* gdbarch.sh (stab_reg_to_regnum, dwarf_reg_to_regnum)
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
3f244638 22#include "dwarf2-frame.h"
c906108c 23#include "frame.h"
8de307e0
AS
24#include "frame-base.h"
25#include "frame-unwind.h"
e6bb342a 26#include "gdbtypes.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbcore.h"
29#include "value.h"
30#include "gdb_string.h"
8de307e0 31#include "gdb_assert.h"
7a292a7a 32#include "inferior.h"
4e052eda 33#include "regcache.h"
5d3ed2e3 34#include "arch-utils.h"
55809acb 35#include "osabi.h"
a89aa300 36#include "dis-asm.h"
8ed86d01 37#include "target-descriptions.h"
32eeb91a
AS
38
39#include "m68k-tdep.h"
c906108c 40\f
c5aa993b 41
89c3b6d3
PDM
42#define P_LINKL_FP 0x480e
43#define P_LINKW_FP 0x4e56
44#define P_PEA_FP 0x4856
8de307e0
AS
45#define P_MOVEAL_SP_FP 0x2c4f
46#define P_ADDAW_SP 0xdefc
47#define P_ADDAL_SP 0xdffc
48#define P_SUBQW_SP 0x514f
49#define P_SUBQL_SP 0x518f
50#define P_LEA_SP_SP 0x4fef
51#define P_LEA_PC_A5 0x4bfb0170
52#define P_FMOVEMX_SP 0xf227
53#define P_MOVEL_SP 0x2f00
54#define P_MOVEML_SP 0x48e7
89c3b6d3 55
103a1597 56/* Offset from SP to first arg on stack at first instruction of a function */
103a1597
GS
57#define SP_ARG0 (1 * 4)
58
103a1597
GS
59#if !defined (BPT_VECTOR)
60#define BPT_VECTOR 0xf
61#endif
62
f5cf7aa1 63static const gdb_byte *
67d57894
MD
64m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
65 CORE_ADDR *pcptr, int *lenptr)
103a1597 66{
f5cf7aa1 67 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
68 *lenptr = sizeof (break_insn);
69 return break_insn;
70}
4713453b
AS
71\f
72
73/* Type for %ps. */
74struct type *m68k_ps_type;
75
76/* Construct types for ISA-specific registers. */
77static void
78m68k_init_types (void)
79{
80 struct type *type;
81
82 type = init_flags_type ("builtin_type_m68k_ps", 4);
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95 m68k_ps_type = type;
96}
103a1597 97
d85fe7f7
AS
98/* Return the GDB type object for the "standard" data type of data in
99 register N. This should be int for D0-D7, SR, FPCONTROL and
100 FPSTATUS, long double for FP0-FP7, and void pointer for all others
101 (A0-A7, PC, FPIADDR). Note, for registers which contain
102 addresses return pointer to void, not pointer to char, because we
103 don't want to attempt to print the string after printing the
104 address. */
5d3ed2e3
GS
105
106static struct type *
8de307e0 107m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 108{
c984b7ff 109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
03dac896 110
8ed86d01
VP
111 if (tdep->fpregs_present)
112 {
c984b7ff
UW
113 if (regnum >= gdbarch_fp0_regnum (gdbarch)
114 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
8ed86d01
VP
115 {
116 if (tdep->flavour == m68k_coldfire_flavour)
117 return builtin_type (gdbarch)->builtin_double;
118 else
119 return builtin_type_m68881_ext;
120 }
121
122 if (regnum == M68K_FPI_REGNUM)
123 return builtin_type_void_func_ptr;
124
125 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
126 return builtin_type_int32;
127 }
128 else
129 {
130 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
131 return builtin_type_int0;
132 }
03dac896 133
c984b7ff 134 if (regnum == gdbarch_pc_regnum (gdbarch))
8ed86d01 135 return builtin_type_void_func_ptr;
03dac896 136
32eeb91a 137 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
03dac896
AS
138 return builtin_type_void_data_ptr;
139
4713453b
AS
140 if (regnum == M68K_PS_REGNUM)
141 return m68k_ps_type;
142
03dac896 143 return builtin_type_int32;
5d3ed2e3
GS
144}
145
8ed86d01 146static const char *m68k_register_names[] = {
5d3ed2e3
GS
147 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
148 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
149 "ps", "pc",
150 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 151 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
152 };
153
8ed86d01
VP
154/* Function: m68k_register_name
155 Returns the name of the standard m68k register regnum. */
156
157static const char *
d93859e2 158m68k_register_name (struct gdbarch *gdbarch, int regnum)
8ed86d01
VP
159{
160 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 161 internal_error (__FILE__, __LINE__,
e2e0b3e5 162 _("m68k_register_name: illegal register number %d"), regnum);
5d3ed2e3 163 else
8ed86d01 164 return m68k_register_names[regnum];
5d3ed2e3 165}
e47577ab
MK
166\f
167/* Return nonzero if a value of type TYPE stored in register REGNUM
168 needs any special handling. */
169
170static int
0abe36f5 171m68k_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
e47577ab 172{
0abe36f5 173 if (!gdbarch_tdep (gdbarch)->fpregs_present)
8ed86d01 174 return 0;
83acabca
DJ
175 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
176 && type != builtin_type_m68881_ext);
e47577ab
MK
177}
178
179/* Read a value of type TYPE from register REGNUM in frame FRAME, and
