* gdbtypes.h (builtin_type_int0, builtin_type_int8, builtin_type_uint8,
[deliverable/binutils-gdb.git] / gdb / m88k-tdep.c
CommitLineData
bf2ca189
MK
1/* Target-dependent code for the Motorola 88000 series.
2
0fb0cc75 3 Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
bf2ca189
MK
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
bf2ca189
MK
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
bf2ca189
MK
19
20#include "defs.h"
21#include "arch-utils.h"
22#include "dis-asm.h"
23#include "frame.h"
24#include "frame-base.h"
25#include "frame-unwind.h"
26#include "gdbcore.h"
27#include "gdbtypes.h"
28#include "regcache.h"
29#include "regset.h"
30#include "symtab.h"
31#include "trad-frame.h"
32#include "value.h"
33
34#include "gdb_assert.h"
35#include "gdb_string.h"
36
37#include "m88k-tdep.h"
38
39/* Fetch the instruction at PC. */
40
41static unsigned long
42m88k_fetch_instruction (CORE_ADDR pc)
43{
44 return read_memory_unsigned_integer (pc, 4);
45}
46
47/* Register information. */
48
49/* Return the name of register REGNUM. */
50
51static const char *
d93859e2 52m88k_register_name (struct gdbarch *gdbarch, int regnum)
bf2ca189
MK
53{
54 static char *register_names[] =
55 {
56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
60 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
61 };
62
63 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
64 return register_names[regnum];
65
66 return NULL;
67}
68
69/* Return the GDB type object for the "standard" data type of data in
70 register REGNUM. */
71
72static struct type *
73m88k_register_type (struct gdbarch *gdbarch, int regnum)
74{
75 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
76 if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
77 || regnum == M88K_R1_REGNUM)
0dfff4cb 78 return builtin_type (gdbarch)->builtin_func_ptr;
bf2ca189
MK
79
80 /* R30 and R31 typically contains data addresses. */
81 if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
0dfff4cb 82 return builtin_type (gdbarch)->builtin_data_ptr;
bf2ca189 83
df4df182 84 return builtin_type (gdbarch)->builtin_int32;
bf2ca189
MK
85}
86\f
87
88static CORE_ADDR
24568a2c 89m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
bf2ca189
MK
90{
91 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
92 SNIP and SFIP are used for special purposes: bit 0 is the
93 exception bit and bit 1 is the valid bit. */
94 return addr & ~0x3;
95}
96
97/* Use the program counter to determine the contents and size of a
98 breakpoint instruction. Return a pointer to a string of bytes that
99 encode a breakpoint instruction, store the length of the string in
100 *LEN and optionally adjust *PC to point to the correct memory
101 location for inserting the breakpoint. */
102
8dccaca3 103static const gdb_byte *
67d57894 104m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
bf2ca189
MK
105{
106 /* tb 0,r0,511 */
8dccaca3 107 static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
bf2ca189
MK
108
109 *len = sizeof (break_insn);
110 return break_insn;
111}
112
113static CORE_ADDR
114m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
115{
116 CORE_ADDR pc;
117
118 pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
24568a2c 119 return m88k_addr_bits_remove (gdbarch, pc);
bf2ca189
MK
120}
121
122static void
61a1198a 123m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
bf2ca189
MK
124{
125 /* According to the MC88100 RISC Microprocessor User's Manual,
126 section 6.4.3.1.2:
127
128 "... can be made to return to a particular instruction by placing
129 a valid instruction address in the SNIP and the next sequential
130 instruction address in the SFIP (with V bits set and E bits
131 clear). The rte resumes execution at the instruction pointed to
132 by the SNIP, then the SFIP."
