* i386-nlmstub.c: More changes to be compatible with remote.c.
[deliverable/binutils-gdb.git] / gdb / m88k-tdep.c
CommitLineData
ea3c0839
JG
1/* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
8aa13b87
JK
3
4This file is part of GDB.
5
99a7de40 6This program is free software; you can redistribute it and/or modify
8aa13b87 7it under the terms of the GNU General Public License as published by
99a7de40
JG
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
8aa13b87 10
99a7de40 11This program is distributed in the hope that it will be useful,
8aa13b87
JK
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
99a7de40
JG
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
8aa13b87 19
8aa13b87 20#include "defs.h"
8aa13b87
JK
21#include "frame.h"
22#include "inferior.h"
23#include "value.h"
8aa13b87 24#include "gdbcore.h"
8aa13b87
JK
25
26#include "symtab.h"
27#include "setjmp.h"
28#include "value.h"
29
2a770cac
JG
30/* Size of an instruction */
31#define BYTES_PER_88K_INSN 4
32
ea3c0839 33void frame_find_saved_regs ();
8aa13b87 34
817ac7f8
RP
35/* is this target an m88110? Otherwise assume m88100. This has
36 relevance for the ways in which we screw with instruction pointers. */
37int target_is_m88110 = 0;
38
ea3c0839
JG
39/* Given a GDB frame, determine the address of the calling function's frame.
40 This will be used to create a new GDB frame struct, and then
41 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
42
43 For us, the frame address is its stack pointer value, so we look up
44 the function prologue to determine the caller's sp value, and return it. */
45
46FRAME_ADDR
47frame_chain (thisframe)
48 FRAME thisframe;
8aa13b87 49{
8aa13b87 50
ea3c0839
JG
51 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
52 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
53 the ADDRESS, of SP_REGNUM. It also depends on the cache of
54 frame_find_saved_regs results. */
55 if (thisframe->fsr->regs[SP_REGNUM])
56 return thisframe->fsr->regs[SP_REGNUM];
57 else
58 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
59}
8aa13b87 60
ea3c0839
JG
61int
62frameless_function_invocation (frame)
63 FRAME frame;
8aa13b87 64{
ea3c0839
JG
65
66 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
67 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
68 the ADDRESS, of SP_REGNUM. It also depends on the cache of
69 frame_find_saved_regs results. */
70 if (frame->fsr->regs[SP_REGNUM])
71 return 0; /* Frameful -- return addr saved somewhere */
8aa13b87 72 else
ea3c0839 73 return 1; /* Frameless -- no saved return address */
8aa13b87
JK
74}
75
ea3c0839
JG
76void
77init_extra_frame_info (fromleaf, fi)
78 int fromleaf;
79 struct frame_info *fi;
80{
81 fi->fsr = 0; /* Not yet allocated */
82 fi->args_pointer = 0; /* Unknown */
83 fi->locals_pointer = 0; /* Unknown */
84}
ea3c0839
JG
85\f
86/* Examine an m88k function prologue, recording the addresses at which
87 registers are saved explicitly by the prologue code, and returning
88 the address of the first instruction after the prologue (but not
89 after the instruction at address LIMIT, as explained below).
90
91 LIMIT places an upper bound on addresses of the instructions to be
92 examined. If the prologue code scan reaches LIMIT, the scan is
93 aborted and LIMIT is returned. This is used, when examining the
94 prologue for the current frame, to keep examine_prologue () from
95 claiming that a given register has been saved when in fact the
96 instruction that saves it has not yet been executed. LIMIT is used
97 at other times to stop the scan when we hit code after the true
98 function prologue (e.g. for the first source line) which might
99 otherwise be mistaken for function prologue.
100
101 The format of the function prologue matched by this routine is
102 derived from examination of the source to gcc 1.95, particularly
103 the routine output_prologue () in config/out-m88k.c.
104
105 subu r31,r31,n # stack pointer update
106
107 (st rn,r31,offset)? # save incoming regs
108 (st.d rn,r31,offset)?
