Sync config.sub,config.guess with upstream.
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
CommitLineData
75c9abc6 1/* Target-dependent code for GNU/Linux on MIPS processors.
a094c6fb 2
618f726f 3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
2aa830e4
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
2aa830e4
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
2aa830e4
DJ
19
20#include "defs.h"
21#include "gdbcore.h"
22#include "target.h"
23#include "solib-svr4.h"
19ed69dd 24#include "osabi.h"
96f026fc 25#include "mips-tdep.h"
6de918a6 26#include "frame.h"
2fdf551c 27#include "regcache.h"
5792a79b
DJ
28#include "trad-frame.h"
29#include "tramp-frame.h"
e6bb342a 30#include "gdbtypes.h"
3e5d3a5a 31#include "objfiles.h"
5ea03926 32#include "solib.h"
7d522c90 33#include "solist.h"
982e9687 34#include "symtab.h"
822b6570 35#include "target-descriptions.h"
50e8a0d5 36#include "regset.h"
d37eb719 37#include "mips-linux-tdep.h"
db5f024e 38#include "glibc-tdep.h"
a5ee0f0c 39#include "linux-tdep.h"
385203ed 40#include "xml-syscall.h"
232b8704 41#include "gdb_signals.h"
2aa830e4 42
7d522c90
DJ
43static struct target_so_ops mips_svr4_so_ops;
44
eb14d406
SDJ
45/* This enum represents the signals' numbers on the MIPS
46 architecture. It just contains the signal definitions which are
47 different from the generic implementation.
48
49 It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
50 from the Linux kernel tree. */
51
52enum
53 {
54 MIPS_LINUX_SIGEMT = 7,
55 MIPS_LINUX_SIGBUS = 10,
56 MIPS_LINUX_SIGSYS = 12,
57 MIPS_LINUX_SIGUSR1 = 16,
58 MIPS_LINUX_SIGUSR2 = 17,
59 MIPS_LINUX_SIGCHLD = 18,
60 MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
61 MIPS_LINUX_SIGPWR = 19,
62 MIPS_LINUX_SIGWINCH = 20,
63 MIPS_LINUX_SIGURG = 21,
64 MIPS_LINUX_SIGIO = 22,
65 MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
66 MIPS_LINUX_SIGSTOP = 23,
67 MIPS_LINUX_SIGTSTP = 24,
68 MIPS_LINUX_SIGCONT = 25,
69 MIPS_LINUX_SIGTTIN = 26,
70 MIPS_LINUX_SIGTTOU = 27,
71 MIPS_LINUX_SIGVTALRM = 28,
72 MIPS_LINUX_SIGPROF = 29,
73 MIPS_LINUX_SIGXCPU = 30,
74 MIPS_LINUX_SIGXFSZ = 31,
75
76 MIPS_LINUX_SIGRTMIN = 32,
77 MIPS_LINUX_SIGRT64 = 64,
78 MIPS_LINUX_SIGRTMAX = 127,
79 };
80
2aa830e4 81/* Figure out where the longjmp will land.
295093a4
MS
82 We expect the first arg to be a pointer to the jmp_buf structure
83 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
84 at. The pc is copied into PC. This routine returns 1 on
85 success. */
2aa830e4 86
19ed69dd
KB
87#define MIPS_LINUX_JB_ELEMENT_SIZE 4
88#define MIPS_LINUX_JB_PC 0
89
90static int
60ade65d 91mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2aa830e4
DJ
92{
93 CORE_ADDR jb_addr;
2eb4d78b 94 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 95 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 96 gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
2aa830e4 97
60ade65d 98 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
2aa830e4 99
7d266584
MR
100 if (target_read_memory ((jb_addr
101 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
2eb4d78b 102 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
2aa830e4
DJ
103 return 0;
104
819844ad 105 *pc = extract_unsigned_integer (buf,
e17a4113
UW
106 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
107 byte_order);
2aa830e4
DJ
108
109 return 1;
110}
111
4246e332 112/* Transform the bits comprising a 32-bit register to the right size
23a6d369
AC
113 for regcache_raw_supply(). This is needed when mips_isa_regsize()
114 is 8. */
96f026fc
KB
115
116static void
28f5035f 117supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
96f026fc 118{
e17a4113
UW
119 struct gdbarch *gdbarch = get_regcache_arch (regcache);
120 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d37eb719 121 gdb_byte buf[MAX_REGISTER_SIZE];
e17a4113 122 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
709476c3
SM
123 extract_signed_integer ((const gdb_byte *) addr, 4,
124 byte_order));
28f5035f 125 regcache_raw_supply (regcache, regnum, buf);
96f026fc
KB
126}
127
2aa830e4
DJ
128/* Unpack an elf_gregset_t into GDB's register cache. */
129
d37eb719 130void
28f5035f
UW
131mips_supply_gregset (struct regcache *regcache,
132 const mips_elf_gregset_t *gregsetp)
2aa830e4
DJ
133{
134 int regi;
28f5035f 135 const mips_elf_greg_t *regp = *gregsetp;
d9d9c31f 136 char zerobuf[MAX_REGISTER_SIZE];
2eb4d78b 137 struct gdbarch *gdbarch = get_regcache_arch (regcache);
bf072999 138
d9d9c31f 139 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4 140
822b6570 141 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
28f5035f 142 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
2aa830e4 143
2eb4d78b 144 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
145 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
146
2eb4d78b
UW
147 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
148 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
56cea623 149
2eb4d78b 150 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
28f5035f 151 regp + EF_CP0_EPC);
2eb4d78b 152 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
28f5035f
UW
153 regp + EF_CP0_BADVADDR);
154 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
2eb4d78b 155 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
28f5035f 156 regp + EF_CP0_CAUSE);
2aa830e4 157
1faeff08 158 /* Fill the inaccessible zero register with zero. */
822b6570 159 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
2aa830e4
DJ
160}
161
50e8a0d5
HZ
162static void
163mips_supply_gregset_wrapper (const struct regset *regset,
7d266584
MR
164 struct regcache *regcache,
165 int regnum, const void *gregs, size_t len)
50e8a0d5 166{
1528345d 167 gdb_assert (len >= sizeof (mips_elf_gregset_t));
50e8a0d5
HZ
168
169 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
170}
171
2aa830e4
DJ
172/* Pack our registers (or one register) into an elf_gregset_t. */
173
d37eb719 174void
28f5035f
UW
175mips_fill_gregset (const struct regcache *regcache,
176 mips_elf_gregset_t *gregsetp, int regno)
2aa830e4 177{
2eb4d78b 178 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2aa830e4 179 int regaddr, regi;
d37eb719 180 mips_elf_greg_t *regp = *gregsetp;
96f026fc 181 void *dst;
2aa830e4
DJ
182
183 if (regno == -1)
184 {
d37eb719 185 memset (regp, 0, sizeof (mips_elf_gregset_t));
822b6570 186 for (regi = 1; regi < 32; regi++)
28f5035f 187 mips_fill_gregset (regcache, gregsetp, regi);
2eb4d78b
UW
188 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
189 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
190 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
191 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
28f5035f 192 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
2eb4d78b 193 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
822b6570 194 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
2aa830e4
DJ
195 return;
196 }
197
822b6570 198 if (regno > 0 && regno < 32)
2aa830e4 199 {
2aa830e4 200 dst = regp + regno + EF_REG0;
28f5035f 201 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
202 return;
203 }
204
2eb4d78b
UW
205 if (regno == mips_regnum (gdbarch)->lo)
206 regaddr = EF_LO;
207 else if (regno == mips_regnum (gdbarch)->hi)
56cea623 208 regaddr = EF_HI;
2eb4d78b 209 else if (regno == mips_regnum (gdbarch)->pc)
56cea623 210 regaddr = EF_CP0_EPC;
2eb4d78b 211 else if (regno == mips_regnum (gdbarch)->badvaddr)
56cea623 212 regaddr = EF_CP0_BADVADDR;
24e05951 213 else if (regno == MIPS_PS_REGNUM)
56cea623 214 regaddr = EF_CP0_STATUS;
2eb4d78b 215 else if (regno == mips_regnum (gdbarch)->cause)
56cea623 216 regaddr = EF_CP0_CAUSE;
2eb4d78b 217 else if (mips_linux_restart_reg_p (gdbarch)
822b6570
DJ
218 && regno == MIPS_RESTART_REGNUM)
219 regaddr = EF_REG0;
56cea623
AC
220 else
221 regaddr = -1;
2aa830e4
DJ
222
223 if (regaddr != -1)
224 {
2aa830e4 225 dst = regp + regaddr;
28f5035f 226 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
227 }
228}
229
50e8a0d5
HZ
230static void
231mips_fill_gregset_wrapper (const struct regset *regset,
232 const struct regcache *regcache,
233 int regnum, void *gregs, size_t len)
234{
