Commit | Line | Data |
---|---|---|
ec2bcbe7 | 1 | /* C preprocessor macro expansion for GDB. |
0b302171 | 2 | Copyright (C) 2002, 2007-2012 Free Software Foundation, Inc. |
ec2bcbe7 JB |
3 | Contributed by Red Hat, Inc. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
ec2bcbe7 JB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
ec2bcbe7 JB |
19 | |
20 | #include "defs.h" | |
04ea0df1 | 21 | #include "gdb_obstack.h" |
ec2bcbe7 JB |
22 | #include "bcache.h" |
23 | #include "macrotab.h" | |
24 | #include "macroexp.h" | |
25 | #include "gdb_assert.h" | |
6c7a06a3 | 26 | #include "c-lang.h" |
ec2bcbe7 JB |
27 | |
28 | ||
29 | \f | |
30 | /* A resizeable, substringable string type. */ | |
31 | ||
32 | ||
33 | /* A string type that we can resize, quickly append to, and use to | |
34 | refer to substrings of other strings. */ | |
35 | struct macro_buffer | |
36 | { | |
37 | /* An array of characters. The first LEN bytes are the real text, | |
38 | but there are SIZE bytes allocated to the array. If SIZE is | |
39 | zero, then this doesn't point to a malloc'ed block. If SHARED is | |
40 | non-zero, then this buffer is actually a pointer into some larger | |
41 | string, and we shouldn't append characters to it, etc. Because | |
42 | of sharing, we can't assume in general that the text is | |
43 | null-terminated. */ | |
44 | char *text; | |
45 | ||
46 | /* The number of characters in the string. */ | |
47 | int len; | |
48 | ||
49 | /* The number of characters allocated to the string. If SHARED is | |
50 | non-zero, this is meaningless; in this case, we set it to zero so | |
51 | that any "do we have room to append something?" tests will fail, | |
52 | so we don't always have to check SHARED before using this field. */ | |
53 | int size; | |
54 | ||
55 | /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc | |
56 | block). Non-zero if TEXT is actually pointing into the middle of | |
57 | some other block, and we shouldn't reallocate it. */ | |
58 | int shared; | |
59 | ||
60 | /* For detecting token splicing. | |
61 | ||
62 | This is the index in TEXT of the first character of the token | |
63 | that abuts the end of TEXT. If TEXT contains no tokens, then we | |
64 | set this equal to LEN. If TEXT ends in whitespace, then there is | |
65 | no token abutting the end of TEXT (it's just whitespace), and | |
66 | again, we set this equal to LEN. We set this to -1 if we don't | |
67 | know the nature of TEXT. */ | |
68 | int last_token; | |
69 | ||
70 | /* If this buffer is holding the result from get_token, then this | |
71 | is non-zero if it is an identifier token, zero otherwise. */ | |
72 | int is_identifier; | |
73 | }; | |
74 | ||
75 | ||
76 | /* Set the macro buffer *B to the empty string, guessing that its | |
77 | final contents will fit in N bytes. (It'll get resized if it | |
78 | doesn't, so the guess doesn't have to be right.) Allocate the | |
79 | initial storage with xmalloc. */ | |
80 | static void | |
81 | init_buffer (struct macro_buffer *b, int n) | |
82 | { | |
ec2bcbe7 JB |
83 | b->size = n; |
84 | if (n > 0) | |
85 | b->text = (char *) xmalloc (n); | |
86 | else | |
a86bc61c | 87 | b->text = NULL; |
ec2bcbe7 JB |
88 | b->len = 0; |
89 | b->shared = 0; | |
90 | b->last_token = -1; | |
91 | } | |
92 | ||
93 | ||
94 | /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a | |
95 | shared substring. */ | |
96 | static void | |
97 | init_shared_buffer (struct macro_buffer *buf, char *addr, int len) | |
98 | { | |
99 | buf->text = addr; | |
100 | buf->len = len; | |
101 | buf->shared = 1; | |
102 | buf->size = 0; | |
103 | buf->last_token = -1; | |
104 | } | |
105 | ||
106 | ||
107 | /* Free the text of the buffer B. Raise an error if B is shared. */ | |
108 | static void | |
109 | free_buffer (struct macro_buffer *b) | |
110 | { | |
111 | gdb_assert (! b->shared); | |
112 | if (b->size) | |
113 | xfree (b->text); | |
114 | } | |
115 | ||
abc9d0dc TT |
116 | /* Like free_buffer, but return the text as an xstrdup()d string. |
117 | This only exists to try to make the API relatively clean. */ | |
118 | ||
119 | static char * | |
120 | free_buffer_return_text (struct macro_buffer *b) | |
121 | { | |
122 | gdb_assert (! b->shared); | |
123 | gdb_assert (b->size); | |
124 | /* Nothing to do. */ | |
125 | return b->text; | |
126 | } | |
ec2bcbe7 JB |
127 | |
128 | /* A cleanup function for macro buffers. */ | |
129 | static void | |
130 | cleanup_macro_buffer (void *untyped_buf) | |
131 | { | |
132 | free_buffer ((struct macro_buffer *) untyped_buf); | |
133 | } | |
134 | ||
135 | ||
136 | /* Resize the buffer B to be at least N bytes long. Raise an error if | |
137 | B shouldn't be resized. */ | |
138 | static void | |
139 | resize_buffer (struct macro_buffer *b, int n) | |
140 | { | |
141 | /* We shouldn't be trying to resize shared strings. */ | |
142 | gdb_assert (! b->shared); | |
143 | ||
144 | if (b->size == 0) | |
145 | b->size = n; | |
146 | else | |
147 | while (b->size <= n) | |
148 | b->size *= 2; | |
149 | ||
150 | b->text = xrealloc (b->text, b->size); | |
151 | } | |
152 | ||
153 | ||
154 | /* Append the character C to the buffer B. */ | |
39efb398 | 155 | static void |
ec2bcbe7 JB |
156 | appendc (struct macro_buffer *b, int c) |
157 | { | |
158 | int new_len = b->len + 1; | |
159 | ||
160 | if (new_len > b->size) | |
161 | resize_buffer (b, new_len); | |
162 | ||
163 | b->text[b->len] = c; | |
164 | b->len = new_len; | |
165 | } | |
166 | ||
167 | ||
168 | /* Append the LEN bytes at ADDR to the buffer B. */ | |
39efb398 | 169 | static void |
ec2bcbe7 JB |
170 | appendmem (struct macro_buffer *b, char *addr, int len) |
171 | { | |
172 | int new_len = b->len + len; | |
173 | ||
174 | if (new_len > b->size) | |
175 | resize_buffer (b, new_len); | |
176 | ||
177 | memcpy (b->text + b->len, addr, len); | |
178 | b->len = new_len; | |
179 | } | |
180 | ||
181 | ||
182 | \f | |
183 | /* Recognizing preprocessor tokens. */ | |
184 | ||
185 | ||
d7d9f01e TT |
186 | int |
187 | macro_is_whitespace (int c) | |
ec2bcbe7 JB |
188 | { |
189 | return (c == ' ' | |
190 | || c == '\t' | |
191 | || c == '\n' | |
192 | || c == '\v' | |
193 | || c == '\f'); | |
194 | } | |
195 | ||
196 | ||
d7d9f01e TT |
197 | int |
198 | macro_is_digit (int c) | |
ec2bcbe7 JB |
199 | { |
200 | return ('0' <= c && c <= '9'); | |
201 | } | |
202 | ||
203 | ||
d7d9f01e TT |
204 | int |
205 | macro_is_identifier_nondigit (int c) | |
ec2bcbe7 JB |
206 | { |
207 | return (c == '_' | |
208 | || ('a' <= c && c <= 'z') | |
