* Makefile.in: VERSION 4.2.96.
[deliverable/binutils-gdb.git] / gdb / m88k-tdep.c
CommitLineData
ea3c0839
JG
1/* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
8aa13b87
JK
3
4This file is part of GDB.
5
99a7de40 6This program is free software; you can redistribute it and/or modify
8aa13b87 7it under the terms of the GNU General Public License as published by
99a7de40
JG
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
8aa13b87 10
99a7de40 11This program is distributed in the hope that it will be useful,
8aa13b87
JK
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
99a7de40
JG
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
8aa13b87
JK
19
20#include <stdio.h>
21#include "defs.h"
8aa13b87
JK
22#include "frame.h"
23#include "inferior.h"
24#include "value.h"
25
26#ifdef USG
27#include <sys/types.h>
28#endif
29
30#include <sys/param.h>
31#include <sys/dir.h>
32#include <signal.h>
33#include "gdbcore.h"
34#include <sys/user.h>
35#ifndef USER /* added to support BCS ptrace_user */
36
37#define USER ptrace_user
38#endif
39#include <sys/ioctl.h>
40#include <fcntl.h>
41
8aa13b87
JK
42#include <sys/file.h>
43#include <sys/stat.h>
44
45#include "symtab.h"
46#include "setjmp.h"
47#include "value.h"
48
ea3c0839 49void frame_find_saved_regs ();
8aa13b87 50
ea3c0839
JG
51
52/* Given a GDB frame, determine the address of the calling function's frame.
53 This will be used to create a new GDB frame struct, and then
54 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
55
56 For us, the frame address is its stack pointer value, so we look up
57 the function prologue to determine the caller's sp value, and return it. */
58
59FRAME_ADDR
60frame_chain (thisframe)
61 FRAME thisframe;
8aa13b87 62{
8aa13b87 63
ea3c0839
JG
64 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
65 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
66 the ADDRESS, of SP_REGNUM. It also depends on the cache of
67 frame_find_saved_regs results. */
68 if (thisframe->fsr->regs[SP_REGNUM])
69 return thisframe->fsr->regs[SP_REGNUM];
70 else
71 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
72}
8aa13b87 73
ea3c0839
JG
74int
75frameless_function_invocation (frame)
76 FRAME frame;
8aa13b87 77{
ea3c0839
JG
78
79 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
80 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
81 the ADDRESS, of SP_REGNUM. It also depends on the cache of
82 frame_find_saved_regs results. */
83 if (frame->fsr->regs[SP_REGNUM])
84 return 0; /* Frameful -- return addr saved somewhere */
8aa13b87 85 else
ea3c0839 86 return 1; /* Frameless -- no saved return address */
8aa13b87
JK
87}
88
ea3c0839
JG
89int
90frame_chain_valid (chain, thisframe)
91 CORE_ADDR chain;
92 struct frame_info *thisframe;
8aa13b87 93{
ea3c0839
JG
94 return (chain != 0
95 && outside_startup_file (FRAME_SAVED_PC (thisframe)));
8aa13b87
JK
96}
97
ea3c0839
JG
98void
99init_extra_frame_info (fromleaf, fi)
100 int fromleaf;
101 struct frame_info *fi;
102{
103 fi->fsr = 0; /* Not yet allocated */
104 fi->args_pointer = 0; /* Unknown */
105 fi->locals_pointer = 0; /* Unknown */
106}
ea3c0839
JG
107\f
108/* Examine an m88k function prologue, recording the addresses at which
109 registers are saved explicitly by the prologue code, and returning
110 the address of the first instruction after the prologue (but not
111 after the instruction at address LIMIT, as explained below).
112
113 LIMIT places an upper bound on addresses of the instructions to be
114 examined. If the prologue code scan reaches LIMIT, the scan is
115 aborted and LIMIT is returned. This is used, when examining the
116 prologue for the current frame, to keep examine_prologue () from
117 claiming that a given register has been saved when in fact the
118 instruction that saves it has not yet been executed. LIMIT is used
119 at other times to stop the scan when we hit code after the true
120 function prologue (e.g. for the first source line) which might
121 otherwise be mistaken for function prologue.