180 return its contents in TO. */
181
182static void
183m68k_register_to_value (struct frame_info *frame, int regnum,
f5cf7aa1 184 struct type *type, gdb_byte *to)
e47577ab 185{
f5cf7aa1 186 gdb_byte from[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
187 struct type *fpreg_type = register_type (get_frame_arch (frame),
188 M68K_FP0_REGNUM);
e47577ab
MK
189
190 /* We only support floating-point values. */
191 if (TYPE_CODE (type) != TYPE_CODE_FLT)
192 {
8a3fe4f8
AC
193 warning (_("Cannot convert floating-point register value "
194 "to non-floating-point type."));
e47577ab
MK
195 return;
196 }
197
83acabca 198 /* Convert to TYPE. */
e47577ab 199 get_frame_register (frame, regnum, from);
8ed86d01 200 convert_typed_floating (from, fpreg_type, to, type);
e47577ab
MK
201}
202
203/* Write the contents FROM of a value of type TYPE into register
204 REGNUM in frame FRAME. */
205
206static void
207m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 208 struct type *type, const gdb_byte *from)
e47577ab 209{
f5cf7aa1 210 gdb_byte to[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
211 struct type *fpreg_type = register_type (get_frame_arch (frame),
212 M68K_FP0_REGNUM);
e47577ab
MK
213
214 /* We only support floating-point values. */
215 if (TYPE_CODE (type) != TYPE_CODE_FLT)
216 {
8a3fe4f8
AC
217 warning (_("Cannot convert non-floating-point type "
218 "to floating-point register value."));
e47577ab
MK
219 return;
220 }
221
83acabca 222 /* Convert from TYPE. */
8ed86d01 223 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
224 put_frame_register (frame, regnum, to);
225}
226
8de307e0 227\f
f595cb19
MK
228/* There is a fair number of calling conventions that are in somewhat
229 wide use. The 68000/08/10 don't support an FPU, not even as a
230 coprocessor. All function return values are stored in %d0/%d1.
231 Structures are returned in a static buffer, a pointer to which is
232 returned in %d0. This means that functions returning a structure
233 are not re-entrant. To avoid this problem some systems use a
234 convention where the caller passes a pointer to a buffer in %a1
235 where the return values is to be stored. This convention is the
236 default, and is implemented in the function m68k_return_value.
237
238 The 68020/030/040/060 do support an FPU, either as a coprocessor
239 (68881/2) or built-in (68040/68060). That's why System V release 4
240 (SVR4) instroduces a new calling convention specified by the SVR4
241 psABI. Integer values are returned in %d0/%d1, pointer return
242 values in %a0 and floating values in %fp0. When calling functions
243 returning a structure the caller should pass a pointer to a buffer
244 for the return value in %a0. This convention is implemented in the
245 function m68k_svr4_return_value, and by appropriately setting the
246 struct_value_regnum member of `struct gdbarch_tdep'.
247
248 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
249 for passing the structure return value buffer.
250
251 GCC can also generate code where small structures are returned in
252 %d0/%d1 instead of in memory by using -freg-struct-return. This is
253 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
254 embedded systems. This convention is implemented by setting the
255 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
256
257/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 258 into VALBUF. */
942dc0e9
GS
259
260static void
8de307e0 261m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 262 gdb_byte *valbuf)
942dc0e9 263{
8de307e0 264 int len = TYPE_LENGTH (type);
f5cf7aa1 265 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 266
8de307e0
AS
267 if (len <= 4)
268 {
269 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
270 memcpy (valbuf, buf + (4 - len), len);
271 }
272 else if (len <= 8)
273 {
274 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
275 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 276 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
277 }
278 else
279 internal_error (__FILE__, __LINE__,
e2e0b3e5 280 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
281}
282
942dc0e9 283static void
f595cb19 284m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 285 gdb_byte *valbuf)
942dc0e9 286{
8de307e0 287 int len = TYPE_LENGTH (type);
f5cf7aa1 288 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
289 struct gdbarch *gdbarch = get_regcache_arch (regcache);
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942dc0e9 291
8ed86d01 292 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 293 {
c984b7ff 294 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f595cb19 295 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 296 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 297 }
f595cb19
MK
298 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
299 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
300 else