209 | || ('A' <= c && c <= 'Z')); | |
210 | } | |
211 | ||
212 | ||
213 | static void | |
214 | set_token (struct macro_buffer *tok, char *start, char *end) | |
215 | { | |
216 | init_shared_buffer (tok, start, end - start); | |
217 | tok->last_token = 0; | |
218 | ||
025bb325 | 219 | /* Presumed; get_identifier may overwrite this. */ |
ec2bcbe7 JB |
220 | tok->is_identifier = 0; |
221 | } | |
222 | ||
223 | ||
224 | static int | |
225 | get_comment (struct macro_buffer *tok, char *p, char *end) | |
226 | { | |
227 | if (p + 2 > end) | |
228 | return 0; | |
229 | else if (p[0] == '/' | |
230 | && p[1] == '*') | |
231 | { | |
232 | char *tok_start = p; | |
233 | ||
234 | p += 2; | |
235 | ||
236 | for (; p < end; p++) | |
237 | if (p + 2 <= end | |
238 | && p[0] == '*' | |
239 | && p[1] == '/') | |
240 | { | |
241 | p += 2; | |
242 | set_token (tok, tok_start, p); | |
243 | return 1; | |
244 | } | |
245 | ||
8a3fe4f8 | 246 | error (_("Unterminated comment in macro expansion.")); |
ec2bcbe7 JB |
247 | } |
248 | else if (p[0] == '/' | |
249 | && p[1] == '/') | |
250 | { | |
251 | char *tok_start = p; | |
252 | ||
253 | p += 2; | |
254 | for (; p < end; p++) | |
255 | if (*p == '\n') | |
256 | break; | |
257 | ||
258 | set_token (tok, tok_start, p); | |
259 | return 1; | |
260 | } | |
261 | else | |
262 | return 0; | |
263 | } | |
264 | ||
265 | ||
266 | static int | |
267 | get_identifier (struct macro_buffer *tok, char *p, char *end) | |
268 | { | |
269 | if (p < end | |
d7d9f01e | 270 | && macro_is_identifier_nondigit (*p)) |
ec2bcbe7 JB |
271 | { |
272 | char *tok_start = p; | |
273 | ||
274 | while (p < end | |
d7d9f01e TT |
275 | && (macro_is_identifier_nondigit (*p) |
276 | || macro_is_digit (*p))) | |
ec2bcbe7 JB |
277 | p++; |
278 | ||
279 | set_token (tok, tok_start, p); | |
280 | tok->is_identifier = 1; | |
281 | return 1; | |
282 | } | |
283 | else | |
284 | return 0; | |
285 | } | |
286 | ||
287 | ||
288 | static int | |
289 | get_pp_number (struct macro_buffer *tok, char *p, char *end) | |
290 | { | |
291 | if (p < end | |
d7d9f01e | 292 | && (macro_is_digit (*p) |
17c8aaf5 TT |
293 | || (*p == '.' |
294 | && p + 2 <= end | |
295 | && macro_is_digit (p[1])))) | |
ec2bcbe7 JB |
296 | { |
297 | char *tok_start = p; | |
298 | ||
299 | while (p < end) | |
300 | { | |
17c8aaf5 TT |
301 | if (p + 2 <= end |
302 | && strchr ("eEpP", *p) | |
303 | && (p[1] == '+' || p[1] == '-')) | |
ec2bcbe7 | 304 | p += 2; |
17c8aaf5 TT |
305 | else if (macro_is_digit (*p) |
306 | || macro_is_identifier_nondigit (*p) | |
307 | || *p == '.') | |
308 | p++; | |
ec2bcbe7 JB |
309 | else |
310 | break; | |
311 | } | |
312 | ||
313 | set_token (tok, tok_start, p); | |
314 | return 1; | |
315 | } | |
316 | else | |
317 | return 0; | |
318 | } | |
319 | ||
320 | ||
321 | ||
322 | /* If the text starting at P going up to (but not including) END | |
323 | starts with a character constant, set *TOK to point to that | |
324 | character constant, and return 1. Otherwise, return zero. | |
325 | Signal an error if it contains a malformed or incomplete character | |
326 | constant. */ | |
327 | static int | |
328 | get_character_constant (struct macro_buffer *tok, char *p, char *end) | |
329 | { | |
330 | /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1 | |
331 | But of course, what really matters is that we handle it the same | |
332 | way GDB's C/C++ lexer does. So we call parse_escape in utils.c | |
333 | to handle escape sequences. */ | |
334 | if ((p + 1 <= end && *p == '\'') | |
6c7a06a3 TT |
335 | || (p + 2 <= end |
336 | && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U') | |
337 | && p[1] == '\'')) | |
ec2bcbe7 JB |
338 | { |
339 | char *tok_start = p; | |
340 | char *body_start; | |
6c7a06a3 | 341 | int char_count = 0; |
ec2bcbe7 JB |
342 | |
343 | if (*p == '\'') | |
344 | p++; | |
6c7a06a3 | 345 | else if (*p == 'L' || *p == 'u' || *p == 'U') |
ec2bcbe7 JB |
346 | p += 2; |
347 | else | |
f3574227 | 348 | gdb_assert_not_reached ("unexpected character constant"); |
ec2bcbe7 JB |
349 | |
350 | body_start = p; | |
351 | for (;;) | |
352 | { | |
353 | if (p >= end) | |
8a3fe4f8 | 354 | error (_("Unmatched single quote.")); |
ec2bcbe7 JB |
355 | else if (*p == '\'') |
356 | { | |
6c7a06a3 | 357 | if (!char_count) |
8a3fe4f8 AC |
358 | error (_("A character constant must contain at least one " |
359 | "character.")); | |
ec2bcbe7 JB |
360 | p++; |
361 | break; | |
362 | } | |
363 | else if (*p == '\\') | |
364 | { | |
365 | p++; | |
6c7a06a3 | 366 | char_count += c_parse_escape (&p, NULL); |
ec2bcbe7 JB |
367 | } |
368 | else | |
6c7a06a3 TT |
369 | { |
370 | p++; | |
371 | char_count++; | |
372 | } | |
ec2bcbe7 JB |
373 | } |
374 | ||
375 | set_token (tok, tok_start, p); | |
376 | return 1; | |
377 | } | |
378 | else | |
379 | return 0; | |
380 | } | |
381 | ||
382 | ||
383 | /* If the text starting at P going up to (but not including) END | |
384 | starts with a string literal, set *TOK to point to that string | |
385 | literal, and return 1. Otherwise, return zero. Signal an error if | |
386 | it contains a malformed or incomplete string literal. */ | |
387 | static int | |
388 | get_string_literal (struct macro_buffer *tok, char *p, char *end) | |
389 | { | |
390 | if ((p + 1 <= end | |
6c7a06a3 | 391 | && *p == '"') |
ec2bcbe7 | 392 | || (p + 2 <= end |
6c7a06a3 TT |
393 | && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U') |
394 | && p[1] == '"')) | |
ec2bcbe7 JB |
395 | { |
396 | char *tok_start = p; | |
397 | ||
6c7a06a3 | 398 | if (*p == '"') |
ec2bcbe7 | 399 | p++; |
6c7a06a3 | 400 | else if (*p == 'L' || *p == 'u' || *p == 'U') |
ec2bcbe7 JB |
401 | p += 2; |
402 | else | |
f3574227 | 403 | gdb_assert_not_reached ("unexpected string literal"); |
ec2bcbe7 JB |
404 | |
405 | for (;;) | |
406 | { | |
407 | if (p >= end) | |
8a3fe4f8 | 408 | error (_("Unterminated string in expression.")); |
6c7a06a3 | 409 | else if (*p == '"') |
ec2bcbe7 JB |
410 | { |
411 | p++; | |
412 | break; | |
413 | } | |
414 | else if (*p == '\n') | |
8a3fe4f8 AC |
415 | error (_("Newline characters may not appear in string " |
416 | "constants.")); | |
ec2bcbe7 JB |
417 | else if (*p == '\\') |
418 | { | |
419 | p++; | |
6c7a06a3 | 420 | c_parse_escape (&p, NULL); |
ec2bcbe7 JB |
421 | } |
422 | else | |
423 | p++; | |
424 | } | |
425 | ||
426 | set_token (tok, tok_start, p); | |
427 | return 1; | |
428 | } | |
429 | else | |
430 | return 0; | |
431 | } | |
432 | ||
433 | ||
434 | static int | |
435 | get_punctuator (struct macro_buffer *tok, char *p, char *end) | |
