gdb/
[deliverable/binutils-gdb.git] / gdb / mep-tdep.c
CommitLineData
aeb43123
KB
1/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
7b6bb8da
JB
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
aeb43123
KB
5
6 Contributed by Red Hat, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
aeb43123
KB
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
aeb43123
KB
22
23#include "defs.h"
24#include "frame.h"
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcmd.h"
30#include "gdbcore.h"
31#include "gdb_string.h"
32#include "value.h"
33#include "inferior.h"
34#include "dis-asm.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "language.h"
38#include "arch-utils.h"
39#include "regcache.h"
40#include "remote.h"
41#include "floatformat.h"
42#include "sim-regno.h"
43#include "disasm.h"
44#include "trad-frame.h"
45#include "reggroups.h"
46#include "elf-bfd.h"
47#include "elf/mep.h"
48#include "prologue-value.h"
342b5fef 49#include "cgen/bitset.h"
aeb43123
KB
50#include "infcall.h"
51
52#include "gdb_assert.h"
53
54/* Get the user's customized MeP coprocessor register names from
55 libopcodes. */
56#include "opcodes/mep-desc.h"
57#include "opcodes/mep-opc.h"
58
59\f
60/* The gdbarch_tdep structure. */
61
62/* A quick recap for GDB hackers not familiar with the whole Toshiba
63 Media Processor story:
64
65 The MeP media engine is a configureable processor: users can design
66 their own coprocessors, implement custom instructions, adjust cache
67 sizes, select optional standard facilities like add-and-saturate
68 instructions, and so on. Then, they can build custom versions of
69 the GNU toolchain to support their customized chips. The
70 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
71 tree, and a config file pointing to various files provided by the
72 user describing their customizations, and edits the source tree to
73 produce a compiler that can generate their custom instructions, an
74 assembler that can assemble them and recognize their custom
75 register names, and so on.
76
77 Furthermore, the user can actually specify several of these custom
78 configurations, called 'me_modules', and get a toolchain which can
79 produce code for any of them, given a compiler/assembler switch;
80 you say something like 'gcc -mconfig=mm_max' to generate code for
81 the me_module named 'mm_max'.
82
83 GDB, in particular, needs to:
84
85 - use the coprocessor control register names provided by the user
86 in their hardware description, in expressions, 'info register'
87 output, and disassembly,
88
89 - know the number, names, and types of the coprocessor's
90 general-purpose registers, adjust the 'info all-registers' output
91 accordingly, and print error messages if the user refers to one
92 that doesn't exist
93
94 - allow access to the control bus space only when the configuration
95 actually has a control bus, and recognize which regions of the
96 control bus space are actually populated,
97
98 - disassemble using the user's provided mnemonics for their custom
99 instructions, and
100
101 - recognize whether the $hi and $lo registers are present, and
102 allow access to them only when they are actually there.
103
104 There are three sources of information about what sort of me_module
105 we're actually dealing with:
106
107 - A MeP executable file indicates which me_module it was compiled
108 for, and libopcodes has tables describing each module. So, given
109 an executable file, we can find out about the processor it was
110 compiled for.
111
112 - There are SID command-line options to select a particular
113 me_module, overriding the one specified in the ELF file. SID
114 provides GDB with a fake read-only register, 'module', which
115 indicates which me_module GDB is communicating with an instance
116 of.
117
118 - There are SID command-line options to enable or disable certain
119 optional processor features, overriding the defaults for the
120 selected me_module. The MeP $OPT register indicates which
121 options are present on the current processor. */
122
123
124struct gdbarch_tdep
125{
126 /* A CGEN cpu descriptor for this BFD architecture and machine.
127
128 Note: this is *not* customized for any particular me_module; the
129 MeP libopcodes machinery actually puts off module-specific
130 customization until the last minute. So this contains
131 information about all supported me_modules. */
132 CGEN_CPU_DESC cpu_desc;
133
134 /* The me_module index from the ELF file we used to select this
135 architecture, or CONFIG_NONE if there was none.
136
137 Note that we should prefer to use the me_module number available
138 via the 'module' register, whenever we're actually talking to a
139 real target.
140
141 In the absence of live information, we'd like to get the
142 me_module number from the ELF file. But which ELF file: the
143 executable file, the core file, ... ? The answer is, "the last
144 ELF file we used to set the current architecture". Thus, we
145 create a separate instance of the gdbarch structure for each
146 me_module value mep_gdbarch_init sees, and store the me_module
147 value from the ELF file here. */
148 CONFIG_ATTR me_module;
149};
150
151
152\f
153/* Getting me_module information from the CGEN tables. */
154
155
156/* Find an entry in the DESC's hardware table whose name begins with
157 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
158 intersect with GENERIC_ISA_MASK. If there is no matching entry,
159 return zero. */
160static const CGEN_HW_ENTRY *
161find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
162 const char *prefix,
163 CGEN_BITSET *copro_isa_mask,
164 CGEN_BITSET *generic_isa_mask)
165{
166 int prefix_len = strlen (prefix);
167 int i;
168
169 for (i = 0; i < desc->hw_table.num_entries; i++)
170 {
171 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
172 if (strncmp (prefix, hw->name, prefix_len) == 0)
173 {
174 CGEN_BITSET *hw_isa_mask
175 = ((CGEN_BITSET *)
176 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
177
178 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
179 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
180 return hw;
181 }
182 }
183
184 return 0;
185}
186
187
188/* Find an entry in DESC's hardware table whose type is TYPE. Return
189 zero if there is none. */
190static const CGEN_HW_ENTRY *
191find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
192{
193 int i;
194
195 for (i = 0; i < desc->hw_table.num_entries; i++)
196 {
197 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
198
199 if (hw->type == type)
200 return hw;
201 }
202
203 return 0;
204}
205
206
207/* Return the CGEN hardware table entry for the coprocessor register
208 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
209 no such register set, return zero. If ME_MODULE is the generic
210 me_module CONFIG_NONE, return the table entry for the register set
211 whose hardware type is GENERIC_TYPE. */
212static const CGEN_HW_ENTRY *
213me_module_register_set (CONFIG_ATTR me_module,
214 const char *prefix,
215 CGEN_HW_TYPE generic_type)
216{
217 /* This is kind of tricky, because the hardware table is constructed
218 in a way that isn't very helpful. Perhaps we can fix that, but
219 here's how it works at the moment:
220
221 The configuration map, `mep_config_map', is indexed by me_module
222 number, and indicates which coprocessor and core ISAs that
223 me_module supports. The 'core_isa' mask includes all the core
224 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
225 The entry for the generic me_module, CONFIG_NONE, has an empty
226 'cop_isa', and its 'core_isa' selects only the standard MeP
227 instruction set.
228
229 The CGEN CPU descriptor's hardware table, desc->hw_table, has
230 entries for all the register sets, for all me_modules. Each
231 entry has a mask indicating which ISAs use that register set.
232 So, if an me_module supports some coprocessor ISA, we can find
233 applicable register sets by scanning the hardware table for
234 register sets whose masks include (at least some of) those ISAs.
235
236 Each hardware table entry also has a name, whose prefix says
237 whether it's a general-purpose ("h-cr") or control ("h-ccr")
238 coprocessor register set. It might be nicer to have an attribute
239 indicating what sort of register set it was, that we could use
240 instead of pattern-matching on the name.
241
242 When there is no hardware table entry whose mask includes a
243 particular coprocessor ISA and whose name starts with a given
244 prefix, then that means that that coprocessor doesn't have any
245 registers of that type. In such cases, this function must return
246 a null pointer.
247
248 Coprocessor register sets' masks may or may not include the core
249 ISA for the me_module they belong to. Those generated by a2cgen
250 do, but the sample me_module included in the unconfigured tree,
251 'ccfx', does not.
252
253 There are generic coprocessor register sets, intended only for
254 use with the generic me_module. Unfortunately, their masks
255 include *all* ISAs --- even those for coprocessors that don't
256 have such register sets. This makes detecting the case where a
257 coprocessor lacks a particular register set more complicated.
258
259 So, here's the approach we take:
260
261 - For CONFIG_NONE, we return the generic coprocessor register set.
262
263 - For any other me_module, we search for a register set whose
264 mask contains any of the me_module's coprocessor ISAs,
265 specifically excluding the generic coprocessor register sets. */
266
1cf3db46 267 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch)->cpu_desc;
aeb43123
KB
268 const CGEN_HW_ENTRY *hw;
269
270 if (me_module == CONFIG_NONE)
271 hw = find_hw_entry_by_type (desc, generic_type);
272 else
273 {
274 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
275 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
276 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
277 CGEN_BITSET *cop_and_core;
278
279 /* The coprocessor ISAs include the ISA for the specific core which
280 has that coprocessor. */
281 cop_and_core = cgen_bitset_copy (cop);
282 cgen_bitset_union (cop, core, cop_and_core);
283 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
284 }
285
286 return hw;
287}
288
289
290/* Given a hardware table entry HW representing a register set, return
291 a pointer to the keyword table with all the register names. If HW
292 is NULL, return NULL, to propage the "no such register set" info
293 along. */
294static CGEN_KEYWORD *
295register_set_keyword_table (const CGEN_HW_ENTRY *hw)
296{
297 if (! hw)
298 return NULL;
299
300 /* Check that HW is actually a keyword table. */
301 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
302
303 /* The 'asm_data' field of a register set's hardware table entry
304 refers to a keyword table. */
305 return (CGEN_KEYWORD *) hw->asm_data;
306}
307
308
309/* Given a keyword table KEYWORD and a register number REGNUM, return
310 the name of the register, or "" if KEYWORD contains no register
311 whose number is REGNUM. */
312static char *
313register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
314{
315 const CGEN_KEYWORD_ENTRY *entry
316 = cgen_keyword_lookup_value (keyword_table, regnum);
317
318 if (entry)
319 {
320 char *name = entry->name;
321
322 /* The CGEN keyword entries for register names include the
323 leading $, which appears in MeP assembly as well as in GDB.
