gdb/
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
0b302171 3 Copyright (C) 1990-1996, 1999-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
3f244638 21#include "dwarf2-frame.h"
c906108c 22#include "frame.h"
8de307e0
AS
23#include "frame-base.h"
24#include "frame-unwind.h"
e6bb342a 25#include "gdbtypes.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbcore.h"
28#include "value.h"
29#include "gdb_string.h"
8de307e0 30#include "gdb_assert.h"
7a292a7a 31#include "inferior.h"
4e052eda 32#include "regcache.h"
5d3ed2e3 33#include "arch-utils.h"
55809acb 34#include "osabi.h"
a89aa300 35#include "dis-asm.h"
8ed86d01 36#include "target-descriptions.h"
32eeb91a
AS
37
38#include "m68k-tdep.h"
c906108c 39\f
c5aa993b 40
89c3b6d3
PDM
41#define P_LINKL_FP 0x480e
42#define P_LINKW_FP 0x4e56
43#define P_PEA_FP 0x4856
8de307e0
AS
44#define P_MOVEAL_SP_FP 0x2c4f
45#define P_ADDAW_SP 0xdefc
46#define P_ADDAL_SP 0xdffc
47#define P_SUBQW_SP 0x514f
48#define P_SUBQL_SP 0x518f
49#define P_LEA_SP_SP 0x4fef
50#define P_LEA_PC_A5 0x4bfb0170
51#define P_FMOVEMX_SP 0xf227
52#define P_MOVEL_SP 0x2f00
53#define P_MOVEML_SP 0x48e7
89c3b6d3 54
025bb325 55/* Offset from SP to first arg on stack at first instruction of a function. */
103a1597
GS
56#define SP_ARG0 (1 * 4)
57
103a1597
GS
58#if !defined (BPT_VECTOR)
59#define BPT_VECTOR 0xf
60#endif
61
f5cf7aa1 62static const gdb_byte *
67d57894
MD
63m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
64 CORE_ADDR *pcptr, int *lenptr)
103a1597 65{
f5cf7aa1 66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69}
4713453b
AS
70\f
71
4713453b 72/* Construct types for ISA-specific registers. */
209bd28e
UW
73static struct type *
74m68k_ps_type (struct gdbarch *gdbarch)
4713453b 75{
209bd28e
UW
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->m68k_ps_type)
79 {
80 struct type *type;
81
e9bb382b 82 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
209bd28e
UW
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95
96 tdep->m68k_ps_type = type;
97 }
98
99 return tdep->m68k_ps_type;
4713453b 100}
103a1597 101
27067745
UW
102static struct type *
103m68881_ext_type (struct gdbarch *gdbarch)
104{
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
106
107 if (!tdep->m68881_ext_type)
108 tdep->m68881_ext_type
e9bb382b 109 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
27067745
UW
110 floatformats_m68881_ext);
111
112 return tdep->m68881_ext_type;
113}
114
d85fe7f7
AS
115/* Return the GDB type object for the "standard" data type of data in
116 register N. This should be int for D0-D7, SR, FPCONTROL and
117 FPSTATUS, long double for FP0-FP7, and void pointer for all others
118 (A0-A7, PC, FPIADDR). Note, for registers which contain
119 addresses return pointer to void, not pointer to char, because we
120 don't want to attempt to print the string after printing the
121 address. */
5d3ed2e3
GS
122
123static struct type *
8de307e0 124m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 125{
c984b7ff 126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
03dac896 127
8ed86d01
VP
128 if (tdep->fpregs_present)
129 {
c984b7ff
UW
130 if (regnum >= gdbarch_fp0_regnum (gdbarch)
131 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
8ed86d01
VP
132 {
133 if (tdep->flavour == m68k_coldfire_flavour)
134 return builtin_type (gdbarch)->builtin_double;
135 else
27067745 136 return m68881_ext_type (gdbarch);
8ed86d01
VP
137 }
138
139 if (regnum == M68K_FPI_REGNUM)
0dfff4cb 140 return builtin_type (gdbarch)->builtin_func_ptr;
8ed86d01
VP
141
142 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
df4df182 143 return builtin_type (gdbarch)->builtin_int32;
8ed86d01
VP
144 }
145 else
146 {
147 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
df4df182 148 return builtin_type (gdbarch)->builtin_int0;
8ed86d01 149 }
03dac896 150
c984b7ff 151 if (regnum == gdbarch_pc_regnum (gdbarch))
0dfff4cb 152 return builtin_type (gdbarch)->builtin_func_ptr;
03dac896 153
32eeb91a 154 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
0dfff4cb 155 return builtin_type (gdbarch)->builtin_data_ptr;
03dac896 156
4713453b 157 if (regnum == M68K_PS_REGNUM)
209bd28e 158 return m68k_ps_type (gdbarch);
4713453b 159
df4df182 160 return builtin_type (gdbarch)->builtin_int32;
5d3ed2e3
GS
161}
162
8ed86d01 163static const char *m68k_register_names[] = {
5d3ed2e3
GS
164 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
165 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