436 | { | |
437 | /* Here, speed is much less important than correctness and clarity. */ | |
438 | ||
ccb3ac8a TT |
439 | /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1. |
440 | Note that this table is ordered in a special way. A punctuator | |
441 | which is a prefix of another punctuator must appear after its | |
442 | "extension". Otherwise, the wrong token will be returned. */ | |
ec2bcbe7 | 443 | static const char * const punctuators[] = { |
ccb3ac8a TT |
444 | "[", "]", "(", ")", "{", "}", "?", ";", ",", "~", |
445 | "...", ".", | |
446 | "->", "--", "-=", "-", | |
447 | "++", "+=", "+", | |
448 | "*=", "*", | |
449 | "!=", "!", | |
450 | "&&", "&=", "&", | |
451 | "/=", "/", | |
452 | "%>", "%:%:", "%:", "%=", "%", | |
453 | "^=", "^", | |
454 | "##", "#", | |
455 | ":>", ":", | |
456 | "||", "|=", "|", | |
457 | "<<=", "<<", "<=", "<:", "<%", "<", | |
458 | ">>=", ">>", ">=", ">", | |
459 | "==", "=", | |
ec2bcbe7 JB |
460 | 0 |
461 | }; | |
462 | ||
463 | int i; | |
464 | ||
465 | if (p + 1 <= end) | |
466 | { | |
467 | for (i = 0; punctuators[i]; i++) | |
468 | { | |
469 | const char *punctuator = punctuators[i]; | |
470 | ||
471 | if (p[0] == punctuator[0]) | |
472 | { | |
473 | int len = strlen (punctuator); | |
474 | ||
475 | if (p + len <= end | |
476 | && ! memcmp (p, punctuator, len)) | |
477 | { | |
478 | set_token (tok, p, p + len); | |
479 | return 1; | |
480 | } | |
481 | } | |
482 | } | |
483 | } | |
484 | ||
485 | return 0; | |
486 | } | |
487 | ||
488 | ||
489 | /* Peel the next preprocessor token off of SRC, and put it in TOK. | |
490 | Mutate TOK to refer to the first token in SRC, and mutate SRC to | |
491 | refer to the text after that token. SRC must be a shared buffer; | |
492 | the resulting TOK will be shared, pointing into the same string SRC | |
493 | does. Initialize TOK's last_token field. Return non-zero if we | |
494 | succeed, or 0 if we didn't find any more tokens in SRC. */ | |
495 | static int | |
496 | get_token (struct macro_buffer *tok, | |
497 | struct macro_buffer *src) | |
498 | { | |
499 | char *p = src->text; | |
500 | char *end = p + src->len; | |
501 | ||
502 | gdb_assert (src->shared); | |
503 | ||
504 | /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4: | |
505 | ||
506 | preprocessing-token: | |
507 | header-name | |
508 | identifier | |
509 | pp-number | |
510 | character-constant | |
511 | string-literal | |
512 | punctuator | |
513 | each non-white-space character that cannot be one of the above | |
514 | ||
515 | We don't have to deal with header-name tokens, since those can | |
516 | only occur after a #include, which we will never see. */ | |
517 | ||
518 | while (p < end) | |
d7d9f01e | 519 | if (macro_is_whitespace (*p)) |
ec2bcbe7 JB |
520 | p++; |
521 | else if (get_comment (tok, p, end)) | |
522 | p += tok->len; | |
523 | else if (get_pp_number (tok, p, end) | |
524 | || get_character_constant (tok, p, end) | |
525 | || get_string_literal (tok, p, end) | |
526 | /* Note: the grammar in the standard seems to be | |
527 | ambiguous: L'x' can be either a wide character | |
528 | constant, or an identifier followed by a normal | |
529 | character constant. By trying `get_identifier' after | |
530 | we try get_character_constant and get_string_literal, | |
531 | we give the wide character syntax precedence. Now, | |
532 | since GDB doesn't handle wide character constants | |
533 | anyway, is this the right thing to do? */ | |
534 | || get_identifier (tok, p, end) | |
535 | || get_punctuator (tok, p, end)) | |
536 | { | |
537 | /* How many characters did we consume, including whitespace? */ | |
538 | int consumed = p - src->text + tok->len; | |
b8d56208 | 539 | |
ec2bcbe7 JB |
540 | src->text += consumed; |
541 | src->len -= consumed; | |
542 | return 1; | |
543 | } | |
544 | else | |
545 | { | |
546 | /* We have found a "non-whitespace character that cannot be | |
547 | one of the above." Make a token out of it. */ | |
548 | int consumed; | |
549 | ||
550 | set_token (tok, p, p + 1); | |
551 | consumed = p - src->text + tok->len; | |
552 | src->text += consumed; | |
553 | src->len -= consumed; | |
554 | return 1; | |
555 | } | |
556 | ||
557 | return 0; | |
558 | } | |
559 | ||
560 | ||
561 | \f | |
562 | /* Appending token strings, with and without splicing */ | |
563 | ||
564 | ||
565 | /* Append the macro buffer SRC to the end of DEST, and ensure that | |
566 | doing so doesn't splice the token at the end of SRC with the token | |
567 | at the beginning of DEST. SRC and DEST must have their last_token | |
568 | fields set. Upon return, DEST's last_token field is set correctly. | |
569 | ||
570 | For example: | |
571 | ||
572 | If DEST is "(" and SRC is "y", then we can return with | |
573 | DEST set to "(y" --- we've simply appended the two buffers. | |
574 | ||
575 | However, if DEST is "x" and SRC is "y", then we must not return | |
576 | with DEST set to "xy" --- that would splice the two tokens "x" and | |
577 | "y" together to make a single token "xy". However, it would be | |
578 | fine to return with DEST set to "x y". Similarly, "<" and "<" must | |
579 | yield "< <", not "<<", etc. */ | |
580 | static void | |
581 | append_tokens_without_splicing (struct macro_buffer *dest, | |
582 | struct macro_buffer *src) | |
583 | { | |
584 | int original_dest_len = dest->len; | |
585 | struct macro_buffer dest_tail, new_token; | |
586 | ||
587 | gdb_assert (src->last_token != -1); | |
588 | gdb_assert (dest->last_token != -1); | |
589 | ||
590 | /* First, just try appending the two, and call get_token to see if | |
591 | we got a splice. */ | |
592 | appendmem (dest, src->text, src->len); | |
593 | ||
594 | /* If DEST originally had no token abutting its end, then we can't | |
595 | have spliced anything, so we're done. */ | |
596 | if (dest->last_token == original_dest_len) | |
597 | { | |
598 | dest->last_token = original_dest_len + src->last_token; | |
599 | return; | |
600 | } | |
601 | ||
602 | /* Set DEST_TAIL to point to the last token in DEST, followed by | |
603 | all the stuff we just appended. */ | |
604 | init_shared_buffer (&dest_tail, | |
605 | dest->text + dest->last_token, | |
606 | dest->len - dest->last_token); | |
607 | ||
608 | /* Re-parse DEST's last token. We know that DEST used to contain | |
609 | at least one token, so if it doesn't contain any after the | |
610 | append, then we must have spliced "/" and "*" or "/" and "/" to | |
611 | make a comment start. (Just for the record, I got this right | |