324 But we don't want to return that; GDB core code adds that
325 itself. */
326 if (name[0] == '$')
327 name++;
328
329 return name;
330 }
331 else
332 return "";
333}
334
335
336/* Masks for option bits in the OPT special-purpose register. */
337enum {
338 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
339 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
340 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
341 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
342 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
343 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
344 MEP_OPT_AVE = 1 << 19, /* average instruction option */
345 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
346 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
347 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
348 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
349 MEP_OPT_COP = 1 << 4, /* coprocessor option */
350 MEP_OPT_DSP = 1 << 2, /* DSP option */
351 MEP_OPT_UCI = 1 << 1, /* UCI option */
352 MEP_OPT_DBG = 1 << 0, /* DBG function option */
353};
354
355
356/* Given the option_mask value for a particular entry in
357 mep_config_map, produce the value the processor's OPT register
358 would use to represent the same set of options. */
359static unsigned int
360opt_from_option_mask (unsigned int option_mask)
361{
362 /* A table mapping OPT register bits onto CGEN config map option
363 bits. */
364 struct {
365 unsigned int opt_bit, option_mask_bit;
366 } bits[] = {
367 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
368 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
369 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
371 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
372 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
373 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
374 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
375 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
376 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
377 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
378 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
379 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
380 };
381
382 int i;
383 unsigned int opt = 0;
384
385 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
386 if (option_mask & bits[i].option_mask_bit)
387 opt |= bits[i].opt_bit;
388
389 return opt;
390}
391
392
393/* Return the value the $OPT register would use to represent the set
394 of options for ME_MODULE. */
395static unsigned int
396me_module_opt (CONFIG_ATTR me_module)
397{
398 return opt_from_option_mask (mep_config_map[me_module].option_mask);
399}
400
401
402/* Return the width of ME_MODULE's coprocessor data bus, in bits.
403 This is either 32 or 64. */
404static int
405me_module_cop_data_bus_width (CONFIG_ATTR me_module)
406{
407 if (mep_config_map[me_module].option_mask
408 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
409 return 64;
410 else
411 return 32;
412}
413
414
415/* Return true if ME_MODULE is big-endian, false otherwise. */
416static int
417me_module_big_endian (CONFIG_ATTR me_module)
418{
419 return mep_config_map[me_module].big_endian;
420}
421
422
423/* Return the name of ME_MODULE, or NULL if it has no name. */
424static const char *
425me_module_name (CONFIG_ATTR me_module)
426{
427 /* The default me_module has "" as its name, but it's easier for our
428 callers to test for NULL. */
429 if (! mep_config_map[me_module].name
430 || mep_config_map[me_module].name[0] == '\0')
431 return NULL;
432 else
433 return mep_config_map[me_module].name;
434}
435\f
436/* Register set. */
437
438
439/* The MeP spec defines the following registers:
440 16 general purpose registers (r0-r15)
441 32 control/special registers (csr0-csr31)
442 32 coprocessor general-purpose registers (c0 -- c31)
443 64 coprocessor control registers (ccr0 -- ccr63)
444
445 For the raw registers, we assign numbers here explicitly, instead
446 of letting the enum assign them for us; the numbers are a matter of
447 external protocol, and shouldn't shift around as things are edited.
448
449 We access the control/special registers via pseudoregisters, to
450 enforce read-only portions that some registers have.
451
452 We access the coprocessor general purpose and control registers via
453 pseudoregisters, to make sure they appear in the proper order in
454 the 'info all-registers' command (which uses the register number
455 ordering), and also to allow them to be renamed and resized
456 depending on the me_module in use.
457
458 The MeP allows coprocessor general-purpose registers to be either
459 32 or 64 bits long, depending on the configuration. Since we don't
460 want the format of the 'g' packet to vary from one core to another,
461 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
462 types of registers to change (see the implementation of
463 register_type), so we have four banks of pseudoregisters for the
464 coprocessor gprs --- 32-bit vs. 64-bit, and integer
465 vs. floating-point --- and we show or hide them depending on the
466 configuration. */
467enum
468{
469 MEP_FIRST_RAW_REGNUM = 0,
470
471 MEP_FIRST_GPR_REGNUM = 0,
472 MEP_R0_REGNUM = 0,
473 MEP_R1_REGNUM = 1,
474 MEP_R2_REGNUM = 2,
475 MEP_R3_REGNUM = 3,
476 MEP_R4_REGNUM = 4,
477 MEP_R5_REGNUM = 5,
478 MEP_R6_REGNUM = 6,
479 MEP_R7_REGNUM = 7,
480 MEP_R8_REGNUM = 8,
481 MEP_R9_REGNUM = 9,
482 MEP_R10_REGNUM = 10,
483 MEP_R11_REGNUM = 11,
484 MEP_R12_REGNUM = 12,
485 MEP_FP_REGNUM = MEP_R8_REGNUM,
486 MEP_R13_REGNUM = 13,
487 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
488 MEP_R14_REGNUM = 14,
489 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
490 MEP_R15_REGNUM = 15,
491 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
492 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
493
494 /* The raw control registers. These are the values as received via
495 the remote protocol, directly from the target; we only let user
496 code touch the via the pseudoregisters, which enforce read-only
497 bits. */
498 MEP_FIRST_RAW_CSR_REGNUM = 16,
499 MEP_RAW_PC_REGNUM = 16, /* Program counter */
500 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
501 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
502 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
503 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
504 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
505 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
506 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
507 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
508 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
509 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
510 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
511 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
512 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
513 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
514 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
515 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
516 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
517 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
518 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
519 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
520 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
521 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
522 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
523 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
524 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
525 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
526 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
527 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
528 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
529 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
530 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
531 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
532
533 /* The raw coprocessor general-purpose registers. These are all 64
534 bits wide. */
535 MEP_FIRST_RAW_CR_REGNUM = 48,
536 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
537
538 MEP_FIRST_RAW_CCR_REGNUM = 80,
539 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
540
541 /* The module number register. This is the index of the me_module
542 of which the current target is an instance. (This is not a real
543 MeP-specified register; it's provided by SID.) */
544 MEP_MODULE_REGNUM,
545
546 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
547
548 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
549
550 /* Pseudoregisters. See mep_pseudo_register_read and
551 mep_pseudo_register_write. */
552 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
553
554 /* We have a pseudoregister for every control/special register, to
555 implement registers with read-only bits. */
556 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
557 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
558 MEP_LP_REGNUM, /* Link pointer */
559 MEP_SAR_REGNUM, /* shift amount */
560 MEP_CSR3_REGNUM, /* csr3: reserved */
561 MEP_RPB_REGNUM, /* repeat begin address */
562 MEP_RPE_REGNUM, /* Repeat end address */
563 MEP_RPC_REGNUM, /* Repeat count */
564 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
565 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
566 MEP_CSR9_REGNUM, /* csr3: reserved */
567 MEP_CSR10_REGNUM, /* csr3: reserved */
568 MEP_CSR11_REGNUM, /* csr3: reserved */
569 MEP_MB0_REGNUM, /* modulo begin address 0 */
570 MEP_ME0_REGNUM, /* modulo end address 0 */
571 MEP_MB1_REGNUM, /* modulo begin address 1 */
572 MEP_ME1_REGNUM, /* modulo end address 1 */
573 MEP_PSW_REGNUM, /* program status word */
574 MEP_ID_REGNUM, /* processor ID/revision */
575 MEP_TMP_REGNUM, /* Temporary */
576 MEP_EPC_REGNUM, /* Exception program counter */
577 MEP_EXC_REGNUM, /* exception cause */
578 MEP_CFG_REGNUM, /* processor configuration*/
579 MEP_CSR22_REGNUM, /* csr3: reserved */
580 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
581 MEP_DBG_REGNUM, /* debug */
582 MEP_DEPC_REGNUM, /* Debug exception PC */
583 MEP_OPT_REGNUM, /* options */
584 MEP_RCFG_REGNUM, /* local ram config */
585 MEP_CCFG_REGNUM, /* cache config */
586 MEP_CSR29_REGNUM, /* csr3: reserved */
587 MEP_CSR30_REGNUM, /* csr3: reserved */
588 MEP_CSR31_REGNUM, /* csr3: reserved */
589 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
590
591 /* The 32-bit integer view of the coprocessor GPR's. */
592 MEP_FIRST_CR32_REGNUM,
593 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
594
595 /* The 32-bit floating-point view of the coprocessor GPR's. */
596 MEP_FIRST_FP_CR32_REGNUM,
597 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
598
599 /* The 64-bit integer view of the coprocessor GPR's. */
600 MEP_FIRST_CR64_REGNUM,
601 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
602
603 /* The 64-bit floating-point view of the coprocessor GPR's. */
604 MEP_FIRST_FP_CR64_REGNUM,
605 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
606
607 MEP_FIRST_CCR_REGNUM,
608 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
609
610 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
611
612 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
613
614 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
615};
616
617
618#define IN_SET(set, n) \
619 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
620
621#define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
622#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
623#define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
624#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
625
626#define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
627#define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
628#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
629#define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
630#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
631#define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
632 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
633#define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
634
635#define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
636#define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
637
638#define NUM_REGS_IN_SET(set) \
639 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
640
641#define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
642#define MEP_PSW_SIZE (4) /* Size of the PSW register. */
643#define MEP_LP_SIZE (4) /* Size of the LP register. */
644
645
646/* Many of the control/special registers contain bits that cannot be
647 written to; some are entirely read-only. So we present them all as
648 pseudoregisters.
649
650 The following table describes the special properties of each CSR. */
651struct mep_csr_register
652{
653 /* The number of this CSR's raw register. */
654 int raw;
655
656 /* The number of this CSR's pseudoregister. */
657 int pseudo;
658
659 /* A mask of the bits that are writeable: if a bit is set here, then
660 it can be modified; if the bit is clear, then it cannot. */
661 LONGEST writeable_bits;
662};
663
664
665/* mep_csr_registers[i] describes the i'th CSR.
