Enable support for the AArch64 dot-prod instruction in the Cortex A55 and A75 cpus.
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
3f244638 21#include "dwarf2-frame.h"
c906108c 22#include "frame.h"
8de307e0
AS
23#include "frame-base.h"
24#include "frame-unwind.h"
e6bb342a 25#include "gdbtypes.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbcore.h"
28#include "value.h"
7a292a7a 29#include "inferior.h"
4e052eda 30#include "regcache.h"
5d3ed2e3 31#include "arch-utils.h"
55809acb 32#include "osabi.h"
a89aa300 33#include "dis-asm.h"
8ed86d01 34#include "target-descriptions.h"
32eeb91a
AS
35
36#include "m68k-tdep.h"
c906108c 37\f
c5aa993b 38
89c3b6d3
PDM
39#define P_LINKL_FP 0x480e
40#define P_LINKW_FP 0x4e56
41#define P_PEA_FP 0x4856
8de307e0
AS
42#define P_MOVEAL_SP_FP 0x2c4f
43#define P_ADDAW_SP 0xdefc
44#define P_ADDAL_SP 0xdffc
45#define P_SUBQW_SP 0x514f
46#define P_SUBQL_SP 0x518f
47#define P_LEA_SP_SP 0x4fef
48#define P_LEA_PC_A5 0x4bfb0170
49#define P_FMOVEMX_SP 0xf227
50#define P_MOVEL_SP 0x2f00
51#define P_MOVEML_SP 0x48e7
89c3b6d3 52
025bb325 53/* Offset from SP to first arg on stack at first instruction of a function. */
103a1597
GS
54#define SP_ARG0 (1 * 4)
55
103a1597
GS
56#if !defined (BPT_VECTOR)
57#define BPT_VECTOR 0xf
58#endif
59
04180708 60constexpr gdb_byte m68k_break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
598cc9dc 61
04180708 62typedef BP_MANIPULATION (m68k_break_insn) m68k_breakpoint;
4713453b
AS
63\f
64
4713453b 65/* Construct types for ISA-specific registers. */
209bd28e
UW
66static struct type *
67m68k_ps_type (struct gdbarch *gdbarch)
4713453b 68{
209bd28e
UW
69 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
70
71 if (!tdep->m68k_ps_type)
72 {
73 struct type *type;
74
e9bb382b 75 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
209bd28e
UW
76 append_flags_type_flag (type, 0, "C");
77 append_flags_type_flag (type, 1, "V");
78 append_flags_type_flag (type, 2, "Z");
79 append_flags_type_flag (type, 3, "N");
80 append_flags_type_flag (type, 4, "X");
81 append_flags_type_flag (type, 8, "I0");
82 append_flags_type_flag (type, 9, "I1");
83 append_flags_type_flag (type, 10, "I2");
84 append_flags_type_flag (type, 12, "M");
85 append_flags_type_flag (type, 13, "S");
86 append_flags_type_flag (type, 14, "T0");
87 append_flags_type_flag (type, 15, "T1");
88
89 tdep->m68k_ps_type = type;
90 }
91
92 return tdep->m68k_ps_type;
4713453b 93}
103a1597 94
27067745
UW
95static struct type *
96m68881_ext_type (struct gdbarch *gdbarch)
97{
98 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
99
100 if (!tdep->m68881_ext_type)
101 tdep->m68881_ext_type
e9bb382b 102 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
27067745
UW
103 floatformats_m68881_ext);
104
105 return tdep->m68881_ext_type;
106}
107
d85fe7f7
AS
108/* Return the GDB type object for the "standard" data type of data in
109 register N. This should be int for D0-D7, SR, FPCONTROL and
110 FPSTATUS, long double for FP0-FP7, and void pointer for all others
111 (A0-A7, PC, FPIADDR). Note, for registers which contain
112 addresses return pointer to void, not pointer to char, because we
113 don't want to attempt to print the string after printing the
114 address. */
5d3ed2e3
GS
115
116static struct type *
8de307e0 117m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 118{
c984b7ff 119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
03dac896 120
8ed86d01
VP
121 if (tdep->fpregs_present)
122 {
c984b7ff
UW
123 if (regnum >= gdbarch_fp0_regnum (gdbarch)
124 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
8ed86d01
VP
125 {
126 if (tdep->flavour == m68k_coldfire_flavour)
127 return builtin_type (gdbarch)->builtin_double;
128 else
27067745 129 return m68881_ext_type (gdbarch);
8ed86d01
VP
130 }
131
132 if (regnum == M68K_FPI_REGNUM)
0dfff4cb 133 return builtin_type (gdbarch)->builtin_func_ptr;
8ed86d01
VP
134
135 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
df4df182 136 return builtin_type (gdbarch)->builtin_int32;
8ed86d01
VP
137 }
138 else
139 {
140 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
df4df182 141 return builtin_type (gdbarch)->builtin_int0;
8ed86d01 142 }
03dac896 143
c984b7ff 144 if (regnum == gdbarch_pc_regnum (gdbarch))
0dfff4cb 145 return builtin_type (gdbarch)->builtin_func_ptr;
03dac896 146
32eeb91a 147 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
0dfff4cb 148 return builtin_type (gdbarch)->builtin_data_ptr;
03dac896 149
4713453b 150 if (regnum == M68K_PS_REGNUM)
209bd28e 151 return m68k_ps_type (gdbarch);
4713453b 152
df4df182 153 return builtin_type (gdbarch)->builtin_int32;
5d3ed2e3
GS
154}
155