301 m68k_extract_return_value (type, regcache, valbuf);
302}
303
304/* Write a function return value of TYPE from VALBUF into REGCACHE. */
305
306static void
307m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 308 const gdb_byte *valbuf)
f595cb19
MK
309{
310 int len = TYPE_LENGTH (type);
942dc0e9 311
8de307e0
AS
312 if (len <= 4)
313 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
314 else if (len <= 8)
315 {
f595cb19 316 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 317 len - 4, valbuf);
f5cf7aa1 318 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
319 }
320 else
321 internal_error (__FILE__, __LINE__,
e2e0b3e5 322 _("Cannot store return value of %d bytes long."), len);
8de307e0 323}
942dc0e9 324
f595cb19
MK
325static void
326m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 327 const gdb_byte *valbuf)
942dc0e9 328{
f595cb19 329 int len = TYPE_LENGTH (type);
c984b7ff
UW
330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8de307e0 332
8ed86d01 333 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 334 {
c984b7ff 335 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 336 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 337 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
338 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
339 }
340 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
341 {
342 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
343 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
344 }
345 else
346 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
347}
348
f595cb19
MK
349/* Return non-zero if TYPE, which is assumed to be a structure or
350 union type, should be returned in registers for architecture
351 GDBARCH. */
352
c481dac7 353static int
f595cb19 354m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 355{
f595cb19
MK
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 enum type_code code = TYPE_CODE (type);
358 int len = TYPE_LENGTH (type);
c481dac7 359
f595cb19
MK
360 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
361
362 if (tdep->struct_return == pcc_struct_return)
363 return 0;
364
365 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
366}
367
f595cb19
MK
368/* Determine, for architecture GDBARCH, how a return value of TYPE
369 should be returned. If it is supposed to be returned in registers,
370 and READBUF is non-zero, read the appropriate value from REGCACHE,
371 and copy it into READBUF. If WRITEBUF is non-zero, write the value
372 from WRITEBUF into REGCACHE. */
373
374static enum return_value_convention
375m68k_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
376 struct regcache *regcache, gdb_byte *readbuf,
377 const gdb_byte *writebuf)
f595cb19
MK
378{
379 enum type_code code = TYPE_CODE (type);
380
1c845060
MK
381 /* GCC returns a `long double' in memory too. */
382 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
383 && !m68k_reg_struct_return_p (gdbarch, type))
384 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
385 {
386 /* The default on m68k is to return structures in static memory.
387 Consequently a function must return the address where we can
388 find the return value. */
f595cb19 389
1c845060
MK
390 if (readbuf)
391 {
392 ULONGEST addr;
393
394 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
395 read_memory (addr, readbuf, TYPE_LENGTH (type));
396 }
397
398 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
399 }
f595cb19
MK
400
401 if (readbuf)
402 m68k_extract_return_value (type, regcache, readbuf);
403 if (writebuf)
404 m68k_store_return_value (type, regcache, writebuf);
405
406 return RETURN_VALUE_REGISTER_CONVENTION;
407}
408
409static enum return_value_convention
410m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
f5cf7aa1
MK
411 struct regcache *regcache, gdb_byte *readbuf,
412 const gdb_byte *writebuf)
f595cb19
MK
413{
414 enum type_code code = TYPE_CODE (type);
415
416 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
417 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
418 {
419 /* The System V ABI says that:
420
421 "A function returning a structure or union also sets %a0 to
422 the value it finds in %a0. Thus when the caller receives
423 control again, the address of the returned object resides in
424 register %a0."
425
426 So the ABI guarantees that we can always find the return
427 value just after the function has returned. */
428
429 if (readbuf)
430 {
431 ULONGEST addr;
432
433 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
434 read_memory (addr, readbuf, TYPE_LENGTH (type));
435 }
436
437 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
438 }
f595cb19
MK
439
440 /* This special case is for structures consisting of a single
441 `float' or `double' member. These structures are returned in
442 %fp0. For these structures, we call ourselves recursively,
443 changing TYPE into the type of the first member of the structure.
