[ARC] Add checking for LP_COUNT reg usage, improve error reporting.
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
3f244638 21#include "dwarf2-frame.h"
c906108c 22#include "frame.h"
8de307e0
AS
23#include "frame-base.h"
24#include "frame-unwind.h"
e6bb342a 25#include "gdbtypes.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbcore.h"
28#include "value.h"
7a292a7a 29#include "inferior.h"
4e052eda 30#include "regcache.h"
5d3ed2e3 31#include "arch-utils.h"
55809acb 32#include "osabi.h"
a89aa300 33#include "dis-asm.h"
8ed86d01 34#include "target-descriptions.h"
32eeb91a
AS
35
36#include "m68k-tdep.h"
c906108c 37\f
c5aa993b 38
89c3b6d3
PDM
39#define P_LINKL_FP 0x480e
40#define P_LINKW_FP 0x4e56
41#define P_PEA_FP 0x4856
8de307e0
AS
42#define P_MOVEAL_SP_FP 0x2c4f
43#define P_ADDAW_SP 0xdefc
44#define P_ADDAL_SP 0xdffc
45#define P_SUBQW_SP 0x514f
46#define P_SUBQL_SP 0x518f
47#define P_LEA_SP_SP 0x4fef
48#define P_LEA_PC_A5 0x4bfb0170
49#define P_FMOVEMX_SP 0xf227
50#define P_MOVEL_SP 0x2f00
51#define P_MOVEML_SP 0x48e7
89c3b6d3 52
025bb325 53/* Offset from SP to first arg on stack at first instruction of a function. */
103a1597
GS
54#define SP_ARG0 (1 * 4)
55
103a1597
GS
56#if !defined (BPT_VECTOR)
57#define BPT_VECTOR 0xf
58#endif
59
04180708 60constexpr gdb_byte m68k_break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
598cc9dc 61
04180708 62typedef BP_MANIPULATION (m68k_break_insn) m68k_breakpoint;
4713453b
AS
63\f
64
4713453b 65/* Construct types for ISA-specific registers. */
209bd28e
UW
66static struct type *
67m68k_ps_type (struct gdbarch *gdbarch)
4713453b 68{
209bd28e
UW
69 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
70
71 if (!tdep->m68k_ps_type)
72 {
73 struct type *type;
74
e9bb382b 75 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
209bd28e
UW
76 append_flags_type_flag (type, 0, "C");
77 append_flags_type_flag (type, 1, "V");
78 append_flags_type_flag (type, 2, "Z");
79 append_flags_type_flag (type, 3, "N");
80 append_flags_type_flag (type, 4, "X");
81 append_flags_type_flag (type, 8, "I0");
82 append_flags_type_flag (type, 9, "I1");
83 append_flags_type_flag (type, 10, "I2");
84 append_flags_type_flag (type, 12, "M");
85 append_flags_type_flag (type, 13, "S");
86 append_flags_type_flag (type, 14, "T0");
87 append_flags_type_flag (type, 15, "T1");
88
89 tdep->m68k_ps_type = type;
90 }
91
92 return tdep->m68k_ps_type;
4713453b 93}
103a1597 94
27067745
UW
95static struct type *
96m68881_ext_type (struct gdbarch *gdbarch)
97{
98 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
99
100 if (!tdep->m68881_ext_type)
101 tdep->m68881_ext_type
e9bb382b 102 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
27067745
UW
103 floatformats_m68881_ext);
104
105 return tdep->m68881_ext_type;
106}
107
d85fe7f7
AS
108/* Return the GDB type object for the "standard" data type of data in
109 register N. This should be int for D0-D7, SR, FPCONTROL and
110 FPSTATUS, long double for FP0-FP7, and void pointer for all others
111 (A0-A7, PC, FPIADDR). Note, for registers which contain
112 addresses return pointer to void, not pointer to char, because we
113 don't want to attempt to print the string after printing the
114 address. */
5d3ed2e3
GS
115
116static struct type *
8de307e0 117m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 118{
c984b7ff 119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
03dac896 120
8ed86d01
VP
121 if (tdep->fpregs_present)
122 {
c984b7ff
UW
123 if (regnum >= gdbarch_fp0_regnum (gdbarch)
124 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
8ed86d01
VP
125 {
126 if (tdep->flavour == m68k_coldfire_flavour)
127 return builtin_type (gdbarch)->builtin_double;
128 else
27067745 129 return m68881_ext_type (gdbarch);
8ed86d01
VP
130 }
131
132 if (regnum == M68K_FPI_REGNUM)
0dfff4cb 133 return builtin_type (gdbarch)->builtin_func_ptr;
8ed86d01
VP
134
135 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
df4df182 136 return builtin_type (gdbarch)->builtin_int32;
8ed86d01
VP
137 }
138 else
139 {
140 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
df4df182 141 return builtin_type (gdbarch)->builtin_int0;
8ed86d01 142 }
03dac896 143
c984b7ff 144 if (regnum == gdbarch_pc_regnum (gdbarch))
0dfff4cb 145 return builtin_type (gdbarch)->builtin_func_ptr;
03dac896 146
32eeb91a 147 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
0dfff4cb 148 return builtin_type (gdbarch)->builtin_data_ptr;
03dac896 149
4713453b 150 if (regnum == M68K_PS_REGNUM)
209bd28e 151 return m68k_ps_type (gdbarch);
4713453b 152
df4df182 153 return builtin_type (gdbarch)->builtin_int32;
5d3ed2e3
GS
154}
155
8ed86d01 156static const char *m68k_register_names[] = {
5d3ed2e3
GS
