2012-03-08 Luis Machado <lgustavo@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / macrotab.c
CommitLineData
ec2bcbe7 1/* C preprocessor macro tables for GDB.
0b302171 2 Copyright (C) 2002, 2007-2012 Free Software Foundation, Inc.
ec2bcbe7
JB
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ec2bcbe7
JB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ec2bcbe7
JB
19
20#include "defs.h"
04ea0df1 21#include "gdb_obstack.h"
ec2bcbe7 22#include "splay-tree.h"
0ba1096a 23#include "filenames.h"
ec2bcbe7
JB
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "macrotab.h"
28#include "gdb_assert.h"
29#include "bcache.h"
30#include "complaints.h"
31
32\f
33/* The macro table structure. */
34
35struct macro_table
36{
37 /* The obstack this table's data should be allocated in, or zero if
38 we should use xmalloc. */
39 struct obstack *obstack;
40
41 /* The bcache we should use to hold macro names, argument names, and
42 definitions, or zero if we should use xmalloc. */
43 struct bcache *bcache;
44
45 /* The main source file for this compilation unit --- the one whose
46 name was given to the compiler. This is the root of the
47 #inclusion tree; everything else is #included from here. */
48 struct macro_source_file *main_source;
49
d7d9f01e
TT
50 /* True if macros in this table can be redefined without issuing an
51 error. */
52 int redef_ok;
53
ec2bcbe7
JB
54 /* The table of macro definitions. This is a splay tree (an ordered
55 binary tree that stays balanced, effectively), sorted by macro
56 name. Where a macro gets defined more than once (presumably with
57 an #undefinition in between), we sort the definitions by the
58 order they would appear in the preprocessor's output. That is,
59 if `a.c' #includes `m.h' and then #includes `n.h', and both
60 header files #define X (with an #undef somewhere in between),
61 then the definition from `m.h' appears in our splay tree before
62 the one from `n.h'.
63
64 The splay tree's keys are `struct macro_key' pointers;
65 the values are `struct macro_definition' pointers.
66
67 The splay tree, its nodes, and the keys and values are allocated
68 in obstack, if it's non-zero, or with xmalloc otherwise. The
69 macro names, argument names, argument name arrays, and definition
70 strings are all allocated in bcache, if non-zero, or with xmalloc
71 otherwise. */
72 splay_tree definitions;
73};
74
75
76\f
77/* Allocation and freeing functions. */
78
79/* Allocate SIZE bytes of memory appropriately for the macro table T.
80 This just checks whether T has an obstack, or whether its pieces
81 should be allocated with xmalloc. */
82static void *
83macro_alloc (int size, struct macro_table *t)
84{
85 if (t->obstack)
86 return obstack_alloc (t->obstack, size);
87 else
88 return xmalloc (size);
89}
90
91
92static void
93macro_free (void *object, struct macro_table *t)
94{
32623386
JB
95 if (t->obstack)
96 /* There are cases where we need to remove entries from a macro
97 table, even when reading debugging information. This should be
98 rare, and there's no easy way to free arbitrary data from an
99 obstack, so we just leak it. */
100 ;
101 else
102 xfree (object);
ec2bcbe7
JB
103}
104
105
106/* If the macro table T has a bcache, then cache the LEN bytes at ADDR
107 there, and return the cached copy. Otherwise, just xmalloc a copy
108 of the bytes, and return a pointer to that. */
109static const void *
110macro_bcache (struct macro_table *t, const void *addr, int len)
111{
112 if (t->bcache)
113 return bcache (addr, len, t->bcache);
114 else
115 {
116 void *copy = xmalloc (len);
b8d56208 117
ec2bcbe7
JB
118 memcpy (copy, addr, len);
119 return copy;
120 }
121}
122
123
124/* If the macro table T has a bcache, cache the null-terminated string
125 S there, and return a pointer to the cached copy. Otherwise,
126 xmalloc a copy and return that. */
127static const char *