8ed86d01 156static const char *m68k_register_names[] = {
5d3ed2e3
GS
157 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
158 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
159 "ps", "pc",
160 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 161 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
162 };
163
8ed86d01 164/* Function: m68k_register_name
025bb325 165 Returns the name of the standard m68k register regnum. */
8ed86d01
VP
166
167static const char *
d93859e2 168m68k_register_name (struct gdbarch *gdbarch, int regnum)
8ed86d01
VP
169{
170 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 171 internal_error (__FILE__, __LINE__,
025bb325
MS
172 _("m68k_register_name: illegal register number %d"),
173 regnum);
86443c3e
MK
174 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
175 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
176 return "";
5d3ed2e3 177 else
8ed86d01 178 return m68k_register_names[regnum];
5d3ed2e3 179}
e47577ab
MK
180\f
181/* Return nonzero if a value of type TYPE stored in register REGNUM
182 needs any special handling. */
183
184static int
025bb325
MS
185m68k_convert_register_p (struct gdbarch *gdbarch,
186 int regnum, struct type *type)
e47577ab 187{
0abe36f5 188 if (!gdbarch_tdep (gdbarch)->fpregs_present)
8ed86d01 189 return 0;
83acabca 190 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
e3ec9b69
YQ
191 /* We only support floating-point values. */
192 && TYPE_CODE (type) == TYPE_CODE_FLT
3c1ac6e7 193 && type != register_type (gdbarch, M68K_FP0_REGNUM));
e47577ab
MK
194}
195
196/* Read a value of type TYPE from register REGNUM in frame FRAME, and
197 return its contents in TO. */
198
8dccd430 199static int
e47577ab 200m68k_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
201 struct type *type, gdb_byte *to,
202 int *optimizedp, int *unavailablep)
e47577ab 203{
d8e07dda 204 struct gdbarch *gdbarch = get_frame_arch (frame);
f5cf7aa1 205 gdb_byte from[M68K_MAX_REGISTER_SIZE];
e3ec9b69 206 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
e47577ab 207
e3ec9b69 208 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
8dccd430
PA
209
210 /* Convert to TYPE. */
d8e07dda
YQ
211 if (!get_frame_register_bytes (frame, regnum, 0,
212 register_size (gdbarch, regnum),
8dccd430
PA
213 from, optimizedp, unavailablep))
214 return 0;
215
8ed86d01 216 convert_typed_floating (from, fpreg_type, to, type);
8dccd430
PA
217 *optimizedp = *unavailablep = 0;
218 return 1;
e47577ab
MK
219}
220
221/* Write the contents FROM of a value of type TYPE into register
222 REGNUM in frame FRAME. */
223
224static void
225m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 226 struct type *type, const gdb_byte *from)
e47577ab 227{
f5cf7aa1 228 gdb_byte to[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
229 struct type *fpreg_type = register_type (get_frame_arch (frame),
230 M68K_FP0_REGNUM);
e47577ab
MK
231
232 /* We only support floating-point values. */
233 if (TYPE_CODE (type) != TYPE_CODE_FLT)
234 {
8a3fe4f8
AC
235 warning (_("Cannot convert non-floating-point type "
236 "to floating-point register value."));
e47577ab
MK
237 return;
238 }
239
83acabca 240 /* Convert from TYPE. */
8ed86d01 241 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
242 put_frame_register (frame, regnum, to);
243}
244
8de307e0 245\f
f595cb19
MK
246/* There is a fair number of calling conventions that are in somewhat
247 wide use. The 68000/08/10 don't support an FPU, not even as a
248 coprocessor. All function return values are stored in %d0/%d1.
249 Structures are returned in a static buffer, a pointer to which is
250 returned in %d0. This means that functions returning a structure
251 are not re-entrant. To avoid this problem some systems use a
252 convention where the caller passes a pointer to a buffer in %a1
253 where the return values is to be stored. This convention is the
254 default, and is implemented in the function m68k_return_value.
255
256 The 68020/030/040/060 do support an FPU, either as a coprocessor
257 (68881/2) or built-in (68040/68060). That's why System V release 4
258 (SVR4) instroduces a new calling convention specified by the SVR4
259 psABI. Integer values are returned in %d0/%d1, pointer return
260 values in %a0 and floating values in %fp0. When calling functions
261 returning a structure the caller should pass a pointer to a buffer
262 for the return value in %a0. This convention is implemented in the
263 function m68k_svr4_return_value, and by appropriately setting the
264 struct_value_regnum member of `struct gdbarch_tdep'.
265
266 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
267 for passing the structure return value buffer.
