2012-06-04 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
0b302171 3 Copyright (C) 1990-1996, 1999-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
3f244638 21#include "dwarf2-frame.h"
c906108c 22#include "frame.h"
8de307e0
AS
23#include "frame-base.h"
24#include "frame-unwind.h"
e6bb342a 25#include "gdbtypes.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbcore.h"
28#include "value.h"
29#include "gdb_string.h"
8de307e0 30#include "gdb_assert.h"
7a292a7a 31#include "inferior.h"
4e052eda 32#include "regcache.h"
5d3ed2e3 33#include "arch-utils.h"
55809acb 34#include "osabi.h"
a89aa300 35#include "dis-asm.h"
8ed86d01 36#include "target-descriptions.h"
32eeb91a
AS
37
38#include "m68k-tdep.h"
c906108c 39\f
c5aa993b 40
89c3b6d3
PDM
41#define P_LINKL_FP 0x480e
42#define P_LINKW_FP 0x4e56
43#define P_PEA_FP 0x4856
8de307e0
AS
44#define P_MOVEAL_SP_FP 0x2c4f
45#define P_ADDAW_SP 0xdefc
46#define P_ADDAL_SP 0xdffc
47#define P_SUBQW_SP 0x514f
48#define P_SUBQL_SP 0x518f
49#define P_LEA_SP_SP 0x4fef
50#define P_LEA_PC_A5 0x4bfb0170
51#define P_FMOVEMX_SP 0xf227
52#define P_MOVEL_SP 0x2f00
53#define P_MOVEML_SP 0x48e7
89c3b6d3 54
025bb325 55/* Offset from SP to first arg on stack at first instruction of a function. */
103a1597
GS
56#define SP_ARG0 (1 * 4)
57
103a1597
GS
58#if !defined (BPT_VECTOR)
59#define BPT_VECTOR 0xf
60#endif
61
f5cf7aa1 62static const gdb_byte *
67d57894
MD
63m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
64 CORE_ADDR *pcptr, int *lenptr)
103a1597 65{
f5cf7aa1 66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69}
4713453b
AS
70\f
71
4713453b 72/* Construct types for ISA-specific registers. */
209bd28e
UW
73static struct type *
74m68k_ps_type (struct gdbarch *gdbarch)
4713453b 75{
209bd28e
UW
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->m68k_ps_type)
79 {
80 struct type *type;
81
e9bb382b 82 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
209bd28e
UW
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95
96 tdep->m68k_ps_type = type;
97 }
98
99 return tdep->m68k_ps_type;
4713453b 100}
103a1597 101
27067745
UW
102static struct type *
103m68881_ext_type (struct gdbarch *gdbarch)
104{
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
106
107 if (!tdep->m68881_ext_type)
108 tdep->m68881_ext_type
e9bb382b 109 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
27067745
UW
110 floatformats_m68881_ext);
111
112 return tdep->m68881_ext_type;
113}
114
d85fe7f7
AS
115/* Return the GDB type object for the "standard" data type of data in
116 register N. This should be int for D0-D7, SR, FPCONTROL and
117 FPSTATUS, long double for FP0-FP7, and void pointer for all others
118 (A0-A7, PC, FPIADDR). Note, for registers which contain
119 addresses return pointer to void, not pointer to char, because we
120 don't want to attempt to print the string after printing the
121 address. */
5d3ed2e3
GS
122
123static struct type *
8de307e0 124m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 125{
c984b7ff 126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
03dac896 127
8ed86d01
VP
128 if (tdep->fpregs_present)
129 {
c984b7ff
UW
130 if (regnum >= gdbarch_fp0_regnum (gdbarch)
131 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
8ed86d01
VP
132 {
133 if (tdep->flavour == m68k_coldfire_flavour)
134 return builtin_type (gdbarch)->builtin_double;
135 else
27067745 136 return m68881_ext_type (gdbarch);
8ed86d01
VP
137 }
138
139 if (regnum == M68K_FPI_REGNUM)
0dfff4cb 140 return builtin_type (gdbarch)->builtin_func_ptr;
8ed86d01
VP
141
142 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
df4df182 143 return builtin_type (gdbarch)->builtin_int32;
8ed86d01
VP
144 }
145 else
146 {
147 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
df4df182 148 return builtin_type (gdbarch)->builtin_int0;
8ed86d01 149 }
03dac896 150
c984b7ff 151 if (regnum == gdbarch_pc_regnum (gdbarch))
0dfff4cb 152 return builtin_type (gdbarch)->builtin_func_ptr;
03dac896 153
32eeb91a 154 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
0dfff4cb 155 return builtin_type (gdbarch)->builtin_data_ptr;
03dac896 156
4713453b 157 if (regnum == M68K_PS_REGNUM)
209bd28e 158 return m68k_ps_type (gdbarch);
4713453b 159
df4df182 160 return builtin_type (gdbarch)->builtin_int32;
5d3ed2e3
GS
161}
162
8ed86d01 163static const char *m68k_register_names[] = {
5d3ed2e3
GS
164 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
165 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
