2007-05-31 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
CommitLineData
908f682f 1/* Target-dependent code for Motorola 68HC11 & 68HC12
931aecf5 2
6aba47ca
DJ
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
931aecf5 5
ffe1f3ee 6 Contributed by Stephane Carrez, stcarrez@nerim.fr
78073dd8
AC
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
197e01b6
EZ
22Foundation, Inc., 51 Franklin Street, Fifth Floor,
23Boston, MA 02110-1301, USA. */
78073dd8 24
78073dd8 25
82c230c2
SC
26#include "defs.h"
27#include "frame.h"
1ea653ae
SC
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "dwarf2-frame.h"
31#include "trad-frame.h"
82c230c2
SC
32#include "symtab.h"
33#include "gdbtypes.h"
34#include "gdbcmd.h"
35#include "gdbcore.h"
36#include "gdb_string.h"
37#include "value.h"
38#include "inferior.h"
39#include "dis-asm.h"
40#include "symfile.h"
41#include "objfiles.h"
42#include "arch-utils.h"
4e052eda 43#include "regcache.h"
b631436b 44#include "reggroups.h"
78073dd8 45
82c230c2
SC
46#include "target.h"
47#include "opcode/m68hc11.h"
81967506
SC
48#include "elf/m68hc11.h"
49#include "elf-bfd.h"
78073dd8 50
7df11f59
SC
51/* Macros for setting and testing a bit in a minimal symbol.
52 For 68HC11/68HC12 we have two flags that tell which return
53 type the function is using. This is used for prologue and frame
54 analysis to compute correct stack frame layout.
55
56 The MSB of the minimal symbol's "info" field is used for this purpose.
7df11f59
SC
57
58 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
59 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
60 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
f594e5e9 61 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
7df11f59
SC
62
63#define MSYMBOL_SET_RTC(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67#define MSYMBOL_SET_RTI(msym) \
68 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
69 | 0x40000000)
70
71#define MSYMBOL_IS_RTC(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
73
74#define MSYMBOL_IS_RTI(msym) \
75 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
76
7df11f59
SC
77enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81};
82
83
7157eed4 84/* Register numbers of various important registers. */
78073dd8 85
82c230c2
SC
86#define HARD_X_REGNUM 0
87#define HARD_D_REGNUM 1
88#define HARD_Y_REGNUM 2
89#define HARD_SP_REGNUM 3
90#define HARD_PC_REGNUM 4
91
92#define HARD_A_REGNUM 5
93#define HARD_B_REGNUM 6
94#define HARD_CCR_REGNUM 7
5706502a
SC
95
96/* 68HC12 page number register.
97 Note: to keep a compatibility with gcc register naming, we must
98 not have to rename FP and other soft registers. The page register
f57d151a 99 is a real hard register and must therefore be counted by gdbarch_num_regs.
5706502a
SC
100 For this it has the same number as Z register (which is not used). */
101#define HARD_PAGE_REGNUM 8
102#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
82c230c2
SC
103
104/* Z is replaced by X or Y by gcc during machine reorg.
105 ??? There is no way to get it and even know whether
106 it's in X or Y or in ZS. */
107#define SOFT_Z_REGNUM 8
108
109/* Soft registers. These registers are special. There are treated
110 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
111 They are physically located in memory. */
112#define SOFT_FP_REGNUM 9
113#define SOFT_TMP_REGNUM 10
114#define SOFT_ZS_REGNUM 11
115#define SOFT_XY_REGNUM 12
f91a8b6b
SC
116#define SOFT_UNUSED_REGNUM 13
117#define SOFT_D1_REGNUM 14
82c230c2
SC
118#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
119#define M68HC11_MAX_SOFT_REGS 32
120
121#define M68HC11_NUM_REGS (8)
122#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
123#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
124
125#define M68HC11_REG_SIZE (2)
126
548bcbec
SC
127#define M68HC12_NUM_REGS (9)
128#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
129#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
130
908f682f 131struct insn_sequence;
82c230c2
SC
132struct gdbarch_tdep
133 {
5d1a66bd
SC
134 /* Stack pointer correction value. For 68hc11, the stack pointer points
135 to the next push location. An offset of 1 must be applied to obtain
136 the address where the last value is saved. For 68hc12, the stack
137 pointer points to the last value pushed. No offset is necessary. */
138 int stack_correction;
908f682f
SC
139
140 /* Description of instructions in the prologue. */
141 struct insn_sequence *prologue;
81967506 142
7df11f59
SC
143 /* True if the page memory bank register is available
144 and must be used. */
145 int use_page_register;
146
81967506
SC
147 /* ELF flags for ABI. */
148 int elf_flags;
82c230c2
SC
149 };
150
5d1a66bd
SC
151#define M6811_TDEP gdbarch_tdep (current_gdbarch)
152#define STACK_CORRECTION (M6811_TDEP->stack_correction)
7df11f59 153#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
5d1a66bd 154
1ea653ae
SC
155struct m68hc11_unwind_cache
156{
157 /* The previous frame's inner most stack address. Used as this
158 frame ID's stack_addr. */
159 CORE_ADDR prev_sp;
160 /* The frame's base, optionally used by the high-level debug info. */
161 CORE_ADDR base;
162 CORE_ADDR pc;
163 int size;
164 int prologue_type;
165 CORE_ADDR return_pc;
166 CORE_ADDR sp_offset;
167 int frameless;
168 enum insn_return_kind return_kind;
169
170 /* Table indicating the location of each and every register. */
171 struct trad_frame_saved_reg *saved_regs;
172};
173
82c230c2
SC
174/* Table of registers for 68HC11. This includes the hard registers
175 and the soft registers used by GCC. */
176static char *
177m68hc11_register_names[] =
178{
179 "x", "d", "y", "sp", "pc", "a", "b",
5706502a 180 "ccr", "page", "frame","tmp", "zs", "xy", 0,
82c230c2
SC
181 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
182 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
183 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
184 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
185 "d29", "d30", "d31", "d32"
186};
78073dd8 187
82c230c2
SC
188struct m68hc11_soft_reg
189{
190 const char *name;
191 CORE_ADDR addr;
192};
78073dd8 193
82c230c2 194static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
78073dd8 195
82c230c2 196#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