157 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
158 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
159 "ps", "pc",
160 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 161 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
162 };
163
8ed86d01 164/* Function: m68k_register_name
025bb325 165 Returns the name of the standard m68k register regnum. */
8ed86d01
VP
166
167static const char *
d93859e2 168m68k_register_name (struct gdbarch *gdbarch, int regnum)
8ed86d01
VP
169{
170 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 171 internal_error (__FILE__, __LINE__,
025bb325
MS
172 _("m68k_register_name: illegal register number %d"),
173 regnum);
86443c3e
MK
174 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
175 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
176 return "";
5d3ed2e3 177 else
8ed86d01 178 return m68k_register_names[regnum];
5d3ed2e3 179}
e47577ab
MK
180\f
181/* Return nonzero if a value of type TYPE stored in register REGNUM
182 needs any special handling. */
183
184static int
025bb325
MS
185m68k_convert_register_p (struct gdbarch *gdbarch,
186 int regnum, struct type *type)
e47577ab 187{
0abe36f5 188 if (!gdbarch_tdep (gdbarch)->fpregs_present)
8ed86d01 189 return 0;
83acabca 190 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
3c1ac6e7 191 && type != register_type (gdbarch, M68K_FP0_REGNUM));
e47577ab
MK
192}
193
194/* Read a value of type TYPE from register REGNUM in frame FRAME, and
195 return its contents in TO. */
196
8dccd430 197static int
e47577ab 198m68k_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
199 struct type *type, gdb_byte *to,
200 int *optimizedp, int *unavailablep)
e47577ab 201{
f5cf7aa1 202 gdb_byte from[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
203 struct type *fpreg_type = register_type (get_frame_arch (frame),
204 M68K_FP0_REGNUM);
e47577ab
MK
205
206 /* We only support floating-point values. */
207 if (TYPE_CODE (type) != TYPE_CODE_FLT)
208 {
8a3fe4f8
AC
209 warning (_("Cannot convert floating-point register value "
210 "to non-floating-point type."));
8dccd430
PA
211 *optimizedp = *unavailablep = 0;
212 return 0;
e47577ab
MK
213 }
214
83acabca 215 /* Convert to TYPE. */
8dccd430
PA
216
217 /* Convert to TYPE. */
218 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
219 from, optimizedp, unavailablep))
220 return 0;
221
8ed86d01 222 convert_typed_floating (from, fpreg_type, to, type);
8dccd430
PA
223 *optimizedp = *unavailablep = 0;
224 return 1;
e47577ab
MK
225}
226
227/* Write the contents FROM of a value of type TYPE into register
228 REGNUM in frame FRAME. */
229
230static void
231m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 232 struct type *type, const gdb_byte *from)
e47577ab 233{
f5cf7aa1 234 gdb_byte to[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
235 struct type *fpreg_type = register_type (get_frame_arch (frame),
236 M68K_FP0_REGNUM);
e47577ab
MK
237
238 /* We only support floating-point values. */
239 if (TYPE_CODE (type) != TYPE_CODE_FLT)
240 {
8a3fe4f8
AC
241 warning (_("Cannot convert non-floating-point type "
242 "to floating-point register value."));
e47577ab
MK
243 return;
244 }
245
83acabca 246 /* Convert from TYPE. */
8ed86d01 247 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
248 put_frame_register (frame, regnum, to);
249}
250
8de307e0 251\f
f595cb19
MK
252/* There is a fair number of calling conventions that are in somewhat
253 wide use. The 68000/08/10 don't support an FPU, not even as a
254 coprocessor. All function return values are stored in %d0/%d1.
255 Structures are returned in a static buffer, a pointer to which is
256 returned in %d0. This means that functions returning a structure
257 are not re-entrant. To avoid this problem some systems use a
258 convention where the caller passes a pointer to a buffer in %a1
259 where the return values is to be stored. This convention is the
260 default, and is implemented in the function m68k_return_value.
261
262 The 68020/030/040/060 do support an FPU, either as a coprocessor
263 (68881/2) or built-in (68040/68060). That's why System V release 4
264 (SVR4) instroduces a new calling convention specified by the SVR4
265 psABI. Integer values are returned in %d0/%d1, pointer return
266 values in %a0 and floating values in %fp0. When calling functions
267 returning a structure the caller should pass a pointer to a buffer
268 for the return value in %a0. This convention is implemented in the
269 function m68k_svr4_return_value, and by appropriately setting the
270 struct_value_regnum member of `struct gdbarch_tdep'.
271
272 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
273 for passing the structure return value buffer.
