* gdbarch.sh (get_longjmp_target): Add FRAME argument.
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
c906108c
SS
22
23#include "defs.h"
3f244638 24#include "dwarf2-frame.h"
c906108c 25#include "frame.h"
8de307e0
AS
26#include "frame-base.h"
27#include "frame-unwind.h"
e6bb342a 28#include "gdbtypes.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbcore.h"
31#include "value.h"
32#include "gdb_string.h"
8de307e0 33#include "gdb_assert.h"
7a292a7a 34#include "inferior.h"
4e052eda 35#include "regcache.h"
5d3ed2e3 36#include "arch-utils.h"
55809acb 37#include "osabi.h"
a89aa300 38#include "dis-asm.h"
8ed86d01 39#include "target-descriptions.h"
32eeb91a
AS
40
41#include "m68k-tdep.h"
c906108c 42\f
c5aa993b 43
89c3b6d3
PDM
44#define P_LINKL_FP 0x480e
45#define P_LINKW_FP 0x4e56
46#define P_PEA_FP 0x4856
8de307e0
AS
47#define P_MOVEAL_SP_FP 0x2c4f
48#define P_ADDAW_SP 0xdefc
49#define P_ADDAL_SP 0xdffc
50#define P_SUBQW_SP 0x514f
51#define P_SUBQL_SP 0x518f
52#define P_LEA_SP_SP 0x4fef
53#define P_LEA_PC_A5 0x4bfb0170
54#define P_FMOVEMX_SP 0xf227
55#define P_MOVEL_SP 0x2f00
56#define P_MOVEML_SP 0x48e7
89c3b6d3 57
103a1597 58/* Offset from SP to first arg on stack at first instruction of a function */
103a1597
GS
59#define SP_ARG0 (1 * 4)
60
103a1597
GS
61#if !defined (BPT_VECTOR)
62#define BPT_VECTOR 0xf
63#endif
64
f5cf7aa1 65static const gdb_byte *
103a1597
GS
66m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
67{
f5cf7aa1 68 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
69 *lenptr = sizeof (break_insn);
70 return break_insn;
71}
72
d85fe7f7
AS
73/* Return the GDB type object for the "standard" data type of data in
74 register N. This should be int for D0-D7, SR, FPCONTROL and
75 FPSTATUS, long double for FP0-FP7, and void pointer for all others
76 (A0-A7, PC, FPIADDR). Note, for registers which contain
77 addresses return pointer to void, not pointer to char, because we
78 don't want to attempt to print the string after printing the
79 address. */
5d3ed2e3
GS
80
81static struct type *
8de307e0 82m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 83{
8ed86d01 84 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
03dac896 85
8ed86d01
VP
86 if (tdep->fpregs_present)
87 {
88 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
89 {
90 if (tdep->flavour == m68k_coldfire_flavour)
91 return builtin_type (gdbarch)->builtin_double;
92 else
93 return builtin_type_m68881_ext;
94 }
95
96 if (regnum == M68K_FPI_REGNUM)
97 return builtin_type_void_func_ptr;
98
99 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
100 return builtin_type_int32;
101 }
102 else
103 {
104 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
105 return builtin_type_int0;
106 }
03dac896 107
8ed86d01
VP
108 if (regnum == PC_REGNUM)
109 return builtin_type_void_func_ptr;
03dac896 110
32eeb91a 111 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
03dac896
AS
112 return builtin_type_void_data_ptr;
113
114 return builtin_type_int32;
5d3ed2e3
GS
115}
116
8ed86d01 117static const char *m68k_register_names[] = {
5d3ed2e3
GS
118 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
119 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
120 "ps", "pc",
121 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 122 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
123 };
124
8ed86d01
VP
125/* Function: m68k_register_name
126 Returns the name of the standard m68k register regnum. */
127
128static const char *
129m68k_register_name (int regnum)
130{
131 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 132 internal_error (__FILE__, __LINE__,
e2e0b3e5 133 _("m68k_register_name: illegal register number %d"), regnum);
5d3ed2e3 134 else
8ed86d01 135 return m68k_register_names[regnum];
5d3ed2e3 136}
e47577ab
MK
137\f
138/* Return nonzero if a value of type TYPE stored in register REGNUM
139 needs any special handling. */
140
141static int
142m68k_convert_register_p (int regnum, struct type *type)
143{
8ed86d01
VP
144 if (!gdbarch_tdep (current_gdbarch)->fpregs_present)
145 return 0;
e47577ab
MK
146 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
147}
148
149/* Read a value of type TYPE from register REGNUM in frame FRAME, and
150 return its contents in TO. */
151
152static void
153m68k_register_to_value (struct frame_info *frame, int regnum,
f5cf7aa1 154 struct type *type, gdb_byte *to)
e47577ab 155{
f5cf7aa1 156 gdb_byte from[M68K_MAX_REGISTER_SIZE];
8ed86d01 157 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
158
159 /* We only support floating-point values. */
160 if (TYPE_CODE (type) != TYPE_CODE_FLT)
161 {
8a3fe4f8
AC
162 warning (_("Cannot convert floating-point register value "
163 "to non-floating-point type."));
e47577ab
MK
164 return;
165 }
166
167 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
168 the extended floating-point format used by the FPU. */
169 get_frame_register (frame, regnum, from);
8ed86d01 170 convert_typed_floating (from, fpreg_type, to, type);
e47577ab
MK
171}
172
173/* Write the contents FROM of a value of type TYPE into register
174 REGNUM in frame FRAME. */
175
176static void
177m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 178 struct type *type, const gdb_byte *from)
e47577ab 179{
f5cf7aa1 180 gdb_byte to[M68K_MAX_REGISTER_SIZE];