166 "ps", "pc",
167 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 168 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
169 };
170
8ed86d01 171/* Function: m68k_register_name
025bb325 172 Returns the name of the standard m68k register regnum. */
8ed86d01
VP
173
174static const char *
d93859e2 175m68k_register_name (struct gdbarch *gdbarch, int regnum)
8ed86d01
VP
176{
177 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 178 internal_error (__FILE__, __LINE__,
025bb325
MS
179 _("m68k_register_name: illegal register number %d"),
180 regnum);
86443c3e
MK
181 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
182 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
183 return "";
5d3ed2e3 184 else
8ed86d01 185 return m68k_register_names[regnum];
5d3ed2e3 186}
e47577ab
MK
187\f
188/* Return nonzero if a value of type TYPE stored in register REGNUM
189 needs any special handling. */
190
191static int
025bb325
MS
192m68k_convert_register_p (struct gdbarch *gdbarch,
193 int regnum, struct type *type)
e47577ab 194{
0abe36f5 195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
8ed86d01 196 return 0;
83acabca 197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
3c1ac6e7 198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
e47577ab
MK
199}
200
201/* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
203
8dccd430 204static int
e47577ab 205m68k_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
206 struct type *type, gdb_byte *to,
207 int *optimizedp, int *unavailablep)
e47577ab 208{
f5cf7aa1 209 gdb_byte from[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
e47577ab
MK
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
8a3fe4f8
AC
216 warning (_("Cannot convert floating-point register value "
217 "to non-floating-point type."));
8dccd430
PA
218 *optimizedp = *unavailablep = 0;
219 return 0;
e47577ab
MK
220 }
221
83acabca 222 /* Convert to TYPE. */
8dccd430
PA
223
224 /* Convert to TYPE. */
225 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
226 from, optimizedp, unavailablep))
227 return 0;
228
8ed86d01 229 convert_typed_floating (from, fpreg_type, to, type);
8dccd430
PA
230 *optimizedp = *unavailablep = 0;
231 return 1;
e47577ab
MK
232}
233
234/* Write the contents FROM of a value of type TYPE into register
235 REGNUM in frame FRAME. */
236
237static void
238m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 239 struct type *type, const gdb_byte *from)
e47577ab 240{
f5cf7aa1 241 gdb_byte to[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
242 struct type *fpreg_type = register_type (get_frame_arch (frame),
243 M68K_FP0_REGNUM);
e47577ab
MK
244
245 /* We only support floating-point values. */
246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
247 {
8a3fe4f8
AC
248 warning (_("Cannot convert non-floating-point type "
249 "to floating-point register value."));
e47577ab
MK
250 return;
251 }
252
83acabca 253 /* Convert from TYPE. */
8ed86d01 254 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
255 put_frame_register (frame, regnum, to);
256}
257
8de307e0 258\f
f595cb19
MK
259/* There is a fair number of calling conventions that are in somewhat
260 wide use. The 68000/08/10 don't support an FPU, not even as a
261 coprocessor. All function return values are stored in %d0/%d1.
262 Structures are returned in a static buffer, a pointer to which is
263 returned in %d0. This means that functions returning a structure
264 are not re-entrant. To avoid this problem some systems use a
265 convention where the caller passes a pointer to a buffer in %a1
266 where the return values is to be stored. This convention is the
267 default, and is implemented in the function m68k_return_value.
268
269 The 68020/030/040/060 do support an FPU, either as a coprocessor
270 (68881/2) or built-in (68040/68060). That's why System V release 4
271 (SVR4) instroduces a new calling convention specified by the SVR4
272 psABI. Integer values are returned in %d0/%d1, pointer return
273 values in %a0 and floating values in %fp0. When calling functions
274 returning a structure the caller should pass a pointer to a buffer
275 for the return value in %a0. This convention is implemented in the
276 function m68k_svr4_return_value, and by appropriately setting the
277 struct_value_regnum member of `struct gdbarch_tdep'.
278
279 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
280 for passing the structure return value buffer.