274
275 GCC can also generate code where small structures are returned in
276 %d0/%d1 instead of in memory by using -freg-struct-return. This is
277 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
278 embedded systems. This convention is implemented by setting the
279 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
280
281/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 282 into VALBUF. */
942dc0e9
GS
283
284static void
8de307e0 285m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 286 gdb_byte *valbuf)
942dc0e9 287{
8de307e0 288 int len = TYPE_LENGTH (type);
f5cf7aa1 289 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 290
8de307e0
AS
291 if (len <= 4)
292 {
293 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
294 memcpy (valbuf, buf + (4 - len), len);
295 }
296 else if (len <= 8)
297 {
298 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
299 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 300 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
301 }
302 else
303 internal_error (__FILE__, __LINE__,
e2e0b3e5 304 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
305}
306
942dc0e9 307static void
f595cb19 308m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 309 gdb_byte *valbuf)
942dc0e9 310{
f5cf7aa1 311 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
312 struct gdbarch *gdbarch = get_regcache_arch (regcache);
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942dc0e9 314
8ed86d01 315 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 316 {
c984b7ff 317 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f595cb19 318 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 319 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 320 }
354ecfd5 321 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
f595cb19
MK
322 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
323 else
324 m68k_extract_return_value (type, regcache, valbuf);
325}
326
327/* Write a function return value of TYPE from VALBUF into REGCACHE. */
328
329static void
330m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 331 const gdb_byte *valbuf)
f595cb19
MK
332{
333 int len = TYPE_LENGTH (type);
942dc0e9 334
8de307e0
AS
335 if (len <= 4)
336 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
337 else if (len <= 8)
338 {
f595cb19 339 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 340 len - 4, valbuf);
f5cf7aa1 341 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
342 }
343 else
344 internal_error (__FILE__, __LINE__,
e2e0b3e5 345 _("Cannot store return value of %d bytes long."), len);
8de307e0 346}
942dc0e9 347
f595cb19
MK
348static void
349m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 350 const gdb_byte *valbuf)
942dc0e9 351{
c984b7ff
UW
352 struct gdbarch *gdbarch = get_regcache_arch (regcache);
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8de307e0 354
8ed86d01 355 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 356 {
c984b7ff 357 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 358 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 359 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
360 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
361 }
354ecfd5 362 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
f595cb19
MK
363 {
364 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
365 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
366 }
367 else
368 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
369}
370
108fb0f7
AS
371/* Return non-zero if TYPE, which is assumed to be a structure, union or
372 complex type, should be returned in registers for architecture
f595cb19
MK
373 GDBARCH. */
374
c481dac7 375static int
f595cb19 376m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 377{
f595cb19
MK
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379 enum type_code code = TYPE_CODE (type);
380 int len = TYPE_LENGTH (type);
c481dac7 381
108fb0f7
AS
382 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
383 || code == TYPE_CODE_COMPLEX);
f595cb19
MK
384
385 if (tdep->struct_return == pcc_struct_return)
386 return 0;
387
388 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
389}
390
f595cb19
MK
391/* Determine, for architecture GDBARCH, how a return value of TYPE
392 should be returned. If it is supposed to be returned in registers,
393 and READBUF is non-zero, read the appropriate value from REGCACHE,
394 and copy it into READBUF. If WRITEBUF is non-zero, write the value
395 from WRITEBUF into REGCACHE. */
396
397static enum return_value_convention
6a3a010b 398m68k_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
399 struct type *type, struct regcache *regcache,
400 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
401{
402 enum type_code code = TYPE_CODE (type);
403
1c845060 404 /* GCC returns a `long double' in memory too. */
108fb0f7
AS
405 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
406 || code == TYPE_CODE_COMPLEX)
1c845060
MK
407 && !m68k_reg_struct_return_p (gdbarch, type))
408 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
409 {
410 /* The default on m68k is to return structures in static memory.
411 Consequently a function must return the address where we can
412 find the return value. */
f595cb19 413
1c845060
MK
414 if (readbuf)
415 {
416 ULONGEST addr;
417
418 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
419 read_memory (addr, readbuf, TYPE_LENGTH (type));
420 }
421
422 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
423 }
f595cb19
MK
424
425 if (readbuf)
426 m68k_extract_return_value (type, regcache, readbuf);
427 if (writebuf)
428 m68k_store_return_value (type, regcache, writebuf);
429
430 return RETURN_VALUE_REGISTER_CONVENTION;
431}
432
433static enum return_value_convention
6a3a010b 434m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
435 struct type *type, struct regcache *regcache,
436 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
437{
438 enum type_code code = TYPE_CODE (type);
439
108fb0f7
AS
440 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
441 || code == TYPE_CODE_COMPLEX)
f595cb19 442 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
443 {
444 /* The System V ABI says that:
445
446 "A function returning a structure or union also sets %a0 to
447 the value it finds in %a0. Thus when the caller receives
448 control again, the address of the returned object resides in
449 register %a0."
450
451 So the ABI guarantees that we can always find the return
452 value just after the function has returned. */
453
454 if (readbuf)
455 {
456 ULONGEST addr;
457
458 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
459 read_memory (addr, readbuf, TYPE_LENGTH (type));
460 }
461
462 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
463 }
f595cb19
MK
464
465 /* This special case is for structures consisting of a single
466 `float' or `double' member. These structures are returned in
467 %fp0. For these structures, we call ourselves recursively,
468 changing TYPE into the type of the first member of the structure.