122
123 The format of the function prologue matched by this routine is
124 derived from examination of the source to gcc 1.95, particularly
125 the routine output_prologue () in config/out-m88k.c.
126
127 subu r31,r31,n # stack pointer update
128
129 (st rn,r31,offset)? # save incoming regs
130 (st.d rn,r31,offset)?
131
132 (addu r30,r31,n)? # frame pointer update
133
134 (pic sequence)? # PIC code prologue
430923f3
JG
135
136 (or rn,rm,0)? # Move parameters to other regs
ea3c0839
JG
137*/
138
139/* Macros for extracting fields from instructions. */
140
141#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
142#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
143
144/* Prologue code that handles position-independent-code setup. */
145
146struct pic_prologue_code {
147 unsigned long insn, mask;
148};
149
150static struct pic_prologue_code pic_prologue_code [] = {
151/* FIXME -- until this is translated to hex, we won't match it... */
152 0xffffffff, 0,
153 /* or r10,r1,0 (if not saved) */
154 /* bsr.n LabN */
155 /* or.u r25,r0,const */
156 /*LabN: or r25,r25,const2 */
157 /* addu r25,r25,1 */
158 /* or r1,r10,0 (if not saved) */
159};
160
161/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
162 is not the address of a valid instruction, the address of the next
163 instruction beyond ADDR otherwise. *PWORD1 receives the first word
164 of the instruction. PWORD2 is ignored -- a remnant of the original
165 i960 version. */
166
167#define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
168 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
169
170/* Read the m88k instruction at 'memaddr' and return the address of
171 the next instruction after that, or 0 if 'memaddr' is not the
172 address of a valid instruction. The instruction
173 is stored at 'pword1'. */
8aa13b87 174
ea3c0839
JG
175CORE_ADDR
176next_insn (memaddr, pword1)
177 unsigned long *pword1;
178 CORE_ADDR memaddr;
8aa13b87 179{
ea3c0839
JG
180 unsigned long buf[1];
181
182 read_memory (memaddr, buf, sizeof (buf));
183 *pword1 = buf[0];
184 SWAP_TARGET_AND_HOST (pword1, sizeof (long));
185
186 return memaddr + 4;
8aa13b87
JK
187}
188
ea3c0839 189/* Read a register from frames called by us (or from the hardware regs). */
8aa13b87 190
ea3c0839
JG
191int
192read_next_frame_reg(fi, regno)
193 FRAME fi;
194 int regno;
8aa13b87 195{
ea3c0839
JG
196 for (; fi; fi = fi->next) {
197 if (regno == SP_REGNUM) return fi->frame;
198 else if (fi->fsr->regs[regno])
199 return read_memory_integer(fi->fsr->regs[regno], 4);
200 }
201 return read_register(regno);
8aa13b87 202}
8aa13b87 203
ea3c0839
JG
204/* Examine the prologue of a function. `ip' points to the first instruction.
205 `limit' is the limit of the prologue (e.g. the addr of the first
206 linenumber, or perhaps the program counter if we're stepping through).
207 `frame_sp' is the stack pointer value in use in this frame.
208 `fsr' is a pointer to a frame_saved_regs structure into which we put
209 info about the registers saved by this frame.
210 `fi' is a struct frame_info pointer; we fill in various fields in it
211 to reflect the offsets of the arg pointer and the locals pointer. */
212
213static CORE_ADDR
214examine_prologue (ip, limit, frame_sp, fsr, fi)
215 register CORE_ADDR ip;
216 register CORE_ADDR limit;
217 FRAME_ADDR frame_sp;
218 struct frame_saved_regs *fsr;
219 struct frame_info *fi;
220{
221 register CORE_ADDR next_ip;
222 register int src;
223 register struct pic_prologue_code *pcode;
224 unsigned int insn1, insn2;
225 int size, offset;
226 char must_adjust[32]; /* If set, must adjust offsets in fsr */
227 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
228 int fp_offset = -1; /* -1 means not set */
229 CORE_ADDR frame_fp;
230
231 bzero (must_adjust, sizeof (must_adjust));
232 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
233
653d6c56
JG
234 /* Accept move of incoming registers to other registers, using
235 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
236 We don't have to worry about walking into the first lines of code,
237 since the first line number will stop us (assuming we have symbols).
