Commit | Line | Data |
---|---|---|
ec2bcbe7 | 1 | /* C preprocessor macro expansion for GDB. |
61baf725 | 2 | Copyright (C) 2002-2017 Free Software Foundation, Inc. |
ec2bcbe7 JB |
3 | Contributed by Red Hat, Inc. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
ec2bcbe7 JB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
ec2bcbe7 JB |
19 | |
20 | #include "defs.h" | |
04ea0df1 | 21 | #include "gdb_obstack.h" |
ec2bcbe7 JB |
22 | #include "bcache.h" |
23 | #include "macrotab.h" | |
24 | #include "macroexp.h" | |
6c7a06a3 | 25 | #include "c-lang.h" |
ec2bcbe7 JB |
26 | |
27 | ||
28 | \f | |
29 | /* A resizeable, substringable string type. */ | |
30 | ||
31 | ||
32 | /* A string type that we can resize, quickly append to, and use to | |
33 | refer to substrings of other strings. */ | |
34 | struct macro_buffer | |
35 | { | |
36 | /* An array of characters. The first LEN bytes are the real text, | |
37 | but there are SIZE bytes allocated to the array. If SIZE is | |
38 | zero, then this doesn't point to a malloc'ed block. If SHARED is | |
39 | non-zero, then this buffer is actually a pointer into some larger | |
40 | string, and we shouldn't append characters to it, etc. Because | |
41 | of sharing, we can't assume in general that the text is | |
42 | null-terminated. */ | |
43 | char *text; | |
44 | ||
45 | /* The number of characters in the string. */ | |
46 | int len; | |
47 | ||
48 | /* The number of characters allocated to the string. If SHARED is | |
49 | non-zero, this is meaningless; in this case, we set it to zero so | |
50 | that any "do we have room to append something?" tests will fail, | |
51 | so we don't always have to check SHARED before using this field. */ | |
52 | int size; | |
53 | ||
54 | /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc | |
55 | block). Non-zero if TEXT is actually pointing into the middle of | |
b38ef47f PA |
56 | some other block, or to a string literal, and we shouldn't |
57 | reallocate it. */ | |
58 | bool shared; | |
ec2bcbe7 JB |
59 | |
60 | /* For detecting token splicing. | |
61 | ||
62 | This is the index in TEXT of the first character of the token | |
63 | that abuts the end of TEXT. If TEXT contains no tokens, then we | |
64 | set this equal to LEN. If TEXT ends in whitespace, then there is | |
65 | no token abutting the end of TEXT (it's just whitespace), and | |
66 | again, we set this equal to LEN. We set this to -1 if we don't | |
67 | know the nature of TEXT. */ | |
68 | int last_token; | |
69 | ||
70 | /* If this buffer is holding the result from get_token, then this | |
71 | is non-zero if it is an identifier token, zero otherwise. */ | |
72 | int is_identifier; | |
73 | }; | |
74 | ||
75 | ||
76 | /* Set the macro buffer *B to the empty string, guessing that its | |
77 | final contents will fit in N bytes. (It'll get resized if it | |
78 | doesn't, so the guess doesn't have to be right.) Allocate the | |
79 | initial storage with xmalloc. */ | |
80 | static void | |
81 | init_buffer (struct macro_buffer *b, int n) | |
82 | { | |
ec2bcbe7 JB |
83 | b->size = n; |
84 | if (n > 0) | |
85 | b->text = (char *) xmalloc (n); | |
86 | else | |
a86bc61c | 87 | b->text = NULL; |
ec2bcbe7 | 88 | b->len = 0; |
b38ef47f | 89 | b->shared = false; |
ec2bcbe7 JB |
90 | b->last_token = -1; |
91 | } | |
92 | ||
93 | ||
94 | /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a | |
95 | shared substring. */ | |
b38ef47f | 96 | |
ec2bcbe7 | 97 | static void |
b38ef47f | 98 | init_shared_buffer (struct macro_buffer *buf, const char *addr, int len) |
ec2bcbe7 | 99 | { |
b38ef47f PA |
100 | /* The function accept a "const char *" addr so that clients can |
101 | pass in string literals without casts. */ | |
102 | buf->text = (char *) addr; | |
ec2bcbe7 | 103 | buf->len = len; |
b38ef47f | 104 | buf->shared = true; |
ec2bcbe7 JB |
105 | buf->size = 0; |
106 | buf->last_token = -1; | |
107 | } | |
108 | ||
109 | ||
110 | /* Free the text of the buffer B. Raise an error if B is shared. */ | |
111 | static void | |
112 | free_buffer (struct macro_buffer *b) | |
113 | { | |
114 | gdb_assert (! b->shared); | |
115 | if (b->size) | |
116 | xfree (b->text); | |
117 | } | |
118 | ||
abc9d0dc TT |
119 | /* Like free_buffer, but return the text as an xstrdup()d string. |
120 | This only exists to try to make the API relatively clean. */ | |
121 | ||
122 | static char * | |
123 | free_buffer_return_text (struct macro_buffer *b) | |
124 | { | |
125 | gdb_assert (! b->shared); | |
126 | gdb_assert (b->size); | |
127 | /* Nothing to do. */ | |
128 | return b->text; | |
129 | } | |
ec2bcbe7 JB |
130 | |
131 | /* A cleanup function for macro buffers. */ | |
132 | static void | |
133 | cleanup_macro_buffer (void *untyped_buf) | |
134 | { | |
135 | free_buffer ((struct macro_buffer *) untyped_buf); | |
136 | } | |
137 | ||
138 | ||
139 | /* Resize the buffer B to be at least N bytes long. Raise an error if | |
140 | B shouldn't be resized. */ | |
141 | static void | |
142 | resize_buffer (struct macro_buffer *b, int n) | |
143 | { | |
144 | /* We shouldn't be trying to resize shared strings. */ | |
145 | gdb_assert (! b->shared); | |
146 | ||
147 | if (b->size == 0) | |
148 | b->size = n; | |
149 | else | |
150 | while (b->size <= n) | |
151 | b->size *= 2; | |
152 | ||
224c3ddb | 153 | b->text = (char *) xrealloc (b->text, b->size); |
ec2bcbe7 JB |
154 | } |
155 | ||
156 | ||
157 | /* Append the character C to the buffer B. */ | |
39efb398 | 158 | static void |
ec2bcbe7 JB |
159 | appendc (struct macro_buffer *b, int c) |
160 | { | |
161 | int new_len = b->len + 1; | |
162 | ||
163 | if (new_len > b->size) | |
164 | resize_buffer (b, new_len); | |
165 | ||
166 | b->text[b->len] = c; | |
167 | b->len = new_len; | |
168 | } | |
169 | ||
170 | ||
171 | /* Append the LEN bytes at ADDR to the buffer B. */ | |
39efb398 | 172 | static void |
a121b7c1 | 173 | appendmem (struct macro_buffer *b, const char *addr, int len) |
ec2bcbe7 JB |
174 | { |
175 | int new_len = b->len + len; | |
176 | ||
177 | if (new_len > b->size) | |
178 | resize_buffer (b, new_len); | |
179 | ||
180 | memcpy (b->text + b->len, addr, len); | |
181 | b->len = new_len; | |
182 | } | |
183 | ||
184 | ||
185 | \f | |
186 | /* Recognizing preprocessor tokens. */ | |
187 | ||
188 | ||
d7d9f01e TT |
189 | int |
190 | macro_is_whitespace (int c) | |
ec2bcbe7 JB |
191 | { |
192 | return (c == ' ' | |
193 | || c == '\t' | |
194 | || c == '\n' | |
195 | || c == '\v' | |
196 | || c == '\f'); | |
197 | } | |
198 | ||
199 | ||
d7d9f01e TT |
200 | int |
201 | macro_is_digit (int c) | |
ec2bcbe7 JB |
202 | { |
203 | return ('0' <= c && c <= '9'); | |
204 | } | |
205 | ||
206 | ||
d7d9f01e TT |
207 | int |
208 | macro_is_identifier_nondigit (int c) | |
ec2bcbe7 JB |
209 | { |
210 | return (c == '_' | |
211 | || ('a' <= c && c <= 'z') | |
212 | || ('A' <= c && c <= 'Z')); | |
213 | } | |
214 | ||
215 | ||