133
134 The E bit is the least significant bit (bit 0). The V (valid)
135 bit is bit 1. This is why we logical or 2 into the values we are
136 writing below. It turns out that SXIP plays no role when
137 returning from an exception so nothing special has to be done
138 with it. We could even (presumably) give it a totally bogus
139 value. */
140
61a1198a
UW
141 regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
142 regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
143 regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
bf2ca189
MK
144}
145\f
146
147/* The functions on this page are intended to be used to classify
148 function arguments. */
149
150/* Check whether TYPE is "Integral or Pointer". */
151
152static int
153m88k_integral_or_pointer_p (const struct type *type)
154{
155 switch (TYPE_CODE (type))
156 {
157 case TYPE_CODE_INT:
158 case TYPE_CODE_BOOL:
159 case TYPE_CODE_CHAR:
160 case TYPE_CODE_ENUM:
161 case TYPE_CODE_RANGE:
162 {
163 /* We have byte, half-word, word and extended-word/doubleword
164 integral types. */
165 int len = TYPE_LENGTH (type);
166 return (len == 1 || len == 2 || len == 4 || len == 8);
167 }
168 return 1;
169 case TYPE_CODE_PTR:
170 case TYPE_CODE_REF:
171 {
172 /* Allow only 32-bit pointers. */
173 return (TYPE_LENGTH (type) == 4);
174 }
175 return 1;
176 default:
177 break;
178 }
179
180 return 0;
181}
182
183/* Check whether TYPE is "Floating". */
184
185static int
186m88k_floating_p (const struct type *type)
187{
188 switch (TYPE_CODE (type))
189 {
190 case TYPE_CODE_FLT:
191 {
192 int len = TYPE_LENGTH (type);
193 return (len == 4 || len == 8);
194 }
195 default:
196 break;
197 }
198
199 return 0;
200}
201
202/* Check whether TYPE is "Structure or Union". */
203
204static int
205m88k_structure_or_union_p (const struct type *type)
206{
207 switch (TYPE_CODE (type))
208 {
209 case TYPE_CODE_STRUCT:
210 case TYPE_CODE_UNION:
211 return 1;
212 default:
213 break;
214 }
215
216 return 0;
217}
218
219/* Check whether TYPE has 8-byte alignment. */
220
221static int
222m88k_8_byte_align_p (struct type *type)
223{
224 if (m88k_structure_or_union_p (type))
225 {
226 int i;
227
228 for (i = 0; i < TYPE_NFIELDS (type); i++)
229 {
230 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
231
232 if (m88k_8_byte_align_p (subtype))
233 return 1;
234 }
235 }
236
237 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
238 return (TYPE_LENGTH (type) == 8);
239
240 return 0;
241}
242
243/* Check whether TYPE can be passed in a register. */
244
245static int
246m88k_in_register_p (struct type *type)
247{
248 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
249 return 1;
250
251 if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
252 return 1;
253
254 return 0;
255}
256
257static CORE_ADDR
258m88k_store_arguments (struct regcache *regcache, int nargs,
259 struct value **args, CORE_ADDR sp)
260{
df4df182 261 struct gdbarch *gdbarch = get_regcache_arch (regcache);
bf2ca189
MK
262 int num_register_words = 0;
263 int num_stack_words = 0;
264 int i;
265
266 for (i = 0; i < nargs; i++)
267 {
4991999e 268 struct type *type = value_type (args[i]);
bf2ca189
MK
269 int len = TYPE_LENGTH (type);
270
271 if (m88k_integral_or_pointer_p (type) && len < 4)
272 {
df4df182
UW
273 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
274 args[i]);
4991999e 275 type = value_type (args[i]);
bf2ca189
MK
276 len = TYPE_LENGTH (type);
277 }
278
279 if (m88k_in_register_p (type))
280 {
281 int num_words = 0;
282
283 if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
284 num_words++;
285
286 num_words += ((len + 3) / 4);
287 if (num_register_words + num_words <= 8)
288 {
289 num_register_words += num_words;
290 continue;
291 }
292
293 /* We've run out of available registers. Pass the argument
294 on the stack. */
295 }
296
297 if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
298 num_stack_words++;
299
300 num_stack_words += ((len + 3) / 4);
301 }
302
303 /* Allocate stack space. */
304 sp = align_down (sp - 32 - num_stack_words * 4, 16);
305 num_stack_words = num_register_words = 0;
306
307 for (i = 0; i < nargs; i++)
308 {
0fd88904 309 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 310 struct type *type = value_type (args[i]);
bf2ca189
MK
311 int len = TYPE_LENGTH (type);
312 int stack_word = num_stack_words;