444 Since that should work for all structures that have only one
445 member, we don't bother to check the member's type here. */
446 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
447 {
448 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
449 return m68k_svr4_return_value (gdbarch, type, regcache,
450 readbuf, writebuf);
451 }
452
453 if (readbuf)
454 m68k_svr4_extract_return_value (type, regcache, readbuf);
455 if (writebuf)
456 m68k_svr4_store_return_value (type, regcache, writebuf);
457
458 return RETURN_VALUE_REGISTER_CONVENTION;
459}
460\f
392a587b 461
9bb47d95
NS
462/* Always align the frame to a 4-byte boundary. This is required on
463 coldfire and harmless on the rest. */
464
465static CORE_ADDR
466m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
467{
468 /* Align the stack to four bytes. */
469 return sp & ~3;
470}
471
8de307e0 472static CORE_ADDR
7d9b040b 473m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
474 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
475 struct value **args, CORE_ADDR sp, int struct_return,
476 CORE_ADDR struct_addr)
7f8e7424 477{
f595cb19 478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
f5cf7aa1 479 gdb_byte buf[4];
8de307e0
AS
480 int i;
481
482 /* Push arguments in reverse order. */
483 for (i = nargs - 1; i >= 0; i--)
484 {
4754a64e 485 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 486 int len = TYPE_LENGTH (value_type);
8de307e0 487 int container_len = (len + 3) & ~3;
c481dac7
AS
488 int offset;
489
490 /* Non-scalars bigger than 4 bytes are left aligned, others are
491 right aligned. */
492 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
493 || TYPE_CODE (value_type) == TYPE_CODE_UNION
494 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
495 && len > 4)
496 offset = 0;
497 else
498 offset = container_len - len;
8de307e0 499 sp -= container_len;
46615f07 500 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
501 }
502
c481dac7 503 /* Store struct value address. */
8de307e0
AS
504 if (struct_return)
505 {
8de307e0 506 store_unsigned_integer (buf, 4, struct_addr);
f595cb19 507 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
508 }
509
510 /* Store return address. */
511 sp -= 4;
512 store_unsigned_integer (buf, 4, bp_addr);
513 write_memory (sp, buf, 4);
514
515 /* Finally, update the stack pointer... */
516 store_unsigned_integer (buf, 4, sp);
517 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
518
519 /* ...and fake a frame pointer. */
520 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
521
522 /* DWARF2/GCC uses the stack address *before* the function call as a
523 frame's CFA. */
524 return sp + 8;
7f8e7424 525}
6dd0fba6
NS
526
527/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
528
529static int
d3f73121 530m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
6dd0fba6
NS
531{
532 if (num < 8)
533 /* d0..7 */
534 return (num - 0) + M68K_D0_REGNUM;
535 else if (num < 16)
536 /* a0..7 */
537 return (num - 8) + M68K_A0_REGNUM;
d3f73121 538 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
6dd0fba6
NS
539 /* fp0..7 */
540 return (num - 16) + M68K_FP0_REGNUM;
541 else if (num == 25)
542 /* pc */
543 return M68K_PC_REGNUM;
544 else
d3f73121 545 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
6dd0fba6
NS
546}
547
8de307e0
AS
548\f
549struct m68k_frame_cache
550{
551 /* Base address. */
552 CORE_ADDR base;
553 CORE_ADDR sp_offset;
554 CORE_ADDR pc;
7f8e7424 555
8de307e0
AS
556 /* Saved registers. */
557 CORE_ADDR saved_regs[M68K_NUM_REGS];
558 CORE_ADDR saved_sp;
7f8e7424 559
8de307e0
AS
560 /* Stack space reserved for local variables. */
561 long locals;
562};
c906108c 563
8de307e0
AS
564/* Allocate and initialize a frame cache. */
565
566static struct m68k_frame_cache *
567m68k_alloc_frame_cache (void)
c906108c 568{
8de307e0
AS
569 struct m68k_frame_cache *cache;
570 int i;
c906108c 571
8de307e0 572 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 573
8de307e0
AS
574 /* Base address. */
575 cache->base = 0;
576 cache->sp_offset = -4;
577 cache->pc = 0;
c906108c 578
8de307e0
AS
579 /* Saved registers. We initialize these to -1 since zero is a valid
580 offset (that's where %fp is supposed to be stored). */
581 for (i = 0; i < M68K_NUM_REGS; i++)
582 cache->saved_regs[i] = -1;
583
584 /* Frameless until proven otherwise. */
585 cache->locals = -1;
586
587 return cache;
c906108c
SS
588}
589
8de307e0
AS
590/* Check whether PC points at a code that sets up a new stack frame.
591 If so, it updates CACHE and returns the address of the first
592 instruction after the sequence that sets removes the "hidden"
593 argument from the stack or CURRENT_PC, whichever is smaller.