281
282 GCC can also generate code where small structures are returned in
283 %d0/%d1 instead of in memory by using -freg-struct-return. This is
284 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
285 embedded systems. This convention is implemented by setting the
286 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
287
288/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 289 into VALBUF. */
942dc0e9
GS
290
291static void
8de307e0 292m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 293 gdb_byte *valbuf)
942dc0e9 294{
8de307e0 295 int len = TYPE_LENGTH (type);
f5cf7aa1 296 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 297
8de307e0
AS
298 if (len <= 4)
299 {
300 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
301 memcpy (valbuf, buf + (4 - len), len);
302 }
303 else if (len <= 8)
304 {
305 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
306 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 307 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
308 }
309 else
310 internal_error (__FILE__, __LINE__,
e2e0b3e5 311 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
312}
313
942dc0e9 314static void
f595cb19 315m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 316 gdb_byte *valbuf)
942dc0e9 317{
8de307e0 318 int len = TYPE_LENGTH (type);
f5cf7aa1 319 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
320 struct gdbarch *gdbarch = get_regcache_arch (regcache);
321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942dc0e9 322
8ed86d01 323 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 324 {
c984b7ff 325 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f595cb19 326 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 327 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 328 }
f595cb19
MK
329 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
330 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
331 else
332 m68k_extract_return_value (type, regcache, valbuf);
333}
334
335/* Write a function return value of TYPE from VALBUF into REGCACHE. */
336
337static void
338m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 339 const gdb_byte *valbuf)
f595cb19
MK
340{
341 int len = TYPE_LENGTH (type);
942dc0e9 342
8de307e0
AS
343 if (len <= 4)
344 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
345 else if (len <= 8)
346 {
f595cb19 347 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 348 len - 4, valbuf);
f5cf7aa1 349 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
350 }
351 else
352 internal_error (__FILE__, __LINE__,
e2e0b3e5 353 _("Cannot store return value of %d bytes long."), len);
8de307e0 354}
942dc0e9 355
f595cb19
MK
356static void
357m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 358 const gdb_byte *valbuf)
942dc0e9 359{
f595cb19 360 int len = TYPE_LENGTH (type);
c984b7ff
UW
361 struct gdbarch *gdbarch = get_regcache_arch (regcache);
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8de307e0 363
8ed86d01 364 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 365 {
c984b7ff 366 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 367 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 368 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
369 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
370 }
371 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
372 {
373 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
374 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
375 }
376 else
377 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
378}
379
f595cb19
MK
380/* Return non-zero if TYPE, which is assumed to be a structure or
381 union type, should be returned in registers for architecture
382 GDBARCH. */
383
c481dac7 384static int
f595cb19 385m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 386{
f595cb19
MK
387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388 enum type_code code = TYPE_CODE (type);
389 int len = TYPE_LENGTH (type);
c481dac7 390
f595cb19
MK
391 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
392
393 if (tdep->struct_return == pcc_struct_return)
394 return 0;
395
396 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
397}
398
f595cb19
MK
399/* Determine, for architecture GDBARCH, how a return value of TYPE
400 should be returned. If it is supposed to be returned in registers,
401 and READBUF is non-zero, read the appropriate value from REGCACHE,
402 and copy it into READBUF. If WRITEBUF is non-zero, write the value
403 from WRITEBUF into REGCACHE. */
404
405static enum return_value_convention
6a3a010b 406m68k_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
407 struct type *type, struct regcache *regcache,
408 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
409{
410 enum type_code code = TYPE_CODE (type);
411
1c845060
MK
412 /* GCC returns a `long double' in memory too. */
413 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
414 && !m68k_reg_struct_return_p (gdbarch, type))
415 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
416 {
417 /* The default on m68k is to return structures in static memory.
418 Consequently a function must return the address where we can
419 find the return value. */
f595cb19 420
1c845060
MK
421 if (readbuf)
422 {
423 ULONGEST addr;
424
425 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
426 read_memory (addr, readbuf, TYPE_LENGTH (type));
427 }
428
429 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
430 }
f595cb19
MK
431
432 if (readbuf)
433 m68k_extract_return_value (type, regcache, readbuf);
434 if (writebuf)
435 m68k_store_return_value (type, regcache, writebuf);
436
437 return RETURN_VALUE_REGISTER_CONVENTION;
438}
439
440static enum return_value_convention
6a3a010b 441m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
442 struct type *type, struct regcache *regcache,
443 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
444{
445 enum type_code code = TYPE_CODE (type);
446
447 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
448 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
449 {
450 /* The System V ABI says that:
451
452 "A function returning a structure or union also sets %a0 to
453 the value it finds in %a0. Thus when the caller receives
454 control again, the address of the returned object resides in
455 register %a0."
456
457 So the ABI guarantees that we can always find the return
458 value just after the function has returned. */
459
460 if (readbuf)
461 {
462 ULONGEST addr;
463
464 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
465 read_memory (addr, readbuf, TYPE_LENGTH (type));
466 }
467
468 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
469 }
f595cb19
MK
470
471 /* This special case is for structures consisting of a single
472 `float' or `double' member. These structures are returned in
473 %fp0. For these structures, we call ourselves recursively,
474 changing TYPE into the type of the first member of the structure.