8ed86d01 181 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
182
183 /* We only support floating-point values. */
184 if (TYPE_CODE (type) != TYPE_CODE_FLT)
185 {
8a3fe4f8
AC
186 warning (_("Cannot convert non-floating-point type "
187 "to floating-point register value."));
e47577ab
MK
188 return;
189 }
190
191 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
192 to the extended floating-point format used by the FPU. */
8ed86d01 193 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
194 put_frame_register (frame, regnum, to);
195}
196
8de307e0 197\f
f595cb19
MK
198/* There is a fair number of calling conventions that are in somewhat
199 wide use. The 68000/08/10 don't support an FPU, not even as a
200 coprocessor. All function return values are stored in %d0/%d1.
201 Structures are returned in a static buffer, a pointer to which is
202 returned in %d0. This means that functions returning a structure
203 are not re-entrant. To avoid this problem some systems use a
204 convention where the caller passes a pointer to a buffer in %a1
205 where the return values is to be stored. This convention is the
206 default, and is implemented in the function m68k_return_value.
207
208 The 68020/030/040/060 do support an FPU, either as a coprocessor
209 (68881/2) or built-in (68040/68060). That's why System V release 4
210 (SVR4) instroduces a new calling convention specified by the SVR4
211 psABI. Integer values are returned in %d0/%d1, pointer return
212 values in %a0 and floating values in %fp0. When calling functions
213 returning a structure the caller should pass a pointer to a buffer
214 for the return value in %a0. This convention is implemented in the
215 function m68k_svr4_return_value, and by appropriately setting the
216 struct_value_regnum member of `struct gdbarch_tdep'.
217
218 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
219 for passing the structure return value buffer.
220
221 GCC can also generate code where small structures are returned in
222 %d0/%d1 instead of in memory by using -freg-struct-return. This is
223 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
224 embedded systems. This convention is implemented by setting the
225 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
226
227/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 228 into VALBUF. */
942dc0e9
GS
229
230static void
8de307e0 231m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 232 gdb_byte *valbuf)
942dc0e9 233{
8de307e0 234 int len = TYPE_LENGTH (type);
f5cf7aa1 235 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 236
8de307e0
AS
237 if (len <= 4)
238 {
239 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
240 memcpy (valbuf, buf + (4 - len), len);
241 }
242 else if (len <= 8)
243 {
244 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
245 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 246 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
247 }
248 else
249 internal_error (__FILE__, __LINE__,
e2e0b3e5 250 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
251}
252
942dc0e9 253static void
f595cb19 254m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 255 gdb_byte *valbuf)
942dc0e9 256{
8de307e0 257 int len = TYPE_LENGTH (type);
f5cf7aa1 258 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 259 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
942dc0e9 260
8ed86d01 261 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 262 {
8ed86d01
VP
263 struct type *fpreg_type = register_type
264 (current_gdbarch, M68K_FP0_REGNUM);
f595cb19 265 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 266 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 267 }
f595cb19
MK
268 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
269 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
270 else
271 m68k_extract_return_value (type, regcache, valbuf);
272}
273
274/* Write a function return value of TYPE from VALBUF into REGCACHE. */
275
276static void
277m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 278 const gdb_byte *valbuf)
f595cb19
MK
279{
280 int len = TYPE_LENGTH (type);
942dc0e9 281
8de307e0
AS
282 if (len <= 4)
283 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
284 else if (len <= 8)
285 {
f595cb19 286 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 287 len - 4, valbuf);
f5cf7aa1 288 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
289 }
290 else
291 internal_error (__FILE__, __LINE__,
e2e0b3e5 292 _("Cannot store return value of %d bytes long."), len);
8de307e0 293}
942dc0e9 294
f595cb19
MK
295static void
296m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 297 const gdb_byte *valbuf)
942dc0e9 298{
f595cb19 299 int len = TYPE_LENGTH (type);
8ed86d01 300 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
8de307e0 301
8ed86d01 302 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 303 {
8ed86d01
VP
304 struct type *fpreg_type = register_type
305 (current_gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 306 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 307 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
308 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
309 }
310 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
311 {
312 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