268
269 GCC can also generate code where small structures are returned in
270 %d0/%d1 instead of in memory by using -freg-struct-return. This is
271 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
272 embedded systems. This convention is implemented by setting the
273 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
274
275/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 276 into VALBUF. */
942dc0e9
GS
277
278static void
8de307e0 279m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 280 gdb_byte *valbuf)
942dc0e9 281{
8de307e0 282 int len = TYPE_LENGTH (type);
f5cf7aa1 283 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 284
8de307e0
AS
285 if (len <= 4)
286 {
287 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
288 memcpy (valbuf, buf + (4 - len), len);
289 }
290 else if (len <= 8)
291 {
292 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
293 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 294 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
295 }
296 else
297 internal_error (__FILE__, __LINE__,
e2e0b3e5 298 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
299}
300
942dc0e9 301static void
f595cb19 302m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 303 gdb_byte *valbuf)
942dc0e9 304{
f5cf7aa1 305 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
306 struct gdbarch *gdbarch = get_regcache_arch (regcache);
307 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942dc0e9 308
8ed86d01 309 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 310 {
c984b7ff 311 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f595cb19 312 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 313 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 314 }
354ecfd5 315 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
f595cb19
MK
316 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
317 else
318 m68k_extract_return_value (type, regcache, valbuf);
319}
320
321/* Write a function return value of TYPE from VALBUF into REGCACHE. */
322
323static void
324m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 325 const gdb_byte *valbuf)
f595cb19
MK
326{
327 int len = TYPE_LENGTH (type);
942dc0e9 328
8de307e0
AS
329 if (len <= 4)
330 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
331 else if (len <= 8)
332 {
f595cb19 333 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 334 len - 4, valbuf);
f5cf7aa1 335 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
336 }
337 else
338 internal_error (__FILE__, __LINE__,
e2e0b3e5 339 _("Cannot store return value of %d bytes long."), len);
8de307e0 340}
942dc0e9 341
f595cb19
MK
342static void
343m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 344 const gdb_byte *valbuf)
942dc0e9 345{
c984b7ff
UW
346 struct gdbarch *gdbarch = get_regcache_arch (regcache);
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8de307e0 348
8ed86d01 349 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 350 {
c984b7ff 351 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 352 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 353 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
354 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
355 }
354ecfd5 356 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
f595cb19
MK
357 {
358 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
359 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
360 }
361 else
362 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
363}
364
108fb0f7
AS
365/* Return non-zero if TYPE, which is assumed to be a structure, union or
366 complex type, should be returned in registers for architecture
f595cb19
MK
367 GDBARCH. */
368
c481dac7 369static int
f595cb19 370m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 371{
f595cb19
MK
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373 enum type_code code = TYPE_CODE (type);
374 int len = TYPE_LENGTH (type);
c481dac7 375
108fb0f7
AS
376 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
377 || code == TYPE_CODE_COMPLEX);
f595cb19
MK
378
379 if (tdep->struct_return == pcc_struct_return)
380 return 0;
381
382 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
383}
384
f595cb19
MK
385/* Determine, for architecture GDBARCH, how a return value of TYPE
386 should be returned. If it is supposed to be returned in registers,
387 and READBUF is non-zero, read the appropriate value from REGCACHE,
388 and copy it into READBUF. If WRITEBUF is non-zero, write the value
389 from WRITEBUF into REGCACHE. */
390
391static enum return_value_convention
6a3a010b 392m68k_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
393 struct type *type, struct regcache *regcache,
394 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
395{
396 enum type_code code = TYPE_CODE (type);
397
1c845060 398 /* GCC returns a `long double' in memory too. */
108fb0f7
AS
399 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
400 || code == TYPE_CODE_COMPLEX)
1c845060
MK
401 && !m68k_reg_struct_return_p (gdbarch, type))
402 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
403 {
404 /* The default on m68k is to return structures in static memory.
405 Consequently a function must return the address where we can
406 find the return value. */
f595cb19 407
1c845060
MK
408 if (readbuf)
409 {
410 ULONGEST addr;
411
412 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
413 read_memory (addr, readbuf, TYPE_LENGTH (type));
414 }
415
416 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
417 }
f595cb19
MK
418
419 if (readbuf)
420 m68k_extract_return_value (type, regcache, readbuf);
421 if (writebuf)
422 m68k_store_return_value (type, regcache, writebuf);
423
424 return RETURN_VALUE_REGISTER_CONVENTION;
425}
426
427static enum return_value_convention
6a3a010b 428m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
429 struct type *type, struct regcache *regcache,
430 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
431{
432 enum type_code code = TYPE_CODE (type);
433
108fb0f7
AS
434 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
435 || code == TYPE_CODE_COMPLEX)
f595cb19 436 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
437 {
438 /* The System V ABI says that:
439
440 "A function returning a structure or union also sets %a0 to
441 the value it finds in %a0. Thus when the caller receives
442 control again, the address of the returned object resides in
443 register %a0."
444
445 So the ABI guarantees that we can always find the return
446 value just after the function has returned. */
447
448 if (readbuf)
449 {
450 ULONGEST addr;
451
452 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
453 read_memory (addr, readbuf, TYPE_LENGTH (type));
454 }
455
456 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
457 }
f595cb19
MK
458
459 /* This special case is for structures consisting of a single
460 `float' or `double' member. These structures are returned in
461 %fp0. For these structures, we call ourselves recursively,
462 changing TYPE into the type of the first member of the structure.
