* Makefile.in (VERSION): Bump to 4.7.4.
[deliverable/binutils-gdb.git] / gdb / m88k-tdep.c
CommitLineData
ea3c0839
JG
1/* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
8aa13b87
JK
3
4This file is part of GDB.
5
99a7de40 6This program is free software; you can redistribute it and/or modify
8aa13b87 7it under the terms of the GNU General Public License as published by
99a7de40
JG
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
8aa13b87 10
99a7de40 11This program is distributed in the hope that it will be useful,
8aa13b87
JK
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
99a7de40
JG
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
8aa13b87 19
8aa13b87 20#include "defs.h"
8aa13b87
JK
21#include "frame.h"
22#include "inferior.h"
23#include "value.h"
24
25#ifdef USG
26#include <sys/types.h>
27#endif
28
29#include <sys/param.h>
30#include <sys/dir.h>
31#include <signal.h>
32#include "gdbcore.h"
33#include <sys/user.h>
34#ifndef USER /* added to support BCS ptrace_user */
35
36#define USER ptrace_user
37#endif
38#include <sys/ioctl.h>
39#include <fcntl.h>
40
8aa13b87
JK
41#include <sys/file.h>
42#include <sys/stat.h>
43
44#include "symtab.h"
45#include "setjmp.h"
46#include "value.h"
47
ea3c0839 48void frame_find_saved_regs ();
8aa13b87 49
ea3c0839
JG
50
51/* Given a GDB frame, determine the address of the calling function's frame.
52 This will be used to create a new GDB frame struct, and then
53 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
54
55 For us, the frame address is its stack pointer value, so we look up
56 the function prologue to determine the caller's sp value, and return it. */
57
58FRAME_ADDR
59frame_chain (thisframe)
60 FRAME thisframe;
8aa13b87 61{
8aa13b87 62
ea3c0839
JG
63 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
64 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
65 the ADDRESS, of SP_REGNUM. It also depends on the cache of
66 frame_find_saved_regs results. */
67 if (thisframe->fsr->regs[SP_REGNUM])
68 return thisframe->fsr->regs[SP_REGNUM];
69 else
70 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
71}
8aa13b87 72
ea3c0839
JG
73int
74frameless_function_invocation (frame)
75 FRAME frame;
8aa13b87 76{
ea3c0839
JG
77
78 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
79 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
80 the ADDRESS, of SP_REGNUM. It also depends on the cache of
81 frame_find_saved_regs results. */
82 if (frame->fsr->regs[SP_REGNUM])
83 return 0; /* Frameful -- return addr saved somewhere */
8aa13b87 84 else
ea3c0839 85 return 1; /* Frameless -- no saved return address */
8aa13b87
JK
86}
87
ea3c0839
JG
88int
89frame_chain_valid (chain, thisframe)
90 CORE_ADDR chain;
91 struct frame_info *thisframe;
8aa13b87 92{
ea3c0839 93 return (chain != 0
5e2e79f8 94 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
8aa13b87
JK
95}
96
ea3c0839
JG
97void
98init_extra_frame_info (fromleaf, fi)
99 int fromleaf;
100 struct frame_info *fi;
101{
102 fi->fsr = 0; /* Not yet allocated */
103 fi->args_pointer = 0; /* Unknown */
104 fi->locals_pointer = 0; /* Unknown */
105}
ea3c0839
JG
106\f
107/* Examine an m88k function prologue, recording the addresses at which
108 registers are saved explicitly by the prologue code, and returning
109 the address of the first instruction after the prologue (but not
110 after the instruction at address LIMIT, as explained below).
111
112 LIMIT places an upper bound on addresses of the instructions to be
113 examined. If the prologue code scan reaches LIMIT, the scan is
114 aborted and LIMIT is returned. This is used, when examining the
115 prologue for the current frame, to keep examine_prologue () from
116 claiming that a given register has been saved when in fact the
117 instruction that saves it has not yet been executed. LIMIT is used
118 at other times to stop the scan when we hit code after the true
119 function prologue (e.g. for the first source line) which might
120 otherwise be mistaken for function prologue.
121
122 The format of the function prologue matched by this routine is
123 derived from examination of the source to gcc 1.95, particularly
124 the routine output_prologue () in config/out-m88k.c.