666 We just list the register numbers here explicitly to help catch
667 typos. */
668#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
669struct mep_csr_register mep_csr_registers[] = {
670 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
671 { CSR(LP), 0xffffffff },
672 { CSR(SAR), 0x0000003f },
673 { CSR(CSR3), 0xffffffff },
674 { CSR(RPB), 0xfffffffe },
675 { CSR(RPE), 0xffffffff },
676 { CSR(RPC), 0xffffffff },
677 { CSR(HI), 0xffffffff },
678 { CSR(LO), 0xffffffff },
679 { CSR(CSR9), 0xffffffff },
680 { CSR(CSR10), 0xffffffff },
681 { CSR(CSR11), 0xffffffff },
682 { CSR(MB0), 0x0000ffff },
683 { CSR(ME0), 0x0000ffff },
684 { CSR(MB1), 0x0000ffff },
685 { CSR(ME1), 0x0000ffff },
686 { CSR(PSW), 0x000003ff },
687 { CSR(ID), 0x00000000 },
688 { CSR(TMP), 0xffffffff },
689 { CSR(EPC), 0xffffffff },
690 { CSR(EXC), 0x000030f0 },
691 { CSR(CFG), 0x00c0001b },
692 { CSR(CSR22), 0xffffffff },
693 { CSR(NPC), 0xffffffff },
694 { CSR(DBG), 0x00000580 },
695 { CSR(DEPC), 0xffffffff },
696 { CSR(OPT), 0x00000000 },
697 { CSR(RCFG), 0x00000000 },
698 { CSR(CCFG), 0x00000000 },
699 { CSR(CSR29), 0xffffffff },
700 { CSR(CSR30), 0xffffffff },
701 { CSR(CSR31), 0xffffffff },
702};
703
704
705/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
706 the number of the corresponding pseudoregister. Otherwise,
707 mep_raw_to_pseudo[R] == R. */
708static int mep_raw_to_pseudo[MEP_NUM_REGS];
709
710/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
711 is the number of the underlying raw register. Otherwise
712 mep_pseudo_to_raw[R] == R. */
713static int mep_pseudo_to_raw[MEP_NUM_REGS];
714
715static void
716mep_init_pseudoregister_maps (void)
717{
718 int i;
719
720 /* Verify that mep_csr_registers covers all the CSRs, in order. */
721 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
722 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
723
724 /* Verify that the raw and pseudo ranges have matching sizes. */
725 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
726 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
727 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
728 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
729
730 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
731 {
732 struct mep_csr_register *r = &mep_csr_registers[i];
733
734 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
735 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
736 }
737
738 /* Set up the initial raw<->pseudo mappings. */
739 for (i = 0; i < MEP_NUM_REGS; i++)
740 {
741 mep_raw_to_pseudo[i] = i;
742 mep_pseudo_to_raw[i] = i;
743 }
744
745 /* Add the CSR raw<->pseudo mappings. */
746 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
747 {
748 struct mep_csr_register *r = &mep_csr_registers[i];
749
750 mep_raw_to_pseudo[r->raw] = r->pseudo;
751 mep_pseudo_to_raw[r->pseudo] = r->raw;
752 }
753
754 /* Add the CR raw<->pseudo mappings. */
755 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
756 {
757 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
758 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
759 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
760 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
761 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
762
763 /* Truly, the raw->pseudo mapping depends on the current module.
764 But we use the raw->pseudo mapping when we read the debugging
765 info; at that point, we don't know what module we'll actually
766 be running yet. So, we always supply the 64-bit register
767 numbers; GDB knows how to pick a smaller value out of a
768 larger register properly. */
769 mep_raw_to_pseudo[raw] = pseudo64;
770 mep_pseudo_to_raw[pseudo32] = raw;
771 mep_pseudo_to_raw[pseudofp32] = raw;
772 mep_pseudo_to_raw[pseudo64] = raw;
773 mep_pseudo_to_raw[pseudofp64] = raw;
774 }
775
776 /* Add the CCR raw<->pseudo mappings. */
777 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
778 {
779 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
780 int pseudo = MEP_FIRST_CCR_REGNUM + i;
781 mep_raw_to_pseudo[raw] = pseudo;
782 mep_pseudo_to_raw[pseudo] = raw;
783 }
784}
785
786
787static int
d3f73121 788mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
aeb43123
KB
789{
790 /* The debug info uses the raw register numbers. */
791 return mep_raw_to_pseudo[debug_reg];
792}
793
794
795/* Return the size, in bits, of the coprocessor pseudoregister
796 numbered PSEUDO. */
797static int
798mep_pseudo_cr_size (int pseudo)
799{
800 if (IS_CR32_REGNUM (pseudo)
801 || IS_FP_CR32_REGNUM (pseudo))
802 return 32;
803 else if (IS_CR64_REGNUM (pseudo)
804 || IS_FP_CR64_REGNUM (pseudo))
805 return 64;
806 else
f3574227 807 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
aeb43123
KB
808}
809
810
811/* If the coprocessor pseudoregister numbered PSEUDO is a
812 floating-point register, return non-zero; if it is an integer
813 register, return zero. */
814static int
815mep_pseudo_cr_is_float (int pseudo)
816{
817 return (IS_FP_CR32_REGNUM (pseudo)
818 || IS_FP_CR64_REGNUM (pseudo));
819}
820
821
822/* Given a coprocessor GPR pseudoregister number, return its index
823 within that register bank. */
824static int
825mep_pseudo_cr_index (int pseudo)
826{
827 if (IS_CR32_REGNUM (pseudo))
828 return pseudo - MEP_FIRST_CR32_REGNUM;
829 else if (IS_FP_CR32_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
831 else if (IS_CR64_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_CR64_REGNUM;
833 else if (IS_FP_CR64_REGNUM (pseudo))
834 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
835 else
f3574227 836 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
aeb43123
KB
837}
838
839
840/* Return the me_module index describing the current target.
841
842 If the current target has registers (e.g., simulator, remote
843 target), then this uses the value of the 'module' register, raw
844 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
845 from the ELF header's e_flags field of the current executable
846 file. */
847static CONFIG_ATTR
eeae04df 848current_me_module (void)
aeb43123
KB
849{
850 if (target_has_registers)
3d1a74ac
UW
851 {
852 ULONGEST regval;
594f7785 853 regcache_cooked_read_unsigned (get_current_regcache (),
3d1a74ac
UW
854 MEP_MODULE_REGNUM, &regval);
855 return regval;
856 }
aeb43123 857 else
1cf3db46 858 return gdbarch_tdep (target_gdbarch)->me_module;
aeb43123
KB
859}
860
861
862/* Return the set of options for the current target, in the form that
863 the OPT register would use.
864
865 If the current target has registers (e.g., simulator, remote
866 target), then this is the actual value of the OPT register. If the
867 current target does not have registers (e.g., an executable file),
868 then use the 'module_opt' field we computed when we build the
869 gdbarch object for this module. */
870static unsigned int
eeae04df 871current_options (void)
aeb43123
KB
872{
873 if (target_has_registers)
3d1a74ac
UW
874 {
875 ULONGEST regval;
594f7785 876 regcache_cooked_read_unsigned (get_current_regcache (),
3d1a74ac
UW
877 MEP_OPT_REGNUM, &regval);
878 return regval;
879 }
aeb43123
KB
880 else
881 return me_module_opt (current_me_module ());
882}
883
884
885/* Return the width of the current me_module's coprocessor data bus,
886 in bits. This is either 32 or 64. */
887static int
eeae04df 888current_cop_data_bus_width (void)
aeb43123
KB
889{
890 return me_module_cop_data_bus_width (current_me_module ());
891}
892
893
894/* Return the keyword table of coprocessor general-purpose register
895 names appropriate for the me_module we're dealing with. */
896static CGEN_KEYWORD *
eeae04df 897current_cr_names (void)
aeb43123
KB
898{
899 const CGEN_HW_ENTRY *hw
900 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
901
902 return register_set_keyword_table (hw);
903}
904
905
906/* Return non-zero if the coprocessor general-purpose registers are
907 floating-point values, zero otherwise. */
908static int
eeae04df 909current_cr_is_float (void)
aeb43123
KB
910{
911 const CGEN_HW_ENTRY *hw
912 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
913
914 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
915}
916
917
918/* Return the keyword table of coprocessor control register names
919 appropriate for the me_module we're dealing with. */
920static CGEN_KEYWORD *
eeae04df 921current_ccr_names (void)
aeb43123
KB
922{
923 const CGEN_HW_ENTRY *hw
924 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
925
926 return register_set_keyword_table (hw);
927}
928
929
930static const char *
d93859e2 931mep_register_name (struct gdbarch *gdbarch, int regnr)
aeb43123 932{
d93859e2 933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
aeb43123
KB
934
935 /* General-purpose registers. */
936 static const char *gpr_names[] = {
937 "r0", "r1", "r2", "r3", /* 0 */
938 "r4", "r5", "r6", "r7", /* 4 */
939 "fp", "r9", "r10", "r11", /* 8 */
940 "r12", "tp", "gp", "sp" /* 12 */
941 };
942
943 /* Special-purpose registers. */
944 static const char *csr_names[] = {
945 "pc", "lp", "sar", "", /* 0 csr3: reserved */
946 "rpb", "rpe", "rpc", "hi", /* 4 */
947 "lo", "", "", "", /* 8 csr9-csr11: reserved */
948 "mb0", "me0", "mb1", "me1", /* 12 */
949
950 "psw", "id", "tmp", "epc", /* 16 */
951 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
952 "dbg", "depc", "opt", "rcfg", /* 24 */
953 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
954 };
955
956 if (IS_GPR_REGNUM (regnr))
957 return gpr_names[regnr - MEP_R0_REGNUM];
958 else if (IS_CSR_REGNUM (regnr))
959 {
960 /* The 'hi' and 'lo' registers are only present on processors
961 that have the 'MUL' or 'DIV' instructions enabled. */
962 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
963 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
964 return "";
965
966 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
967 }
968 else if (IS_CR_REGNUM (regnr))
969 {
970 CGEN_KEYWORD *names;
971 int cr_size;
972 int cr_is_float;
973
974 /* Does this module have a coprocessor at all? */
975 if (! (current_options () & MEP_OPT_COP))
976 return "";
977
978 names = current_cr_names ();
979 if (! names)
980 /* This module's coprocessor has no general-purpose registers. */
981 return "";
982
983 cr_size = current_cop_data_bus_width ();
984 if (cr_size != mep_pseudo_cr_size (regnr))
985 /* This module's coprocessor's GPR's are of a different size. */
986 return "";
987
988 cr_is_float = current_cr_is_float ();
989 /* The extra ! operators ensure we get boolean equality, not
990 numeric equality. */
991 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
992 /* This module's coprocessor's GPR's are of a different type. */
993 return "";
994
995 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
996 }
997 else if (IS_CCR_REGNUM (regnr))
998 {
999 /* Does this module have a coprocessor at all? */
1000 if (! (current_options () & MEP_OPT_COP))
1001 return "";
1002
1003 {
1004 CGEN_KEYWORD *names = current_ccr_names ();
1005
1006 if (! names)
1007 /* This me_module's coprocessor has no control registers. */
1008 return "";
1009
1010 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1011 }
1012 }
1013
1014 /* It might be nice to give the 'module' register a name, but that
1015 would affect the output of 'info all-registers', which would
1016 disturb the test suites. So we leave it invisible. */
1017 else
1018 return NULL;
1019}
1020
1021
1022/* Custom register groups for the MeP. */
1023static struct reggroup *mep_csr_reggroup; /* control/special */
1024static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1025static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1026
1027
1028static int
1029mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1030 struct reggroup *group)
1031{
1032 /* Filter reserved or unused register numbers. */
1033 {
d93859e2 1034 const char *name = mep_register_name (gdbarch, regnum);
aeb43123
KB
1035
1036 if (! name || name[0] == '\0')
1037 return 0;
1038 }
1039
1040 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1041 the existing behavior, so we'd want to run that by them. */
1042 if (group == general_reggroup)
1043 return (IS_GPR_REGNUM (regnum)
1044 || IS_CSR_REGNUM (regnum));
1045
1046 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1047 else if (group == all_reggroup)
1048 return (IS_GPR_REGNUM (regnum)
1049 || IS_CSR_REGNUM (regnum)
1050 || IS_CR_REGNUM (regnum)
1051 || IS_CCR_REGNUM (regnum));