109
110 (addu r30,r31,n)? # frame pointer update
111
112 (pic sequence)? # PIC code prologue
430923f3
JG
113
114 (or rn,rm,0)? # Move parameters to other regs
ea3c0839
JG
115*/
116
117/* Macros for extracting fields from instructions. */
118
119#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
120#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
121
122/* Prologue code that handles position-independent-code setup. */
123
124struct pic_prologue_code {
125 unsigned long insn, mask;
126};
127
128static struct pic_prologue_code pic_prologue_code [] = {
129/* FIXME -- until this is translated to hex, we won't match it... */
817ac7f8 130 { 0xffffffff, 0 },
ea3c0839
JG
131 /* or r10,r1,0 (if not saved) */
132 /* bsr.n LabN */
133 /* or.u r25,r0,const */
134 /*LabN: or r25,r25,const2 */
135 /* addu r25,r25,1 */
136 /* or r1,r10,0 (if not saved) */
137};
138
139/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
140 is not the address of a valid instruction, the address of the next
141 instruction beyond ADDR otherwise. *PWORD1 receives the first word
142 of the instruction. PWORD2 is ignored -- a remnant of the original
143 i960 version. */
144
637603f9 145#define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
ea3c0839
JG
146 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
147
148/* Read the m88k instruction at 'memaddr' and return the address of
149 the next instruction after that, or 0 if 'memaddr' is not the
150 address of a valid instruction. The instruction
151 is stored at 'pword1'. */
8aa13b87 152
ea3c0839
JG
153CORE_ADDR
154next_insn (memaddr, pword1)
155 unsigned long *pword1;
156 CORE_ADDR memaddr;
8aa13b87 157{
2a770cac
JG
158 *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
159 return memaddr + BYTES_PER_88K_INSN;
8aa13b87
JK
160}
161
ea3c0839 162/* Read a register from frames called by us (or from the hardware regs). */
8aa13b87 163
637603f9 164static int
ea3c0839
JG
165read_next_frame_reg(fi, regno)
166 FRAME fi;
167 int regno;
8aa13b87 168{
ea3c0839
JG
169 for (; fi; fi = fi->next) {
170 if (regno == SP_REGNUM) return fi->frame;
171 else if (fi->fsr->regs[regno])
172 return read_memory_integer(fi->fsr->regs[regno], 4);
173 }
174 return read_register(regno);
8aa13b87 175}
8aa13b87 176
ea3c0839
JG
177/* Examine the prologue of a function. `ip' points to the first instruction.
178 `limit' is the limit of the prologue (e.g. the addr of the first
179 linenumber, or perhaps the program counter if we're stepping through).
180 `frame_sp' is the stack pointer value in use in this frame.
181 `fsr' is a pointer to a frame_saved_regs structure into which we put
182 info about the registers saved by this frame.
183 `fi' is a struct frame_info pointer; we fill in various fields in it
184 to reflect the offsets of the arg pointer and the locals pointer. */
185
186static CORE_ADDR
187examine_prologue (ip, limit, frame_sp, fsr, fi)
188 register CORE_ADDR ip;
189 register CORE_ADDR limit;
190 FRAME_ADDR frame_sp;
191 struct frame_saved_regs *fsr;
192 struct frame_info *fi;
193{
194 register CORE_ADDR next_ip;
195 register int src;
196 register struct pic_prologue_code *pcode;
637603f9 197 unsigned int insn;
ea3c0839
JG
198 int size, offset;
199 char must_adjust[32]; /* If set, must adjust offsets in fsr */
200 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
201 int fp_offset = -1; /* -1 means not set */
202 CORE_ADDR frame_fp;
203
4ed97c9a 204 memset (must_adjust, '\0', sizeof (must_adjust));
637603f9 205 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
ea3c0839 206
653d6c56
JG
207 /* Accept move of incoming registers to other registers, using
208 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
209 We don't have to worry about walking into the first lines of code,
210 since the first line number will stop us (assuming we have symbols).
211 What we have actually seen is "or r10,r0,r12". */
212
213#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
214#define OR_MOVE_MASK 0xF800FFFF
215#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
216#define OR_REG_MOVE1_MASK 0xFC1FFFE0
217#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
218#define OR_REG_MOVE2_MASK 0xFC00FFFF
219 while (next_ip &&
637603f9
RP
220 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
221 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
222 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
653d6c56
JG
223 )
224 )
225 {
226 /* We don't care what moves to where. The result of the moves
227 has already been reflected in what the compiler tells us is the
228 location of these parameters. */
229 ip = next_ip;
637603f9 230 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
653d6c56
JG
231 }
232
ea3c0839
JG
233 /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
234
235#define SUBU_SP_INSN 0x67ff0000
236#define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
237#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
238 if (next_ip &&
637603f9 239 ((insn & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
ea3c0839 240 {
637603f9 241 sp_offset = -SUBU_OFFSET (insn);
ea3c0839 242 ip = next_ip;
637603f9 243 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
ea3c0839
JG
244 }
245
246 /* The function must start with a stack-pointer adjustment, or
247 we don't know WHAT'S going on... */
248 if (sp_offset == -1)
249 return ip;
250
251 /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
252 This may cause us to mistake the copying of a register
253 parameter to the frame for the saving of a callee-saved
254 register, but that can't be helped, since with the
255 "-fcall-saved" flag, any register can be made callee-saved.