469 Since that should work for all structures that have only one
470 member, we don't bother to check the member's type here. */
471 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
472 {
473 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 474 return m68k_svr4_return_value (gdbarch, function, type, regcache,
f595cb19
MK
475 readbuf, writebuf);
476 }
477
478 if (readbuf)
479 m68k_svr4_extract_return_value (type, regcache, readbuf);
480 if (writebuf)
481 m68k_svr4_store_return_value (type, regcache, writebuf);
482
483 return RETURN_VALUE_REGISTER_CONVENTION;
484}
485\f
392a587b 486
9bb47d95
NS
487/* Always align the frame to a 4-byte boundary. This is required on
488 coldfire and harmless on the rest. */
489
490static CORE_ADDR
491m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
492{
493 /* Align the stack to four bytes. */
494 return sp & ~3;
495}
496
8de307e0 497static CORE_ADDR
7d9b040b 498m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
499 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
500 struct value **args, CORE_ADDR sp, int struct_return,
501 CORE_ADDR struct_addr)
7f8e7424 502{
f595cb19 503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f5cf7aa1 505 gdb_byte buf[4];
8de307e0
AS
506 int i;
507
508 /* Push arguments in reverse order. */
509 for (i = nargs - 1; i >= 0; i--)
510 {
4754a64e 511 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 512 int len = TYPE_LENGTH (value_type);
8de307e0 513 int container_len = (len + 3) & ~3;
c481dac7
AS
514 int offset;
515
516 /* Non-scalars bigger than 4 bytes are left aligned, others are
517 right aligned. */
518 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
519 || TYPE_CODE (value_type) == TYPE_CODE_UNION
520 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
521 && len > 4)
522 offset = 0;
523 else
524 offset = container_len - len;
8de307e0 525 sp -= container_len;
46615f07 526 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
527 }
528
c481dac7 529 /* Store struct value address. */
8de307e0
AS
530 if (struct_return)
531 {
e17a4113 532 store_unsigned_integer (buf, 4, byte_order, struct_addr);
f595cb19 533 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
534 }
535
536 /* Store return address. */
537 sp -= 4;
e17a4113 538 store_unsigned_integer (buf, 4, byte_order, bp_addr);
8de307e0
AS
539 write_memory (sp, buf, 4);
540
541 /* Finally, update the stack pointer... */
e17a4113 542 store_unsigned_integer (buf, 4, byte_order, sp);
8de307e0
AS
543 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
544
545 /* ...and fake a frame pointer. */
546 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
547
548 /* DWARF2/GCC uses the stack address *before* the function call as a
549 frame's CFA. */
550 return sp + 8;
7f8e7424 551}
6dd0fba6
NS
552
553/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
554
555static int
d3f73121 556m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
6dd0fba6
NS
557{
558 if (num < 8)
559 /* d0..7 */
560 return (num - 0) + M68K_D0_REGNUM;
561 else if (num < 16)
562 /* a0..7 */
563 return (num - 8) + M68K_A0_REGNUM;
d3f73121 564 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
6dd0fba6
NS
565 /* fp0..7 */
566 return (num - 16) + M68K_FP0_REGNUM;
567 else if (num == 25)
568 /* pc */
569 return M68K_PC_REGNUM;
570 else
0fde2c53 571 return -1;
6dd0fba6
NS
572}
573
8de307e0
AS
574\f
575struct m68k_frame_cache
576{
577 /* Base address. */
578 CORE_ADDR base;
579 CORE_ADDR sp_offset;
580 CORE_ADDR pc;
7f8e7424 581
8de307e0
AS
582 /* Saved registers. */
583 CORE_ADDR saved_regs[M68K_NUM_REGS];
584 CORE_ADDR saved_sp;
7f8e7424 585
8de307e0
AS
586 /* Stack space reserved for local variables. */
587 long locals;
588};
c906108c 589
8de307e0
AS
590/* Allocate and initialize a frame cache. */
591
592static struct m68k_frame_cache *
593m68k_alloc_frame_cache (void)
c906108c 594{
8de307e0
AS
595 struct m68k_frame_cache *cache;
596 int i;
c906108c 597
8de307e0 598 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 599
8de307e0
AS
600 /* Base address. */
601 cache->base = 0;
602 cache->sp_offset = -4;
603 cache->pc = 0;
c906108c 604
8de307e0
AS
605 /* Saved registers. We initialize these to -1 since zero is a valid
606 offset (that's where %fp is supposed to be stored). */
607 for (i = 0; i < M68K_NUM_REGS; i++)
608 cache->saved_regs[i] = -1;
609
610 /* Frameless until proven otherwise. */
611 cache->locals = -1;
612
613 return cache;
c906108c
SS
614}
615
8de307e0
AS
616/* Check whether PC points at a code that sets up a new stack frame.
617 If so, it updates CACHE and returns the address of the first
618 instruction after the sequence that sets removes the "hidden"
619 argument from the stack or CURRENT_PC, whichever is smaller.