216 | static void | |
217 | set_token (struct macro_buffer *tok, char *start, char *end) | |
218 | { | |
219 | init_shared_buffer (tok, start, end - start); | |
220 | tok->last_token = 0; | |
221 | ||
025bb325 | 222 | /* Presumed; get_identifier may overwrite this. */ |
ec2bcbe7 JB |
223 | tok->is_identifier = 0; |
224 | } | |
225 | ||
226 | ||
227 | static int | |
228 | get_comment (struct macro_buffer *tok, char *p, char *end) | |
229 | { | |
230 | if (p + 2 > end) | |
231 | return 0; | |
232 | else if (p[0] == '/' | |
233 | && p[1] == '*') | |
234 | { | |
235 | char *tok_start = p; | |
236 | ||
237 | p += 2; | |
238 | ||
239 | for (; p < end; p++) | |
240 | if (p + 2 <= end | |
241 | && p[0] == '*' | |
242 | && p[1] == '/') | |
243 | { | |
244 | p += 2; | |
245 | set_token (tok, tok_start, p); | |
246 | return 1; | |
247 | } | |
248 | ||
8a3fe4f8 | 249 | error (_("Unterminated comment in macro expansion.")); |
ec2bcbe7 JB |
250 | } |
251 | else if (p[0] == '/' | |
252 | && p[1] == '/') | |
253 | { | |
254 | char *tok_start = p; | |
255 | ||
256 | p += 2; | |
257 | for (; p < end; p++) | |
258 | if (*p == '\n') | |
259 | break; | |
260 | ||
261 | set_token (tok, tok_start, p); | |
262 | return 1; | |
263 | } | |
264 | else | |
265 | return 0; | |
266 | } | |
267 | ||
268 | ||
269 | static int | |
270 | get_identifier (struct macro_buffer *tok, char *p, char *end) | |
271 | { | |
272 | if (p < end | |
d7d9f01e | 273 | && macro_is_identifier_nondigit (*p)) |
ec2bcbe7 JB |
274 | { |
275 | char *tok_start = p; | |
276 | ||
277 | while (p < end | |
d7d9f01e TT |
278 | && (macro_is_identifier_nondigit (*p) |
279 | || macro_is_digit (*p))) | |
ec2bcbe7 JB |
280 | p++; |
281 | ||
282 | set_token (tok, tok_start, p); | |
283 | tok->is_identifier = 1; | |
284 | return 1; | |
285 | } | |
286 | else | |
287 | return 0; | |
288 | } | |
289 | ||
290 | ||
291 | static int | |
292 | get_pp_number (struct macro_buffer *tok, char *p, char *end) | |
293 | { | |
294 | if (p < end | |
d7d9f01e | 295 | && (macro_is_digit (*p) |
17c8aaf5 TT |
296 | || (*p == '.' |
297 | && p + 2 <= end | |
298 | && macro_is_digit (p[1])))) | |
ec2bcbe7 JB |
299 | { |
300 | char *tok_start = p; | |
301 | ||
302 | while (p < end) | |
303 | { | |
17c8aaf5 TT |
304 | if (p + 2 <= end |
305 | && strchr ("eEpP", *p) | |
306 | && (p[1] == '+' || p[1] == '-')) | |
ec2bcbe7 | 307 | p += 2; |
17c8aaf5 TT |
308 | else if (macro_is_digit (*p) |
309 | || macro_is_identifier_nondigit (*p) | |
310 | || *p == '.') | |
311 | p++; | |
ec2bcbe7 JB |
312 | else |
313 | break; | |
314 | } | |
315 | ||
316 | set_token (tok, tok_start, p); | |
317 | return 1; | |
318 | } | |
319 | else | |
320 | return 0; | |
321 | } | |
322 | ||
323 | ||
324 | ||
325 | /* If the text starting at P going up to (but not including) END | |
326 | starts with a character constant, set *TOK to point to that | |
327 | character constant, and return 1. Otherwise, return zero. | |
328 | Signal an error if it contains a malformed or incomplete character | |
329 | constant. */ | |
330 | static int | |
331 | get_character_constant (struct macro_buffer *tok, char *p, char *end) | |
332 | { | |
333 | /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1 | |
334 | But of course, what really matters is that we handle it the same | |
335 | way GDB's C/C++ lexer does. So we call parse_escape in utils.c | |
336 | to handle escape sequences. */ | |
337 | if ((p + 1 <= end && *p == '\'') | |
6c7a06a3 TT |
338 | || (p + 2 <= end |
339 | && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U') | |
340 | && p[1] == '\'')) | |
ec2bcbe7 JB |
341 | { |
342 | char *tok_start = p; | |
6c7a06a3 | 343 | int char_count = 0; |
ec2bcbe7 JB |
344 | |
345 | if (*p == '\'') | |
346 | p++; | |
6c7a06a3 | 347 | else if (*p == 'L' || *p == 'u' || *p == 'U') |
ec2bcbe7 JB |
348 | p += 2; |
349 | else | |
f3574227 | 350 | gdb_assert_not_reached ("unexpected character constant"); |
ec2bcbe7 | 351 | |
ec2bcbe7 JB |
352 | for (;;) |
353 | { | |
354 | if (p >= end) | |
8a3fe4f8 | 355 | error (_("Unmatched single quote.")); |
ec2bcbe7 JB |
356 | else if (*p == '\'') |
357 | { | |
6c7a06a3 | 358 | if (!char_count) |
8a3fe4f8 AC |
359 | error (_("A character constant must contain at least one " |
360 | "character.")); | |
ec2bcbe7 JB |
361 | p++; |
362 | break; | |
363 | } | |
364 | else if (*p == '\\') | |
365 | { | |
d7561cbb KS |
366 | const char *s, *o; |
367 | ||
368 | s = o = ++p; | |
369 | char_count += c_parse_escape (&s, NULL); | |
370 | p += s - o; | |
ec2bcbe7 JB |
371 | } |
372 | else | |
6c7a06a3 TT |
373 | { |
374 | p++; | |
375 | char_count++; | |
376 | } | |
ec2bcbe7 JB |
377 | } |
378 | ||
379 | set_token (tok, tok_start, p); | |
380 | return 1; | |
381 | } | |
382 | else | |
383 | return 0; | |
384 | } | |
385 | ||
386 | ||
387 | /* If the text starting at P going up to (but not including) END | |
388 | starts with a string literal, set *TOK to point to that string | |
389 | literal, and return 1. Otherwise, return zero. Signal an error if | |
390 | it contains a malformed or incomplete string literal. */ | |
391 | static int | |
392 | get_string_literal (struct macro_buffer *tok, char *p, char *end) | |
393 | { | |
394 | if ((p + 1 <= end | |
6c7a06a3 | 395 | && *p == '"') |
ec2bcbe7 | 396 | || (p + 2 <= end |
6c7a06a3 TT |
397 | && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U') |
398 | && p[1] == '"')) | |
ec2bcbe7 JB |
399 | { |
400 | char *tok_start = p; | |
401 | ||
6c7a06a3 | 402 | if (*p == '"') |
ec2bcbe7 | 403 | p++; |
6c7a06a3 | 404 | else if (*p == 'L' || *p == 'u' || *p == 'U') |
ec2bcbe7 JB |
405 | p += 2; |
406 | else | |
f3574227 | 407 | gdb_assert_not_reached ("unexpected string literal"); |
ec2bcbe7 JB |
408 | |
409 | for (;;) | |
410 | { | |
411 | if (p >= end) | |
8a3fe4f8 | 412 | error (_("Unterminated string in expression.")); |
6c7a06a3 | 413 | else if (*p == '"') |
ec2bcbe7 JB |
414 | { |
415 | p++; | |
416 | break; | |
417 | } | |
418 | else if (*p == '\n') | |
8a3fe4f8 AC |
419 | error (_("Newline characters may not appear in string " |
420 | "constants.")); | |
ec2bcbe7 JB |
421 | else if (*p == '\\') |
422 | { | |
d7561cbb KS |
423 | const char *s, *o; |
424 | ||
425 | s = o = ++p; | |
426 | c_parse_escape (&s, NULL); | |
427 | p += s - o; | |
ec2bcbe7 JB |
428 | } |
429 | else | |
430 | p++; | |
431 | } | |
432 | ||
433 | set_token (tok, tok_start, p); | |
434 | return 1; | |
435 | } | |
436 | else | |
437 | return 0; | |
438 | } | |
439 | ||
440 | ||
441 | static int | |
442 | get_punctuator (struct macro_buffer *tok, char *p, char *end) | |
443 | { | |
444 | /* Here, speed is much less important than correctness and clarity. */ | |
445 | ||
ccb3ac8a TT |
446 | /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1. |
447 | Note that this table is ordered in a special way. A punctuator | |
448 | which is a prefix of another punctuator must appear after its | |