313 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
314 }
315 else
316 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
317}
318
f595cb19
MK
319/* Return non-zero if TYPE, which is assumed to be a structure or
320 union type, should be returned in registers for architecture
321 GDBARCH. */
322
c481dac7 323static int
f595cb19 324m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 325{
f595cb19
MK
326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
327 enum type_code code = TYPE_CODE (type);
328 int len = TYPE_LENGTH (type);
c481dac7 329
f595cb19
MK
330 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
331
332 if (tdep->struct_return == pcc_struct_return)
333 return 0;
334
335 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
336}
337
f595cb19
MK
338/* Determine, for architecture GDBARCH, how a return value of TYPE
339 should be returned. If it is supposed to be returned in registers,
340 and READBUF is non-zero, read the appropriate value from REGCACHE,
341 and copy it into READBUF. If WRITEBUF is non-zero, write the value
342 from WRITEBUF into REGCACHE. */
343
344static enum return_value_convention
345m68k_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
346 struct regcache *regcache, gdb_byte *readbuf,
347 const gdb_byte *writebuf)
f595cb19
MK
348{
349 enum type_code code = TYPE_CODE (type);
350
1c845060
MK
351 /* GCC returns a `long double' in memory too. */
352 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
353 && !m68k_reg_struct_return_p (gdbarch, type))
354 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
355 {
356 /* The default on m68k is to return structures in static memory.
357 Consequently a function must return the address where we can
358 find the return value. */
f595cb19 359
1c845060
MK
360 if (readbuf)
361 {
362 ULONGEST addr;
363
364 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
365 read_memory (addr, readbuf, TYPE_LENGTH (type));
366 }
367
368 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
369 }
f595cb19
MK
370
371 if (readbuf)
372 m68k_extract_return_value (type, regcache, readbuf);
373 if (writebuf)
374 m68k_store_return_value (type, regcache, writebuf);
375
376 return RETURN_VALUE_REGISTER_CONVENTION;
377}
378
379static enum return_value_convention
380m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
381 struct regcache *regcache, gdb_byte *readbuf,
382 const gdb_byte *writebuf)
f595cb19
MK
383{
384 enum type_code code = TYPE_CODE (type);
385
386 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
387 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
388 {
389 /* The System V ABI says that:
390
391 "A function returning a structure or union also sets %a0 to
392 the value it finds in %a0. Thus when the caller receives
393 control again, the address of the returned object resides in
394 register %a0."
395
396 So the ABI guarantees that we can always find the return
397 value just after the function has returned. */
398
399 if (readbuf)
400 {
401 ULONGEST addr;
402
403 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
404 read_memory (addr, readbuf, TYPE_LENGTH (type));
405 }
406
407 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
408 }
f595cb19
MK
409
410 /* This special case is for structures consisting of a single
411 `float' or `double' member. These structures are returned in
412 %fp0. For these structures, we call ourselves recursively,
413 changing TYPE into the type of the first member of the structure.
414 Since that should work for all structures that have only one
415 member, we don't bother to check the member's type here. */
416 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
417 {
418 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
419 return m68k_svr4_return_value (gdbarch, type, regcache,
420 readbuf, writebuf);
421 }
422
423 if (readbuf)
424 m68k_svr4_extract_return_value (type, regcache, readbuf);
425 if (writebuf)
426 m68k_svr4_store_return_value (type, regcache, writebuf);
427
428 return RETURN_VALUE_REGISTER_CONVENTION;
429}
430\f
392a587b 431
9bb47d95
NS
432/* Always align the frame to a 4-byte boundary. This is required on
433 coldfire and harmless on the rest. */
434
435static CORE_ADDR
436m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
437{
438 /* Align the stack to four bytes. */
439 return sp & ~3;
440}
441
8de307e0 442static CORE_ADDR
7d9b040b 443m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
444 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
445 struct value **args, CORE_ADDR sp, int struct_return,
446 CORE_ADDR struct_addr)
7f8e7424 447{
f595cb19 448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
f5cf7aa1 449 gdb_byte buf[4];
8de307e0
AS
450 int i;
451
452 /* Push arguments in reverse order. */
453 for (i = nargs - 1; i >= 0; i--)
454 {
4754a64e 455 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 456 int len = TYPE_LENGTH (value_type);
8de307e0 457 int container_len = (len + 3) & ~3;
c481dac7
AS
458 int offset;
459
460 /* Non-scalars bigger than 4 bytes are left aligned, others are
461 right aligned. */
462 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
463 || TYPE_CODE (value_type) == TYPE_CODE_UNION
464 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
465 && len > 4)
466 offset = 0;
467 else
468 offset = container_len - len;