256 This probably doesn't matter, since the ``saved'' caller's values of
257 non-callee-saved registers are not relevant anyway. */
258
259#define STD_STACK_INSN 0x201f0000
260#define STD_STACK_MASK 0xfc1f0000
261#define ST_STACK_INSN 0x241f0000
262#define ST_STACK_MASK 0xfc1f0000
263#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
264#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
265
266 while (next_ip)
267 {
637603f9 268 if ((insn & ST_STACK_MASK) == ST_STACK_INSN)
ea3c0839 269 size = 1;
637603f9 270 else if ((insn & STD_STACK_MASK) == STD_STACK_INSN)
ea3c0839
JG
271 size = 2;
272 else
273 break;
274
637603f9
RP
275 src = ST_SRC (insn);
276 offset = ST_OFFSET (insn);
ea3c0839
JG
277 while (size--)
278 {
279 must_adjust[src] = 1;
280 fsr->regs[src++] = offset; /* Will be adjusted later */
281 offset += 4;
282 }
283 ip = next_ip;
637603f9 284 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
ea3c0839
JG
285 }
286
287 /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
288
289#define ADDU_FP_INSN 0x63df0000
290#define ADDU_FP_MASK 0xffff0000
291#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
292 if (next_ip &&
637603f9 293 ((insn & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
ea3c0839 294 {
637603f9 295 fp_offset = ADDU_OFFSET (insn);
ea3c0839 296 ip = next_ip;
637603f9 297 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
ea3c0839
JG
298 }
299
300 /* Accept the PIC prologue code if present. */
301
302 pcode = pic_prologue_code;
303 size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
304 /* If return addr is saved, we don't use first or last insn of PICstuff. */
305 if (fsr->regs[SRP_REGNUM]) {
306 pcode++;
307 size-=2;
308 }
309
637603f9 310 while (size-- && next_ip && (pcode->insn == (pcode->mask & insn)))
ea3c0839
JG
311 {
312 pcode++;
313 ip = next_ip;
637603f9 314 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
ea3c0839
JG
315 }
316
430923f3
JG
317 /* Accept moves of parameter registers to other registers, using
318 "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
319 We don't have to worry about walking into the first lines of code,
320 since the first line number will stop us (assuming we have symbols).
321 What gcc actually seems to produce is "or rd,r0,rs". */
322
323#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
324#define OR_MOVE_MASK 0xF800FFFF
325#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
326#define OR_REG_MOVE1_MASK 0xFC1FFFE0
327#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
328#define OR_REG_MOVE2_MASK 0xFC00FFFF
329 while (next_ip &&
637603f9
RP
330 ((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
331 (insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
332 (insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
430923f3
JG
333 )
334 )
335 {
336 /* We don't care what moves to where. The result of the moves
337 has already been reflected in what the compiler tells us is the
338 location of these parameters. */
339 ip = next_ip;
637603f9 340 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
430923f3
JG
341 }
342
ea3c0839
JG
343 /* We're done with the prologue. If we don't care about the stack
344 frame itself, just return. (Note that fsr->regs has been trashed,
345 but the one caller who calls with fi==0 passes a dummy there.) */
346
347 if (fi == 0)
348 return ip;
349
637603f9
RP
350 /*
351 OK, now we have:
352
353 sp_offset original (before any alloca calls) displacement of SP
354 (will be negative).
355
356 fp_offset displacement from original SP to the FP for this frame
357 or -1.
358
359 fsr->regs[0..31] displacement from original SP to the stack
360 location where reg[0..31] is stored.