1528345d 235 gdb_assert (len >= sizeof (mips_elf_gregset_t));
50e8a0d5
HZ
236
237 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
238}
239
2aa830e4
DJ
240/* Likewise, unpack an elf_fpregset_t. */
241
d37eb719 242void
28f5035f
UW
243mips_supply_fpregset (struct regcache *regcache,
244 const mips_elf_fpregset_t *fpregsetp)
2aa830e4 245{
2eb4d78b 246 struct gdbarch *gdbarch = get_regcache_arch (regcache);
52f0bd74 247 int regi;
d9d9c31f 248 char zerobuf[MAX_REGISTER_SIZE];
bf072999 249
d9d9c31f 250 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4
DJ
251
252 for (regi = 0; regi < 32; regi++)
3e8c568d 253 regcache_raw_supply (regcache,
2eb4d78b 254 gdbarch_fp0_regnum (gdbarch) + regi,
3e8c568d 255 *fpregsetp + regi);
2aa830e4 256
28f5035f 257 regcache_raw_supply (regcache,
2eb4d78b 258 mips_regnum (gdbarch)->fp_control_status,
28f5035f 259 *fpregsetp + 32);
2aa830e4 260
295093a4 261 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
28f5035f 262 regcache_raw_supply (regcache,
2eb4d78b 263 mips_regnum (gdbarch)->fp_implementation_revision,
23a6d369 264 zerobuf);
2aa830e4
DJ
265}
266
50e8a0d5
HZ
267static void
268mips_supply_fpregset_wrapper (const struct regset *regset,
7d266584
MR
269 struct regcache *regcache,
270 int regnum, const void *gregs, size_t len)
50e8a0d5 271{
1528345d 272 gdb_assert (len >= sizeof (mips_elf_fpregset_t));
50e8a0d5
HZ
273
274 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
275}
276
2aa830e4
DJ
277/* Likewise, pack one or all floating point registers into an
278 elf_fpregset_t. */
279
d37eb719 280void
28f5035f
UW
281mips_fill_fpregset (const struct regcache *regcache,
282 mips_elf_fpregset_t *fpregsetp, int regno)
2aa830e4 283{
2eb4d78b 284 struct gdbarch *gdbarch = get_regcache_arch (regcache);
22e048c9 285 char *to;
2aa830e4 286
2eb4d78b
UW
287 if ((regno >= gdbarch_fp0_regnum (gdbarch))
288 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
2aa830e4 289 {
2eb4d78b 290 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
28f5035f 291 regcache_raw_collect (regcache, regno, to);
2aa830e4 292 }
2eb4d78b 293 else if (regno == mips_regnum (gdbarch)->fp_control_status)
2aa830e4 294 {
2aa830e4 295 to = (char *) (*fpregsetp + 32);
28f5035f 296 regcache_raw_collect (regcache, regno, to);
2aa830e4
DJ
297 }
298 else if (regno == -1)
299 {
300 int regi;
301
302 for (regi = 0; regi < 32; regi++)
3e8c568d 303 mips_fill_fpregset (regcache, fpregsetp,
2eb4d78b 304 gdbarch_fp0_regnum (gdbarch) + regi);
28f5035f 305 mips_fill_fpregset (regcache, fpregsetp,
2eb4d78b 306 mips_regnum (gdbarch)->fp_control_status);
2aa830e4
DJ
307 }
308}
309
50e8a0d5
HZ
310static void
311mips_fill_fpregset_wrapper (const struct regset *regset,
312 const struct regcache *regcache,
313 int regnum, void *gregs, size_t len)
314{
1528345d 315 gdb_assert (len >= sizeof (mips_elf_fpregset_t));
50e8a0d5
HZ
316
317 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
318}
319
96f026fc
KB
320/* Support for 64-bit ABIs. */
321
96f026fc 322/* Figure out where the longjmp will land.
295093a4
MS
323 We expect the first arg to be a pointer to the jmp_buf structure
324 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
325 at. The pc is copied into PC. This routine returns 1 on
326 success. */
96f026fc
KB
327
328/* Details about jmp_buf. */
329
330#define MIPS64_LINUX_JB_PC 0
331
332static int
60ade65d 333mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
96f026fc
KB
334{
335 CORE_ADDR jb_addr;
2eb4d78b 336 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
709476c3
SM
338 gdb_byte *buf
339 = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
2eb4d78b 340 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
96f026fc 341
60ade65d 342 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
96f026fc
KB
343
344 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
819844ad 345 buf,
2eb4d78b 346 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
96f026fc
KB
347 return 0;
348
819844ad 349 *pc = extract_unsigned_integer (buf,
e17a4113
UW
350 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
351 byte_order);
96f026fc
KB
352
353 return 1;
354}
355
d37eb719
DJ
356/* Register set support functions. These operate on standard 64-bit
357 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
358 target will still use the 64-bit format for PTRACE_GETREGS. */
359
360/* Supply a 64-bit register. */
96f026fc 361
63807e1d 362static void
28f5035f
UW
363supply_64bit_reg (struct regcache *regcache, int regnum,
364 const gdb_byte *buf)
d37eb719 365{
2eb4d78b
UW
366 struct gdbarch *gdbarch = get_regcache_arch (regcache);
367 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
368 && register_size (gdbarch, regnum) == 4)
28f5035f 369 regcache_raw_supply (regcache, regnum, buf + 4);
d37eb719 370 else
28f5035f 371 regcache_raw_supply (regcache, regnum, buf);
d37eb719
DJ
372}
373
374/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
375
376void
28f5035f
UW
377mips64_supply_gregset (struct regcache *regcache,
378 const mips64_elf_gregset_t *gregsetp)
96f026fc
KB
379{
380 int regi;
28f5035f 381 const mips64_elf_greg_t *regp = *gregsetp;
d37eb719 382 gdb_byte zerobuf[MAX_REGISTER_SIZE];
2eb4d78b 383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
96f026fc 384
d9d9c31f 385 memset (zerobuf, 0, MAX_REGISTER_SIZE);
96f026fc 386
822b6570 387 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
28f5035f 388 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
7d266584 389 (const gdb_byte *) (regp + regi));
28f5035f 390
2eb4d78b 391 if (mips_linux_restart_reg_p (gdbarch))
822b6570 392 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
7d266584 393 (const gdb_byte *) (regp + MIPS64_EF_REG0));
822b6570 394
2eb4d78b 395 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
28f5035f 396 (const gdb_byte *) (regp + MIPS64_EF_LO));
2eb4d78b 397 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
28f5035f
UW
398 (const gdb_byte *) (regp + MIPS64_EF_HI));
399
2eb4d78b 400 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
28f5035f 401 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
2eb4d78b 402 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
28f5035f
UW
403 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
404 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
405 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
2eb4d78b 406 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
28f5035f 407 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
96f026fc 408
1faeff08 409 /* Fill the inaccessible zero register with zero. */
822b6570 410 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
96f026fc
KB
411}
412
50e8a0d5
HZ
413static void
414mips64_supply_gregset_wrapper (const struct regset *regset,
7d266584
MR
415 struct regcache *regcache,
416 int regnum, const void *gregs, size_t len)
50e8a0d5 417{
1528345d 418 gdb_assert (len >= sizeof (mips64_elf_gregset_t));
50e8a0d5
HZ
419
420 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
421}
422
d37eb719 423/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
96f026fc 424
d37eb719 425void
28f5035f
UW
426mips64_fill_gregset (const struct regcache *regcache,
427 mips64_elf_gregset_t *gregsetp, int regno)
96f026fc 428{
2eb4d78b 429 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96f026fc
KB
431 int regaddr, regi;
432 mips64_elf_greg_t *regp = *gregsetp;
2ba93934 433 void *dst;
96f026fc
KB
434
435 if (regno == -1)
436 {
437 memset (regp, 0, sizeof (mips64_elf_gregset_t));
822b6570 438 for (regi = 1; regi < 32; regi++)
7d266584 439 mips64_fill_gregset (regcache, gregsetp, regi);
2eb4d78b
UW
440 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
441 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
442 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
025bb325
MS
443 mips64_fill_gregset (regcache, gregsetp,
444 mips_regnum (gdbarch)->badvaddr);
28f5035f 445 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
2eb4d78b 446 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
822b6570 447 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
96f026fc
KB
448 return;
449 }
450
822b6570 451 if (regno > 0 && regno < 32)
d37eb719 452 regaddr = regno + MIPS64_EF_REG0;