449 | "extension". Otherwise, the wrong token will be returned. */ | |
ec2bcbe7 | 450 | static const char * const punctuators[] = { |
ccb3ac8a TT |
451 | "[", "]", "(", ")", "{", "}", "?", ";", ",", "~", |
452 | "...", ".", | |
453 | "->", "--", "-=", "-", | |
454 | "++", "+=", "+", | |
455 | "*=", "*", | |
456 | "!=", "!", | |
457 | "&&", "&=", "&", | |
458 | "/=", "/", | |
459 | "%>", "%:%:", "%:", "%=", "%", | |
460 | "^=", "^", | |
461 | "##", "#", | |
462 | ":>", ":", | |
463 | "||", "|=", "|", | |
464 | "<<=", "<<", "<=", "<:", "<%", "<", | |
465 | ">>=", ">>", ">=", ">", | |
466 | "==", "=", | |
ec2bcbe7 JB |
467 | 0 |
468 | }; | |
469 | ||
470 | int i; | |
471 | ||
472 | if (p + 1 <= end) | |
473 | { | |
474 | for (i = 0; punctuators[i]; i++) | |
475 | { | |
476 | const char *punctuator = punctuators[i]; | |
477 | ||
478 | if (p[0] == punctuator[0]) | |
479 | { | |
480 | int len = strlen (punctuator); | |
481 | ||
482 | if (p + len <= end | |
483 | && ! memcmp (p, punctuator, len)) | |
484 | { | |
485 | set_token (tok, p, p + len); | |
486 | return 1; | |
487 | } | |
488 | } | |
489 | } | |
490 | } | |
491 | ||
492 | return 0; | |
493 | } | |
494 | ||
495 | ||
496 | /* Peel the next preprocessor token off of SRC, and put it in TOK. | |
497 | Mutate TOK to refer to the first token in SRC, and mutate SRC to | |
498 | refer to the text after that token. SRC must be a shared buffer; | |
499 | the resulting TOK will be shared, pointing into the same string SRC | |
500 | does. Initialize TOK's last_token field. Return non-zero if we | |
501 | succeed, or 0 if we didn't find any more tokens in SRC. */ | |
502 | static int | |
503 | get_token (struct macro_buffer *tok, | |
504 | struct macro_buffer *src) | |
505 | { | |
506 | char *p = src->text; | |
507 | char *end = p + src->len; | |
508 | ||
509 | gdb_assert (src->shared); | |
510 | ||
511 | /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4: | |
512 | ||
513 | preprocessing-token: | |
514 | header-name | |
515 | identifier | |
516 | pp-number | |
517 | character-constant | |
518 | string-literal | |
519 | punctuator | |
520 | each non-white-space character that cannot be one of the above | |
521 | ||
522 | We don't have to deal with header-name tokens, since those can | |
523 | only occur after a #include, which we will never see. */ | |
524 | ||
525 | while (p < end) | |
d7d9f01e | 526 | if (macro_is_whitespace (*p)) |
ec2bcbe7 JB |
527 | p++; |
528 | else if (get_comment (tok, p, end)) | |
529 | p += tok->len; | |
530 | else if (get_pp_number (tok, p, end) | |
531 | || get_character_constant (tok, p, end) | |
532 | || get_string_literal (tok, p, end) | |
533 | /* Note: the grammar in the standard seems to be | |
534 | ambiguous: L'x' can be either a wide character | |
535 | constant, or an identifier followed by a normal | |
536 | character constant. By trying `get_identifier' after | |
537 | we try get_character_constant and get_string_literal, | |
538 | we give the wide character syntax precedence. Now, | |
539 | since GDB doesn't handle wide character constants | |
540 | anyway, is this the right thing to do? */ | |
541 | || get_identifier (tok, p, end) | |
542 | || get_punctuator (tok, p, end)) | |
543 | { | |
544 | /* How many characters did we consume, including whitespace? */ | |
545 | int consumed = p - src->text + tok->len; | |
b8d56208 | 546 | |
ec2bcbe7 JB |
547 | src->text += consumed; |
548 | src->len -= consumed; | |
549 | return 1; | |
550 | } | |
551 | else | |
552 | { | |
553 | /* We have found a "non-whitespace character that cannot be | |
554 | one of the above." Make a token out of it. */ | |
555 | int consumed; | |
556 | ||
557 | set_token (tok, p, p + 1); | |
558 | consumed = p - src->text + tok->len; | |
559 | src->text += consumed; | |
560 | src->len -= consumed; | |
561 | return 1; | |
562 | } | |
563 | ||
564 | return 0; | |
565 | } | |
566 | ||
567 | ||
568 | \f | |
569 | /* Appending token strings, with and without splicing */ | |
570 | ||
571 | ||
572 | /* Append the macro buffer SRC to the end of DEST, and ensure that | |
573 | doing so doesn't splice the token at the end of SRC with the token | |
574 | at the beginning of DEST. SRC and DEST must have their last_token | |
575 | fields set. Upon return, DEST's last_token field is set correctly. | |
576 | ||
577 | For example: | |
578 | ||
579 | If DEST is "(" and SRC is "y", then we can return with | |
580 | DEST set to "(y" --- we've simply appended the two buffers. | |
581 | ||
582 | However, if DEST is "x" and SRC is "y", then we must not return | |
583 | with DEST set to "xy" --- that would splice the two tokens "x" and | |
584 | "y" together to make a single token "xy". However, it would be | |
585 | fine to return with DEST set to "x y". Similarly, "<" and "<" must | |
586 | yield "< <", not "<<", etc. */ | |
587 | static void | |
588 | append_tokens_without_splicing (struct macro_buffer *dest, | |
589 | struct macro_buffer *src) | |
590 | { | |
591 | int original_dest_len = dest->len; | |
592 | struct macro_buffer dest_tail, new_token; | |
593 | ||
594 | gdb_assert (src->last_token != -1); | |
595 | gdb_assert (dest->last_token != -1); | |
596 | ||
597 | /* First, just try appending the two, and call get_token to see if | |
598 | we got a splice. */ | |
599 | appendmem (dest, src->text, src->len); | |
600 | ||
601 | /* If DEST originally had no token abutting its end, then we can't | |
602 | have spliced anything, so we're done. */ | |
603 | if (dest->last_token == original_dest_len) | |
604 | { | |
605 | dest->last_token = original_dest_len + src->last_token; | |
606 | return; | |
607 | } | |
608 | ||
609 | /* Set DEST_TAIL to point to the last token in DEST, followed by | |
610 | all the stuff we just appended. */ | |
611 | init_shared_buffer (&dest_tail, | |
612 | dest->text + dest->last_token, | |
613 | dest->len - dest->last_token); | |
614 | ||
615 | /* Re-parse DEST's last token. We know that DEST used to contain | |
616 | at least one token, so if it doesn't contain any after the | |
617 | append, then we must have spliced "/" and "*" or "/" and "/" to | |
618 | make a comment start. (Just for the record, I got this right | |
619 | the first time. This is not a bug fix.) */ | |
620 | if (get_token (&new_token, &dest_tail) | |
621 | && (new_token.text + new_token.len | |
622 | == dest->text + original_dest_len)) | |
623 | { | |
624 | /* No splice, so we're done. */ | |
625 | dest->last_token = original_dest_len + src->last_token; | |
626 | return; | |
627 | } | |
628 | ||
629 | /* Okay, a simple append caused a splice. Let's chop dest back to | |
630 | its original length and try again, but separate the texts with a | |
631 | space. */ | |
632 | dest->len = original_dest_len; | |
633 | appendc (dest, ' '); | |
634 | appendmem (dest, src->text, src->len); | |
635 | ||
636 | init_shared_buffer (&dest_tail, | |
637 | dest->text + dest->last_token, | |