594 Otherwise, return PC. */
c906108c 595
8de307e0
AS
596static CORE_ADDR
597m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
598 struct m68k_frame_cache *cache)
c906108c 599{
8de307e0
AS
600 int op;
601
602 if (pc >= current_pc)
603 return current_pc;
c906108c 604
8de307e0
AS
605 op = read_memory_unsigned_integer (pc, 2);
606
607 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 608 {
8de307e0
AS
609 cache->saved_regs[M68K_FP_REGNUM] = 0;
610 cache->sp_offset += 4;
611 if (op == P_LINKW_FP)
612 {
613 /* link.w %fp, #-N */
614 /* link.w %fp, #0; adda.l #-N, %sp */
615 cache->locals = -read_memory_integer (pc + 2, 2);
616
617 if (pc + 4 < current_pc && cache->locals == 0)
618 {
619 op = read_memory_unsigned_integer (pc + 4, 2);
620 if (op == P_ADDAL_SP)
621 {
622 cache->locals = read_memory_integer (pc + 6, 4);
623 return pc + 10;
624 }
625 }
626
627 return pc + 4;
628 }
629 else if (op == P_LINKL_FP)
c906108c 630 {
8de307e0
AS
631 /* link.l %fp, #-N */
632 cache->locals = -read_memory_integer (pc + 2, 4);
633 return pc + 6;
634 }
635 else
636 {
637 /* pea (%fp); movea.l %sp, %fp */
638 cache->locals = 0;
639
640 if (pc + 2 < current_pc)
641 {
642 op = read_memory_unsigned_integer (pc + 2, 2);
643
644 if (op == P_MOVEAL_SP_FP)
645 {
646 /* move.l %sp, %fp */
647 return pc + 4;
648 }
649 }
650
651 return pc + 2;
c906108c
SS
652 }
653 }
8de307e0 654 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 655 {
8de307e0
AS
656 /* subq.[wl] #N,%sp */
657 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
658 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
659 if (pc + 2 < current_pc)
c906108c 660 {
8de307e0
AS
661 op = read_memory_unsigned_integer (pc + 2, 2);
662 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
663 {
664 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
665 return pc + 4;
666 }
c906108c 667 }
8de307e0
AS
668 return pc + 2;
669 }
670 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
671 {
672 /* adda.w #-N,%sp */
673 /* lea (-N,%sp),%sp */
674 cache->locals = -read_memory_integer (pc + 2, 2);
675 return pc + 4;
c906108c 676 }
8de307e0 677 else if (op == P_ADDAL_SP)
c906108c 678 {
8de307e0
AS
679 /* adda.l #-N,%sp */
680 cache->locals = -read_memory_integer (pc + 2, 4);
681 return pc + 6;
c906108c 682 }
8de307e0
AS
683
684 return pc;
c906108c 685}
c5aa993b 686
8de307e0
AS
687/* Check whether PC points at code that saves registers on the stack.
688 If so, it updates CACHE and returns the address of the first
689 instruction after the register saves or CURRENT_PC, whichever is
690 smaller. Otherwise, return PC. */
c906108c 691
8de307e0
AS
692static CORE_ADDR
693m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
694 struct m68k_frame_cache *cache)
695{
696 if (cache->locals >= 0)
697 {
698 CORE_ADDR offset;
699 int op;
700 int i, mask, regno;
c906108c 701
8de307e0
AS
702 offset = -4 - cache->locals;
703 while (pc < current_pc)
704 {
705 op = read_memory_unsigned_integer (pc, 2);
8ed86d01
VP
706 if (op == P_FMOVEMX_SP
707 && gdbarch_tdep (current_gdbarch)->fpregs_present)
8de307e0
AS
708 {
709 /* fmovem.x REGS,-(%sp) */
710 op = read_memory_unsigned_integer (pc + 2, 2);
711 if ((op & 0xff00) == 0xe000)
712 {
713 mask = op & 0xff;
714 for (i = 0; i < 16; i++, mask >>= 1)
715 {
716 if (mask & 1)
717 {
718 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
719 offset -= 12;
720 }
721 }
722 pc += 4;
723 }
724 else
725 break;
726 }
0ba5a932 727 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
728 {
729 /* move.l %R,-(%sp) */
0ba5a932 730 regno = op & 017;
8de307e0
AS
731 cache->saved_regs[regno] = offset;
732 offset -= 4;
733 pc += 2;
734 }
735 else if (op == P_MOVEML_SP)
736 {
737 /* movem.l REGS,-(%sp) */
738 mask = read_memory_unsigned_integer (pc + 2, 2);
739 for (i = 0; i < 16; i++, mask >>= 1)
740 {
741 if (mask & 1)
742 {
743 cache->saved_regs[15 - i] = offset;
744 offset -= 4;
745 }
746 }
747 pc += 4;
748 }
749 else
750 break;
751 }
752 }
753
754 return pc;
755}
c906108c 756
c906108c 757
8de307e0
AS
758/* Do a full analysis of the prologue at PC and update CACHE
759 accordingly. Bail out early if CURRENT_PC is reached. Return the
760 address where the analysis stopped.
c906108c 761
8de307e0 762 We handle all cases that can be generated by gcc.