612 | the first time. This is not a bug fix.) */ | |
613 | if (get_token (&new_token, &dest_tail) | |
614 | && (new_token.text + new_token.len | |
615 | == dest->text + original_dest_len)) | |
616 | { | |
617 | /* No splice, so we're done. */ | |
618 | dest->last_token = original_dest_len + src->last_token; | |
619 | return; | |
620 | } | |
621 | ||
622 | /* Okay, a simple append caused a splice. Let's chop dest back to | |
623 | its original length and try again, but separate the texts with a | |
624 | space. */ | |
625 | dest->len = original_dest_len; | |
626 | appendc (dest, ' '); | |
627 | appendmem (dest, src->text, src->len); | |
628 | ||
629 | init_shared_buffer (&dest_tail, | |
630 | dest->text + dest->last_token, | |
631 | dest->len - dest->last_token); | |
632 | ||
633 | /* Try to re-parse DEST's last token, as above. */ | |
634 | if (get_token (&new_token, &dest_tail) | |
635 | && (new_token.text + new_token.len | |
636 | == dest->text + original_dest_len)) | |
637 | { | |
638 | /* No splice, so we're done. */ | |
639 | dest->last_token = original_dest_len + 1 + src->last_token; | |
640 | return; | |
641 | } | |
642 | ||
643 | /* As far as I know, there's no case where inserting a space isn't | |
644 | enough to prevent a splice. */ | |
645 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 646 | _("unable to avoid splicing tokens during macro expansion")); |
ec2bcbe7 JB |
647 | } |
648 | ||
2fae03e8 TT |
649 | /* Stringify an argument, and insert it into DEST. ARG is the text to |
650 | stringify; it is LEN bytes long. */ | |
651 | ||
652 | static void | |
abc9d0dc | 653 | stringify (struct macro_buffer *dest, const char *arg, int len) |
2fae03e8 TT |
654 | { |
655 | /* Trim initial whitespace from ARG. */ | |
656 | while (len > 0 && macro_is_whitespace (*arg)) | |
657 | { | |
658 | ++arg; | |
659 | --len; | |
660 | } | |
661 | ||
662 | /* Trim trailing whitespace from ARG. */ | |
663 | while (len > 0 && macro_is_whitespace (arg[len - 1])) | |
664 | --len; | |
665 | ||
666 | /* Insert the string. */ | |
667 | appendc (dest, '"'); | |
668 | while (len > 0) | |
669 | { | |
670 | /* We could try to handle strange cases here, like control | |
671 | characters, but there doesn't seem to be much point. */ | |
672 | if (macro_is_whitespace (*arg)) | |
673 | { | |
674 | /* Replace a sequence of whitespace with a single space. */ | |
675 | appendc (dest, ' '); | |
676 | while (len > 1 && macro_is_whitespace (arg[1])) | |
677 | { | |
678 | ++arg; | |
679 | --len; | |
680 | } | |
681 | } | |
682 | else if (*arg == '\\' || *arg == '"') | |
683 | { | |
684 | appendc (dest, '\\'); | |
685 | appendc (dest, *arg); | |
686 | } | |
687 | else | |
688 | appendc (dest, *arg); | |
689 | ++arg; | |
690 | --len; | |
691 | } | |
692 | appendc (dest, '"'); | |
693 | dest->last_token = dest->len; | |
694 | } | |
ec2bcbe7 | 695 | |
abc9d0dc TT |
696 | /* See macroexp.h. */ |
697 | ||
698 | char * | |
699 | macro_stringify (const char *str) | |
700 | { | |
701 | struct macro_buffer buffer; | |
702 | int len = strlen (str); | |
703 | char *result; | |
704 | ||
705 | init_buffer (&buffer, len); | |
706 | stringify (&buffer, str, len); | |
e9e5e6b3 | 707 | appendc (&buffer, '\0'); |
abc9d0dc TT |
708 | |
709 | return free_buffer_return_text (&buffer); | |
710 | } | |
711 | ||
ec2bcbe7 JB |
712 | \f |
713 | /* Expanding macros! */ | |
714 | ||
715 | ||
716 | /* A singly-linked list of the names of the macros we are currently | |
717 | expanding --- for detecting expansion loops. */ | |
718 | struct macro_name_list { | |
719 | const char *name; | |
720 | struct macro_name_list *next; | |
721 | }; | |
722 | ||
723 | ||
724 | /* Return non-zero if we are currently expanding the macro named NAME, | |
725 | according to LIST; otherwise, return zero. | |
726 | ||
727 | You know, it would be possible to get rid of all the NO_LOOP | |
728 | arguments to these functions by simply generating a new lookup | |
729 | function and baton which refuses to find the definition for a | |
730 | particular macro, and otherwise delegates the decision to another | |
731 | function/baton pair. But that makes the linked list of excluded | |
732 | macros chained through untyped baton pointers, which will make it | |
025bb325 | 733 | harder to debug. :( */ |
ec2bcbe7 JB |
734 | static int |
735 | currently_rescanning (struct macro_name_list *list, const char *name) | |
736 | { | |
737 | for (; list; list = list->next) | |
a86bc61c | 738 | if (strcmp (name, list->name) == 0) |
ec2bcbe7 JB |
739 | return 1; |
740 | ||
741 | return 0; | |
742 | } | |
743 | ||
744 | ||
745 | /* Gather the arguments to a macro expansion. | |
746 | ||
747 | NAME is the name of the macro being invoked. (It's only used for | |
748 | printing error messages.) | |
749 | ||
750 | Assume that SRC is the text of the macro invocation immediately | |
751 | following the macro name. For example, if we're processing the | |
752 | text foo(bar, baz), then NAME would be foo and SRC will be (bar, | |
753 | baz). | |
754 | ||
755 | If SRC doesn't start with an open paren ( token at all, return | |
756 | zero, leave SRC unchanged, and don't set *ARGC_P to anything. | |
757 | ||
758 | If SRC doesn't contain a properly terminated argument list, then | |
759 | raise an error. | |
2fae03e8 TT |
760 | |
761 | For a variadic macro, NARGS holds the number of formal arguments to | |
762 | the macro. For a GNU-style variadic macro, this should be the | |
763 | number of named arguments. For a non-variadic macro, NARGS should | |
764 | be -1. | |
ec2bcbe7 JB |
765 | |
766 | Otherwise, return a pointer to the first element of an array of | |
767 | macro buffers referring to the argument texts, and set *ARGC_P to | |
768 | the number of arguments we found --- the number of elements in the | |
769 | array. The macro buffers share their text with SRC, and their | |
770 | last_token fields are initialized. The array is allocated with | |
771 | xmalloc, and the caller is responsible for freeing it. | |
772 | ||
773 | NOTE WELL: if SRC starts with a open paren ( token followed | |
774 | immediately by a close paren ) token (e.g., the invocation looks | |
775 | like "foo()"), we treat that as one argument, which happens to be | |
776 | the empty list of tokens. The caller should keep in mind that such | |
777 | a sequence of tokens is a valid way to invoke one-parameter | |
778 | function-like macros, but also a valid way to invoke zero-parameter | |
779 | function-like macros. Eeew. | |
780 | ||