166 "ps", "pc",
167 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 168 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
169 };
170
8ed86d01 171/* Function: m68k_register_name
025bb325 172 Returns the name of the standard m68k register regnum. */
8ed86d01
VP
173
174static const char *
d93859e2 175m68k_register_name (struct gdbarch *gdbarch, int regnum)
8ed86d01
VP
176{
177 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 178 internal_error (__FILE__, __LINE__,
025bb325
MS
179 _("m68k_register_name: illegal register number %d"),
180 regnum);
86443c3e
MK
181 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
182 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
183 return "";
5d3ed2e3 184 else
8ed86d01 185 return m68k_register_names[regnum];
5d3ed2e3 186}
e47577ab
MK
187\f
188/* Return nonzero if a value of type TYPE stored in register REGNUM
189 needs any special handling. */
190
191static int
025bb325
MS
192m68k_convert_register_p (struct gdbarch *gdbarch,
193 int regnum, struct type *type)
e47577ab 194{
0abe36f5 195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
8ed86d01 196 return 0;
83acabca 197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
3c1ac6e7 198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
e47577ab
MK
199}
200
201/* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
203
8dccd430 204static int
e47577ab 205m68k_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
206 struct type *type, gdb_byte *to,
207 int *optimizedp, int *unavailablep)
e47577ab 208{
f5cf7aa1 209 gdb_byte from[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
e47577ab
MK
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
8a3fe4f8
AC
216 warning (_("Cannot convert floating-point register value "
217 "to non-floating-point type."));
8dccd430
PA
218 *optimizedp = *unavailablep = 0;
219 return 0;
e47577ab
MK
220 }
221
83acabca 222 /* Convert to TYPE. */
8dccd430
PA
223
224 /* Convert to TYPE. */
225 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
226 from, optimizedp, unavailablep))
227 return 0;
228
8ed86d01 229 convert_typed_floating (from, fpreg_type, to, type);
8dccd430
PA
230 *optimizedp = *unavailablep = 0;
231 return 1;
e47577ab
MK
232}
233
234/* Write the contents FROM of a value of type TYPE into register
235 REGNUM in frame FRAME. */
236
237static void
238m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 239 struct type *type, const gdb_byte *from)
e47577ab 240{
f5cf7aa1 241 gdb_byte to[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
242 struct type *fpreg_type = register_type (get_frame_arch (frame),
243 M68K_FP0_REGNUM);
e47577ab
MK
244
245 /* We only support floating-point values. */
246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
247 {
8a3fe4f8
AC
248 warning (_("Cannot convert non-floating-point type "
249 "to floating-point register value."));
e47577ab
MK
250 return;
251 }
252
83acabca 253 /* Convert from TYPE. */
8ed86d01 254 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
255 put_frame_register (frame, regnum, to);
256}
257
8de307e0 258\f
f595cb19
MK
259/* There is a fair number of calling conventions that are in somewhat
260 wide use. The 68000/08/10 don't support an FPU, not even as a
261 coprocessor. All function return values are stored in %d0/%d1.
262 Structures are returned in a static buffer, a pointer to which is
263 returned in %d0. This means that functions returning a structure
264 are not re-entrant. To avoid this problem some systems use a
265 convention where the caller passes a pointer to a buffer in %a1
266 where the return values is to be stored. This convention is the
267 default, and is implemented in the function m68k_return_value.
268
269 The 68020/030/040/060 do support an FPU, either as a coprocessor
270 (68881/2) or built-in (68040/68060). That's why System V release 4
271 (SVR4) instroduces a new calling convention specified by the SVR4
272 psABI. Integer values are returned in %d0/%d1, pointer return
273 values in %a0 and floating values in %fp0. When calling functions
274 returning a structure the caller should pass a pointer to a buffer
275 for the return value in %a0. This convention is implemented in the
276 function m68k_svr4_return_value, and by appropriately setting the
277 struct_value_regnum member of `struct gdbarch_tdep'.
278
279 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
280 for passing the structure return value buffer.