1052
1053 /* All registers should be saved and restored, except for the raw
1054 CSR's.
1055
1056 This is probably right if the coprocessor is something like a
1057 floating-point unit, but would be wrong if the coprocessor is
1058 something that does I/O, where register accesses actually cause
1059 externally-visible actions. But I get the impression that the
1060 coprocessor isn't supposed to do things like that --- you'd use a
1061 hardware engine, perhaps. */
1062 else if (group == save_reggroup || group == restore_reggroup)
1063 return (IS_GPR_REGNUM (regnum)
1064 || IS_CSR_REGNUM (regnum)
1065 || IS_CR_REGNUM (regnum)
1066 || IS_CCR_REGNUM (regnum));
1067
1068 else if (group == mep_csr_reggroup)
1069 return IS_CSR_REGNUM (regnum);
1070 else if (group == mep_cr_reggroup)
1071 return IS_CR_REGNUM (regnum);
1072 else if (group == mep_ccr_reggroup)
1073 return IS_CCR_REGNUM (regnum);
1074 else
1075 return 0;
1076}
1077
1078
1079static struct type *
1080mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1081{
1082 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1083 long. So for them, the raw registers are always 64 bits long (to
1084 keep the 'g' packet format fixed), and the pseudoregisters vary
1085 in length. */
1086 if (IS_RAW_CR_REGNUM (reg_nr))
df4df182 1087 return builtin_type (gdbarch)->builtin_uint64;
aeb43123
KB
1088
1089 /* Since GDB doesn't allow registers to change type, we have two
1090 banks of pseudoregisters for the coprocessor general-purpose
1091 registers: one that gives a 32-bit view, and one that gives a
1092 64-bit view. We hide or show one or the other depending on the
1093 current module. */
1094 if (IS_CR_REGNUM (reg_nr))
1095 {
1096 int size = mep_pseudo_cr_size (reg_nr);
1097 if (size == 32)
1098 {
1099 if (mep_pseudo_cr_is_float (reg_nr))
0dfff4cb 1100 return builtin_type (gdbarch)->builtin_float;
aeb43123 1101 else
df4df182 1102 return builtin_type (gdbarch)->builtin_uint32;
aeb43123
KB
1103 }
1104 else if (size == 64)
1105 {
1106 if (mep_pseudo_cr_is_float (reg_nr))
0dfff4cb 1107 return builtin_type (gdbarch)->builtin_double;
aeb43123 1108 else
df4df182 1109 return builtin_type (gdbarch)->builtin_uint64;
aeb43123
KB
1110 }
1111 else
f3574227 1112 gdb_assert_not_reached ("unexpected cr size");
aeb43123
KB
1113 }
1114
1115 /* All other registers are 32 bits long. */
1116 else
df4df182 1117 return builtin_type (gdbarch)->builtin_uint32;
aeb43123
KB
1118}
1119
1120
1121static CORE_ADDR
61a1198a 1122mep_read_pc (struct regcache *regcache)
aeb43123 1123{
61a1198a
UW
1124 ULONGEST pc;
1125 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
aeb43123
KB
1126 return pc;
1127}
1128
1129static void
61a1198a 1130mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
aeb43123 1131{
61a1198a 1132 regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
aeb43123
KB
1133}
1134
1135
05d1431c 1136static enum register_status
aeb43123
KB
1137mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1138 struct regcache *regcache,
1139 int cookednum,
1140 void *buf)
1141{
05d1431c 1142 enum register_status status;
e17a4113 1143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
1144 /* Read the raw register into a 64-bit buffer, and then return the
1145 appropriate end of that buffer. */
1146 int rawnum = mep_pseudo_to_raw[cookednum];
1147 char buf64[8];
1148
1149 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1150 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
05d1431c
PA
1151 status = regcache_raw_read (regcache, rawnum, buf64);
1152 if (status == REG_VALID)
1153 {
1154 /* Slow, but legible. */
1155 store_unsigned_integer (buf, 4, byte_order,
1156 extract_unsigned_integer (buf64, 8, byte_order));
1157 }
1158 return status;
aeb43123
KB
1159}
1160
1161
05d1431c 1162static enum register_status
aeb43123
KB
1163mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1164 struct regcache *regcache,
1165 int cookednum,
1166 void *buf)
1167{
05d1431c 1168 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
aeb43123
KB
1169}
1170
1171
05d1431c 1172static enum register_status
aeb43123
KB
1173mep_pseudo_register_read (struct gdbarch *gdbarch,
1174 struct regcache *regcache,
1175 int cookednum,
1176 gdb_byte *buf)
1177{
1178 if (IS_CSR_REGNUM (cookednum)
1179 || IS_CCR_REGNUM (cookednum))
05d1431c 1180 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
aeb43123
KB
1181 else if (IS_CR32_REGNUM (cookednum)
1182 || IS_FP_CR32_REGNUM (cookednum))
05d1431c 1183 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
aeb43123
KB
1184 else if (IS_CR64_REGNUM (cookednum)
1185 || IS_FP_CR64_REGNUM (cookednum))
05d1431c 1186 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
aeb43123 1187 else
f3574227 1188 gdb_assert_not_reached ("unexpected pseudo register");
aeb43123
KB
1189}
1190
1191
1192static void
1193mep_pseudo_csr_write (struct gdbarch *gdbarch,
1194 struct regcache *regcache,
1195 int cookednum,
1196 const void *buf)
1197{
e17a4113 1198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
1199 int size = register_size (gdbarch, cookednum);
1200 struct mep_csr_register *r
1201 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1202
1203 if (r->writeable_bits == 0)
1204 /* A completely read-only register; avoid the read-modify-
1205 write cycle, and juts ignore the entire write. */
1206 ;
1207 else
1208 {
1209 /* A partially writeable register; do a read-modify-write cycle. */
1210 ULONGEST old_bits;
1211 ULONGEST new_bits;
1212 ULONGEST mixed_bits;
1213
1214 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
e17a4113 1215 new_bits = extract_unsigned_integer (buf, size, byte_order);
aeb43123
KB
1216 mixed_bits = ((r->writeable_bits & new_bits)
1217 | (~r->writeable_bits & old_bits));
1218 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1219 }
1220}
1221
1222
1223static void
1224mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1225 struct regcache *regcache,
1226 int cookednum,
1227 const void *buf)
1228{
e17a4113 1229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
1230 /* Expand the 32-bit value into a 64-bit value, and write that to
1231 the pseudoregister. */
1232 int rawnum = mep_pseudo_to_raw[cookednum];
1233 char buf64[8];
1234
1235 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1236 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1237 /* Slow, but legible. */
e17a4113
UW
1238 store_unsigned_integer (buf64, 8, byte_order,
1239 extract_unsigned_integer (buf, 4, byte_order));
aeb43123
KB
1240 regcache_raw_write (regcache, rawnum, buf64);
1241}
1242
1243
1244static void
1245mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1246 struct regcache *regcache,
1247 int cookednum,
1248 const void *buf)
1249{
1250 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1251}
1252
1253
1254static void
1255mep_pseudo_register_write (struct gdbarch *gdbarch,
1256 struct regcache *regcache,
1257 int cookednum,
1258 const gdb_byte *buf)
1259{
1260 if (IS_CSR_REGNUM (cookednum))
1261 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1262 else if (IS_CR32_REGNUM (cookednum)
1263 || IS_FP_CR32_REGNUM (cookednum))
1264 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1265 else if (IS_CR64_REGNUM (cookednum)
1266 || IS_FP_CR64_REGNUM (cookednum))
1267 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1268 else if (IS_CCR_REGNUM (cookednum))
1269 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1270 else
f3574227 1271 gdb_assert_not_reached ("unexpected pseudo register");
aeb43123
KB
1272}
1273
1274
1275\f
1276/* Disassembly. */
1277
1278/* The mep disassembler needs to know about the section in order to
025bb325 1279 work correctly. */
63807e1d 1280static int
aeb43123
KB
1281mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1282{
1283 struct obj_section * s = find_pc_section (pc);
1284
1285 if (s)
1286 {
1287 /* The libopcodes disassembly code uses the section to find the
1288 BFD, the BFD to find the ELF header, the ELF header to find
1289 the me_module index, and the me_module index to select the
1290 right instructions to print. */
1291 info->section = s->the_bfd_section;
1292 info->arch = bfd_arch_mep;
1293
1294 return print_insn_mep (pc, info);
1295 }
1296
1297 return 0;
1298}
1299
1300\f
1301/* Prologue analysis. */
1302
1303
1304/* The MeP has two classes of instructions: "core" instructions, which
1305 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1306 which are mostly concerned with moving data in and out of
1307 coprocessor registers, and branching on coprocessor condition
1308 codes. There's space in the instruction set for custom coprocessor
1309 instructions, too.