2eb4d78b 453 else if (regno == mips_regnum (gdbarch)->lo)
56cea623 454 regaddr = MIPS64_EF_LO;
2eb4d78b 455 else if (regno == mips_regnum (gdbarch)->hi)
56cea623 456 regaddr = MIPS64_EF_HI;
2eb4d78b 457 else if (regno == mips_regnum (gdbarch)->pc)
56cea623 458 regaddr = MIPS64_EF_CP0_EPC;
2eb4d78b 459 else if (regno == mips_regnum (gdbarch)->badvaddr)
56cea623 460 regaddr = MIPS64_EF_CP0_BADVADDR;
24e05951 461 else if (regno == MIPS_PS_REGNUM)
56cea623 462 regaddr = MIPS64_EF_CP0_STATUS;
2eb4d78b 463 else if (regno == mips_regnum (gdbarch)->cause)
56cea623 464 regaddr = MIPS64_EF_CP0_CAUSE;
2eb4d78b 465 else if (mips_linux_restart_reg_p (gdbarch)
822b6570
DJ
466 && regno == MIPS_RESTART_REGNUM)
467 regaddr = MIPS64_EF_REG0;
56cea623
AC
468 else
469 regaddr = -1;
96f026fc
KB
470
471 if (regaddr != -1)
472 {
d37eb719
DJ
473 gdb_byte buf[MAX_REGISTER_SIZE];
474 LONGEST val;
475
28f5035f 476 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
477 val = extract_signed_integer (buf, register_size (gdbarch, regno),
478 byte_order);
96f026fc 479 dst = regp + regaddr;
709476c3 480 store_signed_integer ((gdb_byte *) dst, 8, byte_order, val);
96f026fc
KB
481 }
482}
483
50e8a0d5
HZ
484static void
485mips64_fill_gregset_wrapper (const struct regset *regset,
486 const struct regcache *regcache,
487 int regnum, void *gregs, size_t len)
488{
1528345d 489 gdb_assert (len >= sizeof (mips64_elf_gregset_t));
50e8a0d5
HZ
490
491 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
492}
493
96f026fc
KB
494/* Likewise, unpack an elf_fpregset_t. */
495
d37eb719 496void
28f5035f
UW
497mips64_supply_fpregset (struct regcache *regcache,
498 const mips64_elf_fpregset_t *fpregsetp)
96f026fc 499{
2eb4d78b 500 struct gdbarch *gdbarch = get_regcache_arch (regcache);
52f0bd74 501 int regi;
96f026fc 502
d37eb719
DJ
503 /* See mips_linux_o32_sigframe_init for a description of the
504 peculiar FP register layout. */
2eb4d78b 505 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
d37eb719
DJ
506 for (regi = 0; regi < 32; regi++)
507 {
7d266584
MR
508 const gdb_byte *reg_ptr
509 = (const gdb_byte *) (*fpregsetp + (regi & ~1));
2eb4d78b 510 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
d37eb719 511 reg_ptr += 4;
3e8c568d 512 regcache_raw_supply (regcache,
2eb4d78b 513 gdbarch_fp0_regnum (gdbarch) + regi,
3e8c568d 514 reg_ptr);
d37eb719
DJ
515 }
516 else
517 for (regi = 0; regi < 32; regi++)
3e8c568d 518 regcache_raw_supply (regcache,
2eb4d78b 519 gdbarch_fp0_regnum (gdbarch) + regi,
7d266584 520 (const char *) (*fpregsetp + regi));
d37eb719 521
2eb4d78b 522 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
7d266584 523 (const gdb_byte *) (*fpregsetp + 32));
d37eb719
DJ
524
525 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
526 include it - but the result of PTRACE_GETFPREGS does. The best we
527 can do is to assume that its value is present. */
28f5035f 528 supply_32bit_reg (regcache,
2eb4d78b 529 mips_regnum (gdbarch)->fp_implementation_revision,
7d266584 530 (const gdb_byte *) (*fpregsetp + 32) + 4);
96f026fc
KB
531}
532
50e8a0d5
HZ
533static void
534mips64_supply_fpregset_wrapper (const struct regset *regset,
7d266584
MR
535 struct regcache *regcache,
536 int regnum, const void *gregs, size_t len)
50e8a0d5 537{
1528345d 538 gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
50e8a0d5
HZ
539
540 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
541}
542
96f026fc
KB
543/* Likewise, pack one or all floating point registers into an
544 elf_fpregset_t. */
545
d37eb719 546void
28f5035f
UW
547mips64_fill_fpregset (const struct regcache *regcache,
548 mips64_elf_fpregset_t *fpregsetp, int regno)
96f026fc 549{
2eb4d78b 550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d37eb719 552 gdb_byte *to;
96f026fc 553
2eb4d78b
UW
554 if ((regno >= gdbarch_fp0_regnum (gdbarch))
555 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
96f026fc 556 {
d37eb719
DJ
557 /* See mips_linux_o32_sigframe_init for a description of the
558 peculiar FP register layout. */
2eb4d78b 559 if (register_size (gdbarch, regno) == 4)
d37eb719 560 {
2eb4d78b 561 int regi = regno - gdbarch_fp0_regnum (gdbarch);
d37eb719
DJ
562
563 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
2eb4d78b 564 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
d37eb719 565 to += 4;
28f5035f 566 regcache_raw_collect (regcache, regno, to);
d37eb719
DJ
567 }
568 else
569 {
025bb325
MS
570 to = (gdb_byte *) (*fpregsetp + regno
571 - gdbarch_fp0_regnum (gdbarch));
28f5035f 572 regcache_raw_collect (regcache, regno, to);
d37eb719 573 }
96f026fc 574 }
2eb4d78b 575 else if (regno == mips_regnum (gdbarch)->fp_control_status)
96f026fc 576 {
d37eb719
DJ
577 gdb_byte buf[MAX_REGISTER_SIZE];
578 LONGEST val;
579
28f5035f 580 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
581 val = extract_signed_integer (buf, register_size (gdbarch, regno),
582 byte_order);
d37eb719 583 to = (gdb_byte *) (*fpregsetp + 32);
e17a4113 584 store_signed_integer (to, 4, byte_order, val);
d37eb719 585 }
2eb4d78b 586 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
d37eb719
DJ
587 {
588 gdb_byte buf[MAX_REGISTER_SIZE];
589 LONGEST val;
590
28f5035f 591 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
592 val = extract_signed_integer (buf, register_size (gdbarch, regno),
593 byte_order);
d37eb719 594 to = (gdb_byte *) (*fpregsetp + 32) + 4;
e17a4113 595 store_signed_integer (to, 4, byte_order, val);
96f026fc
KB
596 }
597 else if (regno == -1)
598 {
599 int regi;
600
601 for (regi = 0; regi < 32; regi++)
3e8c568d 602 mips64_fill_fpregset (regcache, fpregsetp,
2eb4d78b 603 gdbarch_fp0_regnum (gdbarch) + regi);
28f5035f 604 mips64_fill_fpregset (regcache, fpregsetp,
2eb4d78b 605 mips_regnum (gdbarch)->fp_control_status);
28f5035f 606 mips64_fill_fpregset (regcache, fpregsetp,
7d266584 607 mips_regnum (gdbarch)->fp_implementation_revision);
96f026fc
KB
608 }
609}
610
50e8a0d5
HZ
611static void
612mips64_fill_fpregset_wrapper (const struct regset *regset,
613 const struct regcache *regcache,
614 int regnum, void *gregs, size_t len)
615{
1528345d 616 gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
96f026fc 617
50e8a0d5
HZ
618 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
619}
2aa830e4 620
b7195f27
AA
621static const struct regset mips_linux_gregset =
622 {
623 NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
624 };
625
626static const struct regset mips64_linux_gregset =
627 {
628 NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
629 };
630
631static const struct regset mips_linux_fpregset =
632 {
633 NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
634 };
635
636static const struct regset mips64_linux_fpregset =
637 {
638 NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
639 };
640
d4036235
AA
641static void
642mips_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
643 iterate_over_regset_sections_cb *cb,
644 void *cb_data,
645 const struct regcache *regcache)
2aa830e4 646{
d4036235 647 if (register_size (gdbarch, MIPS_ZERO_REGNUM) == 4)
2aa830e4 648 {
d4036235
AA
649 cb (".reg", sizeof (mips_elf_gregset_t), &mips_linux_gregset,
650 NULL, cb_data);
651 cb (".reg2", sizeof (mips_elf_fpregset_t), &mips_linux_fpregset,
652 NULL, cb_data);
2aa830e4 653 }
d4036235 654 else
2aa830e4 655 {
d4036235
AA
656 cb (".reg", sizeof (mips64_elf_gregset_t), &mips64_linux_gregset,
657 NULL, cb_data);
658 cb (".reg2", sizeof (mips64_elf_fpregset_t), &mips64_linux_fpregset,
659 NULL, cb_data);
2aa830e4 660 }
50e8a0d5 661}
2aa830e4 662
4eb0ad19
DJ
663static const struct target_desc *
664mips_linux_core_read_description (struct gdbarch *gdbarch,
665 struct target_ops *target,
666 bfd *abfd)
667{
668 asection *section = bfd_get_section_by_name (abfd, ".reg");
669 if (! section)
670 return NULL;
671
672 switch (bfd_section_size (abfd, section))
673 {
674 case sizeof (mips_elf_gregset_t):
675 return mips_tdesc_gp32;
676
677 case sizeof (mips64_elf_gregset_t):
678 return mips_tdesc_gp64;
679
680 default:
681 return NULL;
682 }
683}
684
96f026fc 685
295093a4 686/* Check the code at PC for a dynamic linker lazy resolution stub.