78073dd8 197
82c230c2
SC
198static int soft_min_addr;
199static int soft_max_addr;
200static int soft_reg_initialized = 0;
78073dd8 201
82c230c2
SC
202/* Look in the symbol table for the address of a pseudo register
203 in memory. If we don't find it, pretend the register is not used
204 and not available. */
205static void
206m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
207{
208 struct minimal_symbol *msymbol;
78073dd8 209
82c230c2
SC
210 msymbol = lookup_minimal_symbol (name, NULL, NULL);
211 if (msymbol)
212 {
213 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
214 reg->name = xstrdup (name);
215
216 /* Keep track of the address range for soft registers. */
217 if (reg->addr < (CORE_ADDR) soft_min_addr)
218 soft_min_addr = reg->addr;
219 if (reg->addr > (CORE_ADDR) soft_max_addr)
220 soft_max_addr = reg->addr;
221 }
222 else
223 {
224 reg->name = 0;
225 reg->addr = 0;
226 }
227}
78073dd8 228
82c230c2
SC
229/* Initialize the table of soft register addresses according
230 to the symbol table. */
231 static void
232m68hc11_initialize_register_info (void)
233{
234 int i;
78073dd8 235
82c230c2
SC
236 if (soft_reg_initialized)
237 return;
238
239 soft_min_addr = INT_MAX;
240 soft_max_addr = 0;
241 for (i = 0; i < M68HC11_ALL_REGS; i++)
242 {
243 soft_regs[i].name = 0;
244 }
245
246 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
247 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
248 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
249 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
250 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
78073dd8 251
82c230c2
SC
252 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
253 {
254 char buf[10];
78073dd8 255
82c230c2
SC
256 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
257 m68hc11_get_register_info (&soft_regs[i], buf);
258 }
78073dd8 259
82c230c2 260 if (soft_regs[SOFT_FP_REGNUM].name == 0)
8a3fe4f8
AC
261 warning (_("No frame soft register found in the symbol table.\n"
262 "Stack backtrace will not work."));
82c230c2
SC
263 soft_reg_initialized = 1;
264}
78073dd8 265
82c230c2
SC
266/* Given an address in memory, return the soft register number if
267 that address corresponds to a soft register. Returns -1 if not. */
268static int
269m68hc11_which_soft_register (CORE_ADDR addr)
270{
271 int i;
272
273 if (addr < soft_min_addr || addr > soft_max_addr)
274 return -1;
275
276 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
277 {
278 if (soft_regs[i].name && soft_regs[i].addr == addr)
279 return i;
280 }
281 return -1;
282}
78073dd8 283
82c230c2
SC
284/* Fetch a pseudo register. The 68hc11 soft registers are treated like
285 pseudo registers. They are located in memory. Translate the register
286 fetch into a memory read. */
46ce284d
AC
287static void
288m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
289 struct regcache *regcache,
ff1e98b9 290 int regno, gdb_byte *buf)
82c230c2 291{
548bcbec
SC
292 /* The PC is a pseudo reg only for 68HC12 with the memory bank
293 addressing mode. */
294 if (regno == M68HC12_HARD_PC_REGNUM)
295 {
4db73d49 296 ULONGEST pc;
548bcbec 297 const int regsize = TYPE_LENGTH (builtin_type_uint32);
548bcbec 298
4db73d49 299 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
548bcbec
SC
300 if (pc >= 0x8000 && pc < 0xc000)
301 {
4db73d49
SC
302 ULONGEST page;
303
304 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
548bcbec
SC
305 pc -= 0x8000;
306 pc += (page << 14);
307 pc += 0x1000000;
308 }
309 store_unsigned_integer (buf, regsize, pc);
310 return;
311 }
312
82c230c2
SC
313 m68hc11_initialize_register_info ();
314
315 /* Fetch a soft register: translate into a memory read. */
316 if (soft_regs[regno].name)
317 {
318 target_read_memory (soft_regs[regno].addr, buf, 2);
319 }
320 else
321 {
322 memset (buf, 0, 2);
323 }
82c230c2 324}
78073dd8 325
82c230c2
SC
326/* Store a pseudo register. Translate the register store
327 into a memory write. */
328static void
46ce284d
AC
329m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
ff1e98b9 331 int regno, const gdb_byte *buf)
82c230c2 332{
548bcbec
SC
333 /* The PC is a pseudo reg only for 68HC12 with the memory bank
334 addressing mode. */
335 if (regno == M68HC12_HARD_PC_REGNUM)
336 {
337 const int regsize = TYPE_LENGTH (builtin_type_uint32);
338 char *tmp = alloca (regsize);
339 CORE_ADDR pc;
340
341 memcpy (tmp, buf, regsize);
342 pc = extract_unsigned_integer (tmp, regsize);
343 if (pc >= 0x1000000)
344 {
345 pc -= 0x1000000;
4db73d49
SC
346 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
347 (pc >> 14) & 0x0ff);
548bcbec 348 pc &= 0x03fff;
4db73d49
SC
349 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
350 pc + 0x8000);
548bcbec
SC
351 }
352 else
4db73d49 353 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
548bcbec
SC
354 return;
355 }
356
82c230c2 357 m68hc11_initialize_register_info ();
78073dd8 358
82c230c2
SC
359 /* Store a soft register: translate into a memory write. */
360 if (soft_regs[regno].name)
361 {
46ce284d
AC
362 const int regsize = 2;
363 char *tmp = alloca (regsize);
364 memcpy (tmp, buf, regsize);
365 target_write_memory (soft_regs[regno].addr, tmp, regsize);
82c230c2
SC
366 }
367}
78073dd8 368
fa88f677 369static const char *
82c230c2 370m68hc11_register_name (int reg_nr)
78073dd8 371{
548bcbec
SC
372 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
373 return "pc";
374 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
375 return "ppc";
376
82c230c2
SC
377 if (reg_nr < 0)
378 return NULL;
379 if (reg_nr >= M68HC11_ALL_REGS)
380 return NULL;
381
65760afb
SC
382 m68hc11_initialize_register_info ();
383
82c230c2
SC
384 /* If we don't know the address of a soft register, pretend it
385 does not exist. */
386 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
387 return NULL;
388 return m68hc11_register_names[reg_nr];
389}
78073dd8 390
f4f9705a 391static const unsigned char *
82c230c2 392m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
78073dd8 393{
82c230c2
SC
394 static unsigned char breakpoint[] = {0x0};
395
396 *lenptr = sizeof (breakpoint);
397 return breakpoint;
78073dd8
AC
398}
399
908f682f
SC
400\f
401/* 68HC11 & 68HC12 prologue analysis.