128macro_bcache_str (struct macro_table *t, const char *s)
129{
130 return (char *) macro_bcache (t, s, strlen (s) + 1);
131}
132
133
134/* Free a possibly bcached object OBJ. That is, if the macro table T
32623386 135 has a bcache, do nothing; otherwise, xfree OBJ. */
b9362cc7 136static void
ec2bcbe7
JB
137macro_bcache_free (struct macro_table *t, void *obj)
138{
32623386
JB
139 if (t->bcache)
140 /* There are cases where we need to remove entries from a macro
141 table, even when reading debugging information. This should be
142 rare, and there's no easy way to free data from a bcache, so we
143 just leak it. */
144 ;
145 else
146 xfree (obj);
ec2bcbe7
JB
147}
148
149
150\f
151/* Macro tree keys, w/their comparison, allocation, and freeing functions. */
152
153/* A key in the splay tree. */
154struct macro_key
155{
156 /* The table we're in. We only need this in order to free it, since
157 the splay tree library's key and value freeing functions require
158 that the key or value contain all the information needed to free
159 themselves. */
160 struct macro_table *table;
161
162 /* The name of the macro. This is in the table's bcache, if it has
025bb325 163 one. */
ec2bcbe7
JB
164 const char *name;
165
166 /* The source file and line number where the definition's scope
167 begins. This is also the line of the definition itself. */
168 struct macro_source_file *start_file;
169 int start_line;
170
171 /* The first source file and line after the definition's scope.
172 (That is, the scope does not include this endpoint.) If end_file
173 is zero, then the definition extends to the end of the
174 compilation unit. */
175 struct macro_source_file *end_file;
176 int end_line;
177};
178
179
180/* Return the #inclusion depth of the source file FILE. This is the
181 number of #inclusions it took to reach this file. For the main
182 source file, the #inclusion depth is zero; for a file it #includes
183 directly, the depth would be one; and so on. */
184static int
185inclusion_depth (struct macro_source_file *file)
186{
187 int depth;
188
189 for (depth = 0; file->included_by; depth++)
190 file = file->included_by;
191
192 return depth;
193}
194
195
196/* Compare two source locations (from the same compilation unit).
197 This is part of the comparison function for the tree of
198 definitions.
199
200 LINE1 and LINE2 are line numbers in the source files FILE1 and
201 FILE2. Return a value:
202 - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2,
203 - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or
204 - zero if they are equal.
205
206 When the two locations are in different source files --- perhaps
207 one is in a header, while another is in the main source file --- we
208 order them by where they would appear in the fully pre-processed
209 sources, where all the #included files have been substituted into
210 their places. */
211static int
212compare_locations (struct macro_source_file *file1, int line1,
213 struct macro_source_file *file2, int line2)
214{
215 /* We want to treat positions in an #included file as coming *after*
216 the line containing the #include, but *before* the line after the
217 include. As we walk up the #inclusion tree toward the main
218 source file, we update fileX and lineX as we go; includedX
219 indicates whether the original position was from the #included
220 file. */
221 int included1 = 0;
222 int included2 = 0;
223
224 /* If a file is zero, that means "end of compilation unit." Handle
225 that specially. */
226 if (! file1)
227 {
228 if (! file2)
229 return 0;
230 else
231 return 1;
232 }
233 else if (! file2)
234 return -1;
235
236 /* If the two files are not the same, find their common ancestor in
237 the #inclusion tree. */
238 if (file1 != file2)
239 {
240 /* If one file is deeper than the other, walk up the #inclusion
241 chain until the two files are at least at the same *depth*.