781 | Consume the tokens from SRC; after this call, SRC contains the text | |
782 | following the invocation. */ | |
783 | ||
784 | static struct macro_buffer * | |
2fae03e8 TT |
785 | gather_arguments (const char *name, struct macro_buffer *src, |
786 | int nargs, int *argc_p) | |
ec2bcbe7 JB |
787 | { |
788 | struct macro_buffer tok; | |
789 | int args_len, args_size; | |
a86bc61c | 790 | struct macro_buffer *args = NULL; |
ec2bcbe7 JB |
791 | struct cleanup *back_to = make_cleanup (free_current_contents, &args); |
792 | ||
793 | /* Does SRC start with an opening paren token? Read from a copy of | |
794 | SRC, so SRC itself is unaffected if we don't find an opening | |
795 | paren. */ | |
796 | { | |
797 | struct macro_buffer temp; | |
b8d56208 | 798 | |
ec2bcbe7 JB |
799 | init_shared_buffer (&temp, src->text, src->len); |
800 | ||
801 | if (! get_token (&tok, &temp) | |
802 | || tok.len != 1 | |
803 | || tok.text[0] != '(') | |
804 | { | |
805 | discard_cleanups (back_to); | |
806 | return 0; | |
807 | } | |
808 | } | |
809 | ||
810 | /* Consume SRC's opening paren. */ | |
811 | get_token (&tok, src); | |
812 | ||
813 | args_len = 0; | |
b1ddacc7 | 814 | args_size = 6; |
ec2bcbe7 JB |
815 | args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size); |
816 | ||
817 | for (;;) | |
818 | { | |
819 | struct macro_buffer *arg; | |
820 | int depth; | |
821 | ||
822 | /* Make sure we have room for the next argument. */ | |
823 | if (args_len >= args_size) | |
824 | { | |
825 | args_size *= 2; | |
826 | args = xrealloc (args, sizeof (*args) * args_size); | |
827 | } | |
828 | ||
829 | /* Initialize the next argument. */ | |
830 | arg = &args[args_len++]; | |
831 | set_token (arg, src->text, src->text); | |
832 | ||
833 | /* Gather the argument's tokens. */ | |
834 | depth = 0; | |
835 | for (;;) | |
836 | { | |
ec2bcbe7 | 837 | if (! get_token (&tok, src)) |
8a3fe4f8 | 838 | error (_("Malformed argument list for macro `%s'."), name); |
ec2bcbe7 JB |
839 | |
840 | /* Is tok an opening paren? */ | |
841 | if (tok.len == 1 && tok.text[0] == '(') | |
842 | depth++; | |
843 | ||
844 | /* Is tok is a closing paren? */ | |
845 | else if (tok.len == 1 && tok.text[0] == ')') | |
846 | { | |
847 | /* If it's a closing paren at the top level, then that's | |
848 | the end of the argument list. */ | |
849 | if (depth == 0) | |
850 | { | |
2fae03e8 TT |
851 | /* In the varargs case, the last argument may be |
852 | missing. Add an empty argument in this case. */ | |
853 | if (nargs != -1 && args_len == nargs - 1) | |
854 | { | |
855 | /* Make sure we have room for the argument. */ | |
856 | if (args_len >= args_size) | |
857 | { | |
858 | args_size++; | |
859 | args = xrealloc (args, sizeof (*args) * args_size); | |
860 | } | |
861 | arg = &args[args_len++]; | |
862 | set_token (arg, src->text, src->text); | |
863 | } | |
864 | ||
ec2bcbe7 JB |
865 | discard_cleanups (back_to); |
866 | *argc_p = args_len; | |
867 | return args; | |
868 | } | |
869 | ||
870 | depth--; | |
871 | } | |
872 | ||
873 | /* If tok is a comma at top level, then that's the end of | |
2fae03e8 TT |
874 | the current argument. However, if we are handling a |
875 | variadic macro and we are computing the last argument, we | |
876 | want to include the comma and remaining tokens. */ | |
877 | else if (tok.len == 1 && tok.text[0] == ',' && depth == 0 | |
878 | && (nargs == -1 || args_len < nargs)) | |
ec2bcbe7 JB |
879 | break; |
880 | ||
881 | /* Extend the current argument to enclose this token. If | |
882 | this is the current argument's first token, leave out any | |
883 | leading whitespace, just for aesthetics. */ | |
884 | if (arg->len == 0) | |
885 | { | |
886 | arg->text = tok.text; | |
887 | arg->len = tok.len; | |
888 | arg->last_token = 0; | |
889 | } | |
890 | else | |
891 | { | |
892 | arg->len = (tok.text + tok.len) - arg->text; | |
893 | arg->last_token = tok.text - arg->text; | |
894 | } | |
895 | } | |
896 | } | |
897 | } | |
898 | ||
899 | ||
900 | /* The `expand' and `substitute_args' functions both invoke `scan' | |
901 | recursively, so we need a forward declaration somewhere. */ | |
902 | static void scan (struct macro_buffer *dest, | |
903 | struct macro_buffer *src, | |
904 | struct macro_name_list *no_loop, | |
905 | macro_lookup_ftype *lookup_func, | |
906 | void *lookup_baton); | |
907 | ||
908 | ||
2fae03e8 TT |
909 | /* A helper function for substitute_args. |
910 | ||
911 | ARGV is a vector of all the arguments; ARGC is the number of | |
912 | arguments. IS_VARARGS is true if the macro being substituted is a | |
913 | varargs macro; in this case VA_ARG_NAME is the name of the | |
914 | "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is | |
915 | false. | |
916 | ||
917 | If the token TOK is the name of a parameter, return the parameter's | |
918 | index. If TOK is not an argument, return -1. */ | |
919 | ||
920 | static int | |
921 | find_parameter (const struct macro_buffer *tok, | |
922 | int is_varargs, const struct macro_buffer *va_arg_name, | |
923 | int argc, const char * const *argv) | |
924 | { | |
925 | int i; | |
926 | ||
927 | if (! tok->is_identifier) | |
928 | return -1; | |
929 | ||
930 | for (i = 0; i < argc; ++i) | |
3e43a32a MS |
931 | if (tok->len == strlen (argv[i]) |
932 | && !memcmp (tok->text, argv[i], tok->len)) | |
2fae03e8 TT |
933 | return i; |
934 | ||
935 | if (is_varargs && tok->len == va_arg_name->len | |
936 | && ! memcmp (tok->text, va_arg_name->text, tok->len)) | |
937 | return argc - 1; | |
938 | ||
939 | return -1; | |
940 | } | |
941 | ||
ec2bcbe7 JB |
942 | /* Given the macro definition DEF, being invoked with the actual |
943 | arguments given by ARGC and ARGV, substitute the arguments into the | |
944 | replacement list, and store the result in DEST. | |
945 | ||
2fae03e8 TT |
946 | IS_VARARGS should be true if DEF is a varargs macro. In this case, |
947 | VA_ARG_NAME should be the name of the "variable" argument -- either | |
948 | __VA_ARGS__ for c99-style varargs, or the final argument name, for | |
949 | GNU-style varargs. If IS_VARARGS is false, this parameter is | |
950 | ignored. | |
951 | ||
ec2bcbe7 JB |
952 | If it is necessary to expand macro invocations in one of the |
953 | arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro | |
954 | definitions, and don't expand invocations of the macros listed in | |
955 | NO_LOOP. */ | |
2fae03e8 | 956 | |
ec2bcbe7 JB |
957 | static void |
958 | substitute_args (struct macro_buffer *dest, | |
959 | struct macro_definition *def, | |