1310
1311 Instructions can be 16 or 32 bits long; the top two bits of the
1312 first byte indicate the length. The coprocessor instructions are
1313 mixed in with the core instructions, and there's no easy way to
1314 distinguish them; you have to completely decode them to tell one
1315 from the other.
1316
1317 The MeP also supports a "VLIW" operation mode, where instructions
1318 always occur in fixed-width bundles. The bundles are either 32
1319 bits or 64 bits long, depending on a fixed configuration flag. You
1320 decode the first part of the bundle as normal; if it's a core
1321 instruction, and there's any space left in the bundle, the
1322 remainder of the bundle is a coprocessor instruction, which will
1323 execute in parallel with the core instruction. If the first part
1324 of the bundle is a coprocessor instruction, it occupies the entire
1325 bundle.
1326
1327 So, here are all the cases:
1328
1329 - 32-bit VLIW mode:
1330 Every bundle is four bytes long, and naturally aligned, and can hold
1331 one or two instructions:
1332 - 16-bit core instruction; 16-bit coprocessor instruction
025bb325 1333 These execute in parallel.
aeb43123
KB
1334 - 32-bit core instruction
1335 - 32-bit coprocessor instruction
1336
1337 - 64-bit VLIW mode:
1338 Every bundle is eight bytes long, and naturally aligned, and can hold
1339 one or two instructions:
1340 - 16-bit core instruction; 48-bit (!) coprocessor instruction
025bb325 1341 These execute in parallel.
aeb43123 1342 - 32-bit core instruction; 32-bit coprocessor instruction
025bb325 1343 These execute in parallel.
aeb43123
KB
1344 - 64-bit coprocessor instruction
1345
1346 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1347 instruction, so I don't really know what's up there; perhaps these
1348 are always the user-defined coprocessor instructions. */
1349
1350
1351/* Return non-zero if PC is in a VLIW code section, zero
1352 otherwise. */
1353static int
1354mep_pc_in_vliw_section (CORE_ADDR pc)
1355{
1356 struct obj_section *s = find_pc_section (pc);
1357 if (s)
1358 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1359 return 0;
1360}
1361
1362
1363/* Set *INSN to the next core instruction at PC, and return the
1364 address of the next instruction.
1365
1366 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1367 instructions are encoded as one or two two-byte parts, and each
1368 part is byte-swapped independently. Thus:
1369
1370 void
1371 foo (void)
1372 {
1373 asm ("movu $1, 0x123456");
1374 asm ("sb $1,0x5678($2)");
1375 asm ("clip $1, 19");
1376 }
1377
1378 compiles to this big-endian code:
1379
1380 0: d1 56 12 34 movu $1,0x123456
1381 4: c1 28 56 78 sb $1,22136($2)
1382 8: f1 01 10 98 clip $1,0x13
1383 c: 70 02 ret
1384
1385 and this little-endian code:
1386
1387 0: 56 d1 34 12 movu $1,0x123456
1388 4: 28 c1 78 56 sb $1,22136($2)
1389 8: 01 f1 98 10 clip $1,0x13
1390 c: 02 70 ret
1391
1392 Instructions are returned in *INSN in an endian-independent form: a
1393 given instruction always appears in *INSN the same way, regardless
1394 of whether the instruction stream is big-endian or little-endian.
1395
1396 *INSN's most significant 16 bits are the first (i.e., at lower
1397 addresses) 16 bit part of the instruction. Its least significant
1398 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1399 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1400 are fetched using the current endianness.
1401
1402 So, the *INSN values for the instruction sequence above would be
1403 the following, in either endianness:
1404
1405 0xd1561234 movu $1,0x123456
1406 0xc1285678 sb $1,22136($2)
1407 0xf1011098 clip $1,0x13
1408 0x70020000 ret
1409
1410 (In a sense, it would be more natural to return 16-bit instructions
1411 in the least significant 16 bits of *INSN, but that would be
1412 ambiguous. In order to tell whether you're looking at a 16- or a
1413 32-bit instruction, you have to consult the major opcode field ---
1414 the most significant four bits of the instruction's first 16-bit
1415 part. But if we put 16-bit instructions at the least significant
1416 end of *INSN, then you don't know where to find the major opcode
1417 field until you know if it's a 16- or a 32-bit instruction ---
1418 which is where we started.)
1419
1420 If PC points to a core / coprocessor bundle in a VLIW section, set
1421 *INSN to the core instruction, and return the address of the next
1422 bundle. This has the effect of skipping the bundled coprocessor
1423 instruction. That's okay, since coprocessor instructions aren't
1424 significant to prologue analysis --- for the time being,
1425 anyway. */
1426
1427static CORE_ADDR
e17a4113 1428mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, long *insn)
aeb43123 1429{
e17a4113 1430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
1431 int pc_in_vliw_section;
1432 int vliw_mode;
1433 int insn_len;
1434 char buf[2];
1435
1436 *insn = 0;
1437
1438 /* Are we in a VLIW section? */
1439 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1440 if (pc_in_vliw_section)
1441 {
1442 /* Yes, find out which bundle size. */
1443 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1444
1445 /* If PC is in a VLIW section, but the current core doesn't say
1446 that it supports either VLIW mode, then we don't have enough
1447 information to parse the instruction stream it contains.
1448 Since the "undifferentiated" standard core doesn't have
1449 either VLIW mode bit set, this could happen.
1450
1451 But it shouldn't be an error to (say) set a breakpoint in a
1452 VLIW section, if you know you'll never reach it. (Perhaps
1453 you have a script that sets a bunch of standard breakpoints.)
1454
1455 So we'll just return zero here, and hope for the best. */
1456 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1457 return 0;
1458
1459 /* If both VL32 and VL64 are set, that's bogus, too. */
1460 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1461 return 0;
1462 }
1463 else
1464 vliw_mode = 0;
1465
1466 read_memory (pc, buf, sizeof (buf));
e17a4113 1467 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
aeb43123
KB
1468
1469 /* The major opcode --- the top four bits of the first 16-bit
1470 part --- indicates whether this instruction is 16 or 32 bits
1471 long. All 32-bit instructions have a major opcode whose top
1472 two bits are 11; all the rest are 16-bit instructions. */
1473 if ((*insn & 0xc0000000) == 0xc0000000)
1474 {
1475 /* Fetch the second 16-bit part of the instruction. */
1476 read_memory (pc + 2, buf, sizeof (buf));
e17a4113 1477 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
aeb43123
KB
1478 }
1479
1480 /* If we're in VLIW code, then the VLIW width determines the address
1481 of the next instruction. */
1482 if (vliw_mode)
1483 {
1484 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1485 coprocessor half of a core / copro bundle. */
1486 if (vliw_mode == MEP_OPT_VL32)
1487 insn_len = 4;
1488
1489 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1490 coprocessor half of a core / copro bundle. */
1491 else if (vliw_mode == MEP_OPT_VL64)
1492 insn_len = 8;
1493
1494 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1495 else
f3574227 1496 gdb_assert_not_reached ("unexpected vliw mode");
aeb43123
KB
1497 }
1498
1499 /* Otherwise, the top two bits of the major opcode are (again) what
1500 we need to check. */
1501 else if ((*insn & 0xc0000000) == 0xc0000000)
1502 insn_len = 4;
1503 else
1504 insn_len = 2;
1505
1506 return pc + insn_len;
1507}
1508
1509
1510/* Sign-extend the LEN-bit value N. */
1511#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1512
1513/* Return the LEN-bit field at POS from I. */
1514#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1515
1516/* Like FIELD, but sign-extend the field's value. */
1517#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1518
1519
1520/* Macros for decoding instructions.
1521
1522 Remember that 16-bit instructions are placed in bits 16..31 of i,
1523 not at the least significant end; this means that the major opcode
1524 field is always in the same place, regardless of the width of the
1525 instruction. As a reminder of this, we show the lower 16 bits of a
1526 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1527
1528/* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1529/* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1530/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1531
1532/* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1533#define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1534/* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1535#define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1536/* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1537#define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1538#define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1539#define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1540#define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1541
1542/* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1543#define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1544#define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1545#define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1546
1547/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1548#define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1549#define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1550#define SW_REG_BASE(i) (FIELD (i, 20, 4))
1551
1552/* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1553#define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1554#define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1555#define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1556
1557/* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1558#define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1559#define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1560#define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1561#define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1562
1563/* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1564#define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1565#define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1566#define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1567
1568/* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1569#define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1570#define ADD_TARGET(i) (FIELD (i, 24, 4))
1571#define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1572
1573/* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1574 imm5 = I||i[7:4] */
1575#define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1576#define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1577#define LDC_TARGET(i) (FIELD (i, 24, 4))
1578
1579/* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1580#define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1581#define LW_TARGET(i) (FIELD (i, 24, 4))
1582#define LW_BASE(i) (FIELD (i, 20, 4))
1583#define LW_OFFSET(i) (SFIELD (i, 0, 16))
1584
1585/* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1586#define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1587#define MOV_TARGET(i) (FIELD (i, 24, 4))
1588#define MOV_SOURCE(i) (FIELD (i, 20, 4))
1589
1ba3e7a3
KB
1590/* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1591#define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1592#define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1593
aeb43123
KB
1594
1595/* This structure holds the results of a prologue analysis. */
1596struct mep_prologue
1597{
9dacea90
UW
1598 /* The architecture for which we generated this prologue info. */
1599 struct gdbarch *gdbarch;
1600
aeb43123
KB
1601 /* The offset from the frame base to the stack pointer --- always
1602 zero or negative.