125
126 subu r31,r31,n # stack pointer update
127
128 (st rn,r31,offset)? # save incoming regs
129 (st.d rn,r31,offset)?
130
131 (addu r30,r31,n)? # frame pointer update
132
133 (pic sequence)? # PIC code prologue
430923f3
JG
134
135 (or rn,rm,0)? # Move parameters to other regs
ea3c0839
JG
136*/
137
138/* Macros for extracting fields from instructions. */
139
140#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
141#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
142
143/* Prologue code that handles position-independent-code setup. */
144
145struct pic_prologue_code {
146 unsigned long insn, mask;
147};
148
149static struct pic_prologue_code pic_prologue_code [] = {
150/* FIXME -- until this is translated to hex, we won't match it... */
151 0xffffffff, 0,
152 /* or r10,r1,0 (if not saved) */
153 /* bsr.n LabN */
154 /* or.u r25,r0,const */
155 /*LabN: or r25,r25,const2 */
156 /* addu r25,r25,1 */
157 /* or r1,r10,0 (if not saved) */
158};
159
160/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
161 is not the address of a valid instruction, the address of the next
162 instruction beyond ADDR otherwise. *PWORD1 receives the first word
163 of the instruction. PWORD2 is ignored -- a remnant of the original
164 i960 version. */
165
166#define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
167 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
168
169/* Read the m88k instruction at 'memaddr' and return the address of
170 the next instruction after that, or 0 if 'memaddr' is not the
171 address of a valid instruction. The instruction
172 is stored at 'pword1'. */
8aa13b87 173
ea3c0839
JG
174CORE_ADDR
175next_insn (memaddr, pword1)
176 unsigned long *pword1;
177 CORE_ADDR memaddr;
8aa13b87 178{
ea3c0839
JG
179 unsigned long buf[1];
180
181 read_memory (memaddr, buf, sizeof (buf));
182 *pword1 = buf[0];
183 SWAP_TARGET_AND_HOST (pword1, sizeof (long));
184
185 return memaddr + 4;
8aa13b87
JK
186}
187
ea3c0839 188/* Read a register from frames called by us (or from the hardware regs). */
8aa13b87 189
ea3c0839
JG
190int
191read_next_frame_reg(fi, regno)
192 FRAME fi;
193 int regno;
8aa13b87 194{
ea3c0839
JG
195 for (; fi; fi = fi->next) {
196 if (regno == SP_REGNUM) return fi->frame;
197 else if (fi->fsr->regs[regno])
198 return read_memory_integer(fi->fsr->regs[regno], 4);
199 }
200 return read_register(regno);
8aa13b87 201}
8aa13b87 202
ea3c0839
JG
203/* Examine the prologue of a function. `ip' points to the first instruction.
204 `limit' is the limit of the prologue (e.g. the addr of the first
205 linenumber, or perhaps the program counter if we're stepping through).
206 `frame_sp' is the stack pointer value in use in this frame.
207 `fsr' is a pointer to a frame_saved_regs structure into which we put
208 info about the registers saved by this frame.
209 `fi' is a struct frame_info pointer; we fill in various fields in it
210 to reflect the offsets of the arg pointer and the locals pointer. */
211
212static CORE_ADDR
213examine_prologue (ip, limit, frame_sp, fsr, fi)
214 register CORE_ADDR ip;
215 register CORE_ADDR limit;
216 FRAME_ADDR frame_sp;
217 struct frame_saved_regs *fsr;
218 struct frame_info *fi;
219{
220 register CORE_ADDR next_ip;
221 register int src;
222 register struct pic_prologue_code *pcode;
223 unsigned int insn1, insn2;
224 int size, offset;
225 char must_adjust[32]; /* If set, must adjust offsets in fsr */
226 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
227 int fp_offset = -1; /* -1 means not set */
228 CORE_ADDR frame_fp;
229
230 bzero (must_adjust, sizeof (must_adjust));
231 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
232
653d6c56
JG
233 /* Accept move of incoming registers to other registers, using
234 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
235 We don't have to worry about walking into the first lines of code,
236 since the first line number will stop us (assuming we have symbols).
