc;
184651e3
SC
703 CORE_ADDR addr;
704
82c230c2
SC
705 if (fi->saved_regs == NULL)
706 frame_saved_regs_zalloc (fi);
707 else
708 memset (fi->saved_regs, 0, sizeof (fi->saved_regs));
709
78073dd8 710 pc = fi->pc;
82c230c2
SC
711 m68hc11_guess_from_prologue (pc, fi->frame, &pc, &fi->extra_info->size,
712 fi->saved_regs);
713
5d1a66bd 714 addr = fi->frame + fi->extra_info->size + STACK_CORRECTION;
908f682f
SC
715 if (soft_regs[SOFT_FP_REGNUM].name)
716 fi->saved_regs[SOFT_FP_REGNUM] = addr - 2;
184651e3 717 fi->saved_regs[HARD_SP_REGNUM] = addr;
82c230c2 718 fi->saved_regs[HARD_PC_REGNUM] = fi->saved_regs[HARD_SP_REGNUM];
78073dd8
AC
719}
720
82c230c2 721static void
78073dd8
AC
722m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
723{
82c230c2 724 CORE_ADDR addr;
78073dd8 725
82c230c2
SC
726 fi->extra_info = (struct frame_extra_info *)
727 frame_obstack_alloc (sizeof (struct frame_extra_info));
728
729 if (fi->next)
730 fi->pc = FRAME_SAVED_PC (fi->next);
731
732 m68hc11_frame_init_saved_regs (fi);
78073dd8
AC
733
734 if (fromleaf)
735 {
82c230c2 736 fi->extra_info->return_pc = m68hc11_saved_pc_after_call (fi);
78073dd8
AC
737 }
738 else
739 {
5d1a66bd 740 addr = fi->frame + fi->extra_info->size + STACK_CORRECTION;
82c230c2
SC
741 addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
742 fi->extra_info->return_pc = addr;
78073dd8
AC
743#if 0
744 printf ("Pc@0x%04x, FR 0x%04x, size %d, read ret @0x%04x -> 0x%04x\n",
745 fi->pc,
746 fi->frame, fi->size,
747 addr & 0x0ffff,
748 fi->return_pc);
749#endif
750 }
751}
752
753/* Same as 'info reg' but prints the registers in a different way. */
754static void
755show_regs (char *args, int from_tty)
756{
82c230c2 757 int ccr = read_register (HARD_CCR_REGNUM);
78073dd8 758 int i;
82c230c2
SC
759 int nr;
760
78073dd8 761 printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
82c230c2
SC
762 (int) read_register (HARD_PC_REGNUM),
763 (int) read_register (HARD_SP_REGNUM),
764 (int) read_register (SOFT_FP_REGNUM),
78073dd8
AC
765 ccr,
766 ccr & M6811_S_BIT ? 'S' : '-',
767 ccr & M6811_X_BIT ? 'X' : '-',
768 ccr & M6811_H_BIT ? 'H' : '-',
769 ccr & M6811_I_BIT ? 'I' : '-',
770 ccr & M6811_N_BIT ? 'N' : '-',
771 ccr & M6811_Z_BIT ? 'Z' : '-',
772 ccr & M6811_V_BIT ? 'V' : '-',
773 ccr & M6811_C_BIT ? 'C' : '-');
774
775 printf_filtered ("D=%04x IX=%04x IY=%04x\n",
82c230c2
SC
776 (int) read_register (HARD_D_REGNUM),
777 (int) read_register (HARD_X_REGNUM),
778 (int) read_register (HARD_Y_REGNUM));
779
780 nr = 0;
781 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
78073dd8 782 {
82c230c2
SC
783 /* Skip registers which are not defined in the symbol table. */
784 if (soft_regs[i].name == 0)
785 continue;
786
787 printf_filtered ("D%d=%04x",
788 i - SOFT_D1_REGNUM + 1,
789 (int) read_register (i));
790 nr++;
791 if ((nr % 8) == 7)
78073dd8
AC
792 printf_filtered ("\n");
793 else
794 printf_filtered (" ");
795 }
82c230c2
SC
796 if (nr && (nr % 8) != 7)
797 printf_filtered ("\n");
78073dd8
AC
798}
799
22df305e
SC
800static CORE_ADDR
801m68hc11_stack_align (CORE_ADDR addr)
802{
803 return ((addr + 1) & -2);
804}
805
82c230c2 806static CORE_ADDR
78073dd8
AC
807m68hc11_push_arguments (int nargs,
808 value_ptr *args,
809 CORE_ADDR sp,
810 int struct_return,
811 CORE_ADDR struct_addr)
812{
82c230c2
SC
813 int stack_alloc;
814 int argnum;
815 int first_stack_argnum;
816 int stack_offset;
817 struct type *type;
818 char *val;
819 int len;
820
821 stack_alloc = 0;
822 first_stack_argnum = 0;
823 if (struct_return)
824 {
184651e3
SC
825 /* The struct is allocated on the stack and gdb used the stack
826 pointer for the address of that struct. We must apply the
827 stack offset on the address. */
5d1a66bd 828 write_register (HARD_D_REGNUM, struct_addr + STACK_CORRECTION);
82c230c2
SC
829 }
830 else if (nargs > 0)
831 {
832 type = VALUE_TYPE (args[0]);
833 len = TYPE_LENGTH (type);
834