3e5d3a5a
MR
687 GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
688 section uniformly since version 2.15. If the pc is in that section,
689 then we are in such a stub. Before that ".stub" was used in 32-bit
690 ELF binaries, however we do not bother checking for that since we
691 have never had and that case should be extremely rare these days.
692 Instead we pattern-match on the code generated by GNU ld. They look
693 like this:
6de918a6
DJ
694
695 lw t9,0x8010(gp)
696 addu t7,ra
697 jalr t9,ra
698 addiu t8,zero,INDEX
699
3e5d3a5a
MR
700 (with the appropriate doubleword instructions for N64). As any lazy
701 resolution stubs in microMIPS binaries will always be in a
702 ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
6de918a6
DJ
703
704static int
3e5d3a5a 705mips_linux_in_dynsym_stub (CORE_ADDR pc)
6de918a6 706{
e362b510 707 gdb_byte buf[28], *p;
6de918a6 708 ULONGEST insn, insn1;
f5656ead
TT
709 int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
710 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
6de918a6 711
3e5d3a5a
MR
712 if (in_mips_stubs_section (pc))
713 return 1;
714
6de918a6
DJ
715 read_memory (pc - 12, buf, 28);
716
717 if (n64)
718 {
719 /* ld t9,0x8010(gp) */
720 insn1 = 0xdf998010;
721 }
722 else
723 {
724 /* lw t9,0x8010(gp) */
725 insn1 = 0x8f998010;
726 }
727
728 p = buf + 12;
729 while (p >= buf)
730 {
e17a4113 731 insn = extract_unsigned_integer (p, 4, byte_order);
6de918a6
DJ
732 if (insn == insn1)
733 break;
734 p -= 4;
735 }
736 if (p < buf)
737 return 0;
738
e17a4113 739 insn = extract_unsigned_integer (p + 4, 4, byte_order);
6de918a6
DJ
740 if (n64)
741 {
93084fcd
SD
742 /* 'daddu t7,ra' or 'or t7, ra, zero'*/
743 if (insn != 0x03e0782d || insn != 0x03e07825)
6de918a6 744 return 0;
93084fcd 745
6de918a6
DJ
746 }
747 else
748 {
93084fcd
SD
749 /* 'addu t7,ra' or 'or t7, ra, zero'*/
750 if (insn != 0x03e07821 || insn != 0x03e07825)
6de918a6 751 return 0;
93084fcd 752
6de918a6 753 }
295093a4 754
e17a4113 755 insn = extract_unsigned_integer (p + 8, 4, byte_order);
6de918a6
DJ
756 /* jalr t9,ra */
757 if (insn != 0x0320f809)
758 return 0;
759
e17a4113 760 insn = extract_unsigned_integer (p + 12, 4, byte_order);
6de918a6
DJ
761 if (n64)
762 {
763 /* daddiu t8,zero,0 */
764 if ((insn & 0xffff0000) != 0x64180000)
765 return 0;
766 }
767 else
768 {
769 /* addiu t8,zero,0 */
770 if ((insn & 0xffff0000) != 0x24180000)
771 return 0;
772 }
773
3e5d3a5a 774 return 1;
6de918a6
DJ
775}
776
295093a4 777/* Return non-zero iff PC belongs to the dynamic linker resolution
db5f024e 778 code, a PLT entry, or a lazy binding stub. */
6de918a6 779
7d522c90 780static int
6de918a6
DJ
781mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
782{
295093a4 783 /* Check whether PC is in the dynamic linker. This also checks
db5f024e 784 whether it is in the .plt section, used by non-PIC executables. */
7d522c90 785 if (svr4_in_dynsym_resolve_code (pc))
6de918a6
DJ
786 return 1;
787
3e5d3a5a
MR
788 /* Likewise for the stubs. They live in the .MIPS.stubs section these
789 days, so we check if the PC is within, than fall back to a pattern
790 match. */
791 if (mips_linux_in_dynsym_stub (pc))
6de918a6
DJ
792 return 1;
793
794 return 0;
795}
796
797/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
798 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
799 implementation of this triggers at "fixup" from the same objfile as
c4c5b7ba 800 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
db5f024e
DJ
801 "__dl_runtime_resolve" directly. An unresolved lazy binding
802 stub will point to _dl_runtime_resolve, which will first call
c4c5b7ba
AC
803 __dl_runtime_resolve, and then pass control to the resolved
804 function. */
6de918a6
DJ
805
806static CORE_ADDR
807mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
808{
3b7344d5 809 struct bound_minimal_symbol resolver;
6de918a6
DJ
810
811 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
812
77e371c0 813 if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
c7ce8faa 814 return frame_unwind_caller_pc (get_current_frame ());
6de918a6 815
db5f024e 816 return glibc_skip_solib_resolver (gdbarch, pc);
295093a4 817}
6de918a6 818
5792a79b
DJ
819/* Signal trampoline support. There are four supported layouts for a
820 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
821 n64 rt_sigframe. We handle them all independently; not the most
822 efficient way, but simplest. First, declare all the unwinders. */
823
824static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
b8a22b94 825 struct frame_info *this_frame,
5792a79b
DJ
826 struct trad_frame_cache *this_cache,
827 CORE_ADDR func);
828
829static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
b8a22b94 830 struct frame_info *this_frame,
5792a79b
DJ
831 struct trad_frame_cache *this_cache,
832 CORE_ADDR func);
833
858339f2
MR
834static int mips_linux_sigframe_validate (const struct tramp_frame *self,
835 struct frame_info *this_frame,
836 CORE_ADDR *pc);
837
838static int micromips_linux_sigframe_validate (const struct tramp_frame *self,
839 struct frame_info *this_frame,
840 CORE_ADDR *pc);
841
5792a79b
DJ
842#define MIPS_NR_LINUX 4000
843#define MIPS_NR_N64_LINUX 5000
844#define MIPS_NR_N32_LINUX 6000
845
846#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
847#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
848#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
849#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
850
851#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
852#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
853#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
854#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
855#define MIPS_INST_SYSCALL 0x0000000c
856
858339f2
MR
857#define MICROMIPS_INST_LI_V0 0x3040
858#define MICROMIPS_INST_POOL32A 0x0000
859#define MICROMIPS_INST_SYSCALL 0x8b7c
860
2cd8546d
AC
861static const struct tramp_frame mips_linux_o32_sigframe = {
862 SIGTRAMP_FRAME,
5792a79b 863 4,
2cd8546d
AC
864 {
865 { MIPS_INST_LI_V0_SIGRETURN, -1 },
866 { MIPS_INST_SYSCALL, -1 },
867 { TRAMP_SENTINEL_INSN, -1 }
868 },
858339f2
MR
869 mips_linux_o32_sigframe_init,
870 mips_linux_sigframe_validate
5792a79b
DJ
871};
872
2cd8546d
AC
873static const struct tramp_frame mips_linux_o32_rt_sigframe = {
874 SIGTRAMP_FRAME,
5792a79b 875 4,
2cd8546d
AC
876 {
877 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
878 { MIPS_INST_SYSCALL, -1 },
879 { TRAMP_SENTINEL_INSN, -1 } },
858339f2
MR
880 mips_linux_o32_sigframe_init,
881 mips_linux_sigframe_validate
5792a79b
DJ
882};
883
2cd8546d
AC
884static const struct tramp_frame mips_linux_n32_rt_sigframe = {
885 SIGTRAMP_FRAME,
5792a79b 886 4,
2cd8546d
AC
887 {
888 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
889 { MIPS_INST_SYSCALL, -1 },
890 { TRAMP_SENTINEL_INSN, -1 }
891 },
858339f2
MR
892 mips_linux_n32n64_sigframe_init,
893 mips_linux_sigframe_validate
5792a79b
DJ
894};
895
2cd8546d
AC
896static const struct tramp_frame mips_linux_n64_rt_sigframe = {
897 SIGTRAMP_FRAME,
5792a79b 898 4,
fcbd8a5c
TS
899 {
900 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
901 { MIPS_INST_SYSCALL, -1 },
902 { TRAMP_SENTINEL_INSN, -1 }
903 },
858339f2
MR
904 mips_linux_n32n64_sigframe_init,
905 mips_linux_sigframe_validate
906};
907
908static const struct tramp_frame micromips_linux_o32_sigframe = {
909 SIGTRAMP_FRAME,
910 2,
911 {
912 { MICROMIPS_INST_LI_V0, -1 },
913 { MIPS_NR_sigreturn, -1 },
914 { MICROMIPS_INST_POOL32A, -1 },
915 { MICROMIPS_INST_SYSCALL, -1 },
916 { TRAMP_SENTINEL_INSN, -1 }
917 },
918 mips_linux_o32_sigframe_init,
919 micromips_linux_sigframe_validate
920};
921
922static const struct tramp_frame micromips_linux_o32_rt_sigframe = {
923 SIGTRAMP_FRAME,
924 2,
925 {
926 { MICROMIPS_INST_LI_V0, -1 },
927 { MIPS_NR_rt_sigreturn, -1 },
928 { MICROMIPS_INST_POOL32A, -1 },
929 { MICROMIPS_INST_SYSCALL, -1 },
930 { TRAMP_SENTINEL_INSN, -1 }
931 },
932 mips_linux_o32_sigframe_init,
933 micromips_linux_sigframe_validate
934};
935
936static const struct tramp_frame micromips_linux_n32_rt_sigframe = {
937 SIGTRAMP_FRAME,
938 2,
939 {
940 { MICROMIPS_INST_LI_V0, -1 },
941 { MIPS_NR_N32_rt_sigreturn, -1 },
942 { MICROMIPS_INST_POOL32A, -1 },
943 { MICROMIPS_INST_SYSCALL, -1 },
944 { TRAMP_SENTINEL_INSN, -1 }
945 },
946 mips_linux_n32n64_sigframe_init,
947 micromips_linux_sigframe_validate
948};
949
950static const struct tramp_frame micromips_linux_n64_rt_sigframe = {
951 SIGTRAMP_FRAME,
952 2,
953 {
954 { MICROMIPS_INST_LI_V0, -1 },
955 { MIPS_NR_N64_rt_sigreturn, -1 },
956 { MICROMIPS_INST_POOL32A, -1 },
957 { MICROMIPS_INST_SYSCALL, -1 },