238 What we have actually seen is "or r10,r0,r12". */
239
240#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
241#define OR_MOVE_MASK 0xF800FFFF
242#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
243#define OR_REG_MOVE1_MASK 0xFC1FFFE0
244#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
245#define OR_REG_MOVE2_MASK 0xFC00FFFF
246 while (next_ip &&
247 ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
248 (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
249 (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
250 )
251 )
252 {
253 /* We don't care what moves to where. The result of the moves
254 has already been reflected in what the compiler tells us is the
255 location of these parameters. */
256 ip = next_ip;
257 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
258 }
259
ea3c0839
JG
260 /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
261
262#define SUBU_SP_INSN 0x67ff0000
263#define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
264#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
265 if (next_ip &&
266 ((insn1 & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
267 {
268 sp_offset = -SUBU_OFFSET (insn1);
269 ip = next_ip;
270 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
271 }
272
273 /* The function must start with a stack-pointer adjustment, or
274 we don't know WHAT'S going on... */
275 if (sp_offset == -1)
276 return ip;
277
278 /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
279 This may cause us to mistake the copying of a register
280 parameter to the frame for the saving of a callee-saved
281 register, but that can't be helped, since with the
282 "-fcall-saved" flag, any register can be made callee-saved.
283 This probably doesn't matter, since the ``saved'' caller's values of
284 non-callee-saved registers are not relevant anyway. */
285
286#define STD_STACK_INSN 0x201f0000
287#define STD_STACK_MASK 0xfc1f0000
288#define ST_STACK_INSN 0x241f0000
289#define ST_STACK_MASK 0xfc1f0000
290#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
291#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
292
293 while (next_ip)
294 {
295 if ((insn1 & ST_STACK_MASK) == ST_STACK_INSN)
296 size = 1;
297 else if ((insn1 & STD_STACK_MASK) == STD_STACK_INSN)
298 size = 2;
299 else
300 break;
301
302 src = ST_SRC (insn1);
303 offset = ST_OFFSET (insn1);
304 while (size--)
305 {
306 must_adjust[src] = 1;
307 fsr->regs[src++] = offset; /* Will be adjusted later */
308 offset += 4;
309 }
310 ip = next_ip;
311 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
312 }
313
314 /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
315
316#define ADDU_FP_INSN 0x63df0000
317#define ADDU_FP_MASK 0xffff0000
318#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
319 if (next_ip &&
320 ((insn1 & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
321 {
322 fp_offset = ADDU_OFFSET (insn1);
323 ip = next_ip;
324 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
325 }
326
327 /* Accept the PIC prologue code if present. */
328
329 pcode = pic_prologue_code;
330 size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
331 /* If return addr is saved, we don't use first or last insn of PICstuff. */
332 if (fsr->regs[SRP_REGNUM]) {
333 pcode++;
334 size-=2;
335 }
336
337 while (size-- && next_ip && (pcode->insn == (pcode->mask & insn1)))
338 {
339 pcode++;
340 ip = next_ip;
341 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
342 }
343
430923f3
JG
344 /* Accept moves of parameter registers to other registers, using
345 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
346 We don't have to worry about walking into the first lines of code,
347 since the first line number will stop us (assuming we have symbols).
348 What gcc actually seems to produce is "or rd,r0,rs". */
349
350#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
351#define OR_MOVE_MASK 0xF800FFFF
352#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
353#define OR_REG_MOVE1_MASK 0xFC1FFFE0
354#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
355#define OR_REG_MOVE2_MASK 0xFC00FFFF
356 while (next_ip &&
357 ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
358 (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
359 (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
360 )
361 )
362 {
363 /* We don't care what moves to where. The result of the moves
364 has already been reflected in what the compiler tells us is the
365 location of these parameters. */
366 ip = next_ip;
367 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
368 }
369
ea3c0839
JG
370 /* We're done with the prologue. If we don't care about the stack
371 frame itself, just return. (Note that fsr->regs has been trashed,
372 but the one caller who calls with fi==0 passes a dummy there.) */
373
374 if (fi == 0)
375 return ip;
376
377 /* OK, now we have:
378 sp_offset original negative displacement of SP
379 fp_offset positive displacement between new SP and new FP, or -1
380 fsr->regs[0..31] offset from original SP where reg is stored
381 must_adjust[0..31] set if corresp. offset was set
382
383 The current SP (frame_sp) might not be the original new SP as set
384 by the function prologue, if alloca has been called. This can
385 only occur if fp_offset is set, though (the compiler allocates an
386 FP when it sees alloca). In that case, we have the FP,
387 and can calculate the original new SP from the FP.