1603
1604 Calling this a "size" is a bit misleading, but given that the
1605 stack grows downwards, using offsets for everything keeps one
1606 from going completely sign-crazy: you never change anything's
1607 sign for an ADD instruction; always change the second operand's
1608 sign for a SUB instruction; and everything takes care of
1609 itself. */
1610 int frame_size;
1611
1612 /* Non-zero if this function has initialized the frame pointer from
1613 the stack pointer, zero otherwise. */
1614 int has_frame_ptr;
1615
1616 /* If has_frame_ptr is non-zero, this is the offset from the frame
1617 base to where the frame pointer points. This is always zero or
1618 negative. */
1619 int frame_ptr_offset;
1620
1621 /* The address of the first instruction at which the frame has been
1622 set up and the arguments are where the debug info says they are
1623 --- as best as we can tell. */
1624 CORE_ADDR prologue_end;
1625
1626 /* reg_offset[R] is the offset from the CFA at which register R is
1627 saved, or 1 if register R has not been saved. (Real values are
1628 always zero or negative.) */
1629 int reg_offset[MEP_NUM_REGS];
1630};
1631
1632/* Return non-zero if VALUE is an incoming argument register. */
1633
1634static int
1635is_arg_reg (pv_t value)
1636{
1637 return (value.kind == pvk_register
1638 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1639 && value.k == 0);
1640}
1641
1642/* Return non-zero if a store of REG's current value VALUE to ADDR is
1643 probably spilling an argument register to its stack slot in STACK.
1644 Such instructions should be included in the prologue, if possible.
1645
1646 The store is a spill if:
1647 - the value being stored is REG's original value;
1648 - the value has not already been stored somewhere in STACK; and
1649 - ADDR is a stack slot's address (e.g., relative to the original
1650 value of the SP). */
1651static int
9dacea90
UW
1652is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1653 struct pv_area *stack)
aeb43123
KB
1654{
1655 return (is_arg_reg (value)
1656 && pv_is_register (addr, MEP_SP_REGNUM)
9dacea90 1657 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
aeb43123
KB
1658}
1659
1660
1661/* Function for finding saved registers in a 'struct pv_area'; we pass
1662 this to pv_area_scan.
1663
1664 If VALUE is a saved register, ADDR says it was saved at a constant
1665 offset from the frame base, and SIZE indicates that the whole
1666 register was saved, record its offset in RESULT_UNTYPED. */
1667static void
1668check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1669{
1670 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1671
1672 if (value.kind == pvk_register
1673 && value.k == 0
1674 && pv_is_register (addr, MEP_SP_REGNUM)
9dacea90 1675 && size == register_size (result->gdbarch, value.reg))
aeb43123
KB
1676 result->reg_offset[value.reg] = addr.k;
1677}
1678
1679
1680/* Analyze a prologue starting at START_PC, going no further than
1681 LIMIT_PC. Fill in RESULT as appropriate. */
1682static void
9dacea90
UW
1683mep_analyze_prologue (struct gdbarch *gdbarch,
1684 CORE_ADDR start_pc, CORE_ADDR limit_pc,
aeb43123
KB
1685 struct mep_prologue *result)
1686{
1687 CORE_ADDR pc;
1688 unsigned long insn;
1689 int rn;
1690 int found_lp = 0;
1691 pv_t reg[MEP_NUM_REGS];
1692 struct pv_area *stack;
1693 struct cleanup *back_to;
1694 CORE_ADDR after_last_frame_setup_insn = start_pc;
1695
1696 memset (result, 0, sizeof (*result));
9dacea90 1697 result->gdbarch = gdbarch;
aeb43123
KB
1698
1699 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1700 {
1701 reg[rn] = pv_register (rn, 0);
1702 result->reg_offset[rn] = 1;
1703 }
1704
55f960e1 1705 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
aeb43123
KB
1706 back_to = make_cleanup_free_pv_area (stack);
1707
1708 pc = start_pc;
1709 while (pc < limit_pc)
1710 {
1711 CORE_ADDR next_pc;
1712 pv_t pre_insn_fp, pre_insn_sp;
1713
e17a4113 1714 next_pc = mep_get_insn (gdbarch, pc, &insn);
aeb43123
KB
1715
1716 /* A zero return from mep_get_insn means that either we weren't
1717 able to read the instruction from memory, or that we don't
1718 have enough information to be able to reliably decode it. So
1719 we'll store here and hope for the best. */
1720 if (! next_pc)
1721 break;
1722
1723 /* Note the current values of the SP and FP, so we can tell if
1724 this instruction changed them, below. */
1725 pre_insn_fp = reg[MEP_FP_REGNUM];
1726 pre_insn_sp = reg[MEP_SP_REGNUM];
1727
1728 if (IS_ADD (insn))
1729 {
1730 int rn = ADD_TARGET (insn);
1731 CORE_ADDR imm6 = ADD_OFFSET (insn);
1732
1733 reg[rn] = pv_add_constant (reg[rn], imm6);
1734 }
1735 else if (IS_ADD3_16 (insn))
1736 {
1737 int rn = ADD3_16_TARGET (insn);
1738 int imm7 = ADD3_16_OFFSET (insn);
1739
1740 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1741 }
1742 else if (IS_ADD3_32 (insn))
1743 {
1744 int rn = ADD3_32_TARGET (insn);
1745 int rm = ADD3_32_SOURCE (insn);
1746 int imm16 = ADD3_32_OFFSET (insn);
1747
1748 reg[rn] = pv_add_constant (reg[rm], imm16);
1749 }
1750 else if (IS_SW_REG (insn))
1751 {
1752 int rn = SW_REG_SOURCE (insn);
1753 int rm = SW_REG_BASE (insn);
1754
1755 /* If simulating this store would require us to forget
1756 everything we know about the stack frame in the name of
1757 accuracy, it would be better to just quit now. */
1758 if (pv_area_store_would_trash (stack, reg[rm]))
1759 break;
1760
9dacea90 1761 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
aeb43123
KB
1762 after_last_frame_setup_insn = next_pc;
1763
1764 pv_area_store (stack, reg[rm], 4, reg[rn]);
1765 }
1766 else if (IS_SW_IMMD (insn))
1767 {
1768 int rn = SW_IMMD_SOURCE (insn);
1769 int offset = SW_IMMD_OFFSET (insn);
1770 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1771
1772 /* If simulating this store would require us to forget
1773 everything we know about the stack frame in the name of
1774 accuracy, it would be better to just quit now. */
1775 if (pv_area_store_would_trash (stack, addr))
1776 break;
1777
9dacea90 1778 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
aeb43123
KB
1779 after_last_frame_setup_insn = next_pc;
1780
1781 pv_area_store (stack, addr, 4, reg[rn]);
1782 }
1783 else if (IS_MOV (insn))
1784 {
1785 int rn = MOV_TARGET (insn);
1786 int rm = MOV_SOURCE (insn);
1787
1788 reg[rn] = reg[rm];
1789
1790 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1791 after_last_frame_setup_insn = next_pc;
1792 }
1793 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1794 {
1795 int rn = SWBH_32_SOURCE (insn);
1796 int rm = SWBH_32_BASE (insn);
1797 int disp = SWBH_32_OFFSET (insn);
1798 int size = (IS_SB (insn) ? 1
1799 : IS_SH (insn) ? 2
f3574227 1800 : (gdb_assert (IS_SW (insn)), 4));
aeb43123
KB
1801 pv_t addr = pv_add_constant (reg[rm], disp);
1802
1803 if (pv_area_store_would_trash (stack, addr))
1804 break;
1805
9dacea90 1806 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
aeb43123
KB
1807 after_last_frame_setup_insn = next_pc;
1808
1809 pv_area_store (stack, addr, size, reg[rn]);
1810 }
1811 else if (IS_LDC (insn))
1812 {
1813 int rn = LDC_TARGET (insn);
1814 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1815
1816 reg[rn] = reg[cr];
1817 }
1818 else if (IS_LW (insn))
1819 {
1820 int rn = LW_TARGET (insn);
1821 int rm = LW_BASE (insn);
1822 int offset = LW_OFFSET (insn);
1823 pv_t addr = pv_add_constant (reg[rm], offset);
1824
1825 reg[rn] = pv_area_fetch (stack, addr, 4);
1826 }
1ba3e7a3
KB
1827 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1828 {
f219aedc 1829 /* When a loop appears as the first statement of a function
1ba3e7a3
KB
1830 body, gcc 4.x will use a BRA instruction to branch to the
1831 loop condition checking code. This BRA instruction is
1832 marked as part of the prologue. We therefore set next_pc
025bb325 1833 to this branch target and also stop the prologue scan.
1ba3e7a3 1834 The instructions at and beyond the branch target should
f219aedc
KB
1835 no longer be associated with the prologue.
1836
1837 Note that we only consider forward branches here. We
1838 presume that a forward branch is being used to skip over
1839 a loop body.
1840
1841 A backwards branch is covered by the default case below.
1842 If we were to encounter a backwards branch, that would
1843 most likely mean that we've scanned through a loop body.
1844 We definitely want to stop the prologue scan when this
1845 happens and that is precisely what is done by the default
1846 case below. */
1ba3e7a3
KB
1847 next_pc = pc + BRA_DISP (insn);
1848 after_last_frame_setup_insn = next_pc;
1849 break;
1850 }
aeb43123
KB
1851 else
1852 /* We've hit some instruction we don't know how to simulate.
1853 Strictly speaking, we should set every value we're
1854 tracking to "unknown". But we'll be optimistic, assume
1855 that we have enough information already, and stop
1856 analysis here. */
1857 break;
1858
1859 /* If this instruction changed the FP or decreased the SP (i.e.,
1860 allocated more stack space), then this may be a good place to
1861 declare the prologue finished. However, there are some
1862 exceptions:
1863
1864 - If the instruction just changed the FP back to its original
1865 value, then that's probably a restore instruction. The
1866 prologue should definitely end before that.