c906108c 763
8de307e0 764 For allocating a stack frame:
c906108c 765
8de307e0
AS
766 link.w %a6,#-N
767 link.l %a6,#-N
768 pea (%fp); move.l %sp,%fp
769 link.w %a6,#0; add.l #-N,%sp
770 subq.l #N,%sp
771 subq.w #N,%sp
772 subq.w #8,%sp; subq.w #N-8,%sp
773 add.w #-N,%sp
774 lea (-N,%sp),%sp
775 add.l #-N,%sp
c906108c 776
8de307e0 777 For saving registers:
c906108c 778
8de307e0
AS
779 fmovem.x REGS,-(%sp)
780 move.l R1,-(%sp)
781 move.l R1,-(%sp); move.l R2,-(%sp)
782 movem.l REGS,-(%sp)
c906108c 783
8de307e0 784 For setting up the PIC register:
c906108c 785
8de307e0 786 lea (%pc,N),%a5
c906108c 787
8de307e0 788 */
c906108c 789
eb2e12d7 790static CORE_ADDR
8de307e0
AS
791m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
792 struct m68k_frame_cache *cache)
c906108c 793{
8de307e0 794 unsigned int op;
c906108c 795
8de307e0
AS
796 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
797 pc = m68k_analyze_register_saves (pc, current_pc, cache);
798 if (pc >= current_pc)
799 return current_pc;
c906108c 800
8de307e0
AS
801 /* Check for GOT setup. */
802 op = read_memory_unsigned_integer (pc, 4);
803 if (op == P_LEA_PC_A5)
c906108c 804 {
8de307e0
AS
805 /* lea (%pc,N),%a5 */
806 return pc + 6;
c906108c 807 }
8de307e0
AS
808
809 return pc;
c906108c
SS
810}
811
8de307e0 812/* Return PC of first real instruction. */
7f8e7424 813
8de307e0
AS
814static CORE_ADDR
815m68k_skip_prologue (CORE_ADDR start_pc)
c906108c 816{
8de307e0
AS
817 struct m68k_frame_cache cache;
818 CORE_ADDR pc;
819 int op;
c906108c 820
8de307e0
AS
821 cache.locals = -1;
822 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
823 if (cache.locals < 0)
824 return start_pc;
825 return pc;
826}
c906108c 827
8de307e0
AS
828static CORE_ADDR
829m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
830{
f5cf7aa1 831 gdb_byte buf[8];
7f8e7424 832
c984b7ff 833 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
8de307e0
AS
834 return extract_typed_address (buf, builtin_type_void_func_ptr);
835}
836\f
837/* Normal frames. */
7f8e7424 838
8de307e0
AS
839static struct m68k_frame_cache *
840m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
841{
842 struct m68k_frame_cache *cache;
f5cf7aa1 843 gdb_byte buf[4];
8de307e0
AS
844 int i;
845
846 if (*this_cache)
847 return *this_cache;
848
849 cache = m68k_alloc_frame_cache ();
850 *this_cache = cache;
851
852 /* In principle, for normal frames, %fp holds the frame pointer,
853 which holds the base address for the current stack frame.
854 However, for functions that don't need it, the frame pointer is
855 optional. For these "frameless" functions the frame pointer is
856 actually the frame pointer of the calling frame. Signal
857 trampolines are just a special case of a "frameless" function.
858 They (usually) share their frame pointer with the frame that was
859 in progress when the signal occurred. */
860
861 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
862 cache->base = extract_unsigned_integer (buf, 4);
863 if (cache->base == 0)
864 return cache;
865
866 /* For normal frames, %pc is stored at 4(%fp). */
867 cache->saved_regs[M68K_PC_REGNUM] = 4;
868
93d42b30 869 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
8de307e0
AS
870 if (cache->pc != 0)
871 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
872
873 if (cache->locals < 0)
874 {
875 /* We didn't find a valid frame, which means that CACHE->base
876 currently holds the frame pointer for our calling frame. If
877 we're at the start of a function, or somewhere half-way its
878 prologue, the function's frame probably hasn't been fully
879 setup yet. Try to reconstruct the base address for the stack
880 frame by looking at the stack pointer. For truly "frameless"
881 functions this might work too. */
882
883 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
884 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
885 }
7f8e7424 886
8de307e0
AS
887 /* Now that we have the base address for the stack frame we can
888 calculate the value of %sp in the calling frame. */
889 cache->saved_sp = cache->base + 8;
7f8e7424 890
8de307e0
AS
891 /* Adjust all the saved registers such that they contain addresses
892 instead of offsets. */
893 for (i = 0; i < M68K_NUM_REGS; i++)
894 if (cache->saved_regs[i] != -1)
895 cache->saved_regs[i] += cache->base;
c906108c 896
8de307e0
AS
897 return cache;
898}
c906108c 899
8de307e0
AS
900static void
901m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
902 struct frame_id *this_id)
903{
904 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