281
282 GCC can also generate code where small structures are returned in
283 %d0/%d1 instead of in memory by using -freg-struct-return. This is
284 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
285 embedded systems. This convention is implemented by setting the
286 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
287
288/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 289 into VALBUF. */
942dc0e9
GS
290
291static void
8de307e0 292m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 293 gdb_byte *valbuf)
942dc0e9 294{
8de307e0 295 int len = TYPE_LENGTH (type);
f5cf7aa1 296 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 297
8de307e0
AS
298 if (len <= 4)
299 {
300 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
301 memcpy (valbuf, buf + (4 - len), len);
302 }
303 else if (len <= 8)
304 {
305 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
306 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 307 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
308 }
309 else
310 internal_error (__FILE__, __LINE__,
e2e0b3e5 311 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
312}
313
942dc0e9 314static void
f595cb19 315m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 316 gdb_byte *valbuf)
942dc0e9 317{
8de307e0 318 int len = TYPE_LENGTH (type);
f5cf7aa1 319 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
320 struct gdbarch *gdbarch = get_regcache_arch (regcache);
321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942dc0e9 322
8ed86d01 323 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 324 {
c984b7ff 325 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f595cb19 326 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 327 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 328 }
f595cb19
MK
329 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
330 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
331 else
332 m68k_extract_return_value (type, regcache, valbuf);
333}
334
335/* Write a function return value of TYPE from VALBUF into REGCACHE. */
336
337static void
338m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 339 const gdb_byte *valbuf)
f595cb19
MK
340{
341 int len = TYPE_LENGTH (type);
942dc0e9 342
8de307e0
AS
343 if (len <= 4)
344 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
345 else if (len <= 8)
346 {
f595cb19 347 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 348 len - 4, valbuf);
f5cf7aa1 349 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
350 }
351 else
352 internal_error (__FILE__, __LINE__,
e2e0b3e5 353 _("Cannot store return value of %d bytes long."), len);
8de307e0 354}
942dc0e9 355
f595cb19
MK
356static void
357m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 358 const gdb_byte *valbuf)
942dc0e9 359{
f595cb19 360 int len = TYPE_LENGTH (type);
c984b7ff
UW
361 struct gdbarch *gdbarch = get_regcache_arch (regcache);
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8de307e0 363
8ed86d01 364 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 365 {
c984b7ff 366 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 367 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 368 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
369 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
370 }
371 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
372 {
373 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
374 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
375 }
376 else
377 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
378}
379
108fb0f7
AS
380/* Return non-zero if TYPE, which is assumed to be a structure, union or
381 complex type, should be returned in registers for architecture
f595cb19
MK
382 GDBARCH. */
383
c481dac7 384static int
f595cb19 385m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 386{
f595cb19
MK
387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388 enum type_code code = TYPE_CODE (type);
389 int len = TYPE_LENGTH (type);
c481dac7 390
108fb0f7
AS
391 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
392 || code == TYPE_CODE_COMPLEX);
f595cb19
MK
393
394 if (tdep->struct_return == pcc_struct_return)
395 return 0;
396
397 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
398}
399
f595cb19
MK
400/* Determine, for architecture GDBARCH, how a return value of TYPE
401 should be returned. If it is supposed to be returned in registers,
402 and READBUF is non-zero, read the appropriate value from REGCACHE,
403 and copy it into READBUF. If WRITEBUF is non-zero, write the value
404 from WRITEBUF into REGCACHE. */
405
406static enum return_value_convention
6a3a010b 407m68k_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
408 struct type *type, struct regcache *regcache,
409 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
410{
411 enum type_code code = TYPE_CODE (type);
412
1c845060 413 /* GCC returns a `long double' in memory too. */
108fb0f7
AS
414 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
415 || code == TYPE_CODE_COMPLEX)
1c845060
MK
416 && !m68k_reg_struct_return_p (gdbarch, type))
417 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
418 {
419 /* The default on m68k is to return structures in static memory.
420 Consequently a function must return the address where we can
421 find the return value. */
f595cb19 422
1c845060
MK
423 if (readbuf)
424 {
425 ULONGEST addr;
426
427 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
428 read_memory (addr, readbuf, TYPE_LENGTH (type));
429 }
430
431 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
432 }
f595cb19
MK
433
434 if (readbuf)
435 m68k_extract_return_value (type, regcache, readbuf);
436 if (writebuf)
437 m68k_store_return_value (type, regcache, writebuf);
438
439 return RETURN_VALUE_REGISTER_CONVENTION;
440}
441
442static enum return_value_convention
6a3a010b 443m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
444 struct type *type, struct regcache *regcache,
445 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
446{
447 enum type_code code = TYPE_CODE (type);
448
108fb0f7
AS
449 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
450 || code == TYPE_CODE_COMPLEX)
f595cb19 451 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
452 {
453 /* The System V ABI says that:
454
455 "A function returning a structure or union also sets %a0 to
456 the value it finds in %a0. Thus when the caller receives
457 control again, the address of the returned object resides in
458 register %a0."
459
460 So the ABI guarantees that we can always find the return
461 value just after the function has returned. */
462
463 if (readbuf)
464 {
465 ULONGEST addr;
466
467 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
468 read_memory (addr, readbuf, TYPE_LENGTH (type));
469 }
470
471 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
472 }
f595cb19
MK
473
474 /* This special case is for structures consisting of a single
475 `float' or `double' member. These structures are returned in
476 %fp0. For these structures, we call ourselves recursively,
477 changing TYPE into the type of the first member of the structure.