475 Since that should work for all structures that have only one
476 member, we don't bother to check the member's type here. */
477 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
478 {
479 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 480 return m68k_svr4_return_value (gdbarch, function, type, regcache,
f595cb19
MK
481 readbuf, writebuf);
482 }
483
484 if (readbuf)
485 m68k_svr4_extract_return_value (type, regcache, readbuf);
486 if (writebuf)
487 m68k_svr4_store_return_value (type, regcache, writebuf);
488
489 return RETURN_VALUE_REGISTER_CONVENTION;
490}
491\f
392a587b 492
9bb47d95
NS
493/* Always align the frame to a 4-byte boundary. This is required on
494 coldfire and harmless on the rest. */
495
496static CORE_ADDR
497m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
498{
499 /* Align the stack to four bytes. */
500 return sp & ~3;
501}
502
8de307e0 503static CORE_ADDR
7d9b040b 504m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
505 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
506 struct value **args, CORE_ADDR sp, int struct_return,
507 CORE_ADDR struct_addr)
7f8e7424 508{
f595cb19 509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f5cf7aa1 511 gdb_byte buf[4];
8de307e0
AS
512 int i;
513
514 /* Push arguments in reverse order. */
515 for (i = nargs - 1; i >= 0; i--)
516 {
4754a64e 517 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 518 int len = TYPE_LENGTH (value_type);
8de307e0 519 int container_len = (len + 3) & ~3;
c481dac7
AS
520 int offset;
521
522 /* Non-scalars bigger than 4 bytes are left aligned, others are
523 right aligned. */
524 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
525 || TYPE_CODE (value_type) == TYPE_CODE_UNION
526 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
527 && len > 4)
528 offset = 0;
529 else
530 offset = container_len - len;
8de307e0 531 sp -= container_len;
46615f07 532 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
533 }
534
c481dac7 535 /* Store struct value address. */
8de307e0
AS
536 if (struct_return)
537 {
e17a4113 538 store_unsigned_integer (buf, 4, byte_order, struct_addr);
f595cb19 539 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
540 }
541
542 /* Store return address. */
543 sp -= 4;
e17a4113 544 store_unsigned_integer (buf, 4, byte_order, bp_addr);
8de307e0
AS
545 write_memory (sp, buf, 4);
546
547 /* Finally, update the stack pointer... */
e17a4113 548 store_unsigned_integer (buf, 4, byte_order, sp);
8de307e0
AS
549 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
550
551 /* ...and fake a frame pointer. */
552 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
553
554 /* DWARF2/GCC uses the stack address *before* the function call as a
555 frame's CFA. */
556 return sp + 8;
7f8e7424 557}
6dd0fba6
NS
558
559/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
560
561static int
d3f73121 562m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
6dd0fba6
NS
563{
564 if (num < 8)
565 /* d0..7 */
566 return (num - 0) + M68K_D0_REGNUM;
567 else if (num < 16)
568 /* a0..7 */
569 return (num - 8) + M68K_A0_REGNUM;
d3f73121 570 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
6dd0fba6
NS
571 /* fp0..7 */
572 return (num - 16) + M68K_FP0_REGNUM;
573 else if (num == 25)
574 /* pc */
575 return M68K_PC_REGNUM;
576 else
d3f73121 577 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
6dd0fba6
NS
578}
579
8de307e0
AS
580\f
581struct m68k_frame_cache
582{
583 /* Base address. */
584 CORE_ADDR base;
585 CORE_ADDR sp_offset;
586 CORE_ADDR pc;
7f8e7424 587
8de307e0
AS
588 /* Saved registers. */
589 CORE_ADDR saved_regs[M68K_NUM_REGS];
590 CORE_ADDR saved_sp;
7f8e7424 591
8de307e0
AS
592 /* Stack space reserved for local variables. */
593 long locals;
594};
c906108c 595
8de307e0
AS
596/* Allocate and initialize a frame cache. */
597
598static struct m68k_frame_cache *
599m68k_alloc_frame_cache (void)
c906108c 600{
8de307e0
AS
601 struct m68k_frame_cache *cache;
602 int i;
c906108c 603
8de307e0 604 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 605
8de307e0
AS
606 /* Base address. */
607 cache->base = 0;
608 cache->sp_offset = -4;
609 cache->pc = 0;
c906108c 610
8de307e0
AS
611 /* Saved registers. We initialize these to -1 since zero is a valid
612 offset (that's where %fp is supposed to be stored). */
613 for (i = 0; i < M68K_NUM_REGS; i++)
614 cache->saved_regs[i] = -1;
615
616 /* Frameless until proven otherwise. */
617 cache->locals = -1;
618
619 return cache;
c906108c
SS
620}
621
8de307e0
AS
622/* Check whether PC points at a code that sets up a new stack frame.
623 If so, it updates CACHE and returns the address of the first
624 instruction after the sequence that sets removes the "hidden"
625 argument from the stack or CURRENT_PC, whichever is smaller.