835 /* First argument is passed in D and X registers. */
836 if (len <= 4)
837 {
838 LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
839 first_stack_argnum = 1;
840 write_register (HARD_D_REGNUM, v);
841 if (len > 2)
842 {
843 v >>= 16;
844 write_register (HARD_X_REGNUM, v);
845 }
846 }
847 }
848 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
849 {
850 type = VALUE_TYPE (args[argnum]);
22df305e 851 stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
82c230c2
SC
852 }
853 sp -= stack_alloc;
854
5d1a66bd 855 stack_offset = STACK_CORRECTION;
82c230c2
SC
856 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
857 {
858 type = VALUE_TYPE (args[argnum]);
859 len = TYPE_LENGTH (type);
860
861 val = (char*) VALUE_CONTENTS (args[argnum]);
862 write_memory (sp + stack_offset, val, len);
863 stack_offset += len;
22df305e
SC
864 if (len & 1)
865 {
866 static char zero = 0;
867
868 write_memory (sp + stack_offset, &zero, 1);
869 stack_offset++;
870 }
82c230c2
SC
871 }
872 return sp;
78073dd8
AC
873}
874
875
82c230c2
SC
876/* Return a location where we can set a breakpoint that will be hit
877 when an inferior function call returns. */
78073dd8 878CORE_ADDR
fba45db2 879m68hc11_call_dummy_address (void)
78073dd8 880{
22df305e 881 return entry_point_address ();
78073dd8
AC
882}
883
82c230c2
SC
884static struct type *
885m68hc11_register_virtual_type (int reg_nr)
886{
887 return builtin_type_uint16;
888}
889
890static void
891m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
892{
184651e3
SC
893 /* The struct address computed by gdb is on the stack.
894 It uses the stack pointer so we must apply the stack
895 correction offset. */
5d1a66bd 896 write_register (HARD_D_REGNUM, addr + STACK_CORRECTION);
82c230c2
SC
897}
898
899static void
900m68hc11_store_return_value (struct type *type, char *valbuf)
901{
22df305e
SC
902 int len;
903
904 len = TYPE_LENGTH (type);
905
906 /* First argument is passed in D and X registers. */
907 if (len <= 4)
908 {
909 LONGEST v = extract_unsigned_integer (valbuf, len);
910
911 write_register (HARD_D_REGNUM, v);
912 if (len > 2)
913 {
914 v >>= 16;
915 write_register (HARD_X_REGNUM, v);
916 }
917 }
918 else
919 error ("return of value > 4 is not supported.");
82c230c2
SC
920}
921
922
923/* Given a return value in `regbuf' with a type `type',
78073dd8
AC
924 extract and copy its value into `valbuf'. */
925
82c230c2
SC
926static void
927m68hc11_extract_return_value (struct type *type,
78073dd8
AC
928 char *regbuf,
929 char *valbuf)
930{
82c230c2
SC
931 int len = TYPE_LENGTH (type);
932
22df305e 933 switch (len)
82c230c2 934 {
22df305e
SC
935 case 1:
936 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2 + 1], len);
937 break;
938
939 case 2:
940 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2], len);
941 break;
942
943 case 3:
944 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2 + 1], 1);
945 memcpy (&valbuf[1], &regbuf[HARD_D_REGNUM * 2], 2);
946 break;
947
948 case 4:
949 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2], 2);
950 memcpy (&valbuf[2], &regbuf[HARD_D_REGNUM * 2], 2);
951 break;
952
953 default:
82c230c2
SC
954 error ("bad size for return value");
955 }
956}
957
958/* Should call_function allocate stack space for a struct return? */
959static int
960m68hc11_use_struct_convention (int gcc_p, struct type *type)
961{
22df305e
SC
962 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
963 || TYPE_CODE (type) == TYPE_CODE_UNION
964 || TYPE_LENGTH (type) > 4);
82c230c2
SC
965}
966
967static int
968m68hc11_return_value_on_stack (struct type *type)
969{
22df305e 970 return TYPE_LENGTH (type) > 4;
82c230c2
SC
971}
972
973/* Extract from an array REGBUF containing the (raw) register state
974 the address in which a function should return its structure value,
975 as a CORE_ADDR (or an expression that can be used as one). */
976static CORE_ADDR
977m68hc11_extract_struct_value_address (char *regbuf)