478 Since that should work for all structures that have only one
479 member, we don't bother to check the member's type here. */
480 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
481 {
482 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 483 return m68k_svr4_return_value (gdbarch, function, type, regcache,
f595cb19
MK
484 readbuf, writebuf);
485 }
486
487 if (readbuf)
488 m68k_svr4_extract_return_value (type, regcache, readbuf);
489 if (writebuf)
490 m68k_svr4_store_return_value (type, regcache, writebuf);
491
492 return RETURN_VALUE_REGISTER_CONVENTION;
493}
494\f
392a587b 495
9bb47d95
NS
496/* Always align the frame to a 4-byte boundary. This is required on
497 coldfire and harmless on the rest. */
498
499static CORE_ADDR
500m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
501{
502 /* Align the stack to four bytes. */
503 return sp & ~3;
504}
505
8de307e0 506static CORE_ADDR
7d9b040b 507m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
508 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
509 struct value **args, CORE_ADDR sp, int struct_return,
510 CORE_ADDR struct_addr)
7f8e7424 511{
f595cb19 512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 513 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f5cf7aa1 514 gdb_byte buf[4];
8de307e0
AS
515 int i;
516
517 /* Push arguments in reverse order. */
518 for (i = nargs - 1; i >= 0; i--)
519 {
4754a64e 520 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 521 int len = TYPE_LENGTH (value_type);
8de307e0 522 int container_len = (len + 3) & ~3;
c481dac7
AS
523 int offset;
524
525 /* Non-scalars bigger than 4 bytes are left aligned, others are
526 right aligned. */
527 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
528 || TYPE_CODE (value_type) == TYPE_CODE_UNION
529 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
530 && len > 4)
531 offset = 0;
532 else
533 offset = container_len - len;
8de307e0 534 sp -= container_len;
46615f07 535 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
536 }
537
c481dac7 538 /* Store struct value address. */
8de307e0
AS
539 if (struct_return)
540 {
e17a4113 541 store_unsigned_integer (buf, 4, byte_order, struct_addr);
f595cb19 542 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
543 }
544
545 /* Store return address. */
546 sp -= 4;
e17a4113 547 store_unsigned_integer (buf, 4, byte_order, bp_addr);
8de307e0
AS
548 write_memory (sp, buf, 4);
549
550 /* Finally, update the stack pointer... */
e17a4113 551 store_unsigned_integer (buf, 4, byte_order, sp);
8de307e0
AS
552 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
553
554 /* ...and fake a frame pointer. */
555 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
556
557 /* DWARF2/GCC uses the stack address *before* the function call as a
558 frame's CFA. */
559 return sp + 8;
7f8e7424 560}
6dd0fba6
NS
561
562/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
563
564static int
d3f73121 565m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
6dd0fba6
NS
566{
567 if (num < 8)
568 /* d0..7 */
569 return (num - 0) + M68K_D0_REGNUM;
570 else if (num < 16)
571 /* a0..7 */
572 return (num - 8) + M68K_A0_REGNUM;
d3f73121 573 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
6dd0fba6
NS
574 /* fp0..7 */
575 return (num - 16) + M68K_FP0_REGNUM;
576 else if (num == 25)
577 /* pc */
578 return M68K_PC_REGNUM;
579 else
d3f73121 580 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
6dd0fba6
NS
581}
582
8de307e0
AS
583\f
584struct m68k_frame_cache
585{
586 /* Base address. */
587 CORE_ADDR base;
588 CORE_ADDR sp_offset;
589 CORE_ADDR pc;
7f8e7424 590
8de307e0
AS
591 /* Saved registers. */
592 CORE_ADDR saved_regs[M68K_NUM_REGS];
593 CORE_ADDR saved_sp;
7f8e7424 594
8de307e0
AS
595 /* Stack space reserved for local variables. */
596 long locals;
597};
c906108c 598
8de307e0
AS
599/* Allocate and initialize a frame cache. */
600
601static struct m68k_frame_cache *
602m68k_alloc_frame_cache (void)
c906108c 603{
8de307e0
AS
604 struct m68k_frame_cache *cache;
605 int i;
c906108c 606
8de307e0 607 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 608
8de307e0
AS
609 /* Base address. */
610 cache->base = 0;
611 cache->sp_offset = -4;
612 cache->pc = 0;
c906108c 613
8de307e0
AS
614 /* Saved registers. We initialize these to -1 since zero is a valid
615 offset (that's where %fp is supposed to be stored). */
616 for (i = 0; i < M68K_NUM_REGS; i++)
617 cache->saved_regs[i] = -1;
618
619 /* Frameless until proven otherwise. */
620 cache->locals = -1;
621
622 return cache;
c906108c
SS
623}
624
8de307e0
AS
625/* Check whether PC points at a code that sets up a new stack frame.
626 If so, it updates CACHE and returns the address of the first
627 instruction after the sequence that sets removes the "hidden"
628 argument from the stack or CURRENT_PC, whichever is smaller.