638 | dest->len - dest->last_token); | |
639 | ||
640 | /* Try to re-parse DEST's last token, as above. */ | |
641 | if (get_token (&new_token, &dest_tail) | |
642 | && (new_token.text + new_token.len | |
643 | == dest->text + original_dest_len)) | |
644 | { | |
645 | /* No splice, so we're done. */ | |
646 | dest->last_token = original_dest_len + 1 + src->last_token; | |
647 | return; | |
648 | } | |
649 | ||
650 | /* As far as I know, there's no case where inserting a space isn't | |
651 | enough to prevent a splice. */ | |
652 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 653 | _("unable to avoid splicing tokens during macro expansion")); |
ec2bcbe7 JB |
654 | } |
655 | ||
2fae03e8 TT |
656 | /* Stringify an argument, and insert it into DEST. ARG is the text to |
657 | stringify; it is LEN bytes long. */ | |
658 | ||
659 | static void | |
abc9d0dc | 660 | stringify (struct macro_buffer *dest, const char *arg, int len) |
2fae03e8 TT |
661 | { |
662 | /* Trim initial whitespace from ARG. */ | |
663 | while (len > 0 && macro_is_whitespace (*arg)) | |
664 | { | |
665 | ++arg; | |
666 | --len; | |
667 | } | |
668 | ||
669 | /* Trim trailing whitespace from ARG. */ | |
670 | while (len > 0 && macro_is_whitespace (arg[len - 1])) | |
671 | --len; | |
672 | ||
673 | /* Insert the string. */ | |
674 | appendc (dest, '"'); | |
675 | while (len > 0) | |
676 | { | |
677 | /* We could try to handle strange cases here, like control | |
678 | characters, but there doesn't seem to be much point. */ | |
679 | if (macro_is_whitespace (*arg)) | |
680 | { | |
681 | /* Replace a sequence of whitespace with a single space. */ | |
682 | appendc (dest, ' '); | |
683 | while (len > 1 && macro_is_whitespace (arg[1])) | |
684 | { | |
685 | ++arg; | |
686 | --len; | |
687 | } | |
688 | } | |
689 | else if (*arg == '\\' || *arg == '"') | |
690 | { | |
691 | appendc (dest, '\\'); | |
692 | appendc (dest, *arg); | |
693 | } | |
694 | else | |
695 | appendc (dest, *arg); | |
696 | ++arg; | |
697 | --len; | |
698 | } | |
699 | appendc (dest, '"'); | |
700 | dest->last_token = dest->len; | |
701 | } | |
ec2bcbe7 | 702 | |
abc9d0dc TT |
703 | /* See macroexp.h. */ |
704 | ||
705 | char * | |
706 | macro_stringify (const char *str) | |
707 | { | |
708 | struct macro_buffer buffer; | |
709 | int len = strlen (str); | |
abc9d0dc TT |
710 | |
711 | init_buffer (&buffer, len); | |
712 | stringify (&buffer, str, len); | |
e9e5e6b3 | 713 | appendc (&buffer, '\0'); |
abc9d0dc TT |
714 | |
715 | return free_buffer_return_text (&buffer); | |
716 | } | |
717 | ||
ec2bcbe7 JB |
718 | \f |
719 | /* Expanding macros! */ | |
720 | ||
721 | ||
722 | /* A singly-linked list of the names of the macros we are currently | |
723 | expanding --- for detecting expansion loops. */ | |
724 | struct macro_name_list { | |
725 | const char *name; | |
726 | struct macro_name_list *next; | |
727 | }; | |
728 | ||
729 | ||
730 | /* Return non-zero if we are currently expanding the macro named NAME, | |
731 | according to LIST; otherwise, return zero. | |
732 | ||
733 | You know, it would be possible to get rid of all the NO_LOOP | |
734 | arguments to these functions by simply generating a new lookup | |
735 | function and baton which refuses to find the definition for a | |
736 | particular macro, and otherwise delegates the decision to another | |
737 | function/baton pair. But that makes the linked list of excluded | |
738 | macros chained through untyped baton pointers, which will make it | |
025bb325 | 739 | harder to debug. :( */ |
ec2bcbe7 JB |
740 | static int |
741 | currently_rescanning (struct macro_name_list *list, const char *name) | |
742 | { | |
743 | for (; list; list = list->next) | |
a86bc61c | 744 | if (strcmp (name, list->name) == 0) |
ec2bcbe7 JB |
745 | return 1; |
746 | ||
747 | return 0; | |
748 | } | |
749 | ||
750 | ||
751 | /* Gather the arguments to a macro expansion. | |
752 | ||
753 | NAME is the name of the macro being invoked. (It's only used for | |
754 | printing error messages.) | |
755 | ||
756 | Assume that SRC is the text of the macro invocation immediately | |
757 | following the macro name. For example, if we're processing the | |
758 | text foo(bar, baz), then NAME would be foo and SRC will be (bar, | |
759 | baz). | |
760 | ||
761 | If SRC doesn't start with an open paren ( token at all, return | |
762 | zero, leave SRC unchanged, and don't set *ARGC_P to anything. | |
763 | ||
764 | If SRC doesn't contain a properly terminated argument list, then | |
765 | raise an error. | |
2fae03e8 TT |
766 | |
767 | For a variadic macro, NARGS holds the number of formal arguments to | |
768 | the macro. For a GNU-style variadic macro, this should be the | |
769 | number of named arguments. For a non-variadic macro, NARGS should | |
770 | be -1. | |
ec2bcbe7 JB |
771 | |
772 | Otherwise, return a pointer to the first element of an array of | |
773 | macro buffers referring to the argument texts, and set *ARGC_P to | |
774 | the number of arguments we found --- the number of elements in the | |
775 | array. The macro buffers share their text with SRC, and their | |
776 | last_token fields are initialized. The array is allocated with | |
777 | xmalloc, and the caller is responsible for freeing it. | |
778 | ||
779 | NOTE WELL: if SRC starts with a open paren ( token followed | |
780 | immediately by a close paren ) token (e.g., the invocation looks | |
781 | like "foo()"), we treat that as one argument, which happens to be | |
782 | the empty list of tokens. The caller should keep in mind that such | |
783 | a sequence of tokens is a valid way to invoke one-parameter | |
784 | function-like macros, but also a valid way to invoke zero-parameter | |
785 | function-like macros. Eeew. | |
786 | ||
787 | Consume the tokens from SRC; after this call, SRC contains the text | |
788 | following the invocation. */ | |
789 | ||
790 | static struct macro_buffer * | |
2fae03e8 TT |
791 | gather_arguments (const char *name, struct macro_buffer *src, |
792 | int nargs, int *argc_p) | |
ec2bcbe7 JB |
793 | { |
794 | struct macro_buffer tok; | |
795 | int args_len, args_size; | |
a86bc61c | 796 | struct macro_buffer *args = NULL; |
ec2bcbe7 JB |
797 | struct cleanup *back_to = make_cleanup (free_current_contents, &args); |
798 | ||
799 | /* Does SRC start with an opening paren token? Read from a copy of | |
800 | SRC, so SRC itself is unaffected if we don't find an opening | |
801 | paren. */ | |
802 | { | |
803 | struct macro_buffer temp; | |
b8d56208 | 804 | |
ec2bcbe7 JB |
805 | init_shared_buffer (&temp, src->text, src->len); |
806 | ||
807 | if (! get_token (&tok, &temp) | |
808 | || tok.len != 1 | |
809 | || tok.text[0] != '(') | |
810 | { | |
811 | discard_cleanups (back_to); | |
812 | return 0; | |
813 | } | |
814 | } | |
815 | ||
816 | /* Consume SRC's opening paren. */ | |
817 | get_token (&tok, src); | |
818 | ||
819 | args_len = 0; | |