361
362 must_adjust[0..31] set if corresponding offset was set.
ea3c0839 363
637603f9
RP
364 If alloca has been called between the function prologue and the current
365 IP, then the current SP (frame_sp) will not be the original SP as set by
366 the function prologue. If the current SP is not the original SP, then the
367 compiler will have allocated an FP for this frame, fp_offset will be set,
368 and we can use it to calculate the original SP.
ea3c0839 369
637603f9
RP
370 Then, we figure out where the arguments and locals are, and relocate the
371 offsets in fsr->regs to absolute addresses. */
ea3c0839
JG
372
373 if (fp_offset != -1) {
374 /* We have a frame pointer, so get it, and base our calc's on it. */
637603f9 375 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
ea3c0839
JG
376 frame_sp = frame_fp - fp_offset;
377 } else {
378 /* We have no frame pointer, therefore frame_sp is still the same value
379 as set by prologue. But where is the frame itself? */
380 if (must_adjust[SRP_REGNUM]) {
381 /* Function header saved SRP (r1), the return address. Frame starts
382 4 bytes down from where it was saved. */
383 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
384 fi->locals_pointer = frame_fp;
385 } else {
386 /* Function header didn't save SRP (r1), so we are in a leaf fn or
387 are otherwise confused. */
388 frame_fp = -1;
389 }
390 }
391
392 /* The locals are relative to the FP (whether it exists as an allocated
393 register, or just as an assumed offset from the SP) */
394 fi->locals_pointer = frame_fp;
395
396 /* The arguments are just above the SP as it was before we adjusted it
397 on entry. */
398 fi->args_pointer = frame_sp - sp_offset;
399
400 /* Now that we know the SP value used by the prologue, we know where
401 it saved all the registers. */
402 for (src = 0; src < 32; src++)
403 if (must_adjust[src])
404 fsr->regs[src] += frame_sp;
405
406 /* The saved value of the SP is always known. */
407 /* (we hope...) */
408 if (fsr->regs[SP_REGNUM] != 0
409 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
199b2450 410 fprintf_unfiltered(gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
ea3c0839
JG
411 fsr->regs[SP_REGNUM],
412 frame_sp - sp_offset, sp_offset);
413
414 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
8aa13b87 415
ea3c0839
JG
416 return (ip);
417}
8aa13b87 418
ea3c0839
JG
419/* Given an ip value corresponding to the start of a function,
420 return the ip of the first instruction after the function
421 prologue. */
8aa13b87
JK
422
423CORE_ADDR
ea3c0839
JG
424skip_prologue (ip)
425 CORE_ADDR (ip);
8aa13b87 426{
ea3c0839
JG
427 struct frame_saved_regs saved_regs_dummy;
428 struct symtab_and_line sal;
429 CORE_ADDR limit;
8aa13b87 430
ea3c0839
JG
431 sal = find_pc_line (ip, 0);
432 limit = (sal.end) ? sal.end : 0xffffffff;
433
434 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
435 (struct frame_info *)0 ));
436}
437
438/* Put here the code to store, into a struct frame_saved_regs,
439 the addresses of the saved registers of frame described by FRAME_INFO.
440 This includes special registers such as pc and fp saved in special
441 ways in the stack frame. sp is even more special:
442 the address we return for it IS the sp for the next frame.
443
444 We cache the result of doing this in the frame_cache_obstack, since
445 it is fairly expensive. */
446
447void
448frame_find_saved_regs (fi, fsr)
449 struct frame_info *fi;
450 struct frame_saved_regs *fsr;
451{
ea3c0839
JG
452 register struct frame_saved_regs *cache_fsr;
453 extern struct obstack frame_cache_obstack;
454 CORE_ADDR ip;
455 struct symtab_and_line sal;
456 CORE_ADDR limit;
457
458 if (!fi->fsr)
8aa13b87 459 {
ea3c0839
JG
460 cache_fsr = (struct frame_saved_regs *)
461 obstack_alloc (&frame_cache_obstack,
462 sizeof (struct frame_saved_regs));
4ed97c9a 463 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
ea3c0839
JG
464 fi->fsr = cache_fsr;
465
466 /* Find the start and end of the function prologue. If the PC
467 is in the function prologue, we only consider the part that
468 has executed already. */
469
470 ip = get_pc_function_start (fi->pc);
471 sal = find_pc_line (ip, 0);
472 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
473
474 /* This will fill in fields in *fi as well as in cache_fsr. */
7bec77b4
JK
475#ifdef SIGTRAMP_FRAME_FIXUP
476 if (fi->signal_handler_caller)
477 SIGTRAMP_FRAME_FIXUP(fi->frame);
478#endif
ea3c0839 479 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
7bec77b4
JK
480#ifdef SIGTRAMP_SP_FIXUP
481 if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
482 SIGTRAMP_SP_FIXUP(fi->fsr->regs[SP_REGNUM]);
483#endif
8aa13b87
JK
484 }
485
ea3c0839
JG
486 if (fsr)
487 *fsr = *fi->fsr;
488}
489
490/* Return the address of the locals block for the frame
491 described by FI. Returns 0 if the address is unknown.