8de307e0 469 sp -= container_len;
46615f07 470 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
471 }
472
c481dac7 473 /* Store struct value address. */
8de307e0
AS
474 if (struct_return)
475 {
8de307e0 476 store_unsigned_integer (buf, 4, struct_addr);
f595cb19 477 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
478 }
479
480 /* Store return address. */
481 sp -= 4;
482 store_unsigned_integer (buf, 4, bp_addr);
483 write_memory (sp, buf, 4);
484
485 /* Finally, update the stack pointer... */
486 store_unsigned_integer (buf, 4, sp);
487 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
488
489 /* ...and fake a frame pointer. */
490 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
491
492 /* DWARF2/GCC uses the stack address *before* the function call as a
493 frame's CFA. */
494 return sp + 8;
7f8e7424 495}
6dd0fba6
NS
496
497/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
498
499static int
500m68k_dwarf_reg_to_regnum (int num)
501{
502 if (num < 8)
503 /* d0..7 */
504 return (num - 0) + M68K_D0_REGNUM;
505 else if (num < 16)
506 /* a0..7 */
507 return (num - 8) + M68K_A0_REGNUM;
8ed86d01 508 else if (num < 24 && gdbarch_tdep (current_gdbarch)->fpregs_present)
6dd0fba6
NS
509 /* fp0..7 */
510 return (num - 16) + M68K_FP0_REGNUM;
511 else if (num == 25)
512 /* pc */
513 return M68K_PC_REGNUM;
514 else
f57d151a
UW
515 return gdbarch_num_regs (current_gdbarch)
516 + gdbarch_num_pseudo_regs (current_gdbarch);
6dd0fba6
NS
517}
518
8de307e0
AS
519\f
520struct m68k_frame_cache
521{
522 /* Base address. */
523 CORE_ADDR base;
524 CORE_ADDR sp_offset;
525 CORE_ADDR pc;
7f8e7424 526
8de307e0
AS
527 /* Saved registers. */
528 CORE_ADDR saved_regs[M68K_NUM_REGS];
529 CORE_ADDR saved_sp;
7f8e7424 530
8de307e0
AS
531 /* Stack space reserved for local variables. */
532 long locals;
533};
c906108c 534
8de307e0
AS
535/* Allocate and initialize a frame cache. */
536
537static struct m68k_frame_cache *
538m68k_alloc_frame_cache (void)
c906108c 539{
8de307e0
AS
540 struct m68k_frame_cache *cache;
541 int i;
c906108c 542
8de307e0 543 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 544
8de307e0
AS
545 /* Base address. */
546 cache->base = 0;
547 cache->sp_offset = -4;
548 cache->pc = 0;
c906108c 549
8de307e0
AS
550 /* Saved registers. We initialize these to -1 since zero is a valid
551 offset (that's where %fp is supposed to be stored). */
552 for (i = 0; i < M68K_NUM_REGS; i++)
553 cache->saved_regs[i] = -1;
554
555 /* Frameless until proven otherwise. */
556 cache->locals = -1;
557
558 return cache;
c906108c
SS
559}
560
8de307e0
AS
561/* Check whether PC points at a code that sets up a new stack frame.
562 If so, it updates CACHE and returns the address of the first
563 instruction after the sequence that sets removes the "hidden"
564 argument from the stack or CURRENT_PC, whichever is smaller.
565 Otherwise, return PC. */
c906108c 566
8de307e0
AS
567static CORE_ADDR
568m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
569 struct m68k_frame_cache *cache)
c906108c 570{
8de307e0
AS
571 int op;
572
573 if (pc >= current_pc)
574 return current_pc;
c906108c 575
8de307e0
AS
576 op = read_memory_unsigned_integer (pc, 2);
577
578 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 579 {
8de307e0
AS
580 cache->saved_regs[M68K_FP_REGNUM] = 0;
581 cache->sp_offset += 4;
582 if (op == P_LINKW_FP)
583 {
584 /* link.w %fp, #-N */
585 /* link.w %fp, #0; adda.l #-N, %sp */
586 cache->locals = -read_memory_integer (pc + 2, 2);
587
588 if (pc + 4 < current_pc && cache->locals == 0)
589 {
590 op = read_memory_unsigned_integer (pc + 4, 2);
591 if (op == P_ADDAL_SP)
592 {
593 cache->locals = read_memory_integer (pc + 6, 4);
594 return pc + 10;
595 }
596 }
597
598 return pc + 4;
599 }
600 else if (op == P_LINKL_FP)
c906108c 601 {
8de307e0
AS
602 /* link.l %fp, #-N */
603 cache->locals = -read_memory_integer (pc + 2, 4);
604 return pc + 6;
605 }
606 else
607 {
608 /* pea (%fp); movea.l %sp, %fp */
609 cache->locals = 0;
610
611 if (pc + 2 < current_pc)
612 {
613 op = read_memory_unsigned_integer (pc + 2, 2);
614
615 if (op == P_MOVEAL_SP_FP)
616 {
617 /* move.l %sp, %fp */
618 return pc + 4;
619 }
620 }
621
622 return pc + 2;
c906108c
SS
623 }
624 }
8de307e0 625 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 626 {
8de307e0
AS
627 /* subq.[wl] #N,%sp */
628 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
629 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
630 if (pc + 2 < current_pc)
c906108c 631 {
8de307e0
AS
632 op = read_memory_unsigned_integer (pc + 2, 2);
633 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
634 {
635 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
636 return pc + 4;
637 }
c906108c 638 }
8de307e0
AS
639 return pc + 2;
640 }
641 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
642 {
643 /* adda.w #-N,%sp */
644 /* lea (-N,%sp),%sp */
645 cache->locals = -read_memory_integer (pc + 2, 2);
646 return pc + 4;
c906108c 647 }
8de307e0 648 else if (op == P_ADDAL_SP)
c906108c 649 {
8de307e0
AS
650 /* adda.l #-N,%sp */
651 cache->locals = -read_memory_integer (pc + 2, 4);
652 return pc + 6;
c906108c 653 }
8de307e0
AS
654
655 return pc;
c906108c 656}
c5aa993b 657
8de307e0
AS
658/* Check whether PC points at code that saves registers on the stack.