620 Otherwise, return PC. */
c906108c 621
8de307e0 622static CORE_ADDR
e17a4113
UW
623m68k_analyze_frame_setup (struct gdbarch *gdbarch,
624 CORE_ADDR pc, CORE_ADDR current_pc,
8de307e0 625 struct m68k_frame_cache *cache)
c906108c 626{
e17a4113 627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0
AS
628 int op;
629
630 if (pc >= current_pc)
631 return current_pc;
c906108c 632
e17a4113 633 op = read_memory_unsigned_integer (pc, 2, byte_order);
8de307e0
AS
634
635 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 636 {
8de307e0
AS
637 cache->saved_regs[M68K_FP_REGNUM] = 0;
638 cache->sp_offset += 4;
639 if (op == P_LINKW_FP)
640 {
641 /* link.w %fp, #-N */
642 /* link.w %fp, #0; adda.l #-N, %sp */
e17a4113 643 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0
AS
644
645 if (pc + 4 < current_pc && cache->locals == 0)
646 {
e17a4113 647 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
8de307e0
AS
648 if (op == P_ADDAL_SP)
649 {
e17a4113 650 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
8de307e0
AS
651 return pc + 10;
652 }
653 }
654
655 return pc + 4;
656 }
657 else if (op == P_LINKL_FP)
c906108c 658 {
8de307e0 659 /* link.l %fp, #-N */
e17a4113 660 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0
AS
661 return pc + 6;
662 }
663 else
664 {
665 /* pea (%fp); movea.l %sp, %fp */
666 cache->locals = 0;
667
668 if (pc + 2 < current_pc)
669 {
e17a4113 670 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
671
672 if (op == P_MOVEAL_SP_FP)
673 {
674 /* move.l %sp, %fp */
675 return pc + 4;
676 }
677 }
678
679 return pc + 2;
c906108c
SS
680 }
681 }
8de307e0 682 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 683 {
8de307e0
AS
684 /* subq.[wl] #N,%sp */
685 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
686 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
687 if (pc + 2 < current_pc)
c906108c 688 {
e17a4113 689 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
690 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
691 {
692 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
693 return pc + 4;
694 }
c906108c 695 }
8de307e0
AS
696 return pc + 2;
697 }
698 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
699 {
700 /* adda.w #-N,%sp */
701 /* lea (-N,%sp),%sp */
e17a4113 702 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0 703 return pc + 4;
c906108c 704 }
8de307e0 705 else if (op == P_ADDAL_SP)
c906108c 706 {
8de307e0 707 /* adda.l #-N,%sp */
e17a4113 708 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0 709 return pc + 6;
c906108c 710 }
8de307e0
AS
711
712 return pc;
c906108c 713}
c5aa993b 714
8de307e0
AS
715/* Check whether PC points at code that saves registers on the stack.
716 If so, it updates CACHE and returns the address of the first
717 instruction after the register saves or CURRENT_PC, whichever is
718 smaller. Otherwise, return PC. */
c906108c 719
8de307e0 720static CORE_ADDR
be8626e0
MD
721m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
722 CORE_ADDR current_pc,
8de307e0
AS
723 struct m68k_frame_cache *cache)
724{
e17a4113
UW
725 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
726
8de307e0
AS
727 if (cache->locals >= 0)
728 {
729 CORE_ADDR offset;
730 int op;
731 int i, mask, regno;
c906108c 732
8de307e0
AS
733 offset = -4 - cache->locals;
734 while (pc < current_pc)
735 {
e17a4113 736 op = read_memory_unsigned_integer (pc, 2, byte_order);
8ed86d01 737 if (op == P_FMOVEMX_SP
be8626e0 738 && gdbarch_tdep (gdbarch)->fpregs_present)
8de307e0
AS
739 {
740 /* fmovem.x REGS,-(%sp) */
e17a4113 741 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
742 if ((op & 0xff00) == 0xe000)
743 {
744 mask = op & 0xff;
745 for (i = 0; i < 16; i++, mask >>= 1)
746 {
747 if (mask & 1)
748 {
749 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
750 offset -= 12;
751 }
752 }
753 pc += 4;
754 }
755 else
756 break;
757 }
0ba5a932 758 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
759 {
760 /* move.l %R,-(%sp) */
0ba5a932 761 regno = op & 017;
8de307e0
AS
762 cache->saved_regs[regno] = offset;
763 offset -= 4;
764 pc += 2;
765 }
766 else if (op == P_MOVEML_SP)
767 {
768 /* movem.l REGS,-(%sp) */
e17a4113 769 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
770 for (i = 0; i < 16; i++, mask >>= 1)
771 {
772 if (mask & 1)
773 {
774 cache->saved_regs[15 - i] = offset;
775 offset -= 4;
776 }
777 }
778 pc += 4;
779 }
780 else
781 break;
782 }
783 }
784
785 return pc;
786}
c906108c 787
c906108c 788
8de307e0
AS
789/* Do a full analysis of the prologue at PC and update CACHE
790 accordingly. Bail out early if CURRENT_PC is reached. Return the
791 address where the analysis stopped.
c906108c 792
8de307e0 793 We handle all cases that can be generated by gcc.