492 NOTE! Frame locals are referred to by negative offsets from the
493 argument pointer, so this is the same as frame_args_address(). */
494
495CORE_ADDR
496frame_locals_address (fi)
497 struct frame_info *fi;
498{
ea3c0839 499 struct frame_saved_regs fsr;
ea3c0839
JG
500
501 if (fi->args_pointer) /* Cached value is likely there. */
502 return fi->args_pointer;
503
504 /* Nope, generate it. */
505
506 get_frame_saved_regs (fi, &fsr);
507
508 return fi->args_pointer;
509}
510
511/* Return the address of the argument block for the frame
512 described by FI. Returns 0 if the address is unknown. */
513
514CORE_ADDR
515frame_args_address (fi)
516 struct frame_info *fi;
517{
ea3c0839 518 struct frame_saved_regs fsr;
ea3c0839
JG
519
520 if (fi->args_pointer) /* Cached value is likely there. */
521 return fi->args_pointer;
522
523 /* Nope, generate it. */
524
525 get_frame_saved_regs (fi, &fsr);
526
527 return fi->args_pointer;
528}
529
530/* Return the saved PC from this frame.
531
532 If the frame has a memory copy of SRP_REGNUM, use that. If not,
533 just use the register SRP_REGNUM itself. */
534
535CORE_ADDR
536frame_saved_pc (frame)
537 FRAME frame;
538{
539 return read_next_frame_reg(frame, SRP_REGNUM);
8aa13b87
JK
540}
541
abef03ce
JK
542#if 0
543/* I believe this is all obsolete call dummy stuff. */
ef98d5ac
JG
544static int
545pushed_size (prev_words, v)
546 int prev_words;
547 struct value *v;
548{
549 switch (TYPE_CODE (VALUE_TYPE (v)))
550 {
551 case TYPE_CODE_VOID: /* Void type (values zero length) */
552
553 return 0; /* That was easy! */
554
555 case TYPE_CODE_PTR: /* Pointer type */
556 case TYPE_CODE_ENUM: /* Enumeration type */
557 case TYPE_CODE_INT: /* Integer type */
558 case TYPE_CODE_REF: /* C++ Reference types */
85f0a848 559 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
ef98d5ac
JG
560
561 return 1;
562
563 case TYPE_CODE_FLT: /* Floating type */
564
565 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
566 return 1;
567 else
568 /* Assume that it must be a double. */
569 if (prev_words & 1) /* at an odd-word boundary */
570 return 3; /* round to 8-byte boundary */
571 else
572 return 2;
573
574 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
575 case TYPE_CODE_UNION: /* C union or Pascal variant part */
576
577 return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
578
579 case TYPE_CODE_FUNC: /* Function type */
580 case TYPE_CODE_SET: /* Pascal sets */
581 case TYPE_CODE_RANGE: /* Range (integers within bounds) */
c4413e2c 582 case TYPE_CODE_STRING: /* String type */
ef98d5ac
JG
583 case TYPE_CODE_MEMBER: /* Member type */
584 case TYPE_CODE_METHOD: /* Method type */
585 /* Don't know how to pass these yet. */
586
587 case TYPE_CODE_UNDEF: /* Not used; catches errors */
588 default:
589 abort ();
590 }
591}
592
593static void
594store_parm_word (address, val)
595 CORE_ADDR address;
596 int val;
597{
2a770cac 598 write_memory (address, (char *)&val, 4);
ef98d5ac
JG
599}
600
601static int
602store_parm (prev_words, left_parm_addr, v)
603 unsigned int prev_words;
604 CORE_ADDR left_parm_addr;
605 struct value *v;
606{
607 CORE_ADDR start = left_parm_addr + (prev_words * 4);
608 int *val_addr = (int *)VALUE_CONTENTS(v);
609
610 switch (TYPE_CODE (VALUE_TYPE (v)))
611 {
612 case TYPE_CODE_VOID: /* Void type (values zero length) */
613
614 return 0;
615
616 case TYPE_CODE_PTR: /* Pointer type */
617 case TYPE_CODE_ENUM: /* Enumeration type */
618 case TYPE_CODE_INT: /* Integer type */
85f0a848 619 case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
ef98d5ac
JG
620 case TYPE_CODE_REF: /* C++ Reference types */
621
622 store_parm_word (start, *val_addr);
623 return 1;
624
625 case TYPE_CODE_FLT: /* Floating type */
626
627 if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
628 {
629 store_parm_word (start, *val_addr);
630 return 1;
631 }
632 else
633 {
634 store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
635 store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