313
314 if (m88k_in_register_p (type))
315 {
316 int register_word = num_register_words;
317
318 if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
319 register_word++;
320
321 gdb_assert (len == 4 || len == 8);
322
323 if (register_word + len / 8 < 8)
324 {
325 int regnum = M88K_R2_REGNUM + register_word;
326
327 regcache_raw_write (regcache, regnum, valbuf);
328 if (len > 4)
329 regcache_raw_write (regcache, regnum + 1, valbuf + 4);
330
331 num_register_words = (register_word + len / 4);
332 continue;
333 }
334 }
335
336 if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
337 stack_word++;
338
339 write_memory (sp + stack_word * 4, valbuf, len);
340 num_stack_words = (stack_word + (len + 3) / 4);
341 }
342
343 return sp;
344}
345
346static CORE_ADDR
7d9b040b 347m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
bf2ca189
MK
348 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
349 struct value **args, CORE_ADDR sp, int struct_return,
350 CORE_ADDR struct_addr)
351{
352 /* Set up the function arguments. */
353 sp = m88k_store_arguments (regcache, nargs, args, sp);
354 gdb_assert (sp % 16 == 0);
355
356 /* Store return value address. */
357 if (struct_return)
358 regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
359
360 /* Store the stack pointer and return address in the appropriate
361 registers. */
362 regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
363 regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
364
365 /* Return the stack pointer. */
366 return sp;
367}
368
369static struct frame_id
ed0c3906 370m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
bf2ca189
MK
371{
372 CORE_ADDR sp;
373
ed0c3906
UW
374 sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
375 return frame_id_build (sp, get_frame_pc (this_frame));
bf2ca189
MK
376}
377\f
378
379/* Determine, for architecture GDBARCH, how a return value of TYPE
380 should be returned. If it is supposed to be returned in registers,
381 and READBUF is non-zero, read the appropriate value from REGCACHE,
382 and copy it into READBUF. If WRITEBUF is non-zero, write the value
383 from WRITEBUF into REGCACHE. */
384
385static enum return_value_convention
c055b101
CV
386m88k_return_value (struct gdbarch *gdbarch, struct type *func_type,
387 struct type *type, struct regcache *regcache,
388 gdb_byte *readbuf, const gdb_byte *writebuf)
bf2ca189
MK
389{
390 int len = TYPE_LENGTH (type);
8dccaca3 391 gdb_byte buf[8];
bf2ca189
MK
392
393 if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
394 return RETURN_VALUE_STRUCT_CONVENTION;
395
396 if (readbuf)
397 {
398 /* Read the contents of R2 and (if necessary) R3. */
399 regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
400 if (len > 4)
401 {
402 regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
403 gdb_assert (len == 8);
404 memcpy (readbuf, buf, len);
405 }
406 else
407 {
408 /* Just stripping off any unused bytes should preserve the
409 signed-ness just fine. */
410 memcpy (readbuf, buf + 4 - len, len);
411 }
412 }
413
414 if (writebuf)
415 {
416 /* Read the contents to R2 and (if necessary) R3. */
417 if (len > 4)
418 {
419 gdb_assert (len == 8);
420 memcpy (buf, writebuf, 8);
421 regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
422 }
423 else
424 {
425 /* ??? Do we need to do any sign-extension here? */
426 memcpy (buf + 4 - len, writebuf, len);
427 }
428 regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
429 }
430
431 return RETURN_VALUE_REGISTER_CONVENTION;
432}
433\f
434/* Default frame unwinder. */
435
436struct m88k_frame_cache
437{
438 /* Base address. */
439 CORE_ADDR base;
440 CORE_ADDR pc;
441
442 int sp_offset;
443 int fp_offset;
444
445 /* Table of saved registers. */
446 struct trad_frame_saved_reg *saved_regs;
447};
448
449/* Prologue analysis. */
450
451/* Macros for extracting fields from instructions. */
452
453#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
454#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
455#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
456#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
457#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
458#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
459
460/* Possible actions to be taken by the prologue analyzer for the
461 instructions it encounters. */
462