659 If so, it updates CACHE and returns the address of the first
660 instruction after the register saves or CURRENT_PC, whichever is
661 smaller. Otherwise, return PC. */
c906108c 662
8de307e0
AS
663static CORE_ADDR
664m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
665 struct m68k_frame_cache *cache)
666{
667 if (cache->locals >= 0)
668 {
669 CORE_ADDR offset;
670 int op;
671 int i, mask, regno;
c906108c 672
8de307e0
AS
673 offset = -4 - cache->locals;
674 while (pc < current_pc)
675 {
676 op = read_memory_unsigned_integer (pc, 2);
8ed86d01
VP
677 if (op == P_FMOVEMX_SP
678 && gdbarch_tdep (current_gdbarch)->fpregs_present)
8de307e0
AS
679 {
680 /* fmovem.x REGS,-(%sp) */
681 op = read_memory_unsigned_integer (pc + 2, 2);
682 if ((op & 0xff00) == 0xe000)
683 {
684 mask = op & 0xff;
685 for (i = 0; i < 16; i++, mask >>= 1)
686 {
687 if (mask & 1)
688 {
689 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
690 offset -= 12;
691 }
692 }
693 pc += 4;
694 }
695 else
696 break;
697 }
0ba5a932 698 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
699 {
700 /* move.l %R,-(%sp) */
0ba5a932 701 regno = op & 017;
8de307e0
AS
702 cache->saved_regs[regno] = offset;
703 offset -= 4;
704 pc += 2;
705 }
706 else if (op == P_MOVEML_SP)
707 {
708 /* movem.l REGS,-(%sp) */
709 mask = read_memory_unsigned_integer (pc + 2, 2);
710 for (i = 0; i < 16; i++, mask >>= 1)
711 {
712 if (mask & 1)
713 {
714 cache->saved_regs[15 - i] = offset;
715 offset -= 4;
716 }
717 }
718 pc += 4;
719 }
720 else
721 break;
722 }
723 }
724
725 return pc;
726}
c906108c 727
c906108c 728
8de307e0
AS
729/* Do a full analysis of the prologue at PC and update CACHE
730 accordingly. Bail out early if CURRENT_PC is reached. Return the
731 address where the analysis stopped.
c906108c 732
8de307e0 733 We handle all cases that can be generated by gcc.