242 Then, walk up both files in synchrony until they're the same
243 file. That file is the common ancestor. */
244 int depth1 = inclusion_depth (file1);
245 int depth2 = inclusion_depth (file2);
246
247 /* Only one of these while loops will ever execute in any given
248 case. */
249 while (depth1 > depth2)
250 {
251 line1 = file1->included_at_line;
252 file1 = file1->included_by;
253 included1 = 1;
254 depth1--;
255 }
256 while (depth2 > depth1)
257 {
258 line2 = file2->included_at_line;
259 file2 = file2->included_by;
260 included2 = 1;
261 depth2--;
262 }
263
264 /* Now both file1 and file2 are at the same depth. Walk toward
265 the root of the tree until we find where the branches meet. */
266 while (file1 != file2)
267 {
268 line1 = file1->included_at_line;
269 file1 = file1->included_by;
270 /* At this point, we know that the case the includedX flags
271 are trying to deal with won't come up, but we'll just
272 maintain them anyway. */
273 included1 = 1;
274
275 line2 = file2->included_at_line;
276 file2 = file2->included_by;
277 included2 = 1;
278
279 /* Sanity check. If file1 and file2 are really from the
280 same compilation unit, then they should both be part of
281 the same tree, and this shouldn't happen. */
282 gdb_assert (file1 && file2);
283 }
284 }
285
286 /* Now we've got two line numbers in the same file. */
287 if (line1 == line2)
288 {
289 /* They can't both be from #included files. Then we shouldn't
290 have walked up this far. */
291 gdb_assert (! included1 || ! included2);
292
293 /* Any #included position comes after a non-#included position
294 with the same line number in the #including file. */
295 if (included1)
296 return 1;
297 else if (included2)
298 return -1;
299 else
300 return 0;
301 }
302 else
303 return line1 - line2;
304}
305
306
307/* Compare a macro key KEY against NAME, the source file FILE, and
308 line number LINE.
309
310 Sort definitions by name; for two definitions with the same name,
311 place the one whose definition comes earlier before the one whose
312 definition comes later.
313
314 Return -1, 0, or 1 if key comes before, is identical to, or comes
315 after NAME, FILE, and LINE. */
316static int
317key_compare (struct macro_key *key,
318 const char *name, struct macro_source_file *file, int line)
319{
320 int names = strcmp (key->name, name);
b8d56208 321
ec2bcbe7
JB
322 if (names)
323 return names;
324
325 return compare_locations (key->start_file, key->start_line,
326 file, line);
327}
328
329
330/* The macro tree comparison function, typed for the splay tree
331 library's happiness. */
332static int
333macro_tree_compare (splay_tree_key untyped_key1,
334 splay_tree_key untyped_key2)
335{
336 struct macro_key *key1 = (struct macro_key *) untyped_key1;
337 struct macro_key *key2 = (struct macro_key *) untyped_key2;
338
339 return key_compare (key1, key2->name, key2->start_file, key2->start_line);
340}
341
342
343/* Construct a new macro key node for a macro in table T whose name is
344 NAME, and whose scope starts at LINE in FILE; register the name in
345 the bcache. */
346static struct macro_key *
347new_macro_key (struct macro_table *t,
348 const char *name,
349 struct macro_source_file *file,
350 int line)
351{
352 struct macro_key *k = macro_alloc (sizeof (*k), t);
353
354 memset (k, 0, sizeof (*k));
355 k->table = t;
356 k->name = macro_bcache_str (t, name);
357 k->start_file = file;
358 k->start_line = line;
359 k->end_file = 0;
360
361 return k;
362}
363
364
365static void
366macro_tree_delete_key (void *untyped_key)
367{
368 struct macro_key *key = (struct macro_key *) untyped_key;
369
370 macro_bcache_free (key->table, (char *) key->name);
371 macro_free (key, key->table);
372}
373
374
375\f
376/* Building and querying the tree of #included files. */
377
378
379/* Allocate and initialize a new source file structure. */
380static struct macro_source_file *
381new_source_file (struct macro_table *t,
382 const char *filename)
383{
384 /* Get space for the source file structure itself. */
385 struct macro_source_file *f = macro_alloc (sizeof (*f), t);