c906108c 905
8de307e0
AS
906 /* This marks the outermost frame. */
907 if (cache->base == 0)
908 return;
c5aa993b 909
8de307e0
AS
910 /* See the end of m68k_push_dummy_call. */
911 *this_id = frame_id_build (cache->base + 8, cache->pc);
912}
c5aa993b 913
8de307e0
AS
914static void
915m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
916 int regnum, int *optimizedp,
917 enum lval_type *lvalp, CORE_ADDR *addrp,
60b04da5 918 int *realnump, gdb_byte *valuep)
8de307e0
AS
919{
920 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
921
922 gdb_assert (regnum >= 0);
923
924 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
c5aa993b 925 {
8de307e0
AS
926 *optimizedp = 0;
927 *lvalp = not_lval;
928 *addrp = 0;
929 *realnump = -1;
930 if (valuep)
c906108c 931 {
8de307e0
AS
932 /* Store the value. */
933 store_unsigned_integer (valuep, 4, cache->saved_sp);
89c3b6d3 934 }
8de307e0
AS
935 return;
936 }
937
938 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
939 {
940 *optimizedp = 0;
941 *lvalp = lval_memory;
942 *addrp = cache->saved_regs[regnum];
943 *realnump = -1;
944 if (valuep)
89c3b6d3 945 {
8de307e0
AS
946 /* Read the value in from memory. */
947 read_memory (*addrp, valuep,
c984b7ff 948 register_size (get_frame_arch (next_frame), regnum));
89c3b6d3 949 }
8de307e0 950 return;
c906108c 951 }
8de307e0 952
00b25ff3
AC
953 *optimizedp = 0;
954 *lvalp = lval_register;
955 *addrp = 0;
956 *realnump = regnum;
957 if (valuep)
958 frame_unwind_register (next_frame, (*realnump), valuep);
8de307e0
AS
959}
960
961static const struct frame_unwind m68k_frame_unwind =
962{
963 NORMAL_FRAME,
964 m68k_frame_this_id,
965 m68k_frame_prev_register
966};
967
968static const struct frame_unwind *
336d1bba 969m68k_frame_sniffer (struct frame_info *next_frame)
8de307e0
AS
970{
971 return &m68k_frame_unwind;
972}
973\f
8de307e0
AS
974static CORE_ADDR
975m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
976{
977 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
978
979 return cache->base;
980}
981
982static const struct frame_base m68k_frame_base =
983{
984 &m68k_frame_unwind,
985 m68k_frame_base_address,
986 m68k_frame_base_address,
987 m68k_frame_base_address
988};
989
990static struct frame_id
991m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
992{
f5cf7aa1 993 gdb_byte buf[4];
8de307e0 994 CORE_ADDR fp;
c906108c 995
8de307e0
AS
996 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
997 fp = extract_unsigned_integer (buf, 4);
c906108c 998
8de307e0
AS
999 /* See the end of m68k_push_dummy_call. */
1000 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1001}
1002\f
c906108c 1003
c906108c
SS
1004/* Figure out where the longjmp will land. Slurp the args out of the stack.
1005 We expect the first arg to be a pointer to the jmp_buf structure from which
1006 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1007 This routine returns true on success. */
1008
c34d127c 1009static int
60ade65d 1010m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1011{
f5cf7aa1 1012 gdb_byte *buf;
c906108c 1013 CORE_ADDR sp, jb_addr;
c984b7ff 1014 struct gdbarch *gdbarch = get_frame_arch (frame);
60ade65d 1015 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
eb2e12d7
AS
1016
1017 if (tdep->jb_pc < 0)
1018 {
1019 internal_error (__FILE__, __LINE__,
e2e0b3e5 1020 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
1021 return 0;
1022 }
c906108c 1023
c984b7ff
UW
1024 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1025 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
c906108c 1026
b5d78d39 1027 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
c984b7ff 1028 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1029 return 0;
1030
c984b7ff 1031 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
819844ad 1032 / TARGET_CHAR_BIT);
c906108c 1033
eb2e12d7 1034 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
c984b7ff 1035 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1036 return 0;
1037
c984b7ff 1038 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
819844ad 1039 / TARGET_CHAR_BIT);
c906108c
SS
1040 return 1;
1041}
f595cb19
MK
1042\f
1043
1044/* System V Release 4 (SVR4). */
1045
1046void
1047m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1048{
1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1050
1051 /* SVR4 uses a different calling convention. */
1052 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1053
1054 /* SVR4 uses %a0 instead of %a1. */
1055 tdep->struct_value_regnum = M68K_A0_REGNUM;