636 return 2 + (prev_words & 1);
637 }
638
639 case TYPE_CODE_STRUCT: /* C struct or Pascal record */
640 case TYPE_CODE_UNION: /* C union or Pascal variant part */
641
642 {
643 unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
644 unsigned int word;
645
646 for (word = 0; word < words; word++)
647 store_parm_word (start + (word * 4), val_addr[word]);
648 return words;
649 }
650
651 default:
652 abort ();
653 }
654}
8aa13b87 655
8aa13b87
JK
656 /* This routine sets up all of the parameter values needed to make a pseudo
657 call. The name "push_parameters" is a misnomer on some archs,
658 because (on the m88k) most parameters generally end up being passed in
659 registers rather than on the stack. In this routine however, we do
660 end up storing *all* parameter values onto the stack (even if we will
661 realize later that some of these stores were unnecessary). */
662
ea3c0839
JG
663#define FIRST_PARM_REGNUM 2
664
8aa13b87
JK
665void
666push_parameters (return_type, struct_conv, nargs, args)
667 struct type *return_type;
668 int struct_conv;
669 int nargs;
670 value *args;
ea3c0839 671{
8aa13b87
JK
672 int parm_num;
673 unsigned int p_words = 0;
674 CORE_ADDR left_parm_addr;
675
676 /* Start out by creating a space for the return value (if need be). We
677 only need to do this if the return value is a struct or union. If we
678 do make a space for a struct or union return value, then we must also
679 arrange for the base address of that space to go into r12, which is the
680 standard place to pass the address of the return value area to the
681 callee. Note that only structs and unions are returned in this fashion.
682 Ints, enums, pointers, and floats are returned into r2. Doubles are
683 returned into the register pair {r2,r3}. Note also that the space
684 reserved for a struct or union return value only has to be word aligned
685 (not double-word) but it is double-word aligned here anyway (just in
686 case that becomes important someday). */
687
688 switch (TYPE_CODE (return_type))
689 {
690 case TYPE_CODE_STRUCT:
691 case TYPE_CODE_UNION:
692 {
693 int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
694 CORE_ADDR rv_addr;
695
696 rv_addr = read_register (SP_REGNUM) - return_bytes;
697
698 write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
699 write_register (SRA_REGNUM, rv_addr);/* set return value register */
817ac7f8 700 break;
8aa13b87 701 }
817ac7f8 702 default: break;
8aa13b87
JK
703 }
704
705 /* Here we make a pre-pass on the whole parameter list to figure out exactly
706 how many words worth of stuff we are going to pass. */
707
708 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
709 p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
710
711 /* Now, check to see if we have to round up the number of parameter words
712 to get up to the next 8-bytes boundary. This may be necessary because
713 of the software convention to always keep the stack aligned on an 8-byte
714 boundary. */
715
716 if (p_words & 1)
717 p_words++; /* round to 8-byte boundary */
718
719 /* Now figure out the absolute address of the leftmost parameter, and update
720 the stack pointer to point at that address. */
721
722 left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
723 write_register (SP_REGNUM, left_parm_addr);
724
725 /* Now we can go through all of the parameters (in left-to-right order)
726 and write them to their parameter stack slots. Note that we are not
727 really "pushing" the parameter values. The stack space for these values
728 was already allocated above. Now we are just filling it up. */
729
730 for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
731 p_words +=
732 store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
733
734 /* Now that we are all done storing the parameter values into the stack, we
735 must go back and load up the parameter registers with the values from the
736 corresponding stack slots. Note that in the two cases of (a) gaps in the