463 Since that should work for all structures that have only one
464 member, we don't bother to check the member's type here. */
465 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
466 {
467 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 468 return m68k_svr4_return_value (gdbarch, function, type, regcache,
f595cb19
MK
469 readbuf, writebuf);
470 }
471
472 if (readbuf)
473 m68k_svr4_extract_return_value (type, regcache, readbuf);
474 if (writebuf)
475 m68k_svr4_store_return_value (type, regcache, writebuf);
476
477 return RETURN_VALUE_REGISTER_CONVENTION;
478}
479\f
392a587b 480
9bb47d95
NS
481/* Always align the frame to a 4-byte boundary. This is required on
482 coldfire and harmless on the rest. */
483
484static CORE_ADDR
485m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
486{
487 /* Align the stack to four bytes. */
488 return sp & ~3;
489}
490
8de307e0 491static CORE_ADDR
7d9b040b 492m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
493 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
494 struct value **args, CORE_ADDR sp, int struct_return,
495 CORE_ADDR struct_addr)
7f8e7424 496{
f595cb19 497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f5cf7aa1 499 gdb_byte buf[4];
8de307e0
AS
500 int i;
501
502 /* Push arguments in reverse order. */
503 for (i = nargs - 1; i >= 0; i--)
504 {
4754a64e 505 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 506 int len = TYPE_LENGTH (value_type);
8de307e0 507 int container_len = (len + 3) & ~3;
c481dac7
AS
508 int offset;
509
510 /* Non-scalars bigger than 4 bytes are left aligned, others are
511 right aligned. */
512 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
513 || TYPE_CODE (value_type) == TYPE_CODE_UNION
514 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
515 && len > 4)
516 offset = 0;
517 else
518 offset = container_len - len;
8de307e0 519 sp -= container_len;
46615f07 520 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
521 }
522
c481dac7 523 /* Store struct value address. */
8de307e0
AS
524 if (struct_return)
525 {
e17a4113 526 store_unsigned_integer (buf, 4, byte_order, struct_addr);
f595cb19 527 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
528 }
529
530 /* Store return address. */
531 sp -= 4;
e17a4113 532 store_unsigned_integer (buf, 4, byte_order, bp_addr);
8de307e0
AS
533 write_memory (sp, buf, 4);
534
535 /* Finally, update the stack pointer... */
e17a4113 536 store_unsigned_integer (buf, 4, byte_order, sp);
8de307e0
AS
537 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
538
539 /* ...and fake a frame pointer. */
540 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
541
542 /* DWARF2/GCC uses the stack address *before* the function call as a
543 frame's CFA. */
544 return sp + 8;
7f8e7424 545}
6dd0fba6
NS
546
547/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
548
549static int
d3f73121 550m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
6dd0fba6
NS
551{
552 if (num < 8)
553 /* d0..7 */
554 return (num - 0) + M68K_D0_REGNUM;
555 else if (num < 16)
556 /* a0..7 */
557 return (num - 8) + M68K_A0_REGNUM;
d3f73121 558 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
6dd0fba6
NS
559 /* fp0..7 */
560 return (num - 16) + M68K_FP0_REGNUM;
561 else if (num == 25)
562 /* pc */
563 return M68K_PC_REGNUM;
564 else
0fde2c53 565 return -1;
6dd0fba6
NS
566}
567
8de307e0
AS
568\f
569struct m68k_frame_cache
570{
571 /* Base address. */
572 CORE_ADDR base;
573 CORE_ADDR sp_offset;
574 CORE_ADDR pc;
7f8e7424 575
8de307e0
AS
576 /* Saved registers. */
577 CORE_ADDR saved_regs[M68K_NUM_REGS];
578 CORE_ADDR saved_sp;
7f8e7424 579
8de307e0
AS
580 /* Stack space reserved for local variables. */
581 long locals;
582};
c906108c 583
8de307e0
AS
584/* Allocate and initialize a frame cache. */
585
586static struct m68k_frame_cache *
587m68k_alloc_frame_cache (void)
c906108c 588{
8de307e0
AS
589 struct m68k_frame_cache *cache;
590 int i;
c906108c 591
8de307e0 592 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 593
8de307e0
AS
594 /* Base address. */
595 cache->base = 0;
596 cache->sp_offset = -4;
597 cache->pc = 0;
c906108c 598
8de307e0
AS
599 /* Saved registers. We initialize these to -1 since zero is a valid
600 offset (that's where %fp is supposed to be stored). */
601 for (i = 0; i < M68K_NUM_REGS; i++)
602 cache->saved_regs[i] = -1;
603
604 /* Frameless until proven otherwise. */
605 cache->locals = -1;
606
607 return cache;
c906108c
SS
608}
609
8de307e0
AS
610/* Check whether PC points at a code that sets up a new stack frame.
611 If so, it updates CACHE and returns the address of the first
612 instruction after the sequence that sets removes the "hidden"
613 argument from the stack or CURRENT_PC, whichever is smaller.