c906108c 734
8de307e0 735 For allocating a stack frame:
c906108c 736
8de307e0
AS
737 link.w %a6,#-N
738 link.l %a6,#-N
739 pea (%fp); move.l %sp,%fp
740 link.w %a6,#0; add.l #-N,%sp
741 subq.l #N,%sp
742 subq.w #N,%sp
743 subq.w #8,%sp; subq.w #N-8,%sp
744 add.w #-N,%sp
745 lea (-N,%sp),%sp
746 add.l #-N,%sp
c906108c 747
8de307e0 748 For saving registers:
c906108c 749
8de307e0
AS
750 fmovem.x REGS,-(%sp)
751 move.l R1,-(%sp)
752 move.l R1,-(%sp); move.l R2,-(%sp)
753 movem.l REGS,-(%sp)
c906108c 754
8de307e0 755 For setting up the PIC register:
c906108c 756
8de307e0 757 lea (%pc,N),%a5
c906108c 758
8de307e0 759 */
c906108c 760
eb2e12d7 761static CORE_ADDR
8de307e0
AS
762m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
763 struct m68k_frame_cache *cache)
c906108c 764{
8de307e0 765 unsigned int op;
c906108c 766
8de307e0
AS
767 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
768 pc = m68k_analyze_register_saves (pc, current_pc, cache);
769 if (pc >= current_pc)
770 return current_pc;
c906108c 771
8de307e0
AS
772 /* Check for GOT setup. */
773 op = read_memory_unsigned_integer (pc, 4);
774 if (op == P_LEA_PC_A5)
c906108c 775 {
8de307e0
AS
776 /* lea (%pc,N),%a5 */
777 return pc + 6;
c906108c 778 }
8de307e0
AS
779
780 return pc;
c906108c
SS
781}
782
8de307e0 783/* Return PC of first real instruction. */
7f8e7424 784
8de307e0
AS
785static CORE_ADDR
786m68k_skip_prologue (CORE_ADDR start_pc)
c906108c 787{
8de307e0
AS
788 struct m68k_frame_cache cache;
789 CORE_ADDR pc;
790 int op;
c906108c 791
8de307e0
AS
792 cache.locals = -1;
793 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
794 if (cache.locals < 0)
795 return start_pc;
796 return pc;
797}
c906108c 798
8de307e0
AS
799static CORE_ADDR
800m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
801{
f5cf7aa1 802 gdb_byte buf[8];
7f8e7424 803
8de307e0
AS
804 frame_unwind_register (next_frame, PC_REGNUM, buf);
805 return extract_typed_address (buf, builtin_type_void_func_ptr);
806}
807\f
808/* Normal frames. */
7f8e7424 809
8de307e0
AS
810static struct m68k_frame_cache *
811m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
812{
813 struct m68k_frame_cache *cache;
f5cf7aa1 814 gdb_byte buf[4];
8de307e0
AS
815 int i;
816
817 if (*this_cache)
818 return *this_cache;
819
820 cache = m68k_alloc_frame_cache ();
821 *this_cache = cache;
822
823 /* In principle, for normal frames, %fp holds the frame pointer,
824 which holds the base address for the current stack frame.
825 However, for functions that don't need it, the frame pointer is
826 optional. For these "frameless" functions the frame pointer is
827 actually the frame pointer of the calling frame. Signal
828 trampolines are just a special case of a "frameless" function.
829 They (usually) share their frame pointer with the frame that was
830 in progress when the signal occurred. */
831
832 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
833 cache->base = extract_unsigned_integer (buf, 4);
834 if (cache->base == 0)
835 return cache;
836
837 /* For normal frames, %pc is stored at 4(%fp). */
838 cache->saved_regs[M68K_PC_REGNUM] = 4;
839
93d42b30 840 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
8de307e0
AS
841 if (cache->pc != 0)
842 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
843
844 if (cache->locals < 0)
845 {
846 /* We didn't find a valid frame, which means that CACHE->base
847 currently holds the frame pointer for our calling frame. If
848 we're at the start of a function, or somewhere half-way its
849 prologue, the function's frame probably hasn't been fully
850 setup yet. Try to reconstruct the base address for the stack
851 frame by looking at the stack pointer. For truly "frameless"
852 functions this might work too. */
853
854 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
855 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
856 }
7f8e7424 857
8de307e0
AS
858 /* Now that we have the base address for the stack frame we can
859 calculate the value of %sp in the calling frame. */
860 cache->saved_sp = cache->base + 8;
7f8e7424 861
8de307e0
AS
862 /* Adjust all the saved registers such that they contain addresses
863 instead of offsets. */
864 for (i = 0; i < M68K_NUM_REGS; i++)
865 if (cache->saved_regs[i] != -1)
866 cache->saved_regs[i] += cache->base;
c906108c 867
8de307e0
AS
868 return cache;
869}
c906108c 870
8de307e0
AS
871static void
872m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
873 struct frame_id *this_id)
874{