388
389 Then, we figure out where the arguments and locals are, and
390 relocate the offsets in fsr->regs to absolute addresses. */
391
392 if (fp_offset != -1) {
393 /* We have a frame pointer, so get it, and base our calc's on it. */
394 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, FP_REGNUM);
395 frame_sp = frame_fp - fp_offset;
396 } else {
397 /* We have no frame pointer, therefore frame_sp is still the same value
398 as set by prologue. But where is the frame itself? */
399 if (must_adjust[SRP_REGNUM]) {
400 /* Function header saved SRP (r1), the return address. Frame starts
401 4 bytes down from where it was saved. */
402 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
403 fi->locals_pointer = frame_fp;
404 } else {
405 /* Function header didn't save SRP (r1), so we are in a leaf fn or
406 are otherwise confused. */
407 frame_fp = -1;
408 }
409 }
410
411 /* The locals are relative to the FP (whether it exists as an allocated
412 register, or just as an assumed offset from the SP) */
413 fi->locals_pointer = frame_fp;
414
415 /* The arguments are just above the SP as it was before we adjusted it
416 on entry. */
417 fi->args_pointer = frame_sp - sp_offset;
418
419 /* Now that we know the SP value used by the prologue, we know where
420 it saved all the registers. */
421 for (src = 0; src < 32; src++)
422 if (must_adjust[src])
423 fsr->regs[src] += frame_sp;
424
425 /* The saved value of the SP is always known. */
426 /* (we hope...) */
427 if (fsr->regs[SP_REGNUM] != 0
428 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
429 fprintf(stderr, "Bad saved SP value %x != %x, offset %x!\n",
430 fsr->regs[SP_REGNUM],
431 frame_sp - sp_offset, sp_offset);
432
433 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
8aa13b87 434
ea3c0839
JG
435 return (ip);
436}
8aa13b87 437
ea3c0839
JG
438/* Given an ip value corresponding to the start of a function,
439 return the ip of the first instruction after the function
440 prologue. */
8aa13b87
JK
441
442CORE_ADDR
ea3c0839
JG
443skip_prologue (ip)
444 CORE_ADDR (ip);
8aa13b87 445{
ea3c0839
JG
446 struct frame_saved_regs saved_regs_dummy;
447 struct symtab_and_line sal;
448 CORE_ADDR limit;
8aa13b87 449
ea3c0839
JG
450 sal = find_pc_line (ip, 0);
451 limit = (sal.end) ? sal.end : 0xffffffff;
452
453 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
454 (struct frame_info *)0 ));
455}
456
457/* Put here the code to store, into a struct frame_saved_regs,
458 the addresses of the saved registers of frame described by FRAME_INFO.
459 This includes special registers such as pc and fp saved in special
460 ways in the stack frame. sp is even more special:
461 the address we return for it IS the sp for the next frame.
462
463 We cache the result of doing this in the frame_cache_obstack, since
464 it is fairly expensive. */
465
466void
467frame_find_saved_regs (fi, fsr)
468 struct frame_info *fi;
469 struct frame_saved_regs *fsr;
470{
471 register CORE_ADDR next_addr;
472 register CORE_ADDR *saved_regs;
473 register int regnum;
474 register struct frame_saved_regs *cache_fsr;
475 extern struct obstack frame_cache_obstack;
476 CORE_ADDR ip;
477 struct symtab_and_line sal;
478 CORE_ADDR limit;
479
480 if (!fi->fsr)
8aa13b87 481 {
ea3c0839
JG
482 cache_fsr = (struct frame_saved_regs *)
483 obstack_alloc (&frame_cache_obstack,
484 sizeof (struct frame_saved_regs));
485 bzero (cache_fsr, sizeof (struct frame_saved_regs));
486 fi->fsr = cache_fsr;
487
488 /* Find the start and end of the function prologue. If the PC
489 is in the function prologue, we only consider the part that
490 has executed already. */
491
492 ip = get_pc_function_start (fi->pc);
493 sal = find_pc_line (ip, 0);
494 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
495
496 /* This will fill in fields in *fi as well as in cache_fsr. */
497 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
8aa13b87
JK
498 }
499
ea3c0839
JG
500 if (fsr)
501 *fsr = *fi->fsr;
502}
503
504/* Return the address of the locals block for the frame
505 described by FI. Returns 0 if the address is unknown.