402
403 */
404#define MAX_CODES 12
405
406/* 68HC11 opcodes. */
407#undef M6811_OP_PAGE2
b94a41a1
SC
408#define M6811_OP_PAGE2 (0x18)
409#define M6811_OP_LDX (0xde)
410#define M6811_OP_LDX_EXT (0xfe)
411#define M6811_OP_PSHX (0x3c)
412#define M6811_OP_STS (0x9f)
413#define M6811_OP_STS_EXT (0xbf)
414#define M6811_OP_TSX (0x30)
415#define M6811_OP_XGDX (0x8f)
416#define M6811_OP_ADDD (0xc3)
417#define M6811_OP_TXS (0x35)
418#define M6811_OP_DES (0x34)
908f682f
SC
419
420/* 68HC12 opcodes. */
b94a41a1
SC
421#define M6812_OP_PAGE2 (0x18)
422#define M6812_OP_MOVW (0x01)
423#define M6812_PB_PSHW (0xae)
424#define M6812_OP_STS (0x5f)
425#define M6812_OP_STS_EXT (0x7f)
426#define M6812_OP_LEAS (0x1b)
427#define M6812_OP_PSHX (0x34)
428#define M6812_OP_PSHY (0x35)
908f682f
SC
429
430/* Operand extraction. */
431#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
432#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
433#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
434#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
435
436/* Identification of the sequence. */
437enum m6811_seq_type
438{
439 P_LAST = 0,
440 P_SAVE_REG, /* Save a register on the stack. */
441 P_SET_FRAME, /* Setup the frame pointer. */
442 P_LOCAL_1, /* Allocate 1 byte for locals. */
443 P_LOCAL_2, /* Allocate 2 bytes for locals. */
444 P_LOCAL_N /* Allocate N bytes for locals. */
445};
446
447struct insn_sequence {
448 enum m6811_seq_type type;
449 unsigned length;
450 unsigned short code[MAX_CODES];
451};
452
453/* Sequence of instructions in the 68HC11 function prologue. */
454static struct insn_sequence m6811_prologue[] = {
455 /* Sequences to save a soft-register. */
456 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
457 M6811_OP_PSHX } },
458 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
459 M6811_OP_PAGE2, M6811_OP_PSHX } },
b94a41a1
SC
460 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
908f682f
SC
464
465 /* Sequences to allocate local variables. */
466 { P_LOCAL_N, 7, { M6811_OP_TSX,
467 M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_XGDX,
470 M6811_OP_TXS } },
471 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
474 M6811_OP_PAGE2, M6811_OP_XGDX,
475 M6811_OP_PAGE2, M6811_OP_TXS } },
476 { P_LOCAL_1, 1, { M6811_OP_DES } },
477 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
478 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
479
480 /* Initialize the frame pointer. */
481 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
b94a41a1 482 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f
SC
483 { P_LAST, 0, { 0 } }
484};
485
486
487/* Sequence of instructions in the 68HC12 function prologue. */
488static struct insn_sequence m6812_prologue[] = {
489 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
490 OP_IMM_HIGH, OP_IMM_LOW } },
b94a41a1
SC
491 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
492 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
908f682f 493 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
ffe1f3ee
SC
494 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
495 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
908f682f
SC
496 { P_LAST, 0 }
497};
498
499
500/* Analyze the sequence of instructions starting at the given address.
501 Returns a pointer to the sequence when it is recognized and
c8a7f6ac 502 the optional value (constant/address) associated with it. */
908f682f 503static struct insn_sequence *
c8a7f6ac 504m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
908f682f
SC
505 CORE_ADDR *val)
506{
507 unsigned char buffer[MAX_CODES];
508 unsigned bufsize;
509 unsigned j;
510 CORE_ADDR cur_val;
511 short v = 0;
512
513 bufsize = 0;
514 for (; seq->type != P_LAST; seq++)
515 {
516 cur_val = 0;
517 for (j = 0; j < seq->length; j++)
518 {
519 if (bufsize < j + 1)
520 {
c8a7f6ac 521 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
908f682f
SC
522 1);
523 bufsize++;
524 }
525 /* Continue while we match the opcode. */
526 if (seq->code[j] == buffer[j])
527 continue;
528
529 if ((seq->code[j] & 0xf00) == 0)
530 break;
531
532 /* Extract a sequence parameter (address or constant). */
533 switch (seq->code[j])
534 {
535 case OP_DIRECT:
536 cur_val = (CORE_ADDR) buffer[j];
537 break;
538
539 case OP_IMM_HIGH:
540 cur_val = cur_val & 0x0ff;
541 cur_val |= (buffer[j] << 8);
542 break;
543
544 case OP_IMM_LOW:
545 cur_val &= 0x0ff00;
546 cur_val |= buffer[j];
547 break;
548
549 case OP_PBYTE:
550 if ((buffer[j] & 0xE0) == 0x80)
551 {
552 v = buffer[j] & 0x1f;
553 if (v & 0x10)
554 v |= 0xfff0;
555 }
556 else if ((buffer[j] & 0xfe) == 0xf0)
557 {
c8a7f6ac 558 v = read_memory_unsigned_integer (pc + j + 1, 1);
908f682f
SC
559 if (buffer[j] & 1)
560 v |= 0xff00;
561 }
562 else if (buffer[j] == 0xf2)
563 {
c8a7f6ac 564 v = read_memory_unsigned_integer (pc + j + 1, 2);
908f682f
SC
565 }
566 cur_val = v;
567 break;
568 }
569 }
570
571 /* We have a full match. */
572 if (j == seq->length)
573 {
574 *val = cur_val;
908f682f
SC
575 return seq;
576 }
577 }
578 return 0;
579}
580
7df11f59
SC
581/* Return the instruction that the function at the PC is using. */
582static enum insn_return_kind
583m68hc11_get_return_insn (CORE_ADDR pc)
584{
585 struct minimal_symbol *sym;
586
587 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
588 function is stored by elfread.c in the high bit of the info field.