386
387 memset (f, 0, sizeof (*f));
388 f->table = t;
389 f->filename = macro_bcache_str (t, filename);
390 f->includes = 0;
391
392 return f;
393}
394
395
396/* Free a source file, and all the source files it #included. */
397static void
398free_macro_source_file (struct macro_source_file *src)
399{
400 struct macro_source_file *child, *next_child;
401
402 /* Free this file's children. */
403 for (child = src->includes; child; child = next_child)
404 {
405 next_child = child->next_included;
406 free_macro_source_file (child);
407 }
408
409 macro_bcache_free (src->table, (char *) src->filename);
410 macro_free (src, src->table);
411}
412
413
414struct macro_source_file *
415macro_set_main (struct macro_table *t,
416 const char *filename)
417{
418 /* You can't change a table's main source file. What would that do
419 to the tree? */
420 gdb_assert (! t->main_source);
421
422 t->main_source = new_source_file (t, filename);
423
424 return t->main_source;
425}
426
427
428struct macro_source_file *
429macro_main (struct macro_table *t)
430{
431 gdb_assert (t->main_source);
432
433 return t->main_source;
434}
435
436
d7d9f01e
TT
437void
438macro_allow_redefinitions (struct macro_table *t)
439{
440 gdb_assert (! t->obstack);
441 t->redef_ok = 1;
442}
443
444
ec2bcbe7
JB
445struct macro_source_file *
446macro_include (struct macro_source_file *source,
447 int line,
448 const char *included)
449{
450 struct macro_source_file *new;
451 struct macro_source_file **link;
452
453 /* Find the right position in SOURCE's `includes' list for the new
1708f284
JB
454 file. Skip inclusions at earlier lines, until we find one at the
455 same line or later --- or until the end of the list. */
ec2bcbe7 456 for (link = &source->includes;
1708f284 457 *link && (*link)->included_at_line < line;
ec2bcbe7
JB
458 link = &(*link)->next_included)
459 ;
460
461 /* Did we find another file already #included at the same line as
462 the new one? */
463 if (*link && line == (*link)->included_at_line)
464 {
465 /* This means the compiler is emitting bogus debug info. (GCC
466 circa March 2002 did this.) It also means that the splay
467 tree ordering function, macro_tree_compare, will abort,
468 because it can't tell which #inclusion came first. But GDB
469 should tolerate bad debug info. So:
470
471 First, squawk. */
23136709 472 complaint (&symfile_complaints,
3e43a32a
MS
473 _("both `%s' and `%s' allegedly #included at %s:%d"),
474 included, (*link)->filename, source->filename, line);
ec2bcbe7
JB
475
476 /* Now, choose a new, unoccupied line number for this
477 #inclusion, after the alleged #inclusion line. */
478 while (*link && line == (*link)->included_at_line)
479 {
480 /* This line number is taken, so try the next line. */
481 line++;
482 link = &(*link)->next_included;
483 }
484 }
485
486 /* At this point, we know that LINE is an unused line number, and
487 *LINK points to the entry an #inclusion at that line should
488 precede. */
489 new = new_source_file (source->table, included);
490 new->included_by = source;
491 new->included_at_line = line;
492 new->next_included = *link;
493 *link = new;
494
495 return new;
496}
497
498
499struct macro_source_file *
500macro_lookup_inclusion (struct macro_source_file *source, const char *name)
501{
502 /* Is SOURCE itself named NAME? */
0ba1096a 503 if (filename_cmp (name, source->filename) == 0)
ec2bcbe7
JB
504 return source;
505
506 /* The filename in the source structure is probably a full path, but
507 NAME could be just the final component of the name. */
508 {
509 int name_len = strlen (name);
510 int src_name_len = strlen (source->filename);
511
512 /* We do mean < here, and not <=; if the lengths are the same,
0ba1096a 513 then the filename_cmp above should have triggered, and we need to
ec2bcbe7
JB
514 check for a slash here. */
515 if (name_len < src_name_len
0ba1096a
KT
516 && IS_DIR_SEPARATOR (source->filename[src_name_len - name_len - 1])
517 && filename_cmp (name,
518 source->filename + src_name_len - name_len) == 0)
ec2bcbe7