237 What we have actually seen is "or r10,r0,r12". */
238
239#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
240#define OR_MOVE_MASK 0xF800FFFF
241#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
242#define OR_REG_MOVE1_MASK 0xFC1FFFE0
243#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
244#define OR_REG_MOVE2_MASK 0xFC00FFFF
245 while (next_ip &&
246 ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
247 (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
248 (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
249 )
250 )
251 {
252 /* We don't care what moves to where. The result of the moves
253 has already been reflected in what the compiler tells us is the
254 location of these parameters. */
255 ip = next_ip;
256 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
257 }
258
ea3c0839
JG
259 /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
260
261#define SUBU_SP_INSN 0x67ff0000
262#define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
263#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
264 if (next_ip &&
265 ((insn1 & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
266 {
267 sp_offset = -SUBU_OFFSET (insn1);
268 ip = next_ip;
269 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
270 }
271
272 /* The function must start with a stack-pointer adjustment, or
273 we don't know WHAT'S going on... */
274 if (sp_offset == -1)
275 return ip;
276
277 /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
278 This may cause us to mistake the copying of a register
279 parameter to the frame for the saving of a callee-saved
280 register, but that can't be helped, since with the
281 "-fcall-saved" flag, any register can be made callee-saved.
282 This probably doesn't matter, since the ``saved'' caller's values of
283 non-callee-saved registers are not relevant anyway. */
284
285#define STD_STACK_INSN 0x201f0000
286#define STD_STACK_MASK 0xfc1f0000
287#define ST_STACK_INSN 0x241f0000
288#define ST_STACK_MASK 0xfc1f0000
289#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
290#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
291
292 while (next_ip)
293 {
294 if ((insn1 & ST_STACK_MASK) == ST_STACK_INSN)
295 size = 1;
296 else if ((insn1 & STD_STACK_MASK) == STD_STACK_INSN)
297 size = 2;
298 else
299 break;
300
301 src = ST_SRC (insn1);
302 offset = ST_OFFSET (insn1);
303 while (size--)
304 {
305 must_adjust[src] = 1;
306 fsr->regs[src++] = offset; /* Will be adjusted later */
307 offset += 4;
308 }
309 ip = next_ip;
310 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
311 }
312
313 /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
314
315#define ADDU_FP_INSN 0x63df0000
316#define ADDU_FP_MASK 0xffff0000
317#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
318 if (next_ip &&
319 ((insn1 & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
320 {
321 fp_offset = ADDU_OFFSET (insn1);
322 ip = next_ip;
323 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
324 }
325
326 /* Accept the PIC prologue code if present. */
327
328 pcode = pic_prologue_code;
329 size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
330 /* If return addr is saved, we don't use first or last insn of PICstuff. */
331 if (fsr->regs[SRP_REGNUM]) {
332 pcode++;
333 size-=2;
334 }
335
336 while (size-- && next_ip && (pcode->insn == (pcode->mask & insn1)))
337 {
338 pcode++;
339 ip = next_ip;
340 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
341 }
342
430923f3
JG
343 /* Accept moves of parameter registers to other registers, using
344 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
345 We don't have to worry about walking into the first lines of code,
346 since the first line number will stop us (assuming we have symbols).
347 What gcc actually seems to produce is "or rd,r0,rs". */
348
349#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
350#define OR_MOVE_MASK 0xF800FFFF
351#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
352#define OR_REG_MOVE1_MASK 0xFC1FFFE0
353#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
354#define OR_REG_MOVE2_MASK 0xFC00FFFF
355 while (next_ip &&
356 ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN ||
357 (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
358 (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
359 )
360 )
361 {
362 /* We don't care what moves to where. The result of the moves
363 has already been reflected in what the compiler tells us is the
364 location of these parameters. */
365 ip = next_ip;
366 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
367 }
368
ea3c0839
JG
369 /* We're done with the prologue. If we don't care about the stack
370 frame itself, just return. (Note that fsr->regs has been trashed,
371 but the one caller who calls with fi==0 passes a dummy there.) */
372
373 if (fi == 0)
374 return ip;
375
376 /* OK, now we have:
377 sp_offset original negative displacement of SP
378 fp_offset positive displacement between new SP and new FP, or -1
379 fsr->regs[0..31] offset from original SP where reg is stored
380 must_adjust[0..31] set if corresp. offset was set
381
382 The current SP (frame_sp) might not be the original new SP as set
383 by the function prologue, if alloca has been called. This can
384 only occur if fp_offset is set, though (the compiler allocates an
385 FP when it sees alloca). In that case, we have the FP,
386 and can calculate the original new SP from the FP.