875 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
c906108c 876
8de307e0
AS
877 /* This marks the outermost frame. */
878 if (cache->base == 0)
879 return;
c5aa993b 880
8de307e0
AS
881 /* See the end of m68k_push_dummy_call. */
882 *this_id = frame_id_build (cache->base + 8, cache->pc);
883}
c5aa993b 884
8de307e0
AS
885static void
886m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
887 int regnum, int *optimizedp,
888 enum lval_type *lvalp, CORE_ADDR *addrp,
60b04da5 889 int *realnump, gdb_byte *valuep)
8de307e0
AS
890{
891 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
892
893 gdb_assert (regnum >= 0);
894
895 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
c5aa993b 896 {
8de307e0
AS
897 *optimizedp = 0;
898 *lvalp = not_lval;
899 *addrp = 0;
900 *realnump = -1;
901 if (valuep)
c906108c 902 {
8de307e0
AS
903 /* Store the value. */
904 store_unsigned_integer (valuep, 4, cache->saved_sp);
89c3b6d3 905 }
8de307e0
AS
906 return;
907 }
908
909 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
910 {
911 *optimizedp = 0;
912 *lvalp = lval_memory;
913 *addrp = cache->saved_regs[regnum];
914 *realnump = -1;
915 if (valuep)
89c3b6d3 916 {
8de307e0
AS
917 /* Read the value in from memory. */
918 read_memory (*addrp, valuep,
919 register_size (current_gdbarch, regnum));
89c3b6d3 920 }
8de307e0 921 return;
c906108c 922 }
8de307e0 923
00b25ff3
AC
924 *optimizedp = 0;
925 *lvalp = lval_register;
926 *addrp = 0;
927 *realnump = regnum;
928 if (valuep)
929 frame_unwind_register (next_frame, (*realnump), valuep);
8de307e0
AS
930}
931
932static const struct frame_unwind m68k_frame_unwind =
933{
934 NORMAL_FRAME,
935 m68k_frame_this_id,
936 m68k_frame_prev_register
937};
938
939static const struct frame_unwind *
336d1bba 940m68k_frame_sniffer (struct frame_info *next_frame)
8de307e0
AS
941{
942 return &m68k_frame_unwind;
943}
944\f
8de307e0
AS
945static CORE_ADDR
946m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
947{
948 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
949
950 return cache->base;
951}
952
953static const struct frame_base m68k_frame_base =
954{
955 &m68k_frame_unwind,
956 m68k_frame_base_address,
957 m68k_frame_base_address,
958 m68k_frame_base_address
959};
960
961static struct frame_id
962m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
963{
f5cf7aa1 964 gdb_byte buf[4];
8de307e0 965 CORE_ADDR fp;
c906108c 966
8de307e0
AS
967 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
968 fp = extract_unsigned_integer (buf, 4);
c906108c 969
8de307e0
AS
970 /* See the end of m68k_push_dummy_call. */
971 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
972}
973\f
c906108c 974
c906108c
SS
975/* Figure out where the longjmp will land. Slurp the args out of the stack.
976 We expect the first arg to be a pointer to the jmp_buf structure from which
977 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
978 This routine returns true on success. */
979
c34d127c 980static int
60ade65d 981m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 982{
f5cf7aa1 983 gdb_byte *buf;
c906108c 984 CORE_ADDR sp, jb_addr;
60ade65d 985 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
eb2e12d7
AS
986
987 if (tdep->jb_pc < 0)
988 {
989 internal_error (__FILE__, __LINE__,
e2e0b3e5 990 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
991 return 0;
992 }
c906108c 993
819844ad 994 buf = alloca (gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT);
60ade65d 995 sp = get_frame_register_unsigned (frame, SP_REGNUM);
c906108c 996
b5d78d39 997 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
819844ad
UW
998 buf,
999 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1000 return 0;
1001
819844ad
UW
1002 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1003 / TARGET_CHAR_BIT);
c906108c 1004
eb2e12d7 1005 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
819844ad 1006 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1007 return 0;
1008
819844ad
UW
1009 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1010 / TARGET_CHAR_BIT);
c906108c
SS
1011 return 1;
1012}
f595cb19
MK
1013\f
1014
1015/* System V Release 4 (SVR4). */
1016
1017void
1018m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1019{
1020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1021
1022 /* SVR4 uses a different calling convention. */
1023 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1024
1025 /* SVR4 uses %a0 instead of %a1. */
1026 tdep->struct_value_regnum = M68K_A0_REGNUM;