958 { TRAMP_SENTINEL_INSN, -1 }
959 },
960 mips_linux_n32n64_sigframe_init,
961 micromips_linux_sigframe_validate
5792a79b
DJ
962};
963
964/* *INDENT-OFF* */
965/* The unwinder for o32 signal frames. The legacy structures look
966 like this:
967
968 struct sigframe {
969 u32 sf_ass[4]; [argument save space for o32]
eb195664 970 u32 sf_code[2]; [signal trampoline or fill]
5792a79b
DJ
971 struct sigcontext sf_sc;
972 sigset_t sf_mask;
973 };
974
d0e64392
MR
975 Pre-2.6.12 sigcontext:
976
5792a79b
DJ
977 struct sigcontext {
978 unsigned int sc_regmask; [Unused]
979 unsigned int sc_status;
980 unsigned long long sc_pc;
981 unsigned long long sc_regs[32];
982 unsigned long long sc_fpregs[32];
983 unsigned int sc_ownedfp;
984 unsigned int sc_fpc_csr;
985 unsigned int sc_fpc_eir; [Unused]
986 unsigned int sc_used_math;
987 unsigned int sc_ssflags; [Unused]
988 [Alignment hole of four bytes]
989 unsigned long long sc_mdhi;
990 unsigned long long sc_mdlo;
991
992 unsigned int sc_cause; [Unused]
993 unsigned int sc_badvaddr; [Unused]
994
995 unsigned long sc_sigset[4]; [kernel's sigset_t]
996 };
997
d0e64392
MR
998 Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
999
1000 struct sigcontext {
1001 unsigned int sc_regmask; [Unused]
1002 unsigned int sc_status; [Unused]
1003 unsigned long long sc_pc;
1004 unsigned long long sc_regs[32];
1005 unsigned long long sc_fpregs[32];
1006 unsigned int sc_acx;
1007 unsigned int sc_fpc_csr;
1008 unsigned int sc_fpc_eir; [Unused]
1009 unsigned int sc_used_math;
1010 unsigned int sc_dsp;
1011 [Alignment hole of four bytes]
1012 unsigned long long sc_mdhi;
1013 unsigned long long sc_mdlo;
1014 unsigned long sc_hi1;
1015 unsigned long sc_lo1;
1016 unsigned long sc_hi2;
1017 unsigned long sc_lo2;
1018 unsigned long sc_hi3;
1019 unsigned long sc_lo3;
1020 };
1021
5792a79b
DJ
1022 The RT signal frames look like this:
1023
1024 struct rt_sigframe {
1025 u32 rs_ass[4]; [argument save space for o32]
eb195664 1026 u32 rs_code[2] [signal trampoline or fill]
5792a79b
DJ
1027 struct siginfo rs_info;
1028 struct ucontext rs_uc;
1029 };
1030
1031 struct ucontext {
1032 unsigned long uc_flags;
1033 struct ucontext *uc_link;
1034 stack_t uc_stack;
1035 [Alignment hole of four bytes]
1036 struct sigcontext uc_mcontext;
1037 sigset_t uc_sigmask;
1038 }; */
1039/* *INDENT-ON* */
1040
5792a79b
DJ
1041#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
1042
1043#define RTSIGFRAME_SIGINFO_SIZE 128
1044#define STACK_T_SIZE (3 * 4)
1045#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
1046#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1047 + RTSIGFRAME_SIGINFO_SIZE \
1048 + UCONTEXT_SIGCONTEXT_OFFSET)
1049
1050#define SIGCONTEXT_PC (1 * 8)
1051#define SIGCONTEXT_REGS (2 * 8)
1052#define SIGCONTEXT_FPREGS (34 * 8)
1053#define SIGCONTEXT_FPCSR (66 * 8 + 4)
d0e64392 1054#define SIGCONTEXT_DSPCTL (68 * 8 + 0)
5792a79b
DJ
1055#define SIGCONTEXT_HI (69 * 8)
1056#define SIGCONTEXT_LO (70 * 8)
1057#define SIGCONTEXT_CAUSE (71 * 8 + 0)
1058#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
d0e64392
MR
1059#define SIGCONTEXT_HI1 (71 * 8 + 0)
1060#define SIGCONTEXT_LO1 (71 * 8 + 4)
1061#define SIGCONTEXT_HI2 (72 * 8 + 0)
1062#define SIGCONTEXT_LO2 (72 * 8 + 4)
1063#define SIGCONTEXT_HI3 (73 * 8 + 0)
1064#define SIGCONTEXT_LO3 (73 * 8 + 4)
5792a79b
DJ
1065
1066#define SIGCONTEXT_REG_SIZE 8
1067
1068static void
1069mips_linux_o32_sigframe_init (const struct tramp_frame *self,
b8a22b94 1070 struct frame_info *this_frame,
5792a79b
DJ
1071 struct trad_frame_cache *this_cache,
1072 CORE_ADDR func)
1073{
b8a22b94 1074 struct gdbarch *gdbarch = get_frame_arch (this_frame);
22e048c9 1075 int ireg;
eb195664
DD
1076 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1077 CORE_ADDR sigcontext_base;
2eb4d78b 1078 const struct mips_regnum *regs = mips_regnum (gdbarch);
37c4d197 1079 CORE_ADDR regs_base;
5792a79b 1080
858339f2
MR
1081 if (self == &mips_linux_o32_sigframe
1082 || self == &micromips_linux_o32_sigframe)
eb195664 1083 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
5792a79b 1084 else
eb195664 1085 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
295093a4
MS
1086
1087 /* I'm not proud of this hack. Eventually we will have the
1088 infrastructure to indicate the size of saved registers on a
1089 per-frame basis, but right now we don't; the kernel saves eight
37c4d197
DJ
1090 bytes but we only want four. Use regs_base to access any
1091 64-bit fields. */
2eb4d78b 1092 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
37c4d197
DJ
1093 regs_base = sigcontext_base + 4;
1094 else
1095 regs_base = sigcontext_base;
5792a79b 1096
2eb4d78b 1097 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
1098 trad_frame_set_reg_addr (this_cache,
1099 (MIPS_RESTART_REGNUM
2eb4d78b 1100 + gdbarch_num_regs (gdbarch)),
822b6570 1101 regs_base + SIGCONTEXT_REGS);
5792a79b
DJ
1102
1103 for (ireg = 1; ireg < 32; ireg++)
295093a4 1104 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1105 (ireg + MIPS_ZERO_REGNUM
1106 + gdbarch_num_regs (gdbarch)),
1107 (regs_base + SIGCONTEXT_REGS
1108 + ireg * SIGCONTEXT_REG_SIZE));
5792a79b 1109
37c4d197
DJ
1110 /* The way that floating point registers are saved, unfortunately,
1111 depends on the architecture the kernel is built for. For the r3000 and
1112 tx39, four bytes of each register are at the beginning of each of the
1113 32 eight byte slots. For everything else, the registers are saved
1114 using double precision; only the even-numbered slots are initialized,
1115 and the high bits are the odd-numbered register. Assume the latter
1116 layout, since we can't tell, and it's much more common. Which bits are
1117 the "high" bits depends on endianness. */
5792a79b 1118 for (ireg = 0; ireg < 32; ireg++)
2eb4d78b 1119 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
f57d151a 1120 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1121 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1122 (sigcontext_base + SIGCONTEXT_FPREGS + 4
1123 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
37c4d197 1124 else
f57d151a 1125 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1126 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1127 (sigcontext_base + SIGCONTEXT_FPREGS
1128 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
5792a79b 1129
f57d151a 1130 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1131 regs->pc + gdbarch_num_regs (gdbarch),
37c4d197 1132 regs_base + SIGCONTEXT_PC);
5792a79b 1133
295093a4 1134 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1135 (regs->fp_control_status
1136 + gdbarch_num_regs (gdbarch)),
5792a79b 1137 sigcontext_base + SIGCONTEXT_FPCSR);
d0e64392
MR
1138
1139 if (regs->dspctl != -1)
1140 trad_frame_set_reg_addr (this_cache,
1141 regs->dspctl + gdbarch_num_regs (gdbarch),
1142 sigcontext_base + SIGCONTEXT_DSPCTL);
1143
f57d151a 1144 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1145 regs->hi + gdbarch_num_regs (gdbarch),
37c4d197 1146 regs_base + SIGCONTEXT_HI);
f57d151a 1147 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1148 regs->lo + gdbarch_num_regs (gdbarch),
37c4d197 1149 regs_base + SIGCONTEXT_LO);
d0e64392
MR
1150
1151 if (regs->dspacc != -1)
1152 {
1153 trad_frame_set_reg_addr (this_cache,
1154 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1155 sigcontext_base + SIGCONTEXT_HI1);
1156 trad_frame_set_reg_addr (this_cache,
1157 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1158 sigcontext_base + SIGCONTEXT_LO1);
1159 trad_frame_set_reg_addr (this_cache,
1160 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1161 sigcontext_base + SIGCONTEXT_HI2);
1162 trad_frame_set_reg_addr (this_cache,
1163 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1164 sigcontext_base + SIGCONTEXT_LO2);
1165 trad_frame_set_reg_addr (this_cache,
1166 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1167 sigcontext_base + SIGCONTEXT_HI3);
1168 trad_frame_set_reg_addr (this_cache,
1169 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1170 sigcontext_base + SIGCONTEXT_LO3);
1171 }
1172 else
1173 {
1174 trad_frame_set_reg_addr (this_cache,
1175 regs->cause + gdbarch_num_regs (gdbarch),
1176 sigcontext_base + SIGCONTEXT_CAUSE);
1177 trad_frame_set_reg_addr (this_cache,
1178 regs->badvaddr + gdbarch_num_regs (gdbarch),
1179 sigcontext_base + SIGCONTEXT_BADVADDR);
1180 }
5792a79b
DJ
1181
1182 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
eb195664 1183 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
5792a79b
DJ
1184}
1185
1186/* *INDENT-OFF* */
1187/* For N32/N64 things look different. There is no non-rt signal frame.