c906108c 794
8de307e0 795 For allocating a stack frame:
c906108c 796
8de307e0
AS
797 link.w %a6,#-N
798 link.l %a6,#-N
799 pea (%fp); move.l %sp,%fp
800 link.w %a6,#0; add.l #-N,%sp
801 subq.l #N,%sp
802 subq.w #N,%sp
803 subq.w #8,%sp; subq.w #N-8,%sp
804 add.w #-N,%sp
805 lea (-N,%sp),%sp
806 add.l #-N,%sp
c906108c 807
8de307e0 808 For saving registers:
c906108c 809
8de307e0
AS
810 fmovem.x REGS,-(%sp)
811 move.l R1,-(%sp)
812 move.l R1,-(%sp); move.l R2,-(%sp)
813 movem.l REGS,-(%sp)
c906108c 814
8de307e0 815 For setting up the PIC register:
c906108c 816
8de307e0 817 lea (%pc,N),%a5
c906108c 818
8de307e0 819 */
c906108c 820
eb2e12d7 821static CORE_ADDR
be8626e0
MD
822m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
823 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
c906108c 824{
e17a4113 825 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 826 unsigned int op;
c906108c 827
e17a4113 828 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
be8626e0 829 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
8de307e0
AS
830 if (pc >= current_pc)
831 return current_pc;
c906108c 832
8de307e0 833 /* Check for GOT setup. */
e17a4113 834 op = read_memory_unsigned_integer (pc, 4, byte_order);
8de307e0 835 if (op == P_LEA_PC_A5)
c906108c 836 {
8de307e0 837 /* lea (%pc,N),%a5 */
e4d8bc08 838 return pc + 8;
c906108c 839 }
8de307e0
AS
840
841 return pc;
c906108c
SS
842}
843
8de307e0 844/* Return PC of first real instruction. */
7f8e7424 845
8de307e0 846static CORE_ADDR
6093d2eb 847m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 848{
8de307e0
AS
849 struct m68k_frame_cache cache;
850 CORE_ADDR pc;
c906108c 851
8de307e0 852 cache.locals = -1;
be8626e0 853 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
8de307e0
AS
854 if (cache.locals < 0)
855 return start_pc;
856 return pc;
857}
c906108c 858
8de307e0
AS
859static CORE_ADDR
860m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
861{
f5cf7aa1 862 gdb_byte buf[8];
7f8e7424 863
c984b7ff 864 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 865 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
8de307e0
AS
866}
867\f
868/* Normal frames. */
7f8e7424 869
8de307e0 870static struct m68k_frame_cache *
f36bf22c 871m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
8de307e0 872{
e17a4113
UW
873 struct gdbarch *gdbarch = get_frame_arch (this_frame);
874 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 875 struct m68k_frame_cache *cache;
f5cf7aa1 876 gdb_byte buf[4];
8de307e0
AS
877 int i;
878
879 if (*this_cache)
9a3c8263 880 return (struct m68k_frame_cache *) *this_cache;
8de307e0
AS
881
882 cache = m68k_alloc_frame_cache ();
883 *this_cache = cache;
884
885 /* In principle, for normal frames, %fp holds the frame pointer,
886 which holds the base address for the current stack frame.
887 However, for functions that don't need it, the frame pointer is
888 optional. For these "frameless" functions the frame pointer is
889 actually the frame pointer of the calling frame. Signal
890 trampolines are just a special case of a "frameless" function.
891 They (usually) share their frame pointer with the frame that was
892 in progress when the signal occurred. */
893
f36bf22c 894 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
e17a4113 895 cache->base = extract_unsigned_integer (buf, 4, byte_order);
8de307e0
AS
896 if (cache->base == 0)
897 return cache;
898
899 /* For normal frames, %pc is stored at 4(%fp). */
900 cache->saved_regs[M68K_PC_REGNUM] = 4;
901
f36bf22c 902 cache->pc = get_frame_func (this_frame);
8de307e0 903 if (cache->pc != 0)
f36bf22c
AS
904 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
905 get_frame_pc (this_frame), cache);
8de307e0
AS
906
907 if (cache->locals < 0)
908 {
909 /* We didn't find a valid frame, which means that CACHE->base
910 currently holds the frame pointer for our calling frame. If
911 we're at the start of a function, or somewhere half-way its
912 prologue, the function's frame probably hasn't been fully
913 setup yet. Try to reconstruct the base address for the stack
914 frame by looking at the stack pointer. For truly "frameless"
915 functions this might work too. */
916
f36bf22c 917 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
e17a4113
UW
918 cache->base = extract_unsigned_integer (buf, 4, byte_order)
919 + cache->sp_offset;
8de307e0 920 }
7f8e7424 921
8de307e0
AS
922 /* Now that we have the base address for the stack frame we can
923 calculate the value of %sp in the calling frame. */
924 cache->saved_sp = cache->base + 8;
7f8e7424 925
8de307e0
AS
926 /* Adjust all the saved registers such that they contain addresses
927 instead of offsets. */
928 for (i = 0; i < M68K_NUM_REGS; i++)
929 if (cache->saved_regs[i] != -1)
930 cache->saved_regs[i] += cache->base;
c906108c 931
8de307e0
AS
932 return cache;
933}
c906108c 934
8de307e0 935static void
f36bf22c 936m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
8de307e0
AS
937 struct frame_id *this_id)
938{
f36bf22c 939 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
c906108c 940
8de307e0
AS
941 /* This marks the outermost frame. */
942 if (cache->base == 0)
943 return;
c5aa993b 944
8de307e0
AS
945 /* See the end of m68k_push_dummy_call. */
946 *this_id = frame_id_build (cache->base + 8, cache->pc);
947}
c5aa993b 948
f36bf22c
AS
949static struct value *
950m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
951 int regnum)
8de307e0 952{
f36bf22c 953 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
954
955 gdb_assert (regnum >= 0);
956
957 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
f36bf22c 958 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