978{
979 return extract_address (&regbuf[HARD_D_REGNUM * 2],
980 REGISTER_RAW_SIZE (HARD_D_REGNUM));
981}
982
983/* Function: push_return_address (pc)
984 Set up the return address for the inferior function call.
985 Needed for targets where we don't actually execute a JSR/BSR instruction */
986
987static CORE_ADDR
988m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
989{
990 char valbuf[2];
991
22df305e 992 pc = CALL_DUMMY_ADDRESS ();
82c230c2
SC
993 sp -= 2;
994 store_unsigned_integer (valbuf, 2, pc);
5d1a66bd 995 write_memory (sp + STACK_CORRECTION, valbuf, 2);
82c230c2
SC
996 return sp;
997}
998
999/* Index within `registers' of the first byte of the space for
1000 register N. */
1001static int
1002m68hc11_register_byte (int reg_nr)
1003{
1004 return (reg_nr * M68HC11_REG_SIZE);
1005}
1006
1007static int
1008m68hc11_register_raw_size (int reg_nr)
1009{
1010 return M68HC11_REG_SIZE;
1011}
1012
ea3881d9
SC
1013static int
1014gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1015{
1016 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1017 return print_insn_m68hc11 (memaddr, info);
1018 else
1019 return print_insn_m68hc12 (memaddr, info);
1020}
1021
82c230c2
SC
1022static struct gdbarch *
1023m68hc11_gdbarch_init (struct gdbarch_info info,
1024 struct gdbarch_list *arches)
1025{
1026 static LONGEST m68hc11_call_dummy_words[] =
1027 {0};
1028 struct gdbarch *gdbarch;
1029 struct gdbarch_tdep *tdep;
82c230c2
SC
1030
1031 soft_reg_initialized = 0;
1032
1033 /* try to find a pre-existing architecture */
1034 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1035 arches != NULL;
1036 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1037 {
82c230c2
SC
1038 return arches->gdbarch;
1039 }
1040
1041 /* Need a new architecture. Fill in a target specific vector. */
1042 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1043 gdbarch = gdbarch_alloc (&info, tdep);
ed99b3d0 1044
5d1a66bd
SC
1045 switch (info.bfd_arch_info->arch)
1046 {
1047 case bfd_arch_m68hc11:
1048 tdep->stack_correction = 1;
908f682f 1049 tdep->prologue = m6811_prologue;
5d1a66bd 1050 break;
82c230c2 1051
5d1a66bd
SC
1052 case bfd_arch_m68hc12:
1053 tdep->stack_correction = 0;
908f682f 1054 tdep->prologue = m6812_prologue;
5d1a66bd
SC
1055 break;
1056
1057 default:
1058 break;
1059 }
1060
82c230c2
SC
1061 /* Initially set everything according to the ABI. */
1062 set_gdbarch_short_bit (gdbarch, 16);
1063 set_gdbarch_int_bit (gdbarch, 32);
1064 set_gdbarch_float_bit (gdbarch, 32);
1065 set_gdbarch_double_bit (gdbarch, 64);
1066 set_gdbarch_long_double_bit (gdbarch, 64);
1067 set_gdbarch_long_bit (gdbarch, 32);
1068 set_gdbarch_ptr_bit (gdbarch, 16);
1069 set_gdbarch_long_long_bit (gdbarch, 64);
1070
1071 /* Set register info. */
1072 set_gdbarch_fp0_regnum (gdbarch, -1);
1073 set_gdbarch_max_register_raw_size (gdbarch, 2);
1074 set_gdbarch_max_register_virtual_size (gdbarch, 2);
1075 set_gdbarch_register_raw_size (gdbarch, m68hc11_register_raw_size);
1076 set_gdbarch_register_virtual_size (gdbarch, m68hc11_register_raw_size);
1077 set_gdbarch_register_byte (gdbarch, m68hc11_register_byte);
1078 set_gdbarch_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
1079 set_gdbarch_frame_args_skip (gdbarch, 0);
1080
1081 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1082 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1083 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
1084 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
1085 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1086 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1087
1088 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1089 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1090 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1091 set_gdbarch_fp_regnum (gdbarch, SOFT_FP_REGNUM);