b1ddacc7 | 820 | args_size = 6; |
8d749320 | 821 | args = XNEWVEC (struct macro_buffer, args_size); |
ec2bcbe7 JB |
822 | |
823 | for (;;) | |
824 | { | |
825 | struct macro_buffer *arg; | |
826 | int depth; | |
827 | ||
828 | /* Make sure we have room for the next argument. */ | |
829 | if (args_len >= args_size) | |
830 | { | |
831 | args_size *= 2; | |
224c3ddb | 832 | args = XRESIZEVEC (struct macro_buffer, args, args_size); |
ec2bcbe7 JB |
833 | } |
834 | ||
835 | /* Initialize the next argument. */ | |
836 | arg = &args[args_len++]; | |
837 | set_token (arg, src->text, src->text); | |
838 | ||
839 | /* Gather the argument's tokens. */ | |
840 | depth = 0; | |
841 | for (;;) | |
842 | { | |
ec2bcbe7 | 843 | if (! get_token (&tok, src)) |
8a3fe4f8 | 844 | error (_("Malformed argument list for macro `%s'."), name); |
ec2bcbe7 JB |
845 | |
846 | /* Is tok an opening paren? */ | |
847 | if (tok.len == 1 && tok.text[0] == '(') | |
848 | depth++; | |
849 | ||
850 | /* Is tok is a closing paren? */ | |
851 | else if (tok.len == 1 && tok.text[0] == ')') | |
852 | { | |
853 | /* If it's a closing paren at the top level, then that's | |
854 | the end of the argument list. */ | |
855 | if (depth == 0) | |
856 | { | |
2fae03e8 TT |
857 | /* In the varargs case, the last argument may be |
858 | missing. Add an empty argument in this case. */ | |
859 | if (nargs != -1 && args_len == nargs - 1) | |
860 | { | |
861 | /* Make sure we have room for the argument. */ | |
862 | if (args_len >= args_size) | |
863 | { | |
864 | args_size++; | |
224c3ddb SM |
865 | args = XRESIZEVEC (struct macro_buffer, args, |
866 | args_size); | |
2fae03e8 TT |
867 | } |
868 | arg = &args[args_len++]; | |
869 | set_token (arg, src->text, src->text); | |
870 | } | |
871 | ||
ec2bcbe7 JB |
872 | discard_cleanups (back_to); |
873 | *argc_p = args_len; | |
874 | return args; | |
875 | } | |
876 | ||
877 | depth--; | |
878 | } | |
879 | ||
880 | /* If tok is a comma at top level, then that's the end of | |
2fae03e8 TT |
881 | the current argument. However, if we are handling a |
882 | variadic macro and we are computing the last argument, we | |
883 | want to include the comma and remaining tokens. */ | |
884 | else if (tok.len == 1 && tok.text[0] == ',' && depth == 0 | |
885 | && (nargs == -1 || args_len < nargs)) | |
ec2bcbe7 JB |
886 | break; |
887 | ||
888 | /* Extend the current argument to enclose this token. If | |
889 | this is the current argument's first token, leave out any | |
890 | leading whitespace, just for aesthetics. */ | |
891 | if (arg->len == 0) | |
892 | { | |
893 | arg->text = tok.text; | |
894 | arg->len = tok.len; | |
895 | arg->last_token = 0; | |
896 | } | |
897 | else | |
898 | { | |
899 | arg->len = (tok.text + tok.len) - arg->text; | |
900 | arg->last_token = tok.text - arg->text; | |
901 | } | |
902 | } | |
903 | } | |
904 | } | |
905 | ||
906 | ||
907 | /* The `expand' and `substitute_args' functions both invoke `scan' | |
908 | recursively, so we need a forward declaration somewhere. */ | |
909 | static void scan (struct macro_buffer *dest, | |
910 | struct macro_buffer *src, | |
911 | struct macro_name_list *no_loop, | |
912 | macro_lookup_ftype *lookup_func, | |
913 | void *lookup_baton); | |
914 | ||
915 | ||
2fae03e8 TT |
916 | /* A helper function for substitute_args. |
917 | ||
918 | ARGV is a vector of all the arguments; ARGC is the number of | |
919 | arguments. IS_VARARGS is true if the macro being substituted is a | |
920 | varargs macro; in this case VA_ARG_NAME is the name of the | |
921 | "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is | |
922 | false. | |
923 | ||
924 | If the token TOK is the name of a parameter, return the parameter's | |
925 | index. If TOK is not an argument, return -1. */ | |
926 | ||
927 | static int | |
928 | find_parameter (const struct macro_buffer *tok, | |
929 | int is_varargs, const struct macro_buffer *va_arg_name, | |
930 | int argc, const char * const *argv) | |
931 | { | |
932 | int i; | |
933 | ||
934 | if (! tok->is_identifier) | |
935 | return -1; | |
936 | ||
937 | for (i = 0; i < argc; ++i) | |
3e43a32a MS |
938 | if (tok->len == strlen (argv[i]) |
939 | && !memcmp (tok->text, argv[i], tok->len)) | |
2fae03e8 TT |
940 | return i; |
941 | ||
942 | if (is_varargs && tok->len == va_arg_name->len | |
943 | && ! memcmp (tok->text, va_arg_name->text, tok->len)) | |
944 | return argc - 1; | |
945 | ||
946 | return -1; | |
947 | } | |
948 | ||
a9bbfbd8 TT |
949 | /* Helper function for substitute_args that gets the next token and |
950 | updates the passed-in state variables. */ | |
951 | ||
952 | static void | |
953 | get_next_token_for_substitution (struct macro_buffer *replacement_list, | |
954 | struct macro_buffer *token, | |
955 | char **start, | |
956 | struct macro_buffer *lookahead, | |
957 | char **lookahead_start, | |
958 | int *lookahead_valid, | |
959 | bool *keep_going) | |
960 | { | |
961 | if (!*lookahead_valid) | |
962 | *keep_going = false; | |
963 | else | |
964 | { | |
965 | *keep_going = true; | |
966 | *token = *lookahead; | |
967 | *start = *lookahead_start; | |
968 | *lookahead_start = replacement_list->text; | |
969 | *lookahead_valid = get_token (lookahead, replacement_list); | |
970 | } | |
971 | } | |
972 | ||
ec2bcbe7 JB |
973 | /* Given the macro definition DEF, being invoked with the actual |
974 | arguments given by ARGC and ARGV, substitute the arguments into the | |
975 | replacement list, and store the result in DEST. | |
976 | ||
2fae03e8 TT |
977 | IS_VARARGS should be true if DEF is a varargs macro. In this case, |
978 | VA_ARG_NAME should be the name of the "variable" argument -- either | |
979 | __VA_ARGS__ for c99-style varargs, or the final argument name, for | |
980 | GNU-style varargs. If IS_VARARGS is false, this parameter is | |
981 | ignored. | |
982 | ||
ec2bcbe7 JB |
983 | If it is necessary to expand macro invocations in one of the |
984 | arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro | |
985 | definitions, and don't expand invocations of the macros listed in | |
986 | NO_LOOP. */ | |
2fae03e8 | 987 | |
ec2bcbe7 JB |
988 | static void |
989 | substitute_args (struct macro_buffer *dest, | |
990 | struct macro_definition *def, | |
2fae03e8 | 991 | int is_varargs, const struct macro_buffer *va_arg_name, |
ec2bcbe7 JB |
992 | int argc, struct macro_buffer *argv, |
993 | struct macro_name_list *no_loop, | |
994 | macro_lookup_ftype *lookup_func, | |
995 | void *lookup_baton) | |
996 | { | |
997 | /* A macro buffer for the macro's replacement list. */ | |
998 | struct macro_buffer replacement_list; | |
2fae03e8 TT |
999 | /* The token we are currently considering. */ |
1000 | struct macro_buffer tok; | |
1001 | /* The replacement list's pointer from just before TOK was lexed. */ | |
1002 | char *original_rl_start; | |
1003 | /* We have a single lookahead token to handle token splicing. */ | |