387
388 Then, we figure out where the arguments and locals are, and
389 relocate the offsets in fsr->regs to absolute addresses. */
390
391 if (fp_offset != -1) {
392 /* We have a frame pointer, so get it, and base our calc's on it. */
393 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, FP_REGNUM);
394 frame_sp = frame_fp - fp_offset;
395 } else {
396 /* We have no frame pointer, therefore frame_sp is still the same value
397 as set by prologue. But where is the frame itself? */
398 if (must_adjust[SRP_REGNUM]) {
399 /* Function header saved SRP (r1), the return address. Frame starts
400 4 bytes down from where it was saved. */
401 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
402 fi->locals_pointer = frame_fp;
403 } else {
404 /* Function header didn't save SRP (r1), so we are in a leaf fn or
405 are otherwise confused. */
406 frame_fp = -1;
407 }
408 }
409
410 /* The locals are relative to the FP (whether it exists as an allocated
411 register, or just as an assumed offset from the SP) */
412 fi->locals_pointer = frame_fp;
413
414 /* The arguments are just above the SP as it was before we adjusted it
415 on entry. */
416 fi->args_pointer = frame_sp - sp_offset;
417
418 /* Now that we know the SP value used by the prologue, we know where
419 it saved all the registers. */
420 for (src = 0; src < 32; src++)
421 if (must_adjust[src])
422 fsr->regs[src] += frame_sp;
423
424 /* The saved value of the SP is always known. */
425 /* (we hope...) */
426 if (fsr->regs[SP_REGNUM] != 0
427 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
428 fprintf(stderr, "Bad saved SP value %x != %x, offset %x!\n",
429 fsr->regs[SP_REGNUM],
430 frame_sp - sp_offset, sp_offset);
431
432 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
8aa13b87 433
ea3c0839
JG
434 return (ip);
435}
8aa13b87 436
ea3c0839
JG
437/* Given an ip value corresponding to the start of a function,
438 return the ip of the first instruction after the function
439 prologue. */
8aa13b87
JK
440
441CORE_ADDR
ea3c0839
JG
442skip_prologue (ip)
443 CORE_ADDR (ip);
8aa13b87 444{
ea3c0839
JG
445 struct frame_saved_regs saved_regs_dummy;
446 struct symtab_and_line sal;
447 CORE_ADDR limit;
8aa13b87 448
ea3c0839
JG
449 sal = find_pc_line (ip, 0);
450 limit = (sal.end) ? sal.end : 0xffffffff;
451
452 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
453 (struct frame_info *)0 ));
454}
455
456/* Put here the code to store, into a struct frame_saved_regs,
457 the addresses of the saved registers of frame described by FRAME_INFO.
458 This includes special registers such as pc and fp saved in special
459 ways in the stack frame. sp is even more special:
460 the address we return for it IS the sp for the next frame.
461
462 We cache the result of doing this in the frame_cache_obstack, since
463 it is fairly expensive. */
464
465void
466frame_find_saved_regs (fi, fsr)
467 struct frame_info *fi;
468 struct frame_saved_regs *fsr;
469{
470 register CORE_ADDR next_addr;
471 register CORE_ADDR *saved_regs;
472 register int regnum;
473 register struct frame_saved_regs *cache_fsr;
474 extern struct obstack frame_cache_obstack;
475 CORE_ADDR ip;
476 struct symtab_and_line sal;
477 CORE_ADDR limit;
478
479 if (!fi->fsr)
8aa13b87 480 {
ea3c0839
JG
481 cache_fsr = (struct frame_saved_regs *)
482 obstack_alloc (&frame_cache_obstack,
483 sizeof (struct frame_saved_regs));
484 bzero (cache_fsr, sizeof (struct frame_saved_regs));
485 fi->fsr = cache_fsr;
486
487 /* Find the start and end of the function prologue. If the PC
488 is in the function prologue, we only consider the part that
489 has executed already. */
490
491 ip = get_pc_function_start (fi->pc);
492 sal = find_pc_line (ip, 0);
493 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
494
495 /* This will fill in fields in *fi as well as in cache_fsr. */
496 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
8aa13b87
JK
497 }
498
ea3c0839
JG
499 if (fsr)
500 *fsr = *fi->fsr;
501}
502
503/* Return the address of the locals block for the frame
504 described by FI. Returns 0 if the address is unknown.