589 Use this to decide which instruction the function uses to return. */
590 sym = lookup_minimal_symbol_by_pc (pc);
591 if (sym == 0)
592 return RETURN_RTS;
593
594 if (MSYMBOL_IS_RTC (sym))
595 return RETURN_RTC;
596 else if (MSYMBOL_IS_RTI (sym))
597 return RETURN_RTI;
598 else
599 return RETURN_RTS;
600}
601
78073dd8
AC
602/* Analyze the function prologue to find some information
603 about the function:
604 - the PC of the first line (for m68hc11_skip_prologue)
605 - the offset of the previous frame saved address (from current frame)
606 - the soft registers which are pushed. */
1ea653ae
SC
607static CORE_ADDR
608m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
609 struct m68hc11_unwind_cache *info)
78073dd8 610{
1ea653ae 611 LONGEST save_addr;
78073dd8 612 CORE_ADDR func_end;
78073dd8
AC
613 int size;
614 int found_frame_point;
82c230c2 615 int saved_reg;
908f682f
SC
616 int done = 0;
617 struct insn_sequence *seq_table;
1ea653ae
SC
618
619 info->size = 0;
620 info->sp_offset = 0;
621 if (pc >= current_pc)
622 return current_pc;
623
78073dd8
AC
624 size = 0;
625
82c230c2 626 m68hc11_initialize_register_info ();
1ea653ae 627 if (pc == 0)
78073dd8 628 {
1ea653ae
SC
629 info->size = 0;
630 return pc;
78073dd8
AC
631 }
632
908f682f
SC
633 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
634
78073dd8
AC
635 /* The 68hc11 stack is as follows:
636
637
638 | |
639 +-----------+
640 | |
641 | args |
642 | |
643 +-----------+
644 | PC-return |
645 +-----------+
646 | Old frame |
647 +-----------+
648 | |
649 | Locals |
650 | |
651 +-----------+ <--- current frame
652 | |
653
654 With most processors (like 68K) the previous frame can be computed
655 easily because it is always at a fixed offset (see link/unlink).
656 That is, locals are accessed with negative offsets, arguments are
657 accessed with positive ones. Since 68hc11 only supports offsets
658 in the range [0..255], the frame is defined at the bottom of
659 locals (see picture).
660
661 The purpose of the analysis made here is to find out the size
662 of locals in this function. An alternative to this is to use
663 DWARF2 info. This would be better but I don't know how to
664 access dwarf2 debug from this function.
665
666 Walk from the function entry point to the point where we save
667 the frame. While walking instructions, compute the size of bytes
668 which are pushed. This gives us the index to access the previous
669 frame.
670
671 We limit the search to 128 bytes so that the algorithm is bounded
672 in case of random and wrong code. We also stop and abort if
673 we find an instruction which is not supposed to appear in the
674 prologue (as generated by gcc 2.95, 2.96).
675 */
78073dd8 676 func_end = pc + 128;
78073dd8 677 found_frame_point = 0;
1ea653ae
SC
678 info->size = 0;
679 save_addr = 0;
908f682f 680 while (!done && pc + 2 < func_end)
78073dd8 681 {
908f682f
SC
682 struct insn_sequence *seq;
683 CORE_ADDR val;
1ea653ae 684
c8a7f6ac 685 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
908f682f
SC
686 if (seq == 0)
687 break;
78073dd8 688
c8a7f6ac
SC
689 /* If we are within the instruction group, we can't advance the
690 pc nor the stack offset. Otherwise the caller's stack computed
691 from the current stack can be wrong. */
692 if (pc + seq->length > current_pc)
693 break;
694
695 pc = pc + seq->length;
908f682f 696 if (seq->type == P_SAVE_REG)
78073dd8 697 {
908f682f
SC
698 if (found_frame_point)
699 {
700 saved_reg = m68hc11_which_soft_register (val);
701 if (saved_reg < 0)
702 break;
78073dd8 703
908f682f 704 save_addr -= 2;
ff1e98b9
SC
705 if (info->saved_regs)
706 info->saved_regs[saved_reg].addr = save_addr;
908f682f
SC
707 }
708 else
709 {
710 size += 2;
711 }
78073dd8 712 }
908f682f 713 else if (seq->type == P_SET_FRAME)
78073dd8
AC
714 {
715 found_frame_point = 1;
1ea653ae 716 info->size = size;
78073dd8 717 }
908f682f 718 else if (seq->type == P_LOCAL_1)
78073dd8 719 {
6148eca7
SC
720 size += 1;
721 }
908f682f 722 else if (seq->type == P_LOCAL_2)
78073dd8 723 {
908f682f 724 size += 2;
78073dd8 725 }
908f682f 726 else if (seq->type == P_LOCAL_N)
78073dd8 727 {
908f682f
SC
728 /* Stack pointer is decremented for the allocation. */
729 if (val & 0x8000)
730 size -= (int) (val) | 0xffff0000;
731 else
732 size -= val;
78073dd8
AC
733 }
734 }
1ea653ae
SC
735 if (found_frame_point == 0)
736 info->sp_offset = size;
737 else
738 info->sp_offset = -1;
739 return pc;
78073dd8
AC
740}
741
82c230c2 742static CORE_ADDR
78073dd8
AC
743m68hc11_skip_prologue (CORE_ADDR pc)
744{
745 CORE_ADDR func_addr, func_end;
746 struct symtab_and_line sal;
1ea653ae 747 struct m68hc11_unwind_cache tmp_cache = { 0 };
78073dd8 748
82c230c2
SC
749 /* If we have line debugging information, then the end of the
750 prologue should be the first assembly instruction of the
78073dd8
AC
751 first source line. */
752 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
753 {
754 sal = find_pc_line (func_addr, 0);
755 if (sal.end && sal.end < func_end)
756 return sal.end;
757 }
758
1ea653ae 759 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
78073dd8
AC
760 return pc;
761}
762
1ea653ae
SC
763static CORE_ADDR
764m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
765{
766 ULONGEST pc;
767
768 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
769 &pc);
770 return pc;
771}
772
773/* Put here the code to store, into fi->saved_regs, the addresses of
774 the saved registers of frame described by FRAME_INFO. This
775 includes special registers such as pc and fp saved in special ways
776 in the stack frame. sp is even more special: the address we return
777 for it IS the sp for the next frame. */
778
779struct m68hc11_unwind_cache *
780m68hc11_frame_unwind_cache (struct frame_info *next_frame,