1867
1868 - If the instruction increased the value of the SP (that is,
1869 shrunk the frame), then it's probably part of a frame
1870 teardown sequence, and the prologue should end before that. */
1871
1872 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1873 {
1874 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1875 after_last_frame_setup_insn = next_pc;
1876 }
1877 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1878 {
1879 /* The comparison of constants looks odd, there, because .k
1880 is unsigned. All it really means is that the new value
1881 is lower than it was before the instruction. */
1882 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1883 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1884 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1885 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1886 after_last_frame_setup_insn = next_pc;
1887 }
1888
1889 pc = next_pc;
1890 }
1891
1892 /* Is the frame size (offset, really) a known constant? */
1893 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1894 result->frame_size = reg[MEP_SP_REGNUM].k;
1895
1896 /* Was the frame pointer initialized? */
1897 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1898 {
1899 result->has_frame_ptr = 1;
1900 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1901 }
1902
1903 /* Record where all the registers were saved. */
1904 pv_area_scan (stack, check_for_saved, (void *) result);
1905
1906 result->prologue_end = after_last_frame_setup_insn;
1907
1908 do_cleanups (back_to);
1909}
1910
1911
1912static CORE_ADDR
6093d2eb 1913mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
aeb43123
KB
1914{
1915 char *name;
1916 CORE_ADDR func_addr, func_end;
1917 struct mep_prologue p;
1918
1919 /* Try to find the extent of the function that contains PC. */
1920 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1921 return pc;
1922
9dacea90 1923 mep_analyze_prologue (gdbarch, pc, func_end, &p);
aeb43123
KB
1924 return p.prologue_end;
1925}
1926
1927
1928\f
1929/* Breakpoints. */
1930
1931static const unsigned char *
67d57894 1932mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
aeb43123
KB
1933{
1934 static unsigned char breakpoint[] = { 0x70, 0x32 };
1935 *lenptr = sizeof (breakpoint);
1936 return breakpoint;
1937}
1938
1939
1940\f
1941/* Frames and frame unwinding. */
1942
1943
1944static struct mep_prologue *
94afd7a6 1945mep_analyze_frame_prologue (struct frame_info *this_frame,
aeb43123
KB
1946 void **this_prologue_cache)
1947{
1948 if (! *this_prologue_cache)
1949 {
1950 CORE_ADDR func_start, stop_addr;
1951
1952 *this_prologue_cache
1953 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1954
94afd7a6
UW
1955 func_start = get_frame_func (this_frame);
1956 stop_addr = get_frame_pc (this_frame);
aeb43123
KB
1957
1958 /* If we couldn't find any function containing the PC, then
1959 just initialize the prologue cache, but don't do anything. */
1960 if (! func_start)
1961 stop_addr = func_start;
1962
9dacea90
UW
1963 mep_analyze_prologue (get_frame_arch (this_frame),
1964 func_start, stop_addr, *this_prologue_cache);
aeb43123
KB
1965 }
1966
1967 return *this_prologue_cache;
1968}
1969
1970
1971/* Given the next frame and a prologue cache, return this frame's
1972 base. */
1973static CORE_ADDR
94afd7a6 1974mep_frame_base (struct frame_info *this_frame,
aeb43123
KB
1975 void **this_prologue_cache)
1976{
1977 struct mep_prologue *p
94afd7a6 1978 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
aeb43123
KB
1979
1980 /* In functions that use alloca, the distance between the stack
1981 pointer and the frame base varies dynamically, so we can't use
1982 the SP plus static information like prologue analysis to find the
1983 frame base. However, such functions must have a frame pointer,
1984 to be able to restore the SP on exit. So whenever we do have a
1985 frame pointer, use that to find the base. */
1986 if (p->has_frame_ptr)
1987 {
1988 CORE_ADDR fp
94afd7a6 1989 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
aeb43123
KB
1990 return fp - p->frame_ptr_offset;
1991 }
1992 else
1993 {
1994 CORE_ADDR sp
94afd7a6 1995 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
aeb43123
KB
1996 return sp - p->frame_size;
1997 }
1998}
1999
2000
2001static void
94afd7a6 2002mep_frame_this_id (struct frame_info *this_frame,
aeb43123
KB
2003 void **this_prologue_cache,
2004 struct frame_id *this_id)
2005{
94afd7a6
UW
2006 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
2007 get_frame_func (this_frame));
aeb43123
KB
2008}
2009
2010
94afd7a6
UW
2011static struct value *
2012mep_frame_prev_register (struct frame_info *this_frame,
2013 void **this_prologue_cache, int regnum)
aeb43123
KB
2014{
2015 struct mep_prologue *p
94afd7a6 2016 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
aeb43123
KB
2017
2018 /* There are a number of complications in unwinding registers on the
2019 MeP, having to do with core functions calling VLIW functions and
2020 vice versa.
2021
2022 The least significant bit of the link register, LP.LTOM, is the
2023 VLIW mode toggle bit: it's set if a core function called a VLIW
2024 function, or vice versa, and clear when the caller and callee
2025 were both in the same mode.
2026
2027 So, if we're asked to unwind the PC, then we really want to
2028 unwind the LP and clear the least significant bit. (Real return
2029 addresses are always even.) And if we want to unwind the program
2030 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2031
2032 Tweaking the register values we return in this way means that the
2033 bits in BUFFERP[] are not the same as the bits you'd find at
2034 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2035 do this. */
2036 if (regnum == MEP_PC_REGNUM)
2037 {
94afd7a6
UW
2038 struct value *value;
2039 CORE_ADDR lp;
2040 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2041 MEP_LP_REGNUM);
2042 lp = value_as_long (value);
2043 release_value (value);
2044 value_free (value);
2045
2046 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
aeb43123
KB
2047 }
2048 else
2049 {
94afd7a6
UW
2050 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2051 struct value *value;
aeb43123
KB
2052
2053 /* Our caller's SP is our frame base. */
2054 if (regnum == MEP_SP_REGNUM)
94afd7a6 2055 return frame_unwind_got_constant (this_frame, regnum, frame_base);
aeb43123
KB
2056
2057 /* If prologue analysis says we saved this register somewhere,
2058 return a description of the stack slot holding it. */
94afd7a6
UW
2059 if (p->reg_offset[regnum] != 1)
2060 value = frame_unwind_got_memory (this_frame, regnum,
2061 frame_base + p->reg_offset[regnum]);
aeb43123
KB
2062
2063 /* Otherwise, presume we haven't changed the value of this
2064 register, and get it from the next frame. */
2065 else
94afd7a6 2066 value = frame_unwind_got_register (this_frame, regnum, regnum);
aeb43123
KB
2067
2068 /* If we need to toggle the operating mode, do so. */
2069 if (regnum == MEP_PSW_REGNUM)
2070 {
94afd7a6
UW
2071 CORE_ADDR psw, lp;
2072
2073 psw = value_as_long (value);
2074 release_value (value);
2075 value_free (value);
aeb43123
KB
2076
2077 /* Get the LP's value, too. */
94afd7a6
UW
2078 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2079 lp = value_as_long (value);
2080 release_value (value);
2081 value_free (value);
aeb43123
KB
2082
2083 /* If LP.LTOM is set, then toggle PSW.OM. */
94afd7a6
UW
2084 if (lp & 0x1)
2085 psw ^= 0x1000;
2086
2087 return frame_unwind_got_constant (this_frame, regnum, psw);
aeb43123 2088 }
94afd7a6
UW
2089
2090 return value;
aeb43123
KB
2091 }
2092}
2093
2094
2095static const struct frame_unwind mep_frame_unwind = {
2096 NORMAL_FRAME,
8fbca658 2097 default_frame_unwind_stop_reason,
aeb43123 2098 mep_frame_this_id,
94afd7a6
UW
2099 mep_frame_prev_register,
2100 NULL,
2101 default_frame_sniffer
aeb43123
KB
2102};
2103
2104
aeb43123
KB
2105/* Our general unwinding function can handle unwinding the PC. */
2106static CORE_ADDR
2107mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2108{
2109 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2110}
2111
2112
2113/* Our general unwinding function can handle unwinding the SP. */
2114static CORE_ADDR
2115mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2116{
2117 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2118}
2119
2120
2121\f
2122/* Return values. */
2123
2124
2125static int
2126mep_use_struct_convention (struct type *type)
2127{
2128 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2129}
2130
2131
2132static void
2133mep_extract_return_value (struct gdbarch *arch,
2134 struct type *type,
2135 struct regcache *regcache,
2136 gdb_byte *valbuf)
2137{
2138 int byte_order = gdbarch_byte_order (arch);
2139
2140 /* Values that don't occupy a full register appear at the less
2141 significant end of the value. This is the offset to where the
2142 value starts. */
2143 int offset;
2144
2145 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2146 pointed to by R0. */
2147 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2148
2149 if (byte_order == BFD_ENDIAN_BIG)
2150 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2151 else
2152 offset = 0;
2153
025bb325 2154 /* Return values that do fit in a single register are returned in R0. */
aeb43123
KB
2155 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2156 offset, TYPE_LENGTH (type),
2157 valbuf);
2158}
2159
2160
2161static void
2162mep_store_return_value (struct gdbarch *arch,
2163 struct type *type,
2164 struct regcache *regcache,
2165 const gdb_byte *valbuf)
2166{
2167 int byte_order = gdbarch_byte_order (arch);
2168
2169 /* Values that fit in a single register go in R0. */
2170 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2171 {
2172 /* Values that don't occupy a full register appear at the least
2173 significant end of the value. This is the offset to where the
2174 value starts. */
2175 int offset;
2176
2177 if (byte_order == BFD_ENDIAN_BIG)
2178 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2179 else
2180 offset = 0;
2181
2182 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2183 offset, TYPE_LENGTH (type),
2184 valbuf);
2185 }
2186
2187 /* Return values larger than a single register are returned in
2188 memory, pointed to by R0. Unfortunately, we can't count on R0
025bb325 2189 pointing to the return buffer, so we raise an error here. */
aeb43123 2190 else
a73c6dcd
MS
2191 error (_("\
2192GDB cannot set return values larger than four bytes; the Media Processor's\n\
2193calling conventions do not provide enough information to do this.\n\
2194Try using the 'return' command with no argument."));
aeb43123
KB
2195}
2196
63807e1d 2197static enum return_value_convention
c055b101
CV
2198mep_return_value (struct gdbarch *gdbarch, struct type *func_type,
2199 struct type *type, struct regcache *regcache,
2200 gdb_byte *readbuf, const gdb_byte *writebuf)
aeb43123
KB
2201{
2202 if (mep_use_struct_convention (type))
2203 {
2204 if (readbuf)
2205 {
2206 ULONGEST addr;
2207 /* Although the address of the struct buffer gets passed in R1, it's
2208 returned in R0. Fetch R0's value and then read the memory
2209 at that address. */
2210 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2211 read_memory (addr, readbuf, TYPE_LENGTH (type));
2212 }
2213 if (writebuf)
2214 {
2215 /* Return values larger than a single register are returned in
2216 memory, pointed to by R0. Unfortunately, we can't count on R0
025bb325 2217 pointing to the return buffer, so we raise an error here. */
a73c6dcd
MS
2218 error (_("\
2219GDB cannot set return values larger than four bytes; the Media Processor's\n\
2220calling conventions do not provide enough information to do this.\n\
2221Try using the 'return' command with no argument."));
aeb43123
KB
2222 }
2223 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2224 }
2225
2226 if (readbuf)
2227 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2228 if (writebuf)
2229 mep_store_return_value (gdbarch, type, regcache, writebuf);
2230
2231 return RETURN_VALUE_REGISTER_CONVENTION;
2232}
2233
2234\f
2235/* Inferior calls. */
2236
2237
2238static CORE_ADDR
2239mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2240{
2241 /* Require word alignment. */
2242 return sp & -4;
2243}
2244
2245
2246/* From "lang_spec2.txt":
2247
2248 4.2 Calling conventions
2249
2250 4.2.1 Core register conventions
2251
2252 - Parameters should be evaluated from left to right, and they
025bb325
MS
2253 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2254 after should be held in the stack. If the size is larger than 4
aeb43123 2255 bytes in the first four parameters, the pointer should be held in
025bb325 2256 the registers instead. If the size is larger than 4 bytes in the
aeb43123
KB
2257 fifth parameter or after, the pointer should be held in the stack.