JB
519 return source;
520 }
521
522 /* It's not us. Try all our children, and return the lowest. */
523 {
524 struct macro_source_file *child;
a86bc61c
JB
525 struct macro_source_file *best = NULL;
526 int best_depth = 0;
ec2bcbe7
JB
527
528 for (child = source->includes; child; child = child->next_included)
529 {
530 struct macro_source_file *result
531 = macro_lookup_inclusion (child, name);
532
533 if (result)
534 {
535 int result_depth = inclusion_depth (result);
536
537 if (! best || result_depth < best_depth)
538 {
539 best = result;
540 best_depth = result_depth;
541 }
542 }
543 }
544
545 return best;
546 }
547}
548
549
550\f
551/* Registering and looking up macro definitions. */
552
553
554/* Construct a definition for a macro in table T. Cache all strings,
555 and the macro_definition structure itself, in T's bcache. */
556static struct macro_definition *
557new_macro_definition (struct macro_table *t,
558 enum macro_kind kind,
559 int argc, const char **argv,
560 const char *replacement)
561{
562 struct macro_definition *d = macro_alloc (sizeof (*d), t);
563
564 memset (d, 0, sizeof (*d));
565 d->table = t;
566 d->kind = kind;
567 d->replacement = macro_bcache_str (t, replacement);
568
569 if (kind == macro_function_like)
570 {
571 int i;
572 const char **cached_argv;
573 int cached_argv_size = argc * sizeof (*cached_argv);
574
575 /* Bcache all the arguments. */
576 cached_argv = alloca (cached_argv_size);
577 for (i = 0; i < argc; i++)
578 cached_argv[i] = macro_bcache_str (t, argv[i]);
579
580 /* Now bcache the array of argument pointers itself. */
581 d->argv = macro_bcache (t, cached_argv, cached_argv_size);
582 d->argc = argc;
583 }
584
585 /* We don't bcache the entire definition structure because it's got
586 a pointer to the macro table in it; since each compilation unit
587 has its own macro table, you'd only get bcache hits for identical
588 definitions within a compilation unit, which seems unlikely.
589
590 "So, why do macro definitions have pointers to their macro tables
591 at all?" Well, when the splay tree library wants to free a
592 node's value, it calls the value freeing function with nothing
593 but the value itself. It makes the (apparently reasonable)
594 assumption that the value carries enough information to free
595 itself. But not all macro tables have bcaches, so not all macro
596 definitions would be bcached. There's no way to tell whether a
597 given definition is bcached without knowing which table the
598 definition belongs to. ... blah. The thing's only sixteen
599 bytes anyway, and we can still bcache the name, args, and
600 definition, so we just don't bother bcaching the definition
601 structure itself. */
602 return d;
603}
604
605
606/* Free a macro definition. */
607static void
608macro_tree_delete_value (void *untyped_definition)
609{
610 struct macro_definition *d = (struct macro_definition *) untyped_definition;
611 struct macro_table *t = d->table;
612
613 if (d->kind == macro_function_like)
614 {
615 int i;
616
617 for (i = 0; i < d->argc; i++)
618 macro_bcache_free (t, (char *) d->argv[i]);
619 macro_bcache_free (t, (char **) d->argv);
620 }
621
622 macro_bcache_free (t, (char *) d->replacement);
623 macro_free (d, t);
624}
625
626
627/* Find the splay tree node for the definition of NAME at LINE in
628 SOURCE, or zero if there is none. */
629static splay_tree_node
630find_definition (const char *name,
631 struct macro_source_file *file,
632 int line)
633{
634 struct macro_table *t = file->table;
635 splay_tree_node n;
636
637 /* Construct a macro_key object, just for the query. */
638 struct macro_key query;
639
640 query.name = name;
641 query.start_file = file;
642 query.start_line = line;
a86bc61c 643 query.end_file = NULL;
ec2bcbe7
JB
644
645 n = splay_tree_lookup (t->definitions, (splay_tree_key) &query);
646 if (! n)
647 {
648 /* It's okay for us to do two queries like this: the real work
649 of the searching is done when we splay, and splaying the tree
650 a second time at the same key is a constant time operation.