8de307e0
AS
959
960 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
f36bf22c
AS
961 return frame_unwind_got_memory (this_frame, regnum,
962 cache->saved_regs[regnum]);
8de307e0 963
f36bf22c 964 return frame_unwind_got_register (this_frame, regnum, regnum);
8de307e0
AS
965}
966
967static const struct frame_unwind m68k_frame_unwind =
968{
969 NORMAL_FRAME,
8fbca658 970 default_frame_unwind_stop_reason,
8de307e0 971 m68k_frame_this_id,
f36bf22c
AS
972 m68k_frame_prev_register,
973 NULL,
974 default_frame_sniffer
8de307e0 975};
8de307e0 976\f
8de307e0 977static CORE_ADDR
f36bf22c 978m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
8de307e0 979{
f36bf22c 980 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
981
982 return cache->base;
983}
984
985static const struct frame_base m68k_frame_base =
986{
987 &m68k_frame_unwind,
988 m68k_frame_base_address,
989 m68k_frame_base_address,
990 m68k_frame_base_address
991};
992
993static struct frame_id
f36bf22c 994m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
8de307e0 995{
8de307e0 996 CORE_ADDR fp;
c906108c 997
f36bf22c 998 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
c906108c 999
8de307e0 1000 /* See the end of m68k_push_dummy_call. */
f36bf22c 1001 return frame_id_build (fp + 8, get_frame_pc (this_frame));
8de307e0
AS
1002}
1003\f
c906108c 1004
c906108c
SS
1005/* Figure out where the longjmp will land. Slurp the args out of the stack.
1006 We expect the first arg to be a pointer to the jmp_buf structure from which
1007 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
025bb325 1008 This routine returns true on success. */
c906108c 1009
c34d127c 1010static int
60ade65d 1011m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1012{
f5cf7aa1 1013 gdb_byte *buf;
c906108c 1014 CORE_ADDR sp, jb_addr;
c984b7ff 1015 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
1016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1017 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
eb2e12d7
AS
1018
1019 if (tdep->jb_pc < 0)
1020 {
1021 internal_error (__FILE__, __LINE__,
e2e0b3e5 1022 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
1023 return 0;
1024 }
c906108c 1025
224c3ddb 1026 buf = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
c984b7ff 1027 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
c906108c 1028
025bb325 1029 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
c984b7ff 1030 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1031 return 0;
1032
c984b7ff 1033 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1034 / TARGET_CHAR_BIT, byte_order);
c906108c 1035
eb2e12d7 1036 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
e17a4113
UW
1037 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1038 byte_order)
c906108c
SS
1039 return 0;
1040
c984b7ff 1041 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1042 / TARGET_CHAR_BIT, byte_order);
c906108c
SS
1043 return 1;
1044}
f595cb19
MK
1045\f
1046
18648a37
YQ
1047/* This is the implementation of gdbarch method
1048 return_in_first_hidden_param_p. */
1049
1050static int
1051m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1052 struct type *type)
1053{
1054 return 0;
1055}
1056
f595cb19
MK
1057/* System V Release 4 (SVR4). */
1058
1059void
1060m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1061{
1062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1063
1064 /* SVR4 uses a different calling convention. */
1065 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1066
1067 /* SVR4 uses %a0 instead of %a1. */
1068 tdep->struct_value_regnum = M68K_A0_REGNUM;
1069}
1070\f
c906108c 1071
152d9db6
GS
1072/* Function: m68k_gdbarch_init
1073 Initializer function for the m68k gdbarch vector.
025bb325 1074 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
152d9db6
GS
1075
1076static struct gdbarch *
1077m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1078{
1079 struct gdbarch_tdep *tdep = NULL;
1080 struct gdbarch *gdbarch;
8ed86d01
VP
1081 struct gdbarch_list *best_arch;
1082 struct tdesc_arch_data *tdesc_data = NULL;
1083 int i;
1084 enum m68k_flavour flavour = m68k_no_flavour;
1085 int has_fp = 1;
1086 const struct floatformat **long_double_format = floatformats_m68881_ext;
1087
1088 /* Check any target description for validity. */
1089 if (tdesc_has_registers (info.target_desc))
1090 {
1091 const struct tdesc_feature *feature;
1092 int valid_p;
152d9db6 1093
8ed86d01
VP
1094 feature = tdesc_find_feature (info.target_desc,
1095 "org.gnu.gdb.m68k.core");
8ed86d01
VP
1096
1097 if (feature == NULL)
1098 {
1099 feature = tdesc_find_feature (info.target_desc,
1100 "org.gnu.gdb.coldfire.core");
1101 if (feature != NULL)
1102 flavour = m68k_coldfire_flavour;
1103 }
1104
1105 if (feature == NULL)
1106 {
1107 feature = tdesc_find_feature (info.target_desc,
1108 "org.gnu.gdb.fido.core");
1109 if (feature != NULL)
1110 flavour = m68k_fido_flavour;
1111 }
1112
1113 if (feature == NULL)
1114 return NULL;
1115
1116 tdesc_data = tdesc_data_alloc ();
1117
1118 valid_p = 1;
1119 for (i = 0; i <= M68K_PC_REGNUM; i++)
1120 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1121 m68k_register_names[i]);
1122
1123 if (!valid_p)
1124 {
1125 tdesc_data_cleanup (tdesc_data);
1126 return NULL;
1127 }
1128
1129 feature = tdesc_find_feature (info.target_desc,
1130 "org.gnu.gdb.coldfire.fp");
1131 if (feature != NULL)
1132 {
1133 valid_p = 1;
1134 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1135 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1136 m68k_register_names[i]);
1137 if (!valid_p)
1138 {
1139 tdesc_data_cleanup (tdesc_data);
1140 return NULL;
1141 }
1142 }
1143 else
1144 has_fp = 0;