463enum m88k_prologue_insn_action
464{
465 M88K_PIA_SKIP, /* Ignore. */
466 M88K_PIA_NOTE_ST, /* Note register store. */
467 M88K_PIA_NOTE_STD, /* Note register pair store. */
468 M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
469 M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
470 M88K_PIA_NOTE_BRANCH, /* Note branch. */
471 M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
472};
473
474/* Table of instructions that may comprise a function prologue. */
475
476struct m88k_prologue_insn
477{
478 unsigned long insn;
479 unsigned long mask;
480 enum m88k_prologue_insn_action action;
481};
482
483struct m88k_prologue_insn m88k_prologue_insn_table[] =
484{
485 /* Various register move instructions. */
486 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
487 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
488 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
489
490 /* Various other instructions. */
491 { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
492
493 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
494 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
495
496 /* Frame pointer assignment: "addu r30,r31,n". */
497 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
498
499 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
500 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
501 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
502
503 /* Instructions needed for setting up r25 for pic code. */
504 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
505 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
506 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
507 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
508
509 /* Various branch or jump instructions which have a delay slot --
510 these do not form part of the prologue, but the instruction in
511 the delay slot might be a store instruction which should be
512 noted. */
513 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
514 /* br.n, bsr.n, bb0.n, or bb1.n */
515 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
516 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
517
518 /* Catch all. Ends prologue analysis. */
519 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
520};
521
522/* Do a full analysis of the function prologue at PC and update CACHE
523 accordingly. Bail out early if LIMIT is reached. Return the
524 address where the analysis stopped. If LIMIT points beyond the
525 function prologue, the return address should be the end of the
526 prologue. */
527
528static CORE_ADDR
529m88k_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
530 struct m88k_frame_cache *cache)
531{
532 CORE_ADDR end = limit;
533
534 /* Provide a dummy cache if necessary. */
535 if (cache == NULL)
536 {
537 size_t sizeof_saved_regs =
538 (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
539
540 cache = alloca (sizeof (struct m88k_frame_cache));
541 cache->saved_regs = alloca (sizeof_saved_regs);
542
543 /* We only initialize the members we care about. */
544 cache->saved_regs[M88K_R1_REGNUM].addr = -1;
545 cache->fp_offset = -1;
546 }
547
548 while (pc < limit)
549 {
550 struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
551 unsigned long insn = m88k_fetch_instruction (pc);
552
553 while ((insn & pi->mask) != pi->insn)
554 pi++;
555
556 switch (pi->action)
557 {
558 case M88K_PIA_SKIP:
559 /* If we have a frame pointer, and R1 has been saved,
560 consider this instruction as not being part of the
561 prologue. */
562 if (cache->fp_offset != -1
563 && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
564 return min (pc, end);
565 break;
566
567 case M88K_PIA_NOTE_ST:
568 case M88K_PIA_NOTE_STD:
569 /* If no frame has been allocated, the stores aren't part of
570 the prologue. */
571 if (cache->sp_offset == 0)
572 return min (pc, end);
573
574 /* Record location of saved registers. */
575 {
576 int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
577 ULONGEST offset = ST_OFFSET (insn);
578
579 cache->saved_regs[regnum].addr = offset;
580 if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
581 cache->saved_regs[regnum + 1].addr = offset + 4;
582 }
583 break;
584
585 case M88K_PIA_NOTE_SP_ADJUSTMENT:
586 /* A second stack pointer adjustment isn't part of the
587 prologue. */
588 if (cache->sp_offset != 0)