629 Otherwise, return PC. */
c906108c 630
8de307e0 631static CORE_ADDR
e17a4113
UW
632m68k_analyze_frame_setup (struct gdbarch *gdbarch,
633 CORE_ADDR pc, CORE_ADDR current_pc,
8de307e0 634 struct m68k_frame_cache *cache)
c906108c 635{
e17a4113 636 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0
AS
637 int op;
638
639 if (pc >= current_pc)
640 return current_pc;
c906108c 641
e17a4113 642 op = read_memory_unsigned_integer (pc, 2, byte_order);
8de307e0
AS
643
644 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 645 {
8de307e0
AS
646 cache->saved_regs[M68K_FP_REGNUM] = 0;
647 cache->sp_offset += 4;
648 if (op == P_LINKW_FP)
649 {
650 /* link.w %fp, #-N */
651 /* link.w %fp, #0; adda.l #-N, %sp */
e17a4113 652 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0
AS
653
654 if (pc + 4 < current_pc && cache->locals == 0)
655 {
e17a4113 656 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
8de307e0
AS
657 if (op == P_ADDAL_SP)
658 {
e17a4113 659 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
8de307e0
AS
660 return pc + 10;
661 }
662 }
663
664 return pc + 4;
665 }
666 else if (op == P_LINKL_FP)
c906108c 667 {
8de307e0 668 /* link.l %fp, #-N */
e17a4113 669 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0
AS
670 return pc + 6;
671 }
672 else
673 {
674 /* pea (%fp); movea.l %sp, %fp */
675 cache->locals = 0;
676
677 if (pc + 2 < current_pc)
678 {
e17a4113 679 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
680
681 if (op == P_MOVEAL_SP_FP)
682 {
683 /* move.l %sp, %fp */
684 return pc + 4;
685 }
686 }
687
688 return pc + 2;
c906108c
SS
689 }
690 }
8de307e0 691 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 692 {
8de307e0
AS
693 /* subq.[wl] #N,%sp */
694 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
695 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
696 if (pc + 2 < current_pc)
c906108c 697 {
e17a4113 698 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
699 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
700 {
701 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
702 return pc + 4;
703 }
c906108c 704 }
8de307e0
AS
705 return pc + 2;
706 }
707 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
708 {
709 /* adda.w #-N,%sp */
710 /* lea (-N,%sp),%sp */
e17a4113 711 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0 712 return pc + 4;
c906108c 713 }
8de307e0 714 else if (op == P_ADDAL_SP)
c906108c 715 {
8de307e0 716 /* adda.l #-N,%sp */
e17a4113 717 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0 718 return pc + 6;
c906108c 719 }
8de307e0
AS
720
721 return pc;
c906108c 722}
c5aa993b 723
8de307e0
AS
724/* Check whether PC points at code that saves registers on the stack.
725 If so, it updates CACHE and returns the address of the first
726 instruction after the register saves or CURRENT_PC, whichever is
727 smaller. Otherwise, return PC. */
c906108c 728
8de307e0 729static CORE_ADDR
be8626e0
MD
730m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
731 CORE_ADDR current_pc,
8de307e0
AS
732 struct m68k_frame_cache *cache)
733{
e17a4113
UW
734 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
735
8de307e0
AS
736 if (cache->locals >= 0)
737 {
738 CORE_ADDR offset;
739 int op;
740 int i, mask, regno;
c906108c 741
8de307e0
AS
742 offset = -4 - cache->locals;
743 while (pc < current_pc)
744 {
e17a4113 745 op = read_memory_unsigned_integer (pc, 2, byte_order);
8ed86d01 746 if (op == P_FMOVEMX_SP
be8626e0 747 && gdbarch_tdep (gdbarch)->fpregs_present)
8de307e0
AS
748 {
749 /* fmovem.x REGS,-(%sp) */
e17a4113 750 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
751 if ((op & 0xff00) == 0xe000)
752 {
753 mask = op & 0xff;
754 for (i = 0; i < 16; i++, mask >>= 1)
755 {
756 if (mask & 1)
757 {
758 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
759 offset -= 12;
760 }
761 }
762 pc += 4;
763 }
764 else
765 break;
766 }
0ba5a932 767 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
768 {
769 /* move.l %R,-(%sp) */
0ba5a932 770 regno = op & 017;
8de307e0
AS
771 cache->saved_regs[regno] = offset;
772 offset -= 4;
773 pc += 2;
774 }
775 else if (op == P_MOVEML_SP)
776 {
777 /* movem.l REGS,-(%sp) */
e17a4113 778 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
779 for (i = 0; i < 16; i++, mask >>= 1)
780 {
781 if (mask & 1)
782 {
783 cache->saved_regs[15 - i] = offset;
784 offset -= 4;
785 }
786 }
787 pc += 4;
788 }
789 else
790 break;
791 }
792 }
793
794 return pc;
795}
c906108c 796
c906108c 797
8de307e0
AS
798/* Do a full analysis of the prologue at PC and update CACHE
799 accordingly. Bail out early if CURRENT_PC is reached. Return the
800 address where the analysis stopped.
c906108c 801
8de307e0 802 We handle all cases that can be generated by gcc.