1056}
1057\f
c906108c 1058
152d9db6
GS
1059/* Function: m68k_gdbarch_init
1060 Initializer function for the m68k gdbarch vector.
1061 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1062
1063static struct gdbarch *
1064m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1065{
1066 struct gdbarch_tdep *tdep = NULL;
1067 struct gdbarch *gdbarch;
8ed86d01
VP
1068 struct gdbarch_list *best_arch;
1069 struct tdesc_arch_data *tdesc_data = NULL;
1070 int i;
1071 enum m68k_flavour flavour = m68k_no_flavour;
1072 int has_fp = 1;
1073 const struct floatformat **long_double_format = floatformats_m68881_ext;
1074
1075 /* Check any target description for validity. */
1076 if (tdesc_has_registers (info.target_desc))
1077 {
1078 const struct tdesc_feature *feature;
1079 int valid_p;
152d9db6 1080
8ed86d01
VP
1081 feature = tdesc_find_feature (info.target_desc,
1082 "org.gnu.gdb.m68k.core");
1083 if (feature != NULL)
1084 /* Do nothing. */
1085 ;
1086
1087 if (feature == NULL)
1088 {
1089 feature = tdesc_find_feature (info.target_desc,
1090 "org.gnu.gdb.coldfire.core");
1091 if (feature != NULL)
1092 flavour = m68k_coldfire_flavour;
1093 }
1094
1095 if (feature == NULL)
1096 {
1097 feature = tdesc_find_feature (info.target_desc,
1098 "org.gnu.gdb.fido.core");
1099 if (feature != NULL)
1100 flavour = m68k_fido_flavour;
1101 }
1102
1103 if (feature == NULL)
1104 return NULL;
1105
1106 tdesc_data = tdesc_data_alloc ();
1107
1108 valid_p = 1;
1109 for (i = 0; i <= M68K_PC_REGNUM; i++)
1110 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1111 m68k_register_names[i]);
1112
1113 if (!valid_p)
1114 {
1115 tdesc_data_cleanup (tdesc_data);
1116 return NULL;
1117 }
1118
1119 feature = tdesc_find_feature (info.target_desc,
1120 "org.gnu.gdb.coldfire.fp");
1121 if (feature != NULL)
1122 {
1123 valid_p = 1;
1124 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1125 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1126 m68k_register_names[i]);
1127 if (!valid_p)
1128 {
1129 tdesc_data_cleanup (tdesc_data);
1130 return NULL;
1131 }
1132 }
1133 else
1134 has_fp = 0;
1135 }
1136
1137 /* The mechanism for returning floating values from function
1138 and the type of long double depend on whether we're
1139 on ColdFire or standard m68k. */
1140
4ed77933 1141 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
8ed86d01
VP
1142 {
1143 const bfd_arch_info_type *coldfire_arch =
1144 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1145
1146 if (coldfire_arch
4ed77933
AS
1147 && ((*info.bfd_arch_info->compatible)
1148 (info.bfd_arch_info, coldfire_arch)))
8ed86d01
VP
1149 flavour = m68k_coldfire_flavour;
1150 }
1151
1152 /* If there is already a candidate, use it. */
1153 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1154 best_arch != NULL;
1155 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1156 {
1157 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1158 continue;
1159
1160 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1161 continue;
1162
1163 break;
1164 }
152d9db6 1165
eb2e12d7
AS
1166 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1167 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1168 tdep->fpregs_present = has_fp;
1169 tdep->flavour = flavour;
152d9db6 1170
8ed86d01
VP
1171 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1172 long_double_format = floatformats_ieee_double;
1173 set_gdbarch_long_double_format (gdbarch, long_double_format);
1174 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1175
5d3ed2e3 1176 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1177 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3
GS
1178
1179 /* Stack grows down. */
1180 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1181 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1182
1183 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1184 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1185 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1186
6300c360 1187 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6
NS
1188 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1189 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1190
8de307e0 1191 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1192 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1193 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1194 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1195 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1196 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1197 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
e47577ab
MK
1198 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1199 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1200 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1201
8ed86d01
VP
1202 if (has_fp)
1203 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1204
1205 /* Try to figure out if the arch uses floating registers to return
1206 floating point values from functions. */
1207 if (has_fp)
1208 {
1209 /* On ColdFire, floating point values are returned in D0. */
1210 if (flavour == m68k_coldfire_flavour)
1211 tdep->float_return = 0;
1212 else
1213 tdep->float_return = 1;
1214 }
1215 else
1216 {
1217 /* No floating registers, so can't use them for returning values. */
1218 tdep->float_return = 0;
1219 }
1220
1221 /* Function call & return */
8de307e0 1222 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1223 set_gdbarch_return_value (gdbarch, m68k_return_value);
6c0e89ed 1224
8ed86d01 1225
650fcc91
AS
1226 /* Disassembler. */
1227 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1228
eb2e12d7
AS
1229#if defined JB_PC && defined JB_ELEMENT_SIZE
1230 tdep->jb_pc = JB_PC;
1231 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1232#else
1233 tdep->jb_pc = -1;
1234#endif
f595cb19 1235 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1236 tdep->struct_return = reg_struct_return;
8de307e0
AS
1237
1238 /* Frame unwinder. */
1239 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1240 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1241
1242 /* Hook in the DWARF CFI frame unwinder. */
1243 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1244
8de307e0 1245 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1246
55809acb
AS
1247 /* Hook in ABI-specific overrides, if they have been registered. */
1248 gdbarch_init_osabi (info, gdbarch);
1249
eb2e12d7
AS
1250 /* Now we have tuned the configuration, set a few final things,
1251 based on what the OS ABI has told us. */
1252
1253 if (tdep->jb_pc >= 0)
1254 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1255
336d1bba 1256 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
8de307e0 1257
8ed86d01 1258 if (tdesc_data)
7cc46491 1259 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8ed86d01 1260
152d9db6
GS
1261 return gdbarch;
1262}
1263
1264
1265static void
c984b7ff 1266m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
152d9db6 1267{
c984b7ff 1268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
152d9db6 1269
eb2e12d7
AS
1270 if (tdep == NULL)
1271 return;
152d9db6 1272}
2acceee2 1273
a78f21af
AC
1274extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1275
c906108c 1276void
fba45db2 1277_initialize_m68k_tdep (void)
c906108c 1278{
152d9db6 1279 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
4713453b
AS
1280
1281 /* Initialize the m68k-specific register types. */
1282 m68k_init_types ();
c906108c 1283}
This page took 1.030433 seconds and 4 git commands to generate.