781 void **this_prologue_cache)
782{
783 ULONGEST prev_sp;
784 ULONGEST this_base;
785 struct m68hc11_unwind_cache *info;
786 CORE_ADDR current_pc;
787 int i;
788
789 if ((*this_prologue_cache))
790 return (*this_prologue_cache);
791
792 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
793 (*this_prologue_cache) = info;
794 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
795
93d42b30 796 info->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1ea653ae
SC
797
798 info->size = 0;
799 info->return_kind = m68hc11_get_return_insn (info->pc);
800
801 /* The SP was moved to the FP. This indicates that a new frame
802 was created. Get THIS frame's FP value by unwinding it from
803 the next frame. */
804 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
805 if (this_base == 0)
806 {
807 info->base = 0;
808 return info;
809 }
810
811 current_pc = frame_pc_unwind (next_frame);
812 if (info->pc != 0)
813 m68hc11_scan_prologue (info->pc, current_pc, info);
814
815 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
816
817 if (info->sp_offset != (CORE_ADDR) -1)
818 {
819 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
820 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
821 prev_sp = this_base + info->sp_offset + 2;
822 this_base += STACK_CORRECTION;
823 }
824 else
825 {
826 /* The FP points at the last saved register. Adjust the FP back
827 to before the first saved register giving the SP. */
828 prev_sp = this_base + info->size + 2;
829
830 this_base += STACK_CORRECTION;
831 if (soft_regs[SOFT_FP_REGNUM].name)
832 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
833 }
834
835 if (info->return_kind == RETURN_RTC)
836 {
837 prev_sp += 1;
838 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
839 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
840 }
841 else if (info->return_kind == RETURN_RTI)
842 {
843 prev_sp += 7;
844 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
845 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
846 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
847 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
848 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
849 }
850
851 /* Add 1 here to adjust for the post-decrement nature of the push
852 instruction.*/
853 info->prev_sp = prev_sp;
854
855 info->base = this_base;
856
857 /* Adjust all the saved registers so that they contain addresses and not
858 offsets. */
f57d151a
UW
859 for (i = 0;
860 i < gdbarch_num_regs (current_gdbarch)
861 + gdbarch_num_pseudo_regs (current_gdbarch) - 1;
862 i++)
1ea653ae
SC
863 if (trad_frame_addr_p (info->saved_regs, i))
864 {
865 info->saved_regs[i].addr += this_base;
866 }
867
868 /* The previous frame's SP needed to be computed. Save the computed
869 value. */
870 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
871
872 return info;
873}
874
875/* Given a GDB frame, determine the address of the calling function's
876 frame. This will be used to create a new GDB frame struct. */
877
878static void
879m68hc11_frame_this_id (struct frame_info *next_frame,
880 void **this_prologue_cache,
881 struct frame_id *this_id)
882{
883 struct m68hc11_unwind_cache *info
884 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
885 CORE_ADDR base;
886 CORE_ADDR func;
887 struct frame_id id;
888
889 /* The FUNC is easy. */
93d42b30 890 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1ea653ae 891
1ea653ae
SC
892 /* Hopefully the prologue analysis either correctly determined the
893 frame's base (which is the SP from the previous frame), or set
894 that base to "NULL". */
895 base = info->prev_sp;
896 if (base == 0)
897 return;
898
899 id = frame_id_build (base, func);
1ea653ae
SC
900 (*this_id) = id;
901}
902
903static void
904m68hc11_frame_prev_register (struct frame_info *next_frame,
905 void **this_prologue_cache,
906 int regnum, int *optimizedp,
907 enum lval_type *lvalp, CORE_ADDR *addrp,
ff1e98b9 908 int *realnump, gdb_byte *bufferp)
1ea653ae
SC
909{
910 struct m68hc11_unwind_cache *info
911 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
912
1f67027d
AC
913 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
914 optimizedp, lvalp, addrp, realnump, bufferp);
1ea653ae
SC
915
916 if (regnum == HARD_PC_REGNUM)
917 {
918 /* Take into account the 68HC12 specific call (PC + page). */
919 if (info->return_kind == RETURN_RTC
920 && *addrp >= 0x08000 && *addrp < 0x0c000
921 && USE_PAGE_REGISTER)
922 {
923 int page_optimized;
924
925 CORE_ADDR page;
926
1f67027d
AC
927 trad_frame_get_prev_register (next_frame, info->saved_regs,
928 HARD_PAGE_REGNUM, &page_optimized,
929 0, &page, 0, 0);
1ea653ae
SC
930 *addrp -= 0x08000;
931 *addrp += ((page & 0x0ff) << 14);
932 *addrp += 0x1000000;
933 }
934 }
935}
936
937static const struct frame_unwind m68hc11_frame_unwind = {
938 NORMAL_FRAME,
939 m68hc11_frame_this_id,
940 m68hc11_frame_prev_register
941};
942
943const struct frame_unwind *
1a241548 944m68hc11_frame_sniffer (struct frame_info *next_frame)
1ea653ae
SC
945{
946 return &m68hc11_frame_unwind;
947}
948
949static CORE_ADDR
950m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
951{
952 struct m68hc11_unwind_cache *info
953 = m68hc11_frame_unwind_cache (next_frame, this_cache);
954
955 return info->base;
956}
957
958static CORE_ADDR
959m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
960{
961 CORE_ADDR addr;
962 struct m68hc11_unwind_cache *info
963 = m68hc11_frame_unwind_cache (next_frame, this_cache);
964
965 addr = info->base + info->size;
966 if (info->return_kind == RETURN_RTC)
967 addr += 1;
968 else if (info->return_kind == RETURN_RTI)
969 addr += 7;
970
971 return addr;
972}
973
974static const struct frame_base m68hc11_frame_base = {