2258
025bb325 2259 - Return value of a function should be held in register $0. If the
aeb43123 2260 size of return value is larger than 4 bytes, $1 should hold the
025bb325 2261 pointer pointing memory that would hold the return value. In this
aeb43123
KB
2262 case, the first parameter should be held in $2, the second one in
2263 $3, and the third one in $4, and the forth parameter or after
2264 should be held in the stack.
2265
2266 [This doesn't say so, but arguments shorter than four bytes are
2267 passed in the least significant end of a four-byte word when
2268 they're passed on the stack.] */
2269
2270
2271/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2272 large to fit in a register, save it on the stack, and place its
2273 address in COPY[i]. SP is the initial stack pointer; return the
2274 new stack pointer. */
2275static CORE_ADDR
2276push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2277 CORE_ADDR copy[])
2278{
2279 int i;
2280
2281 for (i = 0; i < argc; i++)
2282 {
2283 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2284
2285 if (arg_len > MEP_GPR_SIZE)
2286 {
2287 /* Reserve space for the copy, and then round the SP down, to
2288 make sure it's all aligned properly. */
2289 sp = (sp - arg_len) & -4;
2290 write_memory (sp, value_contents (argv[i]), arg_len);
2291 copy[i] = sp;
2292 }
2293 }
2294
2295 return sp;
2296}
2297
2298
2299static CORE_ADDR
2300mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2301 struct regcache *regcache, CORE_ADDR bp_addr,
2302 int argc, struct value **argv, CORE_ADDR sp,
2303 int struct_return,
2304 CORE_ADDR struct_addr)
2305{
e17a4113 2306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
2307 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2308 CORE_ADDR func_addr = find_function_addr (function, NULL);
2309 int i;
2310
2311 /* The number of the next register available to hold an argument. */
2312 int arg_reg;
2313
2314 /* The address of the next stack slot available to hold an argument. */
2315 CORE_ADDR arg_stack;
2316
2317 /* The address of the end of the stack area for arguments. This is
2318 just for error checking. */
2319 CORE_ADDR arg_stack_end;
2320
2321 sp = push_large_arguments (sp, argc, argv, copy);
2322
2323 /* Reserve space for the stack arguments, if any. */
2324 arg_stack_end = sp;
2325 if (argc + (struct_addr ? 1 : 0) > 4)
2326 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2327
2328 arg_reg = MEP_R1_REGNUM;
2329 arg_stack = sp;
2330
2331 /* If we're returning a structure by value, push the pointer to the
2332 buffer as the first argument. */
2333 if (struct_return)
2334 {
2335 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2336 arg_reg++;
2337 }
2338
2339 for (i = 0; i < argc; i++)
2340 {
2341 unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2342 ULONGEST value;
2343
2344 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2345 if (arg_size <= MEP_GPR_SIZE)
2346 value = extract_unsigned_integer (value_contents (argv[i]),
e17a4113
UW
2347 TYPE_LENGTH (value_type (argv[i])),
2348 byte_order);
aeb43123
KB
2349
2350 /* Arguments too large to fit in a GPR get copied to the stack,
2351 and we pass a pointer to the copy. */
2352 else
2353 value = copy[i];
2354
2355 /* We use $1 -- $4 for passing arguments, then use the stack. */
2356 if (arg_reg <= MEP_R4_REGNUM)
2357 {
2358 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2359 arg_reg++;
2360 }
2361 else
2362 {
2363 char buf[MEP_GPR_SIZE];
e17a4113 2364 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
aeb43123
KB
2365 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2366 arg_stack += MEP_GPR_SIZE;
2367 }
2368 }
2369
2370 gdb_assert (arg_stack <= arg_stack_end);
2371
2372 /* Set the return address. */
2373 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2374
2375 /* Update the stack pointer. */
2376 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2377
2378 return sp;
2379}
2380
2381
2382static struct frame_id
94afd7a6 2383mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
aeb43123 2384{
94afd7a6
UW
2385 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2386 return frame_id_build (sp, get_frame_pc (this_frame));
aeb43123
KB
2387}
2388
2389
2390\f
2391/* Initialization. */
2392
2393
2394static struct gdbarch *
2395mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2396{
2397 struct gdbarch *gdbarch;
2398 struct gdbarch_tdep *tdep;
2399
2400 /* Which me_module are we building a gdbarch object for? */
2401 CONFIG_ATTR me_module;
2402
2403 /* If we have a BFD in hand, figure out which me_module it was built
2404 for. Otherwise, use the no-particular-me_module code. */
2405 if (info.abfd)
2406 {
2407 /* The way to get the me_module code depends on the object file
2408 format. At the moment, we only know how to handle ELF. */
2409 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2410 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2411 else
2412 me_module = CONFIG_NONE;
2413 }
2414 else
2415 me_module = CONFIG_NONE;
2416
2417 /* If we're setting the architecture from a file, check the
2418 endianness of the file against that of the me_module. */
2419 if (info.abfd)
2420 {
2421 /* The negations on either side make the comparison treat all
2422 non-zero (true) values as equal. */
2423 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2424 {
2425 const char *module_name = me_module_name (me_module);
2426 const char *module_endianness
2427 = me_module_big_endian (me_module) ? "big" : "little";
2428 const char *file_name = bfd_get_filename (info.abfd);
2429 const char *file_endianness
2430 = bfd_big_endian (info.abfd) ? "big" : "little";
2431
2432 fputc_unfiltered ('\n', gdb_stderr);
2433 if (module_name)
a73c6dcd
MS
2434 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2435 "%s is %s-endian."),
aeb43123
KB
2436 module_name, module_endianness,
2437 file_name, file_endianness);
2438 else
a73c6dcd
MS
2439 warning (_("the selected MeP module is %s-endian, but the "
2440 "executable\n"
2441 "%s is %s-endian."),
aeb43123
KB
2442 module_endianness, file_name, file_endianness);
2443 }
2444 }
2445
2446 /* Find a candidate among the list of architectures we've created
2447 already. info->bfd_arch_info needs to match, but we also want
2448 the right me_module: the ELF header's e_flags field needs to
2449 match as well. */
2450 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2451 arches != NULL;
2452 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2453 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2454 return arches->gdbarch;
2455
2456 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2457 gdbarch = gdbarch_alloc (&info, tdep);
2458
2459 /* Get a CGEN CPU descriptor for this architecture. */
2460 {
2461 const char *mach_name = info.bfd_arch_info->printable_name;
2462 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2463 ? CGEN_ENDIAN_BIG
2464 : CGEN_ENDIAN_LITTLE);
2465
2466 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2467 CGEN_CPU_OPEN_ENDIAN, endian,
2468 CGEN_CPU_OPEN_END);
2469 }
2470
2471 tdep->me_module = me_module;
2472
2473 /* Register set. */
2474 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2475 set_gdbarch_write_pc (gdbarch, mep_write_pc);
2476 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2477 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2478 set_gdbarch_register_name (gdbarch, mep_register_name);
2479 set_gdbarch_register_type (gdbarch, mep_register_type);
2480 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2481 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2482 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2483 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2484 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2485
2486 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2487 reggroup_add (gdbarch, all_reggroup);
2488 reggroup_add (gdbarch, general_reggroup);
2489 reggroup_add (gdbarch, save_reggroup);
2490 reggroup_add (gdbarch, restore_reggroup);
2491 reggroup_add (gdbarch, mep_csr_reggroup);
2492 reggroup_add (gdbarch, mep_cr_reggroup);
2493 reggroup_add (gdbarch, mep_ccr_reggroup);
2494
2495 /* Disassembly. */
2496 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2497
2498 /* Breakpoints. */
2499 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2500 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2501 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2502
2503 /* Frames and frame unwinding. */
94afd7a6 2504 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
aeb43123
KB
2505 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2506 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2507 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2508 set_gdbarch_frame_args_skip (gdbarch, 0);
2509
2510 /* Return values. */
2511 set_gdbarch_return_value (gdbarch, mep_return_value);
2512
2513 /* Inferior function calls. */
2514 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2515 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
94afd7a6 2516 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
aeb43123
KB
2517
2518 return gdbarch;
2519}
2520
63807e1d
PA
2521/* Provide a prototype to silence -Wmissing-prototypes. */
2522extern initialize_file_ftype _initialize_mep_tdep;
aeb43123
KB
2523
2524void
2525_initialize_mep_tdep (void)
2526{
2527 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2528 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2529 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2530
2531 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2532
2533 mep_init_pseudoregister_maps ();
2534}
This page took 0.466585 seconds and 4 git commands to generate.