614 Otherwise, return PC. */
c906108c 615
8de307e0 616static CORE_ADDR
e17a4113
UW
617m68k_analyze_frame_setup (struct gdbarch *gdbarch,
618 CORE_ADDR pc, CORE_ADDR current_pc,
8de307e0 619 struct m68k_frame_cache *cache)
c906108c 620{
e17a4113 621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0
AS
622 int op;
623
624 if (pc >= current_pc)
625 return current_pc;
c906108c 626
e17a4113 627 op = read_memory_unsigned_integer (pc, 2, byte_order);
8de307e0
AS
628
629 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 630 {
8de307e0
AS
631 cache->saved_regs[M68K_FP_REGNUM] = 0;
632 cache->sp_offset += 4;
633 if (op == P_LINKW_FP)
634 {
635 /* link.w %fp, #-N */
636 /* link.w %fp, #0; adda.l #-N, %sp */
e17a4113 637 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0
AS
638
639 if (pc + 4 < current_pc && cache->locals == 0)
640 {
e17a4113 641 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
8de307e0
AS
642 if (op == P_ADDAL_SP)
643 {
e17a4113 644 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
8de307e0
AS
645 return pc + 10;
646 }
647 }
648
649 return pc + 4;
650 }
651 else if (op == P_LINKL_FP)
c906108c 652 {
8de307e0 653 /* link.l %fp, #-N */
e17a4113 654 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0
AS
655 return pc + 6;
656 }
657 else
658 {
659 /* pea (%fp); movea.l %sp, %fp */
660 cache->locals = 0;
661
662 if (pc + 2 < current_pc)
663 {
e17a4113 664 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
665
666 if (op == P_MOVEAL_SP_FP)
667 {
668 /* move.l %sp, %fp */
669 return pc + 4;
670 }
671 }
672
673 return pc + 2;
c906108c
SS
674 }
675 }
8de307e0 676 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 677 {
8de307e0
AS
678 /* subq.[wl] #N,%sp */
679 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
680 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
681 if (pc + 2 < current_pc)
c906108c 682 {
e17a4113 683 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
684 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
685 {
686 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
687 return pc + 4;
688 }
c906108c 689 }
8de307e0
AS
690 return pc + 2;
691 }
692 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
693 {
694 /* adda.w #-N,%sp */
695 /* lea (-N,%sp),%sp */
e17a4113 696 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0 697 return pc + 4;
c906108c 698 }
8de307e0 699 else if (op == P_ADDAL_SP)
c906108c 700 {
8de307e0 701 /* adda.l #-N,%sp */
e17a4113 702 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0 703 return pc + 6;
c906108c 704 }
8de307e0
AS
705
706 return pc;
c906108c 707}
c5aa993b 708
8de307e0
AS
709/* Check whether PC points at code that saves registers on the stack.
710 If so, it updates CACHE and returns the address of the first
711 instruction after the register saves or CURRENT_PC, whichever is
712 smaller. Otherwise, return PC. */
c906108c 713
8de307e0 714static CORE_ADDR
be8626e0
MD
715m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
716 CORE_ADDR current_pc,
8de307e0
AS
717 struct m68k_frame_cache *cache)
718{
e17a4113
UW
719 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
720
8de307e0
AS
721 if (cache->locals >= 0)
722 {
723 CORE_ADDR offset;
724 int op;
725 int i, mask, regno;
c906108c 726
8de307e0
AS
727 offset = -4 - cache->locals;
728 while (pc < current_pc)
729 {
e17a4113 730 op = read_memory_unsigned_integer (pc, 2, byte_order);
8ed86d01 731 if (op == P_FMOVEMX_SP
be8626e0 732 && gdbarch_tdep (gdbarch)->fpregs_present)
8de307e0
AS
733 {
734 /* fmovem.x REGS,-(%sp) */
e17a4113 735 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
736 if ((op & 0xff00) == 0xe000)
737 {
738 mask = op & 0xff;
739 for (i = 0; i < 16; i++, mask >>= 1)
740 {
741 if (mask & 1)
742 {
743 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
744 offset -= 12;
745 }
746 }
747 pc += 4;
748 }
749 else
750 break;
751 }
0ba5a932 752 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
753 {
754 /* move.l %R,-(%sp) */
0ba5a932 755 regno = op & 017;
8de307e0
AS
756 cache->saved_regs[regno] = offset;
757 offset -= 4;
758 pc += 2;
759 }
760 else if (op == P_MOVEML_SP)
761 {
762 /* movem.l REGS,-(%sp) */
e17a4113 763 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
764 for (i = 0; i < 16; i++, mask >>= 1)
765 {
766 if (mask & 1)
767 {
768 cache->saved_regs[15 - i] = offset;
769 offset -= 4;
770 }
771 }
772 pc += 4;
773 }
774 else
775 break;
776 }
777 }
778
779 return pc;
780}
c906108c 781
c906108c 782
8de307e0
AS
783/* Do a full analysis of the prologue at PC and update CACHE
784 accordingly. Bail out early if CURRENT_PC is reached. Return the
785 address where the analysis stopped.
c906108c 786
8de307e0 787 We handle all cases that can be generated by gcc.