626 Otherwise, return PC. */
c906108c 627
8de307e0 628static CORE_ADDR
e17a4113
UW
629m68k_analyze_frame_setup (struct gdbarch *gdbarch,
630 CORE_ADDR pc, CORE_ADDR current_pc,
8de307e0 631 struct m68k_frame_cache *cache)
c906108c 632{
e17a4113 633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0
AS
634 int op;
635
636 if (pc >= current_pc)
637 return current_pc;
c906108c 638
e17a4113 639 op = read_memory_unsigned_integer (pc, 2, byte_order);
8de307e0
AS
640
641 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 642 {
8de307e0
AS
643 cache->saved_regs[M68K_FP_REGNUM] = 0;
644 cache->sp_offset += 4;
645 if (op == P_LINKW_FP)
646 {
647 /* link.w %fp, #-N */
648 /* link.w %fp, #0; adda.l #-N, %sp */
e17a4113 649 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0
AS
650
651 if (pc + 4 < current_pc && cache->locals == 0)
652 {
e17a4113 653 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
8de307e0
AS
654 if (op == P_ADDAL_SP)
655 {
e17a4113 656 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
8de307e0
AS
657 return pc + 10;
658 }
659 }
660
661 return pc + 4;
662 }
663 else if (op == P_LINKL_FP)
c906108c 664 {
8de307e0 665 /* link.l %fp, #-N */
e17a4113 666 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0
AS
667 return pc + 6;
668 }
669 else
670 {
671 /* pea (%fp); movea.l %sp, %fp */
672 cache->locals = 0;
673
674 if (pc + 2 < current_pc)
675 {
e17a4113 676 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
677
678 if (op == P_MOVEAL_SP_FP)
679 {
680 /* move.l %sp, %fp */
681 return pc + 4;
682 }
683 }
684
685 return pc + 2;
c906108c
SS
686 }
687 }
8de307e0 688 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 689 {
8de307e0
AS
690 /* subq.[wl] #N,%sp */
691 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
692 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
693 if (pc + 2 < current_pc)
c906108c 694 {
e17a4113 695 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
696 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
697 {
698 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
699 return pc + 4;
700 }
c906108c 701 }
8de307e0
AS
702 return pc + 2;
703 }
704 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
705 {
706 /* adda.w #-N,%sp */
707 /* lea (-N,%sp),%sp */
e17a4113 708 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0 709 return pc + 4;
c906108c 710 }
8de307e0 711 else if (op == P_ADDAL_SP)
c906108c 712 {
8de307e0 713 /* adda.l #-N,%sp */
e17a4113 714 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0 715 return pc + 6;
c906108c 716 }
8de307e0
AS
717
718 return pc;
c906108c 719}
c5aa993b 720
8de307e0
AS
721/* Check whether PC points at code that saves registers on the stack.
722 If so, it updates CACHE and returns the address of the first
723 instruction after the register saves or CURRENT_PC, whichever is
724 smaller. Otherwise, return PC. */
c906108c 725
8de307e0 726static CORE_ADDR
be8626e0
MD
727m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
728 CORE_ADDR current_pc,
8de307e0
AS
729 struct m68k_frame_cache *cache)
730{
e17a4113
UW
731 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
732
8de307e0
AS
733 if (cache->locals >= 0)
734 {
735 CORE_ADDR offset;
736 int op;
737 int i, mask, regno;
c906108c 738
8de307e0
AS
739 offset = -4 - cache->locals;
740 while (pc < current_pc)
741 {
e17a4113 742 op = read_memory_unsigned_integer (pc, 2, byte_order);
8ed86d01 743 if (op == P_FMOVEMX_SP
be8626e0 744 && gdbarch_tdep (gdbarch)->fpregs_present)
8de307e0
AS
745 {
746 /* fmovem.x REGS,-(%sp) */
e17a4113 747 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
748 if ((op & 0xff00) == 0xe000)
749 {
750 mask = op & 0xff;
751 for (i = 0; i < 16; i++, mask >>= 1)
752 {
753 if (mask & 1)
754 {
755 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
756 offset -= 12;
757 }
758 }
759 pc += 4;
760 }
761 else
762 break;
763 }
0ba5a932 764 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
765 {
766 /* move.l %R,-(%sp) */
0ba5a932 767 regno = op & 017;
8de307e0
AS
768 cache->saved_regs[regno] = offset;
769 offset -= 4;
770 pc += 2;
771 }
772 else if (op == P_MOVEML_SP)
773 {
774 /* movem.l REGS,-(%sp) */
e17a4113 775 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
776 for (i = 0; i < 16; i++, mask >>= 1)
777 {
778 if (mask & 1)
779 {
780 cache->saved_regs[15 - i] = offset;
781 offset -= 4;
782 }
783 }
784 pc += 4;
785 }
786 else
787 break;
788 }
789 }
790
791 return pc;
792}
c906108c 793
c906108c 794
8de307e0
AS
795/* Do a full analysis of the prologue at PC and update CACHE
796 accordingly. Bail out early if CURRENT_PC is reached. Return the
797 address where the analysis stopped.
c906108c 798
8de307e0 799 We handle all cases that can be generated by gcc.