1004 | struct macro_buffer lookahead; | |
1005 | /* The lookahead token might not be valid. */ | |
1006 | int lookahead_valid; | |
1007 | /* The replacement list's pointer from just before LOOKAHEAD was | |
1008 | lexed. */ | |
1009 | char *lookahead_rl_start; | |
ec2bcbe7 | 1010 | |
b38ef47f | 1011 | init_shared_buffer (&replacement_list, def->replacement, |
ec2bcbe7 JB |
1012 | strlen (def->replacement)); |
1013 | ||
1014 | gdb_assert (dest->len == 0); | |
1015 | dest->last_token = 0; | |
1016 | ||
2fae03e8 TT |
1017 | original_rl_start = replacement_list.text; |
1018 | if (! get_token (&tok, &replacement_list)) | |
1019 | return; | |
1020 | lookahead_rl_start = replacement_list.text; | |
1021 | lookahead_valid = get_token (&lookahead, &replacement_list); | |
1022 | ||
a9bbfbd8 TT |
1023 | /* __VA_OPT__ state variable. The states are: |
1024 | 0 - nothing happening | |
1025 | 1 - saw __VA_OPT__ | |
1026 | >= 2 in __VA_OPT__, the value encodes the parenthesis depth. */ | |
1027 | unsigned vaopt_state = 0; | |
1028 | ||
1029 | for (bool keep_going = true; | |
1030 | keep_going; | |
1031 | get_next_token_for_substitution (&replacement_list, | |
1032 | &tok, | |
1033 | &original_rl_start, | |
1034 | &lookahead, | |
1035 | &lookahead_rl_start, | |
1036 | &lookahead_valid, | |
1037 | &keep_going)) | |
ec2bcbe7 | 1038 | { |
a9bbfbd8 TT |
1039 | bool token_is_vaopt = (tok.len == 10 |
1040 | && strncmp (tok.text, "__VA_OPT__", 10) == 0); | |
1041 | ||
1042 | if (vaopt_state > 0) | |
1043 | { | |
1044 | if (token_is_vaopt) | |
1045 | error (_("__VA_OPT__ cannot appear inside __VA_OPT__")); | |
1046 | else if (tok.len == 1 && tok.text[0] == '(') | |
1047 | { | |
1048 | ++vaopt_state; | |
1049 | /* We just entered __VA_OPT__, so don't emit this | |
1050 | token. */ | |
1051 | continue; | |
1052 | } | |
1053 | else if (vaopt_state == 1) | |
1054 | error (_("__VA_OPT__ must be followed by an open parenthesis")); | |
1055 | else if (tok.len == 1 && tok.text[0] == ')') | |
1056 | { | |
1057 | --vaopt_state; | |
1058 | if (vaopt_state == 1) | |
1059 | { | |
1060 | /* Done with __VA_OPT__. */ | |
1061 | vaopt_state = 0; | |
1062 | /* Don't emit. */ | |
1063 | continue; | |
1064 | } | |
1065 | } | |
1066 | ||
1067 | /* If __VA_ARGS__ is empty, then drop the contents of | |
1068 | __VA_OPT__. */ | |
1069 | if (argv[argc - 1].len == 0) | |
1070 | continue; | |
1071 | } | |
1072 | else if (token_is_vaopt) | |
1073 | { | |
1074 | if (!is_varargs) | |
1075 | error (_("__VA_OPT__ is only valid in a variadic macro")); | |
1076 | vaopt_state = 1; | |
1077 | /* Don't emit this token. */ | |
1078 | continue; | |
1079 | } | |
1080 | ||
ec2bcbe7 JB |
1081 | /* Just for aesthetics. If we skipped some whitespace, copy |
1082 | that to DEST. */ | |
1083 | if (tok.text > original_rl_start) | |
1084 | { | |
1085 | appendmem (dest, original_rl_start, tok.text - original_rl_start); | |
1086 | dest->last_token = dest->len; | |
1087 | } | |
1088 | ||
1089 | /* Is this token the stringification operator? */ | |
1090 | if (tok.len == 1 | |
1091 | && tok.text[0] == '#') | |
2fae03e8 TT |
1092 | { |
1093 | int arg; | |
ec2bcbe7 | 1094 | |
2fae03e8 TT |
1095 | if (!lookahead_valid) |
1096 | error (_("Stringification operator requires an argument.")); | |
ec2bcbe7 | 1097 | |
2fae03e8 TT |
1098 | arg = find_parameter (&lookahead, is_varargs, va_arg_name, |
1099 | def->argc, def->argv); | |
1100 | if (arg == -1) | |
1101 | error (_("Argument to stringification operator must name " | |
1102 | "a macro parameter.")); | |
ec2bcbe7 | 1103 | |
2fae03e8 TT |
1104 | stringify (dest, argv[arg].text, argv[arg].len); |
1105 | ||
1106 | /* Read one token and let the loop iteration code handle the | |
1107 | rest. */ | |
1108 | lookahead_rl_start = replacement_list.text; | |
1109 | lookahead_valid = get_token (&lookahead, &replacement_list); | |
1110 | } | |
1111 | /* Is this token the splicing operator? */ | |
1112 | else if (tok.len == 2 | |
1113 | && tok.text[0] == '#' | |
1114 | && tok.text[1] == '#') | |
1115 | error (_("Stray splicing operator")); | |
1116 | /* Is the next token the splicing operator? */ | |
1117 | else if (lookahead_valid | |
1118 | && lookahead.len == 2 | |
1119 | && lookahead.text[0] == '#' | |
1120 | && lookahead.text[1] == '#') | |
1121 | { | |
308d96ed | 1122 | int finished = 0; |
2fae03e8 TT |
1123 | int prev_was_comma = 0; |
1124 | ||
1125 | /* Note that GCC warns if the result of splicing is not a | |
1126 | token. In the debugger there doesn't seem to be much | |
1127 | benefit from doing this. */ | |
1128 | ||
1129 | /* Insert the first token. */ | |
1130 | if (tok.len == 1 && tok.text[0] == ',') | |
1131 | prev_was_comma = 1; | |
1132 | else | |
1133 | { | |
1134 | int arg = find_parameter (&tok, is_varargs, va_arg_name, | |
1135 | def->argc, def->argv); | |
b8d56208 | 1136 | |
2fae03e8 TT |
1137 | if (arg != -1) |
1138 | appendmem (dest, argv[arg].text, argv[arg].len); | |
1139 | else | |
1140 | appendmem (dest, tok.text, tok.len); | |
1141 | } | |
1142 | ||
1143 | /* Apply a possible sequence of ## operators. */ | |
1144 | for (;;) | |
1145 | { | |
1146 | if (! get_token (&tok, &replacement_list)) | |
1147 | error (_("Splicing operator at end of macro")); | |
1148 | ||
1149 | /* Handle a comma before a ##. If we are handling | |
1150 | varargs, and the token on the right hand side is the | |
1151 | varargs marker, and the final argument is empty or | |
1152 | missing, then drop the comma. This is a GNU | |
1153 | extension. There is one ambiguous case here, | |
1154 | involving pedantic behavior with an empty argument, | |
1155 | but we settle that in favor of GNU-style (GCC uses an | |
1156 | option). If we aren't dealing with varargs, we | |
1157 | simply insert the comma. */ | |
1158 | if (prev_was_comma) | |
1159 | { | |
1160 | if (! (is_varargs | |
1161 | && tok.len == va_arg_name->len | |
1162 | && !memcmp (tok.text, va_arg_name->text, tok.len) | |
1163 | && argv[argc - 1].len == 0)) | |
1164 | appendmem (dest, ",", 1); | |
1165 | prev_was_comma = 0; | |
1166 | } | |
1167 | ||
1168 | /* Insert the token. If it is a parameter, insert the | |
1169 | argument. If it is a comma, treat it specially. */ | |
1170 | if (tok.len == 1 && tok.text[0] == ',') | |
1171 | prev_was_comma = 1; | |
1172 | else | |
1173 | { | |
1174 | int arg = find_parameter (&tok, is_varargs, va_arg_name, | |
1175 | def->argc, def->argv); | |
b8d56208 | 1176 | |
2fae03e8 TT |
1177 | if (arg != -1) |
1178 | appendmem (dest, argv[arg].text, argv[arg].len); | |
1179 | else | |
1180 | appendmem (dest, tok.text, tok.len); | |
1181 | } | |
1182 | ||
1183 | /* Now read another token. If it is another splice, we | |
1184 | loop. */ | |
1185 | original_rl_start = replacement_list.text; | |
1186 | if (! get_token (&tok, &replacement_list)) | |
1187 | { | |
1188 | finished = 1; | |
1189 | break; | |
1190 | } | |
1191 | ||
1192 | if (! (tok.len == 2 | |