1092 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1093 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1094 set_gdbarch_register_size (gdbarch, 2);
1095 set_gdbarch_register_bytes (gdbarch, M68HC11_ALL_REGS * 2);
1096 set_gdbarch_register_virtual_type (gdbarch, m68hc11_register_virtual_type);
1097 set_gdbarch_fetch_pseudo_register (gdbarch, m68hc11_fetch_pseudo_register);
1098 set_gdbarch_store_pseudo_register (gdbarch, m68hc11_store_pseudo_register);
1099
1100 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1101 set_gdbarch_call_dummy_length (gdbarch, 0);
1102 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1103 set_gdbarch_call_dummy_address (gdbarch, m68hc11_call_dummy_address);
1104 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
1105 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1106 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1107 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1108 set_gdbarch_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
1109 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1110 sizeof (m68hc11_call_dummy_words));
1111 set_gdbarch_call_dummy_p (gdbarch, 1);
1112 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1113 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1114 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1115 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1116 set_gdbarch_push_arguments (gdbarch, m68hc11_push_arguments);
1117 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1118 set_gdbarch_push_return_address (gdbarch, m68hc11_push_return_address);
1119 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1120
1121 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
1122 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1123 set_gdbarch_extract_struct_value_address (gdbarch,
1124 m68hc11_extract_struct_value_address);
1125 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1126
1127
1128 set_gdbarch_frame_chain (gdbarch, m68hc11_frame_chain);
1129 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1130 set_gdbarch_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
1131 set_gdbarch_frame_args_address (gdbarch, m68hc11_frame_args_address);
1132 set_gdbarch_frame_locals_address (gdbarch, m68hc11_frame_locals_address);
1133 set_gdbarch_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
1134 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1135
1136 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1137 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1138
1139 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
1140 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1141 set_gdbarch_extract_struct_value_address
1142 (gdbarch, m68hc11_extract_struct_value_address);
1143 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1144 set_gdbarch_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
1145 set_gdbarch_pop_frame (gdbarch, m68hc11_pop_frame);
1146 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1147 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1148 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1149 set_gdbarch_function_start_offset (gdbarch, 0);
1150 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
22df305e 1151 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
82c230c2
SC
1152
1153 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1154 set_gdbarch_ieee_float (gdbarch, 1);
1155
1156 return gdbarch;
78073dd8
AC
1157}
1158
1159void
fba45db2 1160_initialize_m68hc11_tdep (void)
78073dd8 1161{
82c230c2 1162 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1163 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
82c230c2 1164 if (!tm_print_insn) /* Someone may have already set it */
ea3881d9 1165 tm_print_insn = gdb_print_insn_m68hc11;
78073dd8
AC
1166
1167 add_com ("regs", class_vars, show_regs, "Print all registers");
1168}
1169
This page took 0.110196 seconds and 4 git commands to generate.