c906108c 800
8de307e0 801 For allocating a stack frame:
c906108c 802
8de307e0
AS
803 link.w %a6,#-N
804 link.l %a6,#-N
805 pea (%fp); move.l %sp,%fp
806 link.w %a6,#0; add.l #-N,%sp
807 subq.l #N,%sp
808 subq.w #N,%sp
809 subq.w #8,%sp; subq.w #N-8,%sp
810 add.w #-N,%sp
811 lea (-N,%sp),%sp
812 add.l #-N,%sp
c906108c 813
8de307e0 814 For saving registers:
c906108c 815
8de307e0
AS
816 fmovem.x REGS,-(%sp)
817 move.l R1,-(%sp)
818 move.l R1,-(%sp); move.l R2,-(%sp)
819 movem.l REGS,-(%sp)
c906108c 820
8de307e0 821 For setting up the PIC register:
c906108c 822
8de307e0 823 lea (%pc,N),%a5
c906108c 824
8de307e0 825 */
c906108c 826
eb2e12d7 827static CORE_ADDR
be8626e0
MD
828m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
829 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
c906108c 830{
e17a4113 831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 832 unsigned int op;
c906108c 833
e17a4113 834 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
be8626e0 835 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
8de307e0
AS
836 if (pc >= current_pc)
837 return current_pc;
c906108c 838
8de307e0 839 /* Check for GOT setup. */
e17a4113 840 op = read_memory_unsigned_integer (pc, 4, byte_order);
8de307e0 841 if (op == P_LEA_PC_A5)
c906108c 842 {
8de307e0 843 /* lea (%pc,N),%a5 */
e4d8bc08 844 return pc + 8;
c906108c 845 }
8de307e0
AS
846
847 return pc;
c906108c
SS
848}
849
8de307e0 850/* Return PC of first real instruction. */
7f8e7424 851
8de307e0 852static CORE_ADDR
6093d2eb 853m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 854{
8de307e0
AS
855 struct m68k_frame_cache cache;
856 CORE_ADDR pc;
c906108c 857
8de307e0 858 cache.locals = -1;
be8626e0 859 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
8de307e0
AS
860 if (cache.locals < 0)
861 return start_pc;
862 return pc;
863}
c906108c 864
8de307e0
AS
865static CORE_ADDR
866m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
867{
f5cf7aa1 868 gdb_byte buf[8];
7f8e7424 869
c984b7ff 870 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 871 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
8de307e0
AS
872}
873\f
874/* Normal frames. */
7f8e7424 875
8de307e0 876static struct m68k_frame_cache *
f36bf22c 877m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
8de307e0 878{
e17a4113
UW
879 struct gdbarch *gdbarch = get_frame_arch (this_frame);
880 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 881 struct m68k_frame_cache *cache;
f5cf7aa1 882 gdb_byte buf[4];
8de307e0
AS
883 int i;
884
885 if (*this_cache)
886 return *this_cache;
887
888 cache = m68k_alloc_frame_cache ();
889 *this_cache = cache;
890
891 /* In principle, for normal frames, %fp holds the frame pointer,
892 which holds the base address for the current stack frame.
893 However, for functions that don't need it, the frame pointer is
894 optional. For these "frameless" functions the frame pointer is
895 actually the frame pointer of the calling frame. Signal
896 trampolines are just a special case of a "frameless" function.
897 They (usually) share their frame pointer with the frame that was
898 in progress when the signal occurred. */
899
f36bf22c 900 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
e17a4113 901 cache->base = extract_unsigned_integer (buf, 4, byte_order);
8de307e0
AS
902 if (cache->base == 0)
903 return cache;
904
905 /* For normal frames, %pc is stored at 4(%fp). */
906 cache->saved_regs[M68K_PC_REGNUM] = 4;
907
f36bf22c 908 cache->pc = get_frame_func (this_frame);
8de307e0 909 if (cache->pc != 0)
f36bf22c
AS
910 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
911 get_frame_pc (this_frame), cache);
8de307e0
AS
912
913 if (cache->locals < 0)
914 {
915 /* We didn't find a valid frame, which means that CACHE->base
916 currently holds the frame pointer for our calling frame. If
917 we're at the start of a function, or somewhere half-way its
918 prologue, the function's frame probably hasn't been fully
919 setup yet. Try to reconstruct the base address for the stack
920 frame by looking at the stack pointer. For truly "frameless"
921 functions this might work too. */
922
f36bf22c 923 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
e17a4113
UW
924 cache->base = extract_unsigned_integer (buf, 4, byte_order)
925 + cache->sp_offset;
8de307e0 926 }
7f8e7424 927
8de307e0
AS
928 /* Now that we have the base address for the stack frame we can
929 calculate the value of %sp in the calling frame. */
930 cache->saved_sp = cache->base + 8;
7f8e7424 931
8de307e0
AS
932 /* Adjust all the saved registers such that they contain addresses
933 instead of offsets. */
934 for (i = 0; i < M68K_NUM_REGS; i++)
935 if (cache->saved_regs[i] != -1)
936 cache->saved_regs[i] += cache->base;
c906108c 937
8de307e0
AS
938 return cache;
939}
c906108c 940
8de307e0 941static void
f36bf22c 942m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
8de307e0
AS
943 struct frame_id *this_id)
944{
f36bf22c 945 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
c906108c 946
8de307e0
AS
947 /* This marks the outermost frame. */
948 if (cache->base == 0)
949 return;
c5aa993b 950
8de307e0
AS
951 /* See the end of m68k_push_dummy_call. */
952 *this_id = frame_id_build (cache->base + 8, cache->pc);
953}
c5aa993b 954
f36bf22c
AS
955static struct value *
956m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
957 int regnum)
8de307e0 958{
f36bf22c 959 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
960
961 gdb_assert (regnum >= 0);
962