589 return min (pc, end);
590
591 /* Store stack pointer adjustment. */
592 cache->sp_offset = -SUBU_OFFSET (insn);
593 break;
594
595 case M88K_PIA_NOTE_FP_ASSIGNMENT:
596 /* A second frame pointer assignment isn't part of the
597 prologue. */
598 if (cache->fp_offset != -1)
599 return min (pc, end);
600
601 /* Record frame pointer assignment. */
602 cache->fp_offset = ADDU_OFFSET (insn);
603 break;
604
605 case M88K_PIA_NOTE_BRANCH:
606 /* The branch instruction isn't part of the prologue, but
607 the instruction in the delay slot might be. Limit the
608 prologue analysis to the delay slot and record the branch
609 instruction as the end of the prologue. */
5ca8ca7c 610 limit = min (limit, pc + 2 * M88K_INSN_SIZE);
bf2ca189
MK
611 end = pc;
612 break;
613
614 case M88K_PIA_NOTE_PROLOGUE_END:
615 return min (pc, end);
616 }
617
618 pc += M88K_INSN_SIZE;
619 }
620
621 return end;
622}
623
624/* An upper limit to the size of the prologue. */
625const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
626
627/* Return the address of first real instruction of the function
628 starting at PC. */
629
630static CORE_ADDR
6093d2eb 631m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
bf2ca189
MK
632{
633 struct symtab_and_line sal;
634 CORE_ADDR func_start, func_end;
635
636 /* This is the preferred method, find the end of the prologue by
637 using the debugging information. */
638 if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
639 {
640 sal = find_pc_line (func_start, 0);
641
642 if (sal.end < func_end && pc <= sal.end)
643 return sal.end;
644 }
645
646 return m88k_analyze_prologue (pc, pc + m88k_max_prologue_size, NULL);
647}
648
63807e1d 649static struct m88k_frame_cache *
ed0c3906 650m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
bf2ca189
MK
651{
652 struct m88k_frame_cache *cache;
653 CORE_ADDR frame_sp;
654
655 if (*this_cache)
656 return *this_cache;
657
658 cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
ed0c3906 659 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
bf2ca189
MK
660 cache->fp_offset = -1;
661
ed0c3906 662 cache->pc = get_frame_func (this_frame);
bf2ca189 663 if (cache->pc != 0)
ed0c3906 664 m88k_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
bf2ca189
MK
665
666 /* Calculate the stack pointer used in the prologue. */
667 if (cache->fp_offset != -1)
668 {
669 CORE_ADDR fp;
670
ed0c3906 671 fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
bf2ca189
MK
672 frame_sp = fp - cache->fp_offset;
673 }
674 else
675 {
676 /* If we know where the return address is saved, we can take a
677 solid guess at what the frame pointer should be. */
678 if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
679 cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
ed0c3906 680 frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
bf2ca189
MK
681 }
682
683 /* Now that we know the stack pointer, adjust the location of the
684 saved registers. */
685 {
686 int regnum;
687
688 for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
689 if (cache->saved_regs[regnum].addr != -1)
690 cache->saved_regs[regnum].addr += frame_sp;
691 }
692
693 /* Calculate the frame's base. */
694 cache->base = frame_sp - cache->sp_offset;
695 trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
696
697 /* Identify SXIP with the return address in R1. */
698 cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
699
700 *this_cache = cache;
701 return cache;
702}
703
704static void
ed0c3906 705m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
bf2ca189
MK
706 struct frame_id *this_id)
707{
ed0c3906 708 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
bf2ca189
MK
709
710 /* This marks the outermost frame. */
711 if (cache->base == 0)
712 return;
713
714 (*this_id) = frame_id_build (cache->base, cache->pc);
715}
716
ed0c3906
UW
717static struct value *
718m88k_frame_prev_register (struct frame_info *this_frame,
719 void **this_cache, int regnum)
bf2ca189 720{
ed0c3906 721 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
bf2ca189
MK
722
723 if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
724 {
ed0c3906
UW
725 struct value *value;
726 CORE_ADDR pc;
bf2ca189 727
ed0c3906
UW
728 value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
729 M88K_SXIP_REGNUM);
730 pc = value_as_long (value);
731 release_value (value);