1193 | && tok.text[0] == '#' | |
1194 | && tok.text[1] == '#')) | |
1195 | break; | |
1196 | } | |
1197 | ||
1198 | if (prev_was_comma) | |
1199 | { | |
1200 | /* We saw a comma. Insert it now. */ | |
1201 | appendmem (dest, ",", 1); | |
1202 | } | |
1203 | ||
1204 | dest->last_token = dest->len; | |
1205 | if (finished) | |
1206 | lookahead_valid = 0; | |
1207 | else | |
1208 | { | |
1209 | /* Set up for the loop iterator. */ | |
1210 | lookahead = tok; | |
1211 | lookahead_rl_start = original_rl_start; | |
1212 | lookahead_valid = 1; | |
1213 | } | |
1214 | } | |
1215 | else | |
1216 | { | |
1217 | /* Is this token an identifier? */ | |
1218 | int substituted = 0; | |
1219 | int arg = find_parameter (&tok, is_varargs, va_arg_name, | |
1220 | def->argc, def->argv); | |
1221 | ||
1222 | if (arg != -1) | |
1223 | { | |
1224 | struct macro_buffer arg_src; | |
1225 | ||
1226 | /* Expand any macro invocations in the argument text, | |
1227 | and append the result to dest. Remember that scan | |
1228 | mutates its source, so we need to scan a new buffer | |
1229 | referring to the argument's text, not the argument | |
1230 | itself. */ | |
1231 | init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len); | |
1232 | scan (dest, &arg_src, no_loop, lookup_func, lookup_baton); | |
1233 | substituted = 1; | |
1234 | } | |
1235 | ||
1236 | /* If it wasn't a parameter, then just copy it across. */ | |
1237 | if (! substituted) | |
1238 | append_tokens_without_splicing (dest, &tok); | |
1239 | } | |
ec2bcbe7 | 1240 | } |
a9bbfbd8 TT |
1241 | |
1242 | if (vaopt_state > 0) | |
1243 | error (_("Unterminated __VA_OPT__")); | |
ec2bcbe7 JB |
1244 | } |
1245 | ||
1246 | ||
1247 | /* Expand a call to a macro named ID, whose definition is DEF. Append | |
1248 | its expansion to DEST. SRC is the input text following the ID | |
1249 | token. We are currently rescanning the expansions of the macros | |
1250 | named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and | |
025bb325 | 1251 | LOOKUP_BATON to find definitions for any nested macro references. |
ec2bcbe7 JB |
1252 | |
1253 | Return 1 if we decided to expand it, zero otherwise. (If it's a | |
1254 | function-like macro name that isn't followed by an argument list, | |
1255 | we don't expand it.) If we return zero, leave SRC unchanged. */ | |
1256 | static int | |
1257 | expand (const char *id, | |
1258 | struct macro_definition *def, | |
1259 | struct macro_buffer *dest, | |
1260 | struct macro_buffer *src, | |
1261 | struct macro_name_list *no_loop, | |
1262 | macro_lookup_ftype *lookup_func, | |
1263 | void *lookup_baton) | |
1264 | { | |
1265 | struct macro_name_list new_no_loop; | |
1266 | ||
1267 | /* Create a new node to be added to the front of the no-expand list. | |
1268 | This list is appropriate for re-scanning replacement lists, but | |
1269 | it is *not* appropriate for scanning macro arguments; invocations | |
1270 | of the macro whose arguments we are gathering *do* get expanded | |
1271 | there. */ | |
1272 | new_no_loop.name = id; | |
1273 | new_no_loop.next = no_loop; | |
1274 | ||
1275 | /* What kind of macro are we expanding? */ | |
1276 | if (def->kind == macro_object_like) | |
1277 | { | |
1278 | struct macro_buffer replacement_list; | |
1279 | ||
b38ef47f | 1280 | init_shared_buffer (&replacement_list, def->replacement, |
ec2bcbe7 JB |
1281 | strlen (def->replacement)); |
1282 | ||
1283 | scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton); | |
1284 | return 1; | |
1285 | } | |
1286 | else if (def->kind == macro_function_like) | |
1287 | { | |
1288 | struct cleanup *back_to = make_cleanup (null_cleanup, 0); | |
0a029df5 | 1289 | int argc = 0; |
a86bc61c | 1290 | struct macro_buffer *argv = NULL; |
ec2bcbe7 JB |
1291 | struct macro_buffer substituted; |
1292 | struct macro_buffer substituted_src; | |
ee6436e3 | 1293 | struct macro_buffer va_arg_name = {0}; |
2fae03e8 TT |
1294 | int is_varargs = 0; |
1295 | ||
1296 | if (def->argc >= 1) | |
1297 | { | |
1298 | if (strcmp (def->argv[def->argc - 1], "...") == 0) | |
1299 | { | |
1300 | /* In C99-style varargs, substitution is done using | |
1301 | __VA_ARGS__. */ | |
1302 | init_shared_buffer (&va_arg_name, "__VA_ARGS__", | |
1303 | strlen ("__VA_ARGS__")); | |
1304 | is_varargs = 1; | |
1305 | } | |
1306 | else | |
1307 | { | |
1308 | int len = strlen (def->argv[def->argc - 1]); | |
b8d56208 | 1309 | |
2fae03e8 TT |
1310 | if (len > 3 |
1311 | && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0) | |
1312 | { | |
1313 | /* In GNU-style varargs, the name of the | |
1314 | substitution parameter is the name of the formal | |
1315 | argument without the "...". */ | |
1316 | init_shared_buffer (&va_arg_name, | |
b38ef47f | 1317 | def->argv[def->argc - 1], |
2fae03e8 TT |
1318 | len - 3); |
1319 | is_varargs = 1; | |
1320 | } | |
1321 | } | |
1322 | } | |
ec2bcbe7 JB |
1323 | |
1324 | make_cleanup (free_current_contents, &argv); | |
2fae03e8 TT |
1325 | argv = gather_arguments (id, src, is_varargs ? def->argc : -1, |
1326 | &argc); | |
ec2bcbe7 JB |
1327 | |
1328 | /* If we couldn't find any argument list, then we don't expand | |
1329 | this macro. */ | |
1330 | if (! argv) | |
1331 | { | |
1332 | do_cleanups (back_to); | |
1333 | return 0; | |
1334 | } | |
1335 | ||
1336 | /* Check that we're passing an acceptable number of arguments for | |
1337 | this macro. */ | |
1338 | if (argc != def->argc) | |
1339 | { | |
2fae03e8 TT |
1340 | if (is_varargs && argc >= def->argc - 1) |
1341 | { | |
1342 | /* Ok. */ | |
1343 | } | |
ec2bcbe7 JB |
1344 | /* Remember that a sequence of tokens like "foo()" is a |
1345 | valid invocation of a macro expecting either zero or one | |
1346 | arguments. */ | |
2fae03e8 TT |
1347 | else if (! (argc == 1 |
1348 | && argv[0].len == 0 | |
1349 | && def->argc == 0)) | |
8a3fe4f8 AC |
1350 | error (_("Wrong number of arguments to macro `%s' " |
1351 | "(expected %d, got %d)."), | |
ec2bcbe7 JB |
1352 | id, def->argc, argc); |
1353 | } | |
1354 | ||
1355 | /* Note that we don't expand macro invocations in the arguments | |
1356 | yet --- we let subst_args take care of that. Parameters that | |
1357 | appear as operands of the stringifying operator "#" or the | |
1358 | splicing operator "##" don't get macro references expanded, | |
1359 | so we can't really tell whether it's appropriate to macro- | |
1360 | expand an argument until we see how it's being used. */ | |
1361 | init_buffer (&substituted, 0); | |
1362 | make_cleanup (cleanup_macro_buffer, &substituted); | |
2fae03e8 TT |
1363 | substitute_args (&substituted, def, is_varargs, &va_arg_name, |
1364 | argc, argv, no_loop, lookup_func, lookup_baton); | |
ec2bcbe7 JB |
1365 | |
1366 | /* Now `substituted' is the macro's replacement list, with all | |
1367 | argument values substituted into it properly. Re-scan it for | |
1368 | macro references, but don't expand invocations of this macro. | |
1369 | ||