975 &m68hc11_frame_unwind,
976 m68hc11_frame_base_address,
977 m68hc11_frame_base_address,
978 m68hc11_frame_args_address
979};
980
981static CORE_ADDR
982m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
983{
984 ULONGEST sp;
985 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
986 return sp;
987}
988
989/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
990 dummy frame. The frame ID's base needs to match the TOS value
991 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
992 breakpoint. */
993
994static struct frame_id
995m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
996{
997 ULONGEST tos;
998 CORE_ADDR pc = frame_pc_unwind (next_frame);
999
1000 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1001 tos += 2;
1002 return frame_id_build (tos, pc);
1003}
78073dd8 1004
e286caf2
SC
1005\f
1006/* Get and print the register from the given frame. */
78073dd8 1007static void
e286caf2
SC
1008m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1009 struct frame_info *frame, int regno)
78073dd8 1010{
e286caf2
SC
1011 LONGEST rval;
1012
1013 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1014 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
7f5f525d 1015 rval = get_frame_register_unsigned (frame, regno);
e286caf2 1016 else
7f5f525d 1017 rval = get_frame_register_signed (frame, regno);
e286caf2
SC
1018
1019 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1020 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
7df11f59 1021 {
e286caf2
SC
1022 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1023 if (regno != HARD_CCR_REGNUM)
1024 print_longest (file, 'd', 1, rval);
7df11f59 1025 }
e286caf2
SC
1026 else
1027 {
1028 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1029 {
1030 ULONGEST page;
7df11f59 1031
7f5f525d 1032 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
e286caf2
SC
1033 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1034 (unsigned) rval);
1035 }
1036 else
1037 {
1038 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1039 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1040 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1041 print_longest (file, 'd', 1, rval);
1042 }
1043 }
1044
1045 if (regno == HARD_CCR_REGNUM)
78073dd8 1046 {
e286caf2
SC
1047 /* CCR register */
1048 int C, Z, N, V;
1049 unsigned char l = rval & 0xff;
1050
1051 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1052 l & M6811_S_BIT ? 'S' : '-',
1053 l & M6811_X_BIT ? 'X' : '-',
1054 l & M6811_H_BIT ? 'H' : '-',
1055 l & M6811_I_BIT ? 'I' : '-',
1056 l & M6811_N_BIT ? 'N' : '-',
1057 l & M6811_Z_BIT ? 'Z' : '-',
1058 l & M6811_V_BIT ? 'V' : '-',
1059 l & M6811_C_BIT ? 'C' : '-');
1060 N = (l & M6811_N_BIT) != 0;
1061 Z = (l & M6811_Z_BIT) != 0;
1062 V = (l & M6811_V_BIT) != 0;
1063 C = (l & M6811_C_BIT) != 0;
1064
1065 /* Print flags following the h8300 */
1066 if ((C | Z) == 0)
1067 fprintf_filtered (file, "u> ");
1068 else if ((C | Z) == 1)
1069 fprintf_filtered (file, "u<= ");
1070 else if (C == 0)
1071 fprintf_filtered (file, "u< ");
1072
1073 if (Z == 0)
1074 fprintf_filtered (file, "!= ");
1075 else
1076 fprintf_filtered (file, "== ");
1077
1078 if ((N ^ V) == 0)
1079 fprintf_filtered (file, ">= ");
1080 else
1081 fprintf_filtered (file, "< ");
1082
1083 if ((Z | (N ^ V)) == 0)
1084 fprintf_filtered (file, "> ");
78073dd8 1085 else
e286caf2 1086 fprintf_filtered (file, "<= ");
78073dd8 1087 }
e286caf2
SC
1088}
1089
1090/* Same as 'info reg' but prints the registers in a different way. */
1091static void
1092m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1093 struct frame_info *frame, int regno, int cpregs)
1094{
1095 if (regno >= 0)
1096 {
1097 const char *name = gdbarch_register_name (gdbarch, regno);
1098
1099 if (!name || !*name)
1100 return;
1101
1102 fprintf_filtered (file, "%-10s ", name);
1103 m68hc11_print_register (gdbarch, file, frame, regno);
1104 fprintf_filtered (file, "\n");
1105 }
1106 else
1107 {
1108 int i, nr;
1109
1110 fprintf_filtered (file, "PC=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1112
1113 fprintf_filtered (file, " SP=");
1114 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1115
1116 fprintf_filtered (file, " FP=");
1117 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1118
1119 fprintf_filtered (file, "\nCCR=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1121
1122 fprintf_filtered (file, "\nD=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1124
1125 fprintf_filtered (file, " X=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1127
1128 fprintf_filtered (file, " Y=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1130
1131 if (gdbarch_tdep (gdbarch)->use_page_register)
1132 {
1133 fprintf_filtered (file, "\nPage=");
1134 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1135 }
1136 fprintf_filtered (file, "\n");
1137
1138 nr = 0;
1139 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1140 {
1141 /* Skip registers which are not defined in the symbol table. */
1142 if (soft_regs[i].name == 0)
1143 continue;
1144
1145 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1146 m68hc11_print_register (gdbarch, file, frame, i);
1147 nr++;
1148 if ((nr % 8) == 7)
1149 fprintf_filtered (file, "\n");
1150 else
1151 fprintf_filtered (file, " ");
1152 }
1153 if (nr && (nr % 8) != 7)
1154 fprintf_filtered (file, "\n");
1155 }
1156}
1157
82c230c2 1158static CORE_ADDR
7d9b040b 1159m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3dc990bf
SC
1160 struct regcache *regcache, CORE_ADDR bp_addr,
1161 int nargs, struct value **args, CORE_ADDR sp,
1162 int struct_return, CORE_ADDR struct_addr)
78073dd8 1163{
82c230c2
SC
1164 int argnum;
1165 int first_stack_argnum;
82c230c2
SC
1166 struct type *type;
1167 char *val;