c906108c 788
8de307e0 789 For allocating a stack frame:
c906108c 790
8de307e0
AS
791 link.w %a6,#-N
792 link.l %a6,#-N
793 pea (%fp); move.l %sp,%fp
794 link.w %a6,#0; add.l #-N,%sp
795 subq.l #N,%sp
796 subq.w #N,%sp
797 subq.w #8,%sp; subq.w #N-8,%sp
798 add.w #-N,%sp
799 lea (-N,%sp),%sp
800 add.l #-N,%sp
c906108c 801
8de307e0 802 For saving registers:
c906108c 803
8de307e0
AS
804 fmovem.x REGS,-(%sp)
805 move.l R1,-(%sp)
806 move.l R1,-(%sp); move.l R2,-(%sp)
807 movem.l REGS,-(%sp)
c906108c 808
8de307e0 809 For setting up the PIC register:
c906108c 810
8de307e0 811 lea (%pc,N),%a5
c906108c 812
8de307e0 813 */
c906108c 814
eb2e12d7 815static CORE_ADDR
be8626e0
MD
816m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
817 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
c906108c 818{
e17a4113 819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 820 unsigned int op;
c906108c 821
e17a4113 822 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
be8626e0 823 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
8de307e0
AS
824 if (pc >= current_pc)
825 return current_pc;
c906108c 826
8de307e0 827 /* Check for GOT setup. */
e17a4113 828 op = read_memory_unsigned_integer (pc, 4, byte_order);
8de307e0 829 if (op == P_LEA_PC_A5)
c906108c 830 {
8de307e0 831 /* lea (%pc,N),%a5 */
e4d8bc08 832 return pc + 8;
c906108c 833 }
8de307e0
AS
834
835 return pc;
c906108c
SS
836}
837
8de307e0 838/* Return PC of first real instruction. */
7f8e7424 839
8de307e0 840static CORE_ADDR
6093d2eb 841m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 842{
8de307e0
AS
843 struct m68k_frame_cache cache;
844 CORE_ADDR pc;
c906108c 845
8de307e0 846 cache.locals = -1;
be8626e0 847 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
8de307e0
AS
848 if (cache.locals < 0)
849 return start_pc;
850 return pc;
851}
c906108c 852
8de307e0
AS
853static CORE_ADDR
854m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
855{
f5cf7aa1 856 gdb_byte buf[8];
7f8e7424 857
c984b7ff 858 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 859 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
8de307e0
AS
860}
861\f
862/* Normal frames. */
7f8e7424 863
8de307e0 864static struct m68k_frame_cache *
f36bf22c 865m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
8de307e0 866{
e17a4113
UW
867 struct gdbarch *gdbarch = get_frame_arch (this_frame);
868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 869 struct m68k_frame_cache *cache;
f5cf7aa1 870 gdb_byte buf[4];
8de307e0
AS
871 int i;
872
873 if (*this_cache)
9a3c8263 874 return (struct m68k_frame_cache *) *this_cache;
8de307e0
AS
875
876 cache = m68k_alloc_frame_cache ();
877 *this_cache = cache;
878
879 /* In principle, for normal frames, %fp holds the frame pointer,
880 which holds the base address for the current stack frame.
881 However, for functions that don't need it, the frame pointer is
882 optional. For these "frameless" functions the frame pointer is
883 actually the frame pointer of the calling frame. Signal
884 trampolines are just a special case of a "frameless" function.
885 They (usually) share their frame pointer with the frame that was
886 in progress when the signal occurred. */
887
f36bf22c 888 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
e17a4113 889 cache->base = extract_unsigned_integer (buf, 4, byte_order);
8de307e0
AS
890 if (cache->base == 0)
891 return cache;
892
893 /* For normal frames, %pc is stored at 4(%fp). */
894 cache->saved_regs[M68K_PC_REGNUM] = 4;
895
f36bf22c 896 cache->pc = get_frame_func (this_frame);
8de307e0 897 if (cache->pc != 0)
f36bf22c
AS
898 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
899 get_frame_pc (this_frame), cache);
8de307e0
AS
900
901 if (cache->locals < 0)
902 {
903 /* We didn't find a valid frame, which means that CACHE->base
904 currently holds the frame pointer for our calling frame. If
905 we're at the start of a function, or somewhere half-way its
906 prologue, the function's frame probably hasn't been fully
907 setup yet. Try to reconstruct the base address for the stack
908 frame by looking at the stack pointer. For truly "frameless"
909 functions this might work too. */
910
f36bf22c 911 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
e17a4113
UW
912 cache->base = extract_unsigned_integer (buf, 4, byte_order)
913 + cache->sp_offset;
8de307e0 914 }
7f8e7424 915
8de307e0
AS
916 /* Now that we have the base address for the stack frame we can
917 calculate the value of %sp in the calling frame. */
918 cache->saved_sp = cache->base + 8;
7f8e7424 919
8de307e0
AS
920 /* Adjust all the saved registers such that they contain addresses
921 instead of offsets. */
922 for (i = 0; i < M68K_NUM_REGS; i++)
923 if (cache->saved_regs[i] != -1)
924 cache->saved_regs[i] += cache->base;
c906108c 925
8de307e0
AS
926 return cache;
927}
c906108c 928
8de307e0 929static void
f36bf22c 930m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
8de307e0
AS
931 struct frame_id *this_id)
932{
f36bf22c 933 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
c906108c 934
8de307e0
AS
935 /* This marks the outermost frame. */
936 if (cache->base == 0)
937 return;
c5aa993b 938
8de307e0
AS
939 /* See the end of m68k_push_dummy_call. */
940 *this_id = frame_id_build (cache->base + 8, cache->pc);
941}
c5aa993b 942
f36bf22c
AS
943static struct value *
944m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
945 int regnum)
8de307e0 946{
f36bf22c 947 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
948
949 gdb_assert (regnum >= 0);
950
951 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