1370 | We create a new buffer, `substituted_src', which points into | |
1371 | `substituted', and scan that. We can't scan `substituted' | |
1372 | itself, since the tokenization process moves the buffer's | |
1373 | text pointer around, and we still need to be able to find | |
1374 | `substituted's original text buffer after scanning it so we | |
1375 | can free it. */ | |
1376 | init_shared_buffer (&substituted_src, substituted.text, substituted.len); | |
1377 | scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton); | |
1378 | ||
1379 | do_cleanups (back_to); | |
1380 | ||
1381 | return 1; | |
1382 | } | |
1383 | else | |
e2e0b3e5 | 1384 | internal_error (__FILE__, __LINE__, _("bad macro definition kind")); |
ec2bcbe7 JB |
1385 | } |
1386 | ||
1387 | ||
1388 | /* If the single token in SRC_FIRST followed by the tokens in SRC_REST | |
1389 | constitute a macro invokation not forbidden in NO_LOOP, append its | |
1390 | expansion to DEST and return non-zero. Otherwise, return zero, and | |
1391 | leave DEST unchanged. | |
1392 | ||
1393 | SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one. | |
1394 | SRC_FIRST must be a string built by get_token. */ | |
1395 | static int | |
1396 | maybe_expand (struct macro_buffer *dest, | |
1397 | struct macro_buffer *src_first, | |
1398 | struct macro_buffer *src_rest, | |
1399 | struct macro_name_list *no_loop, | |
1400 | macro_lookup_ftype *lookup_func, | |
1401 | void *lookup_baton) | |
1402 | { | |
1403 | gdb_assert (src_first->shared); | |
1404 | gdb_assert (src_rest->shared); | |
1405 | gdb_assert (! dest->shared); | |
1406 | ||
1407 | /* Is this token an identifier? */ | |
1408 | if (src_first->is_identifier) | |
1409 | { | |
1410 | /* Make a null-terminated copy of it, since that's what our | |
1411 | lookup function expects. */ | |
224c3ddb | 1412 | char *id = (char *) xmalloc (src_first->len + 1); |
ec2bcbe7 | 1413 | struct cleanup *back_to = make_cleanup (xfree, id); |
b8d56208 | 1414 | |
ec2bcbe7 JB |
1415 | memcpy (id, src_first->text, src_first->len); |
1416 | id[src_first->len] = 0; | |
1417 | ||
1418 | /* If we're currently re-scanning the result of expanding | |
1419 | this macro, don't expand it again. */ | |
1420 | if (! currently_rescanning (no_loop, id)) | |
1421 | { | |
1422 | /* Does this identifier have a macro definition in scope? */ | |
1423 | struct macro_definition *def = lookup_func (id, lookup_baton); | |
1424 | ||
1425 | if (def && expand (id, def, dest, src_rest, no_loop, | |
1426 | lookup_func, lookup_baton)) | |
1427 | { | |
1428 | do_cleanups (back_to); | |
1429 | return 1; | |
1430 | } | |
1431 | } | |
1432 | ||
1433 | do_cleanups (back_to); | |
1434 | } | |
1435 | ||
1436 | return 0; | |
1437 | } | |
1438 | ||
1439 | ||
1440 | /* Expand macro references in SRC, appending the results to DEST. | |
1441 | Assume we are re-scanning the result of expanding the macros named | |
1442 | in NO_LOOP, and don't try to re-expand references to them. | |
1443 | ||
1444 | SRC must be a shared buffer; DEST must not be one. */ | |
1445 | static void | |
1446 | scan (struct macro_buffer *dest, | |
1447 | struct macro_buffer *src, | |
1448 | struct macro_name_list *no_loop, | |
1449 | macro_lookup_ftype *lookup_func, | |
1450 | void *lookup_baton) | |
1451 | { | |
1452 | gdb_assert (src->shared); | |
1453 | gdb_assert (! dest->shared); | |
1454 | ||
1455 | for (;;) | |
1456 | { | |
1457 | struct macro_buffer tok; | |
1458 | char *original_src_start = src->text; | |
1459 | ||
1460 | /* Find the next token in SRC. */ | |
1461 | if (! get_token (&tok, src)) | |
1462 | break; | |
1463 | ||
1464 | /* Just for aesthetics. If we skipped some whitespace, copy | |
1465 | that to DEST. */ | |
1466 | if (tok.text > original_src_start) | |
1467 | { | |
1468 | appendmem (dest, original_src_start, tok.text - original_src_start); | |
1469 | dest->last_token = dest->len; | |
1470 | } | |
1471 | ||
1472 | if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton)) | |
1473 | /* We didn't end up expanding tok as a macro reference, so | |
1474 | simply append it to dest. */ | |
1475 | append_tokens_without_splicing (dest, &tok); | |
1476 | } | |
1477 | ||
1478 | /* Just for aesthetics. If there was any trailing whitespace in | |
1479 | src, copy it to dest. */ | |
1480 | if (src->len) | |
1481 | { | |
1482 | appendmem (dest, src->text, src->len); | |
1483 | dest->last_token = dest->len; | |
1484 | } | |
1485 | } | |
1486 | ||
1487 | ||
1488 | char * | |
1489 | macro_expand (const char *source, | |
1490 | macro_lookup_ftype *lookup_func, | |
1491 | void *lookup_func_baton) | |
1492 | { | |
1493 | struct macro_buffer src, dest; | |
1494 | struct cleanup *back_to; | |
1495 | ||
b38ef47f | 1496 | init_shared_buffer (&src, source, strlen (source)); |
ec2bcbe7 JB |
1497 | |
1498 | init_buffer (&dest, 0); | |
1499 | dest.last_token = 0; | |
1500 | back_to = make_cleanup (cleanup_macro_buffer, &dest); | |
1501 | ||
1502 | scan (&dest, &src, 0, lookup_func, lookup_func_baton); | |
1503 | ||
1504 | appendc (&dest, '\0'); | |
1505 | ||
1506 | discard_cleanups (back_to); | |
1507 | return dest.text; | |
1508 | } | |
1509 | ||
1510 | ||
1511 | char * | |
1512 | macro_expand_once (const char *source, | |
1513 | macro_lookup_ftype *lookup_func, | |
1514 | void *lookup_func_baton) | |
1515 | { | |
8a3fe4f8 | 1516 | error (_("Expand-once not implemented yet.")); |
ec2bcbe7 JB |
1517 | } |
1518 | ||
1519 | ||
1520 | char * | |
d7561cbb | 1521 | macro_expand_next (const char **lexptr, |
ec2bcbe7 JB |
1522 | macro_lookup_ftype *lookup_func, |
1523 | void *lookup_baton) | |
1524 | { | |
1525 | struct macro_buffer src, dest, tok; | |
1526 | struct cleanup *back_to; | |
1527 | ||
1528 | /* Set up SRC to refer to the input text, pointed to by *lexptr. */ | |
b38ef47f | 1529 | init_shared_buffer (&src, *lexptr, strlen (*lexptr)); |
ec2bcbe7 JB |
1530 | |
1531 | /* Set up DEST to receive the expansion, if there is one. */ | |
1532 | init_buffer (&dest, 0); | |
1533 | dest.last_token = 0; | |
1534 | back_to = make_cleanup (cleanup_macro_buffer, &dest); | |
1535 | ||
1536 | /* Get the text's first preprocessing token. */ | |
1537 | if (! get_token (&tok, &src)) | |
1538 | { | |
1539 | do_cleanups (back_to); | |
1540 | return 0; | |
1541 | } | |
1542 | ||
1543 | /* If it's a macro invocation, expand it. */ | |
1544 | if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton)) | |
1545 | { | |
1546 | /* It was a macro invocation! Package up the expansion as a | |
1547 | null-terminated string and return it. Set *lexptr to the | |
1548 | start of the next token in the input. */ | |
1549 | appendc (&dest, '\0'); | |
1550 | discard_cleanups (back_to); | |
1551 | *lexptr = src.text; | |
1552 | return dest.text; | |
1553 | } | |
1554 | else | |
1555 | { | |
1556 | /* It wasn't a macro invocation. */ | |
1557 | do_cleanups (back_to); | |
1558 | return 0; | |
1559 | } | |
1560 | } |