1168 int len;
3dc990bf 1169 char buf[2];
82c230c2 1170
82c230c2
SC
1171 first_stack_argnum = 0;
1172 if (struct_return)
1173 {
ff1e98b9 1174 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
82c230c2
SC
1175 }
1176 else if (nargs > 0)
1177 {
4991999e 1178 type = value_type (args[0]);
82c230c2 1179 len = TYPE_LENGTH (type);
3dc990bf 1180
82c230c2
SC
1181 /* First argument is passed in D and X registers. */
1182 if (len <= 4)
1183 {
3dc990bf
SC
1184 ULONGEST v;
1185
0fd88904 1186 v = extract_unsigned_integer (value_contents (args[0]), len);
82c230c2 1187 first_stack_argnum = 1;
3dc990bf
SC
1188
1189 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
82c230c2
SC
1190 if (len > 2)
1191 {
1192 v >>= 16;
3dc990bf 1193 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
82c230c2
SC
1194 }
1195 }
1196 }
82c230c2 1197
3dc990bf 1198 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
82c230c2 1199 {
4991999e 1200 type = value_type (args[argnum]);
82c230c2
SC
1201 len = TYPE_LENGTH (type);
1202
22df305e
SC
1203 if (len & 1)
1204 {
1205 static char zero = 0;
1206
3dc990bf
SC
1207 sp--;
1208 write_memory (sp, &zero, 1);
22df305e 1209 }
0fd88904 1210 val = (char*) value_contents (args[argnum]);
3dc990bf
SC
1211 sp -= len;
1212 write_memory (sp, val, len);
82c230c2 1213 }
3dc990bf
SC
1214
1215 /* Store return address. */
1216 sp -= 2;
1217 store_unsigned_integer (buf, 2, bp_addr);
1218 write_memory (sp, buf, 2);
1219
1220 /* Finally, update the stack pointer... */
1221 sp -= STACK_CORRECTION;
1222 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1223
1224 /* ...and fake a frame pointer. */
1225 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1226
1227 /* DWARF2/GCC uses the stack address *before* the function call as a
1228 frame's CFA. */
1229 return sp + 2;
78073dd8
AC
1230}
1231
1232
4db73d49
SC
1233/* Return the GDB type object for the "standard" data type
1234 of data in register N. */
1235
82c230c2 1236static struct type *
4db73d49 1237m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
82c230c2 1238{
5706502a
SC
1239 switch (reg_nr)
1240 {
1241 case HARD_PAGE_REGNUM:
1242 case HARD_A_REGNUM:
1243 case HARD_B_REGNUM:
1244 case HARD_CCR_REGNUM:
1245 return builtin_type_uint8;
1246
548bcbec
SC
1247 case M68HC12_HARD_PC_REGNUM:
1248 return builtin_type_uint32;
1249
5706502a
SC
1250 default:
1251 return builtin_type_uint16;
1252 }
82c230c2
SC
1253}
1254
82c230c2 1255static void
4db73d49
SC
1256m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1257 const void *valbuf)
82c230c2 1258{
22df305e
SC
1259 int len;
1260
1261 len = TYPE_LENGTH (type);
1262
1263 /* First argument is passed in D and X registers. */
4db73d49
SC
1264 if (len <= 2)
1265 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1266 else if (len <= 4)
22df305e 1267 {
4db73d49
SC
1268 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1269 len - 2, valbuf);
1270 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
22df305e
SC
1271 }
1272 else
8a3fe4f8 1273 error (_("return of value > 4 is not supported."));
82c230c2
SC
1274}
1275
1276
ef2b8fcd 1277/* Given a return value in `regcache' with a type `type',
78073dd8
AC
1278 extract and copy its value into `valbuf'. */
1279
82c230c2 1280static void
ef2b8fcd
SC
1281m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1282 void *valbuf)
78073dd8 1283{
82c230c2 1284 int len = TYPE_LENGTH (type);
ef2b8fcd
SC
1285 char buf[M68HC11_REG_SIZE];
1286
1287 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
22df305e 1288 switch (len)
82c230c2 1289 {
22df305e 1290 case 1:
ef2b8fcd 1291 memcpy (valbuf, buf + 1, 1);
22df305e 1292 break;
ef2b8fcd 1293
22df305e 1294 case 2:
ef2b8fcd 1295 memcpy (valbuf, buf, 2);
22df305e 1296 break;
ef2b8fcd 1297
22df305e 1298 case 3:
ef2b8fcd
SC
1299 memcpy ((char*) valbuf + 1, buf, 2);
1300 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1301 memcpy (valbuf, buf + 1, 1);
22df305e 1302 break;
ef2b8fcd 1303
22df305e 1304 case 4:
ef2b8fcd
SC
1305 memcpy ((char*) valbuf + 2, buf, 2);
1306 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1307 memcpy (valbuf, buf, 2);
22df305e
SC
1308 break;
1309
1310 default:
8a3fe4f8 1311 error (_("bad size for return value"));
82c230c2
SC
1312 }
1313}
1314
97092415
AC
1315enum return_value_convention
1316m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
ff1e98b9
SC
1317 struct regcache *regcache, gdb_byte *readbuf,
1318 const gdb_byte *writebuf)
82c230c2 1319{
97092415
AC
1320 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1321 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1322 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1323 || TYPE_LENGTH (valtype) > 4)
1324 return RETURN_VALUE_STRUCT_CONVENTION;
1325 else
1326 {
1327 if (readbuf != NULL)
1328 m68hc11_extract_return_value (valtype, regcache, readbuf);
1329 if (writebuf != NULL)
1330 m68hc11_store_return_value (valtype, regcache, writebuf);
1331 return RETURN_VALUE_REGISTER_CONVENTION;
1332 }
82c230c2
SC
1333}
1334
7df11f59
SC
1335/* Test whether the ELF symbol corresponds to a function using rtc or
1336 rti to return. */
1337
1338static void
1339m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1340{
1341 unsigned char flags;
1342
1343 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1344 if (flags & STO_M68HC12_FAR)
1345 MSYMBOL_SET_RTC (msym);
1346 if (flags & STO_M68HC12_INTERRUPT)
1347 MSYMBOL_SET_RTI (msym);
1348}
1349
ea3881d9
SC
1350static int
1351gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1352{
1353 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1354 return print_insn_m68hc11 (memaddr, info);
1355 else
1356 return print_insn_m68hc12 (memaddr, info);
1357}
1358
b631436b
SC
1359\f
1360
1361/* 68HC11/68HC12 register groups.