2fae03e8 | 960 | int is_varargs, const struct macro_buffer *va_arg_name, |
ec2bcbe7 JB |
961 | int argc, struct macro_buffer *argv, |
962 | struct macro_name_list *no_loop, | |
963 | macro_lookup_ftype *lookup_func, | |
964 | void *lookup_baton) | |
965 | { | |
966 | /* A macro buffer for the macro's replacement list. */ | |
967 | struct macro_buffer replacement_list; | |
2fae03e8 TT |
968 | /* The token we are currently considering. */ |
969 | struct macro_buffer tok; | |
970 | /* The replacement list's pointer from just before TOK was lexed. */ | |
971 | char *original_rl_start; | |
972 | /* We have a single lookahead token to handle token splicing. */ | |
973 | struct macro_buffer lookahead; | |
974 | /* The lookahead token might not be valid. */ | |
975 | int lookahead_valid; | |
976 | /* The replacement list's pointer from just before LOOKAHEAD was | |
977 | lexed. */ | |
978 | char *lookahead_rl_start; | |
ec2bcbe7 JB |
979 | |
980 | init_shared_buffer (&replacement_list, (char *) def->replacement, | |
981 | strlen (def->replacement)); | |
982 | ||
983 | gdb_assert (dest->len == 0); | |
984 | dest->last_token = 0; | |
985 | ||
2fae03e8 TT |
986 | original_rl_start = replacement_list.text; |
987 | if (! get_token (&tok, &replacement_list)) | |
988 | return; | |
989 | lookahead_rl_start = replacement_list.text; | |
990 | lookahead_valid = get_token (&lookahead, &replacement_list); | |
991 | ||
ec2bcbe7 JB |
992 | for (;;) |
993 | { | |
ec2bcbe7 JB |
994 | /* Just for aesthetics. If we skipped some whitespace, copy |
995 | that to DEST. */ | |
996 | if (tok.text > original_rl_start) | |
997 | { | |
998 | appendmem (dest, original_rl_start, tok.text - original_rl_start); | |
999 | dest->last_token = dest->len; | |
1000 | } | |
1001 | ||
1002 | /* Is this token the stringification operator? */ | |
1003 | if (tok.len == 1 | |
1004 | && tok.text[0] == '#') | |
2fae03e8 TT |
1005 | { |
1006 | int arg; | |
ec2bcbe7 | 1007 | |
2fae03e8 TT |
1008 | if (!lookahead_valid) |
1009 | error (_("Stringification operator requires an argument.")); | |
ec2bcbe7 | 1010 | |
2fae03e8 TT |
1011 | arg = find_parameter (&lookahead, is_varargs, va_arg_name, |
1012 | def->argc, def->argv); | |
1013 | if (arg == -1) | |
1014 | error (_("Argument to stringification operator must name " | |
1015 | "a macro parameter.")); | |
ec2bcbe7 | 1016 | |
2fae03e8 TT |
1017 | stringify (dest, argv[arg].text, argv[arg].len); |
1018 | ||
1019 | /* Read one token and let the loop iteration code handle the | |
1020 | rest. */ | |
1021 | lookahead_rl_start = replacement_list.text; | |
1022 | lookahead_valid = get_token (&lookahead, &replacement_list); | |
1023 | } | |
1024 | /* Is this token the splicing operator? */ | |
1025 | else if (tok.len == 2 | |
1026 | && tok.text[0] == '#' | |
1027 | && tok.text[1] == '#') | |
1028 | error (_("Stray splicing operator")); | |
1029 | /* Is the next token the splicing operator? */ | |
1030 | else if (lookahead_valid | |
1031 | && lookahead.len == 2 | |
1032 | && lookahead.text[0] == '#' | |
1033 | && lookahead.text[1] == '#') | |
1034 | { | |
308d96ed | 1035 | int finished = 0; |
2fae03e8 TT |
1036 | int prev_was_comma = 0; |
1037 | ||
1038 | /* Note that GCC warns if the result of splicing is not a | |
1039 | token. In the debugger there doesn't seem to be much | |
1040 | benefit from doing this. */ | |
1041 | ||
1042 | /* Insert the first token. */ | |
1043 | if (tok.len == 1 && tok.text[0] == ',') | |
1044 | prev_was_comma = 1; | |
1045 | else | |
1046 | { | |
1047 | int arg = find_parameter (&tok, is_varargs, va_arg_name, | |
1048 | def->argc, def->argv); | |
b8d56208 | 1049 | |
2fae03e8 TT |
1050 | if (arg != -1) |
1051 | appendmem (dest, argv[arg].text, argv[arg].len); | |
1052 | else | |
1053 | appendmem (dest, tok.text, tok.len); | |
1054 | } | |
1055 | ||
1056 | /* Apply a possible sequence of ## operators. */ | |
1057 | for (;;) | |
1058 | { | |
1059 | if (! get_token (&tok, &replacement_list)) | |
1060 | error (_("Splicing operator at end of macro")); | |
1061 | ||
1062 | /* Handle a comma before a ##. If we are handling | |
1063 | varargs, and the token on the right hand side is the | |
1064 | varargs marker, and the final argument is empty or | |
1065 | missing, then drop the comma. This is a GNU | |
1066 | extension. There is one ambiguous case here, | |
1067 | involving pedantic behavior with an empty argument, | |
1068 | but we settle that in favor of GNU-style (GCC uses an | |
1069 | option). If we aren't dealing with varargs, we | |
1070 | simply insert the comma. */ | |
1071 | if (prev_was_comma) | |
1072 | { | |
1073 | if (! (is_varargs | |
1074 | && tok.len == va_arg_name->len | |
1075 | && !memcmp (tok.text, va_arg_name->text, tok.len) | |
1076 | && argv[argc - 1].len == 0)) | |
1077 | appendmem (dest, ",", 1); | |
1078 | prev_was_comma = 0; | |
1079 | } | |
1080 | ||
1081 | /* Insert the token. If it is a parameter, insert the | |
1082 | argument. If it is a comma, treat it specially. */ | |
1083 | if (tok.len == 1 && tok.text[0] == ',') | |
1084 | prev_was_comma = 1; | |
1085 | else | |
1086 | { | |
1087 | int arg = find_parameter (&tok, is_varargs, va_arg_name, | |
1088 | def->argc, def->argv); | |
b8d56208 | 1089 | |
2fae03e8 TT |
1090 | if (arg != -1) |
1091 | appendmem (dest, argv[arg].text, argv[arg].len); | |
1092 | else | |
1093 | appendmem (dest, tok.text, tok.len); | |
1094 | } | |
1095 | ||
1096 | /* Now read another token. If it is another splice, we | |
1097 | loop. */ | |
1098 | original_rl_start = replacement_list.text; | |
1099 | if (! get_token (&tok, &replacement_list)) | |
1100 | { | |
1101 | finished = 1; | |
1102 | break; | |
1103 | } | |
1104 | ||
1105 | if (! (tok.len == 2 | |
1106 | && tok.text[0] == '#' | |
1107 | && tok.text[1] == '#')) | |
1108 | break; | |
1109 | } | |
1110 | ||
1111 | if (prev_was_comma) | |
1112 | { | |
1113 | /* We saw a comma. Insert it now. */ | |
1114 | appendmem (dest, ",", 1); | |
1115 | } | |
1116 | ||
1117 | dest->last_token = dest->len; | |
1118 | if (finished) | |
1119 | lookahead_valid = 0; | |
1120 | else | |
1121 | { | |
1122 | /* Set up for the loop iterator. */ | |
1123 | lookahead = tok; | |
1124 | lookahead_rl_start = original_rl_start; | |
1125 | lookahead_valid = 1; | |
1126 | } | |
1127 | } | |
1128 | else | |
1129 | { | |
1130 | /* Is this token an identifier? */ | |
1131 | int substituted = 0; | |
1132 | int arg = find_parameter (&tok, is_varargs, va_arg_name, | |
1133 | def->argc, def->argv); | |
1134 | ||
1135 | if (arg != -1) | |
1136 | { | |