651 If this still bugs you, you could always just extend the
652 splay tree library with a predecessor-or-equal operation, and
653 use that. */
654 splay_tree_node pred = splay_tree_predecessor (t->definitions,
655 (splay_tree_key) &query);
656
657 if (pred)
658 {
659 /* Make sure this predecessor actually has the right name.
660 We just want to search within a given name's definitions. */
661 struct macro_key *found = (struct macro_key *) pred->key;
662
a86bc61c 663 if (strcmp (found->name, name) == 0)
ec2bcbe7
JB
664 n = pred;
665 }
666 }
667
668 if (n)
669 {
670 struct macro_key *found = (struct macro_key *) n->key;
671
672 /* Okay, so this definition has the right name, and its scope
673 begins before the given source location. But does its scope
674 end after the given source location? */
675 if (compare_locations (file, line, found->end_file, found->end_line) < 0)
676 return n;
677 else
678 return 0;
679 }
680 else
681 return 0;
682}
683
684
0a3d0425
JB
685/* If NAME already has a definition in scope at LINE in SOURCE, return
686 the key. If the old definition is different from the definition
687 given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too.
688 Otherwise, return zero. (ARGC and ARGV are meaningless unless KIND
689 is `macro_function_like'.) */
ec2bcbe7
JB
690static struct macro_key *
691check_for_redefinition (struct macro_source_file *source, int line,
0a3d0425
JB
692 const char *name, enum macro_kind kind,
693 int argc, const char **argv,
694 const char *replacement)
ec2bcbe7
JB
695{
696 splay_tree_node n = find_definition (name, source, line);
697
ec2bcbe7
JB
698 if (n)
699 {
700 struct macro_key *found_key = (struct macro_key *) n->key;
0a3d0425
JB
701 struct macro_definition *found_def
702 = (struct macro_definition *) n->value;
703 int same = 1;
704
705 /* Is this definition the same as the existing one?
706 According to the standard, this comparison needs to be done
707 on lists of tokens, not byte-by-byte, as we do here. But
708 that's too hard for us at the moment, and comparing
709 byte-by-byte will only yield false negatives (i.e., extra
710 warning messages), not false positives (i.e., unnoticed
711 definition changes). */
712 if (kind != found_def->kind)
713 same = 0;
714 else if (strcmp (replacement, found_def->replacement))
715 same = 0;
716 else if (kind == macro_function_like)
717 {
718 if (argc != found_def->argc)
719 same = 0;
720 else
721 {
722 int i;
723
724 for (i = 0; i < argc; i++)
725 if (strcmp (argv[i], found_def->argv[i]))
726 same = 0;
727 }
728 }
729
730 if (! same)
731 {
23136709 732 complaint (&symfile_complaints,
3e43a32a
MS
733 _("macro `%s' redefined at %s:%d; "
734 "original definition at %s:%d"),
23136709
KB
735 name, source->filename, line,
736 found_key->start_file->filename, found_key->start_line);
0a3d0425
JB
737 }
738
ec2bcbe7
JB
739 return found_key;
740 }
741 else
742 return 0;
743}
744
745
746void
747macro_define_object (struct macro_source_file *source, int line,
748 const char *name, const char *replacement)
749{
750 struct macro_table *t = source->table;
d7d9f01e 751 struct macro_key *k = NULL;
ec2bcbe7
JB
752 struct macro_definition *d;
753
d7d9f01e
TT
754 if (! t->redef_ok)
755 k = check_for_redefinition (source, line,
756 name, macro_object_like,
757 0, 0,
758 replacement);
ec2bcbe7
JB
759
760 /* If we're redefining a symbol, and the existing key would be
761 identical to our new key, then the splay_tree_insert function
762 will try to delete the old definition. When the definition is
763 living on an obstack, this isn't a happy thing.