506 NOTE! Frame locals are referred to by negative offsets from the
507 argument pointer, so this is the same as frame_args_address(). */
508
509CORE_ADDR
510frame_locals_address (fi)
511 struct frame_info *fi;
512{
513 register FRAME frame;
514 struct frame_saved_regs fsr;
515 CORE_ADDR ap;
516
517 if (fi->args_pointer) /* Cached value is likely there. */
518 return fi->args_pointer;
519
520 /* Nope, generate it. */
521
522 get_frame_saved_regs (fi, &fsr);
523
524 return fi->args_pointer;
525}
526
527/* Return the address of the argument block for the frame
528 described by FI. Returns 0 if the address is unknown. */
529
530CORE_ADDR
531frame_args_address (fi)
532 struct frame_info *fi;
533{
534 register FRAME frame;
535 struct frame_saved_regs fsr;
536 CORE_ADDR ap;
537
538 if (fi->args_pointer) /* Cached value is likely there. */
539 return fi->args_pointer;
540
541 /* Nope, generate it. */
542
543 get_frame_saved_regs (fi, &fsr);
544
545 return fi->args_pointer;
546}
547
548/* Return the saved PC from this frame.
549
550 If the frame has a memory copy of SRP_REGNUM, use that. If not,
551 just use the register SRP_REGNUM itself. */
552
553CORE_ADDR
554frame_saved_pc (frame)
555 FRAME frame;
556{
557 return read_next_frame_reg(frame, SRP_REGNUM);
8aa13b87
JK
558}
559
ea3c0839 560
8aa13b87
JK
561#if TARGET_BYTE_ORDER != HOST_BYTE_ORDER
562you lose
563#else /* Host and target byte order the same. */
564#define SINGLE_EXP_BITS 8
565#define DOUBLE_EXP_BITS 11
566int
567IEEE_isNAN(fp, len)
568 int *fp, len;
569 /* fp points to a single precision OR double precision
570 * floating point value; len is the number of bytes, either 4 or 8.
571 * Returns 1 iff fp points to a valid IEEE floating point number.
572 * Returns 0 if fp points to a denormalized number or a NaN
573 */
574{
575 int exponent;
576 if (len == 4)
577 {
578 exponent = *fp;
579 exponent = exponent << 1 >> (32 - SINGLE_EXP_BITS - 1);
580 return ((exponent == -1) || (! exponent && *fp));
581 }
582 else if (len == 8)
583 {
584 exponent = *(fp+1);
585 exponent = exponent << 1 >> (32 - DOUBLE_EXP_BITS - 1);
586 return ((exponent == -1) || (! exponent && *fp * *(fp+1)));
587 }
588 else return 1;
589}
590#endif /* Host and target byte order the same. */
591
ef98d5ac
JG
592static int
593pushed_size (prev_words, v)
594 int prev_words;
595 struct value *v;
596{
597 switch (TYPE_CODE (VALUE_TYPE (v)))
598 {
599 case TYPE_CODE_VOID: /* Void type (values zero length) */
600
601 return 0; /* That was easy! */
602
603 case TYPE_CODE_PTR: /* Pointer type */
604 case TYPE_CODE_ENUM: /* Enumeration type */
605 case TYPE_CODE_INT: /* Integer type */
606 case TYPE_CODE_REF: /* C++ Reference types */
607 case TYPE_CODE_ARRAY: /* Array type, lower bound zero */
608
609 return 1;
610
611 case TYPE_CODE_FLT: /* Floating type */
612
613 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
614 return 1;
615 else
616 /* Assume that it must be a double. */
617 if (prev_words & 1) /* at an odd-word boundary */
618 return 3; /* round to 8-byte boundary */
619 else
620 return 2;
621
622 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
623 case TYPE_CODE_UNION: /* C union or Pascal variant part */
624
625 return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