1188
1189 struct rt_sigframe_n32 {
1190 u32 rs_ass[4]; [ argument save space for o32 ]
eb195664 1191 u32 rs_code[2]; [ signal trampoline or fill ]
5792a79b
DJ
1192 struct siginfo rs_info;
1193 struct ucontextn32 rs_uc;
1194 };
1195
1196 struct ucontextn32 {
1197 u32 uc_flags;
1198 s32 uc_link;
1199 stack32_t uc_stack;
1200 struct sigcontext uc_mcontext;
1201 sigset_t uc_sigmask; [ mask last for extensibility ]
1202 };
295093a4 1203
e741f4d4 1204 struct rt_sigframe {
5792a79b
DJ
1205 u32 rs_ass[4]; [ argument save space for o32 ]
1206 u32 rs_code[2]; [ signal trampoline ]
1207 struct siginfo rs_info;
1208 struct ucontext rs_uc;
1209 };
1210
1211 struct ucontext {
1212 unsigned long uc_flags;
1213 struct ucontext *uc_link;
1214 stack_t uc_stack;
1215 struct sigcontext uc_mcontext;
1216 sigset_t uc_sigmask; [ mask last for extensibility ]
1217 };
1218
1219 And the sigcontext is different (this is for both n32 and n64):
1220
1221 struct sigcontext {
1222 unsigned long long sc_regs[32];
1223 unsigned long long sc_fpregs[32];
1224 unsigned long long sc_mdhi;
e741f4d4
DJ
1225 unsigned long long sc_hi1;
1226 unsigned long long sc_hi2;
1227 unsigned long long sc_hi3;
5792a79b 1228 unsigned long long sc_mdlo;
e741f4d4
DJ
1229 unsigned long long sc_lo1;
1230 unsigned long long sc_lo2;
1231 unsigned long long sc_lo3;
5792a79b 1232 unsigned long long sc_pc;
5792a79b 1233 unsigned int sc_fpc_csr;
5792a79b 1234 unsigned int sc_used_math;
e741f4d4
DJ
1235 unsigned int sc_dsp;
1236 unsigned int sc_reserved;
1237 };
1238
1239 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1240 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1241 included too. */
5792a79b
DJ
1242/* *INDENT-ON* */
1243
1244#define N32_STACK_T_SIZE STACK_T_SIZE
1245#define N64_STACK_T_SIZE (2 * 8 + 4)
1246#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1247#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1248#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1249 + RTSIGFRAME_SIGINFO_SIZE \
1250 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1251#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1252 + RTSIGFRAME_SIGINFO_SIZE \
1253 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1254
1255#define N64_SIGCONTEXT_REGS (0 * 8)
1256#define N64_SIGCONTEXT_FPREGS (32 * 8)
1257#define N64_SIGCONTEXT_HI (64 * 8)
d0e64392
MR
1258#define N64_SIGCONTEXT_HI1 (65 * 8)
1259#define N64_SIGCONTEXT_HI2 (66 * 8)
1260#define N64_SIGCONTEXT_HI3 (67 * 8)
e741f4d4 1261#define N64_SIGCONTEXT_LO (68 * 8)
d0e64392
MR
1262#define N64_SIGCONTEXT_LO1 (69 * 8)
1263#define N64_SIGCONTEXT_LO2 (70 * 8)
1264#define N64_SIGCONTEXT_LO3 (71 * 8)
e741f4d4 1265#define N64_SIGCONTEXT_PC (72 * 8)
d0e64392
MR
1266#define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
1267#define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
5792a79b
DJ
1268
1269#define N64_SIGCONTEXT_REG_SIZE 8
295093a4 1270
5792a79b
DJ
1271static void
1272mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
b8a22b94 1273 struct frame_info *this_frame,
5792a79b
DJ
1274 struct trad_frame_cache *this_cache,
1275 CORE_ADDR func)
1276{
b8a22b94 1277 struct gdbarch *gdbarch = get_frame_arch (this_frame);
22e048c9 1278 int ireg;
eb195664
DD
1279 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1280 CORE_ADDR sigcontext_base;
2eb4d78b 1281 const struct mips_regnum *regs = mips_regnum (gdbarch);
5792a79b 1282
858339f2
MR
1283 if (self == &mips_linux_n32_rt_sigframe
1284 || self == &micromips_linux_n32_rt_sigframe)
eb195664 1285 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
5792a79b 1286 else
eb195664 1287 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
295093a4 1288
2eb4d78b 1289 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
1290 trad_frame_set_reg_addr (this_cache,
1291 (MIPS_RESTART_REGNUM
2eb4d78b 1292 + gdbarch_num_regs (gdbarch)),
822b6570 1293 sigcontext_base + N64_SIGCONTEXT_REGS);
5792a79b
DJ
1294
1295 for (ireg = 1; ireg < 32; ireg++)
295093a4 1296 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1297 (ireg + MIPS_ZERO_REGNUM
1298 + gdbarch_num_regs (gdbarch)),
1299 (sigcontext_base + N64_SIGCONTEXT_REGS
1300 + ireg * N64_SIGCONTEXT_REG_SIZE));
5792a79b
DJ
1301
1302 for (ireg = 0; ireg < 32; ireg++)
f57d151a 1303 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1304 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1305 (sigcontext_base + N64_SIGCONTEXT_FPREGS
1306 + ireg * N64_SIGCONTEXT_REG_SIZE));
5792a79b 1307
f57d151a 1308 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1309 regs->pc + gdbarch_num_regs (gdbarch),
5792a79b
DJ
1310 sigcontext_base + N64_SIGCONTEXT_PC);
1311
295093a4 1312 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1313 (regs->fp_control_status
1314 + gdbarch_num_regs (gdbarch)),
5792a79b 1315 sigcontext_base + N64_SIGCONTEXT_FPCSR);
d0e64392 1316
f57d151a 1317 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1318 regs->hi + gdbarch_num_regs (gdbarch),
5792a79b 1319 sigcontext_base + N64_SIGCONTEXT_HI);
f57d151a 1320 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1321 regs->lo + gdbarch_num_regs (gdbarch),
5792a79b 1322 sigcontext_base + N64_SIGCONTEXT_LO);
5792a79b 1323
d0e64392
MR
1324 if (regs->dspacc != -1)
1325 {
1326 trad_frame_set_reg_addr (this_cache,
1327 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1328 sigcontext_base + N64_SIGCONTEXT_HI1);
1329 trad_frame_set_reg_addr (this_cache,
1330 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1331 sigcontext_base + N64_SIGCONTEXT_LO1);
1332 trad_frame_set_reg_addr (this_cache,
1333 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1334 sigcontext_base + N64_SIGCONTEXT_HI2);
1335 trad_frame_set_reg_addr (this_cache,
1336 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1337 sigcontext_base + N64_SIGCONTEXT_LO2);
1338 trad_frame_set_reg_addr (this_cache,
1339 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1340 sigcontext_base + N64_SIGCONTEXT_HI3);
1341 trad_frame_set_reg_addr (this_cache,
1342 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1343 sigcontext_base + N64_SIGCONTEXT_LO3);
1344 }
1345 if (regs->dspctl != -1)
1346 trad_frame_set_reg_addr (this_cache,
1347 regs->dspctl + gdbarch_num_regs (gdbarch),
1348 sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1349
5792a79b 1350 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
eb195664 1351 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
5792a79b
DJ
1352}
1353
858339f2
MR
1354/* Implement struct tramp_frame's "validate" method for standard MIPS code. */
1355
1356static int