c906108c 803
8de307e0 804 For allocating a stack frame:
c906108c 805
8de307e0
AS
806 link.w %a6,#-N
807 link.l %a6,#-N
808 pea (%fp); move.l %sp,%fp
809 link.w %a6,#0; add.l #-N,%sp
810 subq.l #N,%sp
811 subq.w #N,%sp
812 subq.w #8,%sp; subq.w #N-8,%sp
813 add.w #-N,%sp
814 lea (-N,%sp),%sp
815 add.l #-N,%sp
c906108c 816
8de307e0 817 For saving registers:
c906108c 818
8de307e0
AS
819 fmovem.x REGS,-(%sp)
820 move.l R1,-(%sp)
821 move.l R1,-(%sp); move.l R2,-(%sp)
822 movem.l REGS,-(%sp)
c906108c 823
8de307e0 824 For setting up the PIC register:
c906108c 825
8de307e0 826 lea (%pc,N),%a5
c906108c 827
8de307e0 828 */
c906108c 829
eb2e12d7 830static CORE_ADDR
be8626e0
MD
831m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
832 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
c906108c 833{
e17a4113 834 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 835 unsigned int op;
c906108c 836
e17a4113 837 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
be8626e0 838 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
8de307e0
AS
839 if (pc >= current_pc)
840 return current_pc;
c906108c 841
8de307e0 842 /* Check for GOT setup. */
e17a4113 843 op = read_memory_unsigned_integer (pc, 4, byte_order);
8de307e0 844 if (op == P_LEA_PC_A5)
c906108c 845 {
8de307e0 846 /* lea (%pc,N),%a5 */
e4d8bc08 847 return pc + 8;
c906108c 848 }
8de307e0
AS
849
850 return pc;
c906108c
SS
851}
852
8de307e0 853/* Return PC of first real instruction. */
7f8e7424 854
8de307e0 855static CORE_ADDR
6093d2eb 856m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 857{
8de307e0
AS
858 struct m68k_frame_cache cache;
859 CORE_ADDR pc;
c906108c 860
8de307e0 861 cache.locals = -1;
be8626e0 862 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
8de307e0
AS
863 if (cache.locals < 0)
864 return start_pc;
865 return pc;
866}
c906108c 867
8de307e0
AS
868static CORE_ADDR
869m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
870{
f5cf7aa1 871 gdb_byte buf[8];
7f8e7424 872
c984b7ff 873 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 874 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
8de307e0
AS
875}
876\f
877/* Normal frames. */
7f8e7424 878
8de307e0 879static struct m68k_frame_cache *
f36bf22c 880m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
8de307e0 881{
e17a4113
UW
882 struct gdbarch *gdbarch = get_frame_arch (this_frame);
883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 884 struct m68k_frame_cache *cache;
f5cf7aa1 885 gdb_byte buf[4];
8de307e0
AS
886 int i;
887
888 if (*this_cache)
889 return *this_cache;
890
891 cache = m68k_alloc_frame_cache ();
892 *this_cache = cache;
893
894 /* In principle, for normal frames, %fp holds the frame pointer,
895 which holds the base address for the current stack frame.
896 However, for functions that don't need it, the frame pointer is
897 optional. For these "frameless" functions the frame pointer is
898 actually the frame pointer of the calling frame. Signal
899 trampolines are just a special case of a "frameless" function.
900 They (usually) share their frame pointer with the frame that was
901 in progress when the signal occurred. */
902
f36bf22c 903 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
e17a4113 904 cache->base = extract_unsigned_integer (buf, 4, byte_order);
8de307e0
AS
905 if (cache->base == 0)
906 return cache;
907
908 /* For normal frames, %pc is stored at 4(%fp). */
909 cache->saved_regs[M68K_PC_REGNUM] = 4;
910
f36bf22c 911 cache->pc = get_frame_func (this_frame);
8de307e0 912 if (cache->pc != 0)
f36bf22c
AS
913 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
914 get_frame_pc (this_frame), cache);
8de307e0
AS
915
916 if (cache->locals < 0)
917 {
918 /* We didn't find a valid frame, which means that CACHE->base
919 currently holds the frame pointer for our calling frame. If
920 we're at the start of a function, or somewhere half-way its
921 prologue, the function's frame probably hasn't been fully
922 setup yet. Try to reconstruct the base address for the stack
923 frame by looking at the stack pointer. For truly "frameless"
924 functions this might work too. */
925
f36bf22c 926 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
e17a4113
UW
927 cache->base = extract_unsigned_integer (buf, 4, byte_order)
928 + cache->sp_offset;
8de307e0 929 }
7f8e7424 930
8de307e0
AS
931 /* Now that we have the base address for the stack frame we can
932 calculate the value of %sp in the calling frame. */
933 cache->saved_sp = cache->base + 8;
7f8e7424 934
8de307e0
AS
935 /* Adjust all the saved registers such that they contain addresses
936 instead of offsets. */
937 for (i = 0; i < M68K_NUM_REGS; i++)
938 if (cache->saved_regs[i] != -1)
939 cache->saved_regs[i] += cache->base;
c906108c 940
8de307e0
AS
941 return cache;
942}
c906108c 943
8de307e0 944static void
f36bf22c 945m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
8de307e0
AS
946 struct frame_id *this_id)
947{
f36bf22c 948 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
c906108c 949
8de307e0
AS
950 /* This marks the outermost frame. */
951 if (cache->base == 0)
952 return;
c5aa993b 953
8de307e0
AS
954 /* See the end of m68k_push_dummy_call. */
955 *this_id = frame_id_build (cache->base + 8, cache->pc);
956}
c5aa993b 957
f36bf22c
AS
958static struct value *
959m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
960 int regnum)
8de307e0 961{
f36bf22c 962 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
963
964 gdb_assert (regnum >= 0);
965
966 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
f36bf22c 967 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
8de307e0
AS
968
969 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
f36bf22c
AS
970 return frame_unwind_got_memory (this_frame, regnum,
971 cache->saved_regs[regnum]);
8de307e0 972
f36bf22c 973 return frame_unwind_got_register (this_frame, regnum, regnum);
8de307e0
AS
974}
975
976static const struct frame_unwind m68k_frame_unwind =
977{
978 NORMAL_FRAME,
8fbca658 979 default_frame_unwind_stop_reason,
8de307e0 980 m68k_frame_this_id,
f36bf22c
AS
981 m68k_frame_prev_register,
982 NULL,
983 default_frame_sniffer
8de307e0 984};
8de307e0 985\f
8de307e0 986static CORE_ADDR
f36bf22c 987m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
8de307e0 988{
f36bf22c 989 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
990
991 return cache->base;
992}
993
994static const struct frame_base m68k_frame_base =
995{
996 &m68k_frame_unwind,
997 m68k_frame_base_address,
998 m68k_frame_base_address,
999 m68k_frame_base_address
1000};
1001
1002static struct frame_id
f36bf22c 1003m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
8de307e0 1004{
8de307e0 1005 CORE_ADDR fp;
c906108c 1006
f36bf22c 1007 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
c906108c 1008
8de307e0 1009 /* See the end of m68k_push_dummy_call. */
f36bf22c 1010 return frame_id_build (fp + 8, get_frame_pc (this_frame));
8de307e0
AS
1011}
1012\f
c906108c 1013
c906108c
SS
1014/* Figure out where the longjmp will land. Slurp the args out of the stack.