764
765 Since this only happens in the presence of questionable debug
766 info, we just ignore all definitions after the first. The only
767 case I know of where this arises is in GCC's output for
768 predefined macros, and all the definitions are the same in that
769 case. */
770 if (k && ! key_compare (k, name, source, line))
771 return;
772
773 k = new_macro_key (t, name, source, line);
774 d = new_macro_definition (t, macro_object_like, 0, 0, replacement);
775 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
776}
777
778
779void
780macro_define_function (struct macro_source_file *source, int line,
781 const char *name, int argc, const char **argv,
782 const char *replacement)
783{
784 struct macro_table *t = source->table;
d7d9f01e 785 struct macro_key *k = NULL;
ec2bcbe7
JB
786 struct macro_definition *d;
787
d7d9f01e
TT
788 if (! t->redef_ok)
789 k = check_for_redefinition (source, line,
790 name, macro_function_like,
791 argc, argv,
792 replacement);
ec2bcbe7
JB
793
794 /* See comments about duplicate keys in macro_define_object. */
795 if (k && ! key_compare (k, name, source, line))
796 return;
797
798 /* We should also check here that all the argument names in ARGV are
799 distinct. */
800
801 k = new_macro_key (t, name, source, line);
802 d = new_macro_definition (t, macro_function_like, argc, argv, replacement);
803 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
804}
805
806
807void
808macro_undef (struct macro_source_file *source, int line,
809 const char *name)
810{
811 splay_tree_node n = find_definition (name, source, line);
812
813 if (n)
814 {
ec2bcbe7
JB
815 struct macro_key *key = (struct macro_key *) n->key;
816
32623386
JB
817 /* If we're removing a definition at exactly the same point that
818 we defined it, then just delete the entry altogether. GCC
819 4.1.2 will generate DWARF that says to do this if you pass it
820 arguments like '-DFOO -UFOO -DFOO=2'. */
821 if (source == key->start_file
822 && line == key->start_line)
823 splay_tree_remove (source->table->definitions, n->key);
824
825 else
ec2bcbe7 826 {
32623386
JB
827 /* This function is the only place a macro's end-of-scope
828 location gets set to anything other than "end of the
829 compilation unit" (i.e., end_file is zero). So if this
830 macro already has its end-of-scope set, then we're
831 probably seeing a second #undefinition for the same
832 #definition. */
833 if (key->end_file)
834 {
835 complaint (&symfile_complaints,
836 _("macro '%s' is #undefined twice,"
837 " at %s:%d and %s:%d"),
838 name,
839 source->filename, line,
840 key->end_file->filename, key->end_line);
841 }
ec2bcbe7 842
32623386
JB
843 /* Whether or not we've seen a prior #undefinition, wipe out
844 the old ending point, and make this the ending point. */
845 key->end_file = source;
846 key->end_line = line;
847 }
ec2bcbe7
JB
848 }
849 else
850 {
851 /* According to the ISO C standard, an #undef for a symbol that
852 has no macro definition in scope is ignored. So we should
853 ignore it too. */
854#if 0
23136709 855 complaint (&symfile_complaints,
e2e0b3e5 856 _("no definition for macro `%s' in scope to #undef at %s:%d"),
23136709 857 name, source->filename, line);
ec2bcbe7
JB
858#endif
859 }
860}
861
862
863struct macro_definition *
864macro_lookup_definition (struct macro_source_file *source,
865 int line, const char *name)
866{
867 splay_tree_node n = find_definition (name, source, line);
868
869 if (n)
870 return (struct macro_definition *) n->value;
871 else
872 return 0;
873}
874
875
876struct macro_source_file *
877macro_definition_location (struct macro_source_file *source,
878 int line,
879 const char *name,
880 int *definition_line)
881{
882 splay_tree_node n = find_definition (name, source, line);
883
884 if (n)
885 {