1357mips_linux_sigframe_validate (const struct tramp_frame *self,
1358 struct frame_info *this_frame,
1359 CORE_ADDR *pc)
1360{
1361 return mips_pc_is_mips (*pc);
1362}
1363
1364/* Implement struct tramp_frame's "validate" method for microMIPS code. */
1365
1366static int
1367micromips_linux_sigframe_validate (const struct tramp_frame *self,
1368 struct frame_info *this_frame,
1369 CORE_ADDR *pc)
1370{
3e29f34a
MR
1371 if (mips_pc_is_micromips (get_frame_arch (this_frame), *pc))
1372 {
1373 *pc = mips_unmake_compact_addr (*pc);
1374 return 1;
1375 }
1376 else
1377 return 0;
858339f2
MR
1378}
1379
5a439849
MR
1380/* Implement the "write_pc" gdbarch method. */
1381
822b6570 1382static void
61a1198a 1383mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
822b6570 1384{
2eb4d78b 1385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5a439849
MR
1386
1387 mips_write_pc (regcache, pc);
822b6570
DJ
1388
1389 /* Clear the syscall restart flag. */
2eb4d78b 1390 if (mips_linux_restart_reg_p (gdbarch))
61a1198a 1391 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
822b6570
DJ
1392}
1393
1394/* Return 1 if MIPS_RESTART_REGNUM is usable. */
1395
1396int
1397mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1398{
1399 /* If we do not have a target description with registers, then
1400 MIPS_RESTART_REGNUM will not be included in the register set. */
1401 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1402 return 0;
1403
1404 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1405 either be GPR-sized or missing. */
1406 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1407}
9f62d0e2 1408
e38d4e1a
DJ
1409/* When FRAME is at a syscall instruction, return the PC of the next
1410 instruction to be executed. */
1411
63807e1d 1412static CORE_ADDR
e38d4e1a
DJ
1413mips_linux_syscall_next_pc (struct frame_info *frame)
1414{
1415 CORE_ADDR pc = get_frame_pc (frame);
1416 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1417
1418 /* If we are about to make a sigreturn syscall, use the unwinder to
1419 decode the signal frame. */
1420 if (v0 == MIPS_NR_sigreturn
1421 || v0 == MIPS_NR_rt_sigreturn
1422 || v0 == MIPS_NR_N64_rt_sigreturn
1423 || v0 == MIPS_NR_N32_rt_sigreturn)
c7ce8faa 1424 return frame_unwind_caller_pc (get_current_frame ());
e38d4e1a
DJ
1425
1426 return pc + 4;
1427}
1428
385203ed
DD
1429/* Return the current system call's number present in the
1430 v0 register. When the function fails, it returns -1. */
1431
1432static LONGEST
1433mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1434 ptid_t ptid)
1435{
1436 struct regcache *regcache = get_thread_regcache (ptid);
1437 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1439 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1440 /* The content of a register */
1441 gdb_byte buf[8];
1442 /* The result */
1443 LONGEST ret;
1444
1445 /* Make sure we're in a known ABI */
1446 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1447 || tdep->mips_abi == MIPS_ABI_N32
1448 || tdep->mips_abi == MIPS_ABI_N64);
1449
1450 gdb_assert (regsize <= sizeof (buf));
1451
1452 /* Getting the system call number from the register.
1453 syscall number is in v0 or $2. */
1454 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1455
1456 ret = extract_signed_integer (buf, regsize, byte_order);
1457
1458 return ret;
1459}
1460
eb14d406
SDJ
1461/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1462 gdbarch.h. */
1463
1464static int
1465mips_gdb_signal_to_target (struct gdbarch *gdbarch,
1466 enum gdb_signal signal)
1467{
1468 switch (signal)
1469 {
1470 case GDB_SIGNAL_EMT:
1471 return MIPS_LINUX_SIGEMT;
1472
1473 case GDB_SIGNAL_BUS:
1474 return MIPS_LINUX_SIGBUS;
1475
1476 case GDB_SIGNAL_SYS:
1477 return MIPS_LINUX_SIGSYS;
1478
1479 case GDB_SIGNAL_USR1:
1480 return MIPS_LINUX_SIGUSR1;
1481
1482 case GDB_SIGNAL_USR2:
1483 return MIPS_LINUX_SIGUSR2;
1484
1485 case GDB_SIGNAL_CHLD:
1486 return MIPS_LINUX_SIGCHLD;
1487
1488 case GDB_SIGNAL_PWR:
1489 return MIPS_LINUX_SIGPWR;
1490
1491 case GDB_SIGNAL_WINCH:
1492 return MIPS_LINUX_SIGWINCH;
1493
1494 case GDB_SIGNAL_URG:
1495 return MIPS_LINUX_SIGURG;
1496
1497 case GDB_SIGNAL_IO:
1498 return MIPS_LINUX_SIGIO;
1499
1500 case GDB_SIGNAL_POLL:
1501 return MIPS_LINUX_SIGPOLL;
1502
1503 case GDB_SIGNAL_STOP:
1504 return MIPS_LINUX_SIGSTOP;
1505
1506 case GDB_SIGNAL_TSTP:
1507 return MIPS_LINUX_SIGTSTP;
1508
1509 case GDB_SIGNAL_CONT:
1510 return MIPS_LINUX_SIGCONT;
1511
1512 case GDB_SIGNAL_TTIN:
1513 return MIPS_LINUX_SIGTTIN;
1514
1515 case GDB_SIGNAL_TTOU:
1516 return MIPS_LINUX_SIGTTOU;
1517
1518 case GDB_SIGNAL_VTALRM:
1519 return MIPS_LINUX_SIGVTALRM;
1520
1521 case GDB_SIGNAL_PROF:
1522 return MIPS_LINUX_SIGPROF;
1523
1524 case GDB_SIGNAL_XCPU:
1525 return MIPS_LINUX_SIGXCPU;
1526
1527 case GDB_SIGNAL_XFSZ:
1528 return MIPS_LINUX_SIGXFSZ;
1529
1530 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1531 therefore we have to handle it here. */
1532 case GDB_SIGNAL_REALTIME_32:
1533 return MIPS_LINUX_SIGRTMIN;
1534 }
1535
1536 if (signal >= GDB_SIGNAL_REALTIME_33
1537 && signal <= GDB_SIGNAL_REALTIME_63)
1538 {
1539 int offset = signal - GDB_SIGNAL_REALTIME_33;
1540
1541 return MIPS_LINUX_SIGRTMIN + 1 + offset;
1542 }
1543 else if (signal >= GDB_SIGNAL_REALTIME_64
1544 && signal <= GDB_SIGNAL_REALTIME_127)
1545 {
1546 int offset = signal - GDB_SIGNAL_REALTIME_64;
1547
1548 return MIPS_LINUX_SIGRT64 + offset;
1549 }
1550
1551 return linux_gdb_signal_to_target (gdbarch, signal);
1552}
1553
7d266584 1554/* Translate signals based on MIPS signal values.
232b8704
ME
1555 Adapted from gdb/common/signals.c. */
1556
1557static enum gdb_signal
eb14d406 1558mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
232b8704 1559{
eb14d406 1560 switch (signal)
232b8704 1561 {
eb14d406 1562 case MIPS_LINUX_SIGEMT:
232b8704 1563 return GDB_SIGNAL_EMT;
eb14d406
SDJ
1564
1565 case MIPS_LINUX_SIGBUS:
232b8704 1566 return GDB_SIGNAL_BUS;
eb14d406
SDJ
1567
1568 case MIPS_LINUX_SIGSYS:
232b8704 1569 return GDB_SIGNAL_SYS;
eb14d406
SDJ
1570
1571 case MIPS_LINUX_SIGUSR1:
232b8704 1572 return GDB_SIGNAL_USR1;
eb14d406
SDJ
1573
1574 case MIPS_LINUX_SIGUSR2:
232b8704 1575 return GDB_SIGNAL_USR2;
eb14d406
SDJ
1576
1577 case MIPS_LINUX_SIGCHLD:
232b8704 1578 return GDB_SIGNAL_CHLD;
eb14d406
SDJ
1579
1580 case MIPS_LINUX_SIGPWR:
232b8704 1581 return GDB_SIGNAL_PWR;
eb14d406
SDJ
1582
1583 case MIPS_LINUX_SIGWINCH:
232b8704 1584 return GDB_SIGNAL_WINCH;
eb14d406
SDJ
1585
1586 case MIPS_LINUX_SIGURG:
232b8704 1587 return GDB_SIGNAL_URG;
eb14d406
SDJ
1588
1589 /* No way to differentiate between SIGIO and SIGPOLL.