963 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
f36bf22c 964 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
8de307e0
AS
965
966 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
f36bf22c
AS
967 return frame_unwind_got_memory (this_frame, regnum,
968 cache->saved_regs[regnum]);
8de307e0 969
f36bf22c 970 return frame_unwind_got_register (this_frame, regnum, regnum);
8de307e0
AS
971}
972
973static const struct frame_unwind m68k_frame_unwind =
974{
975 NORMAL_FRAME,
8fbca658 976 default_frame_unwind_stop_reason,
8de307e0 977 m68k_frame_this_id,
f36bf22c
AS
978 m68k_frame_prev_register,
979 NULL,
980 default_frame_sniffer
8de307e0 981};
8de307e0 982\f
8de307e0 983static CORE_ADDR
f36bf22c 984m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
8de307e0 985{
f36bf22c 986 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
987
988 return cache->base;
989}
990
991static const struct frame_base m68k_frame_base =
992{
993 &m68k_frame_unwind,
994 m68k_frame_base_address,
995 m68k_frame_base_address,
996 m68k_frame_base_address
997};
998
999static struct frame_id
f36bf22c 1000m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
8de307e0 1001{
8de307e0 1002 CORE_ADDR fp;
c906108c 1003
f36bf22c 1004 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
c906108c 1005
8de307e0 1006 /* See the end of m68k_push_dummy_call. */
f36bf22c 1007 return frame_id_build (fp + 8, get_frame_pc (this_frame));
8de307e0
AS
1008}
1009\f
c906108c 1010
c906108c
SS
1011/* Figure out where the longjmp will land. Slurp the args out of the stack.
1012 We expect the first arg to be a pointer to the jmp_buf structure from which
1013 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
025bb325 1014 This routine returns true on success. */
c906108c 1015
c34d127c 1016static int
60ade65d 1017m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1018{
f5cf7aa1 1019 gdb_byte *buf;
c906108c 1020 CORE_ADDR sp, jb_addr;
c984b7ff 1021 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
1022 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1023 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
eb2e12d7
AS
1024
1025 if (tdep->jb_pc < 0)
1026 {
1027 internal_error (__FILE__, __LINE__,
e2e0b3e5 1028 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
1029 return 0;
1030 }
c906108c 1031
c984b7ff
UW
1032 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1033 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
c906108c 1034
025bb325 1035 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
c984b7ff 1036 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1037 return 0;
1038
c984b7ff 1039 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1040 / TARGET_CHAR_BIT, byte_order);
c906108c 1041
eb2e12d7 1042 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
e17a4113
UW
1043 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1044 byte_order)
c906108c
SS
1045 return 0;
1046
c984b7ff 1047 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1048 / TARGET_CHAR_BIT, byte_order);
c906108c
SS
1049 return 1;
1050}
f595cb19
MK
1051\f
1052
1053/* System V Release 4 (SVR4). */
1054
1055void
1056m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1057{
1058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1059
1060 /* SVR4 uses a different calling convention. */
1061 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1062
1063 /* SVR4 uses %a0 instead of %a1. */
1064 tdep->struct_value_regnum = M68K_A0_REGNUM;
1065}
1066\f
c906108c 1067
152d9db6
GS
1068/* Function: m68k_gdbarch_init
1069 Initializer function for the m68k gdbarch vector.
025bb325 1070 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
152d9db6
GS
1071
1072static struct gdbarch *
1073m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1074{
1075 struct gdbarch_tdep *tdep = NULL;
1076 struct gdbarch *gdbarch;
8ed86d01
VP
1077 struct gdbarch_list *best_arch;
1078 struct tdesc_arch_data *tdesc_data = NULL;
1079 int i;
1080 enum m68k_flavour flavour = m68k_no_flavour;
1081 int has_fp = 1;
1082 const struct floatformat **long_double_format = floatformats_m68881_ext;
1083
1084 /* Check any target description for validity. */
1085 if (tdesc_has_registers (info.target_desc))
1086 {
1087 const struct tdesc_feature *feature;
1088 int valid_p;
152d9db6 1089
8ed86d01
VP
1090 feature = tdesc_find_feature (info.target_desc,
1091 "org.gnu.gdb.m68k.core");
1092 if (feature != NULL)
1093 /* Do nothing. */
1094 ;
1095
1096 if (feature == NULL)
1097 {
1098 feature = tdesc_find_feature (info.target_desc,
1099 "org.gnu.gdb.coldfire.core");
1100 if (feature != NULL)
1101 flavour = m68k_coldfire_flavour;
1102 }
1103
1104 if (feature == NULL)
1105 {
1106 feature = tdesc_find_feature (info.target_desc,
1107 "org.gnu.gdb.fido.core");
1108 if (feature != NULL)
1109 flavour = m68k_fido_flavour;
1110 }
1111
1112 if (feature == NULL)
1113 return NULL;
1114
1115 tdesc_data = tdesc_data_alloc ();
1116
1117 valid_p = 1;
1118 for (i = 0; i <= M68K_PC_REGNUM; i++)
1119 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1120 m68k_register_names[i]);
1121
1122 if (!valid_p)
1123 {
1124 tdesc_data_cleanup (tdesc_data);
1125 return NULL;
1126 }
1127
1128 feature = tdesc_find_feature (info.target_desc,
1129 "org.gnu.gdb.coldfire.fp");
1130 if (feature != NULL)
1131 {
1132 valid_p = 1;
1133 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1134 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1135 m68k_register_names[i]);
1136 if (!valid_p)
1137 {
1138 tdesc_data_cleanup (tdesc_data);