732 value_free (value);
bf2ca189 733
ed0c3906
UW
734 if (regnum == M88K_SFIP_REGNUM)
735 pc += 4;
bf2ca189 736
ed0c3906 737 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
bf2ca189
MK
738 }
739
ed0c3906 740 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
bf2ca189
MK
741}
742
743static const struct frame_unwind m88k_frame_unwind =
744{
745 NORMAL_FRAME,
746 m88k_frame_this_id,
ed0c3906
UW
747 m88k_frame_prev_register,
748 NULL,
749 default_frame_sniffer
bf2ca189 750};
bf2ca189
MK
751\f
752
753static CORE_ADDR
ed0c3906 754m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
bf2ca189 755{
ed0c3906 756 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
bf2ca189
MK
757
758 if (cache->fp_offset != -1)
759 return cache->base + cache->sp_offset + cache->fp_offset;
760
761 return 0;
762}
763
764static const struct frame_base m88k_frame_base =
765{
766 &m88k_frame_unwind,
767 m88k_frame_base_address,
768 m88k_frame_base_address,
769 m88k_frame_base_address
770};
771\f
772
773/* Core file support. */
774
775/* Supply register REGNUM from the buffer specified by GREGS and LEN
776 in the general-purpose register set REGSET to register cache
777 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
778
779static void
780m88k_supply_gregset (const struct regset *regset,
781 struct regcache *regcache,
782 int regnum, const void *gregs, size_t len)
783{
8dccaca3 784 const gdb_byte *regs = gregs;
bf2ca189
MK
785 int i;
786
787 for (i = 0; i < M88K_NUM_REGS; i++)
788 {
789 if (regnum == i || regnum == -1)
790 regcache_raw_supply (regcache, i, regs + i * 4);
791 }
792}
793
794/* Motorola 88000 register set. */
795
796static struct regset m88k_gregset =
797{
798 NULL,
799 m88k_supply_gregset
800};
801
802/* Return the appropriate register set for the core section identified
803 by SECT_NAME and SECT_SIZE. */
804
805static const struct regset *
806m88k_regset_from_core_section (struct gdbarch *gdbarch,
807 const char *sect_name, size_t sect_size)
808{
809 if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
810 return &m88k_gregset;
811
812 return NULL;
813}
814\f
815
816static struct gdbarch *
817m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
818{
819 struct gdbarch *gdbarch;
820
821 /* If there is already a candidate, use it. */
822 arches = gdbarch_list_lookup_by_info (arches, &info);
823 if (arches != NULL)
824 return arches->gdbarch;
825
826 /* Allocate space for the new architecture. */
827 gdbarch = gdbarch_alloc (&info, NULL);
828
829 /* There is no real `long double'. */
830 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4 831 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
bf2ca189
MK
832
833 set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
834 set_gdbarch_register_name (gdbarch, m88k_register_name);
835 set_gdbarch_register_type (gdbarch, m88k_register_type);
836
837 /* Register numbers of various important registers. */
838 set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
839 set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
840
841 /* Core file support. */
842 set_gdbarch_regset_from_core_section
843 (gdbarch, m88k_regset_from_core_section);
844
845 set_gdbarch_print_insn (gdbarch, print_insn_m88k);
846
847 set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
848
849 /* Stack grows downward. */
850 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
851
852 /* Call dummy code. */
853 set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
ed0c3906 854 set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);
bf2ca189
MK
855
856 /* Return value info */
857 set_gdbarch_return_value (gdbarch, m88k_return_value);
858
859 set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
860 set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
861 set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
862 set_gdbarch_write_pc (gdbarch, m88k_write_pc);
863
864 frame_base_set_default (gdbarch, &m88k_frame_base);
ed0c3906 865 frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);
bf2ca189
MK
866
867 return gdbarch;
868}
869\f
870
871/* Provide a prototype to silence -Wmissing-prototypes. */
872void _initialize_m88k_tdep (void);
873
874void
875_initialize_m88k_tdep (void)
876{
877 gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
878}
This page took 0.516211 seconds and 4 git commands to generate.