f36bf22c 952 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
8de307e0
AS
953
954 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
f36bf22c
AS
955 return frame_unwind_got_memory (this_frame, regnum,
956 cache->saved_regs[regnum]);
8de307e0 957
f36bf22c 958 return frame_unwind_got_register (this_frame, regnum, regnum);
8de307e0
AS
959}
960
961static const struct frame_unwind m68k_frame_unwind =
962{
963 NORMAL_FRAME,
8fbca658 964 default_frame_unwind_stop_reason,
8de307e0 965 m68k_frame_this_id,
f36bf22c
AS
966 m68k_frame_prev_register,
967 NULL,
968 default_frame_sniffer
8de307e0 969};
8de307e0 970\f
8de307e0 971static CORE_ADDR
f36bf22c 972m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
8de307e0 973{
f36bf22c 974 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
975
976 return cache->base;
977}
978
979static const struct frame_base m68k_frame_base =
980{
981 &m68k_frame_unwind,
982 m68k_frame_base_address,
983 m68k_frame_base_address,
984 m68k_frame_base_address
985};
986
987static struct frame_id
f36bf22c 988m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
8de307e0 989{
8de307e0 990 CORE_ADDR fp;
c906108c 991
f36bf22c 992 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
c906108c 993
8de307e0 994 /* See the end of m68k_push_dummy_call. */
f36bf22c 995 return frame_id_build (fp + 8, get_frame_pc (this_frame));
8de307e0
AS
996}
997\f
c906108c 998
c906108c
SS
999/* Figure out where the longjmp will land. Slurp the args out of the stack.
1000 We expect the first arg to be a pointer to the jmp_buf structure from which
1001 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
025bb325 1002 This routine returns true on success. */
c906108c 1003
c34d127c 1004static int
60ade65d 1005m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1006{
f5cf7aa1 1007 gdb_byte *buf;
c906108c 1008 CORE_ADDR sp, jb_addr;
c984b7ff 1009 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
1010 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
eb2e12d7
AS
1012
1013 if (tdep->jb_pc < 0)
1014 {
1015 internal_error (__FILE__, __LINE__,
e2e0b3e5 1016 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
1017 return 0;
1018 }
c906108c 1019
224c3ddb 1020 buf = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
c984b7ff 1021 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
c906108c 1022
025bb325 1023 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
c984b7ff 1024 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1025 return 0;
1026
c984b7ff 1027 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1028 / TARGET_CHAR_BIT, byte_order);
c906108c 1029
eb2e12d7 1030 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
e17a4113
UW
1031 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1032 byte_order)
c906108c
SS
1033 return 0;
1034
c984b7ff 1035 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1036 / TARGET_CHAR_BIT, byte_order);
c906108c
SS
1037 return 1;
1038}
f595cb19
MK
1039\f
1040
18648a37
YQ
1041/* This is the implementation of gdbarch method
1042 return_in_first_hidden_param_p. */
1043
1044static int
1045m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1046 struct type *type)
1047{
1048 return 0;
1049}
1050
f595cb19
MK
1051/* System V Release 4 (SVR4). */
1052
1053void
1054m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1055{
1056 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1057
1058 /* SVR4 uses a different calling convention. */
1059 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1060
1061 /* SVR4 uses %a0 instead of %a1. */
1062 tdep->struct_value_regnum = M68K_A0_REGNUM;
1063}
1064\f
c906108c 1065
152d9db6
GS
1066/* Function: m68k_gdbarch_init
1067 Initializer function for the m68k gdbarch vector.
025bb325 1068 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
152d9db6
GS
1069
1070static struct gdbarch *
1071m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1072{
1073 struct gdbarch_tdep *tdep = NULL;
1074 struct gdbarch *gdbarch;
8ed86d01
VP
1075 struct gdbarch_list *best_arch;
1076 struct tdesc_arch_data *tdesc_data = NULL;
1077 int i;
1078 enum m68k_flavour flavour = m68k_no_flavour;
1079 int has_fp = 1;
1080 const struct floatformat **long_double_format = floatformats_m68881_ext;
1081
1082 /* Check any target description for validity. */
1083 if (tdesc_has_registers (info.target_desc))
1084 {
1085 const struct tdesc_feature *feature;
1086 int valid_p;
152d9db6 1087
8ed86d01
VP
1088 feature = tdesc_find_feature (info.target_desc,
1089 "org.gnu.gdb.m68k.core");
8ed86d01
VP
1090
1091 if (feature == NULL)
1092 {
1093 feature = tdesc_find_feature (info.target_desc,
1094 "org.gnu.gdb.coldfire.core");
1095 if (feature != NULL)
1096 flavour = m68k_coldfire_flavour;
1097 }
1098
1099 if (feature == NULL)
1100 {
1101 feature = tdesc_find_feature (info.target_desc,
1102 "org.gnu.gdb.fido.core");
1103 if (feature != NULL)
1104 flavour = m68k_fido_flavour;
1105 }
1106
1107 if (feature == NULL)
1108 return NULL;
1109
1110 tdesc_data = tdesc_data_alloc ();
1111
1112 valid_p = 1;
1113 for (i = 0; i <= M68K_PC_REGNUM; i++)
1114 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1115 m68k_register_names[i]);
1116
1117 if (!valid_p)
1118 {
1119 tdesc_data_cleanup (tdesc_data);
1120 return NULL;
1121 }
1122
1123 feature = tdesc_find_feature (info.target_desc,
1124 "org.gnu.gdb.coldfire.fp");
1125 if (feature != NULL)
1126 {
1127 valid_p = 1;
1128 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1129 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1130 m68k_register_names[i]);
1131 if (!valid_p)
1132 {
1133 tdesc_data_cleanup (tdesc_data);