505 NOTE! Frame locals are referred to by negative offsets from the
506 argument pointer, so this is the same as frame_args_address(). */
507
508CORE_ADDR
509frame_locals_address (fi)
510 struct frame_info *fi;
511{
512 register FRAME frame;
513 struct frame_saved_regs fsr;
514 CORE_ADDR ap;
515
516 if (fi->args_pointer) /* Cached value is likely there. */
517 return fi->args_pointer;
518
519 /* Nope, generate it. */
520
521 get_frame_saved_regs (fi, &fsr);
522
523 return fi->args_pointer;
524}
525
526/* Return the address of the argument block for the frame
527 described by FI. Returns 0 if the address is unknown. */
528
529CORE_ADDR
530frame_args_address (fi)
531 struct frame_info *fi;
532{
533 register FRAME frame;
534 struct frame_saved_regs fsr;
535 CORE_ADDR ap;
536
537 if (fi->args_pointer) /* Cached value is likely there. */
538 return fi->args_pointer;
539
540 /* Nope, generate it. */
541
542 get_frame_saved_regs (fi, &fsr);
543
544 return fi->args_pointer;
545}
546
547/* Return the saved PC from this frame.
548
549 If the frame has a memory copy of SRP_REGNUM, use that. If not,
550 just use the register SRP_REGNUM itself. */
551
552CORE_ADDR
553frame_saved_pc (frame)
554 FRAME frame;
555{
556 return read_next_frame_reg(frame, SRP_REGNUM);
8aa13b87
JK
557}
558
ea3c0839 559
8aa13b87
JK
560#if TARGET_BYTE_ORDER != HOST_BYTE_ORDER
561you lose
562#else /* Host and target byte order the same. */
563#define SINGLE_EXP_BITS 8
564#define DOUBLE_EXP_BITS 11
565int
566IEEE_isNAN(fp, len)
567 int *fp, len;
568 /* fp points to a single precision OR double precision
569 * floating point value; len is the number of bytes, either 4 or 8.
570 * Returns 1 iff fp points to a valid IEEE floating point number.
571 * Returns 0 if fp points to a denormalized number or a NaN
572 */
573{
574 int exponent;
575 if (len == 4)
576 {
577 exponent = *fp;
578 exponent = exponent << 1 >> (32 - SINGLE_EXP_BITS - 1);
579 return ((exponent == -1) || (! exponent && *fp));
580 }
581 else if (len == 8)
582 {
583 exponent = *(fp+1);
584 exponent = exponent << 1 >> (32 - DOUBLE_EXP_BITS - 1);
585 return ((exponent == -1) || (! exponent && *fp * *(fp+1)));
586 }
587 else return 1;
588}
589#endif /* Host and target byte order the same. */
590
ef98d5ac
JG
591static int
592pushed_size (prev_words, v)
593 int prev_words;
594 struct value *v;
595{
596 switch (TYPE_CODE (VALUE_TYPE (v)))
597 {
598 case TYPE_CODE_VOID: /* Void type (values zero length) */
599
600 return 0; /* That was easy! */
601
602 case TYPE_CODE_PTR: /* Pointer type */
603 case TYPE_CODE_ENUM: /* Enumeration type */
604 case TYPE_CODE_INT: /* Integer type */
605 case TYPE_CODE_REF: /* C++ Reference types */
85f0a848 606 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
ef98d5ac
JG
607
608 return 1;
609
610 case TYPE_CODE_FLT: /* Floating type */
611
612 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
613 return 1;
614 else
615 /* Assume that it must be a double. */
616 if (prev_words & 1) /* at an odd-word boundary */
617 return 3; /* round to 8-byte boundary */
618 else
619 return 2;
620
621 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
622 case TYPE_CODE_UNION: /* C union or Pascal variant part */
623
624 return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