1015 We expect the first arg to be a pointer to the jmp_buf structure from which
1016 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
025bb325 1017 This routine returns true on success. */
c906108c 1018
c34d127c 1019static int
60ade65d 1020m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1021{
f5cf7aa1 1022 gdb_byte *buf;
c906108c 1023 CORE_ADDR sp, jb_addr;
c984b7ff 1024 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
1025 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
eb2e12d7
AS
1027
1028 if (tdep->jb_pc < 0)
1029 {
1030 internal_error (__FILE__, __LINE__,
e2e0b3e5 1031 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
1032 return 0;
1033 }
c906108c 1034
c984b7ff
UW
1035 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1036 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
c906108c 1037
025bb325 1038 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
c984b7ff 1039 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1040 return 0;
1041
c984b7ff 1042 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1043 / TARGET_CHAR_BIT, byte_order);
c906108c 1044
eb2e12d7 1045 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
e17a4113
UW
1046 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1047 byte_order)
c906108c
SS
1048 return 0;
1049
c984b7ff 1050 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1051 / TARGET_CHAR_BIT, byte_order);
c906108c
SS
1052 return 1;
1053}
f595cb19
MK
1054\f
1055
18648a37
YQ
1056/* This is the implementation of gdbarch method
1057 return_in_first_hidden_param_p. */
1058
1059static int
1060m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1061 struct type *type)
1062{
1063 return 0;
1064}
1065
f595cb19
MK
1066/* System V Release 4 (SVR4). */
1067
1068void
1069m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1070{
1071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1072
1073 /* SVR4 uses a different calling convention. */
1074 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1075
1076 /* SVR4 uses %a0 instead of %a1. */
1077 tdep->struct_value_regnum = M68K_A0_REGNUM;
1078}
1079\f
c906108c 1080
152d9db6
GS
1081/* Function: m68k_gdbarch_init
1082 Initializer function for the m68k gdbarch vector.
025bb325 1083 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
152d9db6
GS
1084
1085static struct gdbarch *
1086m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1087{
1088 struct gdbarch_tdep *tdep = NULL;
1089 struct gdbarch *gdbarch;
8ed86d01
VP
1090 struct gdbarch_list *best_arch;
1091 struct tdesc_arch_data *tdesc_data = NULL;
1092 int i;
1093 enum m68k_flavour flavour = m68k_no_flavour;
1094 int has_fp = 1;
1095 const struct floatformat **long_double_format = floatformats_m68881_ext;
1096
1097 /* Check any target description for validity. */
1098 if (tdesc_has_registers (info.target_desc))
1099 {
1100 const struct tdesc_feature *feature;
1101 int valid_p;
152d9db6 1102
8ed86d01
VP
1103 feature = tdesc_find_feature (info.target_desc,
1104 "org.gnu.gdb.m68k.core");
1105 if (feature != NULL)
1106 /* Do nothing. */
1107 ;
1108
1109 if (feature == NULL)
1110 {
1111 feature = tdesc_find_feature (info.target_desc,
1112 "org.gnu.gdb.coldfire.core");
1113 if (feature != NULL)
1114 flavour = m68k_coldfire_flavour;
1115 }
1116
1117 if (feature == NULL)
1118 {
1119 feature = tdesc_find_feature (info.target_desc,
1120 "org.gnu.gdb.fido.core");
1121 if (feature != NULL)
1122 flavour = m68k_fido_flavour;
1123 }
1124
1125 if (feature == NULL)
1126 return NULL;
1127
1128 tdesc_data = tdesc_data_alloc ();
1129
1130 valid_p = 1;
1131 for (i = 0; i <= M68K_PC_REGNUM; i++)
1132 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1133 m68k_register_names[i]);
1134
1135 if (!valid_p)
1136 {
1137 tdesc_data_cleanup (tdesc_data);
1138 return NULL;
1139 }
1140
1141 feature = tdesc_find_feature (info.target_desc,
1142 "org.gnu.gdb.coldfire.fp");
1143 if (feature != NULL)
1144 {
1145 valid_p = 1;
1146 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1147 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1148 m68k_register_names[i]);
1149 if (!valid_p)
1150 {
1151 tdesc_data_cleanup (tdesc_data);
1152 return NULL;
1153 }
1154 }
1155 else
1156 has_fp = 0;
1157 }
1158
1159 /* The mechanism for returning floating values from function
1160 and the type of long double depend on whether we're
025bb325 1161 on ColdFire or standard m68k. */
8ed86d01 1162
4ed77933 1163 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
8ed86d01
VP
1164 {
1165 const bfd_arch_info_type *coldfire_arch =
1166 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1167
1168 if (coldfire_arch
4ed77933
AS
1169 && ((*info.bfd_arch_info->compatible)
1170 (info.bfd_arch_info, coldfire_arch)))
8ed86d01
VP
1171 flavour = m68k_coldfire_flavour;
1172 }
1173
1174 /* If there is already a candidate, use it. */