626
627 case TYPE_CODE_FUNC: /* Function type */
628 case TYPE_CODE_SET: /* Pascal sets */
629 case TYPE_CODE_RANGE: /* Range (integers within bounds) */
630 case TYPE_CODE_PASCAL_ARRAY: /* Array with explicit type of index */
631 case TYPE_CODE_MEMBER: /* Member type */
632 case TYPE_CODE_METHOD: /* Method type */
633 /* Don't know how to pass these yet. */
634
635 case TYPE_CODE_UNDEF: /* Not used; catches errors */
636 default:
637 abort ();
638 }
639}
640
641static void
642store_parm_word (address, val)
643 CORE_ADDR address;
644 int val;
645{
646 write_memory (address, &val, 4);
647}
648
649static int
650store_parm (prev_words, left_parm_addr, v)
651 unsigned int prev_words;
652 CORE_ADDR left_parm_addr;
653 struct value *v;
654{
655 CORE_ADDR start = left_parm_addr + (prev_words * 4);
656 int *val_addr = (int *)VALUE_CONTENTS(v);
657
658 switch (TYPE_CODE (VALUE_TYPE (v)))
659 {
660 case TYPE_CODE_VOID: /* Void type (values zero length) */
661
662 return 0;
663
664 case TYPE_CODE_PTR: /* Pointer type */
665 case TYPE_CODE_ENUM: /* Enumeration type */
666 case TYPE_CODE_INT: /* Integer type */
667 case TYPE_CODE_ARRAY: /* Array type, lower bound zero */
668 case TYPE_CODE_REF: /* C++ Reference types */
669
670 store_parm_word (start, *val_addr);
671 return 1;
672
673 case TYPE_CODE_FLT: /* Floating type */
674
675 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
676 {
677 store_parm_word (start, *val_addr);
678 return 1;
679 }
680 else
681 {
682 store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
683 store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
684 return 2 + (prev_words & 1);
685 }
686
687 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
688 case TYPE_CODE_UNION: /* C union or Pascal variant part */
689
690 {
691 unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
692 unsigned int word;
693
694 for (word = 0; word < words; word++)
695 store_parm_word (start + (word * 4), val_addr[word]);
696 return words;
697 }
698
699 default:
700 abort ();
701 }
702}
8aa13b87 703
8aa13b87
JK
704 /* This routine sets up all of the parameter values needed to make a pseudo
705 call. The name "push_parameters" is a misnomer on some archs,
706 because (on the m88k) most parameters generally end up being passed in
707 registers rather than on the stack. In this routine however, we do
708 end up storing *all* parameter values onto the stack (even if we will
709 realize later that some of these stores were unnecessary). */
710
ea3c0839
JG
711#define FIRST_PARM_REGNUM 2
712
8aa13b87
JK
713void
714push_parameters (return_type, struct_conv, nargs, args)
715 struct type *return_type;
716 int struct_conv;
717 int nargs;
718 value *args;
ea3c0839 719{
8aa13b87
JK
720 int parm_num;
721 unsigned int p_words = 0;
722 CORE_ADDR left_parm_addr;
723
724 /* Start out by creating a space for the return value (if need be). We
725 only need to do this if the return value is a struct or union. If we
726 do make a space for a struct or union return value, then we must also
727 arrange for the base address of that space to go into r12, which is the
728 standard place to pass the address of the return value area to the
729 callee. Note that only structs and unions are returned in this fashion.