1137 | struct macro_buffer arg_src; | |
1138 | ||
1139 | /* Expand any macro invocations in the argument text, | |
1140 | and append the result to dest. Remember that scan | |
1141 | mutates its source, so we need to scan a new buffer | |
1142 | referring to the argument's text, not the argument | |
1143 | itself. */ | |
1144 | init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len); | |
1145 | scan (dest, &arg_src, no_loop, lookup_func, lookup_baton); | |
1146 | substituted = 1; | |
1147 | } | |
1148 | ||
1149 | /* If it wasn't a parameter, then just copy it across. */ | |
1150 | if (! substituted) | |
1151 | append_tokens_without_splicing (dest, &tok); | |
1152 | } | |
1153 | ||
1154 | if (! lookahead_valid) | |
1155 | break; | |
1156 | ||
1157 | tok = lookahead; | |
1158 | original_rl_start = lookahead_rl_start; | |
1159 | ||
1160 | lookahead_rl_start = replacement_list.text; | |
1161 | lookahead_valid = get_token (&lookahead, &replacement_list); | |
ec2bcbe7 JB |
1162 | } |
1163 | } | |
1164 | ||
1165 | ||
1166 | /* Expand a call to a macro named ID, whose definition is DEF. Append | |
1167 | its expansion to DEST. SRC is the input text following the ID | |
1168 | token. We are currently rescanning the expansions of the macros | |
1169 | named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and | |
025bb325 | 1170 | LOOKUP_BATON to find definitions for any nested macro references. |
ec2bcbe7 JB |
1171 | |
1172 | Return 1 if we decided to expand it, zero otherwise. (If it's a | |
1173 | function-like macro name that isn't followed by an argument list, | |
1174 | we don't expand it.) If we return zero, leave SRC unchanged. */ | |
1175 | static int | |
1176 | expand (const char *id, | |
1177 | struct macro_definition *def, | |
1178 | struct macro_buffer *dest, | |
1179 | struct macro_buffer *src, | |
1180 | struct macro_name_list *no_loop, | |
1181 | macro_lookup_ftype *lookup_func, | |
1182 | void *lookup_baton) | |
1183 | { | |
1184 | struct macro_name_list new_no_loop; | |
1185 | ||
1186 | /* Create a new node to be added to the front of the no-expand list. | |
1187 | This list is appropriate for re-scanning replacement lists, but | |
1188 | it is *not* appropriate for scanning macro arguments; invocations | |
1189 | of the macro whose arguments we are gathering *do* get expanded | |
1190 | there. */ | |
1191 | new_no_loop.name = id; | |
1192 | new_no_loop.next = no_loop; | |
1193 | ||
1194 | /* What kind of macro are we expanding? */ | |
1195 | if (def->kind == macro_object_like) | |
1196 | { | |
1197 | struct macro_buffer replacement_list; | |
1198 | ||
1199 | init_shared_buffer (&replacement_list, (char *) def->replacement, | |
1200 | strlen (def->replacement)); | |
1201 | ||
1202 | scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton); | |
1203 | return 1; | |
1204 | } | |
1205 | else if (def->kind == macro_function_like) | |
1206 | { | |
1207 | struct cleanup *back_to = make_cleanup (null_cleanup, 0); | |
0a029df5 | 1208 | int argc = 0; |
a86bc61c | 1209 | struct macro_buffer *argv = NULL; |
ec2bcbe7 JB |
1210 | struct macro_buffer substituted; |
1211 | struct macro_buffer substituted_src; | |
ee6436e3 | 1212 | struct macro_buffer va_arg_name = {0}; |
2fae03e8 TT |
1213 | int is_varargs = 0; |
1214 | ||
1215 | if (def->argc >= 1) | |
1216 | { | |
1217 | if (strcmp (def->argv[def->argc - 1], "...") == 0) | |
1218 | { | |
1219 | /* In C99-style varargs, substitution is done using | |
1220 | __VA_ARGS__. */ | |
1221 | init_shared_buffer (&va_arg_name, "__VA_ARGS__", | |
1222 | strlen ("__VA_ARGS__")); | |
1223 | is_varargs = 1; | |
1224 | } | |
1225 | else | |
1226 | { | |
1227 | int len = strlen (def->argv[def->argc - 1]); | |
b8d56208 | 1228 | |
2fae03e8 TT |
1229 | if (len > 3 |
1230 | && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0) | |
1231 | { | |
1232 | /* In GNU-style varargs, the name of the | |
1233 | substitution parameter is the name of the formal | |
1234 | argument without the "...". */ | |
1235 | init_shared_buffer (&va_arg_name, | |
1236 | (char *) def->argv[def->argc - 1], | |
1237 | len - 3); | |
1238 | is_varargs = 1; | |
1239 | } | |
1240 | } | |
1241 | } | |
ec2bcbe7 JB |
1242 | |
1243 | make_cleanup (free_current_contents, &argv); | |
2fae03e8 TT |
1244 | argv = gather_arguments (id, src, is_varargs ? def->argc : -1, |
1245 | &argc); | |
ec2bcbe7 JB |
1246 | |
1247 | /* If we couldn't find any argument list, then we don't expand | |
1248 | this macro. */ | |
1249 | if (! argv) | |
1250 | { | |
1251 | do_cleanups (back_to); | |
1252 | return 0; | |
1253 | } | |
1254 | ||
1255 | /* Check that we're passing an acceptable number of arguments for | |
1256 | this macro. */ | |
1257 | if (argc != def->argc) | |
1258 | { | |
2fae03e8 TT |
1259 | if (is_varargs && argc >= def->argc - 1) |
1260 | { | |
1261 | /* Ok. */ | |
1262 | } | |
ec2bcbe7 JB |
1263 | /* Remember that a sequence of tokens like "foo()" is a |
1264 | valid invocation of a macro expecting either zero or one | |
1265 | arguments. */ | |
2fae03e8 TT |
1266 | else if (! (argc == 1 |
1267 | && argv[0].len == 0 | |
1268 | && def->argc == 0)) | |
8a3fe4f8 AC |
1269 | error (_("Wrong number of arguments to macro `%s' " |
1270 | "(expected %d, got %d)."), | |
ec2bcbe7 JB |
1271 | id, def->argc, argc); |
1272 | } | |
1273 | ||
1274 | /* Note that we don't expand macro invocations in the arguments | |
1275 | yet --- we let subst_args take care of that. Parameters that | |
1276 | appear as operands of the stringifying operator "#" or the | |
1277 | splicing operator "##" don't get macro references expanded, | |
1278 | so we can't really tell whether it's appropriate to macro- | |
1279 | expand an argument until we see how it's being used. */ | |
1280 | init_buffer (&substituted, 0); | |
1281 | make_cleanup (cleanup_macro_buffer, &substituted); | |
2fae03e8 TT |
1282 | substitute_args (&substituted, def, is_varargs, &va_arg_name, |
1283 | argc, argv, no_loop, lookup_func, lookup_baton); | |
ec2bcbe7 JB |
1284 | |
1285 | /* Now `substituted' is the macro's replacement list, with all | |
1286 | argument values substituted into it properly. Re-scan it for | |
1287 | macro references, but don't expand invocations of this macro. | |
1288 | ||
1289 | We create a new buffer, `substituted_src', which points into | |
1290 | `substituted', and scan that. We can't scan `substituted' | |
1291 | itself, since the tokenization process moves the buffer's | |
1292 | text pointer around, and we still need to be able to find | |