1175 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1176 best_arch != NULL;
1177 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1178 {
1179 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1180 continue;
1181
1182 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1183 continue;
1184
1185 break;
1186 }
152d9db6 1187
0c85e18e
MK
1188 if (best_arch != NULL)
1189 {
1190 if (tdesc_data != NULL)
1191 tdesc_data_cleanup (tdesc_data);
1192 return best_arch->gdbarch;
1193 }
1194
1390fcc2 1195 tdep = xzalloc (sizeof (struct gdbarch_tdep));
eb2e12d7 1196 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1197 tdep->fpregs_present = has_fp;
1198 tdep->flavour = flavour;
152d9db6 1199
8ed86d01
VP
1200 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1201 long_double_format = floatformats_ieee_double;
1202 set_gdbarch_long_double_format (gdbarch, long_double_format);
1203 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1204
5d3ed2e3 1205 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1206 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3 1207
025bb325 1208 /* Stack grows down. */
5d3ed2e3 1209 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1210 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1211
1212 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1213 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1214 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1215
6300c360 1216 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6 1217 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1218
8de307e0 1219 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1220 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1221 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1222 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1223 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1224 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
e47577ab
MK
1225 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1226 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1227 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1228
8ed86d01
VP
1229 if (has_fp)
1230 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1231
1232 /* Try to figure out if the arch uses floating registers to return
1233 floating point values from functions. */
1234 if (has_fp)
1235 {
1236 /* On ColdFire, floating point values are returned in D0. */
1237 if (flavour == m68k_coldfire_flavour)
1238 tdep->float_return = 0;
1239 else
1240 tdep->float_return = 1;
1241 }
1242 else
1243 {
1244 /* No floating registers, so can't use them for returning values. */
1245 tdep->float_return = 0;
1246 }
1247
025bb325 1248 /* Function call & return. */
8de307e0 1249 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1250 set_gdbarch_return_value (gdbarch, m68k_return_value);
18648a37
YQ
1251 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1252 m68k_return_in_first_hidden_param_p);
6c0e89ed 1253
8ed86d01 1254
650fcc91
AS
1255 /* Disassembler. */
1256 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1257
eb2e12d7
AS
1258#if defined JB_PC && defined JB_ELEMENT_SIZE
1259 tdep->jb_pc = JB_PC;
1260 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1261#else
1262 tdep->jb_pc = -1;
1263#endif
f595cb19 1264 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1265 tdep->struct_return = reg_struct_return;
8de307e0
AS
1266
1267 /* Frame unwinder. */
f36bf22c 1268 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
8de307e0 1269 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1270
1271 /* Hook in the DWARF CFI frame unwinder. */
f36bf22c 1272 dwarf2_append_unwinders (gdbarch);
3f244638 1273
8de307e0 1274 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1275
55809acb
AS
1276 /* Hook in ABI-specific overrides, if they have been registered. */
1277 gdbarch_init_osabi (info, gdbarch);
1278
eb2e12d7
AS
1279 /* Now we have tuned the configuration, set a few final things,
1280 based on what the OS ABI has told us. */
1281
1282 if (tdep->jb_pc >= 0)
1283 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1284
f36bf22c 1285 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
8de307e0 1286
8ed86d01 1287 if (tdesc_data)
7cc46491 1288 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8ed86d01 1289
152d9db6
GS
1290 return gdbarch;
1291}
1292
1293
1294static void
c984b7ff 1295m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
152d9db6 1296{
c984b7ff 1297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
152d9db6 1298
eb2e12d7
AS
1299 if (tdep == NULL)
1300 return;
152d9db6 1301}
2acceee2 1302
a78f21af
AC
1303extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1304
c906108c 1305void
fba45db2 1306_initialize_m68k_tdep (void)
c906108c 1307{
152d9db6 1308 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
c906108c 1309}
This page took 1.118596 seconds and 4 git commands to generate.