1145 }
1146
1147 /* The mechanism for returning floating values from function
1148 and the type of long double depend on whether we're
025bb325 1149 on ColdFire or standard m68k. */
8ed86d01 1150
4ed77933 1151 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
8ed86d01
VP
1152 {
1153 const bfd_arch_info_type *coldfire_arch =
1154 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1155
1156 if (coldfire_arch
4ed77933
AS
1157 && ((*info.bfd_arch_info->compatible)
1158 (info.bfd_arch_info, coldfire_arch)))
8ed86d01
VP
1159 flavour = m68k_coldfire_flavour;
1160 }
1161
1162 /* If there is already a candidate, use it. */
1163 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1164 best_arch != NULL;
1165 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1166 {
1167 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1168 continue;
1169
1170 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1171 continue;
1172
1173 break;
1174 }
152d9db6 1175
0c85e18e
MK
1176 if (best_arch != NULL)
1177 {
1178 if (tdesc_data != NULL)
1179 tdesc_data_cleanup (tdesc_data);
1180 return best_arch->gdbarch;
1181 }
1182
8d749320 1183 tdep = XCNEW (struct gdbarch_tdep);
eb2e12d7 1184 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1185 tdep->fpregs_present = has_fp;
1186 tdep->flavour = flavour;
152d9db6 1187
8ed86d01
VP
1188 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1189 long_double_format = floatformats_ieee_double;
1190 set_gdbarch_long_double_format (gdbarch, long_double_format);
1191 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1192
5d3ed2e3 1193 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
04180708
YQ
1194 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m68k_breakpoint::kind_from_pc);
1195 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m68k_breakpoint::bp_from_kind);
5d3ed2e3 1196
025bb325 1197 /* Stack grows down. */
5d3ed2e3 1198 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1199 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1200
1201 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1202 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1203 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1204
6300c360 1205 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6 1206 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1207
8de307e0 1208 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1209 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1210 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1211 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1212 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1213 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
e47577ab
MK
1214 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1215 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1216 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1217
8ed86d01
VP
1218 if (has_fp)
1219 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1220
1221 /* Try to figure out if the arch uses floating registers to return
1222 floating point values from functions. */
1223 if (has_fp)
1224 {
1225 /* On ColdFire, floating point values are returned in D0. */
1226 if (flavour == m68k_coldfire_flavour)
1227 tdep->float_return = 0;
1228 else
1229 tdep->float_return = 1;
1230 }
1231 else
1232 {
1233 /* No floating registers, so can't use them for returning values. */
1234 tdep->float_return = 0;
1235 }
1236
025bb325 1237 /* Function call & return. */
8de307e0 1238 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1239 set_gdbarch_return_value (gdbarch, m68k_return_value);
18648a37
YQ
1240 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1241 m68k_return_in_first_hidden_param_p);
6c0e89ed 1242
8ed86d01 1243
650fcc91
AS
1244 /* Disassembler. */
1245 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1246
eb2e12d7
AS
1247#if defined JB_PC && defined JB_ELEMENT_SIZE
1248 tdep->jb_pc = JB_PC;
1249 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1250#else
1251 tdep->jb_pc = -1;
1252#endif
f595cb19 1253 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1254 tdep->struct_return = reg_struct_return;
8de307e0
AS
1255
1256 /* Frame unwinder. */
f36bf22c 1257 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
8de307e0 1258 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1259
1260 /* Hook in the DWARF CFI frame unwinder. */
f36bf22c 1261 dwarf2_append_unwinders (gdbarch);
3f244638 1262
8de307e0 1263 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1264
55809acb
AS
1265 /* Hook in ABI-specific overrides, if they have been registered. */
1266 gdbarch_init_osabi (info, gdbarch);
1267
eb2e12d7
AS
1268 /* Now we have tuned the configuration, set a few final things,
1269 based on what the OS ABI has told us. */
1270
1271 if (tdep->jb_pc >= 0)
1272 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1273
f36bf22c 1274 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
8de307e0 1275
8ed86d01 1276 if (tdesc_data)
7cc46491 1277 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8ed86d01 1278
152d9db6
GS
1279 return gdbarch;
1280}
1281
1282
1283static void
c984b7ff 1284m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
152d9db6 1285{
c984b7ff 1286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
152d9db6 1287
eb2e12d7
AS
1288 if (tdep == NULL)
1289 return;
152d9db6 1290}
2acceee2 1291
a78f21af
AC
1292extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1293
c906108c 1294void
fba45db2 1295_initialize_m68k_tdep (void)
c906108c 1296{
152d9db6 1297 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
c906108c 1298}
This page took 1.446849 seconds and 4 git commands to generate.