1590 Therefore, we just handle the first one. */
1591 case MIPS_LINUX_SIGIO:
1592 return GDB_SIGNAL_IO;
1593
1594 case MIPS_LINUX_SIGSTOP:
232b8704 1595 return GDB_SIGNAL_STOP;
eb14d406
SDJ
1596
1597 case MIPS_LINUX_SIGTSTP:
232b8704 1598 return GDB_SIGNAL_TSTP;
eb14d406
SDJ
1599
1600 case MIPS_LINUX_SIGCONT:
232b8704 1601 return GDB_SIGNAL_CONT;
eb14d406
SDJ
1602
1603 case MIPS_LINUX_SIGTTIN:
232b8704 1604 return GDB_SIGNAL_TTIN;
eb14d406
SDJ
1605
1606 case MIPS_LINUX_SIGTTOU:
232b8704 1607 return GDB_SIGNAL_TTOU;
eb14d406
SDJ
1608
1609 case MIPS_LINUX_SIGVTALRM:
232b8704 1610 return GDB_SIGNAL_VTALRM;
eb14d406
SDJ
1611
1612 case MIPS_LINUX_SIGPROF:
232b8704 1613 return GDB_SIGNAL_PROF;
eb14d406
SDJ
1614
1615 case MIPS_LINUX_SIGXCPU:
232b8704 1616 return GDB_SIGNAL_XCPU;
eb14d406
SDJ
1617
1618 case MIPS_LINUX_SIGXFSZ:
232b8704 1619 return GDB_SIGNAL_XFSZ;
eb14d406 1620 }
232b8704 1621
eb14d406 1622 if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
232b8704
ME
1623 {
1624 /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1625 the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
eb14d406
SDJ
1626 int offset = signal - MIPS_LINUX_SIGRTMIN;
1627
1628 if (offset == 0)
232b8704 1629 return GDB_SIGNAL_REALTIME_32;
eb14d406
SDJ
1630 else if (offset < 32)
1631 return (enum gdb_signal) (offset - 1
1632 + (int) GDB_SIGNAL_REALTIME_33);
232b8704 1633 else
eb14d406
SDJ
1634 return (enum gdb_signal) (offset - 32
1635 + (int) GDB_SIGNAL_REALTIME_64);
232b8704
ME
1636 }
1637
eb14d406 1638 return linux_gdb_signal_from_target (gdbarch, signal);
232b8704
ME
1639}
1640
5792a79b
DJ
1641/* Initialize one of the GNU/Linux OS ABIs. */
1642
19ed69dd 1643static void
295093a4
MS
1644mips_linux_init_abi (struct gdbarch_info info,
1645 struct gdbarch *gdbarch)
19ed69dd 1646{
96f026fc
KB
1647 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1648 enum mips_abi abi = mips_abi (gdbarch);
19ba03f4
SM
1649 struct tdesc_arch_data *tdesc_data
1650 = (struct tdesc_arch_data *) info.tdep_info;
96f026fc 1651
a5ee0f0c
PA
1652 linux_init_abi (info, gdbarch);
1653
385203ed
DD
1654 /* Get the syscall number from the arch's register. */
1655 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1656
96f026fc
KB
1657 switch (abi)
1658 {
1659 case MIPS_ABI_O32:
1660 set_gdbarch_get_longjmp_target (gdbarch,
7d266584 1661 mips_linux_get_longjmp_target);
96f026fc 1662 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1663 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
858339f2
MR
1664 tramp_frame_prepend_unwinder (gdbarch, &micromips_linux_o32_sigframe);
1665 tramp_frame_prepend_unwinder (gdbarch,
1666 &micromips_linux_o32_rt_sigframe);
fb2be677
AC
1667 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1668 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
458c8db8 1669 set_xml_syscall_file_name (gdbarch, "syscalls/mips-o32-linux.xml");
96f026fc
KB
1670 break;
1671 case MIPS_ABI_N32:
1672 set_gdbarch_get_longjmp_target (gdbarch,
7d266584 1673 mips_linux_get_longjmp_target);
96f026fc 1674 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1675 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
d05f6826
DJ
1676 set_gdbarch_long_double_bit (gdbarch, 128);
1677 /* These floatformats should probably be renamed. MIPS uses
1678 the same 128-bit IEEE floating point format that IA-64 uses,
1679 except that the quiet/signalling NaN bit is reversed (GDB
1680 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1681 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
858339f2
MR
1682 tramp_frame_prepend_unwinder (gdbarch,
1683 &micromips_linux_n32_rt_sigframe);
fb2be677 1684 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
458c8db8 1685 set_xml_syscall_file_name (gdbarch, "syscalls/mips-n32-linux.xml");
96f026fc
KB
1686 break;
1687 case MIPS_ABI_N64:
1688 set_gdbarch_get_longjmp_target (gdbarch,
7d266584 1689 mips64_linux_get_longjmp_target);
96f026fc 1690 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1691 (gdbarch, svr4_lp64_fetch_link_map_offsets);
d05f6826
DJ
1692 set_gdbarch_long_double_bit (gdbarch, 128);
1693 /* These floatformats should probably be renamed. MIPS uses
1694 the same 128-bit IEEE floating point format that IA-64 uses,
1695 except that the quiet/signalling NaN bit is reversed (GDB
1696 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1697 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
858339f2
MR
1698 tramp_frame_prepend_unwinder (gdbarch,
1699 &micromips_linux_n64_rt_sigframe);
fb2be677 1700 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
458c8db8 1701 set_xml_syscall_file_name (gdbarch, "syscalls/mips-n64-linux.xml");
96f026fc
KB
1702 break;
1703 default:
96f026fc
KB
1704 break;
1705 }
6de918a6
DJ
1706
1707 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1708
0d0266c6 1709 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
b2756930
KB
1710
1711 /* Enable TLS support. */
1712 set_gdbarch_fetch_tls_load_module_address (gdbarch,
7d266584 1713 svr4_fetch_objfile_link_map);
7d522c90
DJ
1714
1715 /* Initialize this lazily, to avoid an initialization order
1716 dependency on solib-svr4.c's _initialize routine. */
1717 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1718 {
1719 mips_svr4_so_ops = svr4_so_ops;
1720 mips_svr4_so_ops.in_dynsym_resolve_code
1721 = mips_linux_in_dynsym_resolve_code;
1722 }
1723 set_solib_ops (gdbarch, &mips_svr4_so_ops);
822b6570
DJ
1724
1725 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1726
4eb0ad19
DJ
1727 set_gdbarch_core_read_description (gdbarch,
1728 mips_linux_core_read_description);
1729
d4036235
AA
1730 set_gdbarch_iterate_over_regset_sections
1731 (gdbarch, mips_linux_iterate_over_regset_sections);
50e8a0d5 1732
232b8704
ME
1733 set_gdbarch_gdb_signal_from_target (gdbarch,
1734 mips_gdb_signal_from_target);
1735
eb14d406
SDJ
1736 set_gdbarch_gdb_signal_to_target (gdbarch,
1737 mips_gdb_signal_to_target);
1738
e38d4e1a
DJ
1739 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1740
822b6570
DJ
1741 if (tdesc_data)
1742 {
1743 const struct tdesc_feature *feature;
1744
1745 /* If we have target-described registers, then we can safely
1746 reserve a number for MIPS_RESTART_REGNUM (whether it is
1747 described or not). */
1748 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1749 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
cf233303 1750 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
822b6570
DJ
1751
1752 /* If it's present, then assign it to the reserved number. */
1753 feature = tdesc_find_feature (info.target_desc,
1754 "org.gnu.gdb.mips.linux");
1755 if (feature != NULL)
1756 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1757 "restart");
1758 }
19ed69dd
KB
1759}
1760
63807e1d
PA
1761/* Provide a prototype to silence -Wmissing-prototypes. */
1762extern initialize_file_ftype _initialize_mips_linux_tdep;
1763
2aa830e4 1764void
d1bacddc 1765_initialize_mips_linux_tdep (void)
2aa830e4 1766{
96f026fc
KB
1767 const struct bfd_arch_info *arch_info;
1768
96f026fc
KB
1769 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1770 arch_info != NULL;
1771 arch_info = arch_info->next)
1772 {
295093a4
MS
1773 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1774 GDB_OSABI_LINUX,
96f026fc
KB
1775 mips_linux_init_abi);
1776 }
2aa830e4 1777}
This page took 1.416891 seconds and 4 git commands to generate.