1293 | `substituted's original text buffer after scanning it so we | |
1294 | can free it. */ | |
1295 | init_shared_buffer (&substituted_src, substituted.text, substituted.len); | |
1296 | scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton); | |
1297 | ||
1298 | do_cleanups (back_to); | |
1299 | ||
1300 | return 1; | |
1301 | } | |
1302 | else | |
e2e0b3e5 | 1303 | internal_error (__FILE__, __LINE__, _("bad macro definition kind")); |
ec2bcbe7 JB |
1304 | } |
1305 | ||
1306 | ||
1307 | /* If the single token in SRC_FIRST followed by the tokens in SRC_REST | |
1308 | constitute a macro invokation not forbidden in NO_LOOP, append its | |
1309 | expansion to DEST and return non-zero. Otherwise, return zero, and | |
1310 | leave DEST unchanged. | |
1311 | ||
1312 | SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one. | |
1313 | SRC_FIRST must be a string built by get_token. */ | |
1314 | static int | |
1315 | maybe_expand (struct macro_buffer *dest, | |
1316 | struct macro_buffer *src_first, | |
1317 | struct macro_buffer *src_rest, | |
1318 | struct macro_name_list *no_loop, | |
1319 | macro_lookup_ftype *lookup_func, | |
1320 | void *lookup_baton) | |
1321 | { | |
1322 | gdb_assert (src_first->shared); | |
1323 | gdb_assert (src_rest->shared); | |
1324 | gdb_assert (! dest->shared); | |
1325 | ||
1326 | /* Is this token an identifier? */ | |
1327 | if (src_first->is_identifier) | |
1328 | { | |
1329 | /* Make a null-terminated copy of it, since that's what our | |
1330 | lookup function expects. */ | |
1331 | char *id = xmalloc (src_first->len + 1); | |
1332 | struct cleanup *back_to = make_cleanup (xfree, id); | |
b8d56208 | 1333 | |
ec2bcbe7 JB |
1334 | memcpy (id, src_first->text, src_first->len); |
1335 | id[src_first->len] = 0; | |
1336 | ||
1337 | /* If we're currently re-scanning the result of expanding | |
1338 | this macro, don't expand it again. */ | |
1339 | if (! currently_rescanning (no_loop, id)) | |
1340 | { | |
1341 | /* Does this identifier have a macro definition in scope? */ | |
1342 | struct macro_definition *def = lookup_func (id, lookup_baton); | |
1343 | ||
1344 | if (def && expand (id, def, dest, src_rest, no_loop, | |
1345 | lookup_func, lookup_baton)) | |
1346 | { | |
1347 | do_cleanups (back_to); | |
1348 | return 1; | |
1349 | } | |
1350 | } | |
1351 | ||
1352 | do_cleanups (back_to); | |
1353 | } | |
1354 | ||
1355 | return 0; | |
1356 | } | |
1357 | ||
1358 | ||
1359 | /* Expand macro references in SRC, appending the results to DEST. | |
1360 | Assume we are re-scanning the result of expanding the macros named | |
1361 | in NO_LOOP, and don't try to re-expand references to them. | |
1362 | ||
1363 | SRC must be a shared buffer; DEST must not be one. */ | |
1364 | static void | |
1365 | scan (struct macro_buffer *dest, | |
1366 | struct macro_buffer *src, | |
1367 | struct macro_name_list *no_loop, | |
1368 | macro_lookup_ftype *lookup_func, | |
1369 | void *lookup_baton) | |
1370 | { | |
1371 | gdb_assert (src->shared); | |
1372 | gdb_assert (! dest->shared); | |
1373 | ||
1374 | for (;;) | |
1375 | { | |
1376 | struct macro_buffer tok; | |
1377 | char *original_src_start = src->text; | |
1378 | ||
1379 | /* Find the next token in SRC. */ | |
1380 | if (! get_token (&tok, src)) | |
1381 | break; | |
1382 | ||
1383 | /* Just for aesthetics. If we skipped some whitespace, copy | |
1384 | that to DEST. */ | |
1385 | if (tok.text > original_src_start) | |
1386 | { | |
1387 | appendmem (dest, original_src_start, tok.text - original_src_start); | |
1388 | dest->last_token = dest->len; | |
1389 | } | |
1390 | ||
1391 | if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton)) | |
1392 | /* We didn't end up expanding tok as a macro reference, so | |
1393 | simply append it to dest. */ | |
1394 | append_tokens_without_splicing (dest, &tok); | |
1395 | } | |
1396 | ||
1397 | /* Just for aesthetics. If there was any trailing whitespace in | |
1398 | src, copy it to dest. */ | |
1399 | if (src->len) | |
1400 | { | |
1401 | appendmem (dest, src->text, src->len); | |
1402 | dest->last_token = dest->len; | |
1403 | } | |
1404 | } | |
1405 | ||
1406 | ||
1407 | char * | |
1408 | macro_expand (const char *source, | |
1409 | macro_lookup_ftype *lookup_func, | |
1410 | void *lookup_func_baton) | |
1411 | { | |
1412 | struct macro_buffer src, dest; | |
1413 | struct cleanup *back_to; | |
1414 | ||
1415 | init_shared_buffer (&src, (char *) source, strlen (source)); | |
1416 | ||
1417 | init_buffer (&dest, 0); | |
1418 | dest.last_token = 0; | |
1419 | back_to = make_cleanup (cleanup_macro_buffer, &dest); | |
1420 | ||
1421 | scan (&dest, &src, 0, lookup_func, lookup_func_baton); | |
1422 | ||
1423 | appendc (&dest, '\0'); | |
1424 | ||
1425 | discard_cleanups (back_to); | |
1426 | return dest.text; | |
1427 | } | |
1428 | ||
1429 | ||
1430 | char * | |
1431 | macro_expand_once (const char *source, | |
1432 | macro_lookup_ftype *lookup_func, | |
1433 | void *lookup_func_baton) | |
1434 | { | |
8a3fe4f8 | 1435 | error (_("Expand-once not implemented yet.")); |
ec2bcbe7 JB |
1436 | } |
1437 | ||
1438 | ||
1439 | char * | |
1440 | macro_expand_next (char **lexptr, | |
1441 | macro_lookup_ftype *lookup_func, | |
1442 | void *lookup_baton) | |
1443 | { | |
1444 | struct macro_buffer src, dest, tok; | |
1445 | struct cleanup *back_to; | |
1446 | ||
1447 | /* Set up SRC to refer to the input text, pointed to by *lexptr. */ | |
1448 | init_shared_buffer (&src, *lexptr, strlen (*lexptr)); | |
1449 | ||
1450 | /* Set up DEST to receive the expansion, if there is one. */ | |
1451 | init_buffer (&dest, 0); | |
1452 | dest.last_token = 0; | |
1453 | back_to = make_cleanup (cleanup_macro_buffer, &dest); | |
1454 | ||
1455 | /* Get the text's first preprocessing token. */ | |
1456 | if (! get_token (&tok, &src)) | |
1457 | { | |
1458 | do_cleanups (back_to); | |
1459 | return 0; | |
1460 | } | |
1461 | ||
1462 | /* If it's a macro invocation, expand it. */ | |
1463 | if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton)) | |
1464 | { | |
1465 | /* It was a macro invocation! Package up the expansion as a | |
1466 | null-terminated string and return it. Set *lexptr to the | |
1467 | start of the next token in the input. */ | |
1468 | appendc (&dest, '\0'); | |
1469 | discard_cleanups (back_to); | |
1470 | *lexptr = src.text; | |
1471 | return dest.text; | |
1472 | } | |
1473 | else | |
1474 | { | |
1475 | /* It wasn't a macro invocation. */ | |
1476 | do_cleanups (back_to); | |
1477 | return 0; | |
1478 | } | |
1479 | } |