625
626 case TYPE_CODE_FUNC: /* Function type */
627 case TYPE_CODE_SET: /* Pascal sets */
628 case TYPE_CODE_RANGE: /* Range (integers within bounds) */
629 case TYPE_CODE_PASCAL_ARRAY: /* Array with explicit type of index */
630 case TYPE_CODE_MEMBER: /* Member type */
631 case TYPE_CODE_METHOD: /* Method type */
632 /* Don't know how to pass these yet. */
633
634 case TYPE_CODE_UNDEF: /* Not used; catches errors */
635 default:
636 abort ();
637 }
638}
639
640static void
641store_parm_word (address, val)
642 CORE_ADDR address;
643 int val;
644{
645 write_memory (address, &val, 4);
646}
647
648static int
649store_parm (prev_words, left_parm_addr, v)
650 unsigned int prev_words;
651 CORE_ADDR left_parm_addr;
652 struct value *v;
653{
654 CORE_ADDR start = left_parm_addr + (prev_words * 4);
655 int *val_addr = (int *)VALUE_CONTENTS(v);
656
657 switch (TYPE_CODE (VALUE_TYPE (v)))
658 {
659 case TYPE_CODE_VOID: /* Void type (values zero length) */
660
661 return 0;
662
663 case TYPE_CODE_PTR: /* Pointer type */
664 case TYPE_CODE_ENUM: /* Enumeration type */
665 case TYPE_CODE_INT: /* Integer type */
85f0a848 666 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
ef98d5ac
JG
667 case TYPE_CODE_REF: /* C++ Reference types */
668
669 store_parm_word (start, *val_addr);
670 return 1;
671
672 case TYPE_CODE_FLT: /* Floating type */
673
674 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
675 {
676 store_parm_word (start, *val_addr);
677 return 1;
678 }
679 else
680 {
681 store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
682 store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
683 return 2 + (prev_words & 1);
684 }
685
686 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
687 case TYPE_CODE_UNION: /* C union or Pascal variant part */
688
689 {
690 unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
691 unsigned int word;
692
693 for (word = 0; word < words; word++)
694 store_parm_word (start + (word * 4), val_addr[word]);
695 return words;
696 }
697
698 default:
699 abort ();
700 }
701}
8aa13b87 702
8aa13b87
JK
703 /* This routine sets up all of the parameter values needed to make a pseudo
704 call. The name "push_parameters" is a misnomer on some archs,
705 because (on the m88k) most parameters generally end up being passed in
706 registers rather than on the stack. In this routine however, we do
707 end up storing *all* parameter values onto the stack (even if we will
708 realize later that some of these stores were unnecessary). */
709
ea3c0839
JG
710#define FIRST_PARM_REGNUM 2
711
8aa13b87
JK
712void
713push_parameters (return_type, struct_conv, nargs, args)
714 struct type *return_type;
715 int struct_conv;
716 int nargs;
717 value *args;
ea3c0839 718{
8aa13b87
JK
719 int parm_num;
720 unsigned int p_words = 0;
721 CORE_ADDR left_parm_addr;
722
723 /* Start out by creating a space for the return value (if need be). We
724 only need to do this if the return value is a struct or union. If we
725 do make a space for a struct or union return value, then we must also
726 arrange for the base address of that space to go into r12, which is the
727 standard place to pass the address of the return value area to the
728 callee. Note that only structs and unions are returned in this fashion.