730 Ints, enums, pointers, and floats are returned into r2. Doubles are
731 returned into the register pair {r2,r3}. Note also that the space
732 reserved for a struct or union return value only has to be word aligned
733 (not double-word) but it is double-word aligned here anyway (just in
734 case that becomes important someday). */
735
736 switch (TYPE_CODE (return_type))
737 {
738 case TYPE_CODE_STRUCT:
739 case TYPE_CODE_UNION:
740 {
741 int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
742 CORE_ADDR rv_addr;
743
744 rv_addr = read_register (SP_REGNUM) - return_bytes;
745
746 write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
747 write_register (SRA_REGNUM, rv_addr);/* set return value register */
748 }
749 }
750
751 /* Here we make a pre-pass on the whole parameter list to figure out exactly
752 how many words worth of stuff we are going to pass. */
753
754 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
755 p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
756
757 /* Now, check to see if we have to round up the number of parameter words
758 to get up to the next 8-bytes boundary. This may be necessary because
759 of the software convention to always keep the stack aligned on an 8-byte
760 boundary. */
761
762 if (p_words & 1)
763 p_words++; /* round to 8-byte boundary */
764
765 /* Now figure out the absolute address of the leftmost parameter, and update
766 the stack pointer to point at that address. */
767
768 left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
769 write_register (SP_REGNUM, left_parm_addr);
770
771 /* Now we can go through all of the parameters (in left-to-right order)
772 and write them to their parameter stack slots. Note that we are not
773 really "pushing" the parameter values. The stack space for these values
774 was already allocated above. Now we are just filling it up. */
775
776 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
777 p_words +=
778 store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
779
780 /* Now that we are all done storing the parameter values into the stack, we
781 must go back and load up the parameter registers with the values from the
782 corresponding stack slots. Note that in the two cases of (a) gaps in the
783 parameter word sequence causes by (otherwise) misaligned doubles, and (b)
784 slots correcponding to structs or unions, the work we do here in loading
785 some parameter registers may be unnecessary, but who cares? */
786
787 for (p_words = 0; p_words < 8; p_words++)
788 {
789 write_register (FIRST_PARM_REGNUM + p_words,
790 read_memory_integer (left_parm_addr + (p_words * 4), 4));
791 }
792}
793
794void
795pop_frame ()
796{
797 error ("Feature not implemented for the m88k yet.");
798 return;
799}
800
ea3c0839
JG
801void
802collect_returned_value (rval, value_type, struct_return, nargs, args)
803 value *rval;
804 struct type *value_type;
805 int struct_return;
806 int nargs;
807 value *args;
808{
809 char retbuf[REGISTER_BYTES];
810
811 bcopy (registers, retbuf, REGISTER_BYTES);
812 *rval = value_being_returned (value_type, retbuf, struct_return);
813 return;
814}
8aa13b87
JK
815
816#if 0
817/* Now handled in a machine independent way with CALL_DUMMY_LOCATION. */
818 /* Stuff a breakpoint instruction onto the stack (or elsewhere if the stack
819 is not a good place for it). Return the address at which the instruction
820 got stuffed, or zero if we were unable to stuff it anywhere. */
821
ea3c0839
JG
822CORE_ADDR
823push_breakpoint ()
824{
825 static char breakpoint_insn[] = BREAKPOINT;
826 extern CORE_ADDR text_end; /* of inferior */
827 static char readback_buffer[] = BREAKPOINT;
828 int i;
8aa13b87 829
ea3c0839
JG
830 /* With a little bit of luck, we can just stash the breakpoint instruction
831 in the word just beyond the end of normal text space. For systems on
832 which the hardware will not allow us to execute out of the stack segment,
833 we have to hope that we *are* at least allowed to effectively extend the
834 text segment by one word. If the actual end of user's the text segment
835 happens to fall right at a page boundary this trick may fail. Note that
836 we check for this by reading after writing, and comparing in order to
837 be sure that the write worked. */
8aa13b87 838
ea3c0839 839 write_memory (text_end, &breakpoint_insn, 4);
8aa13b87 840
ea3c0839
JG
841 /* Fill the readback buffer with some garbage which is certain to be
842 unequal to the breakpoint insn. That way we can tell if the
843 following read doesn't actually succeed. */
8aa13b87 844
ea3c0839
JG
845 for (i = 0; i < sizeof (readback_buffer); i++)
846 readback_buffer[i] = ~ readback_buffer[i]; /* Invert the bits */
847
848 /* Now check that the breakpoint insn was successfully installed. */
8aa13b87 849
ea3c0839
JG
850 read_memory (text_end, readback_buffer, sizeof (readback_buffer));
851 for (i = 0; i < sizeof (readback_buffer); i++)
852 if (readback_buffer[i] != breakpoint_insn[i])
853 return 0; /* Failed to install! */
854
855 return text_end;
8aa13b87 856}
ea3c0839 857#endif
This page took 0.073783 seconds and 4 git commands to generate.