1027}
1028\f
c906108c 1029
152d9db6
GS
1030/* Function: m68k_gdbarch_init
1031 Initializer function for the m68k gdbarch vector.
1032 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1033
1034static struct gdbarch *
1035m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1036{
1037 struct gdbarch_tdep *tdep = NULL;
1038 struct gdbarch *gdbarch;
8ed86d01
VP
1039 struct gdbarch_list *best_arch;
1040 struct tdesc_arch_data *tdesc_data = NULL;
1041 int i;
1042 enum m68k_flavour flavour = m68k_no_flavour;
1043 int has_fp = 1;
1044 const struct floatformat **long_double_format = floatformats_m68881_ext;
1045
1046 /* Check any target description for validity. */
1047 if (tdesc_has_registers (info.target_desc))
1048 {
1049 const struct tdesc_feature *feature;
1050 int valid_p;
152d9db6 1051
8ed86d01
VP
1052 feature = tdesc_find_feature (info.target_desc,
1053 "org.gnu.gdb.m68k.core");
1054 if (feature != NULL)
1055 /* Do nothing. */
1056 ;
1057
1058 if (feature == NULL)
1059 {
1060 feature = tdesc_find_feature (info.target_desc,
1061 "org.gnu.gdb.coldfire.core");
1062 if (feature != NULL)
1063 flavour = m68k_coldfire_flavour;
1064 }
1065
1066 if (feature == NULL)
1067 {
1068 feature = tdesc_find_feature (info.target_desc,
1069 "org.gnu.gdb.fido.core");
1070 if (feature != NULL)
1071 flavour = m68k_fido_flavour;
1072 }
1073
1074 if (feature == NULL)
1075 return NULL;
1076
1077 tdesc_data = tdesc_data_alloc ();
1078
1079 valid_p = 1;
1080 for (i = 0; i <= M68K_PC_REGNUM; i++)
1081 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1082 m68k_register_names[i]);
1083
1084 if (!valid_p)
1085 {
1086 tdesc_data_cleanup (tdesc_data);
1087 return NULL;
1088 }
1089
1090 feature = tdesc_find_feature (info.target_desc,
1091 "org.gnu.gdb.coldfire.fp");
1092 if (feature != NULL)
1093 {
1094 valid_p = 1;
1095 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1096 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1097 m68k_register_names[i]);
1098 if (!valid_p)
1099 {
1100 tdesc_data_cleanup (tdesc_data);
1101 return NULL;
1102 }
1103 }
1104 else
1105 has_fp = 0;
1106 }
1107
1108 /* The mechanism for returning floating values from function
1109 and the type of long double depend on whether we're
1110 on ColdFire or standard m68k. */
1111
1112 if (info.bfd_arch_info)
1113 {
1114 const bfd_arch_info_type *coldfire_arch =
1115 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1116
1117 if (coldfire_arch
1118 && (*info.bfd_arch_info->compatible)
1119 (info.bfd_arch_info, coldfire_arch))
1120 flavour = m68k_coldfire_flavour;
1121 }
1122
1123 /* If there is already a candidate, use it. */
1124 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1125 best_arch != NULL;
1126 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1127 {
1128 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1129 continue;
1130
1131 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1132 continue;
1133
1134 break;
1135 }
152d9db6 1136
eb2e12d7
AS
1137 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1138 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1139 tdep->fpregs_present = has_fp;
1140 tdep->flavour = flavour;
152d9db6 1141
8ed86d01
VP
1142 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1143 long_double_format = floatformats_ieee_double;
1144 set_gdbarch_long_double_format (gdbarch, long_double_format);
1145 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1146
5d3ed2e3 1147 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1148 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3
GS
1149
1150 /* Stack grows down. */
1151 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1152 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1153
1154 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1155 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1156 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1157
6300c360 1158 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6
NS
1159 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1160 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1161
8de307e0 1162 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1163 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1164 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1165 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1166 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1167 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1168 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
1169 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1170 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1171 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1172
8ed86d01
VP
1173 if (has_fp)
1174 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1175
1176 /* Try to figure out if the arch uses floating registers to return
1177 floating point values from functions. */
1178 if (has_fp)
1179 {
1180 /* On ColdFire, floating point values are returned in D0. */
1181 if (flavour == m68k_coldfire_flavour)
1182 tdep->float_return = 0;
1183 else
1184 tdep->float_return = 1;
1185 }
1186 else
1187 {
1188 /* No floating registers, so can't use them for returning values. */
1189 tdep->float_return = 0;
1190 }
1191
1192 /* Function call & return */
8de307e0 1193 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1194 set_gdbarch_return_value (gdbarch, m68k_return_value);
6c0e89ed 1195
8ed86d01 1196
650fcc91
AS
1197 /* Disassembler. */
1198 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1199
eb2e12d7
AS
1200#if defined JB_PC && defined JB_ELEMENT_SIZE
1201 tdep->jb_pc = JB_PC;
1202 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1203#else
1204 tdep->jb_pc = -1;
1205#endif
f595cb19 1206 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1207 tdep->struct_return = reg_struct_return;
8de307e0
AS
1208
1209 /* Frame unwinder. */
1210 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1211 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1212
1213 /* Hook in the DWARF CFI frame unwinder. */
1214 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1215
8de307e0 1216 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1217
55809acb
AS
1218 /* Hook in ABI-specific overrides, if they have been registered. */
1219 gdbarch_init_osabi (info, gdbarch);
1220
eb2e12d7
AS
1221 /* Now we have tuned the configuration, set a few final things,
1222 based on what the OS ABI has told us. */
1223
1224 if (tdep->jb_pc >= 0)
1225 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1226
336d1bba 1227 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
8de307e0 1228
8ed86d01
VP
1229 if (tdesc_data)
1230 tdesc_use_registers (gdbarch, tdesc_data);
1231
152d9db6
GS
1232 return gdbarch;
1233}
1234
1235
1236static void
1237m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1238{
eb2e12d7 1239 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
152d9db6 1240
eb2e12d7
AS
1241 if (tdep == NULL)
1242 return;
152d9db6 1243}
2acceee2 1244
a78f21af
AC
1245extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1246
c906108c 1247void
fba45db2 1248_initialize_m68k_tdep (void)
c906108c 1249{
152d9db6 1250 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
c906108c 1251}
This page took 0.710605 seconds and 4 git commands to generate.