1139 return NULL;
1140 }
1141 }
1142 else
1143 has_fp = 0;
1144 }
1145
1146 /* The mechanism for returning floating values from function
1147 and the type of long double depend on whether we're
025bb325 1148 on ColdFire or standard m68k. */
8ed86d01 1149
4ed77933 1150 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
8ed86d01
VP
1151 {
1152 const bfd_arch_info_type *coldfire_arch =
1153 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1154
1155 if (coldfire_arch
4ed77933
AS
1156 && ((*info.bfd_arch_info->compatible)
1157 (info.bfd_arch_info, coldfire_arch)))
8ed86d01
VP
1158 flavour = m68k_coldfire_flavour;
1159 }
1160
1161 /* If there is already a candidate, use it. */
1162 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1163 best_arch != NULL;
1164 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1165 {
1166 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1167 continue;
1168
1169 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1170 continue;
1171
1172 break;
1173 }
152d9db6 1174
0c85e18e
MK
1175 if (best_arch != NULL)
1176 {
1177 if (tdesc_data != NULL)
1178 tdesc_data_cleanup (tdesc_data);
1179 return best_arch->gdbarch;
1180 }
1181
1390fcc2 1182 tdep = xzalloc (sizeof (struct gdbarch_tdep));
eb2e12d7 1183 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1184 tdep->fpregs_present = has_fp;
1185 tdep->flavour = flavour;
152d9db6 1186
8ed86d01
VP
1187 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1188 long_double_format = floatformats_ieee_double;
1189 set_gdbarch_long_double_format (gdbarch, long_double_format);
1190 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1191
5d3ed2e3 1192 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1193 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3 1194
025bb325 1195 /* Stack grows down. */
5d3ed2e3 1196 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1197 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1198
1199 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1200 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1201 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1202
6300c360 1203 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6 1204 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1205
8de307e0 1206 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1207 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1208 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1209 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1210 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1211 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
e47577ab
MK
1212 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1213 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1214 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1215
8ed86d01
VP
1216 if (has_fp)
1217 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1218
1219 /* Try to figure out if the arch uses floating registers to return
1220 floating point values from functions. */
1221 if (has_fp)
1222 {
1223 /* On ColdFire, floating point values are returned in D0. */
1224 if (flavour == m68k_coldfire_flavour)
1225 tdep->float_return = 0;
1226 else
1227 tdep->float_return = 1;
1228 }
1229 else
1230 {
1231 /* No floating registers, so can't use them for returning values. */
1232 tdep->float_return = 0;
1233 }
1234
025bb325 1235 /* Function call & return. */
8de307e0 1236 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1237 set_gdbarch_return_value (gdbarch, m68k_return_value);
6c0e89ed 1238
8ed86d01 1239
650fcc91
AS
1240 /* Disassembler. */
1241 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1242
eb2e12d7
AS
1243#if defined JB_PC && defined JB_ELEMENT_SIZE
1244 tdep->jb_pc = JB_PC;
1245 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1246#else
1247 tdep->jb_pc = -1;
1248#endif
f595cb19 1249 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1250 tdep->struct_return = reg_struct_return;
8de307e0
AS
1251
1252 /* Frame unwinder. */
f36bf22c 1253 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
8de307e0 1254 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1255
1256 /* Hook in the DWARF CFI frame unwinder. */
f36bf22c 1257 dwarf2_append_unwinders (gdbarch);
3f244638 1258
8de307e0 1259 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1260
55809acb
AS
1261 /* Hook in ABI-specific overrides, if they have been registered. */
1262 gdbarch_init_osabi (info, gdbarch);
1263
eb2e12d7
AS
1264 /* Now we have tuned the configuration, set a few final things,
1265 based on what the OS ABI has told us. */
1266
1267 if (tdep->jb_pc >= 0)
1268 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1269
f36bf22c 1270 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
8de307e0 1271
8ed86d01 1272 if (tdesc_data)
7cc46491 1273 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8ed86d01 1274
152d9db6
GS
1275 return gdbarch;
1276}
1277
1278
1279static void
c984b7ff 1280m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
152d9db6 1281{
c984b7ff 1282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
152d9db6 1283
eb2e12d7
AS
1284 if (tdep == NULL)
1285 return;
152d9db6 1286}
2acceee2 1287
a78f21af
AC
1288extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1289
c906108c 1290void
fba45db2 1291_initialize_m68k_tdep (void)
c906108c 1292{
152d9db6 1293 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
c906108c 1294}
This page took 1.254216 seconds and 4 git commands to generate.