737 parameter word sequence causes by (otherwise) misaligned doubles, and (b)
738 slots correcponding to structs or unions, the work we do here in loading
739 some parameter registers may be unnecessary, but who cares? */
740
741 for (p_words = 0; p_words < 8; p_words++)
742 {
743 write_register (FIRST_PARM_REGNUM + p_words,
744 read_memory_integer (left_parm_addr + (p_words * 4), 4));
745 }
746}
747
ea3c0839
JG
748void
749collect_returned_value (rval, value_type, struct_return, nargs, args)
750 value *rval;
751 struct type *value_type;
752 int struct_return;
753 int nargs;
754 value *args;
755{
756 char retbuf[REGISTER_BYTES];
757
ade40d31 758 memcpy (retbuf, registers, REGISTER_BYTES);
ea3c0839
JG
759 *rval = value_being_returned (value_type, retbuf, struct_return);
760 return;
761}
abef03ce 762#endif /* 0 */
8aa13b87 763
abef03ce
JK
764/*start of lines added by kev*/
765
766#define DUMMY_FRAME_SIZE 192
767
768static void
769write_word (sp, word)
770 CORE_ADDR sp;
f4f0d174 771 unsigned LONGEST word;
abef03ce 772{
f4f0d174 773 register int len = REGISTER_SIZE;
abef03ce
JK
774 char buffer[MAX_REGISTER_RAW_SIZE];
775
776 store_unsigned_integer (buffer, len, word);
777 write_memory (sp, buffer, len);
778}
779
780void
781m88k_push_dummy_frame()
782{
783 register CORE_ADDR sp = read_register (SP_REGNUM);
784 register int rn;
785 int offset;
786
787 sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
788
789 for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset+=4)
790 write_word (sp+offset, read_register(rn));
8aa13b87 791
abef03ce
JK
792 write_word (sp+offset, read_register (SXIP_REGNUM));
793 offset += 4;
794
795 write_word (sp+offset, read_register (SNIP_REGNUM));
796 offset += 4;
797
798 write_word (sp+offset, read_register (SFIP_REGNUM));
799 offset += 4;
800
801 write_word (sp+offset, read_register (PSR_REGNUM));
802 offset += 4;
803
804 write_word (sp+offset, read_register (FPSR_REGNUM));
805 offset += 4;
806
807 write_word (sp+offset, read_register (FPCR_REGNUM));
808 offset += 4;
809
810 write_register (SP_REGNUM, sp);
811 write_register (ACTUAL_FP_REGNUM, sp);
812}
813
814void
815pop_frame ()
ea3c0839 816{
abef03ce
JK
817 register FRAME frame = get_current_frame ();
818 register CORE_ADDR fp;
819 register int regnum;
820 struct frame_saved_regs fsr;
821 struct frame_info *fi;
822
823 fi = get_frame_info (frame);
824 fp = fi -> frame;
825 get_frame_saved_regs (fi, &fsr);
826
827 if (PC_IN_CALL_DUMMY (read_pc(), read_register(SP_REGNUM), FRAME_FP(fi)))
828 {
829 /* FIXME: I think get_frame_saved_regs should be handling this so
830 that we can deal with the saved registers properly (e.g. frame
831 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
832 register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
833 int offset;
834
835 for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset+=4)
836 (void) write_register (regnum, read_memory_integer (sp+offset, 4));
837
838 write_register (SXIP_REGNUM, read_memory_integer (sp+offset, 4));
839 offset += 4;
8aa13b87 840
abef03ce
JK
841 write_register (SNIP_REGNUM, read_memory_integer (sp+offset, 4));
842 offset += 4;
8aa13b87 843
abef03ce
JK
844 write_register (SFIP_REGNUM, read_memory_integer (sp+offset, 4));
845 offset += 4;
8aa13b87 846
abef03ce
JK
847 write_register (PSR_REGNUM, read_memory_integer (sp+offset, 4));
848 offset += 4;
ea3c0839 849
abef03ce
JK
850 write_register (FPSR_REGNUM, read_memory_integer (sp+offset, 4));
851 offset += 4;
8aa13b87 852
abef03ce
JK
853 write_register (FPCR_REGNUM, read_memory_integer (sp+offset, 4));
854 offset += 4;
ea3c0839 855
abef03ce
JK
856 }
857 else
858 {
859 for (regnum = FP_REGNUM ; regnum > 0 ; regnum--)
860 if (fsr.regs[regnum])
861 write_register (regnum,
862 read_memory_integer (fsr.regs[regnum], 4));
863 write_pc(frame_saved_pc(frame));
864 }
865 reinit_frame_cache ();
8aa13b87 866}
This page took 0.227212 seconds and 4 git commands to generate.