886 struct macro_key *key = (struct macro_key *) n->key;
b8d56208 887
ec2bcbe7
JB
888 *definition_line = key->start_line;
889 return key->start_file;
890 }
891 else
892 return 0;
893}
894
895
9a044a89
TT
896/* The type for callback data for iterating the splay tree in
897 macro_for_each and macro_for_each_in_scope. Only the latter uses
898 the FILE and LINE fields. */
899struct macro_for_each_data
900{
901 macro_callback_fn fn;
902 void *user_data;
903 struct macro_source_file *file;
904 int line;
905};
906
d7d9f01e
TT
907/* Helper function for macro_for_each. */
908static int
9a044a89 909foreach_macro (splay_tree_node node, void *arg)
d7d9f01e 910{
9a044a89 911 struct macro_for_each_data *datum = (struct macro_for_each_data *) arg;
d7d9f01e
TT
912 struct macro_key *key = (struct macro_key *) node->key;
913 struct macro_definition *def = (struct macro_definition *) node->value;
b8d56208 914
9b158ba0 915 (*datum->fn) (key->name, def, key->start_file, key->start_line,
916 datum->user_data);
d7d9f01e
TT
917 return 0;
918}
919
920/* Call FN for every macro in TABLE. */
921void
9a044a89
TT
922macro_for_each (struct macro_table *table, macro_callback_fn fn,
923 void *user_data)
924{
925 struct macro_for_each_data datum;
b8d56208 926
9a044a89
TT
927 datum.fn = fn;
928 datum.user_data = user_data;
929 datum.file = NULL;
930 datum.line = 0;
931 splay_tree_foreach (table->definitions, foreach_macro, &datum);
932}
933
934static int
935foreach_macro_in_scope (splay_tree_node node, void *info)
936{
937 struct macro_for_each_data *datum = (struct macro_for_each_data *) info;
938 struct macro_key *key = (struct macro_key *) node->key;
939 struct macro_definition *def = (struct macro_definition *) node->value;
940
941 /* See if this macro is defined before the passed-in line, and
942 extends past that line. */
943 if (compare_locations (key->start_file, key->start_line,
944 datum->file, datum->line) < 0
945 && (!key->end_file
946 || compare_locations (key->end_file, key->end_line,
947 datum->file, datum->line) >= 0))
9b158ba0 948 (*datum->fn) (key->name, def, key->start_file, key->start_line,
949 datum->user_data);
9a044a89
TT
950 return 0;
951}
952
953/* Call FN for every macro is visible in SCOPE. */
954void
955macro_for_each_in_scope (struct macro_source_file *file, int line,
956 macro_callback_fn fn, void *user_data)
d7d9f01e 957{
9a044a89 958 struct macro_for_each_data datum;
b8d56208 959
9a044a89
TT
960 datum.fn = fn;
961 datum.user_data = user_data;
962 datum.file = file;
963 datum.line = line;
964 splay_tree_foreach (file->table->definitions,
965 foreach_macro_in_scope, &datum);
d7d9f01e
TT
966}
967
968
ec2bcbe7
JB
969\f
970/* Creating and freeing macro tables. */
971
972
973struct macro_table *
974new_macro_table (struct obstack *obstack,
975 struct bcache *b)
976{
977 struct macro_table *t;
978
979 /* First, get storage for the `struct macro_table' itself. */
980 if (obstack)
981 t = obstack_alloc (obstack, sizeof (*t));
982 else
983 t = xmalloc (sizeof (*t));
984
985 memset (t, 0, sizeof (*t));
986 t->obstack = obstack;
987 t->bcache = b;
a86bc61c 988 t->main_source = NULL;
d7d9f01e 989 t->redef_ok = 0;
ec2bcbe7
JB
990 t->definitions = (splay_tree_new_with_allocator
991 (macro_tree_compare,
992 ((splay_tree_delete_key_fn) macro_tree_delete_key),
993 ((splay_tree_delete_value_fn) macro_tree_delete_value),
994 ((splay_tree_allocate_fn) macro_alloc),
995 ((splay_tree_deallocate_fn) macro_free),
996 t));
997
998 return t;
999}
1000
1001
1002void
1003free_macro_table (struct macro_table *table)
1004{
1005 /* Free the source file tree. */
1006 free_macro_source_file (table->main_source);
1007
1008 /* Free the table of macro definitions. */
1009 splay_tree_delete (table->definitions);
1010}
This page took 0.845698 seconds and 4 git commands to generate.