1134 return NULL;
1135 }
1136 }
1137 else
1138 has_fp = 0;
1139 }
1140
1141 /* The mechanism for returning floating values from function
1142 and the type of long double depend on whether we're
025bb325 1143 on ColdFire or standard m68k. */
8ed86d01 1144
4ed77933 1145 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
8ed86d01
VP
1146 {
1147 const bfd_arch_info_type *coldfire_arch =
1148 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1149
1150 if (coldfire_arch
4ed77933
AS
1151 && ((*info.bfd_arch_info->compatible)
1152 (info.bfd_arch_info, coldfire_arch)))
8ed86d01
VP
1153 flavour = m68k_coldfire_flavour;
1154 }
1155
1156 /* If there is already a candidate, use it. */
1157 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1158 best_arch != NULL;
1159 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1160 {
1161 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1162 continue;
1163
1164 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1165 continue;
1166
1167 break;
1168 }
152d9db6 1169
0c85e18e
MK
1170 if (best_arch != NULL)
1171 {
1172 if (tdesc_data != NULL)
1173 tdesc_data_cleanup (tdesc_data);
1174 return best_arch->gdbarch;
1175 }
1176
8d749320 1177 tdep = XCNEW (struct gdbarch_tdep);
eb2e12d7 1178 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1179 tdep->fpregs_present = has_fp;
1180 tdep->flavour = flavour;
152d9db6 1181
8ed86d01
VP
1182 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1183 long_double_format = floatformats_ieee_double;
1184 set_gdbarch_long_double_format (gdbarch, long_double_format);
1185 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1186
5d3ed2e3 1187 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
04180708
YQ
1188 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m68k_breakpoint::kind_from_pc);
1189 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m68k_breakpoint::bp_from_kind);
5d3ed2e3 1190
025bb325 1191 /* Stack grows down. */
5d3ed2e3 1192 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1193 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1194
1195 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1196 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1197 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1198
6300c360 1199 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6 1200 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1201
8de307e0 1202 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1203 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1204 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1205 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1206 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1207 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
e47577ab
MK
1208 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1209 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1210 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1211
8ed86d01
VP
1212 if (has_fp)
1213 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1214
1215 /* Try to figure out if the arch uses floating registers to return
1216 floating point values from functions. */
1217 if (has_fp)
1218 {
1219 /* On ColdFire, floating point values are returned in D0. */
1220 if (flavour == m68k_coldfire_flavour)
1221 tdep->float_return = 0;
1222 else
1223 tdep->float_return = 1;
1224 }
1225 else
1226 {
1227 /* No floating registers, so can't use them for returning values. */
1228 tdep->float_return = 0;
1229 }
1230
025bb325 1231 /* Function call & return. */
8de307e0 1232 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1233 set_gdbarch_return_value (gdbarch, m68k_return_value);
18648a37
YQ
1234 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1235 m68k_return_in_first_hidden_param_p);
6c0e89ed 1236
eb2e12d7
AS
1237#if defined JB_PC && defined JB_ELEMENT_SIZE
1238 tdep->jb_pc = JB_PC;
1239 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1240#else
1241 tdep->jb_pc = -1;
1242#endif
f595cb19 1243 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1244 tdep->struct_return = reg_struct_return;
8de307e0
AS
1245
1246 /* Frame unwinder. */
f36bf22c 1247 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
8de307e0 1248 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1249
1250 /* Hook in the DWARF CFI frame unwinder. */
f36bf22c 1251 dwarf2_append_unwinders (gdbarch);
3f244638 1252
8de307e0 1253 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1254
55809acb
AS
1255 /* Hook in ABI-specific overrides, if they have been registered. */
1256 gdbarch_init_osabi (info, gdbarch);
1257
eb2e12d7
AS
1258 /* Now we have tuned the configuration, set a few final things,
1259 based on what the OS ABI has told us. */
1260
1261 if (tdep->jb_pc >= 0)
1262 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1263
f36bf22c 1264 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
8de307e0 1265
8ed86d01 1266 if (tdesc_data)
7cc46491 1267 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8ed86d01 1268
152d9db6
GS
1269 return gdbarch;
1270}
1271
1272
1273static void
c984b7ff 1274m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
152d9db6 1275{
c984b7ff 1276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
152d9db6 1277
eb2e12d7
AS
1278 if (tdep == NULL)
1279 return;
152d9db6 1280}
2acceee2 1281
a78f21af
AC
1282extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1283
c906108c 1284void
fba45db2 1285_initialize_m68k_tdep (void)
c906108c 1286{
152d9db6 1287 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
c906108c 1288}
This page took 1.618548 seconds and 4 git commands to generate.