1362 Identify real hard registers and soft registers used by gcc. */
1363
1364static struct reggroup *m68hc11_soft_reggroup;
1365static struct reggroup *m68hc11_hard_reggroup;
1366
1367static void
1368m68hc11_init_reggroups (void)
1369{
1370 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1371 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1372}
1373
1374static void
1375m68hc11_add_reggroups (struct gdbarch *gdbarch)
1376{
1377 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1378 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1379 reggroup_add (gdbarch, general_reggroup);
1380 reggroup_add (gdbarch, float_reggroup);
1381 reggroup_add (gdbarch, all_reggroup);
1382 reggroup_add (gdbarch, save_reggroup);
1383 reggroup_add (gdbarch, restore_reggroup);
1384 reggroup_add (gdbarch, vector_reggroup);
1385 reggroup_add (gdbarch, system_reggroup);
1386}
1387
1388static int
1389m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1390 struct reggroup *group)
1391{
1392 /* We must save the real hard register as well as gcc
1393 soft registers including the frame pointer. */
1394 if (group == save_reggroup || group == restore_reggroup)
1395 {
1396 return (regnum <= gdbarch_num_regs (gdbarch)
1397 || ((regnum == SOFT_FP_REGNUM
1398 || regnum == SOFT_TMP_REGNUM
1399 || regnum == SOFT_ZS_REGNUM
1400 || regnum == SOFT_XY_REGNUM)
1401 && m68hc11_register_name (regnum)));
1402 }
1403
1404 /* Group to identify gcc soft registers (d1..dN). */
1405 if (group == m68hc11_soft_reggroup)
1406 {
1407 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1408 }
1409
1410 if (group == m68hc11_hard_reggroup)
1411 {
1412 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1413 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1414 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1415 }
1416 return default_register_reggroup_p (gdbarch, regnum, group);
1417}
1418
82c230c2
SC
1419static struct gdbarch *
1420m68hc11_gdbarch_init (struct gdbarch_info info,
1421 struct gdbarch_list *arches)
1422{
82c230c2
SC
1423 struct gdbarch *gdbarch;
1424 struct gdbarch_tdep *tdep;
81967506 1425 int elf_flags;
82c230c2
SC
1426
1427 soft_reg_initialized = 0;
81967506
SC
1428
1429 /* Extract the elf_flags if available. */
1430 if (info.abfd != NULL
1431 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1432 elf_flags = elf_elfheader (info.abfd)->e_flags;
1433 else
1434 elf_flags = 0;
1435
82c230c2
SC
1436 /* try to find a pre-existing architecture */
1437 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1438 arches != NULL;
1439 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1440 {
81967506
SC
1441 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1442 continue;
1443
82c230c2
SC
1444 return arches->gdbarch;
1445 }
1446
1447 /* Need a new architecture. Fill in a target specific vector. */
1448 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1449 gdbarch = gdbarch_alloc (&info, tdep);
81967506 1450 tdep->elf_flags = elf_flags;
ed99b3d0 1451
5d1a66bd
SC
1452 switch (info.bfd_arch_info->arch)
1453 {
1454 case bfd_arch_m68hc11:
1455 tdep->stack_correction = 1;
7df11f59 1456 tdep->use_page_register = 0;
908f682f 1457 tdep->prologue = m6811_prologue;
548bcbec
SC
1458 set_gdbarch_addr_bit (gdbarch, 16);
1459 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1460 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1461 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
5d1a66bd 1462 break;
82c230c2 1463
5d1a66bd
SC
1464 case bfd_arch_m68hc12:
1465 tdep->stack_correction = 0;
7df11f59 1466 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
908f682f 1467 tdep->prologue = m6812_prologue;
548bcbec
SC
1468 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1469 set_gdbarch_num_pseudo_regs (gdbarch,
1470 elf_flags & E_M68HC12_BANKS
1471 ? M68HC12_NUM_PSEUDO_REGS
1472 : M68HC11_NUM_PSEUDO_REGS);
1473 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1474 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1475 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1476 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
5d1a66bd
SC
1477 break;
1478
1479 default:
1480 break;
1481 }
7d32ba20
SC
1482
1483 /* Initially set everything according to the ABI.
1484 Use 16-bit integers since it will be the case for most
1485 programs. The size of these types should normally be set
1486 according to the dwarf2 debug information. */
82c230c2 1487 set_gdbarch_short_bit (gdbarch, 16);
81967506 1488 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
82c230c2 1489 set_gdbarch_float_bit (gdbarch, 32);
81967506 1490 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
2417dd25 1491 set_gdbarch_long_double_bit (gdbarch, 64);
82c230c2
SC
1492 set_gdbarch_long_bit (gdbarch, 32);
1493 set_gdbarch_ptr_bit (gdbarch, 16);
1494 set_gdbarch_long_long_bit (gdbarch, 64);
1495
b2a02dda
SC
1496 /* Characters are unsigned. */
1497 set_gdbarch_char_signed (gdbarch, 0);
1498
1ea653ae
SC
1499 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1500 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1501
82c230c2
SC
1502 /* Set register info. */
1503 set_gdbarch_fp0_regnum (gdbarch, -1);
82c230c2 1504
82c230c2 1505 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
82c230c2 1506
82c230c2 1507 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
82c230c2 1508 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
4db73d49 1509 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
46ce284d
AC
1510 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1511 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
82c230c2 1512
3dc990bf
SC
1513 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1514
97092415 1515 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
82c230c2
SC
1516 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1517 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
82c230c2 1518 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
70ed8774 1519 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
82c230c2 1520
b631436b
SC
1521 m68hc11_add_reggroups (gdbarch);
1522 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
e286caf2 1523 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
b631436b 1524
1ea653ae
SC
1525 /* Hook in the DWARF CFI frame unwinder. */
1526 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1ea653ae 1527
1a241548 1528 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1ea653ae
SC
1529 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1530
1531 /* Methods for saving / extracting a dummy frame's ID. The ID's
1532 stack address must match the SP value returned by
1533 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1534 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1535
1536 /* Return the unwound PC value. */
1537 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1538
7df11f59
SC
1539 /* Minsymbol frobbing. */
1540 set_gdbarch_elf_make_msymbol_special (gdbarch,
1541 m68hc11_elf_make_msymbol_special);
1542
82c230c2 1543 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
82c230c2
SC
1544
1545 return gdbarch;
78073dd8
AC
1546}
1547
a78f21af
AC
1548extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1549
78073dd8 1550void
fba45db2 1551_initialize_m68hc11_tdep (void)
78073dd8 1552{
82c230c2 1553 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
ea3881d9 1554 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
b631436b 1555 m68hc11_init_reggroups ();
78073dd8
AC
1556}
1557
This page took 0.63455 seconds and 4 git commands to generate.