729 Ints, enums, pointers, and floats are returned into r2. Doubles are
730 returned into the register pair {r2,r3}. Note also that the space
731 reserved for a struct or union return value only has to be word aligned
732 (not double-word) but it is double-word aligned here anyway (just in
733 case that becomes important someday). */
734
735 switch (TYPE_CODE (return_type))
736 {
737 case TYPE_CODE_STRUCT:
738 case TYPE_CODE_UNION:
739 {
740 int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
741 CORE_ADDR rv_addr;
742
743 rv_addr = read_register (SP_REGNUM) - return_bytes;
744
745 write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
746 write_register (SRA_REGNUM, rv_addr);/* set return value register */
747 }
748 }
749
750 /* Here we make a pre-pass on the whole parameter list to figure out exactly
751 how many words worth of stuff we are going to pass. */
752
753 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
754 p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
755
756 /* Now, check to see if we have to round up the number of parameter words
757 to get up to the next 8-bytes boundary. This may be necessary because
758 of the software convention to always keep the stack aligned on an 8-byte
759 boundary. */
760
761 if (p_words & 1)
762 p_words++; /* round to 8-byte boundary */
763
764 /* Now figure out the absolute address of the leftmost parameter, and update
765 the stack pointer to point at that address. */
766
767 left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
768 write_register (SP_REGNUM, left_parm_addr);
769
770 /* Now we can go through all of the parameters (in left-to-right order)
771 and write them to their parameter stack slots. Note that we are not
772 really "pushing" the parameter values. The stack space for these values
773 was already allocated above. Now we are just filling it up. */
774
775 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
776 p_words +=
777 store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
778
779 /* Now that we are all done storing the parameter values into the stack, we
780 must go back and load up the parameter registers with the values from the
781 corresponding stack slots. Note that in the two cases of (a) gaps in the
782 parameter word sequence causes by (otherwise) misaligned doubles, and (b)
783 slots correcponding to structs or unions, the work we do here in loading
784 some parameter registers may be unnecessary, but who cares? */
785
786 for (p_words = 0; p_words < 8; p_words++)
787 {
788 write_register (FIRST_PARM_REGNUM + p_words,
789 read_memory_integer (left_parm_addr + (p_words * 4), 4));
790 }
791}
792
793void
794pop_frame ()
795{
796 error ("Feature not implemented for the m88k yet.");
797 return;
798}
799
ea3c0839
JG
800void
801collect_returned_value (rval, value_type, struct_return, nargs, args)
802 value *rval;
803 struct type *value_type;
804 int struct_return;
805 int nargs;
806 value *args;
807{
808 char retbuf[REGISTER_BYTES];
809
810 bcopy (registers, retbuf, REGISTER_BYTES);
811 *rval = value_being_returned (value_type, retbuf, struct_return);
812 return;
813}
8aa13b87
JK
814
815#if 0
816/* Now handled in a machine independent way with CALL_DUMMY_LOCATION. */
817 /* Stuff a breakpoint instruction onto the stack (or elsewhere if the stack
818 is not a good place for it). Return the address at which the instruction
819 got stuffed, or zero if we were unable to stuff it anywhere. */
820
ea3c0839
JG
821CORE_ADDR
822push_breakpoint ()
823{
824 static char breakpoint_insn[] = BREAKPOINT;
825 extern CORE_ADDR text_end; /* of inferior */
826 static char readback_buffer[] = BREAKPOINT;
827 int i;
8aa13b87 828
ea3c0839
JG
829 /* With a little bit of luck, we can just stash the breakpoint instruction
830 in the word just beyond the end of normal text space. For systems on
831 which the hardware will not allow us to execute out of the stack segment,
832 we have to hope that we *are* at least allowed to effectively extend the
833 text segment by one word. If the actual end of user's the text segment
834 happens to fall right at a page boundary this trick may fail. Note that
835 we check for this by reading after writing, and comparing in order to
836 be sure that the write worked. */
8aa13b87 837
ea3c0839 838 write_memory (text_end, &breakpoint_insn, 4);
8aa13b87 839
ea3c0839
JG
840 /* Fill the readback buffer with some garbage which is certain to be
841 unequal to the breakpoint insn. That way we can tell if the
842 following read doesn't actually succeed. */
8aa13b87 843
ea3c0839
JG
844 for (i = 0; i < sizeof (readback_buffer); i++)
845 readback_buffer[i] = ~ readback_buffer[i]; /* Invert the bits */
846
847 /* Now check that the breakpoint insn was successfully installed. */
8aa13b87 848
ea3c0839
JG
849 read_memory (text_end, readback_buffer, sizeof (readback_buffer));
850 for (i = 0; i < sizeof (readback_buffer); i++)
851 if (readback_buffer[i] != breakpoint_insn[i])
852 return 0; /* Failed to install! */
853
854 return text_end;
8aa13b87 855}
ea3c0839 856#endif
This page took 0.134166 seconds and 4 git commands to generate.